VirtualBox

source: vbox/trunk/src/libs/openssl-3.1.7/crypto/x509/v3_addr.c@ 107835

Last change on this file since 107835 was 105949, checked in by vboxsync, 6 months ago

openssl-3.1.7: Applied and adjusted our OpenSSL changes to 3.1.7. bugref:10757

File size: 41.7 KB
Line 
1/*
2 * Copyright 2006-2024 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10/*
11 * Implementation of RFC 3779 section 2.2.
12 */
13
14#include <stdio.h>
15#include <stdlib.h>
16#include <assert.h>
17#include <string.h>
18
19#include "internal/cryptlib.h"
20#include <openssl/conf.h>
21#include <openssl/asn1.h>
22#include <openssl/asn1t.h>
23#include <openssl/buffer.h>
24#include <openssl/x509v3.h>
25#include "crypto/x509.h"
26#include "ext_dat.h"
27#include "x509_local.h"
28
29#ifndef OPENSSL_NO_RFC3779
30
31/*
32 * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
33 */
34
35ASN1_SEQUENCE(IPAddressRange) = {
36 ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
37 ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
38} ASN1_SEQUENCE_END(IPAddressRange)
39
40ASN1_CHOICE(IPAddressOrRange) = {
41 ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
42 ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange)
43} ASN1_CHOICE_END(IPAddressOrRange)
44
45ASN1_CHOICE(IPAddressChoice) = {
46 ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL),
47 ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
48} ASN1_CHOICE_END(IPAddressChoice)
49
50ASN1_SEQUENCE(IPAddressFamily) = {
51 ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING),
52 ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
53} ASN1_SEQUENCE_END(IPAddressFamily)
54
55ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
56 ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
57 IPAddrBlocks, IPAddressFamily)
58static_ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
59
60IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
61IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
62IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
63IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
64
65/*
66 * How much buffer space do we need for a raw address?
67 */
68#define ADDR_RAW_BUF_LEN 16
69
70/*
71 * What's the address length associated with this AFI?
72 */
73static int length_from_afi(const unsigned afi)
74{
75 switch (afi) {
76 case IANA_AFI_IPV4:
77 return 4;
78 case IANA_AFI_IPV6:
79 return 16;
80 default:
81 return 0;
82 }
83}
84
85/*
86 * Extract the AFI from an IPAddressFamily.
87 */
88unsigned int X509v3_addr_get_afi(const IPAddressFamily *f)
89{
90 if (f == NULL
91 || f->addressFamily == NULL
92 || f->addressFamily->data == NULL
93 || f->addressFamily->length < 2)
94 return 0;
95 return (f->addressFamily->data[0] << 8) | f->addressFamily->data[1];
96}
97
98/*
99 * Expand the bitstring form of an address into a raw byte array.
100 * At the moment this is coded for simplicity, not speed.
101 */
102static int addr_expand(unsigned char *addr,
103 const ASN1_BIT_STRING *bs,
104 const int length, const unsigned char fill)
105{
106 if (bs->length < 0 || bs->length > length)
107 return 0;
108 if (bs->length > 0) {
109 memcpy(addr, bs->data, bs->length);
110 if ((bs->flags & 7) != 0) {
111 unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
112 if (fill == 0)
113 addr[bs->length - 1] &= ~mask;
114 else
115 addr[bs->length - 1] |= mask;
116 }
117 }
118 memset(addr + bs->length, fill, length - bs->length);
119 return 1;
120}
121
122/*
123 * Extract the prefix length from a bitstring.
124 */
125#define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7)))
126
127/*
128 * i2r handler for one address bitstring.
129 */
130static int i2r_address(BIO *out,
131 const unsigned afi,
132 const unsigned char fill, const ASN1_BIT_STRING *bs)
133{
134 unsigned char addr[ADDR_RAW_BUF_LEN];
135 int i, n;
136
137 if (bs->length < 0)
138 return 0;
139 switch (afi) {
140 case IANA_AFI_IPV4:
141 if (!addr_expand(addr, bs, 4, fill))
142 return 0;
143 BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
144 break;
145 case IANA_AFI_IPV6:
146 if (!addr_expand(addr, bs, 16, fill))
147 return 0;
148 for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
149 n -= 2) ;
150 for (i = 0; i < n; i += 2)
151 BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
152 (i < 14 ? ":" : ""));
153 if (i < 16)
154 BIO_puts(out, ":");
155 if (i == 0)
156 BIO_puts(out, ":");
157 break;
158 default:
159 for (i = 0; i < bs->length; i++)
160 BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
161 BIO_printf(out, "[%d]", (int)(bs->flags & 7));
162 break;
163 }
164 return 1;
165}
166
167/*
168 * i2r handler for a sequence of addresses and ranges.
