1 | /*
|
---|
2 | * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | /*
|
---|
11 | * NB: these functions have been "upgraded", the deprecated versions (which
|
---|
12 | * are compatibility wrappers using these functions) are in rsa_depr.c. -
|
---|
13 | * Geoff
|
---|
14 | */
|
---|
15 |
|
---|
16 | /*
|
---|
17 | * RSA low level APIs are deprecated for public use, but still ok for
|
---|
18 | * internal use.
|
---|
19 | */
|
---|
20 | #include "internal/deprecated.h"
|
---|
21 |
|
---|
22 | #include <stdio.h>
|
---|
23 | #include <time.h>
|
---|
24 | #include "internal/cryptlib.h"
|
---|
25 | #include <openssl/bn.h>
|
---|
26 | #include <openssl/self_test.h>
|
---|
27 | #include "prov/providercommon.h"
|
---|
28 | #include "rsa_local.h"
|
---|
29 |
|
---|
30 | static int rsa_keygen_pairwise_test(RSA *rsa, OSSL_CALLBACK *cb, void *cbarg);
|
---|
31 | static int rsa_keygen(OSSL_LIB_CTX *libctx, RSA *rsa, int bits, int primes,
|
---|
32 | BIGNUM *e_value, BN_GENCB *cb, int pairwise_test);
|
---|
33 |
|
---|
34 | /*
|
---|
35 | * NB: this wrapper would normally be placed in rsa_lib.c and the static
|
---|
36 | * implementation would probably be in rsa_eay.c. Nonetheless, is kept here
|
---|
37 | * so that we don't introduce a new linker dependency. Eg. any application
|
---|
38 | * that wasn't previously linking object code related to key-generation won't
|
---|
39 | * have to now just because key-generation is part of RSA_METHOD.
|
---|
40 | */
|
---|
41 | int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb)
|
---|
42 | {
|
---|
43 | if (rsa->meth->rsa_keygen != NULL)
|
---|
44 | return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
|
---|
45 |
|
---|
46 | return RSA_generate_multi_prime_key(rsa, bits, RSA_DEFAULT_PRIME_NUM,
|
---|
47 | e_value, cb);
|
---|
48 | }
|
---|
49 |
|
---|
50 | int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes,
|
---|
51 | BIGNUM *e_value, BN_GENCB *cb)
|
---|
52 | {
|
---|
53 | #ifndef FIPS_MODULE
|
---|
54 | /* multi-prime is only supported with the builtin key generation */
|
---|
55 | if (rsa->meth->rsa_multi_prime_keygen != NULL) {
|
---|
56 | return rsa->meth->rsa_multi_prime_keygen(rsa, bits, primes,
|
---|
57 | e_value, cb);
|
---|
58 | } else if (rsa->meth->rsa_keygen != NULL) {
|
---|
59 | /*
|
---|
60 | * However, if rsa->meth implements only rsa_keygen, then we
|
---|
61 | * have to honour it in 2-prime case and assume that it wouldn't
|
---|
62 | * know what to do with multi-prime key generated by builtin
|
---|
63 | * subroutine...
|
---|
64 | */
|
---|
65 | if (primes == 2)
|
---|
66 | return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
|
---|
67 | else
|
---|
68 | return 0;
|
---|
69 | }
|
---|
70 | #endif /* FIPS_MODULE */
|
---|
71 | return rsa_keygen(rsa->libctx, rsa, bits, primes, e_value, cb, 0);
|
---|
72 | }
|
---|
73 |
|
---|
74 | DEFINE_STACK_OF(BIGNUM)
|
---|
75 |
|
---|
76 | /*
|
---|
77 | * Given input values, q, p, n, d and e, derive the exponents
|
---|
78 | * and coefficients for each prime in this key, placing the result
|
---|
79 | * on their respective exps and coeffs stacks
|
---|
80 | */
|
---|
81 | #ifndef FIPS_MODULE
|
---|
82 | int ossl_rsa_multiprime_derive(RSA *rsa, int bits, int primes,
|
---|
83 | BIGNUM *e_value,
|
---|
84 | STACK_OF(BIGNUM) *factors,
|
---|
85 | STACK_OF(BIGNUM) *exps,
|
---|
86 | STACK_OF(BIGNUM) *coeffs)
|
---|
87 | {
|
---|
88 | STACK_OF(BIGNUM) *pplist = NULL, *pdlist = NULL;
|
---|
89 | BIGNUM *factor = NULL, *newpp = NULL, *newpd = NULL;
|
---|
90 | BIGNUM *dval = NULL, *newexp = NULL, *newcoeff = NULL;
|
---|
91 | BIGNUM *p = NULL, *q = NULL;
|
---|
92 | BIGNUM *dmp1 = NULL, *dmq1 = NULL, *iqmp = NULL;
|
---|
93 | BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL;
|
---|
94 | BN_CTX *ctx = NULL;
|
---|
95 | BIGNUM *tmp = NULL;
|
---|
96 | int i;
|
---|
97 | int ret = 0;
|
---|
98 |
|
---|
99 | ctx = BN_CTX_new_ex(rsa->libctx);
|
---|
100 | if (ctx == NULL)
|
---|
101 | goto err;
|
---|
102 |
|
---|
103 | BN_CTX_start(ctx);
|
---|
104 |
|
---|
105 | pplist = sk_BIGNUM_new_null();
|
---|
106 | if (pplist == NULL)
|
---|
107 | goto err;
|
---|
108 |
|
---|
109 | pdlist = sk_BIGNUM_new_null();
|
---|
110 | if (pdlist == NULL)
|
---|
111 | goto err;
|
---|
112 |
|
---|
113 | r0 = BN_CTX_get(ctx);
|
---|
114 | r1 = BN_CTX_get(ctx);
|
---|
115 | r2 = BN_CTX_get(ctx);
|
---|
116 |
|
---|
117 | if (r2 == NULL)
|
---|
118 | goto err;
|
---|
119 |
|
---|
120 | BN_set_flags(r0, BN_FLG_CONSTTIME);
|
---|
121 | BN_set_flags(r1, BN_FLG_CONSTTIME);
|
---|
122 | BN_set_flags(r2, BN_FLG_CONSTTIME);
|
---|
123 |
|
---|
124 | if (BN_copy(r1, rsa->n) == NULL)
|
---|
125 | goto err;
|
---|
126 |
|
---|
127 | p = sk_BIGNUM_value(factors, 0);
|
---|
128 | q = sk_BIGNUM_value(factors, 1);
|
---|
129 |
|
---|
130 | /* Build list of partial products of primes */
|
---|
131 | for (i = 0; i < sk_BIGNUM_num(factors); i++) {
|
---|
132 | switch (i) {
|
---|
133 | case 0:
|
---|
134 | /* our first prime, p */
|
---|
135 | if (!BN_sub(r2, p, BN_value_one()))
|
---|
136 | goto err;
|
---|
137 | BN_set_flags(r2, BN_FLG_CONSTTIME);
|
---|
138 | if (BN_mod_inverse(r1, r2, rsa->e, ctx) == NULL)
|
---|
139 | goto err;
|
---|
140 | break;
|
---|
141 | case 1:
|
---|
142 | /* second prime q */
|
---|
143 | if (!BN_mul(r1, p, q, ctx))
|
---|
144 | goto err;
|
---|
145 | tmp = BN_dup(r1);
|
---|
146 | if (tmp == NULL)
|
---|
147 | goto err;
|
---|
148 | if (!sk_BIGNUM_insert(pplist, tmp, sk_BIGNUM_num(pplist)))
|
---|
149 | goto err;
|
---|
150 | break;
|
---|
151 | default:
|
---|
152 | factor = sk_BIGNUM_value(factors, i);
|
---|
153 | /* all other primes */
|
---|
154 | if (!BN_mul(r1, r1, factor, ctx))
|
---|
155 | goto err;
|
---|
156 | tmp = BN_dup(r1);
|
---|
157 | if (tmp == NULL)
|
---|
158 | goto err;
|
---|
159 | if (!sk_BIGNUM_insert(pplist, tmp, sk_BIGNUM_num(pplist)))
|
---|
160 | goto err;
|
---|
161 | break;
|
---|
162 | }
|
---|
163 | }
|
---|
164 |
|
---|
165 | /* build list of relative d values */
|
---|
166 | /* p -1 */
|
---|
167 | if (!BN_sub(r1, p, BN_value_one()))
|
---|
168 | goto err;
|
---|
169 | if (!BN_sub(r2, q, BN_value_one()))
|
---|
170 | goto err;
|
---|
171 | if (!BN_mul(r0, r1, r2, ctx))
|
---|
172 | goto err;
|
---|
173 | for (i = 2; i < sk_BIGNUM_num(factors); i++) {
|
---|
174 | factor = sk_BIGNUM_value(factors, i);
|
---|
175 | dval = BN_new();
|
---|
176 | if (dval == NULL)
|
---|
177 | goto err;
|
---|
178 | BN_set_flags(dval, BN_FLG_CONSTTIME);
|
---|
179 | if (!BN_sub(dval, factor, BN_value_one()))
|
---|
180 | goto err;
|
---|
181 | if (!BN_mul(r0, r0, dval, ctx))
|
---|
182 | goto err;
|
---|
183 | if (!sk_BIGNUM_insert(pdlist, dval, sk_BIGNUM_num(pdlist)))
|
---|
184 | goto err;
|
---|
185 | }
|
---|
186 |
|
---|
187 | /* Calculate dmp1, dmq1 and additional exponents */
|
---|
188 | dmp1 = BN_secure_new();
|
---|
189 | if (dmp1 == NULL)
|
---|
190 | goto err;
|
---|
191 | dmq1 = BN_secure_new();
|
---|
192 | if (dmq1 == NULL)
|
---|
193 | goto err;
|
---|
194 |
|
---|
195 | if (!BN_mod(dmp1, rsa->d, r1, ctx))
|
---|
196 | goto err;
|
---|
197 | if (!sk_BIGNUM_insert(exps, dmp1, sk_BIGNUM_num(exps)))
|
---|
198 | goto err;
|
---|
199 | dmp1 = NULL;
|
---|
200 |
|
---|
201 | if (!BN_mod(dmq1, rsa->d, r2, ctx))
|
---|
202 | goto err;
|
---|
203 | if (!sk_BIGNUM_insert(exps, dmq1, sk_BIGNUM_num(exps)))
|
---|
204 | goto err;
|
---|
205 | dmq1 = NULL;
|
---|
206 |
|
---|
207 | for (i = 2; i < sk_BIGNUM_num(factors); i++) {
|
---|
208 | newpd = sk_BIGNUM_value(pdlist, i - 2);
|
---|
209 | newexp = BN_new();
|
---|
210 | if (newexp == NULL)
|
---|
211 | goto err;
|
---|
212 | if (!BN_mod(newexp, rsa->d, newpd, ctx)) {
|
---|
213 | BN_free(newexp);
|
---|
214 | goto err;
|
---|
215 | }
|
---|
216 | if (!sk_BIGNUM_insert(exps, newexp, sk_BIGNUM_num(exps)))
|
---|
217 | goto err;
|
---|
218 | }
|
---|
219 |
|
---|
220 | /* Calculate iqmp and additional coefficients */
|
---|
221 | iqmp = BN_new();
|
---|
222 | if (iqmp == NULL)
|
---|
223 | goto err;
|
---|
224 |
|
---|
225 | if (BN_mod_inverse(iqmp, sk_BIGNUM_value(factors, 1),
|
---|
226 | sk_BIGNUM_value(factors, 0), ctx) == NULL)
|
---|
227 | goto err;
|
---|
228 | if (!sk_BIGNUM_insert(coeffs, iqmp, sk_BIGNUM_num(coeffs)))
|
---|
229 | goto err;
|
---|
230 | iqmp = NULL;
|
---|
231 |
|
---|
232 | for (i = 2; i < sk_BIGNUM_num(factors); i++) {
|
---|
233 | newpp = sk_BIGNUM_value(pplist, i - 2);
|
---|
234 | newcoeff = BN_new();
|
---|
235 | if (newcoeff == NULL)
|
---|
236 | goto err;
|
---|
237 | if (BN_mod_inverse(newcoeff, newpp, sk_BIGNUM_value(factors, i),
|
---|
238 | ctx) == NULL) {
|
---|
239 | BN_free(newcoeff);
|
---|
240 | goto err;
|
---|
241 | }
|
---|
242 | if (!sk_BIGNUM_insert(coeffs, newcoeff, sk_BIGNUM_num(coeffs)))
|
---|
243 | goto err;
|
---|
244 | }
|
---|
245 |
|
---|
246 | ret = 1;
|
---|
247 | err:
|
---|
248 | sk_BIGNUM_pop_free(pplist, BN_free);
|
---|
249 | sk_BIGNUM_pop_free(pdlist, BN_free);
|
---|
250 | BN_CTX_end(ctx);
|
---|
251 | BN_CTX_free(ctx);
|
---|
252 | BN_clear_free(dmp1);
|
---|
253 | BN_clear_free(dmq1);
|
---|
254 | BN_clear_free(iqmp);
|
---|
255 | return ret;
|
---|
256 | }
|
---|
257 |
|
---|
258 | static int rsa_multiprime_keygen(RSA *rsa, int bits, int primes,
|
---|
259 | BIGNUM *e_value, BN_GENCB *cb)
|
---|
260 | {
|
---|
261 | BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *tmp, *tmp2, *prime;
|
---|
262 | int n = 0, bitsr[RSA_MAX_PRIME_NUM], bitse = 0;
|
---|
263 | int i = 0, quo = 0, rmd = 0, adj = 0, retries = 0;
|
---|
264 | RSA_PRIME_INFO *pinfo = NULL;
|
---|
265 | STACK_OF(RSA_PRIME_INFO) *prime_infos = NULL;
|
---|
266 | STACK_OF(BIGNUM) *factors = NULL;
|
---|
267 | STACK_OF(BIGNUM) *exps = NULL;
|
---|
268 | STACK_OF(BIGNUM) *coeffs = NULL;
|
---|
269 | BN_CTX *ctx = NULL;
|
---|
270 | BN_ULONG bitst = 0;
|
---|
271 | unsigned long error = 0;
|
---|
272 | int ok = -1;
|
---|
273 |
|
---|
274 | if (bits < RSA_MIN_MODULUS_BITS) {
|
---|
275 | ERR_raise(ERR_LIB_RSA, RSA_R_KEY_SIZE_TOO_SMALL);
|
---|
276 | return 0;
|
---|
277 | }
|
---|
278 | if (e_value == NULL) {
|
---|
279 | ERR_raise(ERR_LIB_RSA, RSA_R_BAD_E_VALUE);
|
---|
280 | return 0;
|
---|
281 | }
|
---|
282 | /* A bad value for e can cause infinite loops */
|
---|
283 | if (!ossl_rsa_check_public_exponent(e_value)) {
|
---|
284 | ERR_raise(ERR_LIB_RSA, RSA_R_PUB_EXPONENT_OUT_OF_RANGE);
|
---|
285 | return 0;
|
---|
286 | }
|
---|
287 |
|
---|
288 | if (primes < RSA_DEFAULT_PRIME_NUM || primes > ossl_rsa_multip_cap(bits)) {
|
---|
289 | ERR_raise(ERR_LIB_RSA, RSA_R_KEY_PRIME_NUM_INVALID);
|
---|
290 | return 0;
|
---|
291 | }
|
---|
292 |
|
---|
293 | factors = sk_BIGNUM_new_null();
|
---|
294 | if (factors == NULL)
|
---|
295 | return 0;
|
---|
296 |
|
---|
297 | exps = sk_BIGNUM_new_null();
|
---|
298 | if (exps == NULL)
|
---|
299 | goto err;
|
---|
300 |
|
---|
301 | coeffs = sk_BIGNUM_new_null();
|
---|
302 | if (coeffs == NULL)
|
---|
303 | goto err;
|
---|
304 |
|
---|
305 | ctx = BN_CTX_new_ex(rsa->libctx);
|
---|
306 | if (ctx == NULL)
|
---|
307 | goto err;
|
---|
308 | BN_CTX_start(ctx);
|
---|
309 | r0 = BN_CTX_get(ctx);
|
---|
310 | r1 = BN_CTX_get(ctx);
|
---|
311 | r2 = BN_CTX_get(ctx);
|
---|
312 | if (r2 == NULL)
|
---|
313 | goto err;
|
---|
314 |
|
---|
315 | /* divide bits into 'primes' pieces evenly */
|
---|
316 | quo = bits / primes;
|
---|
317 | rmd = bits % primes;
|
---|
318 |
|
---|
319 | for (i = 0; i < primes; i++)
|
---|
320 | bitsr[i] = (i < rmd) ? quo + 1 : quo;
|
---|
321 |
|
---|
322 | rsa->dirty_cnt++;
|
---|
323 |
|
---|
324 | /* We need the RSA components non-NULL */
|
---|
325 | if (!rsa->n && ((rsa->n = BN_new()) == NULL))
|
---|
326 | goto err;
|
---|
327 | if (!rsa->d && ((rsa->d = BN_secure_new()) == NULL))
|
---|
328 | goto err;
|
---|
329 | BN_set_flags(rsa->d, BN_FLG_CONSTTIME);
|
---|
330 | if (!rsa->e && ((rsa->e = BN_new()) == NULL))
|
---|
331 | goto err;
|
---|
332 | if (!rsa->p && ((rsa->p = BN_secure_new()) == NULL))
|
---|
333 | goto err;
|
---|
334 | BN_set_flags(rsa->p, BN_FLG_CONSTTIME);
|
---|
335 | if (!rsa->q && ((rsa->q = BN_secure_new()) == NULL))
|
---|
336 | goto err;
|
---|
337 | BN_set_flags(rsa->q, BN_FLG_CONSTTIME);
|
---|
338 |
|
---|
339 | /* initialize multi-prime components */
|
---|
340 | if (primes > RSA_DEFAULT_PRIME_NUM) {
|
---|
341 | rsa->version = RSA_ASN1_VERSION_MULTI;
|
---|
342 | prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, primes - 2);
|
---|
343 | if (prime_infos == NULL)
|
---|
344 | goto err;
|
---|
345 | if (rsa->prime_infos != NULL) {
|
---|
346 | /* could this happen? */
|
---|
347 | sk_RSA_PRIME_INFO_pop_free(rsa->prime_infos,
|
---|
348 | ossl_rsa_multip_info_free);
|
---|
349 | }
|
---|
350 | rsa->prime_infos = prime_infos;
|
---|
351 |
|
---|
352 | /* prime_info from 2 to |primes| -1 */
|
---|
353 | for (i = 2; i < primes; i++) {
|
---|
354 | pinfo = ossl_rsa_multip_info_new();
