1 | /*
|
---|
2 | * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | /*
|
---|
11 | * RSA low level APIs are deprecated for public use, but still ok for
|
---|
12 | * internal use.
|
---|
13 | */
|
---|
14 | #include "internal/deprecated.h"
|
---|
15 |
|
---|
16 | #include "internal/constant_time.h"
|
---|
17 |
|
---|
18 | #include <stdio.h>
|
---|
19 | #include <openssl/bn.h>
|
---|
20 | #include <openssl/rsa.h>
|
---|
21 | #include <openssl/rand.h>
|
---|
22 | /* Just for the SSL_MAX_MASTER_KEY_LENGTH value */
|
---|
23 | #include <openssl/prov_ssl.h>
|
---|
24 | #include <openssl/evp.h>
|
---|
25 | #include <openssl/sha.h>
|
---|
26 | #include <openssl/hmac.h>
|
---|
27 | #include "internal/cryptlib.h"
|
---|
28 | #include "crypto/rsa.h"
|
---|
29 | #include "rsa_local.h"
|
---|
30 |
|
---|
31 |
|
---|
32 | int RSA_padding_add_PKCS1_type_1(unsigned char *to, int tlen,
|
---|
33 | const unsigned char *from, int flen)
|
---|
34 | {
|
---|
35 | int j;
|
---|
36 | unsigned char *p;
|
---|
37 |
|
---|
38 | if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) {
|
---|
39 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
|
---|
40 | return 0;
|
---|
41 | }
|
---|
42 |
|
---|
43 | p = (unsigned char *)to;
|
---|
44 |
|
---|
45 | *(p++) = 0;
|
---|
46 | *(p++) = 1; /* Private Key BT (Block Type) */
|
---|
47 |
|
---|
48 | /* pad out with 0xff data */
|
---|
49 | j = tlen - 3 - flen;
|
---|
50 | memset(p, 0xff, j);
|
---|
51 | p += j;
|
---|
52 | *(p++) = '\0';
|
---|
53 | memcpy(p, from, (unsigned int)flen);
|
---|
54 | return 1;
|
---|
55 | }
|
---|
56 |
|
---|
57 | int RSA_padding_check_PKCS1_type_1(unsigned char *to, int tlen,
|
---|
58 | const unsigned char *from, int flen,
|
---|
59 | int num)
|
---|
60 | {
|
---|
61 | int i, j;
|
---|
62 | const unsigned char *p;
|
---|
63 |
|
---|
64 | p = from;
|
---|
65 |
|
---|
66 | /*
|
---|
67 | * The format is
|
---|
68 | * 00 || 01 || PS || 00 || D
|
---|
69 | * PS - padding string, at least 8 bytes of FF
|
---|
70 | * D - data.
|
---|
71 | */
|
---|
72 |
|
---|
73 | if (num < RSA_PKCS1_PADDING_SIZE)
|
---|
74 | return -1;
|
---|
75 |
|
---|
76 | /* Accept inputs with and without the leading 0-byte. */
|
---|
77 | if (num == flen) {
|
---|
78 | if ((*p++) != 0x00) {
|
---|
79 | ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_PADDING);
|
---|
80 | return -1;
|
---|
81 | }
|
---|
82 | flen--;
|
---|
83 | }
|
---|
84 |
|
---|
85 | if ((num != (flen + 1)) || (*(p++) != 0x01)) {
|
---|
86 | ERR_raise(ERR_LIB_RSA, RSA_R_BLOCK_TYPE_IS_NOT_01);
|
---|
87 | return -1;
|
---|
88 | }
|
---|
89 |
|
---|
90 | /* scan over padding data */
|
---|
91 | j = flen - 1; /* one for type. */
|
---|
92 | for (i = 0; i < j; i++) {
|
---|
93 | if (*p != 0xff) { /* should decrypt to 0xff */
|
---|
94 | if (*p == 0) {
|
---|
95 | p++;
|
---|
96 | break;
|
---|
97 | } else {
|
---|
98 | ERR_raise(ERR_LIB_RSA, RSA_R_BAD_FIXED_HEADER_DECRYPT);
