1 | /* enough.c -- determine the maximum size of inflate's Huffman code tables over
|
---|
2 | * all possible valid and complete Huffman codes, subject to a length limit.
|
---|
3 | * Copyright (C) 2007, 2008 Mark Adler
|
---|
4 | * Version 1.3 17 February 2008 Mark Adler
|
---|
5 | */
|
---|
6 |
|
---|
7 | /* Version history:
|
---|
8 | 1.0 3 Jan 2007 First version (derived from codecount.c version 1.4)
|
---|
9 | 1.1 4 Jan 2007 Use faster incremental table usage computation
|
---|
10 | Prune examine() search on previously visited states
|
---|
11 | 1.2 5 Jan 2007 Comments clean up
|
---|
12 | As inflate does, decrease root for short codes
|
---|
13 | Refuse cases where inflate would increase root
|
---|
14 | 1.3 17 Feb 2008 Add argument for initial root table size
|
---|
15 | Fix bug for initial root table size == max - 1
|
---|
16 | Use a macro to compute the history index
|
---|
17 | */
|
---|
18 |
|
---|
19 | /*
|
---|
20 | Examine all possible Huffman codes for a given number of symbols and a
|
---|
21 | maximum code length in bits to determine the maximum table size for zilb's
|
---|
22 | inflate. Only complete Huffman codes are counted.
|
---|
23 |
|
---|
24 | Two codes are considered distinct if the vectors of the number of codes per
|
---|
25 | length are not identical. So permutations of the symbol assignments result
|
---|
26 | in the same code for the counting, as do permutations of the assignments of
|
---|
27 | the bit values to the codes (i.e. only canonical codes are counted).
|
---|
28 |
|
---|
29 | We build a code from shorter to longer lengths, determining how many symbols
|
---|
30 | are coded at each length. At each step, we have how many symbols remain to
|
---|
31 | be coded, what the last code length used was, and how many bit patterns of
|
---|
32 | that length remain unused. Then we add one to the code length and double the
|
---|
33 | number of unused patterns to graduate to the next code length. We then
|
---|
34 | assign all portions of the remaining symbols to that code length that
|
---|
35 | preserve the properties of a correct and eventually complete code. Those
|
---|
36 | properties are: we cannot use more bit patterns than are available; and when
|
---|
37 | all the symbols are used, there are exactly zero possible bit patterns
|
---|
38 | remaining.
|
---|
39 |
|
---|
40 | The inflate Huffman decoding algorithm uses two-level lookup tables for
|
---|
41 | speed. There is a single first-level table to decode codes up to root bits
|
---|
42 | in length (root == 9 in the current inflate implementation). The table
|
---|
43 | has 1 << root entries and is indexed by the next root bits of input. Codes
|
---|
44 | shorter than root bits have replicated table entries, so that the correct
|
---|
45 | entry is pointed to regardless of the bits that follow the short code. If
|
---|
46 | the code is longer than root bits, then the table entry points to a second-
|
---|
47 | level table. The size of that table is determined by the longest code with
|
---|
48 | that root-bit prefix. If that longest code has length len, then the table
|
---|
49 | has size 1 << (len - root), to index the remaining bits in that set of
|
---|
50 | codes. Each subsequent root-bit prefix then has its own sub-table. The
|
---|
51 | total number of table entries required by the code is calculated
|
---|
52 | incrementally as the number of codes at each bit length is populated. When
|
---|
53 | all of the codes are shorter than root bits, then root is reduced to the
|
---|
54 | longest code length, resulting in a single, smaller, one-level table.
|
---|
55 |
|
---|
56 | The inflate algorithm also provides for small values of root (relative to
|
---|
57 | the log2 of the number of symbols), where the shortest code has more bits
|
---|
58 | than root. In that case, root is increased to the length of the shortest
|
---|
59 | code. This program, by design, does not handle that case, so it is verified
|
---|
60 | that the number of symbols is less than 2^(root + 1).
