1 | /* zran.c -- example of zlib/gzip stream indexing and random access
|
---|
2 | * Copyright (C) 2005 Mark Adler
|
---|
3 | * For conditions of distribution and use, see copyright notice in zlib.h
|
---|
4 | Version 1.0 29 May 2005 Mark Adler */
|
---|
5 |
|
---|
6 | /* Illustrate the use of Z_BLOCK, inflatePrime(), and inflateSetDictionary()
|
---|
7 | for random access of a compressed file. A file containing a zlib or gzip
|
---|
8 | stream is provided on the command line. The compressed stream is decoded in
|
---|
9 | its entirety, and an index built with access points about every SPAN bytes
|
---|
10 | in the uncompressed output. The compressed file is left open, and can then
|
---|
11 | be read randomly, having to decompress on the average SPAN/2 uncompressed
|
---|
12 | bytes before getting to the desired block of data.
|
---|
13 |
|
---|
14 | An access point can be created at the start of any deflate block, by saving
|
---|
15 | the starting file offset and bit of that block, and the 32K bytes of
|
---|
16 | uncompressed data that precede that block. Also the uncompressed offset of
|
---|
17 | that block is saved to provide a referece for locating a desired starting
|
---|
18 | point in the uncompressed stream. build_index() works by decompressing the
|
---|
19 | input zlib or gzip stream a block at a time, and at the end of each block
|
---|
20 | deciding if enough uncompressed data has gone by to justify the creation of
|
---|
21 | a new access point. If so, that point is saved in a data structure that
|
---|
22 | grows as needed to accommodate the points.
|
---|
23 |
|
---|
24 | To use the index, an offset in the uncompressed data is provided, for which
|
---|
25 | the latest accees point at or preceding that offset is located in the index.
|
---|
26 | The input file is positioned to the specified location in the index, and if
|
---|
27 | necessary the first few bits of the compressed data is read from the file.
|
---|
28 | inflate is initialized with those bits and the 32K of uncompressed data, and
|
---|
29 | the decompression then proceeds until the desired offset in the file is
|
---|
30 | reached. Then the decompression continues to read the desired uncompressed
|
---|
31 | data from the file.
|
---|
32 |
|
---|
33 | Another approach would be to generate the index on demand. In that case,
|
---|
34 | requests for random access reads from the compressed data would try to use
|
---|
35 | the index, but if a read far enough past the end of the index is required,
|
---|
36 | then further index entries would be generated and added.
|
---|
37 |
|
---|
38 | There is some fair bit of overhead to starting inflation for the random
|
---|
39 | access, mainly copying the 32K byte dictionary. So if small pieces of the
|
---|
40 | file are being accessed, it would make sense to implement a cache to hold
|
---|
41 | some lookahead and avoid many calls to extract() for small lengths.
|
---|
42 |
|
---|
43 | Another way to build an index would be to use inflateCopy(). That would
|
---|
44 | not be constrained to have access points at block boundaries, but requires
|
---|
45 | more memory per access point, and also cannot be saved to file due to the
|
---|
46 | use of pointers in the state. The approach here allows for storage of the
|
---|
47 | index in a file.