|
---|
355 | if (pinfo == NULL)
|
---|
356 | goto err;
|
---|
357 | (void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
|
---|
358 | }
|
---|
359 | }
|
---|
360 |
|
---|
361 | if (BN_copy(rsa->e, e_value) == NULL)
|
---|
362 | goto err;
|
---|
363 |
|
---|
364 | /* generate p, q and other primes (if any) */
|
---|
365 | for (i = 0; i < primes; i++) {
|
---|
366 | adj = 0;
|
---|
367 | retries = 0;
|
---|
368 |
|
---|
369 | if (i == 0) {
|
---|
370 | prime = rsa->p;
|
---|
371 | } else if (i == 1) {
|
---|
372 | prime = rsa->q;
|
---|
373 | } else {
|
---|
374 | pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
|
---|
375 | prime = pinfo->r;
|
---|
376 | }
|
---|
377 | BN_set_flags(prime, BN_FLG_CONSTTIME);
|
---|
378 |
|
---|
379 | for (;;) {
|
---|
380 | redo:
|
---|
381 | if (!BN_generate_prime_ex2(prime, bitsr[i] + adj, 0, NULL, NULL,
|
---|
382 | cb, ctx))
|
---|
383 | goto err;
|
---|
384 | /*
|
---|
385 | * prime should not be equal to p, q, r_3...
|
---|
386 | * (those primes prior to this one)
|
---|
387 | */
|
---|
388 | {
|
---|
389 | int j;
|
---|
390 |
|
---|
391 | for (j = 0; j < i; j++) {
|
---|
392 | BIGNUM *prev_prime;
|
---|
393 |
|
---|
394 | if (j == 0)
|
---|
395 | prev_prime = rsa->p;
|
---|
396 | else if (j == 1)
|
---|
397 | prev_prime = rsa->q;
|
---|
398 | else
|
---|
399 | prev_prime = sk_RSA_PRIME_INFO_value(prime_infos,
|
---|
400 | j - 2)->r;
|
---|
401 |
|
---|
402 | if (!BN_cmp(prime, prev_prime)) {
|
---|
403 | goto redo;
|
---|
404 | }
|
---|
405 | }
|
---|
406 | }
|
---|
407 | if (!BN_sub(r2, prime, BN_value_one()))
|
---|
408 | goto err;
|
---|
409 | ERR_set_mark();
|
---|
410 | BN_set_flags(r2, BN_FLG_CONSTTIME);
|
---|
411 | if (BN_mod_inverse(r1, r2, rsa->e, ctx) != NULL) {
|
---|
412 | /* GCD == 1 since inverse exists */
|
---|
413 | break;
|
---|
414 | }
|
---|
415 | error = ERR_peek_last_error();
|
---|
416 | if (ERR_GET_LIB(error) == ERR_LIB_BN
|
---|
417 | && ERR_GET_REASON(error) == BN_R_NO_INVERSE) {
|
---|
418 | /* GCD != 1 */
|
---|
419 | ERR_pop_to_mark();
|
---|
420 | } else {
|
---|
421 | goto err;
|
---|
422 | }
|
---|
423 | if (!BN_GENCB_call(cb, 2, n++))
|
---|
424 | goto err;
|
---|
425 | }
|
---|
426 |
|
---|
427 | bitse += bitsr[i];
|
---|
428 |
|
---|
429 | /* calculate n immediately to see if it's sufficient */
|
---|
430 | if (i == 1) {
|
---|
431 | /* we get at least 2 primes */
|
---|
432 | if (!BN_mul(r1, rsa->p, rsa->q, ctx))
|
---|
433 | goto err;
|
---|
434 | } else if (i != 0) {
|
---|
435 | /* modulus n = p * q * r_3 * r_4 ... */
|
---|
436 | if (!BN_mul(r1, rsa->n, prime, ctx))
|
---|
437 | goto err;
|
---|
438 | } else {
|
---|
439 | /* i == 0, do nothing */
|
---|
440 | if (!BN_GENCB_call(cb, 3, i))
|
---|
441 | goto err;
|
---|
442 | tmp = BN_dup(prime);
|
---|
443 | if (tmp == NULL)
|
---|
444 | goto err;
|
---|
445 | if (!sk_BIGNUM_insert(factors, tmp, sk_BIGNUM_num(factors)))
|
---|
446 | goto err;
|
---|
447 | continue;
|
---|
448 | }
|
---|
449 |
|
---|
450 | /*
|
---|
451 | * if |r1|, product of factors so far, is not as long as expected
|
---|
452 | * (by checking the first 4 bits are less than 0x9 or greater than
|
---|
453 | * 0xF). If so, re-generate the last prime.
|
---|
454 | *
|
---|
455 | * NOTE: This actually can't happen in two-prime case, because of
|
---|
456 | * the way factors are generated.
|
---|
457 | *
|
---|
458 | * Besides, another consideration is, for multi-prime case, even the
|
---|
459 | * length modulus is as long as expected, the modulus could start at
|
---|
460 | * 0x8, which could be utilized to distinguish a multi-prime private
|
---|
461 | * key by using the modulus in a certificate. This is also covered
|
---|
462 | * by checking the length should not be less than 0x9.
|
---|
463 | */
|
---|
464 | if (!BN_rshift(r2, r1, bitse - 4))
|
---|
465 | goto err;
|
---|
466 | bitst = BN_get_word(r2);
|
---|
467 |
|
---|
468 | if (bitst < 0x9 || bitst > 0xF) {
|
---|
469 | /*
|
---|
470 | * For keys with more than 4 primes, we attempt longer factor to
|
---|
471 | * meet length requirement.
|
---|
472 | *
|
---|
473 | * Otherwise, we just re-generate the prime with the same length.
|
---|
474 | *
|
---|
475 | * This strategy has the following goals:
|
---|
476 | *
|
---|
477 | * 1. 1024-bit factors are efficient when using 3072 and 4096-bit key
|
---|
478 | * 2. stay the same logic with normal 2-prime key
|
---|
479 | */
|
---|
480 | bitse -= bitsr[i];
|
---|
481 | if (!BN_GENCB_call(cb, 2, n++))
|
---|
482 | goto err;
|
---|
483 | if (primes > 4) {
|
---|
484 | if (bitst < 0x9)
|
---|
485 | adj++;
|
---|
486 | else
|
---|
487 | adj--;
|
---|
488 | } else if (retries == 4) {
|
---|
489 | /*
|
---|
490 | * re-generate all primes from scratch, mainly used
|
---|
491 | * in 4 prime case to avoid long loop. Max retry times
|
---|
492 | * is set to 4.
|
---|
493 | */
|
---|
494 | i = -1;
|
---|
495 | bitse = 0;
|
---|
496 | sk_BIGNUM_pop_free(factors, BN_clear_free);
|
---|
497 | factors = sk_BIGNUM_new_null();
|
---|
498 | if (factors == NULL)
|
---|
499 | goto err;
|
---|
500 | continue;
|
---|
501 | }
|
---|
502 | retries++;
|
---|
503 | goto redo;
|
---|
504 | }
|
---|
505 | /* save product of primes for further use, for multi-prime only */
|
---|
506 | if (i > 1 && BN_copy(pinfo->pp, rsa->n) == NULL)
|
---|
507 | goto err;
|
---|
508 | if (BN_copy(rsa->n, r1) == NULL)
|
---|
509 | goto err;
|
---|
510 | if (!BN_GENCB_call(cb, 3, i))
|
---|
511 | goto err;
|
---|
512 | tmp = BN_dup(prime);
|
---|
513 | if (tmp == NULL)
|
---|
514 | goto err;
|
---|
515 | if (!sk_BIGNUM_insert(factors, tmp, sk_BIGNUM_num(factors)))
|
---|
516 | goto err;
|
---|
517 | }
|
---|
518 |
|
---|
519 | if (BN_cmp(rsa->p, rsa->q) < 0) {
|
---|
520 | tmp = rsa->p;
|
---|
521 | rsa->p = rsa->q;
|
---|
522 | rsa->q = tmp;
|
---|
523 | /* mirror this in our factor stack */
|
---|
524 | if (!sk_BIGNUM_insert(factors, sk_BIGNUM_delete(factors, 0), 1))
|
---|
525 | goto err;
|
---|
526 | }
|
---|
527 |
|
---|
528 | /* calculate d */
|
---|
529 |
|
---|
530 | /* p - 1 */
|
---|
531 | if (!BN_sub(r1, rsa->p, BN_value_one()))
|
---|
532 | goto err;
|
---|
533 | /* q - 1 */
|
---|
534 | if (!BN_sub(r2, rsa->q, BN_value_one()))
|
---|
535 | goto err;
|
---|
536 | /* (p - 1)(q - 1) */
|
---|
537 | if (!BN_mul(r0, r1, r2, ctx))
|