|
---|
61 |
|
---|
62 | In order to speed up the examination (by about ten orders of magnitude for
|
---|
63 | the default arguments), the intermediate states in the build-up of a code
|
---|
64 | are remembered and previously visited branches are pruned. The memory
|
---|
65 | required for this will increase rapidly with the total number of symbols and
|
---|
66 | the maximum code length in bits. However this is a very small price to pay
|
---|
67 | for the vast speedup.
|
---|
68 |
|
---|
69 | First, all of the possible Huffman codes are counted, and reachable
|
---|
70 | intermediate states are noted by a non-zero count in a saved-results array.
|
---|
71 | Second, the intermediate states that lead to (root + 1) bit or longer codes
|
---|
72 | are used to look at all sub-codes from those junctures for their inflate
|
---|
73 | memory usage. (The amount of memory used is not affected by the number of
|
---|
74 | codes of root bits or less in length.) Third, the visited states in the
|
---|
75 | construction of those sub-codes and the associated calculation of the table
|
---|
76 | size is recalled in order to avoid recalculating from the same juncture.
|
---|
77 | Beginning the code examination at (root + 1) bit codes, which is enabled by
|
---|
78 | identifying the reachable nodes, accounts for about six of the orders of
|
---|
79 | magnitude of improvement for the default arguments. About another four
|
---|
80 | orders of magnitude come from not revisiting previous states. Out of
|
---|
81 | approximately 2x10^16 possible Huffman codes, only about 2x10^6 sub-codes
|
---|
82 | need to be examined to cover all of the possible table memory usage cases
|
---|
83 | for the default arguments of 286 symbols limited to 15-bit codes.
|
---|
84 |
|
---|
85 | Note that an unsigned long long type is used for counting. It is quite easy
|
---|
86 | to exceed the capacity of an eight-byte integer with a large number of
|
---|
87 | symbols and a large maximum code length, so multiple-precision arithmetic
|
---|
88 | would need to replace the unsigned long long arithmetic in that case. This
|
---|
89 | program will abort if an overflow occurs. The big_t type identifies where
|
---|
90 | the counting takes place.
|
---|
91 |
|
---|
92 | An unsigned long long type is also used for calculating the number of
|
---|
93 | possible codes remaining at the maximum length. This limits the maximum
|
---|
94 | code length to the number of bits in a long long minus the number of bits
|
---|
95 | needed to represent the symbols in a flat code. The code_t type identifies
|
---|
96 | where the bit pattern counting takes place.
|
---|
97 | */
|
---|
98 |
|
---|
99 | #include <stdio.h>
|
---|
100 | #include <stdlib.h>
|
---|
101 | #include <string.h>
|
---|
102 | #include <assert.h>
|
---|
103 |
|
---|
104 | #define local static
|
---|
105 |
|
---|
106 | /* special data types */
|
---|
107 | typedef unsigned long long big_t; /* type for code counting */
|
---|
108 | typedef unsigned long long code_t; /* type for bit pattern counting */
|
---|
109 | struct tab { /* type for been here check */
|
---|
110 | size_t len; /* length of bit vector in char's */
|
---|
111 | char *vec; /* allocated bit vector */
|
---|
112 | };
|
---|
113 |
|
---|
114 | /* The array for saving results, num[], is indexed with this triplet:
|
---|
115 |
|
---|
116 | syms: number of symbols remaining to code
|
---|
117 | left: number of available bit patterns at length len
|
---|
118 | len: number of bits in the codes currently being assigned
|
---|
119 |
|
---|
120 | Those indices are constrained thusly when saving results:
|
---|
121 |
|
---|
122 | syms: 3..totsym (totsym == total symbols to code)
|
---|
123 | left: 2..syms - 1, but only the evens (so syms == 8 -> 2, 4, 6)
|
---|
124 | len: 1..max - 1 (max == maximum code length in bits)
|
---|
125 |
|
---|
126 | syms == 2 is not saved since that immediately leads to a single code. left
|
---|
127 | must be even, since it represents the number of available bit patterns at
|
---|
128 | the current length, which is double the number at the previous length.
|
---|
129 | left ends at syms-1 since left == syms immediately results in a single code.
|
---|
130 | (left > sym is not allowed since that would result in an incomplete code.)
|
---|
131 | len is less than max, since the code completes immediately when len == max.
|
---|
132 |
|
---|
133 | The offset into the array is calculated for the three indices with the
|
---|
134 | first one (syms) being outermost, and the last one (len) being innermost.
|
---|
135 | We build the array with length max-1 lists for the len index, with syms-3
|
---|
136 | of those for each symbol. There are totsym-2 of those, with each one
|
---|
137 | varying in length as a function of sym. See the calculation of index in
|
---|
138 | count() for the index, and the calculation of size in main() for the size
|
---|
139 | of the array.
|
---|
140 |
|
---|
141 | For the deflate example of 286 symbols limited to 15-bit codes, the array
|
---|
142 | has 284,284 entries, taking up 2.17 MB for an 8-byte big_t. More than
|
---|
143 | half of the space allocated for saved results is actually used -- not all
|
---|
144 | possible triplets are reached in the generation of valid Huffman codes.
|
---|
145 | */
|
---|
146 |
|
---|
147 | /* The array for tracking visited states, done[], is itself indexed identically
|
---|
148 | to the num[] array as described above for the (syms, left, len) triplet.
|
---|
149 | Each element in the array is further indexed by the (mem, rem) doublet,
|
---|
150 | where mem is the amount of inflate table space used so far, and rem is the
|
---|
151 | remaining unused entries in the current inflate sub-table. Each indexed
|
---|
152 | element is simply one bit indicating whether the state has been visited or
|
---|
153 | not. Since the ranges for mem and rem are not known a priori, each bit
|
---|
154 | vector is of a variable size, and grows as needed to accommodate the visited
|
---|
155 | states. mem and rem are used to calculate a single index in a triangular
|
---|
156 | array. Since the range of mem is expected in the default case to be about
|
---|
157 | ten times larger than the range of rem, the array is skewed to reduce the
|
---|
158 | memory usage, with eight times the range for mem than for rem. See the
|
---|
159 | calculations for offset and bit in beenhere() for the details.
|
---|
160 |
|
---|
161 | For the deflate example of 286 symbols limited to 15-bit codes, the bit
|
---|
162 | vectors grow to total approximately 21 MB, in addition to the 4.3 MB done[]
|
---|
163 | array itself.
|
---|
164 | */
|
---|
165 |
|
---|
166 | /* Globals to avoid propagating constants or constant pointers recursively */
|
---|
167 | local int max; /* maximum allowed bit length for the codes */
|
---|
168 | local int root; /* size of base code table in bits */
|
---|
169 | local int large; /* largest code table so far */
|
---|
170 | local size_t size; /* number of elements in num and done */
|
---|
171 | local int *code; /* number of symbols assigned to each bit length */
|
---|
172 | local big_t *num; /* saved results array for code counting */
|
---|
173 | local struct tab *done; /* states already evaluated array */
|
---|
174 |
|
---|
175 | /* Index function for num[] and done[] */
|
---|
176 | #define INDEX(i,j,k) (((size_t)((i-1)>>1)*((i-2)>>1)+(j>>1)-1)*(max-1)+k-1)
|
---|
177 |
|
---|
178 | /* Free allocated space. Uses globals code, num, and done. */
|
---|
179 | local void cleanup(void)
|
---|
180 | {
|
---|
181 | size_t n;
|
---|
182 |
|
---|
183 | if (done != NULL) {
|
---|
184 | for (n = 0; n < size; n++)
|
---|
185 | if (done[n].len)
|
---|
186 | free(done[n].vec);
|
---|
187 | free(done);
|
---|
188 | }
|
---|
189 | if (num != NULL)
|
---|
190 | free(num);
|
---|
191 | if (code != NULL)
|
---|
192 | free(code);
|
---|
193 | }
|
---|
194 |
|
---|
195 | /* Return the number of possible Huffman codes using bit patterns of lengths
|
---|
196 | len through max inclusive, coding syms symbols, with left bit patterns of
|
---|
197 | length len unused -- return -1 if there is an overflow in the counting.
|
---|
198 | Keep a record of previous results in num to prevent repeating the same
|
---|
199 | calculation. Uses the globals max and num. */
|
---|
200 | local big_t count(int syms, int len, int left)
|
---|
201 | {
|
---|
202 | big_t sum; /* number of possible codes from this juncture */
|
---|
203 | big_t got; /* value returned from count() */
|
---|
204 | int least; /* least number of syms to use at this juncture */
|
---|
205 | int most; /* most number of syms to use at this juncture */
|
---|
206 | int use; /* number of bit patterns to use in next call */
|
---|
207 | size_t index; /* index of this case in *num */
|
---|
208 |
|
---|
209 | /* see if only one possible code */
|
---|
210 | if (syms == left)
|
---|
211 | return 1;
|
---|
212 |
|
---|
213 | /* note and verify the expected state */
|
---|
214 | assert(syms > left && left > 0 && len < max);
|
---|
215 |
|
---|
216 | /* see if we've done this one already */
|
---|
217 | index = INDEX(syms, left, len);
|
---|
218 | got = num[index];
|
---|
219 | if (got)
|
---|
220 | return got; /* we have -- return the saved result */
|
---|
221 |
|
---|
222 | /* we need to use at least this many bit patterns so that the code won't be
|
---|
223 | incomplete at the next length (more bit patterns than symbols) */
|
---|
224 | least = (left << 1) - syms;
|
---|
225 | if (least < 0)
|
---|
226 | least = 0;
|
---|
227 |
|
---|
228 | /* we can use at most this many bit patterns, lest there not be enough
|
---|
229 | available for the remaining symbols at the maximum length (if there were
|
---|
230 | no limit to the code length, this would become: most = left - 1) */
|
---|
231 | most = (((code_t)left << (max - len)) - syms) /
|
---|
232 | (((code_t)1 << (max - len)) - 1);
|
---|
233 |
|
---|
234 | /* count all possible codes from this juncture and add them up */
|
---|
235 | sum = 0;
|
---|
236 | for (use = least; use <= most; use++) {
|
---|
237 | got = count(syms - use, len + 1, (left - use) << 1);
|
---|
238 | sum += got;
|
---|
239 | if (got == -1 || sum < got) /* overflow */
|
---|
240 | return -1;
|
---|
241 | }
|
---|
242 |
|
---|
243 | /* verify that all recursive calls are productive */
|
---|
244 | assert(sum != 0);
|
---|
245 |
|
---|
246 | /* save the result and return it */
|
---|
247 | num[index] = sum;
|
---|
248 | return sum;
|
---|
249 | }
|
---|
250 |
|
---|
251 | /* Return true if we've been here before, set to true if not. Set a bit in a
|
---|
252 | bit vector to indicate visiting this state. Each (syms,len,left) state
|
---|
253 | has a variable size bit vector indexed by (mem,rem). The bit vector is
|
---|
254 | lengthened if needed to allow setting the (mem,rem) bit. */
|
---|
255 | local int beenhere(int syms, int len, int left, int mem, int rem)
|
---|
256 | {
|
---|
257 | size_t index; /* index for this state's bit vector */
|
---|
258 | size_t offset; /* offset in this state's bit vector */
|
---|
259 | int bit; /* mask for this state's bit */
|
---|
260 | size_t length; /* length of the bit vector in bytes */
|
---|
261 | char *vector; /* new or enlarged bit vector */
|
---|
262 |
|
---|
263 | /* point to vector for (syms,left,len), bit in vector for (mem,rem) */
|
---|
264 | index = INDEX(syms, left, len);
|
---|
265 | mem -= 1 << root;
|
---|
266 | offset = (mem >> 3) + rem;
|
---|
267 | offset = ((offset * (offset + 1)) >> 1) + rem;
|
---|
268 | bit = 1 << (mem & 7);
|
---|
269 |
|
---|
270 | /* see if we've been here */
|
---|
271 | length = done[index].len;
|
---|
272 | if (offset < length && (done[index].vec[offset] & bit) != 0)
|
---|
273 | return 1; /* done this! */
|
---|
274 |
|
---|
275 | /* we haven't been here before -- set the bit to show we have now */
|
---|
276 |
|
---|
277 | /* see if we need to lengthen the vector in order to set the bit */
|
---|
278 | if (length <= offset) {
|
---|
279 | /* if we have one already, enlarge it, zero out the appended space */
|
---|
280 | if (length) {
|
---|
281 | do {
|
---|
282 | length <<= 1;
|
---|
283 | } while (length <= offset);
|
---|
284 | vector = realloc(done[index].vec, length);
|
---|
285 | if (vector != NULL)
|
---|
286 | memset(vector + done[index].len, 0, length - done[index].len);
|
---|
287 | }
|
---|
288 |
|
---|
289 | /* otherwise we need to make a new vector and zero it out */
|
---|
290 | else {
|
---|
291 | length = 1 << (len - root);
|
---|
292 | while (length <= offset)
|
---|
293 | length <<= 1;
|
---|
294 | vector = calloc(length, sizeof(char));
|
---|
295 | }
|
---|
296 |
|
---|
297 | /* in either case, bail if we can't get the memory */
|
---|
298 | if (vector == NULL) {
|
---|
299 | fputs("abort: unable to allocate enough memory\n", stderr);
|
---|
300 | cleanup();
|
---|
301 | exit(1);
|
---|
302 | }
|
---|
303 |
|
---|
304 | /* install the new vector */
|
---|
305 | done[index].len = length;
|
---|
306 | done[index].vec = vector;
|
---|
307 | }
|
---|
308 |
|
---|
309 | /* set the bit */
|
---|
310 | done[index].vec[offset] |= bit;
|
---|
311 | return 0;
|
---|
312 | }
|
---|
313 |
|
---|
314 | /* Examine all possible codes from the given node (syms, len, left). Compute
|
---|
315 | the amount of memory required to build inflate's decoding tables, where the
|
---|
316 | number of code structures used so far is mem, and the number remaining in
|
---|
317 | the current sub-table is rem. Uses the globals max, code, root, large, and
|
---|
318 | done. */
|
---|
319 | local void examine(int syms, int len, int left, int mem, int rem)
|
---|
320 | {
|
---|
321 | int least; /* least number of syms to use at this juncture */
|
---|
322 | int most; /* most number of syms to use at this juncture */
|
---|
323 | int use; /* number of bit patterns to use in next call */
|
---|
324 |
|
---|
325 | /* see if we have a complete code */
|
---|
326 | if (syms == left) {
|
---|
327 | /* set the last code entry */
|
---|
328 | code[len] = left;
|
---|
329 |
|
---|
330 | /* complete computation of memory used by this code */
|
---|
331 | while (rem < left) {
|
---|
332 | left -= rem;
|
---|
333 | rem = 1 << (len - root);
|
---|
334 | mem += rem;
|
---|
335 | }
|
---|
336 | assert(rem == left);
|
---|
337 |
|
---|
338 | /* if this is a new maximum, show the entries used and the sub-code */
|
---|
339 | if (mem > large) {
|
---|
340 | large = mem;
|
---|
341 | printf("max %d: ", mem);
|
---|
342 | for (use = root + 1; use <= max; use++)
|
---|
343 | if (code[use])
|
---|
344 | printf("%d[%d] ", code[use], use);
|
---|
345 | putchar('\n');
|
---|
346 | fflush(stdout);
|
---|
347 | }
|
---|
348 |
|
---|
349 | /* remove entries as we drop back down in the recursion */
|
---|
350 | code[len] = 0;
|
---|
351 | return;
|
---|
352 | }
|
---|
353 |
|
---|
354 | /* prune the tree if we can */
|
---|
355 | if (beenhere(syms, len, left, mem, rem))
|
---|
356 | return;
|
---|
357 |
|
---|
358 | /* we need to use at least this many bit patterns so that the code won't be
|
---|
359 | incomplete at the next length (more bit patterns than symbols) */
|
---|
360 | least = (left << 1) - syms;
|
---|
361 | if (least < 0)
|
---|
362 | least = 0;
|
---|
363 |
|
---|
364 | /* we can use at most this many bit patterns, lest there not be enough
|
---|
365 | available for the remaining symbols at the maximum length (if there were
|
---|
366 | no limit to the code length, this would become: most = left - 1) */
|
---|
367 | most = (((code_t)left << (max - len)) - syms) /
|
---|
368 | (((code_t)1 << (max - len)) - 1);
|
---|
369 |
|
---|
370 | /* occupy least table spaces, creating new sub-tables as needed */
|
---|
371 | use = least;
|
---|
372 | while (rem < use) {
|
---|
373 | use -= rem;
|
---|
374 | rem = 1 << (len - root);
|
---|
375 | mem += rem;
|
---|
376 | }
|
---|
377 | rem -= use;
|
---|
378 |
|
---|
379 | /* examine codes from here, updating table space as we go */
|
---|
380 | for (use = least; use <= most; use++) {
|
---|
381 | code[len] = use;
|
---|
382 | examine(syms - use, len + 1, (left - use) << 1,
|
---|
383 | mem + (rem ? 1 << (len - root) : 0), rem << 1);
|
---|
384 | if (rem == 0) {
|
---|
385 | rem = 1 << (len - root);
|
---|
386 | mem += rem;
|
---|
387 | }
|
---|
388 | rem--;
|
---|
389 | }
|
---|
390 |
|
---|
391 | /* remove entries as we drop back down in the recursion */
|
---|
392 | code[len] = 0;
|
---|
393 | }
|
---|
394 |
|
---|
395 | /* Look at all sub-codes starting with root + 1 bits. Look at only the valid
|
---|
396 | intermediate code states (syms, left, len). For each completed code,
|
---|
397 | calculate the amount of memory required by inflate to build the decoding
|
---|
398 | tables. Find the maximum amount of memory required and show the code that
|
---|
399 | requires that maximum. Uses the globals max, root, and num. */
|
---|
400 | local void enough(int syms)
|
---|
401 | {
|
---|
402 | int n; /* number of remaing symbols for this node */
|
---|
403 | int left; /* number of unused bit patterns at this length */
|
---|
404 | size_t index; /* index of this case in *num */
|
---|
405 |
|
---|
406 | /* clear code */
|
---|
407 | for (n = 0; n <= max; n++)
|
---|
408 | code[n] = 0;
|
---|
409 |
|
---|
410 | /* look at all (root + 1) bit and longer codes */
|
---|
411 | large = 1 << root; /* base table */
|
---|
412 | if (root < max) /* otherwise, there's only a base table */
|
---|
413 | for (n = 3; n <= syms; n++)
|
---|
414 | for (left = 2; left < n; left += 2)
|
---|
415 | {
|
---|
416 | /* look at all reachable (root + 1) bit nodes, and the
|
---|
417 | resulting codes (complete at root + 2 or more) */
|
---|
418 | index = INDEX(n, left, root + 1);
|
---|
419 | if (root + 1 < max && num[index]) /* reachable node */
|
---|
420 | examine(n, root + 1, left, 1 << root, 0);
|
---|
421 |
|
---|
422 | /* also look at root bit codes with completions at root + 1
|
---|
423 | bits (not saved in num, since complete), just in case */
|
---|
424 | if (num[index - 1] && n <= left << 1)
|
---|
425 | examine((n - left) << 1, root + 1, (n - left) << 1,
|
---|
426 | 1 << root, 0);
|
---|
427 | }
|
---|
428 |
|
---|
429 | /* done */
|
---|
430 | printf("done: maximum of %d table entries\n", large);
|
---|
431 | }
|
---|
432 |
|
---|
433 | /*
|
---|
434 | Examine and show the total number of possible Huffman codes for a given
|
---|
435 | maximum number of symbols, initial root table size, and maximum code length
|
---|
436 | in bits -- those are the command arguments in that order. The default
|
---|
437 | values are 286, 9, and 15 respectively, for the deflate literal/length code.
|
---|
438 | The possible codes are counted for each number of coded symbols from two to
|
---|
439 | the maximum. The counts for each of those and the total number of codes are
|
---|
440 | shown. The maximum number of inflate table entires is then calculated
|
---|
441 | across all possible codes. Each new maximum number of table entries and the
|
---|
442 | associated sub-code (starting at root + 1 == 10 bits) is shown.
|
---|
443 |
|
---|
444 | To count and examine Huffman codes that are not length-limited, provide a
|
---|
445 | maximum length equal to the number of symbols minus one.
|
---|
446 |
|
---|
447 | For the deflate literal/length code, use "enough". For the deflate distance
|
---|
448 | code, use "enough 30 6".
|
---|
449 |
|
---|
450 | This uses the %llu printf format to print big_t numbers, which assumes that
|
---|
451 | big_t is an unsigned long long. If the big_t type is changed (for example
|
---|
452 | to a multiple precision type), the method of printing will also need to be
|
---|
453 | updated.
|
---|
454 | */
|
---|
455 | int main(int argc, char **argv)
|
---|
456 | {
|
---|
457 | int syms; /* total number of symbols to code */
|
---|
458 | int n; /* number of symbols to code for this run */
|
---|
459 | big_t got; /* return value of count() */
|
---|
460 | big_t sum; /* accumulated number of codes over n */
|
---|
461 |
|
---|
462 | /* set up globals for cleanup() */
|
---|
463 | code = NULL;
|
---|
464 | num = NULL;
|
---|
465 | done = NULL;
|
---|
466 |
|
---|
467 | /* get arguments -- default to the deflate literal/length code */
|
---|
468 | syms = 286;
|
---|
469 | root = 9;
|
---|
470 | max = 15;
|
---|
471 | if (argc > 1) {
|
---|
472 | syms = atoi(argv[1]);
|
---|
473 | if (argc > 2) {
|
---|
474 | root = atoi(argv[2]);
|
---|
475 | if (argc > 3)
|
---|
476 | max = atoi(argv[3]);
|
---|
477 | }
|
---|
478 | }
|
---|
479 | if (argc > 4 || syms < 2 || root < 1 || max < 1) {
|
---|
480 | fputs("invalid arguments, need: [sym >= 2 [root >= 1 [max >= 1]]]\n",
|
---|
481 | stderr);
|
---|
482 | return 1;
|
---|
483 | }
|
---|
484 |
|
---|
485 | /* if not restricting the code length, the longest is syms - 1 */
|
---|
486 | if (max > syms - 1)
|
---|
487 | max = syms - 1;
|
---|
488 |
|
---|
489 | /* determine the number of bits in a code_t */
|
---|
490 | n = 0;
|
---|
491 | while (((code_t)1 << n) != 0)
|
---|
492 | n++;
|
---|
493 |
|
---|
494 | /* make sure that the calculation of most will not overflow */
|
---|
495 | if (max > n || syms - 2 >= (((code_t)0 - 1) >> (max - 1))) {
|
---|
496 | fputs("abort: code length too long for internal types\n", stderr);
|
---|
497 | return 1;
|
---|
498 | }
|
---|
499 |
|
---|