169 */
170static int i2r_IPAddressOrRanges(BIO *out,
171 const int indent,
172 const IPAddressOrRanges *aors,
173 const unsigned afi)
174{
175 int i;
176 for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
177 const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
178 BIO_printf(out, "%*s", indent, "");
179 switch (aor->type) {
180 case IPAddressOrRange_addressPrefix:
181 if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
182 return 0;
183 BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
184 continue;
185 case IPAddressOrRange_addressRange:
186 if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
187 return 0;
188 BIO_puts(out, "-");
189 if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
190 return 0;
191 BIO_puts(out, "\n");
192 continue;
193 }
194 }
195 return 1;
196}
197
198/*
199 * i2r handler for an IPAddrBlocks extension.
200 */
201static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
202 void *ext, BIO *out, int indent)
203{
204 const IPAddrBlocks *addr = ext;
205 int i;
206 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
207 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
208 const unsigned int afi = X509v3_addr_get_afi(f);
209 switch (afi) {
210 case IANA_AFI_IPV4:
211 BIO_printf(out, "%*sIPv4", indent, "");
212 break;
213 case IANA_AFI_IPV6:
214 BIO_printf(out, "%*sIPv6", indent, "");
215 break;
216 default:
217 BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
218 break;
219 }
220 if (f->addressFamily->length > 2) {
221 switch (f->addressFamily->data[2]) {
222 case 1:
223 BIO_puts(out, " (Unicast)");
224 break;
225 case 2:
226 BIO_puts(out, " (Multicast)");
227 break;
228 case 3:
229 BIO_puts(out, " (Unicast/Multicast)");
230 break;
231 case 4:
232 BIO_puts(out, " (MPLS)");
233 break;
234 case 64:
235 BIO_puts(out, " (Tunnel)");
236 break;
237 case 65:
238 BIO_puts(out, " (VPLS)");
239 break;
240 case 66:
241 BIO_puts(out, " (BGP MDT)");
242 break;
243 case 128:
244 BIO_puts(out, " (MPLS-labeled VPN)");
245 break;
246 default:
247 BIO_printf(out, " (Unknown SAFI %u)",
248 (unsigned)f->addressFamily->data[2]);
249 break;
250 }
251 }
252 switch (f->ipAddressChoice->type) {
253 case IPAddressChoice_inherit:
254 BIO_puts(out, ": inherit\n");
255 break;
256 case IPAddressChoice_addressesOrRanges:
257 BIO_puts(out, ":\n");
258 if (!i2r_IPAddressOrRanges(out,
259 indent + 2,
260 f->ipAddressChoice->
261 u.addressesOrRanges, afi))
262 return 0;
263 break;
264 }
265 }
266 return 1;
267}
268
269/*
270 * Sort comparison function for a sequence of IPAddressOrRange
271 * elements.
272 *
273 * There's no sane answer we can give if addr_expand() fails, and an
274 * assertion failure on externally supplied data is seriously uncool,
275 * so we just arbitrarily declare that if given invalid inputs this
276 * function returns -1. If this messes up your preferred sort order
277 * for garbage input, tough noogies.
278 */
279static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
280 const IPAddressOrRange *b, const int length)
281{
282 unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
283 int prefixlen_a = 0, prefixlen_b = 0;
284 int r;
285
286 switch (a->type) {
287 case IPAddressOrRange_addressPrefix:
288 if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
289 return -1;
290 prefixlen_a = addr_prefixlen(a->u.addressPrefix);
291 break;
292 case IPAddressOrRange_addressRange:
293 if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
294 return -1;
295 prefixlen_a = length * 8;
296 break;
297 }
298
299 switch (b->type) {
300 case IPAddressOrRange_addressPrefix:
301 if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
302 return -1;
303 prefixlen_b = addr_prefixlen(b->u.addressPrefix);
304 break;
305 case IPAddressOrRange_addressRange:
306 if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
307 return -1;
308 prefixlen_b = length * 8;
309 break;
310 }
311
312 if ((r = memcmp(addr_a, addr_b, length)) != 0)
313 return r;
314 else
315 return prefixlen_a - prefixlen_b;
316}
317
318/*
319 * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
320 * comparison routines are only allowed two arguments.
321 */
322static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
323 const IPAddressOrRange *const *b)
324{
325 return IPAddressOrRange_cmp(*a, *b, 4);
326}
327
328/*
329 * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
330 * comparison routines are only allowed two arguments.
331 */
332static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
333 const IPAddressOrRange *const *b)
334{
335 return IPAddressOrRange_cmp(*a, *b, 16);
336}
337
338/*
339 * Calculate whether a range collapses to a prefix.
340 * See last paragraph of RFC 3779 2.2.3.7.
341 */
342static int range_should_be_prefix(const unsigned char *min,
343 const unsigned char *max, const int length)
344{
345 unsigned char mask;
346 int i, j;
347
348 /*
349 * It is the responsibility of the caller to confirm min <= max. We don't
350 * use ossl_assert() here since we have no way of signalling an error from
351 * this function - so we just use a plain assert instead.
