1 | /*-
|
---|
2 | * Copyright 2022-2023 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | /*
|
---|
11 | * Example showing how to generate an RSA key pair.
|
---|
12 | *
|
---|
13 | * When generating an RSA key, you must specify the number of bits in the key. A
|
---|
14 | * reasonable value would be 4096. Avoid using values below 2048. These values
|
---|
15 | * are reasonable as of 2022.
|
---|
16 | */
|
---|
17 |
|
---|
18 | #include <string.h>
|
---|
19 | #include <stdio.h>
|
---|
20 | #include <openssl/err.h>
|
---|
21 | #include <openssl/evp.h>
|
---|
22 | #include <openssl/rsa.h>
|
---|
23 | #include <openssl/core_names.h>
|
---|
24 | #include <openssl/pem.h>
|
---|
25 |
|
---|
26 | /* A property query used for selecting algorithm implementations. */
|
---|
27 | static const char *propq = NULL;
|
---|
28 |
|
---|
29 | /*
|
---|
30 | * Generates an RSA public-private key pair and returns it.
|
---|
31 | * The number of bits is specified by the bits argument.
|
---|
32 | *
|
---|
33 | * This uses the long way of generating an RSA key.
|
---|
34 | */
|
---|
35 | static EVP_PKEY *generate_rsa_key_long(OSSL_LIB_CTX *libctx, unsigned int bits)
|
---|
36 | {
|
---|
37 | EVP_PKEY_CTX *genctx = NULL;
|
---|
38 | EVP_PKEY *pkey = NULL;
|
---|
39 | unsigned int primes = 2;
|
---|
40 |
|
---|
41 | /* Create context using RSA algorithm. "RSA-PSS" could also be used here. */
|
---|
42 | genctx = EVP_PKEY_CTX_new_from_name(libctx, "RSA", propq);
|
---|
43 | if (genctx == NULL) {
|
---|
44 | fprintf(stderr, "EVP_PKEY_CTX_new_from_name() failed\n");
|
---|
45 | goto cleanup;
|
---|
46 | }
|
---|
47 |
|
---|
48 | /* Initialize context for key generation purposes. */
|
---|
49 | if (EVP_PKEY_keygen_init(genctx) <= 0) {
|
---|
50 | fprintf(stderr, "EVP_PKEY_keygen_init() failed\n");
|
---|
51 | goto cleanup;
|
---|
52 | }
|
---|
53 |
|
---|
54 | /*
|
---|
55 | * Here we set the number of bits to use in the RSA key.
|
---|
56 | * See comment at top of file for information on appropriate values.
|
---|
57 | */
|
---|
58 | if (EVP_PKEY_CTX_set_rsa_keygen_bits(genctx, bits) <= 0) {
|
---|
59 | fprintf(stderr, "EVP_PKEY_CTX_set_rsa_keygen_bits() failed\n");
|
---|
60 | goto cleanup;
|
---|
61 | }
|
---|
62 |
|
---|
63 | /*
|
---|
64 | * It is possible to create an RSA key using more than two primes.
|
---|
65 | * Do not do this unless you know why you need this.
|
---|
66 | * You ordinarily do not need to specify this, as the default is two.
|
---|
67 | *
|
---|
68 | * Both of these parameters can also be set via EVP_PKEY_CTX_set_params, but
|
---|
69 | * these functions provide a more concise way to do so.
|
---|
70 | */
|
---|
71 | if (EVP_PKEY_CTX_set_rsa_keygen_primes(genctx, primes) <= 0) {
|
---|
72 | fprintf(stderr, "EVP_PKEY_CTX_set_rsa_keygen_primes() failed\n");
|
---|
73 | goto cleanup;
|
---|
74 | }
|
---|
75 |
|
---|
76 | /*
|
---|
77 | * Generating an RSA key with a number of bits large enough to be secure for
|
---|
78 | * modern applications can take a fairly substantial amount of time (e.g.
|
---|
79 | * one second). If you require fast key generation, consider using an EC key
|
---|
80 | * instead.
|
---|
81 | *
|
---|
82 | * If you require progress information during the key generation process,
|
---|
83 | * you can set a progress callback using EVP_PKEY_set_cb; see the example in
|
---|
84 | * EVP_PKEY_generate(3).
|
---|
85 | */
|
---|
86 | fprintf(stdout, "Generating RSA key, this may take some time...\n");
|
---|
87 | if (EVP_PKEY_generate(genctx, &pkey) <= 0) {
|
---|
88 | fprintf(stderr, "EVP_PKEY_generate() failed\n");
|
---|
89 | goto cleanup;
|
---|
90 | }
|
---|
91 |
|
---|
92 | /* pkey is now set to an object representing the generated key pair. */
|
---|
93 |
|
---|
94 | cleanup:
|
---|
95 | EVP_PKEY_CTX_free(genctx);
|
---|
96 | return pkey;
|
---|
97 | }
|
---|
98 |
|
---|
99 | /*
|
---|
100 | * Generates an RSA public-private key pair and returns it.
|
---|
101 | * The number of bits is specified by the bits argument.
|
---|
102 | *
|
---|
103 | * This uses a more concise way of generating an RSA key, which is suitable for
|
---|
104 | * simple cases. It is used if -s is passed on the command line, otherwise the
|
---|
105 | * long method above is used. The ability to choose between these two methods is
|
---|
106 | * shown here only for demonstration; the results are equivalent.
|
---|
107 | */
|
---|
108 | static EVP_PKEY *generate_rsa_key_short(OSSL_LIB_CTX *libctx, unsigned int bits)
|
---|
109 | {
|
---|
110 | EVP_PKEY *pkey = NULL;
|
---|
111 |
|
---|
112 | fprintf(stdout, "Generating RSA key, this may take some time...\n");
|
---|
113 | pkey = EVP_PKEY_Q_keygen(libctx, propq, "RSA", (size_t)bits);
|
---|
114 |
|
---|
115 | if (pkey == NULL)
|
---|
116 | fprintf(stderr, "EVP_PKEY_Q_keygen() failed\n");
|
---|
117 |
|
---|
118 | return pkey;
|
---|
119 | }
|
---|
120 |
|
---|
121 | /*
|
---|
122 | * Prints information on an EVP_PKEY object representing an RSA key pair.
|
---|
123 | */
|
---|
124 | static int dump_key(const EVP_PKEY *pkey)
|
---|
125 | {
|
---|
126 | int ret = 0;
|
---|
127 | int bits = 0;
|
---|
128 | BIGNUM *n = NULL, *e = NULL, *d = NULL, *p = NULL, *q = NULL;
|
---|
129 |
|
---|
130 | /*
|
---|
131 | * Retrieve value of n. This value is not secret and forms part of the
|
---|
132 | * public key.
|
---|
133 | *
|
---|
134 | * Calling EVP_PKEY_get_bn_param with a NULL BIGNUM pointer causes
|
---|
135 | * a new BIGNUM to be allocated, so these must be freed subsequently.
|
---|
136 | */
|
---|
137 | if (EVP_PKEY_get_bn_param(pkey, OSSL_PKEY_PARAM_RSA_N, &n) == 0) {
|
---|
138 | fprintf(stderr, "Failed to retrieve n\n");
|
---|
139 | goto cleanup;
|
---|
140 | }
|
---|
141 |
|
---|
142 | /*
|
---|
143 | * Retrieve value of e. This value is not secret and forms part of the
|
---|
144 | * public key. It is typically 65537 and need not be changed.
|
---|
145 | */
|
---|
146 | if (EVP_PKEY_get_bn_param(pkey, OSSL_PKEY_PARAM_RSA_E, &e) == 0) {
|
---|
147 | fprintf(stderr, "Failed to retrieve e\n");
|
---|
148 | goto cleanup;
|
---|
149 | }
|
---|
150 |
|
---|
151 | /*
|
---|
152 | * Retrieve value of d. This value is secret and forms part of the private
|
---|
153 | * key. It must not be published.
|
---|
154 | */
|
---|
155 | if (EVP_PKEY_get_bn_param(pkey, OSSL_PKEY_PARAM_RSA_D, &d) == 0) {
|
---|
156 | fprintf(stderr, "Failed to retrieve d\n");
|
---|
157 | goto cleanup;
|
---|
158 | }
|
---|
159 |
|
---|
160 | /*
|
---|
161 | * Retrieve value of the first prime factor, commonly known as p. This value
|
---|
162 | * is secret and forms part of the private key. It must not be published.
|
---|
163 | */
|
---|
164 | if (EVP_PKEY_get_bn_param(pkey, OSSL_PKEY_PARAM_RSA_FACTOR1, &p) == 0) {
|
---|
165 | fprintf(stderr, "Failed to retrieve p\n");
|
---|
166 | goto cleanup;
|
---|
167 | }
|
---|
168 |
|
---|
169 | /*
|
---|
170 | * Retrieve value of the second prime factor, commonly known as q. This value
|
---|
171 | * is secret and forms part of the private key. It must not be published.
|
---|
172 | *
|
---|
173 | * If you are creating an RSA key with more than two primes for special
|
---|
174 | * applications, you can retrieve these primes with
|
---|
175 | * OSSL_PKEY_PARAM_RSA_FACTOR3, etc.
|
---|
176 | */
|
---|
177 | if (EVP_PKEY_get_bn_param(pkey, OSSL_PKEY_PARAM_RSA_FACTOR2, &q) == 0) {
|
---|
178 | fprintf(stderr, "Failed to retrieve q\n");
|
---|
179 | goto cleanup;
|
---|
180 | }
|
---|
181 |
|
---|
182 | /*
|
---|
183 | * We can also retrieve the key size in bits for informational purposes.
|
---|
184 | */
|
---|
185 | if (EVP_PKEY_get_int_param(pkey, OSSL_PKEY_PARAM_BITS, &bits) == 0) {
|
---|
186 | fprintf(stderr, "Failed to retrieve bits\n");
|
---|
187 | goto cleanup;
|
---|
188 | }
|
---|
189 |
|
---|
190 | /* Output hexadecimal representations of the BIGNUM objects. */
|
---|
191 | fprintf(stdout, "\nNumber of bits: %d\n\n", bits);
|
---|
192 | fprintf(stdout, "Public values:\n");
|
---|
193 | fprintf(stdout, " n = 0x");
|
---|
194 | BN_print_fp(stdout, n);
|
---|
195 | fprintf(stdout, "\n");
|
---|
196 |
|
---|
197 | fprintf(stdout, " e = 0x");
|
---|
198 | BN_print_fp(stdout, e);
|
---|
199 | fprintf(stdout, "\n\n");
|
---|
200 |
|
---|
201 | fprintf(stdout, "Private values:\n");
|
---|
202 | fprintf(stdout, " d = 0x");
|
---|
203 | BN_print_fp(stdout, d);
|
---|
204 | fprintf(stdout, "\n");
|
---|
205 |
|
---|
206 | fprintf(stdout, " p = 0x");
|
---|
207 | BN_print_fp(stdout, p);
|
---|
208 | fprintf(stdout, "\n");
|
---|
209 |
|
---|
210 | fprintf(stdout, " q = 0x");
|
---|
211 | BN_print_fp(stdout, q);
|
---|
212 | fprintf(stdout, "\n\n");
|
---|
213 |
|
---|
214 | /* Output a PEM encoding of the public key. */
|
---|
215 | if (PEM_write_PUBKEY(stdout, pkey) == 0) {
|
---|
216 | fprintf(stderr, "Failed to output PEM-encoded public key\n");
|
---|
217 | goto cleanup;
|
---|
218 | }
|
---|
219 |
|
---|
220 | /*
|
---|
221 | * Output a PEM encoding of the private key. Please note that this output is
|
---|
222 | * not encrypted. You may wish to use the arguments to specify encryption of
|
---|
223 | * the key if you are storing it on disk. See PEM_write_PrivateKey(3).
|
---|
224 | */
|
---|
225 | if (PEM_write_PrivateKey(stdout, pkey, NULL, NULL, 0, NULL, NULL) == 0) {
|
---|
226 | fprintf(stderr, "Failed to output PEM-encoded private key\n");
|
---|
227 | goto cleanup;
|
---|
228 | }
|
---|
229 |
|
---|
230 | ret = 1;
|
---|
231 | cleanup:
|
---|
232 | BN_free(n); /* not secret */
|
---|
233 | BN_free(e); /* not secret */
|
---|
234 | BN_clear_free(d); /* secret - scrub before freeing */
|
---|
235 | BN_clear_free(p); /* secret - scrub before freeing */
|
---|
236 | BN_clear_free(q); /* secret - scrub before freeing */
|
---|
237 | return ret;
|
---|
238 | }
|
---|
239 |
|
---|
240 | int main(int argc, char **argv)
|
---|
241 | {
|
---|
242 | int ret = EXIT_FAILURE;
|
---|
243 | OSSL_LIB_CTX *libctx = NULL;
|
---|
244 | EVP_PKEY *pkey = NULL;
|
---|
245 | unsigned int bits = 4096;
|
---|
246 | int bits_i, use_short = 0;
|
---|
247 |
|
---|
248 | /* usage: [-s] [<bits>] */
|
---|
249 | if (argc > 1 && strcmp(argv[1], "-s") == 0) {
|
---|
250 | --argc;
|
---|
251 | ++argv;
|
---|
252 | use_short = 1;
|
---|
253 | }
|
---|
254 |
|
---|
255 | if (argc > 1) {
|
---|
256 | bits_i = atoi(argv[1]);
|
---|
257 | if (bits < 512) {
|
---|
258 | fprintf(stderr, "Invalid RSA key size\n");
|
---|
259 | return EXIT_FAILURE;
|
---|
260 | }
|
---|
261 |
|
---|
262 | bits = (unsigned int)bits_i;
|
---|
263 | }
|
---|
264 |
|
---|
265 | /* Avoid using key sizes less than 2048 bits; see comment at top of file. */
|
---|
266 | if (bits < 2048)
|
---|
267 | fprintf(stderr, "Warning: very weak key size\n\n");
|
---|
268 |
|
---|
269 | /* Generate RSA key. */
|
---|
270 | if (use_short)
|
---|
271 | pkey = generate_rsa_key_short(libctx, bits);
|
---|
272 | else
|
---|
273 | pkey = generate_rsa_key_long(libctx, bits);
|
---|
274 |
|
---|
275 | if (pkey == NULL)
|
---|
276 | goto cleanup;
|
---|
277 |
|
---|
278 | /* Dump the integers comprising the key. */
|
---|
279 | if (dump_key(pkey) == 0) {
|
---|
280 | fprintf(stderr, "Failed to dump key\n");
|
---|
281 | goto cleanup;
|
---|
282 | }
|
---|
283 |
|
---|
284 | ret = EXIT_SUCCESS;
|
---|
285 | cleanup:
|
---|
286 | EVP_PKEY_free(pkey);
|
---|
287 | OSSL_LIB_CTX_free(libctx);
|
---|
288 | return ret;
|
---|
289 | }
|
---|