---|
538 | goto err;
|
---|
539 | /* multi-prime */
|
---|
540 | for (i = 2; i < primes; i++) {
|
---|
541 | pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
|
---|
542 | /* save r_i - 1 to pinfo->d temporarily */
|
---|
543 | if (!BN_sub(pinfo->d, pinfo->r, BN_value_one()))
|
---|
544 | goto err;
|
---|
545 | if (!BN_mul(r0, r0, pinfo->d, ctx))
|
---|
546 | goto err;
|
---|
547 | }
|
---|
548 |
|
---|
549 |
|
---|
550 | BN_set_flags(r0, BN_FLG_CONSTTIME);
|
---|
551 | if (BN_mod_inverse(rsa->d, rsa->e, r0, ctx) == NULL) {
|
---|
552 | goto err; /* d */
|
---|
553 | }
|
---|
554 |
|
---|
555 | /* derive any missing exponents and coefficients */
|
---|
556 | if (!ossl_rsa_multiprime_derive(rsa, bits, primes, e_value,
|
---|
557 | factors, exps, coeffs))
|
---|
558 | goto err;
|
---|
559 |
|
---|
560 | /*
|
---|
561 | * first 2 factors/exps are already tracked in p/q/dmq1/dmp1
|
---|
562 | * and the first coeff is in iqmp, so pop those off the stack
|
---|
563 | * Note, the first 2 factors/exponents are already tracked by p and q
|
---|
564 | * assign dmp1/dmq1 and iqmp
|
---|
565 | * the remaining pinfo values are separately allocated, so copy and delete
|
---|
566 | * those
|
---|
567 | */
|
---|
568 | BN_clear_free(sk_BIGNUM_delete(factors, 0));
|
---|
569 | BN_clear_free(sk_BIGNUM_delete(factors, 0));
|
---|
570 | rsa->dmp1 = sk_BIGNUM_delete(exps, 0);
|
---|
571 | rsa->dmq1 = sk_BIGNUM_delete(exps, 0);
|
---|
572 | rsa->iqmp = sk_BIGNUM_delete(coeffs, 0);
|
---|
573 | for (i = 2; i < primes; i++) {
|
---|
574 | pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
|
---|
575 | tmp = sk_BIGNUM_delete(factors, 0);
|
---|
576 | BN_copy(pinfo->r, tmp);
|
---|
577 | BN_clear_free(tmp);
|
---|
578 | tmp = sk_BIGNUM_delete(exps, 0);
|
---|
579 | tmp2 = BN_copy(pinfo->d, tmp);
|
---|
580 | BN_clear_free(tmp);
|
---|
581 | if (tmp2 == NULL)
|
---|
582 | goto err;
|
---|
583 | tmp = sk_BIGNUM_delete(coeffs, 0);
|
---|
584 | tmp2 = BN_copy(pinfo->t, tmp);
|
---|
585 | BN_clear_free(tmp);
|
---|
586 | if (tmp2 == NULL)
|
---|
587 | goto err;
|
---|
588 | }
|
---|
589 | ok = 1;
|
---|
590 | err:
|
---|
591 | sk_BIGNUM_free(factors);
|
---|
592 | sk_BIGNUM_free(exps);
|
---|
593 | sk_BIGNUM_free(coeffs);
|
---|
594 | if (ok == -1) {
|
---|
595 | ERR_raise(ERR_LIB_RSA, ERR_R_BN_LIB);
|
---|
596 | ok = 0;
|
---|
597 | }
|
---|
598 | BN_CTX_end(ctx);
|
---|
599 | BN_CTX_free(ctx);
|
---|
600 | return ok;
|
---|
601 | }
|
---|
602 | #endif /* FIPS_MODULE */
|
---|
603 |
|
---|
604 | static int rsa_keygen(OSSL_LIB_CTX *libctx, RSA *rsa, int bits, int primes,
|
---|
605 | BIGNUM *e_value, BN_GENCB *cb, int pairwise_test)
|
---|
606 | {
|
---|
607 | int ok = 0;
|
---|
608 |
|
---|
609 | #ifdef FIPS_MODULE
|
---|
610 | ok = ossl_rsa_sp800_56b_generate_key(rsa, bits, e_value, cb);
|
---|
611 | pairwise_test = 1; /* FIPS MODE needs to always run the pairwise test */
|
---|
612 | #else
|
---|
613 | /*
|
---|
614 | * Only multi-prime keys or insecure keys with a small key length or a
|
---|
615 | * public exponent <= 2^16 will use the older rsa_multiprime_keygen().
|
---|
616 | */
|
---|
617 | if (primes == 2
|
---|
618 | && bits >= 2048
|
---|
619 | && (e_value == NULL || BN_num_bits(e_value) > 16))
|
---|
620 | ok = ossl_rsa_sp800_56b_generate_key(rsa, bits, e_value, cb);
|
---|
621 | else
|
---|
622 | ok = rsa_multiprime_keygen(rsa, bits, primes, e_value, cb);
|
---|
623 | #endif /* FIPS_MODULE */
|
---|
624 |
|
---|
625 | if (pairwise_test && ok > 0) {
|
---|
626 | OSSL_CALLBACK *stcb = NULL;
|
---|
627 | void *stcbarg = NULL;
|
---|
628 |
|
---|
629 | OSSL_SELF_TEST_get_callback(libctx, &stcb, &stcbarg);
|
---|
630 | ok = rsa_keygen_pairwise_test(rsa, stcb, stcbarg);
|
---|
631 | if (!ok) {
|
---|
632 | ossl_set_error_state(OSSL_SELF_TEST_TYPE_PCT);
|
---|
633 | /* Clear intermediate results */
|
---|
634 | BN_clear_free(rsa->d);
|
---|
635 | BN_clear_free(rsa->p);
|
---|
636 | BN_clear_free(rsa->q);
|
---|
637 | BN_clear_free(rsa->dmp1);
|
---|
638 | BN_clear_free(rsa->dmq1);
|
---|
639 | BN_clear_free(rsa->iqmp);
|
---|
640 | rsa->d = NULL;
|
---|
641 | rsa->p = NULL;
|
---|
642 | rsa->q = NULL;
|
---|
643 | rsa->dmp1 = NULL;
|
---|
644 | rsa->dmq1 = NULL;
|
---|
645 | rsa->iqmp = NULL;
|
---|
646 | }
|
---|
647 | }
|
---|
648 | return ok;
|
---|
649 | }
|
---|
650 |
|
---|
651 | /*
|
---|
652 | * For RSA key generation it is not known whether the key pair will be used
|
---|
653 | * for key transport or signatures. FIPS 140-2 IG 9.9 states that in this case
|
---|
654 | * either a signature verification OR an encryption operation may be used to
|
---|
655 | * perform the pairwise consistency check. The simpler encrypt/decrypt operation
|
---|
656 | * has been chosen for this case.
|
---|
657 | */
|
---|
658 | static int rsa_keygen_pairwise_test(RSA *rsa, OSSL_CALLBACK *cb, void *cbarg)
|
---|
659 | {
|
---|
660 | int ret = 0;
|
---|
661 | unsigned int ciphertxt_len;
|
---|
662 | unsigned char *ciphertxt = NULL;
|
---|
663 | const unsigned char plaintxt[16] = {0};
|
---|
664 | unsigned char *decoded = NULL;
|
---|
665 | unsigned int decoded_len;
|
---|
666 | unsigned int plaintxt_len = (unsigned int)sizeof(plaintxt_len);
|
---|
667 | int padding = RSA_PKCS1_PADDING;
|
---|
668 | OSSL_SELF_TEST *st = NULL;
|
---|
669 |
|
---|
670 | st = OSSL_SELF_TEST_new(cb, cbarg);
|
---|
671 | if (st == NULL)
|
---|
672 | goto err;
|
---|
673 | OSSL_SELF_TEST_onbegin(st, OSSL_SELF_TEST_TYPE_PCT,
|
---|
674 | OSSL_SELF_TEST_DESC_PCT_RSA_PKCS1);
|
---|
675 |
|
---|
676 | ciphertxt_len = RSA_size(rsa);
|
---|
677 | /*
|
---|
678 | * RSA_private_encrypt() and RSA_private_decrypt() requires the 'to'
|
---|
679 | * parameter to be a maximum of RSA_size() - allocate space for both.
|
---|
680 | */
|
---|
681 | ciphertxt = OPENSSL_zalloc(ciphertxt_len * 2);
|
---|
682 | if (ciphertxt == NULL)
|
---|
683 | goto err;
|
---|
684 | decoded = ciphertxt + ciphertxt_len;
|
---|
685 |
|
---|
686 | ciphertxt_len = RSA_public_encrypt(plaintxt_len, plaintxt, ciphertxt, rsa,
|
---|
687 | padding);
|
---|
688 | if (ciphertxt_len <= 0)
|
---|
689 | goto err;
|
---|
690 | if (ciphertxt_len == plaintxt_len
|
---|
691 | && memcmp(ciphertxt, plaintxt, plaintxt_len) == 0)
|
---|
692 | goto err;
|
---|
693 |
|
---|
694 | OSSL_SELF_TEST_oncorrupt_byte(st, ciphertxt);
|
---|
695 |
|
---|
696 | decoded_len = RSA_private_decrypt(ciphertxt_len, ciphertxt, decoded, rsa,
|
---|
697 | padding);
|
---|
698 | if (decoded_len != plaintxt_len
|
---|
699 | || memcmp(decoded, plaintxt, decoded_len) != 0)
|
---|
700 | goto err;
|
---|
701 |
|
---|
702 | ret = 1;
|
---|
703 | err:
|
---|
704 | OSSL_SELF_TEST_onend(st, ret);
|
---|
705 | OSSL_SELF_TEST_free(st);
|
---|
706 | OPENSSL_free(ciphertxt);
|
---|
707 |
|
---|
708 | return ret;
|
---|
709 | }
|
---|