|
---|
99 | return -1;
|
---|
100 | }
|
---|
101 | }
|
---|
102 | p++;
|
---|
103 | }
|
---|
104 |
|
---|
105 | if (i == j) {
|
---|
106 | ERR_raise(ERR_LIB_RSA, RSA_R_NULL_BEFORE_BLOCK_MISSING);
|
---|
107 | return -1;
|
---|
108 | }
|
---|
109 |
|
---|
110 | if (i < 8) {
|
---|
111 | ERR_raise(ERR_LIB_RSA, RSA_R_BAD_PAD_BYTE_COUNT);
|
---|
112 | return -1;
|
---|
113 | }
|
---|
114 | i++; /* Skip over the '\0' */
|
---|
115 | j -= i;
|
---|
116 | if (j > tlen) {
|
---|
117 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE);
|
---|
118 | return -1;
|
---|
119 | }
|
---|
120 | memcpy(to, p, (unsigned int)j);
|
---|
121 |
|
---|
122 | return j;
|
---|
123 | }
|
---|
124 |
|
---|
125 | int ossl_rsa_padding_add_PKCS1_type_2_ex(OSSL_LIB_CTX *libctx, unsigned char *to,
|
---|
126 | int tlen, const unsigned char *from,
|
---|
127 | int flen)
|
---|
128 | {
|
---|
129 | int i, j;
|
---|
130 | unsigned char *p;
|
---|
131 |
|
---|
132 | if (flen > (tlen - RSA_PKCS1_PADDING_SIZE)) {
|
---|
133 | ERR_raise(ERR_LIB_RSA, RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE);
|
---|
134 | return 0;
|
---|
135 | } else if (flen < 0) {
|
---|
136 | ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_LENGTH);
|
---|
137 | return 0;
|
---|
138 | }
|
---|
139 |
|
---|
140 | p = (unsigned char *)to;
|
---|
141 |
|
---|
142 | *(p++) = 0;
|
---|
143 | *(p++) = 2; /* Public Key BT (Block Type) */
|
---|
144 |
|
---|
145 | /* pad out with non-zero random data */
|
---|
146 | j = tlen - 3 - flen;
|
---|
147 |
|
---|
148 | if (RAND_bytes_ex(libctx, p, j, 0) <= 0)
|
---|
149 | return 0;
|
---|
150 | for (i = 0; i < j; i++) {
|
---|
151 | if (*p == '\0')
|
---|
152 | do {
|
---|
153 | if (RAND_bytes_ex(libctx, p, 1, 0) <= 0)
|
---|
154 | return 0;
|
---|
155 | } while (*p == '\0');
|
---|
156 | p++;
|
---|
157 | }
|
---|
158 |
|
---|
159 | *(p++) = '\0';
|
---|
160 |
|
---|
161 | memcpy(p, from, (unsigned int)flen);
|
---|
162 | return 1;
|
---|
163 | }
|
---|
164 |
|
---|
165 | int RSA_padding_add_PKCS1_type_2(unsigned char *to, int tlen,
|
---|
166 | const unsigned char *from, int flen)
|
---|
167 | {
|
---|
168 | return ossl_rsa_padding_add_PKCS1_type_2_ex(NULL, to, tlen, from, flen);
|
---|
169 | }
|
---|
170 |
|
---|
171 | int RSA_padding_check_PKCS1_type_2(unsigned char *to, int tlen,
|
---|
172 | const unsigned char *from, int flen,
|
---|
173 | int num)
|
---|
174 | {
|
---|
175 | int i;
|
---|
176 | /* |em| is the encoded message, zero-padded to exactly |num| bytes */
|
---|
177 | unsigned char *em = NULL;
|
---|
178 | unsigned int good, found_zero_byte, mask;
|
---|
179 | int zero_index = 0, msg_index, mlen = -1;
|
---|
180 |
|
---|
181 | if (tlen <= 0 || flen <= 0)
|
---|
182 | return -1;
|
---|
183 |
|
---|
184 | /*
|
---|
185 | * PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography Standard",
|
---|
186 | * section 7.2.2.