500 | /* reject impossible code requests */
|
---|
501 | if (syms - 1 > ((code_t)1 << max) - 1) {
|
---|
502 | fprintf(stderr, "%d symbols cannot be coded in %d bits\n",
|
---|
503 | syms, max);
|
---|
504 | return 1;
|
---|
505 | }
|
---|
506 |
|
---|
507 | /* allocate code vector */
|
---|
508 | code = calloc(max + 1, sizeof(int));
|
---|
509 | if (code == NULL) {
|
---|
510 | fputs("abort: unable to allocate enough memory\n", stderr);
|
---|
511 | return 1;
|
---|
512 | }
|
---|
513 |
|
---|
514 | /* determine size of saved results array, checking for overflows,
|
---|
515 | allocate and clear the array (set all to zero with calloc()) */
|
---|
516 | if (syms == 2) /* iff max == 1 */
|
---|
517 | num = NULL; /* won't be saving any results */
|
---|
518 | else {
|
---|
519 | size = syms >> 1;
|
---|
520 | if (size > ((size_t)0 - 1) / (n = (syms - 1) >> 1) ||
|
---|
521 | (size *= n, size > ((size_t)0 - 1) / (n = max - 1)) ||
|
---|
522 | (size *= n, size > ((size_t)0 - 1) / sizeof(big_t)) ||
|
---|
523 | (num = calloc(size, sizeof(big_t))) == NULL) {
|
---|
524 | fputs("abort: unable to allocate enough memory\n", stderr);
|
---|
525 | cleanup();
|
---|
526 | return 1;
|
---|
527 | }
|
---|
528 | }
|
---|
529 |
|
---|
530 | /* count possible codes for all numbers of symbols, add up counts */
|
---|
531 | sum = 0;
|
---|
532 | for (n = 2; n <= syms; n++) {
|
---|
533 | got = count(n, 1, 2);
|
---|
534 | sum += got;
|
---|
535 | if (got == -1 || sum < got) { /* overflow */
|
---|
536 | fputs("abort: can't count that high!\n", stderr);
|
---|
537 | cleanup();
|
---|
538 | return 1;
|
---|
539 | }
|
---|
540 | printf("%llu %d-codes\n", got, n);
|
---|
541 | }
|
---|
542 | printf("%llu total codes for 2 to %d symbols", sum, syms);
|
---|
543 | if (max < syms - 1)
|
---|
544 | printf(" (%d-bit length limit)\n", max);
|
---|
545 | else
|
---|
546 | puts(" (no length limit)");
|
---|
547 |
|
---|
548 | /* allocate and clear done array for beenhere() */
|
---|
549 | if (syms == 2)
|
---|
550 | done = NULL;
|
---|
551 | else if (size > ((size_t)0 - 1) / sizeof(struct tab) ||
|
---|
552 | (done = calloc(size, sizeof(struct tab))) == NULL) {
|
---|
553 | fputs("abort: unable to allocate enough memory\n", stderr);
|
---|
554 | cleanup();
|
---|
555 | return 1;
|
---|
556 | }
|
---|
557 |
|
---|
558 | /* find and show maximum inflate table usage */
|
---|
559 | if (root > max) /* reduce root to max length */
|
---|
560 | root = max;
|
---|
561 | if (syms < ((code_t)1 << (root + 1)))
|
---|
562 | enough(syms);
|
---|
563 | else
|
---|
564 | puts("cannot handle minimum code lengths > root");
|
---|
565 |
|
---|
566 | /* done */
|
---|
567 | cleanup();
|
---|
568 | return 0;
|
---|
569 | }
|
---|