1 | #! /usr/bin/env perl
|
---|
2 | # Copyright 1998-2020 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | #
|
---|
4 | # Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
5 | # this file except in compliance with the License. You can obtain a copy
|
---|
6 | # in the file LICENSE in the source distribution or at
|
---|
7 | # https://www.openssl.org/source/license.html
|
---|
8 |
|
---|
9 |
|
---|
10 | # ====================================================================
|
---|
11 | # [Re]written by Andy Polyakov <[email protected]> for the OpenSSL
|
---|
12 | # project. The module is, however, dual licensed under OpenSSL and
|
---|
13 | # CRYPTOGAMS licenses depending on where you obtain it. For further
|
---|
14 | # details see http://www.openssl.org/~appro/cryptogams/.
|
---|
15 | # ====================================================================
|
---|
16 |
|
---|
17 | # At some point it became apparent that the original SSLeay RC4
|
---|
18 | # assembler implementation performs suboptimally on latest IA-32
|
---|
19 | # microarchitectures. After re-tuning performance has changed as
|
---|
20 | # following:
|
---|
21 | #
|
---|
22 | # Pentium -10%
|
---|
23 | # Pentium III +12%
|
---|
24 | # AMD +50%(*)
|
---|
25 | # P4 +250%(**)
|
---|
26 | #
|
---|
27 | # (*) This number is actually a trade-off:-) It's possible to
|
---|
28 | # achieve +72%, but at the cost of -48% off PIII performance.
|
---|
29 | # In other words code performing further 13% faster on AMD
|
---|
30 | # would perform almost 2 times slower on Intel PIII...
|
---|
31 | # For reference! This code delivers ~80% of rc4-amd64.pl
|
---|
32 | # performance on the same Opteron machine.
|
---|
33 | # (**) This number requires compressed key schedule set up by
|
---|
34 | # RC4_set_key [see commentary below for further details].
|
---|
35 |
|
---|
36 | # May 2011
|
---|
37 | #
|
---|
38 | # Optimize for Core2 and Westmere [and incidentally Opteron]. Current
|
---|
39 | # performance in cycles per processed byte (less is better) and
|
---|
40 | # improvement relative to previous version of this module is:
|
---|
41 | #
|
---|
42 | # Pentium 10.2 # original numbers
|
---|
43 | # Pentium III 7.8(*)
|
---|
44 | # Intel P4 7.5
|
---|
45 | #
|
---|
46 | # Opteron 6.1/+20% # new MMX numbers
|
---|
47 | # Core2 5.3/+67%(**)
|
---|
48 | # Westmere 5.1/+94%(**)
|
---|
49 | # Sandy Bridge 5.0/+8%
|
---|
50 | # Atom 12.6/+6%
|
---|
51 | # VIA Nano 6.4/+9%
|
---|
52 | # Ivy Bridge 4.9/±0%
|
---|
53 | # Bulldozer 4.9/+15%
|
---|
54 | #
|
---|
55 | # (*) PIII can actually deliver 6.6 cycles per byte with MMX code,
|
---|
56 | # but this specific code performs poorly on Core2. And vice
|
---|
57 | # versa, below MMX/SSE code delivering 5.8/7.1 on Core2 performs
|
---|
58 | # poorly on PIII, at 8.0/14.5:-( As PIII is not a "hot" CPU
|
---|
59 | # [anymore], I chose to discard PIII-specific code path and opt
|
---|
60 | # for original IALU-only code, which is why MMX/SSE code path
|
---|
61 | # is guarded by SSE2 bit (see below), not MMX/SSE.
|
---|
62 | # (**) Performance vs. block size on Core2 and Westmere had a maximum
|
---|
63 | # at ... 64 bytes block size. And it was quite a maximum, 40-60%
|
---|
64 | # in comparison to largest 8KB block size. Above improvement
|
---|
65 | # coefficients are for the largest block size.
|
---|
66 |
|
---|
67 | $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
|
---|
68 | push(@INC,"${dir}","${dir}../../perlasm");
|
---|
69 | require "x86asm.pl";
|
---|
70 |
|
---|
71 | $output = pop and open STDOUT,">$output";
|
---|
72 |
|
---|
73 | &asm_init($ARGV[0],$x86only = $ARGV[$#ARGV] eq "386");
|
---|
74 |
|
---|
75 | $xx="eax";
|
---|
76 | $yy="ebx";
|
---|
77 | $tx="ecx";
|
---|
78 | $ty="edx";
|
---|
79 | $inp="esi";
|
---|
80 | $out="ebp";
|
---|
81 | $dat="edi";
|
---|
82 |
|
---|
83 | sub RC4_loop {
|
---|
84 | my $i=shift;
|
---|
85 | my $func = ($i==0)?*mov:*or;
|
---|
86 |
|
---|
87 | &add (&LB($yy),&LB($tx));
|
---|
88 | &mov ($ty,&DWP(0,$dat,$yy,4));
|
---|
89 | &mov (&DWP(0,$dat,$yy,4),$tx);
|
---|
90 | &mov (&DWP(0,$dat,$xx,4),$ty);
|
---|
91 | &add ($ty,$tx);
|
---|
92 | &inc (&LB($xx));
|
---|
93 | &and ($ty,0xff);
|
---|
94 | &ror ($out,8) if ($i!=0);
|
---|
95 | if ($i<3) {
|
---|
96 | &mov ($tx,&DWP(0,$dat,$xx,4));
|
---|
97 | } else {
|
---|
98 | &mov ($tx,&wparam(3)); # reload [re-biased] out
|
---|
99 | }
|
---|
100 | &$func ($out,&DWP(0,$dat,$ty,4));
|
---|
101 | }
|
---|
102 |
|
---|
103 | if ($alt=0) {
|
---|
104 | # >20% faster on Atom and Sandy Bridge[!], 8% faster on Opteron,
|
---|
105 | # but ~40% slower on Core2 and Westmere... Attempt to add movz
|
---|
106 | # brings down Opteron by 25%, Atom and Sandy Bridge by 15%, yet
|
---|
107 | # on Core2 with movz it's almost 20% slower than below alternative
|
---|
108 | # code... Yes, it's a total mess...
|
---|
109 | my @XX=($xx,$out);
|
---|
110 | $RC4_loop_mmx = sub { # SSE actually...
|
---|
111 | my $i=shift;
|
---|
112 | my $j=$i<=0?0:$i>>1;
|
---|
113 | my $mm=$i<=0?"mm0":"mm".($i&1);
|
---|
114 |
|
---|
115 | &add (&LB($yy),&LB($tx));
|
---|
116 | &lea (@XX[1],&DWP(1,@XX[0]));
|
---|
117 | &pxor ("mm2","mm0") if ($i==0);
|
---|
118 | &psllq ("mm1",8) if ($i==0);
|
---|
119 | &and (@XX[1],0xff);
|
---|
120 | &pxor ("mm0","mm0") if ($i<=0);
|
---|
121 | &mov ($ty,&DWP(0,$dat,$yy,4));
|
---|
122 | &mov (&DWP(0,$dat,$yy,4),$tx);
|
---|
123 | &pxor ("mm1","mm2") if ($i==0);
|
---|
124 | &mov (&DWP(0,$dat,$XX[0],4),$ty);
|
---|
125 | &add (&LB($ty),&LB($tx));
|
---|
126 | &movd (@XX[0],"mm7") if ($i==0);
|
---|
127 | &mov ($tx,&DWP(0,$dat,@XX[1],4));
|
---|
128 | &pxor ("mm1","mm1") if ($i==1);
|
---|
129 | &movq ("mm2",&QWP(0,$inp)) if ($i==1);
|
---|
130 | &movq (&QWP(-8,(@XX[0],$inp)),"mm1") if ($i==0);
|
---|
131 | &pinsrw ($mm,&DWP(0,$dat,$ty,4),$j);
|
---|
132 |
|
---|
133 | push (@XX,shift(@XX)) if ($i>=0);
|
---|
134 | }
|
---|
135 | } else {
|
---|
136 | # Using pinsrw here improves performance on Intel CPUs by 2-3%, but
|
---|
137 | # brings down AMD by 7%...
|
---|
138 | $RC4_loop_mmx = sub {
|
---|
139 | my $i=shift;
|
---|
140 |
|
---|
141 | &add (&LB($yy),&LB($tx));
|
---|
142 | &psllq ("mm1",8*(($i-1)&7)) if (abs($i)!=1);
|
---|
143 | &mov ($ty,&DWP(0,$dat,$yy,4));
|
---|
144 | &mov (&DWP(0,$dat,$yy,4),$tx);
|
---|
145 | &mov (&DWP(0,$dat,$xx,4),$ty);
|
---|
146 | &inc ($xx);
|
---|
147 | &add ($ty,$tx);
|
---|
148 | &movz ($xx,&LB($xx)); # (*)
|
---|
149 | &movz ($ty,&LB($ty)); # (*)
|
---|
150 | &pxor ("mm2",$i==1?"mm0":"mm1") if ($i>=0);
|
---|
151 | &movq ("mm0",&QWP(0,$inp)) if ($i<=0);
|
---|
152 | &movq (&QWP(-8,($out,$inp)),"mm2") if ($i==0);
|
---|
153 | &mov ($tx,&DWP(0,$dat,$xx,4));
|
---|
154 | &movd ($i>0?"mm1":"mm2",&DWP(0,$dat,$ty,4));
|
---|
155 |
|
---|
156 | # (*) This is the key to Core2 and Westmere performance.
|
---|
157 | # Without movz out-of-order execution logic confuses
|
---|
158 | # itself and fails to reorder loads and stores. Problem
|
---|
159 | # appears to be fixed in Sandy Bridge...
|
---|
160 | }
|
---|
161 | }
|
---|
162 |
|
---|
163 | &external_label("OPENSSL_ia32cap_P");
|
---|
164 |
|
---|
165 | # void RC4(RC4_KEY *key,size_t len,const unsigned char *inp,unsigned char *out);
|
---|
166 | &function_begin("RC4");
|
---|
167 | &mov ($dat,&wparam(0)); # load key schedule pointer
|
---|
168 | &mov ($ty, &wparam(1)); # load len
|
---|
169 | &mov ($inp,&wparam(2)); # load inp
|
---|
170 | &mov ($out,&wparam(3)); # load out
|
---|
171 |
|
---|
172 | &xor ($xx,$xx); # avoid partial register stalls
|
---|
173 | &xor ($yy,$yy);
|
---|
174 |
|
---|
175 | &cmp ($ty,0); # safety net
|
---|
176 | &je (&label("abort"));
|
---|
177 |
|
---|
178 | &mov (&LB($xx),&BP(0,$dat)); # load key->x
|
---|
179 | &mov (&LB($yy),&BP(4,$dat)); # load key->y
|
---|
180 | &add ($dat,8);
|
---|
181 |
|
---|
182 | &lea ($tx,&DWP(0,$inp,$ty));
|
---|
183 | &sub ($out,$inp); # re-bias out
|
---|
184 | &mov (&wparam(1),$tx); # save input+len
|
---|
185 |
|
---|
186 | &inc (&LB($xx));
|
---|
187 |
|
---|
188 | # detect compressed key schedule...
|
---|
189 | &cmp (&DWP(256,$dat),-1);
|
---|
190 | &je (&label("RC4_CHAR"));
|
---|
191 |
|
---|
192 | &mov ($tx,&DWP(0,$dat,$xx,4));
|
---|
193 |
|
---|
194 | &and ($ty,-4); # how many 4-byte chunks?
|
---|
195 | &jz (&label("loop1"));
|
---|
196 |
|
---|
197 | &mov (&wparam(3),$out); # $out as accumulator in these loops
|
---|
198 | if ($x86only) {
|
---|
199 | &jmp (&label("go4loop4"));
|
---|
200 | } else {
|
---|
201 | &test ($ty,-8);
|
---|
202 | &jz (&label("go4loop4"));
|
---|
203 |
|
---|
204 | &picmeup($out,"OPENSSL_ia32cap_P");
|
---|
205 | &bt (&DWP(0,$out),26); # check SSE2 bit [could have been MMX]
|
---|
206 | &jnc (&label("go4loop4"));
|
---|
207 |
|
---|
208 | &mov ($out,&wparam(3)) if (!$alt);
|
---|
209 | &movd ("mm7",&wparam(3)) if ($alt);
|
---|
210 | &and ($ty,-8);
|
---|
211 | &lea ($ty,&DWP(-8,$inp,$ty));
|
---|
212 | &mov (&DWP(-4,$dat),$ty); # save input+(len/8)*8-8
|
---|
213 |
|
---|
214 | &$RC4_loop_mmx(-1);
|
---|
215 | &jmp(&label("loop_mmx_enter"));
|
---|
216 |
|
---|
217 | &set_label("loop_mmx",16);
|
---|
218 | &$RC4_loop_mmx(0);
|
---|
219 | &set_label("loop_mmx_enter");
|
---|
220 | for ($i=1;$i<8;$i++) { &$RC4_loop_mmx($i); }
|
---|
221 | &mov ($ty,$yy);
|
---|
222 | &xor ($yy,$yy); # this is second key to Core2
|
---|
223 | &mov (&LB($yy),&LB($ty)); # and Westmere performance...