352 */
353 assert(memcmp(min, max, length) <= 0);
354
355 for (i = 0; i < length && min[i] == max[i]; i++) ;
356 for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ;
357 if (i < j)
358 return -1;
359 if (i > j)
360 return i * 8;
361 mask = min[i] ^ max[i];
362 switch (mask) {
363 case 0x01:
364 j = 7;
365 break;
366 case 0x03:
367 j = 6;
368 break;
369 case 0x07:
370 j = 5;
371 break;
372 case 0x0F:
373 j = 4;
374 break;
375 case 0x1F:
376 j = 3;
377 break;
378 case 0x3F:
379 j = 2;
380 break;
381 case 0x7F:
382 j = 1;
383 break;
384 default:
385 return -1;
386 }
387 if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
388 return -1;
389 else
390 return i * 8 + j;
391}
392
393/*
394 * Construct a prefix.
395 */
396static int make_addressPrefix(IPAddressOrRange **result, unsigned char *addr,
397 const int prefixlen, const int afilen)
398{
399 int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
400 IPAddressOrRange *aor = IPAddressOrRange_new();
401
402 if (prefixlen < 0 || prefixlen > (afilen * 8))
403 return 0;
404 if (aor == NULL)
405 return 0;
406 aor->type = IPAddressOrRange_addressPrefix;
407 if (aor->u.addressPrefix == NULL &&
408 (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
409 goto err;
410 if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
411 goto err;
412 aor->u.addressPrefix->flags &= ~7;
413 aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT;
414 if (bitlen > 0) {
415 aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
416 aor->u.addressPrefix->flags |= 8 - bitlen;
417 }
418
419 *result = aor;
420 return 1;
421
422 err:
423 IPAddressOrRange_free(aor);
424 return 0;
425}
426
427/*
428 * Construct a range. If it can be expressed as a prefix,
429 * return a prefix instead. Doing this here simplifies
430 * the rest of the code considerably.
431 */
432static int make_addressRange(IPAddressOrRange **result,
433 unsigned char *min,
434 unsigned char *max, const int length)
435{
436 IPAddressOrRange *aor;
437 int i, prefixlen;
438
439 if (memcmp(min, max, length) > 0)
440 return 0;
441
442 if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
443 return make_addressPrefix(result, min, prefixlen, length);
444
445 if ((aor = IPAddressOrRange_new()) == NULL)
446 return 0;
447 aor->type = IPAddressOrRange_addressRange;
448 if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
449 goto err;
450 if (aor->u.addressRange->min == NULL &&
451 (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
452 goto err;
453 if (aor->u.addressRange->max == NULL &&
454 (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
455 goto err;
456
457 for (i = length; i > 0 && min[i - 1] == 0x00; --i) ;
458 if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
459 goto err;
460 aor->u.addressRange->min->flags &= ~7;
461 aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT;
462 if (i > 0) {
463 unsigned char b = min[i - 1];
464 int j = 1;
465 while ((b & (0xFFU >> j)) != 0)
466 ++j;
467 aor->u.addressRange->min->flags |= 8 - j;
468 }
469
470 for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ;
471 if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
472 goto err;
473 aor->u.addressRange->max->flags &= ~7;
474 aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT;
475 if (i > 0) {
476 unsigned char b = max[i - 1];
477 int j = 1;
478 while ((b & (0xFFU >> j)) != (0xFFU >> j))
479 ++j;
480 aor->u.addressRange->max->flags |= 8 - j;
481 }
482
483 *result = aor;
484 return 1;
485
486 err:
487 IPAddressOrRange_free(aor);
488 return 0;
489}
490
491/*
492 * Construct a new address family or find an existing one.
493 */
494static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
495 const unsigned afi,
496 const unsigned *safi)
497{
498 IPAddressFamily *f;
499 unsigned char key[3];
500 int keylen;
501 int i;
502
503 key[0] = (afi >> 8) & 0xFF;
504 key[1] = afi & 0xFF;
505 if (safi != NULL) {
506 key[2] = *safi & 0xFF;
507 keylen = 3;
508 } else {
509 keylen = 2;
510 }
511
512 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
513 f = sk_IPAddressFamily_value(addr, i);
514 if (f->addressFamily->length == keylen &&
515 !memcmp(f->addressFamily->data, key, keylen))
516 return f;
517 }
518
519 if ((f = IPAddressFamily_new()) == NULL)
520 goto err;
521 if (f->ipAddressChoice == NULL &&
522 (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
523 goto err;
524 if (f->addressFamily == NULL &&
525 (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
526 goto err;
527 if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
528 goto err;
529 if (!sk_IPAddressFamily_push(addr, f))
530 goto err;
531
532 return f;
533
534 err:
535 IPAddressFamily_free(f);
536 return NULL;
537}
538
539/*
540 * Add an inheritance element.
