1 | /*
|
---|
2 | * Copyright 2020-2023 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | * Copyright (c) 2020-2021, Intel Corporation. All Rights Reserved.
|
---|
4 | *
|
---|
5 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
6 | * this file except in compliance with the License. You can obtain a copy
|
---|
7 | * in the file LICENSE in the source distribution or at
|
---|
8 | * https://www.openssl.org/source/license.html
|
---|
9 | *
|
---|
10 | *
|
---|
11 | * Originally written by Sergey Kirillov and Andrey Matyukov.
|
---|
12 | * Special thanks to Ilya Albrekht for his valuable hints.
|
---|
13 | * Intel Corporation
|
---|
14 | *
|
---|
15 | */
|
---|
16 |
|
---|
17 | #include <openssl/opensslconf.h>
|
---|
18 | #include <openssl/crypto.h>
|
---|
19 | #include "rsaz_exp.h"
|
---|
20 |
|
---|
21 | #ifndef RSAZ_ENABLED
|
---|
22 | NON_EMPTY_TRANSLATION_UNIT
|
---|
23 | #else
|
---|
24 | # include <assert.h>
|
---|
25 | # include <string.h>
|
---|
26 |
|
---|
27 | # define ALIGN_OF(ptr, boundary) \
|
---|
28 | ((unsigned char *)(ptr) + (boundary - (((size_t)(ptr)) & (boundary - 1))))
|
---|
29 |
|
---|
30 | /* Internal radix */
|
---|
31 | # define DIGIT_SIZE (52)
|
---|
32 | /* 52-bit mask */
|
---|
33 | # define DIGIT_MASK ((uint64_t)0xFFFFFFFFFFFFF)
|
---|
34 |
|
---|
35 | # define BITS2WORD8_SIZE(x) (((x) + 7) >> 3)
|
---|
36 | # define BITS2WORD64_SIZE(x) (((x) + 63) >> 6)
|
---|
37 |
|
---|
38 | /* Number of registers required to hold |digits_num| amount of qword digits */
|
---|
39 | # define NUMBER_OF_REGISTERS(digits_num, register_size) \
|
---|
40 | (((digits_num) * 64 + (register_size) - 1) / (register_size))
|
---|
41 |
|
---|
42 | static ossl_inline uint64_t get_digit(const uint8_t *in, int in_len);
|
---|
43 | static ossl_inline void put_digit(uint8_t *out, int out_len, uint64_t digit);
|
---|
44 | static void to_words52(BN_ULONG *out, int out_len, const BN_ULONG *in,
|
---|
45 | int in_bitsize);
|
---|
46 | static void from_words52(BN_ULONG *bn_out, int out_bitsize, const BN_ULONG *in);
|
---|
47 | static ossl_inline void set_bit(BN_ULONG *a, int idx);
|
---|
48 |
|
---|
49 | /* Number of |digit_size|-bit digits in |bitsize|-bit value */
|
---|
50 | static ossl_inline int number_of_digits(int bitsize, int digit_size)
|
---|
51 | {
|
---|
52 | return (bitsize + digit_size - 1) / digit_size;
|
---|
53 | }
|
---|
54 |
|
---|
55 | /*
|
---|
56 | * For details of the methods declared below please refer to
|
---|
57 | * crypto/bn/asm/rsaz-avx512.pl
|
---|
58 | *
|
---|
59 | * Naming conventions:
|
---|
60 | * amm = Almost Montgomery Multiplication
|
---|
61 | * ams = Almost Montgomery Squaring
|
---|
62 | * 52xZZ - data represented as array of ZZ digits in 52-bit radix
|
---|
63 | * _x1_/_x2_ - 1 or 2 independent inputs/outputs
|
---|
64 | * _ifma256 - uses 256-bit wide IFMA ISA (AVX512_IFMA256)
|
---|
65 | */
|
---|
66 |
|
---|
67 | void ossl_rsaz_amm52x20_x1_ifma256(BN_ULONG *res, const BN_ULONG *a,
|
---|
68 | const BN_ULONG *b, const BN_ULONG *m,
|
---|
69 | BN_ULONG k0);
|
---|
70 | void ossl_rsaz_amm52x20_x2_ifma256(BN_ULONG *out, const BN_ULONG *a,
|
---|
71 | const BN_ULONG *b, const BN_ULONG *m,
|
---|
72 | const BN_ULONG k0[2]);
|
---|
73 | void ossl_extract_multiplier_2x20_win5(BN_ULONG *red_Y,
|
---|
74 | const BN_ULONG *red_table,
|
---|
75 | int red_table_idx1, int red_table_idx2);
|
---|
76 |
|
---|
77 | void ossl_rsaz_amm52x30_x1_ifma256(BN_ULONG *res, const BN_ULONG *a,
|
---|
78 | const BN_ULONG *b, const BN_ULONG *m,
|
---|
79 | BN_ULONG k0);
|
---|
80 | void ossl_rsaz_amm52x30_x2_ifma256(BN_ULONG *out, const BN_ULONG *a,
|
---|
81 | const BN_ULONG *b, const BN_ULONG *m,
|
---|
82 | const BN_ULONG k0[2]);
|
---|
83 | void ossl_extract_multiplier_2x30_win5(BN_ULONG *red_Y,
|
---|
84 | const BN_ULONG *red_table,
|
---|
85 | int red_table_idx1, int red_table_idx2);
|
---|
86 |
|
---|
87 | void ossl_rsaz_amm52x40_x1_ifma256(BN_ULONG *res, const BN_ULONG *a,
|
---|
88 | const BN_ULONG *b, const BN_ULONG *m,
|
---|
89 | BN_ULONG k0);
|
---|
90 | void ossl_rsaz_amm52x40_x2_ifma256(BN_ULONG *out, const BN_ULONG *a,
|
---|
91 | const BN_ULONG *b, const BN_ULONG *m,
|
---|
92 | const BN_ULONG k0[2]);
|
---|
93 | void ossl_extract_multiplier_2x40_win5(BN_ULONG *red_Y,
|
---|
94 | const BN_ULONG *red_table,
|
---|
95 | int red_table_idx1, int red_table_idx2);
|
---|
96 |
|
---|
97 | static int RSAZ_mod_exp_x2_ifma256(BN_ULONG *res, const BN_ULONG *base,
|
---|
98 | const BN_ULONG *exp[2], const BN_ULONG *m,
|
---|
99 | const BN_ULONG *rr, const BN_ULONG k0[2],
|
---|
100 | int modulus_bitsize);
|
---|
101 |
|
---|
102 | /*
|
---|
103 | * Dual Montgomery modular exponentiation using prime moduli of the
|
---|
104 | * same bit size, optimized with AVX512 ISA.
|
---|
105 | *
|
---|
106 | * Input and output parameters for each exponentiation are independent and
|
---|
107 | * denoted here by index |i|, i = 1..2.
|
---|
108 | *
|
---|
109 | * Input and output are all in regular 2^64 radix.
|
---|
110 | *
|
---|
111 | * Each moduli shall be |factor_size| bit size.
|
---|
112 | *
|
---|
113 | * Supported cases:
|
---|
114 | * - 2x1024
|
---|
115 | * - 2x1536
|
---|
116 | * - 2x2048
|
---|
117 | *
|
---|
118 | * [out] res|i| - result of modular exponentiation: array of qword values
|
---|
119 | * in regular (2^64) radix. Size of array shall be enough
|
---|
120 | * to hold |factor_size| bits.
|
---|
121 | * [in] base|i| - base
|
---|
122 | * [in] exp|i| - exponent
|
---|
123 | * [in] m|i| - moduli
|
---|
124 | * [in] rr|i| - Montgomery parameter RR = R^2 mod m|i|
|
---|
125 | * [in] k0_|i| - Montgomery parameter k0 = -1/m|i| mod 2^64
|
---|
126 | * [in] factor_size - moduli bit size
|
---|
127 | *
|
---|
128 | * \return 0 in case of failure,
|
---|
129 | * 1 in case of success.
|
---|
130 | */
|
---|
131 | int ossl_rsaz_mod_exp_avx512_x2(BN_ULONG *res1,
|
---|
132 | const BN_ULONG *base1,
|
---|
133 | const BN_ULONG *exp1,
|
---|
134 | const BN_ULONG *m1,
|
---|
135 | const BN_ULONG *rr1,
|
---|
136 | BN_ULONG k0_1,
|
---|
137 | BN_ULONG *res2,
|
---|
138 | const BN_ULONG *base2,
|
---|
139 | const BN_ULONG *exp2,
|
---|
140 | const BN_ULONG *m2,
|
---|
141 | const BN_ULONG *rr2,
|
---|
142 | BN_ULONG k0_2,
|
---|
143 | int factor_size)
|
---|
144 | {
|
---|
145 | typedef void (*AMM)(BN_ULONG *res, const BN_ULONG *a,
|
---|
146 | const BN_ULONG *b, const BN_ULONG *m, BN_ULONG k0);
|
---|
147 | int ret = 0;
|
---|
148 |
|
---|
149 | /*
|
---|
150 | * Number of word-size (BN_ULONG) digits to store exponent in redundant
|
---|
151 | * representation.
|
---|
152 | */
|
---|
153 | int exp_digits = number_of_digits(factor_size + 2, DIGIT_SIZE);
|
---|
154 | int coeff_pow = 4 * (DIGIT_SIZE * exp_digits - factor_size);
|
---|
155 |
|
---|
156 | /* Number of YMM registers required to store exponent's digits */
|
---|
157 | int ymm_regs_num = NUMBER_OF_REGISTERS(exp_digits, 256 /* ymm bit size */);
|
---|
158 | /* Capacity of the register set (in qwords) to store exponent */
|
---|
159 | int regs_capacity = ymm_regs_num * 4;
|
---|
160 |
|
---|
161 | BN_ULONG *base1_red, *m1_red, *rr1_red;
|
---|
162 | BN_ULONG *base2_red, *m2_red, *rr2_red;
|
---|
163 | BN_ULONG *coeff_red;
|
---|
164 | BN_ULONG *storage = NULL;
|
---|
165 | BN_ULONG *storage_aligned = NULL;
|
---|
166 | int storage_len_bytes = 7 * regs_capacity * sizeof(BN_ULONG)
|
---|
167 | + 64 /* alignment */;
|
---|
168 |
|
---|
169 | const BN_ULONG *exp[2] = {0};
|
---|
170 | BN_ULONG k0[2] = {0};
|
---|
171 | /* AMM = Almost Montgomery Multiplication */
|
---|
172 | AMM amm = NULL;
|
---|
173 |
|
---|
174 | switch (factor_size) {
|
---|
175 | case 1024:
|
---|
176 | amm = ossl_rsaz_amm52x20_x1_ifma256;
|
---|
177 | break;
|
---|
178 | case 1536:
|
---|
179 | amm = ossl_rsaz_amm52x30_x1_ifma256;
|
---|
180 | break;
|
---|
181 | case 2048:
|
---|
182 | amm = ossl_rsaz_amm52x40_x1_ifma256;
|
---|
183 | break;
|
---|
184 | default:
|
---|
185 | goto err;
|
---|
186 | }
|
---|
187 |
|
---|
188 | storage = (BN_ULONG *)OPENSSL_malloc(storage_len_bytes);
|
---|
189 | if (storage == NULL)
|
---|
190 | goto err;
|
---|
191 | storage_aligned = (BN_ULONG *)ALIGN_OF(storage, 64);
|
---|
192 |
|
---|
193 | /* Memory layout for red(undant) representations */
|
---|
194 | base1_red = storage_aligned;
|
---|
195 | base2_red = storage_aligned + 1 * regs_capacity;
|
---|
196 | m1_red = storage_aligned + 2 * regs_capacity;
|
---|
197 | m2_red = storage_aligned + 3 * regs_capacity;
|
---|
198 | rr1_red = storage_aligned + 4 * regs_capacity;
|
---|
199 | rr2_red = storage_aligned + 5 * regs_capacity;
|
---|
200 | coeff_red = storage_aligned + 6 * regs_capacity;
|
---|
201 |
|
---|
202 | /* Convert base_i, m_i, rr_i, from regular to 52-bit radix */
|
---|
203 | to_words52(base1_red, regs_capacity, base1, factor_size);
|
---|
204 | to_words52(base2_red, regs_capacity, base2, factor_size);
|
---|
205 | to_words52(m1_red, regs_capacity, m1, factor_size);
|
---|
206 | to_words52(m2_red, regs_capacity, m2, factor_size);
|
---|
207 | to_words52(rr1_red, regs_capacity, rr1, factor_size);
|
---|
208 | to_words52(rr2_red, regs_capacity, rr2, factor_size);
|
---|
209 |
|
---|
210 | /*
|
---|
211 | * Compute target domain Montgomery converters RR' for each modulus
|
---|
212 | * based on precomputed original domain's RR.
|
---|
213 | *
|
---|
214 | * RR -> RR' transformation steps:
|
---|
215 | * (1) coeff = 2^k
|
---|
216 | * (2) t = AMM(RR,RR) = RR^2 / R' mod m
|
---|
217 | * (3) RR' = AMM(t, coeff) = RR^2 * 2^k / R'^2 mod m
|
---|
218 | * where
|
---|
219 | * k = 4 * (52 * digits52 - modlen)
|
---|
220 | * R = 2^(64 * ceil(modlen/64)) mod m
|
---|
221 | * RR = R^2 mod m
|
---|
222 | * R' = 2^(52 * ceil(modlen/52)) mod m
|
---|
223 | *
|
---|
224 | * EX/ modlen = 1024: k = 64, RR = 2^2048 mod m, RR' = 2^2080 mod m
|
---|
225 | */
|
---|
226 | memset(coeff_red, 0, exp_digits * sizeof(BN_ULONG));
|
---|
227 | /* (1) in reduced domain representation */
|
---|
228 | set_bit(coeff_red, 64 * (int)(coeff_pow / 52) + coeff_pow % 52);
|
---|
229 |
|
---|
230 | amm(rr1_red, rr1_red, rr1_red, m1_red, k0_1); /* (2) for m1 */
|
---|
231 | amm(rr1_red, rr1_red, coeff_red, m1_red, k0_1); /* (3) for m1 */
|
---|
232 |
|
---|
233 | amm(rr2_red, rr2_red, rr2_red, m2_red, k0_2); /* (2) for m2 */
|
---|
234 | amm(rr2_red, rr2_red, coeff_red, m2_red, k0_2); /* (3) for m2 */
|
---|
235 |
|
---|
236 | exp[0] = exp1;
|
---|
237 | exp[1] = exp2;
|
---|
238 |
|
---|
239 | k0[0] = k0_1;
|
---|
240 | k0[1] = k0_2;
|
---|
241 |
|
---|
242 | /* Dual (2-exps in parallel) exponentiation */
|
---|
243 | ret = RSAZ_mod_exp_x2_ifma256(rr1_red, base1_red, exp, m1_red, rr1_red,
|
---|
244 | k0, factor_size);
|
---|
245 | if (!ret)
|
---|
246 | goto err;
|
---|
247 |
|
---|
248 | /* Convert rr_i back to regular radix */
|
---|
249 | from_words52(res1, factor_size, rr1_red);
|
---|
250 | from_words52(res2, factor_size, rr2_red);
|
---|
251 |
|
---|
252 | /* bn_reduce_once_in_place expects number of BN_ULONG, not bit size */
|
---|
253 | factor_size /= sizeof(BN_ULONG) * 8;
|
---|
254 |
|
---|
255 | bn_reduce_once_in_place(res1, /*carry=*/0, m1, storage, factor_size);
|
---|
256 | bn_reduce_once_in_place(res2, /*carry=*/0, m2, storage, factor_size);
|
---|
257 | err:
|
---|
258 | if (storage != NULL) {
|
---|
259 | OPENSSL_cleanse(storage, storage_len_bytes);
|
---|
260 | OPENSSL_free(storage);
|
---|
261 | }
|
---|
262 | return ret;
|
---|
263 | }
|
---|
264 |
|
---|
265 | /*
|
---|
266 | * Dual {1024,1536,2048}-bit w-ary modular exponentiation using prime moduli of
|
---|
267 | * the same bit size using Almost Montgomery Multiplication, optimized with
|
---|
268 | * AVX512_IFMA256 ISA.
|
---|
269 | *
|
---|
270 | * The parameter w (window size) = 5.
|
---|
271 | *
|
---|
272 | * [out] res - result of modular exponentiation: 2x{20,30,40} qword
|
---|
273 | * values in 2^52 radix.
|
---|
274 | * [in] base - base (2x{20,30,40} qword values in 2^52 radix)
|
---|
275 | * [in] exp - array of 2 pointers to {16,24,32} qword values in 2^64 radix.
|
---|
276 | * Exponent is not converted to redundant representation.
|
---|
277 | * [in] m - moduli (2x{20,30,40} qword values in 2^52 radix)
|
---|
278 | * [in] rr - Montgomery parameter for 2 moduli:
|
---|
279 | * RR(1024) = 2^2080 mod m.
|
---|
280 | * RR(1536) = 2^3120 mod m.
|
---|
281 | * RR(2048) = 2^4160 mod m.
|
---|
282 | * (2x{20,30,40} qword values in 2^52 radix)
|
---|
283 | * [in] k0 - Montgomery parameter for 2 moduli: k0 = -1/m mod 2^64
|
---|
284 | *
|
---|
285 | * \return (void).
|
---|
286 | */
|
---|
287 | int RSAZ_mod_exp_x2_ifma256(BN_ULONG *out,
|
---|
288 | const BN_ULONG *base,
|
---|
289 | const BN_ULONG *exp[2],
|
---|
290 | const BN_ULONG *m,
|
---|
291 | const BN_ULONG *rr,
|
---|
292 | const BN_ULONG k0[2],
|
---|
293 | int modulus_bitsize)
|
---|
294 | {
|
---|
295 | typedef void (*DAMM)(BN_ULONG *res, const BN_ULONG *a,
|
---|
296 | const BN_ULONG *b, const BN_ULONG *m,
|
---|
297 | const BN_ULONG k0[2]);
|
---|
298 | typedef void (*DEXTRACT)(BN_ULONG *res, const BN_ULONG *red_table,
|
---|
299 | int red_table_idx, int tbl_idx);
|
---|
300 |
|
---|
301 | int ret = 0;
|
---|
302 | int idx;
|
---|
303 |
|
---|
304 | /* Exponent window size */
|
---|
305 | int exp_win_size = 5;
|
---|
306 | int exp_win_mask = (1U << exp_win_size) - 1;
|
---|
307 |
|
---|
308 | /*
|
---|
309 | * Number of digits (64-bit words) in redundant representation to handle
|
---|
310 | * modulus bits
|
---|
311 | */
|
---|
312 | int red_digits = 0;
|
---|
313 | int exp_digits = 0;
|
---|
314 |
|
---|
315 | BN_ULONG *storage = NULL;
|
---|
316 | BN_ULONG *storage_aligned = NULL;
|
---|
317 | int storage_len_bytes = 0;
|
---|
318 |
|
---|
319 | /* Red(undant) result Y and multiplier X */
|
---|
320 | BN_ULONG *red_Y = NULL; /* [2][red_digits] */
|
---|
321 | BN_ULONG *red_X = NULL; /* [2][red_digits] */
|
---|
322 | /* Pre-computed table of base powers */
|
---|
323 | BN_ULONG *red_table = NULL; /* [1U << exp_win_size][2][red_digits] */
|
---|
324 | /* Expanded exponent */
|
---|
325 | BN_ULONG *expz = NULL; /* [2][exp_digits + 1] */
|
---|
326 |
|
---|
327 | /* Dual AMM */
|
---|
328 | DAMM damm = NULL;
|
---|
329 | /* Extractor from red_table */
|
---|
330 | DEXTRACT extract = NULL;
|
---|
331 |
|
---|
332 | /*
|
---|
333 | * Squaring is done using multiplication now. That can be a subject of
|
---|
334 | * optimization in future.
|
---|
335 | */
|
---|
336 | # define DAMS(r,a,m,k0) damm((r),(a),(a),(m),(k0))
|
---|
337 |
|
---|
338 | switch (modulus_bitsize) {
|
---|
339 | case 1024:
|
---|
340 | red_digits = 20;
|
---|
341 | exp_digits = 16;
|
---|
342 | damm = ossl_rsaz_amm52x20_x2_ifma256;
|
---|
343 | extract = ossl_extract_multiplier_2x20_win5;
|
---|
344 | break;
|
---|
345 | case 1536:
|
---|
346 | /* Extended with 2 digits padding to avoid mask ops in high YMM register */
|
---|
347 | red_digits = 30 + 2;
|
---|
348 | exp_digits = 24;
|
---|
349 | damm = ossl_rsaz_amm52x30_x2_ifma256;
|
---|
350 | extract = ossl_extract_multiplier_2x30_win5;
|
---|
351 | break;
|
---|
352 | case 2048:
|
---|
353 | red_digits = 40;
|
---|
354 | exp_digits = 32;
|
---|
355 | damm = ossl_rsaz_amm52x40_x2_ifma256;
|
---|
356 | extract = ossl_extract_multiplier_2x40_win5;
|
---|
357 | break;
|
---|
358 | default:
|
---|
359 | goto err;
|
---|
360 | }
|
---|
361 |
|
---|
362 | storage_len_bytes = (2 * red_digits /* red_Y */
|
---|
363 | + 2 * red_digits /* red_X */
|
---|
364 | + 2 * red_digits * (1U << exp_win_size) /* red_table */
|
---|
365 | + 2 * (exp_digits + 1)) /* expz */
|
---|
366 | * sizeof(BN_ULONG)
|
---|
367 | + 64; /* alignment */
|
---|
368 |
|
---|
369 | storage = (BN_ULONG *)OPENSSL_zalloc(storage_len_bytes);
|
---|
370 | if (storage == NULL)
|
---|
371 | goto err;
|
---|
372 | storage_aligned = (BN_ULONG *)ALIGN_OF(storage, 64);
|
---|
373 |
|
---|
374 | red_Y = storage_aligned;
|
---|
375 | red_X = red_Y + 2 * red_digits;
|
---|
376 | red_table = red_X + 2 * red_digits;
|
---|
377 | expz = red_table + 2 * red_digits * (1U << exp_win_size);
|
---|
378 |
|
---|
379 | /*
|
---|
380 | * Compute table of powers base^i, i = 0, ..., (2^EXP_WIN_SIZE) - 1
|
---|
381 | * table[0] = mont(x^0) = mont(1)
|
---|
382 | * table[1] = mont(x^1) = mont(x)
|
---|
383 | */
|
---|
384 | red_X[0 * red_digits] = 1;
|
---|
385 | red_X[1 * red_digits] = 1;
|
---|
386 | damm(&red_table[0 * 2 * red_digits], (const BN_ULONG*)red_X, rr, m, k0);
|
---|
387 | damm(&red_table[1 * 2 * red_digits], base, rr, m, k0);
|
---|
388 |
|
---|
389 | for (idx = 1; idx < (int)((1U << exp_win_size) / 2); idx++) {
|
---|
390 | DAMS(&red_table[(2 * idx + 0) * 2 * red_digits],
|
---|
391 | &red_table[(1 * idx) * 2 * red_digits], m, k0);
|
---|
392 | damm(&red_table[(2 * idx + 1) * 2 * red_digits],
|
---|
393 | &red_table[(2 * idx) * 2 * red_digits],
|
---|
394 | &red_table[1 * 2 * red_digits], m, k0);
|
---|
395 | }
|
---|
396 |
|
---|
397 | /* Copy and expand exponents */
|
---|
398 | memcpy(&expz[0 * (exp_digits + 1)], exp[0], exp_digits * sizeof(BN_ULONG));
|
---|
399 | expz[1 * (exp_digits + 1) - 1] = 0;
|
---|
400 | memcpy(&expz[1 * (exp_digits + 1)], exp[1], exp_digits * sizeof(BN_ULONG));
|
---|
401 | expz[2 * (exp_digits + 1) - 1] = 0;
|
---|
402 |
|
---|
403 | /* Exponentiation */
|
---|
404 | {
|
---|
405 | int rem = modulus_bitsize % exp_win_size;
|
---|
406 | int delta = rem ? rem : exp_win_size;
|
---|
407 | BN_ULONG table_idx_mask = exp_win_mask;
|
---|
408 |
|
---|
409 | int exp_bit_no = modulus_bitsize - delta;
|
---|
410 | int exp_chunk_no = exp_bit_no / 64;
|
---|
411 | int exp_chunk_shift = exp_bit_no % 64;
|
---|
412 |
|
---|
413 | BN_ULONG red_table_idx_0, red_table_idx_1;
|
---|
414 |
|
---|
415 | /*
|
---|
416 | * If rem == 0, then
|
---|
417 | * exp_bit_no = modulus_bitsize - exp_win_size
|
---|
418 | * However, this isn't possible because rem is { 1024, 1536, 2048 } % 5
|
---|
419 | * which is { 4, 1, 3 } respectively.
|
---|
420 | *
|
---|
421 | * If this assertion ever fails the fix above is easy.
|
---|
422 | */
|
---|
423 | OPENSSL_assert(rem != 0);
|
---|
424 |
|
---|
425 | /* Process 1-st exp window - just init result */
|
---|
426 | red_table_idx_0 = expz[exp_chunk_no + 0 * (exp_digits + 1)];
|
---|
427 | red_table_idx_1 = expz[exp_chunk_no + 1 * (exp_digits + 1)];
|
---|
428 | /*
|
---|
429 | * The function operates with fixed moduli sizes divisible by 64,
|
---|
430 | * thus table index here is always in supported range [0, EXP_WIN_SIZE).
|
---|
431 | */
|
---|
432 | red_table_idx_0 >>= exp_chunk_shift;
|
---|
433 | red_table_idx_1 >>= exp_chunk_shift;
|
---|
434 |
|
---|
435 | extract(&red_Y[0 * red_digits], (const BN_ULONG*)red_table, (int)red_table_idx_0, (int)red_table_idx_1);
|
---|
436 |
|
---|
437 | /* Process other exp windows */
|
---|
438 | for (exp_bit_no -= exp_win_size; exp_bit_no >= 0; exp_bit_no -= exp_win_size) {
|
---|
439 | /* Extract pre-computed multiplier from the table */
|
---|
440 | {
|
---|
441 | BN_ULONG T;
|
---|
442 |
|
---|
443 | exp_chunk_no = exp_bit_no / 64;
|
---|
444 | exp_chunk_shift = exp_bit_no % 64;
|
---|
445 | {
|
---|
446 | red_table_idx_0 = expz[exp_chunk_no + 0 * (exp_digits + 1)];
|
---|
447 | T = expz[exp_chunk_no + 1 + 0 * (exp_digits + 1)];
|
---|
448 |
|
---|
449 | red_table_idx_0 >>= exp_chunk_shift;
|
---|
450 | /*
|
---|
451 | * Get additional bits from then next quadword
|
---|
452 | * when 64-bit boundaries are crossed.
|
---|
453 | */
|
---|
454 | if (exp_chunk_shift > 64 - exp_win_size) {
|
---|
455 | T <<= (64 - exp_chunk_shift);
|
---|
456 | red_table_idx_0 ^= T;
|
---|
457 | }
|
---|
458 | red_table_idx_0 &= table_idx_mask;
|
---|
459 | }
|
---|
460 | {
|
---|
461 | red_table_idx_1 = expz[exp_chunk_no + 1 * (exp_digits + 1)];
|
---|
462 | T = expz[exp_chunk_no + 1 + 1 * (exp_digits + 1)];
|
---|
463 |
|
---|
464 | red_table_idx_1 >>= exp_chunk_shift;
|
---|
465 | /*
|
---|
466 | * Get additional bits from then next quadword
|
---|
467 | * when 64-bit boundaries are crossed.
|
---|
468 | */
|
---|
469 | if (exp_chunk_shift > 64 - exp_win_size) {
|
---|
470 | T <<= (64 - exp_chunk_shift);
|
---|
471 | red_table_idx_1 ^= T;
|
---|
472 | }
|
---|
473 | red_table_idx_1 &= table_idx_mask;
|
---|
474 | }
|
---|
475 |
|
---|
476 | extract(&red_X[0 * red_digits], (const BN_ULONG*)red_table, (int)red_table_idx_0, (int)red_table_idx_1);
|
---|
477 | }
|
---|
478 |
|
---|
479 | /* Series of squaring */
|
---|
480 | DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
|
---|
481 | DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
|
---|
482 | DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
|
---|
483 | DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
|
---|
484 | DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0);
|
---|
485 |
|
---|
486 | damm((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0);
|
---|
487 | }
|
---|
488 | }
|
---|
489 |
|
---|
490 | /*
|
---|
491 | *
|
---|
492 | * NB: After the last AMM of exponentiation in Montgomery domain, the result
|
---|
493 | * may be (modulus_bitsize + 1), but the conversion out of Montgomery domain
|
---|
494 | * performs an AMM(x,1) which guarantees that the final result is less than
|
---|
495 | * |m|, so no conditional subtraction is needed here. See [1] for details.
|
---|
496 | *
|
---|
497 | * [1] Gueron, S. Efficient software implementations of modular exponentiation.
|
---|
498 | * DOI: 10.1007/s13389-012-0031-5
|
---|
499 | */
|
---|
500 |
|
---|
501 | /* Convert result back in regular 2^52 domain */
|
---|
502 | memset(red_X, 0, 2 * red_digits * sizeof(BN_ULONG));
|
---|
503 | red_X[0 * red_digits] = 1;
|
---|
504 | red_X[1 * red_digits] = 1;
|
---|
505 | damm(out, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0);
|
---|
506 |
|
---|
507 | ret = 1;
|
---|
508 |
|
---|
509 | err:
|
---|
510 | if (storage != NULL) {
|
---|
511 | /* Clear whole storage */
|
---|
512 | OPENSSL_cleanse(storage, storage_len_bytes);
|
---|
513 | OPENSSL_free(storage);
|
---|
514 | }
|
---|
515 |
|
---|
516 | #undef DAMS
|
---|
517 | return ret;
|
---|
518 | }
|
---|
519 |
|
---|
520 | static ossl_inline uint64_t get_digit(const uint8_t *in, int in_len)
|
---|
521 | {
|
---|
522 | uint64_t digit = 0;
|
---|
523 |
|
---|
524 | assert(in != NULL);
|
---|
525 | assert(in_len <= 8);
|
---|
526 |
|
---|
527 | for (; in_len > 0; in_len--) {
|
---|
528 | digit <<= 8;
|
---|
529 | digit += (uint64_t)(in[in_len - 1]);
|
---|
530 | }
|
---|
531 | return digit;
|
---|
532 | }
|
---|
533 |
|
---|
534 | /*
|
---|
535 | * Convert array of words in regular (base=2^64) representation to array of
|
---|
536 | * words in redundant (base=2^52) one.
|
---|
537 | */
|
---|
538 | static void to_words52(BN_ULONG *out, int out_len,
|
---|
539 | const BN_ULONG *in, int in_bitsize)
|
---|
540 | {
|
---|
541 | uint8_t *in_str = NULL;
|
---|
542 |
|
---|
543 | assert(out != NULL);
|
---|
544 | assert(in != NULL);
|
---|
545 | /* Check destination buffer capacity */
|
---|
546 | assert(out_len >= number_of_digits(in_bitsize, DIGIT_SIZE));
|
---|
547 |
|
---|
548 | in_str = (uint8_t *)in;
|
---|
549 |
|
---|
550 | for (; in_bitsize >= (2 * DIGIT_SIZE); in_bitsize -= (2 * DIGIT_SIZE), out += 2) {
|
---|
551 | uint64_t digit;
|
---|
552 |
|
---|
553 | memcpy(&digit, in_str, sizeof(digit));
|
---|
554 | out[0] = digit & DIGIT_MASK;
|
---|
555 | in_str += 6;
|
---|
556 | memcpy(&digit, in_str, sizeof(digit));
|
---|
557 | out[1] = (digit >> 4) & DIGIT_MASK;
|
---|
558 | in_str += 7;
|
---|
559 | out_len -= 2;
|
---|
560 | }
|
---|
561 |
|
---|
562 | if (in_bitsize > DIGIT_SIZE) {
|
---|
563 | uint64_t digit = get_digit(in_str, 7);
|
---|
564 |
|
---|
565 | out[0] = digit & DIGIT_MASK;
|
---|
566 | in_str += 6;
|
---|
567 | in_bitsize -= DIGIT_SIZE;
|
---|
568 | digit = get_digit(in_str, BITS2WORD8_SIZE(in_bitsize));
|
---|
569 | out[1] = digit >> 4;
|
---|
570 | out += 2;
|
---|
571 | out_len -= 2;
|
---|
572 | } else if (in_bitsize > 0) {
|
---|
573 | out[0] = get_digit(in_str, BITS2WORD8_SIZE(in_bitsize));
|
---|
574 | out++;
|
---|
575 | out_len--;
|
---|
576 | }
|
---|
577 |
|
---|
578 | while (out_len > 0) {
|
---|
579 | *out = 0;
|
---|
580 | out_len--;
|
---|
581 | out++;
|
---|
582 | }
|
---|
583 | }
|
---|
584 |
|
---|
585 | static ossl_inline void put_digit(uint8_t *out, int out_len, uint64_t digit)
|
---|
586 | {
|
---|
587 | assert(out != NULL);
|
---|
588 | assert(out_len <= 8);
|
---|
589 |
|
---|
590 | for (; out_len > 0; out_len--) {
|
---|
591 | *out++ = (uint8_t)(digit & 0xFF);
|
---|
592 | digit >>= 8;
|
---|
593 | }
|
---|
594 | }
|
---|
595 |
|
---|
596 | /*
|
---|
597 | * Convert array of words in redundant (base=2^52) representation to array of
|
---|
598 | * words in regular (base=2^64) one.
|
---|
599 | */
|
---|
600 | static void from_words52(BN_ULONG *out, int out_bitsize, const BN_ULONG *in)
|
---|
601 | {
|
---|
602 | int i;
|
---|
603 | int out_len = BITS2WORD64_SIZE(out_bitsize);
|
---|
604 |
|
---|
605 | assert(out != NULL);
|
---|
606 | assert(in != NULL);
|
---|
607 |
|
---|
608 | for (i = 0; i < out_len; i++)
|
---|
609 | out[i] = 0;
|
---|
610 |
|
---|
611 | {
|
---|
612 | uint8_t *out_str = (uint8_t *)out;
|
---|
613 |
|
---|
614 | for (; out_bitsize >= (2 * DIGIT_SIZE);
|
---|
615 | out_bitsize -= (2 * DIGIT_SIZE), in += 2) {
|
---|
616 | uint64_t digit;
|
---|
617 |
|
---|
618 | digit = in[0];
|
---|
619 | memcpy(out_str, &digit, sizeof(digit));
|
---|
620 | out_str += 6;
|
---|
621 | digit = digit >> 48 | in[1] << 4;
|
---|
622 | memcpy(out_str, &digit, sizeof(digit));
|
---|
623 | out_str += 7;
|
---|
624 | }
|
---|
625 |
|
---|
626 | if (out_bitsize > DIGIT_SIZE) {
|
---|
627 | put_digit(out_str, 7, in[0]);
|
---|
628 | out_str += 6;
|
---|
629 | out_bitsize -= DIGIT_SIZE;
|
---|
630 | put_digit(out_str, BITS2WORD8_SIZE(out_bitsize),
|
---|
631 | (in[1] << 4 | in[0] >> 48));
|
---|
632 | } else if (out_bitsize) {
|
---|
633 | put_digit(out_str, BITS2WORD8_SIZE(out_bitsize), in[0]);
|
---|
634 | }
|
---|
635 | }
|
---|
636 | }
|
---|
637 |
|
---|
638 | /*
|
---|
639 | * Set bit at index |idx| in the words array |a|.
|
---|
640 | * It does not do any boundaries checks, make sure the index is valid before
|
---|
641 | * calling the function.
|
---|
642 | */
|
---|
643 | static ossl_inline void set_bit(BN_ULONG *a, int idx)
|
---|
644 | {
|
---|
645 | assert(a != NULL);
|
---|
646 |
|
---|
647 | {
|
---|
648 | int i, j;
|
---|
649 |
|
---|
650 | i = idx / BN_BITS2;
|
---|
651 | j = idx % BN_BITS2;
|
---|
652 | a[i] |= (((BN_ULONG)1) << j);
|
---|
653 | }
|
---|
654 | }
|
---|
655 |
|
---|
656 | #endif
|
---|