|
---|
48 | */
|
---|
49 |
|
---|
50 | #include <stdio.h>
|
---|
51 | #include <stdlib.h>
|
---|
52 | #include <string.h>
|
---|
53 | #include "zlib.h"
|
---|
54 |
|
---|
55 | #define local static
|
---|
56 |
|
---|
57 | #define SPAN 1048576L /* desired distance between access points */
|
---|
58 | #define WINSIZE 32768U /* sliding window size */
|
---|
59 | #define CHUNK 16384 /* file input buffer size */
|
---|
60 |
|
---|
61 | /* access point entry */
|
---|
62 | struct point {
|
---|
63 | off_t out; /* corresponding offset in uncompressed data */
|
---|
64 | off_t in; /* offset in input file of first full byte */
|
---|
65 | int bits; /* number of bits (1-7) from byte at in - 1, or 0 */
|
---|
66 | unsigned char window[WINSIZE]; /* preceding 32K of uncompressed data */
|
---|
67 | };
|
---|
68 |
|
---|
69 | /* access point list */
|
---|
70 | struct access {
|
---|
71 | int have; /* number of list entries filled in */
|
---|
72 | int size; /* number of list entries allocated */
|
---|
73 | struct point *list; /* allocated list */
|
---|
74 | };
|
---|
75 |
|
---|
76 | /* Deallocate an index built by build_index() */
|
---|
77 | local void free_index(struct access *index)
|
---|
78 | {
|
---|
79 | if (index != NULL) {
|
---|
80 | free(index->list);
|
---|
81 | free(index);
|
---|
82 | }
|
---|
83 | }
|
---|
84 |
|
---|
85 | /* Add an entry to the access point list. If out of memory, deallocate the
|
---|
86 | existing list and return NULL. */
|
---|
87 | local struct access *addpoint(struct access *index, int bits,
|
---|
88 | off_t in, off_t out, unsigned left, unsigned char *window)
|
---|
89 | {
|
---|
90 | struct point *next;
|
---|
91 |
|
---|
92 | /* if list is empty, create it (start with eight points) */
|
---|
93 | if (index == NULL) {
|
---|
94 | index = malloc(sizeof(struct access));
|
---|
95 | if (index == NULL) return NULL;
|
---|
96 | index->list = malloc(sizeof(struct point) << 3);
|
---|
97 | if (index->list == NULL) {
|
---|
98 | free(index);
|
---|
99 | return NULL;
|
---|
100 | }
|
---|
101 | index->size = 8;
|
---|
102 | index->have = 0;
|
---|
103 | }
|
---|
104 |
|
---|
105 | /* if list is full, make it bigger */
|
---|
106 | else if (index->have == index->size) {
|
---|
107 | index->size <<= 1;
|
---|
108 | next = realloc(index->list, sizeof(struct point) * index->size);
|
---|
109 | if (next == NULL) {
|
---|
110 | free_index(index);
|
---|
111 | return NULL;
|
---|
112 | }
|
---|
113 | index->list = next;
|
---|
114 | }
|
---|
115 |
|
---|
116 | /* fill in entry and increment how many we have */
|
---|
117 | next = index->list + index->have;
|
---|
118 | next->bits = bits;
|
---|
119 | next->in = in;
|
---|
120 | next->out = out;
|
---|
121 | if (left)
|
---|
122 | memcpy(next->window, window + WINSIZE - left, left);
|
---|
123 | if (left < WINSIZE)
|
---|
124 | memcpy(next->window + left, window, WINSIZE - left);
|
---|
125 | index->have++;
|
---|
126 |
|
---|
127 | /* return list, possibly reallocated */
|
---|
128 | return index;
|
---|
129 | }
|
---|
130 |
|
---|
131 | /* Make one entire pass through the compressed stream and build an index, with
|
---|
132 | access points about every span bytes of uncompressed output -- span is
|
---|
133 | chosen to balance the speed of random access against the memory requirements
|
---|
134 | of the list, about 32K bytes per access point. Note that data after the end
|
---|
135 | of the first zlib or gzip stream in the file is ignored. build_index()
|
---|
136 | returns the number of access points on success (>= 1), Z_MEM_ERROR for out
|
---|
137 | of memory, Z_DATA_ERROR for an error in the input file, or Z_ERRNO for a
|
---|
138 | file read error. On success, *built points to the resulting index. */
|
---|
139 | local int build_index(FILE *in, off_t span, struct access **built)
|
---|
140 | {
|
---|
141 | int ret;
|
---|
142 | off_t totin, totout; /* our own total counters to avoid 4GB limit */
|
---|
143 | off_t last; /* totout value of last access point */
|
---|
144 | struct access *index; /* access points being generated */
|
---|
145 | z_stream strm;
|
---|
146 | unsigned char input[CHUNK];
|
---|
147 | unsigned char window[WINSIZE];
|
---|
148 |
|
---|
149 | /* initialize inflate */
|
---|
150 | strm.zalloc = Z_NULL;
|
---|
151 | strm.zfree = Z_NULL;
|
---|
152 | strm.opaque = Z_NULL;
|
---|
153 | strm.avail_in = 0;
|
---|
154 | strm.next_in = Z_NULL;
|
---|
155 | ret = inflateInit2(&strm, 47); /* automatic zlib or gzip decoding */
|
---|
156 | if (ret != Z_OK)
|
---|
157 | return ret;
|
---|
158 |
|
---|
159 | /* inflate the input, maintain a sliding window, and build an index -- this
|
---|
160 | also validates the integrity of the compressed data using the check
|
---|
161 | information at the end of the gzip or zlib stream */
|
---|
162 | totin = totout = last = 0;
|
---|
163 | index = NULL; /* will be allocated by first addpoint() */
|
---|
164 | strm.avail_out = 0;
|
---|
165 | do {
|
---|
166 | /* get some compressed data from input file */
|
---|
167 | strm.avail_in = fread(input, 1, CHUNK, in);
|
---|
168 | if (ferror(in)) {
|
---|
169 | ret = Z_ERRNO;
|
---|
170 | goto build_index_error;
|
---|
171 | }
|
---|
172 | if (strm.avail_in == 0) {
|
---|
173 | ret = Z_DATA_ERROR;
|
---|
174 | goto build_index_error;
|
---|
175 | }
|
---|
176 | strm.next_in = input;
|
---|
177 |
|
---|
178 | /* process all of that, or until end of stream */
|
---|
179 | do {
|
---|
180 | /* reset sliding window if necessary */
|
---|
181 | if (strm.avail_out == 0) {
|
---|
182 | strm.avail_out = WINSIZE;
|
---|
183 | strm.next_out = window;
|
---|
184 | }
|
---|
185 |
|
---|
186 | /* inflate until out of input, output, or at end of block --
|
---|
187 | update the total input and output counters */
|
---|
188 | totin += strm.avail_in;
|
---|
189 | totout += strm.avail_out;
|
---|
190 | ret = inflate(&strm, Z_BLOCK); /* return at end of block */
|
---|
191 | totin -= strm.avail_in;
|
---|
192 | totout -= strm.avail_out;
|
---|
193 | if (ret == Z_NEED_DICT)
|
---|
194 | ret = Z_DATA_ERROR;
|
---|
195 | if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
|
---|
196 | goto build_index_error;
|
---|
197 | if (ret == Z_STREAM_END)
|
---|
198 | break;
|
---|
199 |
|
---|
200 | /* if at end of block, consider adding an index entry (note that if
|
---|
201 | data_type indicates an end-of-block, then all of the
|
---|
202 | uncompressed data from that block has been delivered, and none
|
---|
203 | of the compressed data after that block has been consumed,
|
---|
204 | except for up to seven bits) -- the totout == 0 provides an
|
---|
205 | entry point after the zlib or gzip header, and assures that the
|
---|
206 | index always has at least one access point; we avoid creating an
|
---|
207 | access point after the last block by checking bit 6 of data_type
|
---|
208 | */
|
---|
209 | if ((strm.data_type & 128) && !(strm.data_type & 64) &&
|
---|
210 | (totout == 0 || totout - last > span)) {
|
---|
211 | index = addpoint(index, strm.data_type & 7, totin,
|
---|
212 | totout, strm.avail_out, window);
|
---|
213 | if (index == NULL) {
|
---|
214 | ret = Z_MEM_ERROR;
|
---|
215 | goto build_index_error;
|
---|
216 | }
|
---|
217 | last = totout;
|
---|
218 | }
|
---|
219 | } while (strm.avail_in != 0);
|
---|
220 | } while (ret != Z_STREAM_END);
|
---|
221 |
|
---|
222 | /* clean up and return index (release unused entries in list) */
|
---|
223 | (void)inflateEnd(&strm);
|
---|
224 | index = realloc(index, sizeof(struct point) * index->have);
|
---|
225 | index->size = index->have;
|
---|
226 | *built = index;
|
---|
227 | return index->size;
|
---|
228 |
|
---|
229 | /* return error */
|
---|
230 | build_index_error:
|
---|
231 | (void)inflateEnd(&strm);
|
---|
232 | if (index != NULL)
|
---|
233 | free_index(index);
|
---|
234 | return ret;
|
---|
235 | }
|
---|
236 |
|
---|
237 | /* Use the index to read len bytes from offset into buf, return bytes read or
|
---|
238 | negative for error (Z_DATA_ERROR or Z_MEM_ERROR). If data is requested past
|
---|
239 | the end of the uncompressed data, then extract() will return a value less
|
---|
240 | than len, indicating how much as actually read into buf. This function
|
---|
241 | should not return a data error unless the file was modified since the index
|
---|
242 | was generated. extract() may also return Z_ERRNO if there is an error on
|
---|
243 | reading or seeking the input file. */
|
---|
244 | local int extract(FILE *in, struct access *index, off_t offset,
|
---|
245 | unsigned char *buf, int len)
|
---|
246 | {
|
---|
247 | int ret, skip;
|
---|
248 | z_stream strm;
|
---|
249 | struct point *here;
|
---|
250 | unsigned char input[CHUNK];
|
---|
251 | unsigned char discard[WINSIZE];
|
---|
252 |
|
---|
253 | /* proceed only if something reasonable to do */
|
---|
254 | if (len < 0)
|
---|
255 | return 0;
|
---|
256 |
|
---|
257 | /* find where in stream to start */
|
---|
258 | here = index->list;
|
---|
259 | ret = index->have;
|
---|
260 | while (--ret && here[1].out <= offset)
|
---|
261 | here++;
|
---|
262 |
|
---|
263 | /* initialize file and inflate state to start there */
|
---|
264 | strm.zalloc = Z_NULL;
|
---|
265 | strm.zfree = Z_NULL;
|
---|
266 | strm.opaque = Z_NULL;
|
---|
267 | strm.avail_in = 0;
|
---|
268 | strm.next_in = Z_NULL;
|
---|
269 | ret = inflateInit2(&strm, -15); /* raw inflate */
|
---|
270 | if (ret != Z_OK)
|
---|
271 | return ret;
|
---|
272 | ret = fseeko(in, here->in - (here->bits ? 1 : 0), SEEK_SET);
|
---|
273 | if (ret == -1)
|
---|
274 | goto extract_ret;
|
---|
275 | if (here->bits) {
|
---|
276 | ret = getc(in);
|
---|
277 | if (ret == -1) {
|
---|
278 | ret = ferror(in) ? Z_ERRNO : Z_DATA_ERROR;
|
---|
279 | goto extract_ret;
|
---|
280 | }
|
---|
281 | (void)inflatePrime(&strm, here->bits, ret >> (8 - here->bits));
|
---|
282 | }
|
---|
283 | (void)inflateSetDictionary(&strm, here->window, WINSIZE);
|
---|
284 |
|
---|
285 | /* skip uncompressed bytes until offset reached, then satisfy request */
|
---|
286 | offset -= here->out;
|
---|
287 | strm.avail_in = 0;
|
---|
288 | skip = 1; /* while skipping to offset */
|
---|
289 | do {
|
---|
290 | /* define where to put uncompressed data, and how much */
|
---|
291 | if (offset == 0 && skip) { /* at offset now */
|
---|
292 | strm.avail_out = len;
|
---|
293 | strm.next_out = buf;
|
---|
294 | skip = 0; /* only do this once */
|
---|
295 | }
|
---|
296 | if (offset > WINSIZE) { /* skip WINSIZE bytes */
|
---|
297 | strm.avail_out = WINSIZE;
|
---|
298 | strm.next_out = discard;
|
---|
299 | offset -= WINSIZE;
|
---|
300 | }
|
---|
301 | else if (offset != 0) { /* last skip */
|
---|
302 | strm.avail_out = (unsigned)offset;
|
---|
303 | strm.next_out = discard;
|
---|
304 | offset = 0;
|
---|
305 | }
|
---|
306 |
|
---|
307 | /* uncompress until avail_out filled, or end of stream */
|
---|
308 | do {
|
---|
309 | if (strm.avail_in == 0) {
|
---|
310 | strm.avail_in = fread(input, 1, CHUNK, in);
|
---|
311 | if (ferror(in)) {
|
---|
312 | ret = Z_ERRNO;
|
---|
313 | goto extract_ret;
|
---|
314 | }
|
---|
315 | if (strm.avail_in == 0) {
|
---|
316 | ret = Z_DATA_ERROR;
|
---|
317 | goto extract_ret;
|
---|
318 | }
|
---|
319 | strm.next_in = input;
|
---|
320 | }
|
---|
321 | ret = inflate(&strm, Z_NO_FLUSH); /* normal inflate */
|
---|
322 | if (ret == Z_NEED_DICT)
|
---|
323 | ret = Z_DATA_ERROR;
|
---|
324 | if (ret == Z_MEM_ERROR || ret == Z_DATA_ERROR)
|
---|
325 | goto extract_ret;
|
---|
326 | if (ret == Z_STREAM_END)
|
---|
327 | break;
|
---|
328 | } while (strm.avail_out != 0);
|
---|
329 |
|
---|
330 | /* if reach end of stream, then don't keep trying to get more */
|
---|
331 | if (ret == Z_STREAM_END)
|
---|
332 | break;
|
---|
333 |
|
---|
334 | /* do until offset reached and requested data read, or stream ends */
|
---|
335 | } while (skip);
|
---|
336 |
|
---|
337 | /* compute number of uncompressed bytes read after offset */
|
---|
338 | ret = skip ? 0 : len - strm.avail_out;
|
---|
339 |
|
---|
340 | /* clean up and return bytes read or error */
|
---|
341 | extract_ret:
|
---|
342 | (void)inflateEnd(&strm);
|
---|
343 | return ret;
|
---|
344 | }
|
---|
345 |
|
---|
346 | /* Demonstrate the use of build_index() and extract() by processing the file
|
---|
347 | provided on the command line, and the extracting 16K from about 2/3rds of
|
---|
348 | the way through the uncompressed output, and writing that to stdout. */
|
---|
349 | int main(int argc, char **argv)
|
---|
350 | {
|
---|
351 | int len;
|
---|
352 | off_t offset;
|
---|
353 | FILE *in;
|
---|
354 | struct access *index = NULL;
|
---|
355 | unsigned char buf[CHUNK];
|
---|
356 |
|
---|
357 | /* open input file */
|
---|
358 | if (argc != 2) {
|
---|
359 | fprintf(stderr, "usage: zran file.gz\n");
|
---|
360 | return 1;
|
---|
361 | }
|
---|
362 | in = fopen(argv[1], "rb");
|
---|
363 | if (in == NULL) {
|
---|
364 | fprintf(stderr, "zran: could not open %s for reading\n", argv[1]);
|
---|
365 | return 1;
|
---|
366 | }
|
---|
367 |
|
---|
368 | /* build index */
|
---|
369 | len = build_index(in, SPAN, &index);
|
---|
370 | if (len < 0) {
|
---|
371 | fclose(in);
|
---|
372 | switch (len) {
|
---|
373 | case Z_MEM_ERROR:
|
---|
374 | fprintf(stderr, "zran: out of memory\n");
|
---|
375 | break;
|
---|
376 | case Z_DATA_ERROR:
|
---|
377 | fprintf(stderr, "zran: compressed data error in %s\n", argv[1]);
|
---|
378 | break;
|
---|
379 | case Z_ERRNO:
|
---|
380 | fprintf(stderr, "zran: read error on %s\n", argv[1]);
|
---|
381 | break;
|
---|
382 | default:
|
---|
383 | fprintf(stderr, "zran: error %d while building index\n", len);
|
---|
384 | }
|
---|
385 | return 1;
|
---|
386 | }
|
---|
387 | fprintf(stderr, "zran: built index with %d access points\n", len);
|
---|
388 |
|
---|
389 | /* use index by reading some bytes from an arbitrary offset */
|
---|
390 | offset = (index->list[index->have - 1].out << 1) / 3;
|
---|
391 | len = extract(in, index, offset, buf, CHUNK);
|
---|
392 | if (len < 0)
|
---|
393 | fprintf(stderr, "zran: extraction failed: %s error\n",
|
---|
394 | len == Z_MEM_ERROR ? "out of memory" : "input corrupted");
|
---|
395 | else {
|
---|
396 | fwrite(buf, 1, len, stdout);
|
---|
397 | fprintf(stderr, "zran: extracted %d bytes at %llu\n", len, offset);
|
---|
398 | }
|
---|
399 |
|
---|
400 | /* clean up and exit */
|
---|
401 | free_index(index);
|
---|
402 | fclose(in);
|
---|
403 | return 0;
|
---|
404 | }
|
---|