541 */
542int X509v3_addr_add_inherit(IPAddrBlocks *addr,
543 const unsigned afi, const unsigned *safi)
544{
545 IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
546 if (f == NULL ||
547 f->ipAddressChoice == NULL ||
548 (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
549 f->ipAddressChoice->u.addressesOrRanges != NULL))
550 return 0;
551 if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
552 f->ipAddressChoice->u.inherit != NULL)
553 return 1;
554 if (f->ipAddressChoice->u.inherit == NULL &&
555 (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
556 return 0;
557 f->ipAddressChoice->type = IPAddressChoice_inherit;
558 return 1;
559}
560
561/*
562 * Construct an IPAddressOrRange sequence, or return an existing one.
563 */
564static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
565 const unsigned afi,
566 const unsigned *safi)
567{
568 IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
569 IPAddressOrRanges *aors = NULL;
570
571 if (f == NULL ||
572 f->ipAddressChoice == NULL ||
573 (f->ipAddressChoice->type == IPAddressChoice_inherit &&
574 f->ipAddressChoice->u.inherit != NULL))
575 return NULL;
576 if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
577 aors = f->ipAddressChoice->u.addressesOrRanges;
578 if (aors != NULL)
579 return aors;
580 if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
581 return NULL;
582 switch (afi) {
583 case IANA_AFI_IPV4:
584 (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
585 break;
586 case IANA_AFI_IPV6:
587 (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
588 break;
589 }
590 f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
591 f->ipAddressChoice->u.addressesOrRanges = aors;
592 return aors;
593}
594
595/*
596 * Add a prefix.
597 */
598int X509v3_addr_add_prefix(IPAddrBlocks *addr,
599 const unsigned afi,
600 const unsigned *safi,
601 unsigned char *a, const int prefixlen)
602{
603 IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
604 IPAddressOrRange *aor;
605
606 if (aors == NULL
607 || !make_addressPrefix(&aor, a, prefixlen, length_from_afi(afi)))
608 return 0;
609 if (sk_IPAddressOrRange_push(aors, aor))
610 return 1;
611 IPAddressOrRange_free(aor);
612 return 0;
613}
614
615/*
616 * Add a range.
617 */
618int X509v3_addr_add_range(IPAddrBlocks *addr,
619 const unsigned afi,
620 const unsigned *safi,
621 unsigned char *min, unsigned char *max)
622{
623 IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
624 IPAddressOrRange *aor;
625 int length = length_from_afi(afi);
626 if (aors == NULL)
627 return 0;
628 if (!make_addressRange(&aor, min, max, length))
629 return 0;
630 if (sk_IPAddressOrRange_push(aors, aor))
631 return 1;
632 IPAddressOrRange_free(aor);
633 return 0;
634}
635
636/*
637 * Extract min and max values from an IPAddressOrRange.
638 */
639static int extract_min_max(IPAddressOrRange *aor,
640 unsigned char *min, unsigned char *max, int length)
641{
642 if (aor == NULL || min == NULL || max == NULL)
643 return 0;
644 switch (aor->type) {
645 case IPAddressOrRange_addressPrefix:
646 return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
647 addr_expand(max, aor->u.addressPrefix, length, 0xFF));
648 case IPAddressOrRange_addressRange:
649 return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
650 addr_expand(max, aor->u.addressRange->max, length, 0xFF));
651 }
652 return 0;
653}
654
655/*
656 * Public wrapper for extract_min_max().
657 */
658int X509v3_addr_get_range(IPAddressOrRange *aor,
659 const unsigned afi,
660 unsigned char *min,
661 unsigned char *max, const int length)
662{
663 int afi_length = length_from_afi(afi);
664 if (aor == NULL || min == NULL || max == NULL ||
665 afi_length == 0 || length < afi_length ||
666 (aor->type != IPAddressOrRange_addressPrefix &&
667 aor->type != IPAddressOrRange_addressRange) ||
668 !extract_min_max(aor, min, max, afi_length))
669 return 0;
670
671 return afi_length;
672}
673
674/*
675 * Sort comparison function for a sequence of IPAddressFamily.
676 *
677 * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
678 * the ordering: I can read it as meaning that IPv6 without a SAFI
679 * comes before IPv4 with a SAFI, which seems pretty weird. The
680 * examples in appendix B suggest that the author intended the
681 * null-SAFI rule to apply only within a single AFI, which is what I
682 * would have expected and is what the following code implements.
683 */
684static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
685 const IPAddressFamily *const *b_)
686{
687 const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
688 const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
689 int len = ((a->length <= b->length) ? a->length : b->length);
690 int cmp = memcmp(a->data, b->data, len);
691 return cmp ? cmp : a->length - b->length;
692}
693
694static int IPAddressFamily_check_len(const IPAddressFamily *f)
695{
696 if (f->addressFamily->length < 2 || f->addressFamily->length > 3)
697 return 0;
698 else
699 return 1;
700}
701
702/*
703 * Check whether an IPAddrBLocks is in canonical form.
704 */
705int X509v3_addr_is_canonical(IPAddrBlocks *addr)
706{
707 unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
708 unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
709 IPAddressOrRanges *aors;
710 int i, j, k;
711
712 /*
713 * Empty extension is canonical.