|
---|
224 | &cmp ($inp,&DWP(-4,$dat));
|
---|
225 | &lea ($inp,&DWP(8,$inp));
|
---|
226 | &jb (&label("loop_mmx"));
|
---|
227 |
|
---|
228 | if ($alt) {
|
---|
229 | &movd ($out,"mm7");
|
---|
230 | &pxor ("mm2","mm0");
|
---|
231 | &psllq ("mm1",8);
|
---|
232 | &pxor ("mm1","mm2");
|
---|
233 | &movq (&QWP(-8,$out,$inp),"mm1");
|
---|
234 | } else {
|
---|
235 | &psllq ("mm1",56);
|
---|
236 | &pxor ("mm2","mm1");
|
---|
237 | &movq (&QWP(-8,$out,$inp),"mm2");
|
---|
238 | }
|
---|
239 | &emms ();
|
---|
240 |
|
---|
241 | &cmp ($inp,&wparam(1)); # compare to input+len
|
---|
242 | &je (&label("done"));
|
---|
243 | &jmp (&label("loop1"));
|
---|
244 | }
|
---|
245 |
|
---|
246 | &set_label("go4loop4",16);
|
---|
247 | &lea ($ty,&DWP(-4,$inp,$ty));
|
---|
248 | &mov (&wparam(2),$ty); # save input+(len/4)*4-4
|
---|
249 |
|
---|
250 | &set_label("loop4");
|
---|
251 | for ($i=0;$i<4;$i++) { RC4_loop($i); }
|
---|
252 | &ror ($out,8);
|
---|
253 | &xor ($out,&DWP(0,$inp));
|
---|
254 | &cmp ($inp,&wparam(2)); # compare to input+(len/4)*4-4
|
---|
255 | &mov (&DWP(0,$tx,$inp),$out);# $tx holds re-biased out here
|
---|
256 | &lea ($inp,&DWP(4,$inp));
|
---|
257 | &mov ($tx,&DWP(0,$dat,$xx,4));
|
---|
258 | &jb (&label("loop4"));
|
---|
259 |
|
---|
260 | &cmp ($inp,&wparam(1)); # compare to input+len
|
---|
261 | &je (&label("done"));
|
---|
262 | &mov ($out,&wparam(3)); # restore $out
|
---|
263 |
|
---|
264 | &set_label("loop1",16);
|
---|
265 | &add (&LB($yy),&LB($tx));
|
---|
266 | &mov ($ty,&DWP(0,$dat,$yy,4));
|
---|
267 | &mov (&DWP(0,$dat,$yy,4),$tx);
|
---|
268 | &mov (&DWP(0,$dat,$xx,4),$ty);
|
---|
269 | &add ($ty,$tx);
|
---|
270 | &inc (&LB($xx));
|
---|
271 | &and ($ty,0xff);
|
---|
272 | &mov ($ty,&DWP(0,$dat,$ty,4));
|
---|
273 | &xor (&LB($ty),&BP(0,$inp));
|
---|
274 | &lea ($inp,&DWP(1,$inp));
|
---|
275 | &mov ($tx,&DWP(0,$dat,$xx,4));
|
---|
276 | &cmp ($inp,&wparam(1)); # compare to input+len
|
---|
277 | &mov (&BP(-1,$out,$inp),&LB($ty));
|
---|
278 | &jb (&label("loop1"));
|
---|
279 |
|
---|
280 | &jmp (&label("done"));
|
---|
281 |
|
---|
282 | # this is essentially Intel P4 specific codepath...
|
---|
283 | &set_label("RC4_CHAR",16);
|
---|
284 | &movz ($tx,&BP(0,$dat,$xx));
|
---|
285 | # strangely enough unrolled loop performs over 20% slower...
|
---|
286 | &set_label("cloop1");
|
---|
287 | &add (&LB($yy),&LB($tx));
|
---|
288 | &movz ($ty,&BP(0,$dat,$yy));
|
---|
289 | &mov (&BP(0,$dat,$yy),&LB($tx));
|
---|
290 | &mov (&BP(0,$dat,$xx),&LB($ty));
|
---|
291 | &add (&LB($ty),&LB($tx));
|
---|
292 | &movz ($ty,&BP(0,$dat,$ty));
|
---|
293 | &add (&LB($xx),1);
|
---|
294 | &xor (&LB($ty),&BP(0,$inp));
|
---|
295 | &lea ($inp,&DWP(1,$inp));
|
---|
296 | &movz ($tx,&BP(0,$dat,$xx));
|
---|
297 | &cmp ($inp,&wparam(1));
|
---|
298 | &mov (&BP(-1,$out,$inp),&LB($ty));
|
---|
299 | &jb (&label("cloop1"));
|
---|
300 |
|
---|
301 | &set_label("done");
|
---|
302 | &dec (&LB($xx));
|
---|
303 | &mov (&DWP(-4,$dat),$yy); # save key->y
|
---|
304 | &mov (&BP(-8,$dat),&LB($xx)); # save key->x
|
---|
305 | &set_label("abort");
|
---|
306 | &function_end("RC4");
|
---|
307 |
|
---|
308 | ########################################################################
|
---|
309 |
|
---|
310 | $inp="esi";
|
---|
311 | $out="edi";
|
---|
312 | $idi="ebp";
|
---|
313 | $ido="ecx";
|
---|
314 | $idx="edx";
|
---|
315 |
|
---|
316 | # void RC4_set_key(RC4_KEY *key,int len,const unsigned char *data);
|
---|
317 | &function_begin("RC4_set_key");
|
---|
318 | &mov ($out,&wparam(0)); # load key
|
---|
319 | &mov ($idi,&wparam(1)); # load len
|
---|
320 | &mov ($inp,&wparam(2)); # load data
|
---|
321 | &picmeup($idx,"OPENSSL_ia32cap_P");
|
---|
322 |
|
---|
323 | &lea ($out,&DWP(2*4,$out)); # &key->data
|
---|
324 | &lea ($inp,&DWP(0,$inp,$idi)); # $inp to point at the end
|
---|
325 | &neg ($idi);
|
---|
326 | &xor ("eax","eax");
|
---|
327 | &mov (&DWP(-4,$out),$idi); # borrow key->y
|
---|
328 |
|
---|
329 | &bt (&DWP(0,$idx),20); # check for bit#20
|
---|
330 | &jc (&label("c1stloop"));
|
---|
331 |
|
---|
332 | &set_label("w1stloop",16);
|
---|
333 | &mov (&DWP(0,$out,"eax",4),"eax"); # key->data[i]=i;
|
---|
334 | &add (&LB("eax"),1); # i++;
|
---|
335 | &jnc (&label("w1stloop"));
|
---|
336 |
|
---|
337 | &xor ($ido,$ido);
|
---|
338 | &xor ($idx,$idx);
|
---|
339 |
|
---|
340 | &set_label("w2ndloop",16);
|
---|
341 | &mov ("eax",&DWP(0,$out,$ido,4));
|
---|
342 | &add (&LB($idx),&BP(0,$inp,$idi));
|
---|
343 | &add (&LB($idx),&LB("eax"));
|
---|
344 | &add ($idi,1);
|
---|
345 | &mov ("ebx",&DWP(0,$out,$idx,4));
|
---|
346 | &jnz (&label("wnowrap"));
|
---|
347 | &mov ($idi,&DWP(-4,$out));
|
---|
348 | &set_label("wnowrap");
|
---|
349 | &mov (&DWP(0,$out,$idx,4),"eax");
|
---|
350 | &mov (&DWP(0,$out,$ido,4),"ebx");
|
---|
351 | &add (&LB($ido),1);
|
---|
352 | &jnc (&label("w2ndloop"));
|
---|
353 | &jmp (&label("exit"));
|
---|
354 |
|
---|
355 | # Unlike all other x86 [and x86_64] implementations, Intel P4 core
|
---|
356 | # [including EM64T] was found to perform poorly with above "32-bit" key
|
---|
357 | # schedule, a.k.a. RC4_INT. Performance improvement for IA-32 hand-coded
|
---|
358 | # assembler turned out to be 3.5x if re-coded for compressed 8-bit one,
|
---|
359 | # a.k.a. RC4_CHAR! It's however inappropriate to just switch to 8-bit
|
---|
360 | # schedule for x86[_64], because non-P4 implementations suffer from
|
---|
361 | # significant performance losses then, e.g. PIII exhibits >2x
|
---|
362 | # deterioration, and so does Opteron. In order to assure optimal
|
---|
363 | # all-round performance, we detect P4 at run-time and set up compressed
|
---|
364 | # key schedule, which is recognized by RC4 procedure.
|
---|
365 |
|
---|
366 | &set_label("c1stloop",16);
|
---|
367 | &mov (&BP(0,$out,"eax"),&LB("eax")); # key->data[i]=i;
|
---|
368 | &add (&LB("eax"),1); # i++;
|
---|
369 | &jnc (&label("c1stloop"));
|
---|
370 |
|
---|
371 | &xor ($ido,$ido);
|
---|
372 | &xor ($idx,$idx);
|
---|
373 | &xor ("ebx","ebx");
|
---|
374 |
|
---|
375 | &set_label("c2ndloop",16);
|
---|
376 | &mov (&LB("eax"),&BP(0,$out,$ido));
|
---|
377 | &add (&LB($idx),&BP(0,$inp,$idi));
|
---|
378 | &add (&LB($idx),&LB("eax"));
|
---|
379 | &add ($idi,1);
|
---|
380 | &mov (&LB("ebx"),&BP(0,$out,$idx));
|
---|
381 | &jnz (&label("cnowrap"));
|
---|
382 | &mov ($idi,&DWP(-4,$out));
|
---|
383 | &set_label("cnowrap");
|
---|
384 | &mov (&BP(0,$out,$idx),&LB("eax"));
|
---|
385 | &mov (&BP(0,$out,$ido),&LB("ebx"));
|
---|
386 | &add (&LB($ido),1);
|
---|
387 | &jnc (&label("c2ndloop"));
|
---|
388 |
|
---|
389 | &mov (&DWP(256,$out),-1); # mark schedule as compressed
|
---|
390 |
|
---|
391 | &set_label("exit");
|
---|
392 | &xor ("eax","eax");
|
---|
393 | &mov (&DWP(-8,$out),"eax"); # key->x=0;
|
---|
394 | &mov (&DWP(-4,$out),"eax"); # key->y=0;
|
---|
395 | &function_end("RC4_set_key");
|
---|
396 |
|
---|
397 | # const char *RC4_options(void);
|
---|
398 | &function_begin_B("RC4_options");
|
---|
399 | &call (&label("pic_point"));
|
---|
400 | &set_label("pic_point");
|
---|
401 | &blindpop("eax");
|
---|
402 | &lea ("eax",&DWP(&label("opts")."-".&label("pic_point"),"eax"));
|
---|
403 | &picmeup("edx","OPENSSL_ia32cap_P");
|
---|
404 | &mov ("edx",&DWP(0,"edx"));
|
---|
405 | &bt ("edx",20);
|
---|
406 | &jc (&label("1xchar"));
|
---|
407 | &bt ("edx",26);
|
---|
408 | &jnc (&label("ret"));
|
---|
409 | &add ("eax",25);
|
---|
410 | &ret ();
|
---|
411 | &set_label("1xchar");
|
---|
412 | &add ("eax",12);
|
---|
413 | &set_label("ret");
|
---|
414 | &ret ();
|
---|
415 | &set_label("opts",64);
|
---|
416 | &asciz ("rc4(4x,int)");
|
---|
417 | &asciz ("rc4(1x,char)");
|
---|
418 | &asciz ("rc4(8x,mmx)");
|
---|
419 | &asciz ("RC4 for x86, CRYPTOGAMS by <appro\@openssl.org>");
|
---|
420 | &align (64);
|
---|
421 | &function_end_B("RC4_options");
|
---|
422 |
|
---|
423 | &asm_finish();
|
---|
424 |
|
---|
425 | close STDOUT or die "error closing STDOUT: $!";
|
---|