|
---|
187 | */
|
---|
188 |
|
---|
189 | if (flen > num || num < RSA_PKCS1_PADDING_SIZE) {
|
---|
190 | ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR);
|
---|
191 | return -1;
|
---|
192 | }
|
---|
193 |
|
---|
194 | em = OPENSSL_malloc(num);
|
---|
195 | if (em == NULL)
|
---|
196 | return -1;
|
---|
197 | /*
|
---|
198 | * Caller is encouraged to pass zero-padded message created with
|
---|
199 | * BN_bn2binpad. Trouble is that since we can't read out of |from|'s
|
---|
200 | * bounds, it's impossible to have an invariant memory access pattern
|
---|
201 | * in case |from| was not zero-padded in advance.
|
---|
202 | */
|
---|
203 | for (from += flen, em += num, i = 0; i < num; i++) {
|
---|
204 | mask = ~constant_time_is_zero(flen);
|
---|
205 | flen -= 1 & mask;
|
---|
206 | from -= 1 & mask;
|
---|
207 | *--em = *from & mask;
|
---|
208 | }
|
---|
209 |
|
---|
210 | good = constant_time_is_zero(em[0]);
|
---|
211 | good &= constant_time_eq(em[1], 2);
|
---|
212 |
|
---|
213 | /* scan over padding data */
|
---|
214 | found_zero_byte = 0;
|
---|
215 | for (i = 2; i < num; i++) {
|
---|
216 | unsigned int equals0 = constant_time_is_zero(em[i]);
|
---|
217 |
|
---|
218 | zero_index = constant_time_select_int(~found_zero_byte & equals0,
|
---|
219 | i, zero_index);
|
---|
220 | found_zero_byte |= equals0;
|
---|
221 | }
|
---|
222 |
|
---|
223 | /*
|
---|
224 | * PS must be at least 8 bytes long, and it starts two bytes into |em|.
|
---|
225 | * If we never found a 0-byte, then |zero_index| is 0 and the check
|
---|
226 | * also fails.
|
---|
227 | */
|
---|
228 | good &= constant_time_ge(zero_index, 2 + 8);
|
---|
229 |
|
---|
230 | /*
|
---|
231 | * Skip the zero byte. This is incorrect if we never found a zero-byte
|
---|
232 | * but in this case we also do not copy the message out.
|
---|
233 | */
|
---|
234 | msg_index = zero_index + 1;
|
---|
235 | mlen = num - msg_index;
|
---|
236 |
|
---|
237 | /*
|
---|
238 | * For good measure, do this check in constant time as well.
|
---|
239 | */
|
---|
240 | good &= constant_time_ge(tlen, mlen);
|
---|
241 |
|
---|
242 | /*
|
---|
243 | * Move the result in-place by |num|-RSA_PKCS1_PADDING_SIZE-|mlen| bytes to the left.
|
---|
244 | * Then if |good| move |mlen| bytes from |em|+RSA_PKCS1_PADDING_SIZE to |to|.
|
---|
245 | * Otherwise leave |to| unchanged.
|
---|
246 | * Copy the memory back in a way that does not reveal the size of
|
---|
247 | * the data being copied via a timing side channel. This requires copying
|
---|
248 | * parts of the buffer multiple times based on the bits set in the real
|
---|
249 | * length. Clear bits do a non-copy with identical access pattern.
|
---|
250 | * The loop below has overall complexity of O(N*log(N)).
|
---|
251 | */
|
---|
252 | tlen = constant_time_select_int(constant_time_lt(num - RSA_PKCS1_PADDING_SIZE, tlen),
|
---|
253 | num - RSA_PKCS1_PADDING_SIZE, tlen);
|
---|
254 | for (msg_index = 1; msg_index < num - RSA_PKCS1_PADDING_SIZE; msg_index <<= 1) {
|
---|
255 | mask = ~constant_time_eq(msg_index & (num - RSA_PKCS1_PADDING_SIZE - mlen), 0);
|
---|
256 | for (i = RSA_PKCS1_PADDING_SIZE; i < num - msg_index; i++)
|
---|
257 | em[i] = constant_time_select_8(mask, em[i + msg_index], em[i]);
|
---|
258 | }
|
---|
259 | for (i = 0; i < tlen; i++) {
|
---|
260 | mask = good & constant_time_lt(i, mlen);
|
---|
261 | to[i] = constant_time_select_8(mask, em[i + RSA_PKCS1_PADDING_SIZE], to[i]);
|
---|
262 | }
|
---|
263 |
|
---|
264 | OPENSSL_clear_free(em, num);
|
---|
265 | #ifndef FIPS_MODULE
|
---|
266 | /*
|
---|
267 | * This trick doesn't work in the FIPS provider because libcrypto manages
|
---|
268 | * the error stack. Instead we opt not to put an error on the stack at all
|
---|
269 | * in case of padding failure in the FIPS provider.
|
---|
270 | */
|
---|
271 | ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR);
|
---|
272 | err_clear_last_constant_time(1 & good);
|
---|
273 | #endif
|
---|
274 |
|
---|
275 | return constant_time_select_int(good, mlen, -1);
|
---|
276 | }
|
---|
277 |
|
---|
278 |
|
---|
279 | static int ossl_rsa_prf(OSSL_LIB_CTX *ctx,
|
---|
280 | unsigned char *to, int tlen,
|
---|
281 | const char *label, int llen,
|
---|
282 | const unsigned char *kdk,
|
---|
283 | uint16_t bitlen)
|
---|
284 | {
|
---|
285 | int pos;
|
---|
286 | int ret = -1;
|
---|
287 | uint16_t iter = 0;
|
---|
288 | unsigned char be_iter[sizeof(iter)];
|
---|
289 | unsigned char be_bitlen[sizeof(bitlen)];
|
---|
290 | HMAC_CTX *hmac = NULL;
|
---|
291 | EVP_MD *md = NULL;
|
---|
292 | unsigned char hmac_out[SHA256_DIGEST_LENGTH];
|
---|
293 | unsigned int md_len;
|
---|
294 |
|
---|
295 | if (tlen * 8 != bitlen) {
|
---|
296 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
|
---|
297 | return ret;
|
---|
298 | }
|
---|
299 |
|
---|
300 | be_bitlen[0] = (bitlen >> 8) & 0xff;
|
---|
301 | be_bitlen[1] = bitlen & 0xff;
|
---|
302 |
|
---|
303 | hmac = HMAC_CTX_new();
|
---|
304 | if (hmac == NULL) {
|
---|
305 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
|
---|
306 | goto err;
|
---|
307 | }
|
---|
308 |
|
---|
309 | /*
|
---|
310 | * we use hardcoded hash so that migrating between versions that use
|
---|
311 | * different hash doesn't provide a Bleichenbacher oracle:
|
---|
312 | * if the attacker can see that different versions return different
|
---|
313 | * messages for the same ciphertext, they'll know that the message is
|
---|
314 | * synthetically generated, which means that the padding check failed
|
---|
315 | */
|
---|
316 | md = EVP_MD_fetch(ctx, "sha256", NULL);
|
---|
317 | if (md == NULL) {
|
---|
318 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
|
---|
319 | goto err;
|
---|
320 | }
|
---|
321 |
|
---|
322 | if (HMAC_Init_ex(hmac, kdk, SHA256_DIGEST_LENGTH, md, NULL) <= 0) {
|
---|
323 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
|
---|
324 | goto err;
|
---|
325 | }
|
---|
326 |
|
---|
327 | for (pos = 0; pos < tlen; pos += SHA256_DIGEST_LENGTH, iter++) {
|
---|
328 | if (HMAC_Init_ex(hmac, NULL, 0, NULL, NULL) <= 0) {
|
---|
329 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
|
---|
330 | goto err;
|
---|
331 | }
|
---|
332 |
|
---|
333 | be_iter[0] = (iter >> 8) & 0xff;
|
---|
334 | be_iter[1] = iter & 0xff;
|
---|
335 |
|
---|
336 | if (HMAC_Update(hmac, be_iter, sizeof(be_iter)) <= 0) {
|
---|
337 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
|
---|
338 | goto err;
|
---|
339 | }
|
---|
340 | if (HMAC_Update(hmac, (unsigned char *)label, llen) <= 0) {
|
---|
341 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
|
---|
342 | goto err;
|
---|
343 | }
|
---|
344 | if (HMAC_Update(hmac, be_bitlen, sizeof(be_bitlen)) <= 0) {
|
---|
345 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
|
---|
346 | goto err;
|
---|
347 | }
|
---|
348 |
|
---|
349 | /*
|
---|
350 | * HMAC_Final requires the output buffer to fit the whole MAC
|
---|
351 | * value, so we need to use the intermediate buffer for the last
|
---|
352 | * unaligned block
|
---|
353 | */
|
---|
354 | md_len = SHA256_DIGEST_LENGTH;
|
---|
355 | if (pos + SHA256_DIGEST_LENGTH > tlen) {
|
---|
356 | if (HMAC_Final(hmac, hmac_out, &md_len) <= 0) {
|
---|
357 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
|
---|
358 | goto err;
|
---|
359 | }
|
---|
360 | memcpy(to + pos, hmac_out, tlen - pos);
|
---|
361 | } else {
|
---|
362 | if (HMAC_Final(hmac, to + pos, &md_len) <= 0) {
|
---|
363 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
|
---|
364 | goto err;
|
---|
365 | }
|
---|
366 | }
|
---|
367 | }
|
---|
368 |
|
---|
369 | ret = 0;
|
---|
370 |
|
---|
371 | err:
|
---|
372 | HMAC_CTX_free(hmac);
|
---|
373 | EVP_MD_free(md);
|
---|
374 | return ret;
|
---|
375 | }
|
---|
376 |
|
---|
377 | /*
|
---|
378 | * ossl_rsa_padding_check_PKCS1_type_2() checks and removes the PKCS#1 type 2
|
---|
379 | * padding from a decrypted RSA message. Unlike the
|
---|
380 | * RSA_padding_check_PKCS1_type_2() it will not return an error in case it
|
---|
381 | * detects a padding error, rather it will return a deterministically generated
|
---|
382 | * random message. In other words it will perform an implicit rejection
|
---|
383 | * of an invalid padding. This means that the returned value does not indicate
|
---|
384 | * if the padding of the encrypted message was correct or not, making
|
---|
385 | * side channel attacks like the ones described by Bleichenbacher impossible
|
---|
386 | * without access to the full decrypted value and a brute-force search of
|
---|
387 | * remaining padding bytes
|
---|
388 | */
|
---|
389 | int ossl_rsa_padding_check_PKCS1_type_2(OSSL_LIB_CTX *ctx,
|
---|
390 | unsigned char *to, int tlen,
|
---|
391 | const unsigned char *from, int flen,
|
---|
392 | int num, unsigned char *kdk)
|
---|
393 | {
|
---|
394 | /*
|
---|
395 | * We need to generate a random length for the synthetic message, to avoid
|
---|
396 | * bias towards zero and avoid non-constant timeness of DIV, we prepare
|
---|
397 | * 128 values to check if they are not too large for the used key size,
|
---|
398 | * and use 0 in case none of them are small enough, as 2^-128 is a good enough
|
---|
399 | * safety margin
|
---|
400 | */
|
---|
401 | #define MAX_LEN_GEN_TRIES 128
|
---|
402 | unsigned char *synthetic = NULL;
|
---|
403 | int synthetic_length;
|
---|
404 | uint16_t len_candidate;
|
---|
405 | unsigned char candidate_lengths[MAX_LEN_GEN_TRIES * sizeof(len_candidate)];
|
---|
406 | uint16_t len_mask;
|
---|
407 | uint16_t max_sep_offset;
|
---|
408 | int synth_msg_index = 0;
|
---|
409 | int ret = -1;
|
---|
410 | int i, j;
|
---|
411 | unsigned int good, found_zero_byte;
|
---|
412 | int zero_index = 0, msg_index;
|
---|
413 |
|
---|
414 | /*
|
---|
415 | * If these checks fail then either the message in publicly invalid, or
|
---|
416 | * we've been called incorrectly. We can fail immediately.
|
---|
417 | * Since this code is called only internally by openssl, those are just
|
---|
418 | * sanity checks
|
---|
419 | */
|
---|
420 | if (num != flen || tlen <= 0 || flen <= 0) {
|
---|
421 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
|
---|
422 | return -1;
|
---|
423 | }
|
---|
424 |
|
---|
425 | /* Generate a random message to return in case the padding checks fail */
|
---|
426 | synthetic = OPENSSL_malloc(flen);
|
---|
427 | if (synthetic == NULL) {
|
---|
428 | ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE);
|
---|
429 | return -1;
|
---|
430 | }
|
---|
431 |
|
---|
432 | if (ossl_rsa_prf(ctx, synthetic, flen, "message", 7, kdk, flen * 8) < 0)
|
---|
433 | goto err;
|
---|
434 |
|
---|
435 | /* decide how long the random message should be */
|
---|
436 | if (ossl_rsa_prf(ctx, candidate_lengths, sizeof(candidate_lengths),
|
---|
437 | "length", 6, kdk,
|
---|
438 | MAX_LEN_GEN_TRIES * sizeof(len_candidate) * 8) < 0)
|
---|
439 | goto err;
|
---|
440 |
|
---|
441 | /*
|
---|
442 | * max message size is the size of the modulus size less 2 bytes for
|
---|
443 | * version and padding type and a minimum of 8 bytes padding
|
---|
444 | */
|
---|
445 | len_mask = max_sep_offset = flen - 2 - 8;
|
---|
446 | /*
|
---|
447 | * we want a mask so lets propagate the high bit to all positions less
|
---|
448 | * significant than it
|
---|
449 | */
|
---|
450 | len_mask |= len_mask >> 1;
|
---|
451 | len_mask |= len_mask >> 2;
|
---|
452 | len_mask |= len_mask >> 4;
|
---|
453 | len_mask |= len_mask >> 8;
|
---|
454 |
|
---|
455 | synthetic_length = 0;
|
---|
456 | for (i = 0; i < MAX_LEN_GEN_TRIES * (int)sizeof(len_candidate);
|
---|
457 | i += sizeof(len_candidate)) {
|
---|
458 | len_candidate = (candidate_lengths[i] << 8) | candidate_lengths[i + 1];
|
---|
459 | len_candidate &= len_mask;
|
---|
460 |
|
---|
461 | synthetic_length = constant_time_select_int(
|
---|
462 | constant_time_lt(len_candidate, max_sep_offset),
|
---|
463 | len_candidate, synthetic_length);
|
---|
464 | }
|
---|
465 |
|
---|
466 | synth_msg_index = flen - synthetic_length;
|
---|
467 |
|
---|
468 | /* we have alternative message ready, check the real one */
|
---|
469 | good = constant_time_is_zero(from[0]);
|
---|
470 | good &= constant_time_eq(from[1], 2);
|
---|
471 |
|
---|
472 | /* then look for the padding|message separator (the first zero byte) */
|
---|
473 | found_zero_byte = 0;
|
---|
474 | for (i = 2; i < flen; i++) {
|
---|
475 | unsigned int equals0 = constant_time_is_zero(from[i]);
|
---|
476 | zero_index = constant_time_select_int(~found_zero_byte & equals0,
|
---|
477 | i, zero_index);
|
---|
478 | found_zero_byte |= equals0;
|
---|
479 | }
|
---|
480 |
|
---|
481 | /*
|
---|
482 | * padding must be at least 8 bytes long, and it starts two bytes into
|
---|
483 | * |from|. If we never found a 0-byte, then |zero_index| is 0 and the check
|
---|
484 | * also fails.
|
---|
485 | */
|
---|
486 | good &= constant_time_ge(zero_index, 2 + 8);
|
---|
487 |
|
---|
488 | /*
|
---|
489 | * Skip the zero byte. This is incorrect if we never found a zero-byte
|
---|
490 | * but in this case we also do not copy the message out.
|
---|
491 | */
|
---|
492 | msg_index = zero_index + 1;
|
---|
493 |
|
---|
494 | /*
|
---|
495 | * old code returned an error in case the decrypted message wouldn't fit
|
---|
496 | * into the |to|, since that would leak information, return the synthetic
|
---|
497 | * message instead
|
---|
498 | */
|
---|
499 | good &= constant_time_ge(tlen, num - msg_index);
|
---|
500 |
|
---|
501 | msg_index = constant_time_select_int(good, msg_index, synth_msg_index);
|
---|
502 |
|
---|
503 | /*
|
---|
504 | * since at this point the |msg_index| does not provide the signal
|
---|
505 | * indicating if the padding check failed or not, we don't have to worry
|
---|
506 | * about leaking the length of returned message, we still need to ensure
|
---|
507 | * that we read contents of both buffers so that cache accesses don't leak
|
---|
508 | * the value of |good|
|
---|
509 | */
|
---|
510 | for (i = msg_index, j = 0; i < flen && j < tlen; i++, j++)
|
---|
511 | to[j] = constant_time_select_8(good, from[i], synthetic[i]);
|
---|
512 | ret = j;
|
---|
513 |
|
---|
514 | err:
|
---|
515 | /*
|
---|
516 | * the only time ret < 0 is when the ciphertext is publicly invalid
|
---|
517 | * or we were called with invalid parameters, so we don't have to perform
|
---|
518 | * a side-channel secure raising of the error
|
---|
519 | */
|
---|
520 | if (ret < 0)
|
---|
521 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
|
---|
522 | OPENSSL_free(synthetic);
|
---|
523 | return ret;
|
---|
524 | }
|
---|
525 |
|
---|
526 | /*
|
---|
527 | * ossl_rsa_padding_check_PKCS1_type_2_TLS() checks and removes the PKCS1 type 2
|
---|
528 | * padding from a decrypted RSA message in a TLS signature. The result is stored
|
---|
529 | * in the buffer pointed to by |to| which should be |tlen| bytes long. |tlen|
|
---|
530 | * must be at least SSL_MAX_MASTER_KEY_LENGTH. The original decrypted message
|
---|
531 | * should be stored in |from| which must be |flen| bytes in length and padded
|
---|
532 | * such that |flen == RSA_size()|. The TLS protocol version that the client
|
---|
533 | * originally requested should be passed in |client_version|. Some buggy clients
|
---|
534 | * can exist which use the negotiated version instead of the originally
|
---|
535 | * requested protocol version. If it is necessary to work around this bug then
|
---|
536 | * the negotiated protocol version can be passed in |alt_version|, otherwise 0
|
---|
537 | * should be passed.
|
---|
538 | *
|
---|
539 | * If the passed message is publicly invalid or some other error that can be
|
---|
540 | * treated in non-constant time occurs then -1 is returned. On success the
|
---|
541 | * length of the decrypted data is returned. This will always be
|
---|
542 | * SSL_MAX_MASTER_KEY_LENGTH. If an error occurs that should be treated in
|
---|
543 | * constant time then this function will appear to return successfully, but the
|
---|
544 | * decrypted data will be randomly generated (as per
|
---|
545 | * https://tools.ietf.org/html/rfc5246#section-7.4.7.1).
|
---|
546 | */
|
---|
547 | int ossl_rsa_padding_check_PKCS1_type_2_TLS(OSSL_LIB_CTX *libctx,
|
---|
548 | unsigned char *to, size_t tlen,
|
---|
549 | const unsigned char *from,
|
---|
550 | size_t flen, int client_version,
|
---|
551 | int alt_version)
|
---|
552 | {
|
---|
553 | unsigned int i, good, version_good;
|
---|
554 | unsigned char rand_premaster_secret[SSL_MAX_MASTER_KEY_LENGTH];
|
---|
555 |
|
---|
556 | /*
|
---|
557 | * If these checks fail then either the message in publicly invalid, or
|
---|
558 | * we've been called incorrectly. We can fail immediately.
|
---|
559 | */
|
---|
560 | if (flen < RSA_PKCS1_PADDING_SIZE + SSL_MAX_MASTER_KEY_LENGTH
|
---|
561 | || tlen < SSL_MAX_MASTER_KEY_LENGTH) {
|
---|
562 | ERR_raise(ERR_LIB_RSA, RSA_R_PKCS_DECODING_ERROR);
|
---|
563 | return -1;
|
---|
564 | }
|
---|
565 |
|
---|
566 | /*
|
---|
567 | * Generate a random premaster secret to use in the event that we fail
|
---|
568 | * to decrypt.
|
---|
569 | */
|
---|
570 | if (RAND_priv_bytes_ex(libctx, rand_premaster_secret,
|
---|
571 | sizeof(rand_premaster_secret), 0) <= 0) {
|
---|
572 | ERR_raise(ERR_LIB_RSA, ERR_R_INTERNAL_ERROR);
|
---|
573 | return -1;
|
---|
574 | }
|
---|
575 |
|
---|
576 | good = constant_time_is_zero(from[0]);
|
---|
577 | good &= constant_time_eq(from[1], 2);
|
---|
578 |
|
---|
579 | /* Check we have the expected padding data */
|
---|
580 | for (i = 2; i < flen - SSL_MAX_MASTER_KEY_LENGTH - 1; i++)
|
---|
581 | good &= ~constant_time_is_zero_8(from[i]);
|
---|
582 | good &= constant_time_is_zero_8(from[flen - SSL_MAX_MASTER_KEY_LENGTH - 1]);
|
---|
583 |
|
---|
584 |
|
---|
585 | /*
|
---|
586 | * If the version in the decrypted pre-master secret is correct then
|
---|
587 | * version_good will be 0xff, otherwise it'll be zero. The
|
---|
588 | * Klima-Pokorny-Rosa extension of Bleichenbacher's attack
|
---|
589 | * (http://eprint.iacr.org/2003/052/) exploits the version number
|
---|
590 | * check as a "bad version oracle". Thus version checks are done in
|
---|
591 | * constant time and are treated like any other decryption error.
|
---|
592 | */
|
---|
593 | version_good =
|
---|
594 | constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH],
|
---|
595 | (client_version >> 8) & 0xff);
|
---|
596 | version_good &=
|
---|
597 | constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH + 1],
|
---|
598 | client_version & 0xff);
|
---|
599 |
|
---|
600 | /*
|
---|
601 | * The premaster secret must contain the same version number as the
|
---|
602 | * ClientHello to detect version rollback attacks (strangely, the
|
---|
603 | * protocol does not offer such protection for DH ciphersuites).
|
---|
604 | * However, buggy clients exist that send the negotiated protocol
|
---|
605 | * version instead if the server does not support the requested
|
---|
606 | * protocol version. If SSL_OP_TLS_ROLLBACK_BUG is set then we tolerate
|
---|
607 | * such clients. In that case alt_version will be non-zero and set to
|
---|
608 | * the negotiated version.
|
---|
609 | */
|
---|
610 | if (alt_version > 0) {
|
---|
611 | unsigned int workaround_good;
|
---|
612 |
|
---|
613 | workaround_good =
|
---|
614 | constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH],
|
---|
615 | (alt_version >> 8) & 0xff);
|
---|
616 | workaround_good &=
|
---|
617 | constant_time_eq(from[flen - SSL_MAX_MASTER_KEY_LENGTH + 1],
|
---|
618 | alt_version & 0xff);
|
---|
619 | version_good |= workaround_good;
|
---|
620 | }
|
---|
621 |
|
---|
622 | good &= version_good;
|
---|
623 |
|
---|
624 |
|
---|
625 | /*
|
---|
626 | * Now copy the result over to the to buffer if good, or random data if
|
---|
627 | * not good.
|
---|
628 | */
|
---|
629 | for (i = 0; i < SSL_MAX_MASTER_KEY_LENGTH; i++) {
|
---|
630 | to[i] =
|
---|
631 | constant_time_select_8(good,
|
---|
632 | from[flen - SSL_MAX_MASTER_KEY_LENGTH + i],
|
---|
633 | rand_premaster_secret[i]);
|
---|
634 | }
|
---|
635 |
|
---|
636 | /*
|
---|
637 | * We must not leak whether a decryption failure occurs because of
|
---|
638 | * Bleichenbacher's attack on PKCS #1 v1.5 RSA padding (see RFC 2246,
|
---|
639 | * section 7.4.7.1). The code follows that advice of the TLS RFC and
|
---|
640 | * generates a random premaster secret for the case that the decrypt
|
---|
641 | * fails. See https://tools.ietf.org/html/rfc5246#section-7.4.7.1
|
---|
642 | * So, whether we actually succeeded or not, return success.
|
---|
643 | */
|
---|
644 |
|
---|
645 | return SSL_MAX_MASTER_KEY_LENGTH;
|
---|
646 | }
|
---|