714 */
715 if (addr == NULL)
716 return 1;
717
718 /*
719 * Check whether the top-level list is in order.
720 */
721 for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
722 const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
723 const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
724
725 if (!IPAddressFamily_check_len(a) || !IPAddressFamily_check_len(b))
726 return 0;
727
728 if (IPAddressFamily_cmp(&a, &b) >= 0)
729 return 0;
730 }
731
732 /*
733 * Top level's ok, now check each address family.
734 */
735 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
736 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
737 int length = length_from_afi(X509v3_addr_get_afi(f));
738
739 /*
740 * Inheritance is canonical. Anything other than inheritance or
741 * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
742 */
743 if (f == NULL || f->ipAddressChoice == NULL)
744 return 0;
745 switch (f->ipAddressChoice->type) {
746 case IPAddressChoice_inherit:
747 continue;
748 case IPAddressChoice_addressesOrRanges:
749 break;
750 default:
751 return 0;
752 }
753
754 if (!IPAddressFamily_check_len(f))
755 return 0;
756
757 /*
758 * It's an IPAddressOrRanges sequence, check it.
759 */
760 aors = f->ipAddressChoice->u.addressesOrRanges;
761 if (sk_IPAddressOrRange_num(aors) == 0)
762 return 0;
763 for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
764 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
765 IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
766
767 if (!extract_min_max(a, a_min, a_max, length) ||
768 !extract_min_max(b, b_min, b_max, length))
769 return 0;
770
771 /*
772 * Punt misordered list, overlapping start, or inverted range.
773 */
774 if (memcmp(a_min, b_min, length) >= 0 ||
775 memcmp(a_min, a_max, length) > 0 ||
776 memcmp(b_min, b_max, length) > 0)
777 return 0;
778
779 /*
780 * Punt if adjacent or overlapping. Check for adjacency by
781 * subtracting one from b_min first.
782 */
783 for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ;
784 if (memcmp(a_max, b_min, length) >= 0)
785 return 0;
786
787 /*
788 * Check for range that should be expressed as a prefix.
789 */
790 if (a->type == IPAddressOrRange_addressRange &&
791 range_should_be_prefix(a_min, a_max, length) >= 0)
792 return 0;
793 }
794
795 /*
796 * Check range to see if it's inverted or should be a
797 * prefix.
798 */
799 j = sk_IPAddressOrRange_num(aors) - 1;
800 {
801 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
802 if (a != NULL && a->type == IPAddressOrRange_addressRange) {
803 if (!extract_min_max(a, a_min, a_max, length))
804 return 0;
805 if (memcmp(a_min, a_max, length) > 0 ||
806 range_should_be_prefix(a_min, a_max, length) >= 0)
807 return 0;
808 }
809 }
810 }
811
812 /*
813 * If we made it through all that, we're happy.
814 */
815 return 1;
816}
817
818/*
819 * Whack an IPAddressOrRanges into canonical form.
820 */
821static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
822 const unsigned afi)
823{
824 int i, j, length = length_from_afi(afi);
825
826 /*
827 * Sort the IPAddressOrRanges sequence.
828 */
829 sk_IPAddressOrRange_sort(aors);
830
831 /*
832 * Clean up representation issues, punt on duplicates or overlaps.
833 */
834 for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
835 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
836 IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
837 unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
838 unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
839
840 if (!extract_min_max(a, a_min, a_max, length) ||
841 !extract_min_max(b, b_min, b_max, length))
842 return 0;
843
844 /*
845 * Punt inverted ranges.
846 */
847 if (memcmp(a_min, a_max, length) > 0 ||
848 memcmp(b_min, b_max, length) > 0)
849 return 0;
850
851 /*
852 * Punt overlaps.
853 */
854 if (memcmp(a_max, b_min, length) >= 0)
855 return 0;
856
857 /*
858 * Merge if a and b are adjacent. We check for
859 * adjacency by subtracting one from b_min first.
860 */
861 for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ;
862 if (memcmp(a_max, b_min, length) == 0) {
863 IPAddressOrRange *merged;
864 if (!make_addressRange(&merged, a_min, b_max, length))
865 return 0;
866 (void)sk_IPAddressOrRange_set(aors, i, merged);
867 (void)sk_IPAddressOrRange_delete(aors, i + 1);
868 IPAddressOrRange_free(a);
869 IPAddressOrRange_free(b);
870 --i;
871 continue;
872 }
873 }
874
875 /*
876 * Check for inverted final range.
877 */
878 j = sk_IPAddressOrRange_num(aors) - 1;
879 {
880 IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
881 if (a != NULL && a->type == IPAddressOrRange_addressRange) {
882 unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
883 if (!extract_min_max(a, a_min, a_max, length))
884 return 0;
885 if (memcmp(a_min, a_max, length) > 0)
886 return 0;
887 }
888 }
889
890 return 1;
891}
892
893/*
894 * Whack an IPAddrBlocks extension into canonical form.
895 */
896int X509v3_addr_canonize(IPAddrBlocks *addr)
897{
898 int i;
899 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
900 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
901
902 if (!IPAddressFamily_check_len(f))
903 return 0;
904
905 if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
906 !IPAddressOrRanges_canonize(f->ipAddressChoice->
907 u.addressesOrRanges,
908 X509v3_addr_get_afi(f)))
909 return 0;
910 }
911 (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
912 sk_IPAddressFamily_sort(addr);
913 if (!ossl_assert(X509v3_addr_is_canonical(addr)))
914 return 0;
915 return 1;
916}
917
918/*
919 * v2i handler for the IPAddrBlocks extension.
920 */
921static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
922 struct v3_ext_ctx *ctx,
923 STACK_OF(CONF_VALUE) *values)
924{
925 static const char v4addr_chars[] = "0123456789.";
926 static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
927 IPAddrBlocks *addr = NULL;
928 char *s = NULL, *t;
929 int i;
930
931 if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
932 ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
933 return NULL;
934 }
935
936 for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
937 CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
938 unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
939 unsigned afi, *safi = NULL, safi_;
940 const char *addr_chars = NULL;
941 int prefixlen, i1, i2, delim, length;
942
943 if (!ossl_v3_name_cmp(val->name, "IPv4")) {
944 afi = IANA_AFI_IPV4;
945 } else if (!ossl_v3_name_cmp(val->name, "IPv6")) {
946 afi = IANA_AFI_IPV6;
947 } else if (!ossl_v3_name_cmp(val->name, "IPv4-SAFI")) {
948 afi = IANA_AFI_IPV4;
949 safi = &safi_;
950 } else if (!ossl_v3_name_cmp(val->name, "IPv6-SAFI")) {
951 afi = IANA_AFI_IPV6;
952 safi = &safi_;
953 } else {
954 ERR_raise_data(ERR_LIB_X509V3, X509V3_R_EXTENSION_NAME_ERROR,
955 "%s", val->name);
956 goto err;
957 }
958
959 switch (afi) {
960 case IANA_AFI_IPV4:
961 addr_chars = v4addr_chars;
962 break;
963 case IANA_AFI_IPV6:
964 addr_chars = v6addr_chars;
965 break;
966 }
967
968 length = length_from_afi(afi);
969
970 /*
971 * Handle SAFI, if any, and OPENSSL_strdup() so we can null-terminate
972 * the other input values.
973 */
974 if (safi != NULL) {
975 if (val->value == NULL) {
976 ERR_raise(ERR_LIB_X509V3, X509V3_R_MISSING_VALUE);
977 goto err;
978 }
979 *safi = strtoul(val->value, &t, 0);
980 t += strspn(t, " \t");
981 if (*safi > 0xFF || *t++ != ':') {
982 ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_SAFI);
983 X509V3_conf_add_error_name_value(val);
984 goto err;
985 }
986 t += strspn(t, " \t");
987 s = OPENSSL_strdup(t);
988 } else {
989 s = OPENSSL_strdup(val->value);
990 }
991 if (s == NULL) {
992 ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
993 goto err;
994 }
995
996 /*
997 * Check for inheritance. Not worth additional complexity to
998 * optimize this (seldom-used) case.
999 */
1000 if (strcmp(s, "inherit") == 0) {
1001 if (!X509v3_addr_add_inherit(addr, afi, safi)) {
1002 ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_INHERITANCE);
1003 X509V3_conf_add_error_name_value(val);
1004 goto err;
1005 }
1006 OPENSSL_free(s);
1007 s = NULL;
1008 continue;
1009 }
1010
1011 i1 = strspn(s, addr_chars);
1012 i2 = i1 + strspn(s + i1, " \t");
1013 delim = s[i2++];
1014 s[i1] = '\0';
1015
1016 if (ossl_a2i_ipadd(min, s) != length) {
1017 ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS);
1018 X509V3_conf_add_error_name_value(val);
1019 goto err;
1020 }
1021
1022 switch (delim) {
1023 case '/':
1024 prefixlen = (int)strtoul(s + i2, &t, 10);
1025 if (t == s + i2
1026 || *t != '\0'
1027 || prefixlen > (length * 8)
1028 || prefixlen < 0) {
1029 ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1030 X509V3_conf_add_error_name_value(val);
1031 goto err;
1032 }
1033 if (!X509v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
1034 ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
1035 goto err;
1036 }
1037 break;
1038 case '-':
1039 i1 = i2 + strspn(s + i2, " \t");
1040 i2 = i1 + strspn(s + i1, addr_chars);
1041 if (i1 == i2 || s[i2] != '\0') {
1042 ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1043 X509V3_conf_add_error_name_value(val);
1044 goto err;
1045 }
1046 if (ossl_a2i_ipadd(max, s + i1) != length) {
1047 ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS);
1048 X509V3_conf_add_error_name_value(val);
1049 goto err;
1050 }
1051 if (memcmp(min, max, length_from_afi(afi)) > 0) {
1052 ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1053 X509V3_conf_add_error_name_value(val);
1054 goto err;
1055 }
1056 if (!X509v3_addr_add_range(addr, afi, safi, min, max)) {
1057 ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
1058 goto err;
1059 }
1060 break;
1061 case '\0':
1062 if (!X509v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
1063 ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
1064 goto err;
1065 }
1066 break;
1067 default:
1068 ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
1069 X509V3_conf_add_error_name_value(val);
1070 goto err;
1071 }
1072
1073 OPENSSL_free(s);
1074 s = NULL;
1075 }
1076
1077 /*
1078 * Canonize the result, then we're done.
1079 */
1080 if (!X509v3_addr_canonize(addr))
1081 goto err;
1082 return addr;
1083
1084 err:
1085 OPENSSL_free(s);
1086 sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
1087 return NULL;
1088}
1089
1090/*
1091 * OpenSSL dispatch
1092 */
1093const X509V3_EXT_METHOD ossl_v3_addr = {
1094 NID_sbgp_ipAddrBlock, /* nid */
1095 0, /* flags */
1096 ASN1_ITEM_ref(IPAddrBlocks), /* template */
1097 0, 0, 0, 0, /* old functions, ignored */
1098 0, /* i2s */
1099 0, /* s2i */
1100 0, /* i2v */
1101 v2i_IPAddrBlocks, /* v2i */
1102 i2r_IPAddrBlocks, /* i2r */
1103 0, /* r2i */
1104 NULL /* extension-specific data */
1105};
1106
1107/*
1108 * Figure out whether extension sues inheritance.
1109 */
1110int X509v3_addr_inherits(IPAddrBlocks *addr)
1111{
1112 int i;
1113 if (addr == NULL)
1114 return 0;
1115 for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
1116 IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
1117 if (f->ipAddressChoice->type == IPAddressChoice_inherit)
1118 return 1;
1119 }
1120 return 0;
1121}
1122
1123/*
1124 * Figure out whether parent contains child.
1125 */
1126static int addr_contains(IPAddressOrRanges *parent,
1127 IPAddressOrRanges *child, int length)
1128{
1129 unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
1130 unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
1131 int p, c;
1132
1133 if (child == NULL || parent == child)
1134 return 1;
1135 if (parent == NULL)
1136 return 0;
1137
1138 p = 0;
1139 for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
1140 if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
1141 c_min, c_max, length))
1142 return 0;
1143 for (;; p++) {
1144 if (p >= sk_IPAddressOrRange_num(parent))
1145 return 0;
1146 if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
1147 p_min, p_max, length))
1148 return 0;
1149 if (memcmp(p_max, c_max, length) < 0)
1150 continue;
1151 if (memcmp(p_min, c_min, length) > 0)
1152 return 0;
1153 break;
1154 }
1155 }
1156
1157 return 1;
1158}
1159
1160/*
1161 * Test whether a is a subset of b.
1162 */
1163int X509v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
1164{
1165 int i;
1166 if (a == NULL || a == b)
1167 return 1;
1168 if (b == NULL || X509v3_addr_inherits(a) || X509v3_addr_inherits(b))
1169 return 0;
1170 (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
1171 for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
1172 IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
1173 int j = sk_IPAddressFamily_find(b, fa);
1174 IPAddressFamily *fb = sk_IPAddressFamily_value(b, j);
1175
1176 if (fb == NULL)
1177 return 0;
1178 if (!IPAddressFamily_check_len(fa) || !IPAddressFamily_check_len(fb))
1179 return 0;
1180 if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
1181 fa->ipAddressChoice->u.addressesOrRanges,
1182 length_from_afi(X509v3_addr_get_afi(fb))))
1183 return 0;
1184 }
1185 return 1;
1186}
1187
1188/*
1189 * Validation error handling via callback.
1190 */
1191# define validation_err(_err_) \
1192 do { \
1193 if (ctx != NULL) { \
1194 ctx->error = _err_; \
1195 ctx->error_depth = i; \
1196 ctx->current_cert = x; \
1197 rv = ctx->verify_cb(0, ctx); \
1198 } else { \
1199 rv = 0; \
1200 } \
1201 if (rv == 0) \
1202 goto done; \
1203 } while (0)
1204
1205/*
1206 * Core code for RFC 3779 2.3 path validation.
1207 *
1208 * Returns 1 for success, 0 on error.
1209 *
1210 * When returning 0, ctx->error MUST be set to an appropriate value other than
1211 * X509_V_OK.
1212 */
1213static int addr_validate_path_internal(X509_STORE_CTX *ctx,
1214 STACK_OF(X509) *chain,
1215 IPAddrBlocks *ext)
1216{
1217 IPAddrBlocks *child = NULL;
1218 int i, j, ret = 0, rv;
1219 X509 *x;
1220
1221 if (!ossl_assert(chain != NULL && sk_X509_num(chain) > 0)
1222 || !ossl_assert(ctx != NULL || ext != NULL)
1223 || !ossl_assert(ctx == NULL || ctx->verify_cb != NULL)) {
1224 if (ctx != NULL)
1225 ctx->error = X509_V_ERR_UNSPECIFIED;
1226 return 0;
1227 }
1228
1229 /*
1230 * Figure out where to start. If we don't have an extension to
1231 * check, we're done. Otherwise, check canonical form and
1232 * set up for walking up the chain.
1233 */
1234 if (ext != NULL) {
1235 i = -1;
1236 x = NULL;
1237 } else {
1238 i = 0;
1239 x = sk_X509_value(chain, i);
1240 if ((ext = x->rfc3779_addr) == NULL)
1241 return 1; /* Return success */
1242 }
1243 if (!X509v3_addr_is_canonical(ext))
1244 validation_err(X509_V_ERR_INVALID_EXTENSION);
1245 (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
1246 if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
1247 ERR_raise(ERR_LIB_X509V3, ERR_R_MALLOC_FAILURE);
1248 if (ctx != NULL)
1249 ctx->error = X509_V_ERR_OUT_OF_MEM;
1250 goto done;
1251 }
1252
1253 /*
1254 * Now walk up the chain. No cert may list resources that its
1255 * parent doesn't list.
1256 */
1257 for (i++; i < sk_X509_num(chain); i++) {
1258 x = sk_X509_value(chain, i);
1259 if (!X509v3_addr_is_canonical(x->rfc3779_addr))
1260 validation_err(X509_V_ERR_INVALID_EXTENSION);
1261 if (x->rfc3779_addr == NULL) {
1262 for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1263 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1264
1265 if (!IPAddressFamily_check_len(fc))
1266 goto done;
1267
1268 if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
1269 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1270 break;
1271 }
1272 }
1273 continue;
1274 }
1275 (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
1276 IPAddressFamily_cmp);
1277 for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
1278 IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
1279 int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
1280 IPAddressFamily *fp =
1281 sk_IPAddressFamily_value(x->rfc3779_addr, k);
1282
1283 if (fp == NULL) {
1284 if (fc->ipAddressChoice->type ==
1285 IPAddressChoice_addressesOrRanges) {
1286 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1287 break;
1288 }
1289 continue;
1290 }
1291
1292 if (!IPAddressFamily_check_len(fc) || !IPAddressFamily_check_len(fp))
1293 goto done;
1294
1295 if (fp->ipAddressChoice->type ==
1296 IPAddressChoice_addressesOrRanges) {
1297 if (fc->ipAddressChoice->type == IPAddressChoice_inherit
1298 || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
1299 fc->ipAddressChoice->u.addressesOrRanges,
1300 length_from_afi(X509v3_addr_get_afi(fc))))
1301 (void)sk_IPAddressFamily_set(child, j, fp);
1302 else
1303 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1304 }
1305 }
1306 }
1307
1308 /*
1309 * Trust anchor can't inherit.
1310 */
1311 if (x->rfc3779_addr != NULL) {
1312 for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
1313 IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j);
1314
1315 if (!IPAddressFamily_check_len(fp))
1316 goto done;
1317
1318 if (fp->ipAddressChoice->type == IPAddressChoice_inherit
1319 && sk_IPAddressFamily_find(child, fp) >= 0)
1320 validation_err(X509_V_ERR_UNNESTED_RESOURCE);
1321 }
1322 }
1323 ret = 1;
1324 done:
1325 sk_IPAddressFamily_free(child);
1326 return ret;
1327}
1328
1329#undef validation_err
1330
1331/*
1332 * RFC 3779 2.3 path validation -- called from X509_verify_cert().
1333 */
1334int X509v3_addr_validate_path(X509_STORE_CTX *ctx)
1335{
1336 if (ctx->chain == NULL
1337 || sk_X509_num(ctx->chain) == 0
1338 || ctx->verify_cb == NULL) {
1339 ctx->error = X509_V_ERR_UNSPECIFIED;
1340 return 0;
1341 }
1342 return addr_validate_path_internal(ctx, ctx->chain, NULL);
1343}
1344
1345/*
1346 * RFC 3779 2.3 path validation of an extension.
1347 * Test whether chain covers extension.
1348 */
1349int X509v3_addr_validate_resource_set(STACK_OF(X509) *chain,
1350 IPAddrBlocks *ext, int allow_inheritance)
1351{
1352 if (ext == NULL)
1353 return 1;
1354 if (chain == NULL || sk_X509_num(chain) == 0)
1355 return 0;
1356 if (!allow_inheritance && X509v3_addr_inherits(ext))
1357 return 0;
1358 return addr_validate_path_internal(NULL, chain, ext);
1359}
1360
1361#endif /* OPENSSL_NO_RFC3779 */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette