VirtualBox

source: vbox/trunk/src/libs/xpcom18a4/nsprpub/pr/src/misc/prtime.c@ 101869

Last change on this file since 101869 was 101869, checked in by vboxsync, 17 months ago

libs/xpcom: Remove code for unused platforms from nsprpub, bugref:10545

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 67.1 KB
Line 
1/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2/* ***** BEGIN LICENSE BLOCK *****
3 * Version: MPL 1.1/GPL 2.0/LGPL 2.1
4 *
5 * The contents of this file are subject to the Mozilla Public License Version
6 * 1.1 (the "License"); you may not use this file except in compliance with
7 * the License. You may obtain a copy of the License at
8 * http://www.mozilla.org/MPL/
9 *
10 * Software distributed under the License is distributed on an "AS IS" basis,
11 * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
12 * for the specific language governing rights and limitations under the
13 * License.
14 *
15 * The Original Code is the Netscape Portable Runtime (NSPR).
16 *
17 * The Initial Developer of the Original Code is
18 * Netscape Communications Corporation.
19 * Portions created by the Initial Developer are Copyright (C) 1998-2000
20 * the Initial Developer. All Rights Reserved.
21 *
22 * Contributor(s):
23 *
24 * Alternatively, the contents of this file may be used under the terms of
25 * either the GNU General Public License Version 2 or later (the "GPL"), or
26 * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
27 * in which case the provisions of the GPL or the LGPL are applicable instead
28 * of those above. If you wish to allow use of your version of this file only
29 * under the terms of either the GPL or the LGPL, and not to allow others to
30 * use your version of this file under the terms of the MPL, indicate your
31 * decision by deleting the provisions above and replace them with the notice
32 * and other provisions required by the GPL or the LGPL. If you do not delete
33 * the provisions above, a recipient may use your version of this file under
34 * the terms of any one of the MPL, the GPL or the LGPL.
35 *
36 * ***** END LICENSE BLOCK ***** */
37
38/*
39 * prtime.c --
40 *
41 * NSPR date and time functions
42 *
43 */
44
45#include "prinit.h"
46#include "prtime.h"
47#include "prlock.h"
48#include "prprf.h"
49#include "prlog.h"
50
51#include <string.h>
52#include <ctype.h>
53
54/*
55 * Static variables used by functions in this file
56 */
57
58/*
59 * The following array contains the day of year for the last day of
60 * each month, where index 1 is January, and day 0 is January 1.
61 */
62
63static const int lastDayOfMonth[2][13] = {
64 {-1, 30, 58, 89, 119, 150, 180, 211, 242, 272, 303, 333, 364},
65 {-1, 30, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365}
66};
67
68/*
69 * The number of days in a month
70 */
71
72static const PRInt8 nDays[2][12] = {
73 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
74 {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
75};
76
77/*
78 * Declarations for internal functions defined later in this file.
79 */
80
81static void ComputeGMT(PRTime time, PRExplodedTime *gmt);
82static int IsLeapYear(PRInt16 year);
83static void ApplySecOffset(PRExplodedTime *time, PRInt32 secOffset);
84
85/*
86 *------------------------------------------------------------------------
87 *
88 * ComputeGMT --
89 *
90 * Caveats:
91 * - we ignore leap seconds
92 * - our leap-year calculation is only correct for years 1901-2099
93 *
94 *------------------------------------------------------------------------
95 */
96
97static void
98ComputeGMT(PRTime time, PRExplodedTime *gmt)
99{
100 PRInt32 tmp, rem;
101 PRInt32 numDays;
102 PRInt64 numDays64, rem64;
103 int isLeap;
104 PRInt64 sec;
105 PRInt64 usec;
106 PRInt64 usecPerSec;
107 PRInt64 secPerDay;
108
109 /*
110 * We first do the usec, sec, min, hour thing so that we do not
111 * have to do LL arithmetic.
112 */
113
114 LL_I2L(usecPerSec, 1000000L);
115 LL_DIV(sec, time, usecPerSec);
116 LL_MOD(usec, time, usecPerSec);
117 LL_L2I(gmt->tm_usec, usec);
118 /* Correct for weird mod semantics so the remainder is always positive */
119 if (gmt->tm_usec < 0) {
120 PRInt64 one;
121
122 LL_I2L(one, 1L);
123 LL_SUB(sec, sec, one);
124 gmt->tm_usec += 1000000L;
125 }
126
127 LL_I2L(secPerDay, 86400L);
128 LL_DIV(numDays64, sec, secPerDay);
129 LL_MOD(rem64, sec, secPerDay);
130 /* We are sure both of these numbers can fit into PRInt32 */
131 LL_L2I(numDays, numDays64);
132 LL_L2I(rem, rem64);
133 if (rem < 0) {
134 numDays--;
135 rem += 86400L;
136 }
137
138 /* Compute day of week. Epoch started on a Thursday. */
139
140 gmt->tm_wday = (numDays + 4) % 7;
141 if (gmt->tm_wday < 0) {
142 gmt->tm_wday += 7;
143 }
144
145 /* Compute the time of day. */
146
147 gmt->tm_hour = rem / 3600;
148 rem %= 3600;
149 gmt->tm_min = rem / 60;
150 gmt->tm_sec = rem % 60;
151
152 /* Compute the four-year span containing the specified time */
153
154 tmp = numDays / (4 * 365 + 1);
155 rem = numDays % (4 * 365 + 1);
156
157 if (rem < 0) {
158 tmp--;
159 rem += (4 * 365 + 1);
160 }
161
162 /*
163 * Compute the year after 1900 by taking the four-year span and
164 * adjusting for the remainder. This works because 2000 is a
165 * leap year, and 1900 and 2100 are out of the range.
166 */
167
168 tmp = (tmp * 4) + 1970;
169 isLeap = 0;
170
171 /*
172 * 1970 has 365 days
173 * 1971 has 365 days
174 * 1972 has 366 days (leap year)
175 * 1973 has 365 days
176 */
177
178 if (rem >= 365) { /* 1971, etc. */
179 tmp++;
180 rem -= 365;
181 if (rem >= 365) { /* 1972, etc. */
182 tmp++;
183 rem -= 365;
184 if (rem >= 366) { /* 1973, etc. */
185 tmp++;
186 rem -= 366;
187 } else {
188 isLeap = 1;
189 }
190 }
191 }
192
193 gmt->tm_year = tmp;
194 gmt->tm_yday = rem;
195
196 /* Compute the month and day of month. */
197
198 for (tmp = 1; lastDayOfMonth[isLeap][tmp] < gmt->tm_yday; tmp++) {
199 }
200 gmt->tm_month = --tmp;
201 gmt->tm_mday = gmt->tm_yday - lastDayOfMonth[isLeap][tmp];
202
203 gmt->tm_params.tp_gmt_offset = 0;
204 gmt->tm_params.tp_dst_offset = 0;
205}
206
207
208/*
209 *------------------------------------------------------------------------
210 *
211 * PR_ExplodeTime --
212 *
213 * Cf. struct tm *gmtime(const time_t *tp) and
214 * struct tm *localtime(const time_t *tp)
215 *
216 *------------------------------------------------------------------------
217 */
218
219PR_IMPLEMENT(void)
220PR_ExplodeTime(
221 PRTime usecs,
222 PRTimeParamFn params,
223 PRExplodedTime *exploded)
224{
225 ComputeGMT(usecs, exploded);
226 exploded->tm_params = params(exploded);
227 ApplySecOffset(exploded, exploded->tm_params.tp_gmt_offset
228 + exploded->tm_params.tp_dst_offset);
229}
230
231
232/*
233 *------------------------------------------------------------------------
234 *
235 * PR_ImplodeTime --
236 *
237 * Cf. time_t mktime(struct tm *tp)
238 * Note that 1 year has < 2^25 seconds. So an PRInt32 is large enough.
239 *
240 *------------------------------------------------------------------------
241 */
242PR_IMPLEMENT(PRTime)
243PR_ImplodeTime(const PRExplodedTime *exploded)
244{
245 PRExplodedTime copy;
246 PRTime retVal;
247 PRInt64 secPerDay, usecPerSec;
248 PRInt64 temp;
249 PRInt64 numSecs64;
250 PRInt32 fourYears;
251 PRInt32 remainder;
252 PRInt32 numDays;
253 PRInt32 numSecs;
254
255 /* Normalize first. Do this on our copy */
256 copy = *exploded;
257 PR_NormalizeTime(&copy, PR_GMTParameters);
258
259 fourYears = (copy.tm_year - 1970) / 4;
260 remainder = (copy.tm_year - 1970) % 4;
261 if (remainder < 0) {
262 remainder += 4;
263 fourYears--;
264 }
265 numDays = fourYears * (4 * 365 + 1);
266 switch (remainder) {
267 case 0:
268 break;
269 case 1: /* 1970 */
270 numDays += 365;
271 break;
272 case 2: /* 1970-1 */
273 numDays += 365 * 2;
274 break;
275 case 3: /* 1970-2 */
276 numDays += 365 * 3 + 1;
277 break;
278 }
279
280 numSecs = copy.tm_yday * 86400 + copy.tm_hour * 3600
281 + copy.tm_min * 60 + copy.tm_sec;
282
283 LL_I2L(temp, numDays);
284 LL_I2L(secPerDay, 86400);
285 LL_MUL(temp, temp, secPerDay);
286 LL_I2L(numSecs64, numSecs);
287 LL_ADD(numSecs64, numSecs64, temp);
288
289 /* apply the GMT and DST offsets */
290 LL_I2L(temp, copy.tm_params.tp_gmt_offset);
291 LL_SUB(numSecs64, numSecs64, temp);
292 LL_I2L(temp, copy.tm_params.tp_dst_offset);
293 LL_SUB(numSecs64, numSecs64, temp);
294
295 LL_I2L(usecPerSec, 1000000L);
296 LL_MUL(temp, numSecs64, usecPerSec);
297 LL_I2L(retVal, copy.tm_usec);
298 LL_ADD(retVal, retVal, temp);
299
300 return retVal;
301}
302
303/*
304 *-------------------------------------------------------------------------
305 *
306 * IsLeapYear --
307 *
308 * Returns 1 if the year is a leap year, 0 otherwise.
309 *
310 *-------------------------------------------------------------------------
311 */
312
313static int IsLeapYear(PRInt16 year)
314{
315 if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0)
316 return 1;
317 else
318 return 0;
319}
320
321/*
322 * 'secOffset' should be less than 86400 (i.e., a day).
323 * 'time' should point to a normalized PRExplodedTime.
324 */
325
326static void
327ApplySecOffset(PRExplodedTime *time, PRInt32 secOffset)
328{
329 time->tm_sec += secOffset;
330
331 /* Note that in this implementation we do not count leap seconds */
332 if (time->tm_sec < 0 || time->tm_sec >= 60) {
333 time->tm_min += time->tm_sec / 60;
334 time->tm_sec %= 60;
335 if (time->tm_sec < 0) {
336 time->tm_sec += 60;
337 time->tm_min--;
338 }
339 }
340
341 if (time->tm_min < 0 || time->tm_min >= 60) {
342 time->tm_hour += time->tm_min / 60;
343 time->tm_min %= 60;
344 if (time->tm_min < 0) {
345 time->tm_min += 60;
346 time->tm_hour--;
347 }
348 }
349
350 if (time->tm_hour < 0) {
351 /* Decrement mday, yday, and wday */
352 time->tm_hour += 24;
353 time->tm_mday--;
354 time->tm_yday--;
355 if (time->tm_mday < 1) {
356 time->tm_month--;
357 if (time->tm_month < 0) {
358 time->tm_month = 11;
359 time->tm_year--;
360 if (IsLeapYear(time->tm_year))
361 time->tm_yday = 365;
362 else
363 time->tm_yday = 364;
364 }
365 time->tm_mday = nDays[IsLeapYear(time->tm_year)][time->tm_month];
366 }
367 time->tm_wday--;
368 if (time->tm_wday < 0)
369 time->tm_wday = 6;
370 } else if (time->tm_hour > 23) {
371 /* Increment mday, yday, and wday */
372 time->tm_hour -= 24;
373 time->tm_mday++;
374 time->tm_yday++;
375 if (time->tm_mday >
376 nDays[IsLeapYear(time->tm_year)][time->tm_month]) {
377 time->tm_mday = 1;
378 time->tm_month++;
379 if (time->tm_month > 11) {
380 time->tm_month = 0;
381 time->tm_year++;
382 time->tm_yday = 0;
383 }
384 }
385 time->tm_wday++;
386 if (time->tm_wday > 6)
387 time->tm_wday = 0;
388 }
389}
390
391PR_IMPLEMENT(void)
392PR_NormalizeTime(PRExplodedTime *time, PRTimeParamFn params)
393{
394 int daysInMonth;
395 PRInt32 fourYears;
396 PRInt32 remainder;
397 PRInt32 numDays;
398
399 /* Get back to GMT */
400 time->tm_sec -= time->tm_params.tp_gmt_offset
401 + time->tm_params.tp_dst_offset;
402 time->tm_params.tp_gmt_offset = 0;
403 time->tm_params.tp_dst_offset = 0;
404
405 /* Now normalize GMT */
406
407 if (time->tm_usec < 0 || time->tm_usec >= 1000000) {
408 time->tm_sec += time->tm_usec / 1000000;
409 time->tm_usec %= 1000000;
410 if (time->tm_usec < 0) {
411 time->tm_usec += 1000000;
412 time->tm_sec--;
413 }
414 }
415
416 /* Note that we do not count leap seconds in this implementation */
417 if (time->tm_sec < 0 || time->tm_sec >= 60) {
418 time->tm_min += time->tm_sec / 60;
419 time->tm_sec %= 60;
420 if (time->tm_sec < 0) {
421 time->tm_sec += 60;
422 time->tm_min--;
423 }
424 }
425
426 if (time->tm_min < 0 || time->tm_min >= 60) {
427 time->tm_hour += time->tm_min / 60;
428 time->tm_min %= 60;
429 if (time->tm_min < 0) {
430 time->tm_min += 60;
431 time->tm_hour--;
432 }
433 }
434
435 if (time->tm_hour < 0 || time->tm_hour >= 24) {
436 time->tm_mday += time->tm_hour / 24;
437 time->tm_hour %= 24;
438 if (time->tm_hour < 0) {
439 time->tm_hour += 24;
440 time->tm_mday--;
441 }
442 }
443
444 /* Normalize month and year before mday */
445 if (time->tm_month < 0 || time->tm_month >= 12) {
446 time->tm_year += time->tm_month / 12;
447 time->tm_month %= 12;
448 if (time->tm_month < 0) {
449 time->tm_month += 12;
450 time->tm_year--;
451 }
452 }
453
454 /* Now that month and year are in proper range, normalize mday */
455
456 if (time->tm_mday < 1) {
457 /* mday too small */
458 do {
459 /* the previous month */
460 time->tm_month--;
461 if (time->tm_month < 0) {
462 time->tm_month = 11;
463 time->tm_year--;
464 }
465 time->tm_mday += nDays[IsLeapYear(time->tm_year)][time->tm_month];
466 } while (time->tm_mday < 1);
467 } else {
468 daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month];
469 while (time->tm_mday > daysInMonth) {
470 /* mday too large */
471 time->tm_mday -= daysInMonth;
472 time->tm_month++;
473 if (time->tm_month > 11) {
474 time->tm_month = 0;
475 time->tm_year++;
476 }
477 daysInMonth = nDays[IsLeapYear(time->tm_year)][time->tm_month];
478 }
479 }
480
481 /* Recompute yday and wday */
482 time->tm_yday = time->tm_mday +
483 lastDayOfMonth[IsLeapYear(time->tm_year)][time->tm_month];
484 fourYears = (time->tm_year - 1970) / 4;
485 remainder = (time->tm_year - 1970) % 4;
486 if (remainder < 0) {
487 remainder += 4;
488 fourYears--;
489 }
490 numDays = fourYears * (4 * 365 + 1);
491 switch (remainder) {
492 case 0:
493 break;
494 case 1:
495 numDays += 365; /* 1970 */
496 break;
497 case 2:
498 numDays += 365 + 365; /* 1970 and 1971 */
499 break;
500 case 3:
501 numDays += 365 + 365 + 366; /* 1970-2 */
502 }
503 numDays += time->tm_yday;
504 time->tm_wday = (numDays + 4) % 7;
505 if (time->tm_wday < 0) {
506 time->tm_wday += 7;
507 }
508
509 /* Recompute time parameters */
510
511 time->tm_params = params(time);
512
513 ApplySecOffset(time, time->tm_params.tp_gmt_offset
514 + time->tm_params.tp_dst_offset);
515}
516
517
518/*
519 *-------------------------------------------------------------------------
520 *
521 * PR_LocalTimeParameters --
522 *
523 * returns the time parameters for the local time zone
524 *
525 * The following uses localtime() from the standard C library.
526 * (time.h) This is our fallback implementation. Unix and PC
527 * use this version. Mac has its own machine-dependent
528 * implementation of this function.
529 *
530 *-------------------------------------------------------------------------
531 */
532
533#include <time.h>
534
535#if defined(HAVE_INT_LOCALTIME_R)
536
537/*
538 * In this case we could define the macro as
539 * #define MT_safe_localtime(timer, result) \
540 * (localtime_r(timer, result) == 0 ? result : NULL)
541 * I chose to compare the return value of localtime_r with -1 so
542 * that I can catch the cases where localtime_r returns a pointer
543 * to struct tm. The macro definition above would not be able to
544 * detect such mistakes because it is legal to compare a pointer
545 * with 0.
546 */
547
548#define MT_safe_localtime(timer, result) \
549 (localtime_r(timer, result) == -1 ? NULL: result)
550
551#elif defined(HAVE_POINTER_LOCALTIME_R)
552
553#define MT_safe_localtime localtime_r
554
555#else
556
557static PRLock *monitor = NULL;
558
559static struct tm *MT_safe_localtime(const time_t *clock, struct tm *result)
560{
561 struct tm *tmPtr;
562 int needLock = PR_Initialized(); /* We need to use a lock to protect
563 * against NSPR threads only when the
564 * NSPR thread system is activated. */
565
566 if (needLock) {
567 if (monitor == NULL) {
568 monitor = PR_NewLock();
569 }
570 PR_Lock(monitor);
571 }
572
573 /*
574 * Microsoft (all flavors) localtime() returns a NULL pointer if 'clock'
575 * represents a time before midnight January 1, 1970. In
576 * that case, we also return a NULL pointer and the struct tm
577 * object pointed to by 'result' is not modified.
578 *
579 * Watcom C/C++ 11.0 localtime() treats time_t as unsigned long
580 * hence, does not recognize negative values of clock as pre-1/1/70.
581 * We have to manually check (WIN16 only) for negative value of
582 * clock and return NULL.
583 *
584 * With negative values of clock, emx returns the struct tm for
585 * clock plus ULONG_MAX. So we also have to check for the invalid
586 * structs returned for timezones west of Greenwich when clock == 0.
587 */
588
589 tmPtr = localtime(clock);
590 if (tmPtr) {
591 *result = *tmPtr;
592 } else {
593 result = NULL;
594 }
595 if (needLock) PR_Unlock(monitor);
596
597 return result;
598}
599
600#endif /* definition of MT_safe_localtime() */
601
602#if defined(XP_UNIX)
603
604PR_IMPLEMENT(PRTimeParameters)
605PR_LocalTimeParameters(const PRExplodedTime *gmt)
606{
607
608 PRTimeParameters retVal;
609 struct tm localTime;
610 time_t secs;
611 PRTime secs64;
612 PRInt64 usecPerSec;
613 PRInt64 maxInt32;
614 PRInt64 minInt32;
615 PRInt32 dayOffset;
616 PRInt32 offset2Jan1970;
617 PRInt32 offsetNew;
618 int isdst2Jan1970;
619
620 /*
621 * Calculate the GMT offset. First, figure out what is
622 * 00:00:00 Jan. 2, 1970 GMT (which is exactly a day, or 86400
623 * seconds, since the epoch) in local time. Then we calculate
624 * the difference between local time and GMT in seconds:
625 * gmt_offset = local_time - GMT
626 *
627 * Caveat: the validity of this calculation depends on two
628 * assumptions:
629 * 1. Daylight saving time was not in effect on Jan. 2, 1970.
630 * 2. The time zone of the geographic location has not changed
631 * since Jan. 2, 1970.
632 */
633
634 secs = 86400L;
635 (void) MT_safe_localtime(&secs, &localTime);
636
637 /* GMT is 00:00:00, 2nd of Jan. */
638
639 offset2Jan1970 = (PRInt32)localTime.tm_sec
640 + 60L * (PRInt32)localTime.tm_min
641 + 3600L * (PRInt32)localTime.tm_hour
642 + 86400L * (PRInt32)((PRInt32)localTime.tm_mday - 2L);
643
644 isdst2Jan1970 = localTime.tm_isdst;
645
646 /*
647 * Now compute DST offset. We calculate the overall offset
648 * of local time from GMT, similar to above. The overall
649 * offset has two components: gmt offset and dst offset.
650 * We subtract gmt offset from the overall offset to get
651 * the dst offset.
652 * overall_offset = local_time - GMT
653 * overall_offset = gmt_offset + dst_offset
654 * ==> dst_offset = local_time - GMT - gmt_offset
655 */
656
657 secs64 = PR_ImplodeTime(gmt); /* This is still in microseconds */
658 LL_I2L(usecPerSec, PR_USEC_PER_SEC);
659 LL_DIV(secs64, secs64, usecPerSec); /* Convert to seconds */
660 LL_I2L(maxInt32, PR_INT32_MAX);
661 LL_I2L(minInt32, PR_INT32_MIN);
662 if (LL_CMP(secs64, >, maxInt32) || LL_CMP(secs64, <, minInt32)) {
663 /* secs64 is too large or too small for time_t (32-bit integer) */
664 retVal.tp_gmt_offset = offset2Jan1970;
665 retVal.tp_dst_offset = 0;
666 return retVal;
667 }
668 LL_L2I(secs, secs64);
669
670 /*
671 * On Windows, localtime() (and our MT_safe_localtime() too)
672 * returns a NULL pointer for time before midnight January 1,
673 * 1970 GMT. In that case, we just use the GMT offset for
674 * Jan 2, 1970 and assume that DST was not in effect.
675 */
676
677 if (MT_safe_localtime(&secs, &localTime) == NULL) {
678 retVal.tp_gmt_offset = offset2Jan1970;
679 retVal.tp_dst_offset = 0;
680 return retVal;
681 }
682
683 /*
684 * dayOffset is the offset between local time and GMT in
685 * the day component, which can only be -1, 0, or 1. We
686 * use the day of the week to compute dayOffset.
687 */
688
689 dayOffset = (PRInt32) localTime.tm_wday - gmt->tm_wday;
690
691 /*
692 * Need to adjust for wrapping around of day of the week from
693 * 6 back to 0.
694 */
695
696 if (dayOffset == -6) {
697 /* Local time is Sunday (0) and GMT is Saturday (6) */
698 dayOffset = 1;
699 } else if (dayOffset == 6) {
700 /* Local time is Saturday (6) and GMT is Sunday (0) */
701 dayOffset = -1;
702 }
703
704 offsetNew = (PRInt32)localTime.tm_sec - gmt->tm_sec
705 + 60L * ((PRInt32)localTime.tm_min - gmt->tm_min)
706 + 3600L * ((PRInt32)localTime.tm_hour - gmt->tm_hour)
707 + 86400L * (PRInt32)dayOffset;
708
709 if (localTime.tm_isdst <= 0) {
710 /* DST is not in effect */
711 retVal.tp_gmt_offset = offsetNew;
712 retVal.tp_dst_offset = 0;
713 } else {
714 /* DST is in effect */
715 if (isdst2Jan1970 <=0) {
716 /*
717 * DST was not in effect back in 2 Jan. 1970.
718 * Use the offset back then as the GMT offset,
719 * assuming the time zone has not changed since then.
720 */
721 retVal.tp_gmt_offset = offset2Jan1970;
722 retVal.tp_dst_offset = offsetNew - offset2Jan1970;
723 } else {
724 /*
725 * DST was also in effect back in 2 Jan. 1970.
726 * Then our clever trick (or rather, ugly hack) fails.
727 * We will just assume DST offset is an hour.
728 */
729 retVal.tp_gmt_offset = offsetNew - 3600;
730 retVal.tp_dst_offset = 3600;
731 }
732 }
733
734 return retVal;
735}
736
737#endif /* defined(XP_UNIX) */
738
739/*
740 *------------------------------------------------------------------------
741 *
742 * PR_USPacificTimeParameters --
743 *
744 * The time parameters function for the US Pacific Time Zone.
745 *
746 *------------------------------------------------------------------------
747 */
748
749PR_IMPLEMENT(PRTimeParameters)
750PR_USPacificTimeParameters(const PRExplodedTime *gmt)
751{
752 PRTimeParameters retVal;
753 PRExplodedTime st;
754
755 /*
756 * Based on geographic location and GMT, figure out offset of
757 * standard time from GMT. In this example implementation, we
758 * assume the local time zone is US Pacific Time.
759 */
760
761 retVal.tp_gmt_offset = -8L * 3600L;
762
763 /*
764 * Make a copy of GMT. Note that the tm_params field of this copy
765 * is ignored.
766 */
767
768 st.tm_usec = gmt->tm_usec;
769 st.tm_sec = gmt->tm_sec;
770 st.tm_min = gmt->tm_min;
771 st.tm_hour = gmt->tm_hour;
772 st.tm_mday = gmt->tm_mday;
773 st.tm_month = gmt->tm_month;
774 st.tm_year = gmt->tm_year;
775 st.tm_wday = gmt->tm_wday;
776 st.tm_yday = gmt->tm_yday;
777
778 /* Apply the offset to GMT to obtain the local standard time */
779 ApplySecOffset(&st, retVal.tp_gmt_offset);
780
781 /*
782 * Apply the rules on standard time or GMT to obtain daylight saving
783 * time offset. In this implementation, we use the US DST rule.
784 */
785 if (st.tm_month < 3) {
786 retVal.tp_dst_offset = 0L;
787 } else if (st.tm_month == 3) {
788 if (st.tm_wday == 0) {
789 /* A Sunday */
790 if (st.tm_mday <= 7) {
791 /* First Sunday */
792 /* 01:59:59 PST -> 03:00:00 PDT */
793 if (st.tm_hour < 2) {
794 retVal.tp_dst_offset = 0L;
795 } else {
796 retVal.tp_dst_offset = 3600L;
797 }
798 } else {
799 /* Not first Sunday */
800 retVal.tp_dst_offset = 3600L;
801 }
802 } else {
803 /* Not a Sunday. See if before first Sunday or after */
804 if (st.tm_wday + 1 <= st.tm_mday) {
805 /* After first Sunday */
806 retVal.tp_dst_offset = 3600L;
807 } else {
808 /* Before first Sunday */
809 retVal.tp_dst_offset = 0L;
810 }
811 }
812 } else if (st.tm_month < 9) {
813 retVal.tp_dst_offset = 3600L;
814 } else if (st.tm_month == 9) {
815 if (st.tm_wday == 0) {
816 if (31 - st.tm_mday < 7) {
817 /* Last Sunday */
818 /* 01:59:59 PDT -> 01:00:00 PST */
819 if (st.tm_hour < 1) {
820 retVal.tp_dst_offset = 3600L;
821 } else {
822 retVal.tp_dst_offset = 0L;
823 }
824 } else {
825 /* Not last Sunday */
826 retVal.tp_dst_offset = 3600L;
827 }
828 } else {
829 /* See if before or after last Sunday */
830 if (7 - st.tm_wday <= 31 - st.tm_mday) {
831 /* before last Sunday */
832 retVal.tp_dst_offset = 3600L;
833 } else {
834 retVal.tp_dst_offset = 0L;
835 }
836 }
837 } else {
838 retVal.tp_dst_offset = 0L;
839 }
840 return retVal;
841}
842
843/*
844 *------------------------------------------------------------------------
845 *
846 * PR_GMTParameters --
847 *
848 * Returns the PRTimeParameters for Greenwich Mean Time.
849 * Trivially, both the tp_gmt_offset and tp_dst_offset fields are 0.
850 *
851 *------------------------------------------------------------------------
852 */
853
854PR_IMPLEMENT(PRTimeParameters)
855PR_GMTParameters(const PRExplodedTime *gmt)
856{
857 PRTimeParameters retVal = { 0, 0 };
858 return retVal;
859}
860
861/*
862 * The following code implements PR_ParseTimeString(). It is based on
863 * ns/lib/xp/xp_time.c, revision 1.25, by Jamie Zawinski <[email protected]>.
864 */
865
866/*
867 * We only recognize the abbreviations of a small subset of time zones
868 * in North America, Europe, and Japan.
869 *
870 * PST/PDT: Pacific Standard/Daylight Time
871 * MST/MDT: Mountain Standard/Daylight Time
872 * CST/CDT: Central Standard/Daylight Time
873 * EST/EDT: Eastern Standard/Daylight Time
874 * AST: Atlantic Standard Time
875 * NST: Newfoundland Standard Time
876 * GMT: Greenwich Mean Time
877 * BST: British Summer Time
878 * MET: Middle Europe Time
879 * EET: Eastern Europe Time
880 * JST: Japan Standard Time
881 */
882
883typedef enum
884{
885 TT_UNKNOWN,
886
887 TT_SUN, TT_MON, TT_TUE, TT_WED, TT_THU, TT_FRI, TT_SAT,
888
889 TT_JAN, TT_FEB, TT_MAR, TT_APR, TT_MAY, TT_JUN,
890 TT_JUL, TT_AUG, TT_SEP, TT_OCT, TT_NOV, TT_DEC,
891
892 TT_PST, TT_PDT, TT_MST, TT_MDT, TT_CST, TT_CDT, TT_EST, TT_EDT,
893 TT_AST, TT_NST, TT_GMT, TT_BST, TT_MET, TT_EET, TT_JST
894} TIME_TOKEN;
895
896/*
897 * This parses a time/date string into a PRTime
898 * (microseconds after "1-Jan-1970 00:00:00 GMT").
899 * It returns PR_SUCCESS on success, and PR_FAILURE
900 * if the time/date string can't be parsed.
901 *
902 * Many formats are handled, including:
903 *
904 * 14 Apr 89 03:20:12
905 * 14 Apr 89 03:20 GMT
906 * Fri, 17 Mar 89 4:01:33
907 * Fri, 17 Mar 89 4:01 GMT
908 * Mon Jan 16 16:12 PDT 1989
909 * Mon Jan 16 16:12 +0130 1989
910 * 6 May 1992 16:41-JST (Wednesday)
911 * 22-AUG-1993 10:59:12.82
912 * 22-AUG-1993 10:59pm
913 * 22-AUG-1993 12:59am
914 * 22-AUG-1993 12:59 PM
915 * Friday, August 04, 1995 3:54 PM
916 * 06/21/95 04:24:34 PM
917 * 20/06/95 21:07
918 * 95-06-08 19:32:48 EDT
919 *
920 * If the input string doesn't contain a description of the timezone,
921 * we consult the `default_to_gmt' to decide whether the string should
922 * be interpreted relative to the local time zone (PR_FALSE) or GMT (PR_TRUE).
923 * The correct value for this argument depends on what standard specified
924 * the time string which you are parsing.
925 */
926
927PR_IMPLEMENT(PRStatus)
928PR_ParseTimeString(
929 const char *string,
930 PRBool default_to_gmt,
931 PRTime *result)
932{
933 PRExplodedTime tm;
934 TIME_TOKEN dotw = TT_UNKNOWN;
935 TIME_TOKEN month = TT_UNKNOWN;
936 TIME_TOKEN zone = TT_UNKNOWN;
937 int zone_offset = -1;
938 int date = -1;
939 PRInt32 year = -1;
940 int hour = -1;
941 int min = -1;
942 int sec = -1;
943
944 const char *rest = string;
945
946#ifdef DEBUG
947 int iterations = 0;
948#endif
949
950 PR_ASSERT(string && result);
951 if (!string || !result) return PR_FAILURE;
952
953 while (*rest)
954 {
955
956#ifdef DEBUG
957 if (iterations++ > 1000)
958 {
959 PR_ASSERT(0);
960 return PR_FAILURE;
961 }
962#endif
963
964 switch (*rest)
965 {
966 case 'a': case 'A':
967 if (month == TT_UNKNOWN &&
968 (rest[1] == 'p' || rest[1] == 'P') &&
969 (rest[2] == 'r' || rest[2] == 'R'))
970 month = TT_APR;
971 else if (zone == TT_UNKNOWN &&
972 (rest[1] == 's' || rest[1] == 'S') &&
973 (rest[2] == 't' || rest[2] == 'T'))
974 zone = TT_AST;
975 else if (month == TT_UNKNOWN &&
976 (rest[1] == 'u' || rest[1] == 'U') &&
977 (rest[2] == 'g' || rest[2] == 'G'))
978 month = TT_AUG;
979 break;
980 case 'b': case 'B':
981 if (zone == TT_UNKNOWN &&
982 (rest[1] == 's' || rest[1] == 'S') &&
983 (rest[2] == 't' || rest[2] == 'T'))
984 zone = TT_BST;
985 break;
986 case 'c': case 'C':
987 if (zone == TT_UNKNOWN &&
988 (rest[1] == 'd' || rest[1] == 'D') &&
989 (rest[2] == 't' || rest[2] == 'T'))
990 zone = TT_CDT;
991 else if (zone == TT_UNKNOWN &&
992 (rest[1] == 's' || rest[1] == 'S') &&
993 (rest[2] == 't' || rest[2] == 'T'))
994 zone = TT_CST;
995 break;
996 case 'd': case 'D':
997 if (month == TT_UNKNOWN &&
998 (rest[1] == 'e' || rest[1] == 'E') &&
999 (rest[2] == 'c' || rest[2] == 'C'))
1000 month = TT_DEC;
1001 break;
1002 case 'e': case 'E':
1003 if (zone == TT_UNKNOWN &&
1004 (rest[1] == 'd' || rest[1] == 'D') &&
1005 (rest[2] == 't' || rest[2] == 'T'))
1006 zone = TT_EDT;
1007 else if (zone == TT_UNKNOWN &&
1008 (rest[1] == 'e' || rest[1] == 'E') &&
1009 (rest[2] == 't' || rest[2] == 'T'))
1010 zone = TT_EET;
1011 else if (zone == TT_UNKNOWN &&
1012 (rest[1] == 's' || rest[1] == 'S') &&
1013 (rest[2] == 't' || rest[2] == 'T'))
1014 zone = TT_EST;
1015 break;
1016 case 'f': case 'F':
1017 if (month == TT_UNKNOWN &&
1018 (rest[1] == 'e' || rest[1] == 'E') &&
1019 (rest[2] == 'b' || rest[2] == 'B'))
1020 month = TT_FEB;
1021 else if (dotw == TT_UNKNOWN &&
1022 (rest[1] == 'r' || rest[1] == 'R') &&
1023 (rest[2] == 'i' || rest[2] == 'I'))
1024 dotw = TT_FRI;
1025 break;
1026 case 'g': case 'G':
1027 if (zone == TT_UNKNOWN &&
1028 (rest[1] == 'm' || rest[1] == 'M') &&
1029 (rest[2] == 't' || rest[2] == 'T'))
1030 zone = TT_GMT;
1031 break;
1032 case 'j': case 'J':
1033 if (month == TT_UNKNOWN &&
1034 (rest[1] == 'a' || rest[1] == 'A') &&
1035 (rest[2] == 'n' || rest[2] == 'N'))
1036 month = TT_JAN;
1037 else if (zone == TT_UNKNOWN &&
1038 (rest[1] == 's' || rest[1] == 'S') &&
1039 (rest[2] == 't' || rest[2] == 'T'))
1040 zone = TT_JST;
1041 else if (month == TT_UNKNOWN &&
1042 (rest[1] == 'u' || rest[1] == 'U') &&
1043 (rest[2] == 'l' || rest[2] == 'L'))
1044 month = TT_JUL;
1045 else if (month == TT_UNKNOWN &&
1046 (rest[1] == 'u' || rest[1] == 'U') &&
1047 (rest[2] == 'n' || rest[2] == 'N'))
1048 month = TT_JUN;
1049 break;
1050 case 'm': case 'M':
1051 if (month == TT_UNKNOWN &&
1052 (rest[1] == 'a' || rest[1] == 'A') &&
1053 (rest[2] == 'r' || rest[2] == 'R'))
1054 month = TT_MAR;
1055 else if (month == TT_UNKNOWN &&
1056 (rest[1] == 'a' || rest[1] == 'A') &&
1057 (rest[2] == 'y' || rest[2] == 'Y'))
1058 month = TT_MAY;
1059 else if (zone == TT_UNKNOWN &&
1060 (rest[1] == 'd' || rest[1] == 'D') &&
1061 (rest[2] == 't' || rest[2] == 'T'))
1062 zone = TT_MDT;
1063 else if (zone == TT_UNKNOWN &&
1064 (rest[1] == 'e' || rest[1] == 'E') &&
1065 (rest[2] == 't' || rest[2] == 'T'))
1066 zone = TT_MET;
1067 else if (dotw == TT_UNKNOWN &&
1068 (rest[1] == 'o' || rest[1] == 'O') &&
1069 (rest[2] == 'n' || rest[2] == 'N'))
1070 dotw = TT_MON;
1071 else if (zone == TT_UNKNOWN &&
1072 (rest[1] == 's' || rest[1] == 'S') &&
1073 (rest[2] == 't' || rest[2] == 'T'))
1074 zone = TT_MST;
1075 break;
1076 case 'n': case 'N':
1077 if (month == TT_UNKNOWN &&
1078 (rest[1] == 'o' || rest[1] == 'O') &&
1079 (rest[2] == 'v' || rest[2] == 'V'))
1080 month = TT_NOV;
1081 else if (zone == TT_UNKNOWN &&
1082 (rest[1] == 's' || rest[1] == 'S') &&
1083 (rest[2] == 't' || rest[2] == 'T'))
1084 zone = TT_NST;
1085 break;
1086 case 'o': case 'O':
1087 if (month == TT_UNKNOWN &&
1088 (rest[1] == 'c' || rest[1] == 'C') &&
1089 (rest[2] == 't' || rest[2] == 'T'))
1090 month = TT_OCT;
1091 break;
1092 case 'p': case 'P':
1093 if (zone == TT_UNKNOWN &&
1094 (rest[1] == 'd' || rest[1] == 'D') &&
1095 (rest[2] == 't' || rest[2] == 'T'))
1096 zone = TT_PDT;
1097 else if (zone == TT_UNKNOWN &&
1098 (rest[1] == 's' || rest[1] == 'S') &&
1099 (rest[2] == 't' || rest[2] == 'T'))
1100 zone = TT_PST;
1101 break;
1102 case 's': case 'S':
1103 if (dotw == TT_UNKNOWN &&
1104 (rest[1] == 'a' || rest[1] == 'A') &&
1105 (rest[2] == 't' || rest[2] == 'T'))
1106 dotw = TT_SAT;
1107 else if (month == TT_UNKNOWN &&
1108 (rest[1] == 'e' || rest[1] == 'E') &&
1109 (rest[2] == 'p' || rest[2] == 'P'))
1110 month = TT_SEP;
1111 else if (dotw == TT_UNKNOWN &&
1112 (rest[1] == 'u' || rest[1] == 'U') &&
1113 (rest[2] == 'n' || rest[2] == 'N'))
1114 dotw = TT_SUN;
1115 break;
1116 case 't': case 'T':
1117 if (dotw == TT_UNKNOWN &&
1118 (rest[1] == 'h' || rest[1] == 'H') &&
1119 (rest[2] == 'u' || rest[2] == 'U'))
1120 dotw = TT_THU;
1121 else if (dotw == TT_UNKNOWN &&
1122 (rest[1] == 'u' || rest[1] == 'U') &&
1123 (rest[2] == 'e' || rest[2] == 'E'))
1124 dotw = TT_TUE;
1125 break;
1126 case 'u': case 'U':
1127 if (zone == TT_UNKNOWN &&
1128 (rest[1] == 't' || rest[1] == 'T') &&
1129 !(rest[2] >= 'A' && rest[2] <= 'Z') &&
1130 !(rest[2] >= 'a' && rest[2] <= 'z'))
1131 /* UT is the same as GMT but UTx is not. */
1132 zone = TT_GMT;
1133 break;
1134 case 'w': case 'W':
1135 if (dotw == TT_UNKNOWN &&
1136 (rest[1] == 'e' || rest[1] == 'E') &&
1137 (rest[2] == 'd' || rest[2] == 'D'))
1138 dotw = TT_WED;
1139 break;
1140
1141 case '+': case '-':
1142 {
1143 const char *end;
1144 int sign;
1145 if (zone_offset != -1)
1146 {
1147 /* already got one... */
1148 rest++;
1149 break;
1150 }
1151 if (zone != TT_UNKNOWN && zone != TT_GMT)
1152 {
1153 /* GMT+0300 is legal, but PST+0300 is not. */
1154 rest++;
1155 break;
1156 }
1157
1158 sign = ((*rest == '+') ? 1 : -1);
1159 rest++; /* move over sign */
1160 end = rest;
1161 while (*end >= '0' && *end <= '9')
1162 end++;
1163 if (rest == end) /* no digits here */
1164 break;
1165
1166 if ((end - rest) == 4)
1167 /* offset in HHMM */
1168 zone_offset = (((((rest[0]-'0')*10) + (rest[1]-'0')) * 60) +
1169 (((rest[2]-'0')*10) + (rest[3]-'0')));
1170 else if ((end - rest) == 2)
1171 /* offset in hours */
1172 zone_offset = (((rest[0]-'0')*10) + (rest[1]-'0')) * 60;
1173 else if ((end - rest) == 1)
1174 /* offset in hours */
1175 zone_offset = (rest[0]-'0') * 60;
1176 else
1177 /* 3 or >4 */
1178 break;
1179
1180 zone_offset *= sign;
1181 zone = TT_GMT;
1182 break;
1183 }
1184
1185 case '0': case '1': case '2': case '3': case '4':
1186 case '5': case '6': case '7': case '8': case '9':
1187 {
1188 int tmp_hour = -1;
1189 int tmp_min = -1;
1190 int tmp_sec = -1;
1191 const char *end = rest + 1;
1192 while (*end >= '0' && *end <= '9')
1193 end++;
1194
1195 /* end is now the first character after a range of digits. */
1196
1197 if (*end == ':')
1198 {
1199 if (hour >= 0 && min >= 0) /* already got it */
1200 break;
1201
1202 /* We have seen "[0-9]+:", so this is probably HH:MM[:SS] */
1203 if ((end - rest) > 2)
1204 /* it is [0-9][0-9][0-9]+: */
1205 break;
1206 else if ((end - rest) == 2)
1207 tmp_hour = ((rest[0]-'0')*10 +
1208 (rest[1]-'0'));
1209 else
1210 tmp_hour = (rest[0]-'0');
1211
1212 while (*rest && *rest != ':')
1213 rest++;
1214 rest++;
1215
1216 /* move over the colon, and parse minutes */
1217
1218 end = rest + 1;
1219 while (*end >= '0' && *end <= '9')
1220 end++;
1221
1222 if (end == rest)
1223 /* no digits after first colon? */
1224 break;
1225 else if ((end - rest) > 2)
1226 /* it is [0-9][0-9][0-9]+: */
1227 break;
1228 else if ((end - rest) == 2)
1229 tmp_min = ((rest[0]-'0')*10 +
1230 (rest[1]-'0'));
1231 else
1232 tmp_min = (rest[0]-'0');
1233
1234 /* now go for seconds */
1235 rest = end;
1236 if (*rest == ':')
1237 rest++;
1238 end = rest;
1239 while (*end >= '0' && *end <= '9')
1240 end++;
1241
1242 if (end == rest)
1243 /* no digits after second colon - that's ok. */
1244 ;
1245 else if ((end - rest) > 2)
1246 /* it is [0-9][0-9][0-9]+: */
1247 break;
1248 else if ((end - rest) == 2)
1249 tmp_sec = ((rest[0]-'0')*10 +
1250 (rest[1]-'0'));
1251 else
1252 tmp_sec = (rest[0]-'0');
1253
1254 /* If we made it here, we've parsed hour and min,
1255 and possibly sec, so it worked as a unit. */
1256
1257 /* skip over whitespace and see if there's an AM or PM
1258 directly following the time.
1259 */
1260 if (tmp_hour <= 12)
1261 {
1262 const char *s = end;
1263 while (*s && (*s == ' ' || *s == '\t'))
1264 s++;
1265 if ((s[0] == 'p' || s[0] == 'P') &&
1266 (s[1] == 'm' || s[1] == 'M'))
1267 /* 10:05pm == 22:05, and 12:05pm == 12:05 */
1268 tmp_hour = (tmp_hour == 12 ? 12 : tmp_hour + 12);
1269 else if (tmp_hour == 12 &&
1270 (s[0] == 'a' || s[0] == 'A') &&
1271 (s[1] == 'm' || s[1] == 'M'))
1272 /* 12:05am == 00:05 */
1273 tmp_hour = 0;
1274 }
1275
1276 hour = tmp_hour;
1277 min = tmp_min;
1278 sec = tmp_sec;
1279 rest = end;
1280 break;
1281 }
1282 else if ((*end == '/' || *end == '-') &&
1283 end[1] >= '0' && end[1] <= '9')
1284 {
1285 /* Perhaps this is 6/16/95, 16/6/95, 6-16-95, or 16-6-95
1286 or even 95-06-05...
1287 #### But it doesn't handle 1995-06-22.
1288 */
1289 int n1, n2, n3;
1290 const char *s;
1291
1292 if (month != TT_UNKNOWN)
1293 /* if we saw a month name, this can't be. */
1294 break;
1295
1296 s = rest;
1297
1298 n1 = (*s++ - '0'); /* first 1 or 2 digits */
1299 if (*s >= '0' && *s <= '9')
1300 n1 = n1*10 + (*s++ - '0');
1301
1302 if (*s != '/' && *s != '-') /* slash */
1303 break;
1304 s++;
1305
1306 if (*s < '0' || *s > '9') /* second 1 or 2 digits */
1307 break;
1308 n2 = (*s++ - '0');
1309 if (*s >= '0' && *s <= '9')
1310 n2 = n2*10 + (*s++ - '0');
1311
1312 if (*s != '/' && *s != '-') /* slash */
1313 break;
1314 s++;
1315
1316 if (*s < '0' || *s > '9') /* third 1, 2, or 4 digits */
1317 break;
1318 n3 = (*s++ - '0');
1319 if (*s >= '0' && *s <= '9')
1320 n3 = n3*10 + (*s++ - '0');
1321
1322 if (*s >= '0' && *s <= '9') /* optional digits 3 and 4 */
1323 {
1324 n3 = n3*10 + (*s++ - '0');
1325 if (*s < '0' || *s > '9')
1326 break;
1327 n3 = n3*10 + (*s++ - '0');
1328 }
1329
1330 if ((*s >= '0' && *s <= '9') || /* followed by non-alphanum */
1331 (*s >= 'A' && *s <= 'Z') ||
1332 (*s >= 'a' && *s <= 'z'))
1333 break;
1334
1335 /* Ok, we parsed three 1-2 digit numbers, with / or -
1336 between them. Now decide what the hell they are
1337 (DD/MM/YY or MM/DD/YY or YY/MM/DD.)
1338 */
1339
1340 if (n1 > 31 || n1 == 0) /* must be YY/MM/DD */
1341 {
1342 if (n2 > 12) break;
1343 if (n3 > 31) break;
1344 year = n1;
1345 if (year < 70)
1346 year += 2000;
1347 else if (year < 100)
1348 year += 1900;
1349 month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1);
1350 date = n3;
1351 rest = s;
1352 break;
1353 }
1354
1355 if (n1 > 12 && n2 > 12) /* illegal */
1356 {
1357 rest = s;
1358 break;
1359 }
1360
1361 if (n3 < 70)
1362 n3 += 2000;
1363 else if (n3 < 100)
1364 n3 += 1900;
1365
1366 if (n1 > 12) /* must be DD/MM/YY */
1367 {
1368 date = n1;
1369 month = (TIME_TOKEN)(n2 + ((int)TT_JAN) - 1);
1370 year = n3;
1371 }
1372 else /* assume MM/DD/YY */
1373 {
1374 /* #### In the ambiguous case, should we consult the
1375 locale to find out the local default? */
1376 month = (TIME_TOKEN)(n1 + ((int)TT_JAN) - 1);
1377 date = n2;
1378 year = n3;
1379 }
1380 rest = s;
1381 }
1382 else if ((*end >= 'A' && *end <= 'Z') ||
1383 (*end >= 'a' && *end <= 'z'))
1384 /* Digits followed by non-punctuation - what's that? */
1385 ;
1386 else if ((end - rest) == 4) /* four digits is a year */
1387 year = (year < 0
1388 ? ((rest[0]-'0')*1000L +
1389 (rest[1]-'0')*100L +
1390 (rest[2]-'0')*10L +
1391 (rest[3]-'0'))
1392 : year);
1393 else if ((end - rest) == 2) /* two digits - date or year */
1394 {
1395 int n = ((rest[0]-'0')*10 +
1396 (rest[1]-'0'));
1397 /* If we don't have a date (day of the month) and we see a number
1398 less than 32, then assume that is the date.
1399
1400 Otherwise, if we have a date and not a year, assume this is the
1401 year. If it is less than 70, then assume it refers to the 21st
1402 century. If it is two digits (>= 70), assume it refers to this
1403 century. Otherwise, assume it refers to an unambiguous year.
1404
1405 The world will surely end soon.
1406 */
1407 if (date < 0 && n < 32)
1408 date = n;
1409 else if (year < 0)
1410 {
1411 if (n < 70)
1412 year = 2000 + n;
1413 else if (n < 100)
1414 year = 1900 + n;
1415 else
1416 year = n;
1417 }
1418 /* else what the hell is this. */
1419 }
1420 else if ((end - rest) == 1) /* one digit - date */
1421 date = (date < 0 ? (rest[0]-'0') : date);
1422 /* else, three or more than four digits - what's that? */
1423
1424 break;
1425 }
1426 }
1427
1428 /* Skip to the end of this token, whether we parsed it or not.
1429 Tokens are delimited by whitespace, or ,;-/
1430 But explicitly not :+-.
1431 */
1432 while (*rest &&
1433 *rest != ' ' && *rest != '\t' &&
1434 *rest != ',' && *rest != ';' &&
1435 *rest != '-' && *rest != '+' &&
1436 *rest != '/' &&
1437 *rest != '(' && *rest != ')' && *rest != '[' && *rest != ']')
1438 rest++;
1439 /* skip over uninteresting chars. */
1440 SKIP_MORE:
1441 while (*rest &&
1442 (*rest == ' ' || *rest == '\t' ||
1443 *rest == ',' || *rest == ';' || *rest == '/' ||
1444 *rest == '(' || *rest == ')' || *rest == '[' || *rest == ']'))
1445 rest++;
1446
1447 /* "-" is ignored at the beginning of a token if we have not yet
1448 parsed a year (e.g., the second "-" in "30-AUG-1966"), or if
1449 the character after the dash is not a digit. */
1450 if (*rest == '-' && ((rest > string && isalpha(rest[-1]) && year < 0)
1451 || rest[1] < '0' || rest[1] > '9'))
1452 {
1453 rest++;
1454 goto SKIP_MORE;
1455 }
1456
1457 }
1458
1459 if (zone != TT_UNKNOWN && zone_offset == -1)
1460 {
1461 switch (zone)
1462 {
1463 case TT_PST: zone_offset = -8 * 60; break;
1464 case TT_PDT: zone_offset = -7 * 60; break;
1465 case TT_MST: zone_offset = -7 * 60; break;
1466 case TT_MDT: zone_offset = -6 * 60; break;
1467 case TT_CST: zone_offset = -6 * 60; break;
1468 case TT_CDT: zone_offset = -5 * 60; break;
1469 case TT_EST: zone_offset = -5 * 60; break;
1470 case TT_EDT: zone_offset = -4 * 60; break;
1471 case TT_AST: zone_offset = -4 * 60; break;
1472 case TT_NST: zone_offset = -3 * 60 - 30; break;
1473 case TT_GMT: zone_offset = 0 * 60; break;
1474 case TT_BST: zone_offset = 1 * 60; break;
1475 case TT_MET: zone_offset = 1 * 60; break;
1476 case TT_EET: zone_offset = 2 * 60; break;
1477 case TT_JST: zone_offset = 9 * 60; break;
1478 default:
1479 PR_ASSERT (0);
1480 break;
1481 }
1482 }
1483
1484 /* If we didn't find a year, month, or day-of-the-month, we can't
1485 possibly parse this, and in fact, mktime() will do something random
1486 (I'm seeing it return "Tue Feb 5 06:28:16 2036", which is no doubt
1487 a numerologically significant date... */
1488 if (month == TT_UNKNOWN || date == -1 || year == -1)
1489 return PR_FAILURE;
1490
1491 memset(&tm, 0, sizeof(tm));
1492 if (sec != -1)
1493 tm.tm_sec = sec;
1494 if (min != -1)
1495 tm.tm_min = min;
1496 if (hour != -1)
1497 tm.tm_hour = hour;
1498 if (date != -1)
1499 tm.tm_mday = date;
1500 if (month != TT_UNKNOWN)
1501 tm.tm_month = (((int)month) - ((int)TT_JAN));
1502 if (year != -1)
1503 tm.tm_year = year;
1504 if (dotw != TT_UNKNOWN)
1505 tm.tm_wday = (((int)dotw) - ((int)TT_SUN));
1506
1507 if (zone == TT_UNKNOWN && default_to_gmt)
1508 {
1509 /* No zone was specified, so pretend the zone was GMT. */
1510 zone = TT_GMT;
1511 zone_offset = 0;
1512 }
1513
1514 if (zone_offset == -1)
1515 {
1516 /* no zone was specified, and we're to assume that everything
1517 is local. */
1518 struct tm localTime;
1519 time_t secs;
1520
1521 PR_ASSERT(tm.tm_month > -1
1522 && tm.tm_mday > 0
1523 && tm.tm_hour > -1
1524 && tm.tm_min > -1
1525 && tm.tm_sec > -1);
1526
1527 /*
1528 * To obtain time_t from a tm structure representing the local
1529 * time, we call mktime(). However, we need to see if we are
1530 * on 1-Jan-1970 or before. If we are, we can't call mktime()
1531 * because mktime() will crash on win16. In that case, we
1532 * calculate zone_offset based on the zone offset at
1533 * 00:00:00, 2 Jan 1970 GMT, and subtract zone_offset from the
1534 * date we are parsing to transform the date to GMT. We also
1535 * do so if mktime() returns (time_t) -1 (time out of range).
1536 */
1537
1538 /* month, day, hours, mins and secs are always non-negative
1539 so we dont need to worry about them. */
1540 if(tm.tm_year >= 1970)
1541 {
1542 PRInt64 usec_per_sec;
1543
1544 localTime.tm_sec = tm.tm_sec;
1545 localTime.tm_min = tm.tm_min;
1546 localTime.tm_hour = tm.tm_hour;
1547 localTime.tm_mday = tm.tm_mday;
1548 localTime.tm_mon = tm.tm_month;
1549 localTime.tm_year = tm.tm_year - 1900;
1550 /* Set this to -1 to tell mktime "I don't care". If you set
1551 it to 0 or 1, you are making assertions about whether the
1552 date you are handing it is in daylight savings mode or not;
1553 and if you're wrong, it will "fix" it for you. */
1554 localTime.tm_isdst = -1;
1555 secs = mktime(&localTime);
1556 if (secs != (time_t) -1)
1557 {
1558 LL_I2L(*result, secs);
1559 LL_I2L(usec_per_sec, PR_USEC_PER_SEC);
1560 LL_MUL(*result, *result, usec_per_sec);
1561 return PR_SUCCESS;
1562 }
1563 }
1564
1565 /* So mktime() can't handle this case. We assume the
1566 zone_offset for the date we are parsing is the same as
1567 the zone offset on 00:00:00 2 Jan 1970 GMT. */
1568 secs = 86400;
1569 (void) MT_safe_localtime(&secs, &localTime);
1570 zone_offset = localTime.tm_min
1571 + 60 * localTime.tm_hour
1572 + 1440 * (localTime.tm_mday - 2);
1573 }
1574
1575 /* Adjust the hours and minutes before handing them to
1576 PR_ImplodeTime(). Note that it's ok for them to be <0 or >24/60
1577
1578 We adjust the time to GMT before going into PR_ImplodeTime().
1579 The zone_offset represents the difference between the time
1580 zone parsed and GMT
1581 */
1582 tm.tm_hour -= (zone_offset / 60);
1583 tm.tm_min -= (zone_offset % 60);
1584
1585 *result = PR_ImplodeTime(&tm);
1586
1587 return PR_SUCCESS;
1588}
1589
1590/*
1591 *******************************************************************
1592 *******************************************************************
1593 **
1594 ** OLD COMPATIBILITY FUNCTIONS
1595 **
1596 *******************************************************************
1597 *******************************************************************
1598 */
1599
1600
1601/*
1602 *-----------------------------------------------------------------------
1603 *
1604 * PR_FormatTime --
1605 *
1606 * Format a time value into a buffer. Same semantics as strftime().
1607 *
1608 *-----------------------------------------------------------------------
1609 */
1610
1611PR_IMPLEMENT(PRUint32)
1612PR_FormatTime(char *buf, int buflen, const char *fmt, const PRExplodedTime *tm)
1613{
1614 struct tm a;
1615 a.tm_sec = tm->tm_sec;
1616 a.tm_min = tm->tm_min;
1617 a.tm_hour = tm->tm_hour;
1618 a.tm_mday = tm->tm_mday;
1619 a.tm_mon = tm->tm_month;
1620 a.tm_wday = tm->tm_wday;
1621 a.tm_year = tm->tm_year - 1900;
1622 a.tm_yday = tm->tm_yday;
1623 a.tm_isdst = tm->tm_params.tp_dst_offset ? 1 : 0;
1624
1625/*
1626 * On some platforms, for example SunOS 4, struct tm has two additional
1627 * fields: tm_zone and tm_gmtoff.
1628 */
1629
1630#if defined(SUNOS4) || (__GLIBC__ >= 2) \
1631 || defined(NETBSD) || defined(OPENBSD) || defined(FREEBSD) \
1632 || defined(DARWIN)
1633 a.tm_zone = NULL;
1634 a.tm_gmtoff = tm->tm_params.tp_gmt_offset + tm->tm_params.tp_dst_offset;
1635#endif
1636
1637 return strftime(buf, buflen, fmt, &a);
1638}
1639
1640
1641/*
1642 * The following string arrays and macros are used by PR_FormatTimeUSEnglish().
1643 */
1644
1645static const char* abbrevDays[] =
1646{
1647 "Sun","Mon","Tue","Wed","Thu","Fri","Sat"
1648};
1649
1650static const char* days[] =
1651{
1652 "Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"
1653};
1654
1655static const char* abbrevMonths[] =
1656{
1657 "Jan", "Feb", "Mar", "Apr", "May", "Jun",
1658 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
1659};
1660
1661static const char* months[] =
1662{
1663 "January", "February", "March", "April", "May", "June",
1664 "July", "August", "September", "October", "November", "December"
1665};
1666
1667
1668/*
1669 * Add a single character to the given buffer, incrementing the buffer pointer
1670 * and decrementing the buffer size. Return 0 on error.
1671 */
1672#define ADDCHAR( buf, bufSize, ch ) \
1673do \
1674{ \
1675 if( bufSize < 1 ) \
1676 { \
1677 *(--buf) = '\0'; \
1678 return 0; \
1679 } \
1680 *buf++ = ch; \
1681 bufSize--; \
1682} \
1683while(0)
1684
1685
1686/*
1687 * Add a string to the given buffer, incrementing the buffer pointer
1688 * and decrementing the buffer size appropriately. Return 0 on error.
1689 */
1690#define ADDSTR( buf, bufSize, str ) \
1691do \
1692{ \
1693 PRUint32 strSize = strlen( str ); \
1694 if( strSize > bufSize ) \
1695 { \
1696 if( bufSize==0 ) \
1697 *(--buf) = '\0'; \
1698 else \
1699 *buf = '\0'; \
1700 return 0; \
1701 } \
1702 memcpy(buf, str, strSize); \
1703 buf += strSize; \
1704 bufSize -= strSize; \
1705} \
1706while(0)
1707
1708/* Needed by PR_FormatTimeUSEnglish() */
1709static unsigned int pr_WeekOfYear(const PRExplodedTime* time,
1710 unsigned int firstDayOfWeek);
1711
1712
1713/***********************************************************************************
1714 *
1715 * Description:
1716 * This is a dumbed down version of strftime that will format the date in US
1717 * English regardless of the setting of the global locale. This functionality is
1718 * needed to write things like MIME headers which must always be in US English.
1719 *
1720 **********************************************************************************/
1721
1722PR_IMPLEMENT(PRUint32)
1723PR_FormatTimeUSEnglish( char* buf, PRUint32 bufSize,
1724 const char* format, const PRExplodedTime* time )
1725{
1726 char* bufPtr = buf;
1727 const char* fmtPtr;
1728 char tmpBuf[ 40 ];
1729 const int tmpBufSize = sizeof( tmpBuf );
1730
1731
1732 for( fmtPtr=format; *fmtPtr != '\0'; fmtPtr++ )
1733 {
1734 if( *fmtPtr != '%' )
1735 {
1736 ADDCHAR( bufPtr, bufSize, *fmtPtr );
1737 }
1738 else
1739 {
1740 switch( *(++fmtPtr) )
1741 {
1742 case '%':
1743 /* escaped '%' character */
1744 ADDCHAR( bufPtr, bufSize, '%' );
1745 break;
1746
1747 case 'a':
1748 /* abbreviated weekday name */
1749 ADDSTR( bufPtr, bufSize, abbrevDays[ time->tm_wday ] );
1750 break;
1751
1752 case 'A':
1753 /* full weekday name */
1754 ADDSTR( bufPtr, bufSize, days[ time->tm_wday ] );
1755 break;
1756
1757 case 'b':
1758 /* abbreviated month name */
1759 ADDSTR( bufPtr, bufSize, abbrevMonths[ time->tm_month ] );
1760 break;
1761
1762 case 'B':
1763 /* full month name */
1764 ADDSTR(bufPtr, bufSize, months[ time->tm_month ] );
1765 break;
1766
1767 case 'c':
1768 /* Date and time. */
1769 PR_FormatTimeUSEnglish( tmpBuf, tmpBufSize, "%a %b %d %H:%M:%S %Y", time );
1770 ADDSTR( bufPtr, bufSize, tmpBuf );
1771 break;
1772
1773 case 'd':
1774 /* day of month ( 01 - 31 ) */
1775 PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_mday );
1776 ADDSTR( bufPtr, bufSize, tmpBuf );
1777 break;
1778
1779 case 'H':
1780 /* hour ( 00 - 23 ) */
1781 PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_hour );
1782 ADDSTR( bufPtr, bufSize, tmpBuf );
1783 break;
1784
1785 case 'I':
1786 /* hour ( 01 - 12 ) */
1787 PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",
1788 (time->tm_hour%12) ? time->tm_hour%12 : (PRInt32) 12 );
1789 ADDSTR( bufPtr, bufSize, tmpBuf );
1790 break;
1791
1792 case 'j':
1793 /* day number of year ( 001 - 366 ) */
1794 PR_snprintf(tmpBuf,tmpBufSize,"%.3d",time->tm_yday + 1);
1795 ADDSTR( bufPtr, bufSize, tmpBuf );
1796 break;
1797
1798 case 'm':
1799 /* month number ( 01 - 12 ) */
1800 PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_month+1);
1801 ADDSTR( bufPtr, bufSize, tmpBuf );
1802 break;
1803
1804 case 'M':
1805 /* minute ( 00 - 59 ) */
1806 PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_min );
1807 ADDSTR( bufPtr, bufSize, tmpBuf );
1808 break;
1809
1810 case 'p':
1811 /* locale's equivalent of either AM or PM */
1812 ADDSTR( bufPtr, bufSize, (time->tm_hour<12)?"AM":"PM" );
1813 break;
1814
1815 case 'S':
1816 /* seconds ( 00 - 61 ), allows for leap seconds */
1817 PR_snprintf(tmpBuf,tmpBufSize,"%.2ld",time->tm_sec );
1818 ADDSTR( bufPtr, bufSize, tmpBuf );
1819 break;
1820
1821 case 'U':
1822 /* week number of year ( 00 - 53 ), Sunday is the first day of week 1 */
1823 PR_snprintf(tmpBuf,tmpBufSize,"%.2d", pr_WeekOfYear( time, 0 ) );
1824 ADDSTR( bufPtr, bufSize, tmpBuf );
1825 break;
1826
1827 case 'w':
1828 /* weekday number ( 0 - 6 ), Sunday = 0 */
1829 PR_snprintf(tmpBuf,tmpBufSize,"%d",time->tm_wday );
1830 ADDSTR( bufPtr, bufSize, tmpBuf );
1831 break;
1832
1833 case 'W':
1834 /* Week number of year ( 00 - 53 ), Monday is the first day of week 1 */
1835 PR_snprintf(tmpBuf,tmpBufSize,"%.2d", pr_WeekOfYear( time, 1 ) );
1836 ADDSTR( bufPtr, bufSize, tmpBuf );
1837 break;
1838
1839 case 'x':
1840 /* Date representation */
1841 PR_FormatTimeUSEnglish( tmpBuf, tmpBufSize, "%m/%d/%y", time );
1842 ADDSTR( bufPtr, bufSize, tmpBuf );
1843 break;
1844
1845 case 'X':
1846 /* Time representation. */
1847 PR_FormatTimeUSEnglish( tmpBuf, tmpBufSize, "%H:%M:%S", time );
1848 ADDSTR( bufPtr, bufSize, tmpBuf );
1849 break;
1850
1851 case 'y':
1852 /* year within century ( 00 - 99 ) */
1853 PR_snprintf(tmpBuf,tmpBufSize,"%.2d",time->tm_year % 100 );
1854 ADDSTR( bufPtr, bufSize, tmpBuf );
1855 break;
1856
1857 case 'Y':
1858 /* year as ccyy ( for example 1986 ) */
1859 PR_snprintf(tmpBuf,tmpBufSize,"%.4d",time->tm_year );
1860 ADDSTR( bufPtr, bufSize, tmpBuf );
1861 break;
1862
1863 case 'Z':
1864 /* Time zone name or no characters if no time zone exists.
1865 * Since time zone name is supposed to be independant of locale, we
1866 * defer to PR_FormatTime() for this option.
1867 */
1868 PR_FormatTime( tmpBuf, tmpBufSize, "%Z", time );
1869 ADDSTR( bufPtr, bufSize, tmpBuf );
1870 break;
1871
1872 default:
1873 /* Unknown format. Simply copy format into output buffer. */
1874 ADDCHAR( bufPtr, bufSize, '%' );
1875 ADDCHAR( bufPtr, bufSize, *fmtPtr );
1876 break;
1877
1878 }
1879 }
1880 }
1881
1882 ADDCHAR( bufPtr, bufSize, '\0' );
1883 return (PRUint32)(bufPtr - buf - 1);
1884}
1885
1886
1887
1888/***********************************************************************************
1889 *
1890 * Description:
1891 * Returns the week number of the year (0-53) for the given time. firstDayOfWeek
1892 * is the day on which the week is considered to start (0=Sun, 1=Mon, ...).
1893 * Week 1 starts the first time firstDayOfWeek occurs in the year. In other words,
1894 * a partial week at the start of the year is considered week 0.
1895 *
1896 **********************************************************************************/
1897
1898static unsigned int
1899pr_WeekOfYear(const PRExplodedTime* time, unsigned int firstDayOfWeek)
1900{
1901 int dayOfWeek;
1902 int dayOfYear;
1903
1904 /* Get the day of the year for the given time then adjust it to represent the
1905 * first day of the week containing the given time.
1906 */
1907 dayOfWeek = time->tm_wday - firstDayOfWeek;
1908 if (dayOfWeek < 0)
1909 dayOfWeek += 7;
1910
1911 dayOfYear = time->tm_yday - dayOfWeek;
1912
1913
1914 if( dayOfYear <= 0 )
1915 {
1916 /* If dayOfYear is <= 0, it is in the first partial week of the year. */
1917 return 0;
1918 }
1919 else
1920 {
1921 /* Count the number of full weeks ( dayOfYear / 7 ) then add a week if there
1922 * are any days left over ( dayOfYear % 7 ). Because we are only counting to
1923 * the first day of the week containing the given time, rather than to the
1924 * actual day representing the given time, any days in week 0 will be "absorbed"
1925 * as extra days in the given week.
1926 */
1927 return (dayOfYear / 7) + ( (dayOfYear % 7) == 0 ? 0 : 1 );
1928 }
1929}
1930
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette