VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 13282

Last change on this file since 13282 was 13185, checked in by vboxsync, 16 years ago

VBoxREM: export the tb statistics.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 157.1 KB
Line 
1/* $Id: VBoxRecompiler.c 13185 2008-10-10 21:26:06Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "exec-all.h"
29
30#include <VBox/rem.h>
31#include <VBox/vmapi.h>
32#include <VBox/tm.h>
33#include <VBox/ssm.h>
34#include <VBox/em.h>
35#include <VBox/trpm.h>
36#include <VBox/iom.h>
37#include <VBox/mm.h>
38#include <VBox/pgm.h>
39#include <VBox/pdm.h>
40#include <VBox/dbgf.h>
41#include <VBox/dbg.h>
42#include <VBox/hwaccm.h>
43#include <VBox/patm.h>
44#include <VBox/csam.h>
45#include "REMInternal.h"
46#include <VBox/vm.h>
47#include <VBox/param.h>
48#include <VBox/err.h>
49
50#include <VBox/log.h>
51#include <iprt/semaphore.h>
52#include <iprt/asm.h>
53#include <iprt/assert.h>
54#include <iprt/thread.h>
55#include <iprt/string.h>
56
57/* Don't wanna include everything. */
58extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
59extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
60extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
61extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
62extern void tlb_flush(CPUState *env, int flush_global);
63extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
64extern void sync_ldtr(CPUX86State *env1, int selector);
65extern int sync_tr(CPUX86State *env1, int selector);
66
67#ifdef VBOX_STRICT
68unsigned long get_phys_page_offset(target_ulong addr);
69#endif
70
71
72/*******************************************************************************
73* Defined Constants And Macros *
74*******************************************************************************/
75
76/** Copy 80-bit fpu register at pSrc to pDst.
77 * This is probably faster than *calling* memcpy.
78 */
79#define REM_COPY_FPU_REG(pDst, pSrc) \
80 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
81
82
83/*******************************************************************************
84* Internal Functions *
85*******************************************************************************/
86static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
87static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
88static void remR3StateUpdate(PVM pVM);
89
90static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
91static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
92static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
93static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
94static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
95static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
96
97static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
98static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
99static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
100static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
101static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
102static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
103
104
105/*******************************************************************************
106* Global Variables *
107*******************************************************************************/
108
109/** @todo Move stats to REM::s some rainy day we have nothing do to. */
110#ifdef VBOX_WITH_STATISTICS
111static STAMPROFILEADV gStatExecuteSingleInstr;
112static STAMPROFILEADV gStatCompilationQEmu;
113static STAMPROFILEADV gStatRunCodeQEmu;
114static STAMPROFILEADV gStatTotalTimeQEmu;
115static STAMPROFILEADV gStatTimers;
116static STAMPROFILEADV gStatTBLookup;
117static STAMPROFILEADV gStatIRQ;
118static STAMPROFILEADV gStatRawCheck;
119static STAMPROFILEADV gStatMemRead;
120static STAMPROFILEADV gStatMemWrite;
121static STAMPROFILE gStatGCPhys2HCVirt;
122static STAMPROFILE gStatHCVirt2GCPhys;
123static STAMCOUNTER gStatCpuGetTSC;
124static STAMCOUNTER gStatRefuseTFInhibit;
125static STAMCOUNTER gStatRefuseVM86;
126static STAMCOUNTER gStatRefusePaging;
127static STAMCOUNTER gStatRefusePAE;
128static STAMCOUNTER gStatRefuseIOPLNot0;
129static STAMCOUNTER gStatRefuseIF0;
130static STAMCOUNTER gStatRefuseCode16;
131static STAMCOUNTER gStatRefuseWP0;
132static STAMCOUNTER gStatRefuseRing1or2;
133static STAMCOUNTER gStatRefuseCanExecute;
134static STAMCOUNTER gStatREMGDTChange;
135static STAMCOUNTER gStatREMIDTChange;
136static STAMCOUNTER gStatREMLDTRChange;
137static STAMCOUNTER gStatREMTRChange;
138static STAMCOUNTER gStatSelOutOfSync[6];
139static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
140static STAMCOUNTER gStatFlushTBs;
141/* in exec.c */
142extern uint32_t tlb_flush_count;
143extern uint32_t tb_flush_count;
144extern uint32_t tb_phys_invalidate_count;
145#endif
146
147/*
148 * Global stuff.
149 */
150
151/** MMIO read callbacks. */
152CPUReadMemoryFunc *g_apfnMMIORead[3] =
153{
154 remR3MMIOReadU8,
155 remR3MMIOReadU16,
156 remR3MMIOReadU32
157};
158
159/** MMIO write callbacks. */
160CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
161{
162 remR3MMIOWriteU8,
163 remR3MMIOWriteU16,
164 remR3MMIOWriteU32
165};
166
167/** Handler read callbacks. */
168CPUReadMemoryFunc *g_apfnHandlerRead[3] =
169{
170 remR3HandlerReadU8,
171 remR3HandlerReadU16,
172 remR3HandlerReadU32
173};
174
175/** Handler write callbacks. */
176CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
177{
178 remR3HandlerWriteU8,
179 remR3HandlerWriteU16,
180 remR3HandlerWriteU32
181};
182
183
184#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
185/*
186 * Debugger commands.
187 */
188static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
189
190/** '.remstep' arguments. */
191static const DBGCVARDESC g_aArgRemStep[] =
192{
193 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
194 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
195};
196
197/** Command descriptors. */
198static const DBGCCMD g_aCmds[] =
199{
200 {
201 .pszCmd ="remstep",
202 .cArgsMin = 0,
203 .cArgsMax = 1,
204 .paArgDescs = &g_aArgRemStep[0],
205 .cArgDescs = ELEMENTS(g_aArgRemStep),
206 .pResultDesc = NULL,
207 .fFlags = 0,
208 .pfnHandler = remR3CmdDisasEnableStepping,
209 .pszSyntax = "[on/off]",
210 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
211 "If no arguments show the current state."
212 }
213};
214#endif
215
216
217/* Instantiate the structure signatures. */
218#define REM_STRUCT_OP 0
219#include "Sun/structs.h"
220
221
222
223/*******************************************************************************
224* Internal Functions *
225*******************************************************************************/
226static void remAbort(int rc, const char *pszTip);
227extern int testmath(void);
228
229/* Put them here to avoid unused variable warning. */
230AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
231#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
232//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
233/* Why did this have to be identical?? */
234AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
235#else
236AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
237#endif
238
239
240/**
241 * Initializes the REM.
242 *
243 * @returns VBox status code.
244 * @param pVM The VM to operate on.
245 */
246REMR3DECL(int) REMR3Init(PVM pVM)
247{
248 uint32_t u32Dummy;
249 unsigned i;
250
251 /*
252 * Assert sanity.
253 */
254 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
255 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
256 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
257#if defined(DEBUG) && !defined(RT_OS_SOLARIS) /// @todo fix the solaris math stuff.
258 Assert(!testmath());
259#endif
260 ASSERT_STRUCT_TABLE(Misc);
261 ASSERT_STRUCT_TABLE(TLB);
262 ASSERT_STRUCT_TABLE(SegmentCache);
263 ASSERT_STRUCT_TABLE(XMMReg);
264 ASSERT_STRUCT_TABLE(MMXReg);
265 ASSERT_STRUCT_TABLE(float_status);
266 ASSERT_STRUCT_TABLE(float32u);
267 ASSERT_STRUCT_TABLE(float64u);
268 ASSERT_STRUCT_TABLE(floatx80u);
269 ASSERT_STRUCT_TABLE(CPUState);
270
271 /*
272 * Init some internal data members.
273 */
274 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
275 pVM->rem.s.Env.pVM = pVM;
276#ifdef CPU_RAW_MODE_INIT
277 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
278#endif
279
280 /* ctx. */
281 int rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
282 if (VBOX_FAILURE(rc))
283 {
284 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
285 return rc;
286 }
287 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
288
289 /* ignore all notifications */
290 pVM->rem.s.fIgnoreAll = true;
291
292 /*
293 * Init the recompiler.
294 */
295 if (!cpu_x86_init(&pVM->rem.s.Env))
296 {
297 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
298 return VERR_GENERAL_FAILURE;
299 }
300 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
301 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
302
303 /* allocate code buffer for single instruction emulation. */
304 pVM->rem.s.Env.cbCodeBuffer = 4096;
305 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
306 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
307
308 /* finally, set the cpu_single_env global. */
309 cpu_single_env = &pVM->rem.s.Env;
310
311 /* Nothing is pending by default */
312 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
313
314 /*
315 * Register ram types.
316 */
317 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
318 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
319 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
320 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
321 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
322
323 /* stop ignoring. */
324 pVM->rem.s.fIgnoreAll = false;
325
326 /*
327 * Register the saved state data unit.
328 */
329 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
330 NULL, remR3Save, NULL,
331 NULL, remR3Load, NULL);
332 if (VBOX_FAILURE(rc))
333 return rc;
334
335#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
336 /*
337 * Debugger commands.
338 */
339 static bool fRegisteredCmds = false;
340 if (!fRegisteredCmds)
341 {
342 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
343 if (VBOX_SUCCESS(rc))
344 fRegisteredCmds = true;
345 }
346#endif
347
348#ifdef VBOX_WITH_STATISTICS
349 /*
350 * Statistics.
351 */
352 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
353 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
354 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
355 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
356 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
357 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
358 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
359 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
360 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
361 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
362 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
363 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
364
365 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
366
367 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
368 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
369 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
370 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
371 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
372 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
373 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
374 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
375 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
376 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
377 STAM_REG(pVM, &gStatFlushTBs, STAMTYPE_COUNTER, "/REM/FlushTB", STAMUNIT_OCCURENCES, "Number of TB flushes");
378
379 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
380 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
381 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
382 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
383
384 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
385 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
386 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
387 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
388 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
389 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
390
391 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
392 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
393 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
394 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
395 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
396 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
397
398 STAM_REG(pVM, &tb_flush_count, STAMTYPE_U32_RESET, "/REM/TbFlushCount", STAMUNIT_OCCURENCES, "tb_flush() calls");
399 STAM_REG(pVM, &tb_phys_invalidate_count,STAMTYPE_U32_RESET, "/REM/TbPhysInvldCount", STAMUNIT_OCCURENCES, "tb_phys_invalidate() calls");
400 STAM_REG(pVM, &tlb_flush_count, STAMTYPE_U32_RESET, "/REM/TlbFlushCount", STAMUNIT_OCCURENCES, "tlb_flush() calls");
401
402
403#endif
404
405#ifdef DEBUG_ALL_LOGGING
406 loglevel = ~0;
407#endif
408
409 return rc;
410}
411
412
413/**
414 * Terminates the REM.
415 *
416 * Termination means cleaning up and freeing all resources,
417 * the VM it self is at this point powered off or suspended.
418 *
419 * @returns VBox status code.
420 * @param pVM The VM to operate on.
421 */
422REMR3DECL(int) REMR3Term(PVM pVM)
423{
424 return VINF_SUCCESS;
425}
426
427
428/**
429 * The VM is being reset.
430 *
431 * For the REM component this means to call the cpu_reset() and
432 * reinitialize some state variables.
433 *
434 * @param pVM VM handle.
435 */
436REMR3DECL(void) REMR3Reset(PVM pVM)
437{
438 /*
439 * Reset the REM cpu.
440 */
441 pVM->rem.s.fIgnoreAll = true;
442 cpu_reset(&pVM->rem.s.Env);
443 pVM->rem.s.cInvalidatedPages = 0;
444 pVM->rem.s.fIgnoreAll = false;
445
446 /* Clear raw ring 0 init state */
447 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
448}
449
450
451/**
452 * Execute state save operation.
453 *
454 * @returns VBox status code.
455 * @param pVM VM Handle.
456 * @param pSSM SSM operation handle.
457 */
458static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
459{
460 LogFlow(("remR3Save:\n"));
461
462 /*
463 * Save the required CPU Env bits.
464 * (Not much because we're never in REM when doing the save.)
465 */
466 PREM pRem = &pVM->rem.s;
467 Assert(!pRem->fInREM);
468 SSMR3PutU32(pSSM, pRem->Env.hflags);
469 SSMR3PutU32(pSSM, ~0); /* separator */
470
471 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
472 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
473 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
474
475 return SSMR3PutU32(pSSM, ~0); /* terminator */
476}
477
478
479/**
480 * Execute state load operation.
481 *
482 * @returns VBox status code.
483 * @param pVM VM Handle.
484 * @param pSSM SSM operation handle.
485 * @param u32Version Data layout version.
486 */
487static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
488{
489 uint32_t u32Dummy;
490 uint32_t fRawRing0 = false;
491 LogFlow(("remR3Load:\n"));
492
493 /*
494 * Validate version.
495 */
496 if ( u32Version != REM_SAVED_STATE_VERSION
497 && u32Version != REM_SAVED_STATE_VERSION_VER1_6)
498 {
499 AssertMsgFailed(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
500 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
501 }
502
503 /*
504 * Do a reset to be on the safe side...
505 */
506 REMR3Reset(pVM);
507
508 /*
509 * Ignore all ignorable notifications.
510 * (Not doing this will cause serious trouble.)
511 */
512 pVM->rem.s.fIgnoreAll = true;
513
514 /*
515 * Load the required CPU Env bits.
516 * (Not much because we're never in REM when doing the save.)
517 */
518 PREM pRem = &pVM->rem.s;
519 Assert(!pRem->fInREM);
520 SSMR3GetU32(pSSM, &pRem->Env.hflags);
521 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
522 {
523 /* Redundant REM CPU state has to be loaded, but can be ignored. */
524 CPUX86State_Ver16 temp;
525 SSMR3GetMem(pSSM, &temp, RT_OFFSETOF(CPUX86State_Ver16, jmp_env));
526 }
527
528 uint32_t u32Sep;
529 int rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
530 if (VBOX_FAILURE(rc))
531 return rc;
532 if (u32Sep != ~0U)
533 {
534 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
535 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
536 }
537
538 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
539 SSMR3GetUInt(pSSM, &fRawRing0);
540 if (fRawRing0)
541 pRem->Env.state |= CPU_RAW_RING0;
542
543 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
544 {
545 /*
546 * Load the REM stuff.
547 */
548 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
549 if (VBOX_FAILURE(rc))
550 return rc;
551 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
552 {
553 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
554 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
555 }
556 unsigned i;
557 for (i = 0; i < pRem->cInvalidatedPages; i++)
558 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
559 }
560
561 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
562 if (VBOX_FAILURE(rc))
563 return rc;
564
565 /* check the terminator. */
566 rc = SSMR3GetU32(pSSM, &u32Sep);
567 if (VBOX_FAILURE(rc))
568 return rc;
569 if (u32Sep != ~0U)
570 {
571 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
572 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
573 }
574
575 /*
576 * Get the CPUID features.
577 */
578 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
579 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
580
581 /*
582 * Sync the Load Flush the TLB
583 */
584 tlb_flush(&pRem->Env, 1);
585
586 /*
587 * Stop ignoring ignornable notifications.
588 */
589 pVM->rem.s.fIgnoreAll = false;
590
591 /*
592 * Sync the whole CPU state when executing code in the recompiler.
593 */
594 CPUMSetChangedFlags(pVM, CPUM_CHANGED_ALL);
595 return VINF_SUCCESS;
596}
597
598
599
600#undef LOG_GROUP
601#define LOG_GROUP LOG_GROUP_REM_RUN
602
603/**
604 * Single steps an instruction in recompiled mode.
605 *
606 * Before calling this function the REM state needs to be in sync with
607 * the VM. Call REMR3State() to perform the sync. It's only necessary
608 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
609 * and after calling REMR3StateBack().
610 *
611 * @returns VBox status code.
612 *
613 * @param pVM VM Handle.
614 */
615REMR3DECL(int) REMR3Step(PVM pVM)
616{
617 /*
618 * Lock the REM - we don't wanna have anyone interrupting us
619 * while stepping - and enabled single stepping. We also ignore
620 * pending interrupts and suchlike.
621 */
622 int interrupt_request = pVM->rem.s.Env.interrupt_request;
623 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
624 pVM->rem.s.Env.interrupt_request = 0;
625 cpu_single_step(&pVM->rem.s.Env, 1);
626
627 /*
628 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
629 */
630 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
631 bool fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
632
633 /*
634 * Execute and handle the return code.
635 * We execute without enabling the cpu tick, so on success we'll
636 * just flip it on and off to make sure it moves
637 */
638 int rc = cpu_exec(&pVM->rem.s.Env);
639 if (rc == EXCP_DEBUG)
640 {
641 TMCpuTickResume(pVM);
642 TMCpuTickPause(pVM);
643 TMVirtualResume(pVM);
644 TMVirtualPause(pVM);
645 rc = VINF_EM_DBG_STEPPED;
646 }
647 else
648 {
649 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
650 switch (rc)
651 {
652 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
653 case EXCP_HLT:
654 case EXCP_HALTED: rc = VINF_EM_HALT; break;
655 case EXCP_RC:
656 rc = pVM->rem.s.rc;
657 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
658 break;
659 default:
660 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
661 rc = VERR_INTERNAL_ERROR;
662 break;
663 }
664 }
665
666 /*
667 * Restore the stuff we changed to prevent interruption.
668 * Unlock the REM.
669 */
670 if (fBp)
671 {
672 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
673 Assert(rc2 == 0); NOREF(rc2);
674 }
675 cpu_single_step(&pVM->rem.s.Env, 0);
676 pVM->rem.s.Env.interrupt_request = interrupt_request;
677
678 return rc;
679}
680
681
682/**
683 * Set a breakpoint using the REM facilities.
684 *
685 * @returns VBox status code.
686 * @param pVM The VM handle.
687 * @param Address The breakpoint address.
688 * @thread The emulation thread.
689 */
690REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
691{
692 VM_ASSERT_EMT(pVM);
693 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
694 {
695 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
696 return VINF_SUCCESS;
697 }
698 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
699 return VERR_REM_NO_MORE_BP_SLOTS;
700}
701
702
703/**
704 * Clears a breakpoint set by REMR3BreakpointSet().
705 *
706 * @returns VBox status code.
707 * @param pVM The VM handle.
708 * @param Address The breakpoint address.
709 * @thread The emulation thread.
710 */
711REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
712{
713 VM_ASSERT_EMT(pVM);
714 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
715 {
716 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
717 return VINF_SUCCESS;
718 }
719 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
720 return VERR_REM_BP_NOT_FOUND;
721}
722
723
724/**
725 * Emulate an instruction.
726 *
727 * This function executes one instruction without letting anyone
728 * interrupt it. This is intended for being called while being in
729 * raw mode and thus will take care of all the state syncing between
730 * REM and the rest.
731 *
732 * @returns VBox status code.
733 * @param pVM VM handle.
734 */
735REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
736{
737 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
738
739 /* Make sure this flag is set; we might never execute remR3CanExecuteRaw in the AMD-V case.
740 * CPU_RAW_HWACC makes sure we never execute interrupt handlers in the recompiler.
741 */
742 if (HWACCMIsEnabled(pVM))
743 pVM->rem.s.Env.state |= CPU_RAW_HWACC;
744
745 /*
746 * Sync the state and enable single instruction / single stepping.
747 */
748 int rc = REMR3State(pVM, false /* no need to flush the TBs; we always compile. */);
749 if (VBOX_SUCCESS(rc))
750 {
751 int interrupt_request = pVM->rem.s.Env.interrupt_request;
752 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
753 Assert(!pVM->rem.s.Env.singlestep_enabled);
754#if 1
755
756 /*
757 * Now we set the execute single instruction flag and enter the cpu_exec loop.
758 */
759 TMNotifyStartOfExecution(pVM);
760 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
761 rc = cpu_exec(&pVM->rem.s.Env);
762 TMNotifyEndOfExecution(pVM);
763 switch (rc)
764 {
765 /*
766 * Executed without anything out of the way happening.
767 */
768 case EXCP_SINGLE_INSTR:
769 rc = VINF_EM_RESCHEDULE;
770 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
771 break;
772
773 /*
774 * If we take a trap or start servicing a pending interrupt, we might end up here.
775 * (Timer thread or some other thread wishing EMT's attention.)
776 */
777 case EXCP_INTERRUPT:
778 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
779 rc = VINF_EM_RESCHEDULE;
780 break;
781
782 /*
783 * Single step, we assume!
784 * If there was a breakpoint there we're fucked now.
785 */
786 case EXCP_DEBUG:
787 {
788 /* breakpoint or single step? */
789 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
790 int iBP;
791 rc = VINF_EM_DBG_STEPPED;
792 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
793 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
794 {
795 rc = VINF_EM_DBG_BREAKPOINT;
796 break;
797 }
798 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
799 break;
800 }
801
802 /*
803 * hlt instruction.
804 */
805 case EXCP_HLT:
806 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
807 rc = VINF_EM_HALT;
808 break;
809
810 /*
811 * The VM has halted.
812 */
813 case EXCP_HALTED:
814 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
815 rc = VINF_EM_HALT;
816 break;
817
818 /*
819 * Switch to RAW-mode.
820 */
821 case EXCP_EXECUTE_RAW:
822 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
823 rc = VINF_EM_RESCHEDULE_RAW;
824 break;
825
826 /*
827 * Switch to hardware accelerated RAW-mode.
828 */
829 case EXCP_EXECUTE_HWACC:
830 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
831 rc = VINF_EM_RESCHEDULE_HWACC;
832 break;
833
834 /*
835 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
836 */
837 case EXCP_RC:
838 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
839 rc = pVM->rem.s.rc;
840 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
841 break;
842
843 /*
844 * Figure out the rest when they arrive....
845 */
846 default:
847 AssertMsgFailed(("rc=%d\n", rc));
848 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
849 rc = VINF_EM_RESCHEDULE;
850 break;
851 }
852
853 /*
854 * Switch back the state.
855 */
856#else
857 pVM->rem.s.Env.interrupt_request = 0;
858 cpu_single_step(&pVM->rem.s.Env, 1);
859
860 /*
861 * Execute and handle the return code.
862 * We execute without enabling the cpu tick, so on success we'll
863 * just flip it on and off to make sure it moves.
864 *
865 * (We do not use emulate_single_instr() because that doesn't enter the
866 * right way in will cause serious trouble if a longjmp was attempted.)
867 */
868# ifdef DEBUG_bird
869 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
870# endif
871 TMNotifyStartOfExecution(pVM);
872 int cTimesMax = 16384;
873 uint32_t eip = pVM->rem.s.Env.eip;
874 do
875 {
876 rc = cpu_exec(&pVM->rem.s.Env);
877
878 } while ( eip == pVM->rem.s.Env.eip
879 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
880 && --cTimesMax > 0);
881 TMNotifyEndOfExecution(pVM);
882 switch (rc)
883 {
884 /*
885 * Single step, we assume!
886 * If there was a breakpoint there we're fucked now.
887 */
888 case EXCP_DEBUG:
889 {
890 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
891 rc = VINF_EM_RESCHEDULE;
892 break;
893 }
894
895 /*
896 * We cannot be interrupted!
897 */
898 case EXCP_INTERRUPT:
899 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
900 rc = VERR_INTERNAL_ERROR;
901 break;
902
903 /*
904 * hlt instruction.
905 */
906 case EXCP_HLT:
907 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
908 rc = VINF_EM_HALT;
909 break;
910
911 /*
912 * The VM has halted.
913 */
914 case EXCP_HALTED:
915 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
916 rc = VINF_EM_HALT;
917 break;
918
919 /*
920 * Switch to RAW-mode.
921 */
922 case EXCP_EXECUTE_RAW:
923 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
924 rc = VINF_EM_RESCHEDULE_RAW;
925 break;
926
927 /*
928 * Switch to hardware accelerated RAW-mode.
929 */
930 case EXCP_EXECUTE_HWACC:
931 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
932 rc = VINF_EM_RESCHEDULE_HWACC;
933 break;
934
935 /*
936 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
937 */
938 case EXCP_RC:
939 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
940 rc = pVM->rem.s.rc;
941 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
942 break;
943
944 /*
945 * Figure out the rest when they arrive....
946 */
947 default:
948 AssertMsgFailed(("rc=%d\n", rc));
949 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
950 rc = VINF_SUCCESS;
951 break;
952 }
953
954 /*
955 * Switch back the state.
956 */
957 cpu_single_step(&pVM->rem.s.Env, 0);
958#endif
959 pVM->rem.s.Env.interrupt_request = interrupt_request;
960 int rc2 = REMR3StateBack(pVM);
961 AssertRC(rc2);
962 }
963
964 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%VGv)\n",
965 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
966 return rc;
967}
968
969
970/**
971 * Runs code in recompiled mode.
972 *
973 * Before calling this function the REM state needs to be in sync with
974 * the VM. Call REMR3State() to perform the sync. It's only necessary
975 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
976 * and after calling REMR3StateBack().
977 *
978 * @returns VBox status code.
979 *
980 * @param pVM VM Handle.
981 */
982REMR3DECL(int) REMR3Run(PVM pVM)
983{
984 Log2(("REMR3Run: (cs:eip=%04x:%VGv)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
985 Assert(pVM->rem.s.fInREM);
986
987 TMNotifyStartOfExecution(pVM);
988 int rc = cpu_exec(&pVM->rem.s.Env);
989 TMNotifyEndOfExecution(pVM);
990 switch (rc)
991 {
992 /*
993 * This happens when the execution was interrupted
994 * by an external event, like pending timers.
995 */
996 case EXCP_INTERRUPT:
997 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
998 rc = VINF_SUCCESS;
999 break;
1000
1001 /*
1002 * hlt instruction.
1003 */
1004 case EXCP_HLT:
1005 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
1006 rc = VINF_EM_HALT;
1007 break;
1008
1009 /*
1010 * The VM has halted.
1011 */
1012 case EXCP_HALTED:
1013 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1014 rc = VINF_EM_HALT;
1015 break;
1016
1017 /*
1018 * Breakpoint/single step.
1019 */
1020 case EXCP_DEBUG:
1021 {
1022#if 0//def DEBUG_bird
1023 static int iBP = 0;
1024 printf("howdy, breakpoint! iBP=%d\n", iBP);
1025 switch (iBP)
1026 {
1027 case 0:
1028 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1029 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1030 //pVM->rem.s.Env.interrupt_request = 0;
1031 //pVM->rem.s.Env.exception_index = -1;
1032 //g_fInterruptDisabled = 1;
1033 rc = VINF_SUCCESS;
1034 asm("int3");
1035 break;
1036 default:
1037 asm("int3");
1038 break;
1039 }
1040 iBP++;
1041#else
1042 /* breakpoint or single step? */
1043 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1044 int iBP;
1045 rc = VINF_EM_DBG_STEPPED;
1046 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1047 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1048 {
1049 rc = VINF_EM_DBG_BREAKPOINT;
1050 break;
1051 }
1052 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1053#endif
1054 break;
1055 }
1056
1057 /*
1058 * Switch to RAW-mode.
1059 */
1060 case EXCP_EXECUTE_RAW:
1061 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1062 rc = VINF_EM_RESCHEDULE_RAW;
1063 break;
1064
1065 /*
1066 * Switch to hardware accelerated RAW-mode.
1067 */
1068 case EXCP_EXECUTE_HWACC:
1069 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1070 rc = VINF_EM_RESCHEDULE_HWACC;
1071 break;
1072
1073 /*
1074 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1075 */
1076 case EXCP_RC:
1077 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1078 rc = pVM->rem.s.rc;
1079 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1080 break;
1081
1082 /*
1083 * Figure out the rest when they arrive....
1084 */
1085 default:
1086 AssertMsgFailed(("rc=%d\n", rc));
1087 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1088 rc = VINF_SUCCESS;
1089 break;
1090 }
1091
1092 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%VGv)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1093 return rc;
1094}
1095
1096
1097/**
1098 * Check if the cpu state is suitable for Raw execution.
1099 *
1100 * @returns boolean
1101 * @param env The CPU env struct.
1102 * @param eip The EIP to check this for (might differ from env->eip).
1103 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1104 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1105 *
1106 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1107 */
1108bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1109{
1110 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1111 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1112 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1113
1114 /* Update counter. */
1115 env->pVM->rem.s.cCanExecuteRaw++;
1116
1117 if (HWACCMIsEnabled(env->pVM))
1118 {
1119 env->state |= CPU_RAW_HWACC;
1120
1121 /*
1122 * Create partial context for HWACCMR3CanExecuteGuest
1123 */
1124 CPUMCTX Ctx;
1125 Ctx.cr0 = env->cr[0];
1126 Ctx.cr3 = env->cr[3];
1127 Ctx.cr4 = env->cr[4];
1128
1129 Ctx.tr = env->tr.selector;
1130 Ctx.trHid.u64Base = env->tr.base;
1131 Ctx.trHid.u32Limit = env->tr.limit;
1132 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1133
1134 Ctx.idtr.cbIdt = env->idt.limit;
1135 Ctx.idtr.pIdt = env->idt.base;
1136
1137 Ctx.eflags.u32 = env->eflags;
1138
1139 Ctx.cs = env->segs[R_CS].selector;
1140 Ctx.csHid.u64Base = env->segs[R_CS].base;
1141 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1142 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1143
1144 Ctx.ds = env->segs[R_DS].selector;
1145 Ctx.dsHid.u64Base = env->segs[R_DS].base;
1146 Ctx.dsHid.u32Limit = env->segs[R_DS].limit;
1147 Ctx.dsHid.Attr.u = (env->segs[R_DS].flags >> 8) & 0xF0FF;
1148
1149 Ctx.es = env->segs[R_ES].selector;
1150 Ctx.esHid.u64Base = env->segs[R_ES].base;
1151 Ctx.esHid.u32Limit = env->segs[R_ES].limit;
1152 Ctx.esHid.Attr.u = (env->segs[R_ES].flags >> 8) & 0xF0FF;
1153
1154 Ctx.fs = env->segs[R_FS].selector;
1155 Ctx.fsHid.u64Base = env->segs[R_FS].base;
1156 Ctx.fsHid.u32Limit = env->segs[R_FS].limit;
1157 Ctx.fsHid.Attr.u = (env->segs[R_FS].flags >> 8) & 0xF0FF;
1158
1159 Ctx.gs = env->segs[R_GS].selector;
1160 Ctx.gsHid.u64Base = env->segs[R_GS].base;
1161 Ctx.gsHid.u32Limit = env->segs[R_GS].limit;
1162 Ctx.gsHid.Attr.u = (env->segs[R_GS].flags >> 8) & 0xF0FF;
1163
1164 Ctx.ss = env->segs[R_SS].selector;
1165 Ctx.ssHid.u64Base = env->segs[R_SS].base;
1166 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1167 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1168
1169 Ctx.msrEFER = env->efer;
1170
1171 /* Hardware accelerated raw-mode:
1172 *
1173 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1174 */
1175 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1176 {
1177 *piException = EXCP_EXECUTE_HWACC;
1178 return true;
1179 }
1180 return false;
1181 }
1182
1183 /*
1184 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1185 * or 32 bits protected mode ring 0 code
1186 *
1187 * The tests are ordered by the likelyhood of being true during normal execution.
1188 */
1189 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1190 {
1191 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1192 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1193 return false;
1194 }
1195
1196#ifndef VBOX_RAW_V86
1197 if (fFlags & VM_MASK) {
1198 STAM_COUNTER_INC(&gStatRefuseVM86);
1199 Log2(("raw mode refused: VM_MASK\n"));
1200 return false;
1201 }
1202#endif
1203
1204 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1205 {
1206#ifndef DEBUG_bird
1207 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1208#endif
1209 return false;
1210 }
1211
1212 if (env->singlestep_enabled)
1213 {
1214 //Log2(("raw mode refused: Single step\n"));
1215 return false;
1216 }
1217
1218 if (env->nb_breakpoints > 0)
1219 {
1220 //Log2(("raw mode refused: Breakpoints\n"));
1221 return false;
1222 }
1223
1224 uint32_t u32CR0 = env->cr[0];
1225 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1226 {
1227 STAM_COUNTER_INC(&gStatRefusePaging);
1228 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1229 return false;
1230 }
1231
1232 if (env->cr[4] & CR4_PAE_MASK)
1233 {
1234 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1235 {
1236 STAM_COUNTER_INC(&gStatRefusePAE);
1237 return false;
1238 }
1239 }
1240
1241 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1242 {
1243 if (!EMIsRawRing3Enabled(env->pVM))
1244 return false;
1245
1246 if (!(env->eflags & IF_MASK))
1247 {
1248 STAM_COUNTER_INC(&gStatRefuseIF0);
1249 Log2(("raw mode refused: IF (RawR3)\n"));
1250 return false;
1251 }
1252
1253 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1254 {
1255 STAM_COUNTER_INC(&gStatRefuseWP0);
1256 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1257 return false;
1258 }
1259 }
1260 else
1261 {
1262 if (!EMIsRawRing0Enabled(env->pVM))
1263 return false;
1264
1265 // Let's start with pure 32 bits ring 0 code first
1266 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1267 {
1268 STAM_COUNTER_INC(&gStatRefuseCode16);
1269 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1270 return false;
1271 }
1272
1273 // Only R0
1274 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1275 {
1276 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1277 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1278 return false;
1279 }
1280
1281 if (!(u32CR0 & CR0_WP_MASK))
1282 {
1283 STAM_COUNTER_INC(&gStatRefuseWP0);
1284 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1285 return false;
1286 }
1287
1288 if (PATMIsPatchGCAddr(env->pVM, eip))
1289 {
1290 Log2(("raw r0 mode forced: patch code\n"));
1291 *piException = EXCP_EXECUTE_RAW;
1292 return true;
1293 }
1294
1295#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1296 if (!(env->eflags & IF_MASK))
1297 {
1298 STAM_COUNTER_INC(&gStatRefuseIF0);
1299 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1300 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1301 return false;
1302 }
1303#endif
1304
1305 env->state |= CPU_RAW_RING0;
1306 }
1307
1308 /*
1309 * Don't reschedule the first time we're called, because there might be
1310 * special reasons why we're here that is not covered by the above checks.
1311 */
1312 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1313 {
1314 Log2(("raw mode refused: first scheduling\n"));
1315 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1316 return false;
1317 }
1318
1319 Assert(PGMPhysIsA20Enabled(env->pVM));
1320 *piException = EXCP_EXECUTE_RAW;
1321 return true;
1322}
1323
1324
1325/**
1326 * Fetches a code byte.
1327 *
1328 * @returns Success indicator (bool) for ease of use.
1329 * @param env The CPU environment structure.
1330 * @param GCPtrInstr Where to fetch code.
1331 * @param pu8Byte Where to store the byte on success
1332 */
1333bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1334{
1335 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1336 if (VBOX_SUCCESS(rc))
1337 return true;
1338 return false;
1339}
1340
1341
1342/**
1343 * Flush (or invalidate if you like) page table/dir entry.
1344 *
1345 * (invlpg instruction; tlb_flush_page)
1346 *
1347 * @param env Pointer to cpu environment.
1348 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1349 */
1350void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1351{
1352 PVM pVM = env->pVM;
1353
1354 /*
1355 * When we're replaying invlpg instructions or restoring a saved
1356 * state we disable this path.
1357 */
1358 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1359 return;
1360 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1361 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1362
1363 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1364
1365 /*
1366 * Update the control registers before calling PGMFlushPage.
1367 */
1368 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1369 pCtx->cr0 = env->cr[0];
1370 pCtx->cr3 = env->cr[3];
1371 pCtx->cr4 = env->cr[4];
1372
1373 /*
1374 * Let PGM do the rest.
1375 */
1376 int rc = PGMInvalidatePage(pVM, GCPtr);
1377 if (VBOX_FAILURE(rc))
1378 {
1379 AssertMsgFailed(("remR3FlushPage %VGv failed with %d!!\n", GCPtr, rc));
1380 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1381 }
1382 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1383}
1384
1385
1386/**
1387 * Called from tlb_protect_code in order to write monitor a code page.
1388 *
1389 * @param env Pointer to the CPU environment.
1390 * @param GCPtr Code page to monitor
1391 */
1392void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1393{
1394#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1395 Assert(env->pVM->rem.s.fInREM);
1396 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1397 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1398 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1399 && !(env->eflags & VM_MASK) /* no V86 mode */
1400 && !HWACCMIsEnabled(env->pVM))
1401 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1402#endif
1403}
1404
1405/**
1406 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1407 *
1408 * @param env Pointer to the CPU environment.
1409 * @param GCPtr Code page to monitor
1410 */
1411void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
1412{
1413 Assert(env->pVM->rem.s.fInREM);
1414#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1415 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1416 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1417 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1418 && !(env->eflags & VM_MASK) /* no V86 mode */
1419 && !HWACCMIsEnabled(env->pVM))
1420 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1421#endif
1422}
1423
1424
1425/**
1426 * Called when the CPU is initialized, any of the CRx registers are changed or
1427 * when the A20 line is modified.
1428 *
1429 * @param env Pointer to the CPU environment.
1430 * @param fGlobal Set if the flush is global.
1431 */
1432void remR3FlushTLB(CPUState *env, bool fGlobal)
1433{
1434 PVM pVM = env->pVM;
1435
1436 /*
1437 * When we're replaying invlpg instructions or restoring a saved
1438 * state we disable this path.
1439 */
1440 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1441 return;
1442 Assert(pVM->rem.s.fInREM);
1443
1444 /*
1445 * The caller doesn't check cr4, so we have to do that for ourselves.
1446 */
1447 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1448 fGlobal = true;
1449 Log(("remR3FlushTLB: CR0=%RGr CR3=%RGr CR4=%RGr %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1450
1451 /*
1452 * Update the control registers before calling PGMR3FlushTLB.
1453 */
1454 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1455 pCtx->cr0 = env->cr[0];
1456 pCtx->cr3 = env->cr[3];
1457 pCtx->cr4 = env->cr[4];
1458
1459 /*
1460 * Let PGM do the rest.
1461 */
1462 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1463}
1464
1465
1466/**
1467 * Called when any of the cr0, cr4 or efer registers is updated.
1468 *
1469 * @param env Pointer to the CPU environment.
1470 */
1471void remR3ChangeCpuMode(CPUState *env)
1472{
1473 int rc;
1474 PVM pVM = env->pVM;
1475
1476 /*
1477 * When we're replaying loads or restoring a saved
1478 * state this path is disabled.
1479 */
1480 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1481 return;
1482 Assert(pVM->rem.s.fInREM);
1483
1484 /*
1485 * Update the control registers before calling PGMChangeMode()
1486 * as it may need to map whatever cr3 is pointing to.
1487 */
1488 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1489 pCtx->cr0 = env->cr[0];
1490 pCtx->cr3 = env->cr[3];
1491 pCtx->cr4 = env->cr[4];
1492
1493#ifdef TARGET_X86_64
1494 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1495 if (rc != VINF_SUCCESS)
1496 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1497#else
1498 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1499 if (rc != VINF_SUCCESS)
1500 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1501#endif
1502}
1503
1504
1505/**
1506 * Called from compiled code to run dma.
1507 *
1508 * @param env Pointer to the CPU environment.
1509 */
1510void remR3DmaRun(CPUState *env)
1511{
1512 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1513 PDMR3DmaRun(env->pVM);
1514 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1515}
1516
1517
1518/**
1519 * Called from compiled code to schedule pending timers in VMM
1520 *
1521 * @param env Pointer to the CPU environment.
1522 */
1523void remR3TimersRun(CPUState *env)
1524{
1525 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1526 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1527 TMR3TimerQueuesDo(env->pVM);
1528 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1529 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1530}
1531
1532
1533/**
1534 * Record trap occurance
1535 *
1536 * @returns VBox status code
1537 * @param env Pointer to the CPU environment.
1538 * @param uTrap Trap nr
1539 * @param uErrorCode Error code
1540 * @param pvNextEIP Next EIP
1541 */
1542int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1543{
1544 PVM pVM = env->pVM;
1545#ifdef VBOX_WITH_STATISTICS
1546 static STAMCOUNTER s_aStatTrap[255];
1547 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1548#endif
1549
1550#ifdef VBOX_WITH_STATISTICS
1551 if (uTrap < 255)
1552 {
1553 if (!s_aRegisters[uTrap])
1554 {
1555 s_aRegisters[uTrap] = true;
1556 char szStatName[64];
1557 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1558 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1559 }
1560 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1561 }
1562#endif
1563 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%VGv\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1564 if( uTrap < 0x20
1565 && (env->cr[0] & X86_CR0_PE)
1566 && !(env->eflags & X86_EFL_VM))
1567 {
1568#ifdef DEBUG
1569 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1570#endif
1571 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1572 {
1573 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%VGv\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1574 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1575 return VERR_REM_TOO_MANY_TRAPS;
1576 }
1577 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1578 pVM->rem.s.cPendingExceptions = 1;
1579 pVM->rem.s.uPendingException = uTrap;
1580 pVM->rem.s.uPendingExcptEIP = env->eip;
1581 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1582 }
1583 else
1584 {
1585 pVM->rem.s.cPendingExceptions = 0;
1586 pVM->rem.s.uPendingException = uTrap;
1587 pVM->rem.s.uPendingExcptEIP = env->eip;
1588 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1589 }
1590 return VINF_SUCCESS;
1591}
1592
1593
1594/*
1595 * Clear current active trap
1596 *
1597 * @param pVM VM Handle.
1598 */
1599void remR3TrapClear(PVM pVM)
1600{
1601 pVM->rem.s.cPendingExceptions = 0;
1602 pVM->rem.s.uPendingException = 0;
1603 pVM->rem.s.uPendingExcptEIP = 0;
1604 pVM->rem.s.uPendingExcptCR2 = 0;
1605}
1606
1607
1608/*
1609 * Record previous call instruction addresses
1610 *
1611 * @param env Pointer to the CPU environment.
1612 */
1613void remR3RecordCall(CPUState *env)
1614{
1615 CSAMR3RecordCallAddress(env->pVM, env->eip);
1616}
1617
1618
1619/**
1620 * Syncs the internal REM state with the VM.
1621 *
1622 * This must be called before REMR3Run() is invoked whenever when the REM
1623 * state is not up to date. Calling it several times in a row is not
1624 * permitted.
1625 *
1626 * @returns VBox status code.
1627 *
1628 * @param pVM VM Handle.
1629 * @param fFlushTBs Flush all translation blocks before executing code
1630 *
1631 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1632 * no do this since the majority of the callers don't want any unnecessary of events
1633 * pending that would immediatly interrupt execution.
1634 */
1635REMR3DECL(int) REMR3State(PVM pVM, bool fFlushTBs)
1636{
1637 Log2(("REMR3State:\n"));
1638 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1639 register const CPUMCTX *pCtx = pVM->rem.s.pCtx;
1640 register unsigned fFlags;
1641 bool fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1642 unsigned i;
1643
1644 Assert(!pVM->rem.s.fInREM);
1645 pVM->rem.s.fInStateSync = true;
1646
1647 if (fFlushTBs)
1648 {
1649 STAM_COUNTER_INC(&gStatFlushTBs);
1650 tb_flush(&pVM->rem.s.Env);
1651 }
1652
1653 /*
1654 * Copy the registers which require no special handling.
1655 */
1656#ifdef TARGET_X86_64
1657 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
1658 Assert(R_EAX == 0);
1659 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
1660 Assert(R_ECX == 1);
1661 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
1662 Assert(R_EDX == 2);
1663 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
1664 Assert(R_EBX == 3);
1665 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
1666 Assert(R_ESP == 4);
1667 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
1668 Assert(R_EBP == 5);
1669 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
1670 Assert(R_ESI == 6);
1671 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
1672 Assert(R_EDI == 7);
1673 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
1674 pVM->rem.s.Env.regs[8] = pCtx->r8;
1675 pVM->rem.s.Env.regs[9] = pCtx->r9;
1676 pVM->rem.s.Env.regs[10] = pCtx->r10;
1677 pVM->rem.s.Env.regs[11] = pCtx->r11;
1678 pVM->rem.s.Env.regs[12] = pCtx->r12;
1679 pVM->rem.s.Env.regs[13] = pCtx->r13;
1680 pVM->rem.s.Env.regs[14] = pCtx->r14;
1681 pVM->rem.s.Env.regs[15] = pCtx->r15;
1682
1683 pVM->rem.s.Env.eip = pCtx->rip;
1684
1685 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
1686#else
1687 Assert(R_EAX == 0);
1688 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1689 Assert(R_ECX == 1);
1690 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1691 Assert(R_EDX == 2);
1692 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1693 Assert(R_EBX == 3);
1694 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1695 Assert(R_ESP == 4);
1696 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1697 Assert(R_EBP == 5);
1698 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1699 Assert(R_ESI == 6);
1700 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1701 Assert(R_EDI == 7);
1702 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1703 pVM->rem.s.Env.eip = pCtx->eip;
1704
1705 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1706#endif
1707
1708 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1709
1710 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1711 for (i=0;i<8;i++)
1712 pVM->rem.s.Env.dr[i] = pCtx->dr[i];
1713
1714 /*
1715 * Clear the halted hidden flag (the interrupt waking up the CPU can
1716 * have been dispatched in raw mode).
1717 */
1718 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1719
1720 /*
1721 * Replay invlpg?
1722 */
1723 if (pVM->rem.s.cInvalidatedPages)
1724 {
1725 pVM->rem.s.fIgnoreInvlPg = true;
1726 RTUINT i;
1727 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1728 {
1729 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1730 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1731 }
1732 pVM->rem.s.fIgnoreInvlPg = false;
1733 pVM->rem.s.cInvalidatedPages = 0;
1734 }
1735
1736 /* Replay notification changes? */
1737 if (pVM->rem.s.cHandlerNotifications)
1738 REMR3ReplayHandlerNotifications(pVM);
1739
1740 /* Update MSRs; before CRx registers! */
1741 pVM->rem.s.Env.efer = pCtx->msrEFER;
1742 pVM->rem.s.Env.star = pCtx->msrSTAR;
1743 pVM->rem.s.Env.pat = pCtx->msrPAT;
1744#ifdef TARGET_X86_64
1745 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1746 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1747 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1748 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1749
1750 /* Update the internal long mode activate flag according to the new EFER value. */
1751 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1752 pVM->rem.s.Env.hflags |= HF_LMA_MASK;
1753 else
1754 pVM->rem.s.Env.hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
1755#endif
1756
1757
1758 /*
1759 * Registers which are rarely changed and require special handling / order when changed.
1760 */
1761 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1762 LogFlow(("CPUMGetAndClearChangedFlagsREM %x\n", fFlags));
1763 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1764 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1765 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
1766 {
1767 if (fFlags & CPUM_CHANGED_FPU_REM)
1768 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1769
1770 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1771 {
1772 pVM->rem.s.fIgnoreCR3Load = true;
1773 tlb_flush(&pVM->rem.s.Env, true);
1774 pVM->rem.s.fIgnoreCR3Load = false;
1775 }
1776
1777 /* CR4 before CR0! */
1778 if (fFlags & CPUM_CHANGED_CR4)
1779 {
1780 pVM->rem.s.fIgnoreCR3Load = true;
1781 pVM->rem.s.fIgnoreCpuMode = true;
1782 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1783 pVM->rem.s.fIgnoreCpuMode = false;
1784 pVM->rem.s.fIgnoreCR3Load = false;
1785 }
1786
1787 if (fFlags & CPUM_CHANGED_CR0)
1788 {
1789 pVM->rem.s.fIgnoreCR3Load = true;
1790 pVM->rem.s.fIgnoreCpuMode = true;
1791 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1792 pVM->rem.s.fIgnoreCpuMode = false;
1793 pVM->rem.s.fIgnoreCR3Load = false;
1794 }
1795
1796 if (fFlags & CPUM_CHANGED_CR3)
1797 {
1798 pVM->rem.s.fIgnoreCR3Load = true;
1799 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1800 pVM->rem.s.fIgnoreCR3Load = false;
1801 }
1802
1803 if (fFlags & CPUM_CHANGED_GDTR)
1804 {
1805 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1806 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1807 }
1808
1809 if (fFlags & CPUM_CHANGED_IDTR)
1810 {
1811 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1812 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1813 }
1814
1815 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1816 {
1817 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1818 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1819 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1820 }
1821
1822 if (fFlags & CPUM_CHANGED_LDTR)
1823 {
1824 if (fHiddenSelRegsValid)
1825 {
1826 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1827 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u64Base;
1828 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1829 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1830 }
1831 else
1832 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1833 }
1834
1835 if (fFlags & CPUM_CHANGED_TR)
1836 {
1837 if (fHiddenSelRegsValid)
1838 {
1839 pVM->rem.s.Env.tr.selector = pCtx->tr;
1840 pVM->rem.s.Env.tr.base = pCtx->trHid.u64Base;
1841 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1842 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1843 }
1844 else
1845 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1846
1847 /** @note do_interrupt will fault if the busy flag is still set.... */
1848 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1849 }
1850
1851 if (fFlags & CPUM_CHANGED_CPUID)
1852 {
1853 uint32_t u32Dummy;
1854
1855 /*
1856 * Get the CPUID features.
1857 */
1858 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
1859 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
1860 }
1861 }
1862
1863 /*
1864 * Update selector registers.
1865 * This must be done *after* we've synced gdt, ldt and crX registers
1866 * since we're reading the GDT/LDT om sync_seg. This will happen with
1867 * saved state which takes a quick dip into rawmode for instance.
1868 */
1869 /*
1870 * Stack; Note first check this one as the CPL might have changed. The
1871 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1872 */
1873
1874 if (fHiddenSelRegsValid)
1875 {
1876 /* The hidden selector registers are valid in the CPU context. */
1877 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1878
1879 /* Set current CPL */
1880 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1881
1882 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1883 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1884 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1885 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1886 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1887 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1888 }
1889 else
1890 {
1891 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1892 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1893 {
1894 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1895
1896 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1897 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1898#ifdef VBOX_WITH_STATISTICS
1899 if (pVM->rem.s.Env.segs[R_SS].newselector)
1900 {
1901 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1902 }
1903#endif
1904 }
1905 else
1906 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1907
1908 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1909 {
1910 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1911 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1912#ifdef VBOX_WITH_STATISTICS
1913 if (pVM->rem.s.Env.segs[R_ES].newselector)
1914 {
1915 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1916 }
1917#endif
1918 }
1919 else
1920 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1921
1922 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1923 {
1924 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1925 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1926#ifdef VBOX_WITH_STATISTICS
1927 if (pVM->rem.s.Env.segs[R_CS].newselector)
1928 {
1929 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1930 }
1931#endif
1932 }
1933 else
1934 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1935
1936 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1937 {
1938 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1939 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1940#ifdef VBOX_WITH_STATISTICS
1941 if (pVM->rem.s.Env.segs[R_DS].newselector)
1942 {
1943 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1944 }
1945#endif
1946 }
1947 else
1948 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1949
1950 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1951 * be the same but not the base/limit. */
1952 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1953 {
1954 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1955 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1956#ifdef VBOX_WITH_STATISTICS
1957 if (pVM->rem.s.Env.segs[R_FS].newselector)
1958 {
1959 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1960 }
1961#endif
1962 }
1963 else
1964 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1965
1966 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1967 {
1968 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1969 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1970#ifdef VBOX_WITH_STATISTICS
1971 if (pVM->rem.s.Env.segs[R_GS].newselector)
1972 {
1973 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1974 }
1975#endif
1976 }
1977 else
1978 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1979 }
1980
1981 /*
1982 * Check for traps.
1983 */
1984 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1985 TRPMEVENT enmType;
1986 uint8_t u8TrapNo;
1987 int rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
1988 if (VBOX_SUCCESS(rc))
1989 {
1990#ifdef DEBUG
1991 if (u8TrapNo == 0x80)
1992 {
1993 remR3DumpLnxSyscall(pVM);
1994 remR3DumpOBsdSyscall(pVM);
1995 }
1996#endif
1997
1998 pVM->rem.s.Env.exception_index = u8TrapNo;
1999 if (enmType != TRPM_SOFTWARE_INT)
2000 {
2001 pVM->rem.s.Env.exception_is_int = 0;
2002 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
2003 }
2004 else
2005 {
2006 /*
2007 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
2008 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
2009 * for int03 and into.
2010 */
2011 pVM->rem.s.Env.exception_is_int = 1;
2012 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 2;
2013 /* int 3 may be generated by one-byte 0xcc */
2014 if (u8TrapNo == 3)
2015 {
2016 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xcc)
2017 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2018 }
2019 /* int 4 may be generated by one-byte 0xce */
2020 else if (u8TrapNo == 4)
2021 {
2022 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xce)
2023 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2024 }
2025 }
2026
2027 /* get error code and cr2 if needed. */
2028 switch (u8TrapNo)
2029 {
2030 case 0x0e:
2031 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
2032 /* fallthru */
2033 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2034 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
2035 break;
2036
2037 case 0x11: case 0x08:
2038 default:
2039 pVM->rem.s.Env.error_code = 0;
2040 break;
2041 }
2042
2043 /*
2044 * We can now reset the active trap since the recompiler is gonna have a go at it.
2045 */
2046 rc = TRPMResetTrap(pVM);
2047 AssertRC(rc);
2048 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
2049 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
2050 }
2051
2052 /*
2053 * Clear old interrupt request flags; Check for pending hardware interrupts.
2054 * (See @remark for why we don't check for other FFs.)
2055 */
2056 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2057 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2058 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
2059 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2060
2061 /*
2062 * We're now in REM mode.
2063 */
2064 pVM->rem.s.fInREM = true;
2065 pVM->rem.s.fInStateSync = false;
2066 pVM->rem.s.cCanExecuteRaw = 0;
2067 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2068 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2069 return VINF_SUCCESS;
2070}
2071
2072
2073/**
2074 * Syncs back changes in the REM state to the the VM state.
2075 *
2076 * This must be called after invoking REMR3Run().
2077 * Calling it several times in a row is not permitted.
2078 *
2079 * @returns VBox status code.
2080 *
2081 * @param pVM VM Handle.
2082 */
2083REMR3DECL(int) REMR3StateBack(PVM pVM)
2084{
2085 Log2(("REMR3StateBack:\n"));
2086 Assert(pVM->rem.s.fInREM);
2087 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2088 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2089 unsigned i;
2090
2091 /*
2092 * Copy back the registers.
2093 * This is done in the order they are declared in the CPUMCTX structure.
2094 */
2095
2096 /** @todo FOP */
2097 /** @todo FPUIP */
2098 /** @todo CS */
2099 /** @todo FPUDP */
2100 /** @todo DS */
2101 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2102 pCtx->fpu.MXCSR = 0;
2103 pCtx->fpu.MXCSR_MASK = 0;
2104
2105 /** @todo check if FPU/XMM was actually used in the recompiler */
2106 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2107//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2108
2109#ifdef TARGET_X86_64
2110 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2111 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2112 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2113 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2114 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2115 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2116 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2117 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2118 pCtx->r8 = pVM->rem.s.Env.regs[8];
2119 pCtx->r9 = pVM->rem.s.Env.regs[9];
2120 pCtx->r10 = pVM->rem.s.Env.regs[10];
2121 pCtx->r11 = pVM->rem.s.Env.regs[11];
2122 pCtx->r12 = pVM->rem.s.Env.regs[12];
2123 pCtx->r13 = pVM->rem.s.Env.regs[13];
2124 pCtx->r14 = pVM->rem.s.Env.regs[14];
2125 pCtx->r15 = pVM->rem.s.Env.regs[15];
2126
2127 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2128
2129#else
2130 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2131 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2132 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2133 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2134 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2135 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2136 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2137
2138 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2139#endif
2140
2141 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2142
2143#ifdef VBOX_WITH_STATISTICS
2144 if (pVM->rem.s.Env.segs[R_SS].newselector)
2145 {
2146 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2147 }
2148 if (pVM->rem.s.Env.segs[R_GS].newselector)
2149 {
2150 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2151 }
2152 if (pVM->rem.s.Env.segs[R_FS].newselector)
2153 {
2154 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2155 }
2156 if (pVM->rem.s.Env.segs[R_ES].newselector)
2157 {
2158 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2159 }
2160 if (pVM->rem.s.Env.segs[R_DS].newselector)
2161 {
2162 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2163 }
2164 if (pVM->rem.s.Env.segs[R_CS].newselector)
2165 {
2166 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2167 }
2168#endif
2169 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2170 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2171 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2172 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2173 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2174
2175#ifdef TARGET_X86_64
2176 pCtx->rip = pVM->rem.s.Env.eip;
2177 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2178#else
2179 pCtx->eip = pVM->rem.s.Env.eip;
2180 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2181#endif
2182
2183 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2184 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2185 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2186 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2187
2188 for (i=0;i<8;i++)
2189 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2190
2191 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2192 if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
2193 {
2194 pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
2195 STAM_COUNTER_INC(&gStatREMGDTChange);
2196 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2197 }
2198
2199 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2200 if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
2201 {
2202 pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
2203 STAM_COUNTER_INC(&gStatREMIDTChange);
2204 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2205 }
2206
2207 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2208 {
2209 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2210 STAM_COUNTER_INC(&gStatREMLDTRChange);
2211 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2212 }
2213 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2214 {
2215 pCtx->tr = pVM->rem.s.Env.tr.selector;
2216 STAM_COUNTER_INC(&gStatREMTRChange);
2217 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2218 }
2219
2220 /** @todo These values could still be out of sync! */
2221 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2222 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2223 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2224 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2225
2226 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2227 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2228 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2229
2230 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2231 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2232 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2233
2234 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2235 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2236 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2237
2238 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2239 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2240 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2241
2242 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2243 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2244 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2245
2246 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2247 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2248 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2249
2250 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2251 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2252 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2253
2254 /* Sysenter MSR */
2255 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2256 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2257 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2258
2259 /* System MSRs. */
2260 pCtx->msrEFER = pVM->rem.s.Env.efer;
2261 pCtx->msrSTAR = pVM->rem.s.Env.star;
2262 pCtx->msrPAT = pVM->rem.s.Env.pat;
2263#ifdef TARGET_X86_64
2264 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2265 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2266 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2267 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2268#endif
2269
2270 remR3TrapClear(pVM);
2271
2272 /*
2273 * Check for traps.
2274 */
2275 if ( pVM->rem.s.Env.exception_index >= 0
2276 && pVM->rem.s.Env.exception_index < 256)
2277 {
2278 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2279 int rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2280 AssertRC(rc);
2281 switch (pVM->rem.s.Env.exception_index)
2282 {
2283 case 0x0e:
2284 TRPMSetFaultAddress(pVM, pCtx->cr2);
2285 /* fallthru */
2286 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2287 case 0x11: case 0x08: /* 0 */
2288 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2289 break;
2290 }
2291
2292 }
2293
2294 /*
2295 * We're not longer in REM mode.
2296 */
2297 pVM->rem.s.fInREM = false;
2298 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2299 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2300 return VINF_SUCCESS;
2301}
2302
2303
2304/**
2305 * This is called by the disassembler when it wants to update the cpu state
2306 * before for instance doing a register dump.
2307 */
2308static void remR3StateUpdate(PVM pVM)
2309{
2310 Assert(pVM->rem.s.fInREM);
2311 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2312 unsigned i;
2313
2314 /*
2315 * Copy back the registers.
2316 * This is done in the order they are declared in the CPUMCTX structure.
2317 */
2318
2319 /** @todo FOP */
2320 /** @todo FPUIP */
2321 /** @todo CS */
2322 /** @todo FPUDP */
2323 /** @todo DS */
2324 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2325 pCtx->fpu.MXCSR = 0;
2326 pCtx->fpu.MXCSR_MASK = 0;
2327
2328 /** @todo check if FPU/XMM was actually used in the recompiler */
2329 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2330//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2331
2332#ifdef TARGET_X86_64
2333 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2334 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2335 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2336 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2337 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2338 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2339 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2340 pCtx->r8 = pVM->rem.s.Env.regs[8];
2341 pCtx->r9 = pVM->rem.s.Env.regs[9];
2342 pCtx->r10 = pVM->rem.s.Env.regs[10];
2343 pCtx->r11 = pVM->rem.s.Env.regs[11];
2344 pCtx->r12 = pVM->rem.s.Env.regs[12];
2345 pCtx->r13 = pVM->rem.s.Env.regs[13];
2346 pCtx->r14 = pVM->rem.s.Env.regs[14];
2347 pCtx->r15 = pVM->rem.s.Env.regs[15];
2348
2349 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2350#else
2351 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2352 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2353 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2354 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2355 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2356 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2357 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2358
2359 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2360#endif
2361
2362 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2363
2364 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2365 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2366 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2367 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2368 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2369
2370#ifdef TARGET_X86_64
2371 pCtx->rip = pVM->rem.s.Env.eip;
2372 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2373#else
2374 pCtx->eip = pVM->rem.s.Env.eip;
2375 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2376#endif
2377
2378 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2379 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2380 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2381 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2382
2383 for (i=0;i<8;i++)
2384 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2385
2386 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2387 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2388 {
2389 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2390 STAM_COUNTER_INC(&gStatREMGDTChange);
2391 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2392 }
2393
2394 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2395 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2396 {
2397 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2398 STAM_COUNTER_INC(&gStatREMIDTChange);
2399 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2400 }
2401
2402 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2403 {
2404 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2405 STAM_COUNTER_INC(&gStatREMLDTRChange);
2406 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2407 }
2408 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2409 {
2410 pCtx->tr = pVM->rem.s.Env.tr.selector;
2411 STAM_COUNTER_INC(&gStatREMTRChange);
2412 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2413 }
2414
2415 /** @todo These values could still be out of sync! */
2416 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2417 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2418 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2419 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2420
2421 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2422 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2423 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2424
2425 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2426 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2427 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2428
2429 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2430 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2431 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2432
2433 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2434 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2435 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2436
2437 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2438 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2439 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2440
2441 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2442 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2443 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2444
2445 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2446 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2447 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2448
2449 /* Sysenter MSR */
2450 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2451 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2452 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2453
2454 /* System MSRs. */
2455 pCtx->msrEFER = pVM->rem.s.Env.efer;
2456 pCtx->msrSTAR = pVM->rem.s.Env.star;
2457 pCtx->msrPAT = pVM->rem.s.Env.pat;
2458#ifdef TARGET_X86_64
2459 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2460 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2461 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2462 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2463#endif
2464
2465}
2466
2467
2468/**
2469 * Update the VMM state information if we're currently in REM.
2470 *
2471 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2472 * we're currently executing in REM and the VMM state is invalid. This method will of
2473 * course check that we're executing in REM before syncing any data over to the VMM.
2474 *
2475 * @param pVM The VM handle.
2476 */
2477REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2478{
2479 if (pVM->rem.s.fInREM)
2480 remR3StateUpdate(pVM);
2481}
2482
2483
2484#undef LOG_GROUP
2485#define LOG_GROUP LOG_GROUP_REM
2486
2487
2488/**
2489 * Notify the recompiler about Address Gate 20 state change.
2490 *
2491 * This notification is required since A20 gate changes are
2492 * initialized from a device driver and the VM might just as
2493 * well be in REM mode as in RAW mode.
2494 *
2495 * @param pVM VM handle.
2496 * @param fEnable True if the gate should be enabled.
2497 * False if the gate should be disabled.
2498 */
2499REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2500{
2501 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2502 VM_ASSERT_EMT(pVM);
2503
2504 bool fSaved = pVM->rem.s.fIgnoreAll; /* just in case. */
2505 pVM->rem.s.fIgnoreAll = fSaved || !pVM->rem.s.fInREM;
2506
2507 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2508
2509 pVM->rem.s.fIgnoreAll = fSaved;
2510}
2511
2512
2513/**
2514 * Replays the invalidated recorded pages.
2515 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2516 *
2517 * @param pVM VM handle.
2518 */
2519REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2520{
2521 VM_ASSERT_EMT(pVM);
2522
2523 /*
2524 * Sync the required registers.
2525 */
2526 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2527 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2528 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2529 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2530
2531 /*
2532 * Replay the flushes.
2533 */
2534 pVM->rem.s.fIgnoreInvlPg = true;
2535 RTUINT i;
2536 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2537 {
2538 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2539 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2540 }
2541 pVM->rem.s.fIgnoreInvlPg = false;
2542 pVM->rem.s.cInvalidatedPages = 0;
2543}
2544
2545
2546/**
2547 * Replays the handler notification changes
2548 * Called in response to VM_FF_REM_HANDLER_NOTIFY from the RAW execution loop.
2549 *
2550 * @param pVM VM handle.
2551 */
2552REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2553{
2554 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2555 VM_ASSERT_EMT(pVM);
2556
2557 /*
2558 * Replay the flushes.
2559 */
2560 RTUINT i;
2561 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2562 pVM->rem.s.cHandlerNotifications = 0;
2563 for (i = 0; i < c; i++)
2564 {
2565 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2566 switch (pRec->enmKind)
2567 {
2568 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2569 REMR3NotifyHandlerPhysicalRegister(pVM,
2570 pRec->u.PhysicalRegister.enmType,
2571 pRec->u.PhysicalRegister.GCPhys,
2572 pRec->u.PhysicalRegister.cb,
2573 pRec->u.PhysicalRegister.fHasHCHandler);
2574 break;
2575
2576 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2577 REMR3NotifyHandlerPhysicalDeregister(pVM,
2578 pRec->u.PhysicalDeregister.enmType,
2579 pRec->u.PhysicalDeregister.GCPhys,
2580 pRec->u.PhysicalDeregister.cb,
2581 pRec->u.PhysicalDeregister.fHasHCHandler,
2582 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2583 break;
2584
2585 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2586 REMR3NotifyHandlerPhysicalModify(pVM,
2587 pRec->u.PhysicalModify.enmType,
2588 pRec->u.PhysicalModify.GCPhysOld,
2589 pRec->u.PhysicalModify.GCPhysNew,
2590 pRec->u.PhysicalModify.cb,
2591 pRec->u.PhysicalModify.fHasHCHandler,
2592 pRec->u.PhysicalModify.fRestoreAsRAM);
2593 break;
2594
2595 default:
2596 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2597 break;
2598 }
2599 }
2600 VM_FF_CLEAR(pVM, VM_FF_REM_HANDLER_NOTIFY);
2601}
2602
2603
2604/**
2605 * Notify REM about changed code page.
2606 *
2607 * @returns VBox status code.
2608 * @param pVM VM handle.
2609 * @param pvCodePage Code page address
2610 */
2611REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2612{
2613#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
2614 int rc;
2615 RTGCPHYS PhysGC;
2616 uint64_t flags;
2617
2618 VM_ASSERT_EMT(pVM);
2619
2620 /*
2621 * Get the physical page address.
2622 */
2623 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2624 if (rc == VINF_SUCCESS)
2625 {
2626 /*
2627 * Sync the required registers and flush the whole page.
2628 * (Easier to do the whole page than notifying it about each physical
2629 * byte that was changed.
2630 */
2631 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2632 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2633 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2634 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2635
2636 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2637 }
2638#endif
2639 return VINF_SUCCESS;
2640}
2641
2642
2643/**
2644 * Notification about a successful MMR3PhysRegister() call.
2645 *
2646 * @param pVM VM handle.
2647 * @param GCPhys The physical address the RAM.
2648 * @param cb Size of the memory.
2649 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2650 */
2651REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, unsigned fFlags)
2652{
2653 Log(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d fFlags=%d\n", GCPhys, cb, fFlags));
2654 VM_ASSERT_EMT(pVM);
2655
2656 /*
2657 * Validate input - we trust the caller.
2658 */
2659 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2660 Assert(cb);
2661 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2662
2663 /*
2664 * Base ram?
2665 */
2666 if (!GCPhys)
2667 {
2668 phys_ram_size = cb;
2669 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2670#ifndef VBOX_STRICT
2671 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2672 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2673#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2674 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2675 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2676 uint32_t cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2677 int rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2678 AssertRC(rc);
2679 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2680#endif
2681 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2682 }
2683
2684 /*
2685 * Register the ram.
2686 */
2687 Assert(!pVM->rem.s.fIgnoreAll);
2688 pVM->rem.s.fIgnoreAll = true;
2689
2690#ifdef VBOX_WITH_NEW_PHYS_CODE
2691 if (fFlags & MM_RAM_FLAGS_RESERVED)
2692 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2693 else
2694 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2695#else
2696 if (!GCPhys)
2697 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2698 else
2699 {
2700 if (fFlags & MM_RAM_FLAGS_RESERVED)
2701 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2702 else
2703 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2704 }
2705#endif
2706 Assert(pVM->rem.s.fIgnoreAll);
2707 pVM->rem.s.fIgnoreAll = false;
2708}
2709
2710#ifndef VBOX_WITH_NEW_PHYS_CODE
2711
2712/**
2713 * Notification about a successful PGMR3PhysRegisterChunk() call.
2714 *
2715 * @param pVM VM handle.
2716 * @param GCPhys The physical address the RAM.
2717 * @param cb Size of the memory.
2718 * @param pvRam The HC address of the RAM.
2719 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2720 */
2721REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2722{
2723 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2724 VM_ASSERT_EMT(pVM);
2725
2726 /*
2727 * Validate input - we trust the caller.
2728 */
2729 Assert(pvRam);
2730 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2731 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2732 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2733 Assert(fFlags == 0 /* normal RAM */);
2734 Assert(!pVM->rem.s.fIgnoreAll);
2735 pVM->rem.s.fIgnoreAll = true;
2736
2737 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2738
2739 Assert(pVM->rem.s.fIgnoreAll);
2740 pVM->rem.s.fIgnoreAll = false;
2741}
2742
2743
2744/**
2745 * Grows dynamically allocated guest RAM.
2746 * Will raise a fatal error if the operation fails.
2747 *
2748 * @param physaddr The physical address.
2749 */
2750void remR3GrowDynRange(unsigned long physaddr)
2751{
2752 int rc;
2753 PVM pVM = cpu_single_env->pVM;
2754
2755 LogFlow(("remR3GrowDynRange %VGp\n", physaddr));
2756 const RTGCPHYS GCPhys = physaddr;
2757 rc = PGM3PhysGrowRange(pVM, &GCPhys);
2758 if (VBOX_SUCCESS(rc))
2759 return;
2760
2761 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2762 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2763 AssertFatalFailed();
2764}
2765
2766#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2767
2768/**
2769 * Notification about a successful MMR3PhysRomRegister() call.
2770 *
2771 * @param pVM VM handle.
2772 * @param GCPhys The physical address of the ROM.
2773 * @param cb The size of the ROM.
2774 * @param pvCopy Pointer to the ROM copy.
2775 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2776 * This function will be called when ever the protection of the
2777 * shadow ROM changes (at reset and end of POST).
2778 */
2779REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2780{
2781 Log(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p fShadow=%RTbool\n", GCPhys, cb, pvCopy, fShadow));
2782 VM_ASSERT_EMT(pVM);
2783
2784 /*
2785 * Validate input - we trust the caller.
2786 */
2787 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2788 Assert(cb);
2789 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2790 Assert(pvCopy);
2791 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2792
2793 /*
2794 * Register the rom.
2795 */
2796 Assert(!pVM->rem.s.fIgnoreAll);
2797 pVM->rem.s.fIgnoreAll = true;
2798
2799 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2800
2801 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2802
2803 Assert(pVM->rem.s.fIgnoreAll);
2804 pVM->rem.s.fIgnoreAll = false;
2805}
2806
2807
2808/**
2809 * Notification about a successful memory deregistration or reservation.
2810 *
2811 * @param pVM VM Handle.
2812 * @param GCPhys Start physical address.
2813 * @param cb The size of the range.
2814 * @todo Rename to REMR3NotifyPhysRamDeregister (for MMIO2) as we won't
2815 * reserve any memory soon.
2816 */
2817REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2818{
2819 Log(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2820 VM_ASSERT_EMT(pVM);
2821
2822 /*
2823 * Validate input - we trust the caller.
2824 */
2825 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2826 Assert(cb);
2827 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2828
2829 /*
2830 * Unassigning the memory.
2831 */
2832 Assert(!pVM->rem.s.fIgnoreAll);
2833 pVM->rem.s.fIgnoreAll = true;
2834
2835 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2836
2837 Assert(pVM->rem.s.fIgnoreAll);
2838 pVM->rem.s.fIgnoreAll = false;
2839}
2840
2841
2842/**
2843 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2844 *
2845 * @param pVM VM Handle.
2846 * @param enmType Handler type.
2847 * @param GCPhys Handler range address.
2848 * @param cb Size of the handler range.
2849 * @param fHasHCHandler Set if the handler has a HC callback function.
2850 *
2851 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2852 * Handler memory type to memory which has no HC handler.
2853 */
2854REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2855{
2856 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%VGp fHasHCHandler=%d\n",
2857 enmType, GCPhys, cb, fHasHCHandler));
2858 VM_ASSERT_EMT(pVM);
2859 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2860 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2861
2862 if (pVM->rem.s.cHandlerNotifications)
2863 REMR3ReplayHandlerNotifications(pVM);
2864
2865 Assert(!pVM->rem.s.fIgnoreAll);
2866 pVM->rem.s.fIgnoreAll = true;
2867
2868 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2869 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2870 else if (fHasHCHandler)
2871 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2872
2873 Assert(pVM->rem.s.fIgnoreAll);
2874 pVM->rem.s.fIgnoreAll = false;
2875}
2876
2877
2878/**
2879 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2880 *
2881 * @param pVM VM Handle.
2882 * @param enmType Handler type.
2883 * @param GCPhys Handler range address.
2884 * @param cb Size of the handler range.
2885 * @param fHasHCHandler Set if the handler has a HC callback function.
2886 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2887 */
2888REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2889{
2890 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%VGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2891 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2892 VM_ASSERT_EMT(pVM);
2893
2894 if (pVM->rem.s.cHandlerNotifications)
2895 REMR3ReplayHandlerNotifications(pVM);
2896
2897 Assert(!pVM->rem.s.fIgnoreAll);
2898 pVM->rem.s.fIgnoreAll = true;
2899
2900/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
2901 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2902 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2903 else if (fHasHCHandler)
2904 {
2905 if (!fRestoreAsRAM)
2906 {
2907 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2908 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2909 }
2910 else
2911 {
2912 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2913 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2914 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2915 }
2916 }
2917
2918 Assert(pVM->rem.s.fIgnoreAll);
2919 pVM->rem.s.fIgnoreAll = false;
2920}
2921
2922
2923/**
2924 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2925 *
2926 * @param pVM VM Handle.
2927 * @param enmType Handler type.
2928 * @param GCPhysOld Old handler range address.
2929 * @param GCPhysNew New handler range address.
2930 * @param cb Size of the handler range.
2931 * @param fHasHCHandler Set if the handler has a HC callback function.
2932 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2933 */
2934REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2935{
2936 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%VGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
2937 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
2938 VM_ASSERT_EMT(pVM);
2939 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2940
2941 if (pVM->rem.s.cHandlerNotifications)
2942 REMR3ReplayHandlerNotifications(pVM);
2943
2944 if (fHasHCHandler)
2945 {
2946 Assert(!pVM->rem.s.fIgnoreAll);
2947 pVM->rem.s.fIgnoreAll = true;
2948
2949 /*
2950 * Reset the old page.
2951 */
2952 if (!fRestoreAsRAM)
2953 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2954 else
2955 {
2956 /* This is not perfect, but it'll do for PD monitoring... */
2957 Assert(cb == PAGE_SIZE);
2958 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2959 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2960 }
2961
2962 /*
2963 * Update the new page.
2964 */
2965 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2966 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2967 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2968
2969 Assert(pVM->rem.s.fIgnoreAll);
2970 pVM->rem.s.fIgnoreAll = false;
2971 }
2972}
2973
2974
2975/**
2976 * Checks if we're handling access to this page or not.
2977 *
2978 * @returns true if we're trapping access.
2979 * @returns false if we aren't.
2980 * @param pVM The VM handle.
2981 * @param GCPhys The physical address.
2982 *
2983 * @remark This function will only work correctly in VBOX_STRICT builds!
2984 */
2985REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
2986{
2987#ifdef VBOX_STRICT
2988 if (pVM->rem.s.cHandlerNotifications)
2989 REMR3ReplayHandlerNotifications(pVM);
2990
2991 unsigned long off = get_phys_page_offset(GCPhys);
2992 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
2993 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
2994 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
2995#else
2996 return false;
2997#endif
2998}
2999
3000
3001/**
3002 * Deals with a rare case in get_phys_addr_code where the code
3003 * is being monitored.
3004 *
3005 * It could also be an MMIO page, in which case we will raise a fatal error.
3006 *
3007 * @returns The physical address corresponding to addr.
3008 * @param env The cpu environment.
3009 * @param addr The virtual address.
3010 * @param pTLBEntry The TLB entry.
3011 */
3012target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
3013{
3014 PVM pVM = env->pVM;
3015 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
3016 {
3017 target_ulong ret = pTLBEntry->addend + addr;
3018 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv addr_code=%VGv addend=%VGp ret=%VGp\n",
3019 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
3020 return ret;
3021 }
3022 LogRel(("\nTrying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
3023 "*** handlers\n",
3024 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
3025 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
3026 LogRel(("*** mmio\n"));
3027 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
3028 LogRel(("*** phys\n"));
3029 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
3030 cpu_abort(env, "Trying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
3031 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
3032 AssertFatalFailed();
3033}
3034
3035
3036/** Validate the physical address passed to the read functions.
3037 * Useful for finding non-guest-ram reads/writes. */
3038#if 0 //1 /* disable if it becomes bothersome... */
3039# define VBOX_CHECK_ADDR(GCPhys) AssertMsg(PGMPhysIsGCPhysValid(cpu_single_env->pVM, (GCPhys)), ("%VGp\n", (GCPhys)))
3040#else
3041# define VBOX_CHECK_ADDR(GCPhys) do { } while (0)
3042#endif
3043
3044/**
3045 * Read guest RAM and ROM.
3046 *
3047 * @param SrcGCPhys The source address (guest physical).
3048 * @param pvDst The destination address.
3049 * @param cb Number of bytes
3050 */
3051void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3052{
3053 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3054 VBOX_CHECK_ADDR(SrcGCPhys);
3055 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3056 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3057}
3058
3059
3060/**
3061 * Read guest RAM and ROM, unsigned 8-bit.
3062 *
3063 * @param SrcGCPhys The source address (guest physical).
3064 */
3065uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3066{
3067 uint8_t val;
3068 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3069 VBOX_CHECK_ADDR(SrcGCPhys);
3070 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3071 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3072 return val;
3073}
3074
3075
3076/**
3077 * Read guest RAM and ROM, signed 8-bit.
3078 *
3079 * @param SrcGCPhys The source address (guest physical).
3080 */
3081int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3082{
3083 int8_t val;
3084 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3085 VBOX_CHECK_ADDR(SrcGCPhys);
3086 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3087 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3088 return val;
3089}
3090
3091
3092/**
3093 * Read guest RAM and ROM, unsigned 16-bit.
3094 *
3095 * @param SrcGCPhys The source address (guest physical).
3096 */
3097uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3098{
3099 uint16_t val;
3100 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3101 VBOX_CHECK_ADDR(SrcGCPhys);
3102 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3103 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3104 return val;
3105}
3106
3107
3108/**
3109 * Read guest RAM and ROM, signed 16-bit.
3110 *
3111 * @param SrcGCPhys The source address (guest physical).
3112 */
3113int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3114{
3115 uint16_t val;
3116 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3117 VBOX_CHECK_ADDR(SrcGCPhys);
3118 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3119 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3120 return val;
3121}
3122
3123
3124/**
3125 * Read guest RAM and ROM, unsigned 32-bit.
3126 *
3127 * @param SrcGCPhys The source address (guest physical).
3128 */
3129uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3130{
3131 uint32_t val;
3132 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3133 VBOX_CHECK_ADDR(SrcGCPhys);
3134 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3135 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3136 return val;
3137}
3138
3139
3140/**
3141 * Read guest RAM and ROM, signed 32-bit.
3142 *
3143 * @param SrcGCPhys The source address (guest physical).
3144 */
3145int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3146{
3147 int32_t val;
3148 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3149 VBOX_CHECK_ADDR(SrcGCPhys);
3150 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3151 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3152 return val;
3153}
3154
3155
3156/**
3157 * Read guest RAM and ROM, unsigned 64-bit.
3158 *
3159 * @param SrcGCPhys The source address (guest physical).
3160 */
3161uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3162{
3163 uint64_t val;
3164 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3165 VBOX_CHECK_ADDR(SrcGCPhys);
3166 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3167 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3168 return val;
3169}
3170
3171
3172/**
3173 * Write guest RAM.
3174 *
3175 * @param DstGCPhys The destination address (guest physical).
3176 * @param pvSrc The source address.
3177 * @param cb Number of bytes to write
3178 */
3179void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3180{
3181 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3182 VBOX_CHECK_ADDR(DstGCPhys);
3183 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3184 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3185}
3186
3187
3188/**
3189 * Write guest RAM, unsigned 8-bit.
3190 *
3191 * @param DstGCPhys The destination address (guest physical).
3192 * @param val Value
3193 */
3194void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3195{
3196 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3197 VBOX_CHECK_ADDR(DstGCPhys);
3198 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3199 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3200}
3201
3202
3203/**
3204 * Write guest RAM, unsigned 8-bit.
3205 *
3206 * @param DstGCPhys The destination address (guest physical).
3207 * @param val Value
3208 */
3209void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3210{
3211 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3212 VBOX_CHECK_ADDR(DstGCPhys);
3213 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3214 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3215}
3216
3217
3218/**
3219 * Write guest RAM, unsigned 32-bit.
3220 *
3221 * @param DstGCPhys The destination address (guest physical).
3222 * @param val Value
3223 */
3224void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3225{
3226 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3227 VBOX_CHECK_ADDR(DstGCPhys);
3228 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3229 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3230}
3231
3232
3233/**
3234 * Write guest RAM, unsigned 64-bit.
3235 *
3236 * @param DstGCPhys The destination address (guest physical).
3237 * @param val Value
3238 */
3239void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3240{
3241 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3242 VBOX_CHECK_ADDR(DstGCPhys);
3243 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3244 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3245}
3246
3247#undef LOG_GROUP
3248#define LOG_GROUP LOG_GROUP_REM_MMIO
3249
3250/** Read MMIO memory. */
3251static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3252{
3253 uint32_t u32 = 0;
3254 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3255 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3256 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3257 return u32;
3258}
3259
3260/** Read MMIO memory. */
3261static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3262{
3263 uint32_t u32 = 0;
3264 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3265 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3266 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3267 return u32;
3268}
3269
3270/** Read MMIO memory. */
3271static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3272{
3273 uint32_t u32 = 0;
3274 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3275 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3276 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3277 return u32;
3278}
3279
3280/** Write to MMIO memory. */
3281static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3282{
3283 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3284 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3285 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3286}
3287
3288/** Write to MMIO memory. */
3289static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3290{
3291 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3292 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3293 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3294}
3295
3296/** Write to MMIO memory. */
3297static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3298{
3299 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3300 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3301 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3302}
3303
3304
3305#undef LOG_GROUP
3306#define LOG_GROUP LOG_GROUP_REM_HANDLER
3307
3308/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3309
3310static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3311{
3312 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3313 uint8_t u8;
3314 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3315 return u8;
3316}
3317
3318static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3319{
3320 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3321 uint16_t u16;
3322 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3323 return u16;
3324}
3325
3326static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3327{
3328 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3329 uint32_t u32;
3330 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3331 return u32;
3332}
3333
3334static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3335{
3336 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3337 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3338}
3339
3340static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3341{
3342 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3343 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3344}
3345
3346static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3347{
3348 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3349 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3350}
3351
3352/* -+- disassembly -+- */
3353
3354#undef LOG_GROUP
3355#define LOG_GROUP LOG_GROUP_REM_DISAS
3356
3357
3358/**
3359 * Enables or disables singled stepped disassembly.
3360 *
3361 * @returns VBox status code.
3362 * @param pVM VM handle.
3363 * @param fEnable To enable set this flag, to disable clear it.
3364 */
3365static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3366{
3367 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3368 VM_ASSERT_EMT(pVM);
3369
3370 if (fEnable)
3371 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3372 else
3373 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3374 return VINF_SUCCESS;
3375}
3376
3377
3378/**
3379 * Enables or disables singled stepped disassembly.
3380 *
3381 * @returns VBox status code.
3382 * @param pVM VM handle.
3383 * @param fEnable To enable set this flag, to disable clear it.
3384 */
3385REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3386{
3387 PVMREQ pReq;
3388 int rc;
3389
3390 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3391 if (VM_IS_EMT(pVM))
3392 return remR3DisasEnableStepping(pVM, fEnable);
3393
3394 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3395 AssertRC(rc);
3396 if (VBOX_SUCCESS(rc))
3397 rc = pReq->iStatus;
3398 VMR3ReqFree(pReq);
3399 return rc;
3400}
3401
3402
3403#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3404/**
3405 * External Debugger Command: .remstep [on|off|1|0]
3406 */
3407static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3408{
3409 bool fEnable;
3410 int rc;
3411
3412 /* print status */
3413 if (cArgs == 0)
3414 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3415 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3416
3417 /* convert the argument and change the mode. */
3418 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3419 if (VBOX_FAILURE(rc))
3420 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3421 rc = REMR3DisasEnableStepping(pVM, fEnable);
3422 if (VBOX_FAILURE(rc))
3423 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3424 return rc;
3425}
3426#endif
3427
3428
3429/**
3430 * Disassembles n instructions and prints them to the log.
3431 *
3432 * @returns Success indicator.
3433 * @param env Pointer to the recompiler CPU structure.
3434 * @param f32BitCode Indicates that whether or not the code should
3435 * be disassembled as 16 or 32 bit. If -1 the CS
3436 * selector will be inspected.
3437 * @param nrInstructions Nr of instructions to disassemble
3438 * @param pszPrefix
3439 * @remark not currently used for anything but ad-hoc debugging.
3440 */
3441bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3442{
3443 int i;
3444
3445 /*
3446 * Determin 16/32 bit mode.
3447 */
3448 if (f32BitCode == -1)
3449 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3450
3451 /*
3452 * Convert cs:eip to host context address.
3453 * We don't care to much about cross page correctness presently.
3454 */
3455 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3456 void *pvPC;
3457 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3458 {
3459 Assert(PGMGetGuestMode(env->pVM) < PGMMODE_AMD64);
3460
3461 /* convert eip to physical address. */
3462 int rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3463 GCPtrPC,
3464 env->cr[3],
3465 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3466 &pvPC);
3467 if (VBOX_FAILURE(rc))
3468 {
3469 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3470 return false;
3471 pvPC = (char *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3472 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3473 }
3474 }
3475 else
3476 {
3477 /* physical address */
3478 int rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16, &pvPC);
3479 if (VBOX_FAILURE(rc))
3480 return false;
3481 }
3482
3483 /*
3484 * Disassemble.
3485 */
3486 RTINTPTR off = env->eip - (RTGCUINTPTR)pvPC;
3487 DISCPUSTATE Cpu;
3488 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3489 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3490 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3491 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3492 //Cpu.dwUserData[2] = GCPtrPC;
3493
3494 for (i=0;i<nrInstructions;i++)
3495 {
3496 char szOutput[256];
3497 uint32_t cbOp;
3498 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3499 return false;
3500 if (pszPrefix)
3501 Log(("%s: %s", pszPrefix, szOutput));
3502 else
3503 Log(("%s", szOutput));
3504
3505 pvPC += cbOp;
3506 }
3507 return true;
3508}
3509
3510
3511/** @todo need to test the new code, using the old code in the mean while. */
3512#define USE_OLD_DUMP_AND_DISASSEMBLY
3513
3514/**
3515 * Disassembles one instruction and prints it to the log.
3516 *
3517 * @returns Success indicator.
3518 * @param env Pointer to the recompiler CPU structure.
3519 * @param f32BitCode Indicates that whether or not the code should
3520 * be disassembled as 16 or 32 bit. If -1 the CS
3521 * selector will be inspected.
3522 * @param pszPrefix
3523 */
3524bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3525{
3526#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3527 PVM pVM = env->pVM;
3528
3529 /* Doesn't work in long mode. */
3530 if (env->hflags & HF_LMA_MASK)
3531 return false;
3532
3533 /*
3534 * Determin 16/32 bit mode.
3535 */
3536 if (f32BitCode == -1)
3537 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3538
3539 /*
3540 * Log registers
3541 */
3542 if (LogIs2Enabled())
3543 {
3544 remR3StateUpdate(pVM);
3545 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3546 }
3547
3548 /*
3549 * Convert cs:eip to host context address.
3550 * We don't care to much about cross page correctness presently.
3551 */
3552 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3553 void *pvPC;
3554 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3555 {
3556 /* convert eip to physical address. */
3557 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
3558 GCPtrPC,
3559 env->cr[3],
3560 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3561 &pvPC);
3562 if (VBOX_FAILURE(rc))
3563 {
3564 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3565 return false;
3566 pvPC = (char *)PATMR3QueryPatchMemHC(pVM, NULL)
3567 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3568 }
3569 }
3570 else
3571 {
3572
3573 /* physical address */
3574 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, &pvPC);
3575 if (VBOX_FAILURE(rc))
3576 return false;
3577 }
3578
3579 /*
3580 * Disassemble.
3581 */
3582 RTINTPTR off = env->eip - (RTGCUINTPTR)pvPC;
3583 DISCPUSTATE Cpu;
3584 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3585 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3586 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3587 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3588 //Cpu.dwUserData[2] = GCPtrPC;
3589 char szOutput[256];
3590 uint32_t cbOp;
3591 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3592 return false;
3593
3594 if (!f32BitCode)
3595 {
3596 if (pszPrefix)
3597 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3598 else
3599 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3600 }
3601 else
3602 {
3603 if (pszPrefix)
3604 Log(("%s: %s", pszPrefix, szOutput));
3605 else
3606 Log(("%s", szOutput));
3607 }
3608 return true;
3609
3610#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3611 PVM pVM = env->pVM;
3612 const bool fLog = LogIsEnabled();
3613 const bool fLog2 = LogIs2Enabled();
3614 int rc = VINF_SUCCESS;
3615
3616 /*
3617 * Don't bother if there ain't any log output to do.
3618 */
3619 if (!fLog && !fLog2)
3620 return true;
3621
3622 /*
3623 * Update the state so DBGF reads the correct register values.
3624 */
3625 remR3StateUpdate(pVM);
3626
3627 /*
3628 * Log registers if requested.
3629 */
3630 if (!fLog2)
3631 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3632
3633 /*
3634 * Disassemble to log.
3635 */
3636 if (fLog)
3637 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3638
3639 return VBOX_SUCCESS(rc);
3640#endif
3641}
3642
3643
3644/**
3645 * Disassemble recompiled code.
3646 *
3647 * @param phFileIgnored Ignored, logfile usually.
3648 * @param pvCode Pointer to the code block.
3649 * @param cb Size of the code block.
3650 */
3651void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3652{
3653 if (LogIs2Enabled())
3654 {
3655 unsigned off = 0;
3656 char szOutput[256];
3657 DISCPUSTATE Cpu;
3658
3659 memset(&Cpu, 0, sizeof(Cpu));
3660#ifdef RT_ARCH_X86
3661 Cpu.mode = CPUMODE_32BIT;
3662#else
3663 Cpu.mode = CPUMODE_64BIT;
3664#endif
3665
3666 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3667 while (off < cb)
3668 {
3669 uint32_t cbInstr;
3670 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3671 RTLogPrintf("%s", szOutput);
3672 else
3673 {
3674 RTLogPrintf("disas error\n");
3675 cbInstr = 1;
3676#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3677 break;
3678#endif
3679 }
3680 off += cbInstr;
3681 }
3682 }
3683 NOREF(phFileIgnored);
3684}
3685
3686
3687/**
3688 * Disassemble guest code.
3689 *
3690 * @param phFileIgnored Ignored, logfile usually.
3691 * @param uCode The guest address of the code to disassemble. (flat?)
3692 * @param cb Number of bytes to disassemble.
3693 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3694 */
3695void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3696{
3697 if (LogIs2Enabled())
3698 {
3699 PVM pVM = cpu_single_env->pVM;
3700
3701 /*
3702 * Update the state so DBGF reads the correct register values (flags).
3703 */
3704 remR3StateUpdate(pVM);
3705
3706 /*
3707 * Do the disassembling.
3708 */
3709 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
3710 RTSEL cs = cpu_single_env->segs[R_CS].selector;
3711 RTGCUINTPTR eip = uCode - cpu_single_env->segs[R_CS].base;
3712 for (;;)
3713 {
3714 char szBuf[256];
3715 uint32_t cbInstr;
3716 int rc = DBGFR3DisasInstrEx(pVM,
3717 cs,
3718 eip,
3719 0,
3720 szBuf, sizeof(szBuf),
3721 &cbInstr);
3722 if (VBOX_SUCCESS(rc))
3723 RTLogPrintf("%VGp %s\n", uCode, szBuf);
3724 else
3725 {
3726 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
3727 cbInstr = 1;
3728 }
3729
3730 /* next */
3731 if (cb <= cbInstr)
3732 break;
3733 cb -= cbInstr;
3734 uCode += cbInstr;
3735 eip += cbInstr;
3736 }
3737 }
3738 NOREF(phFileIgnored);
3739}
3740
3741
3742/**
3743 * Looks up a guest symbol.
3744 *
3745 * @returns Pointer to symbol name. This is a static buffer.
3746 * @param orig_addr The address in question.
3747 */
3748const char *lookup_symbol(target_ulong orig_addr)
3749{
3750 RTGCINTPTR off = 0;
3751 DBGFSYMBOL Sym;
3752 PVM pVM = cpu_single_env->pVM;
3753 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3754 if (VBOX_SUCCESS(rc))
3755 {
3756 static char szSym[sizeof(Sym.szName) + 48];
3757 if (!off)
3758 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3759 else if (off > 0)
3760 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3761 else
3762 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3763 return szSym;
3764 }
3765 return "<N/A>";
3766}
3767
3768
3769#undef LOG_GROUP
3770#define LOG_GROUP LOG_GROUP_REM
3771
3772
3773/* -+- FF notifications -+- */
3774
3775
3776/**
3777 * Notification about a pending interrupt.
3778 *
3779 * @param pVM VM Handle.
3780 * @param u8Interrupt Interrupt
3781 * @thread The emulation thread.
3782 */
3783REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3784{
3785 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3786 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3787}
3788
3789/**
3790 * Notification about a pending interrupt.
3791 *
3792 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3793 * @param pVM VM Handle.
3794 * @thread The emulation thread.
3795 */
3796REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3797{
3798 return pVM->rem.s.u32PendingInterrupt;
3799}
3800
3801/**
3802 * Notification about the interrupt FF being set.
3803 *
3804 * @param pVM VM Handle.
3805 * @thread The emulation thread.
3806 */
3807REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3808{
3809 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3810 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3811 if (pVM->rem.s.fInREM)
3812 {
3813 if (VM_IS_EMT(pVM))
3814 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3815 else
3816 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_HARD);
3817 }
3818}
3819
3820
3821/**
3822 * Notification about the interrupt FF being set.
3823 *
3824 * @param pVM VM Handle.
3825 * @thread Any.
3826 */
3827REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3828{
3829 LogFlow(("REMR3NotifyInterruptClear:\n"));
3830 if (pVM->rem.s.fInREM)
3831 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3832}
3833
3834
3835/**
3836 * Notification about pending timer(s).
3837 *
3838 * @param pVM VM Handle.
3839 * @thread Any.
3840 */
3841REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3842{
3843#ifndef DEBUG_bird
3844 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3845#endif
3846 if (pVM->rem.s.fInREM)
3847 {
3848 if (VM_IS_EMT(pVM))
3849 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3850 else
3851 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_TIMER);
3852 }
3853}
3854
3855
3856/**
3857 * Notification about pending DMA transfers.
3858 *
3859 * @param pVM VM Handle.
3860 * @thread Any.
3861 */
3862REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3863{
3864 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3865 if (pVM->rem.s.fInREM)
3866 {
3867 if (VM_IS_EMT(pVM))
3868 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3869 else
3870 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_DMA);
3871 }
3872}
3873
3874
3875/**
3876 * Notification about pending timer(s).
3877 *
3878 * @param pVM VM Handle.
3879 * @thread Any.
3880 */
3881REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3882{
3883 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3884 if (pVM->rem.s.fInREM)
3885 {
3886 if (VM_IS_EMT(pVM))
3887 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3888 else
3889 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3890 }
3891}
3892
3893
3894/**
3895 * Notification about pending FF set by an external thread.
3896 *
3897 * @param pVM VM handle.
3898 * @thread Any.
3899 */
3900REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3901{
3902 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3903 if (pVM->rem.s.fInREM)
3904 {
3905 if (VM_IS_EMT(pVM))
3906 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3907 else
3908 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3909 }
3910}
3911
3912
3913#ifdef VBOX_WITH_STATISTICS
3914void remR3ProfileStart(int statcode)
3915{
3916 STAMPROFILEADV *pStat;
3917 switch(statcode)
3918 {
3919 case STATS_EMULATE_SINGLE_INSTR:
3920 pStat = &gStatExecuteSingleInstr;
3921 break;
3922 case STATS_QEMU_COMPILATION:
3923 pStat = &gStatCompilationQEmu;
3924 break;
3925 case STATS_QEMU_RUN_EMULATED_CODE:
3926 pStat = &gStatRunCodeQEmu;
3927 break;
3928 case STATS_QEMU_TOTAL:
3929 pStat = &gStatTotalTimeQEmu;
3930 break;
3931 case STATS_QEMU_RUN_TIMERS:
3932 pStat = &gStatTimers;
3933 break;
3934 case STATS_TLB_LOOKUP:
3935 pStat= &gStatTBLookup;
3936 break;
3937 case STATS_IRQ_HANDLING:
3938 pStat= &gStatIRQ;
3939 break;
3940 case STATS_RAW_CHECK:
3941 pStat = &gStatRawCheck;
3942 break;
3943
3944 default:
3945 AssertMsgFailed(("unknown stat %d\n", statcode));
3946 return;
3947 }
3948 STAM_PROFILE_ADV_START(pStat, a);
3949}
3950
3951
3952void remR3ProfileStop(int statcode)
3953{
3954 STAMPROFILEADV *pStat;
3955 switch(statcode)
3956 {
3957 case STATS_EMULATE_SINGLE_INSTR:
3958 pStat = &gStatExecuteSingleInstr;
3959 break;
3960 case STATS_QEMU_COMPILATION:
3961 pStat = &gStatCompilationQEmu;
3962 break;
3963 case STATS_QEMU_RUN_EMULATED_CODE:
3964 pStat = &gStatRunCodeQEmu;
3965 break;
3966 case STATS_QEMU_TOTAL:
3967 pStat = &gStatTotalTimeQEmu;
3968 break;
3969 case STATS_QEMU_RUN_TIMERS:
3970 pStat = &gStatTimers;
3971 break;
3972 case STATS_TLB_LOOKUP:
3973 pStat= &gStatTBLookup;
3974 break;
3975 case STATS_IRQ_HANDLING:
3976 pStat= &gStatIRQ;
3977 break;
3978 case STATS_RAW_CHECK:
3979 pStat = &gStatRawCheck;
3980 break;
3981 default:
3982 AssertMsgFailed(("unknown stat %d\n", statcode));
3983 return;
3984 }
3985 STAM_PROFILE_ADV_STOP(pStat, a);
3986}
3987#endif
3988
3989/**
3990 * Raise an RC, force rem exit.
3991 *
3992 * @param pVM VM handle.
3993 * @param rc The rc.
3994 */
3995void remR3RaiseRC(PVM pVM, int rc)
3996{
3997 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
3998 Assert(pVM->rem.s.fInREM);
3999 VM_ASSERT_EMT(pVM);
4000 pVM->rem.s.rc = rc;
4001 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
4002}
4003
4004
4005/* -+- timers -+- */
4006
4007uint64_t cpu_get_tsc(CPUX86State *env)
4008{
4009 STAM_COUNTER_INC(&gStatCpuGetTSC);
4010 return TMCpuTickGet(env->pVM);
4011}
4012
4013
4014/* -+- interrupts -+- */
4015
4016void cpu_set_ferr(CPUX86State *env)
4017{
4018 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
4019 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4020}
4021
4022int cpu_get_pic_interrupt(CPUState *env)
4023{
4024 uint8_t u8Interrupt;
4025 int rc;
4026
4027 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4028 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4029 * with the (a)pic.
4030 */
4031 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4032 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4033 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4034 * remove this kludge. */
4035 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4036 {
4037 rc = VINF_SUCCESS;
4038 Assert(env->pVM->rem.s.u32PendingInterrupt >= 0 && env->pVM->rem.s.u32PendingInterrupt <= 255);
4039 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4040 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4041 }
4042 else
4043 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4044
4045 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
4046 if (VBOX_SUCCESS(rc))
4047 {
4048 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4049 env->interrupt_request |= CPU_INTERRUPT_HARD;
4050 return u8Interrupt;
4051 }
4052 return -1;
4053}
4054
4055
4056/* -+- local apic -+- */
4057
4058void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4059{
4060 int rc = PDMApicSetBase(env->pVM, val);
4061 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
4062}
4063
4064uint64_t cpu_get_apic_base(CPUX86State *env)
4065{
4066 uint64_t u64;
4067 int rc = PDMApicGetBase(env->pVM, &u64);
4068 if (VBOX_SUCCESS(rc))
4069 {
4070 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4071 return u64;
4072 }
4073 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
4074 return 0;
4075}
4076
4077void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4078{
4079 int rc = PDMApicSetTPR(env->pVM, val);
4080 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
4081}
4082
4083uint8_t cpu_get_apic_tpr(CPUX86State *env)
4084{
4085 uint8_t u8;
4086 int rc = PDMApicGetTPR(env->pVM, &u8, NULL);
4087 if (VBOX_SUCCESS(rc))
4088 {
4089 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4090 return u8;
4091 }
4092 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
4093 return 0;
4094}
4095
4096
4097uint64_t cpu_apic_rdmsr(CPUX86State *env, uint32_t reg)
4098{
4099 uint64_t value;
4100 int rc = PDMApicReadMSR(env->pVM, 0/* cpu */, reg, &value);
4101 if (VBOX_SUCCESS(rc))
4102 {
4103 LogFlow(("cpu_apic_rdms returns %#x\n", value));
4104 return value;
4105 }
4106 /** @todo: exception ? */
4107 LogFlow(("cpu_apic_rdms returns 0 (rc=%Vrc)\n", rc));
4108 return value;
4109}
4110
4111void cpu_apic_wrmsr(CPUX86State *env, uint32_t reg, uint64_t value)
4112{
4113 int rc = PDMApicWriteMSR(env->pVM, 0 /* cpu */, reg, value);
4114 /** @todo: exception if error ? */
4115 LogFlow(("cpu_apic_wrmsr: rc=%Vrc\n", rc)); NOREF(rc);
4116}
4117/* -+- I/O Ports -+- */
4118
4119#undef LOG_GROUP
4120#define LOG_GROUP LOG_GROUP_REM_IOPORT
4121
4122void cpu_outb(CPUState *env, int addr, int val)
4123{
4124 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4125 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4126
4127 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4128 if (RT_LIKELY(rc == VINF_SUCCESS))
4129 return;
4130 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4131 {
4132 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4133 remR3RaiseRC(env->pVM, rc);
4134 return;
4135 }
4136 remAbort(rc, __FUNCTION__);
4137}
4138
4139void cpu_outw(CPUState *env, int addr, int val)
4140{
4141 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4142 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4143 if (RT_LIKELY(rc == VINF_SUCCESS))
4144 return;
4145 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4146 {
4147 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4148 remR3RaiseRC(env->pVM, rc);
4149 return;
4150 }
4151 remAbort(rc, __FUNCTION__);
4152}
4153
4154void cpu_outl(CPUState *env, int addr, int val)
4155{
4156 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4157 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4158 if (RT_LIKELY(rc == VINF_SUCCESS))
4159 return;
4160 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4161 {
4162 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4163 remR3RaiseRC(env->pVM, rc);
4164 return;
4165 }
4166 remAbort(rc, __FUNCTION__);
4167}
4168
4169int cpu_inb(CPUState *env, int addr)
4170{
4171 uint32_t u32 = 0;
4172 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4173 if (RT_LIKELY(rc == VINF_SUCCESS))
4174 {
4175 if (/*addr != 0x61 && */addr != 0x71)
4176 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4177 return (int)u32;
4178 }
4179 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4180 {
4181 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4182 remR3RaiseRC(env->pVM, rc);
4183 return (int)u32;
4184 }
4185 remAbort(rc, __FUNCTION__);
4186 return 0xff;
4187}
4188
4189int cpu_inw(CPUState *env, int addr)
4190{
4191 uint32_t u32 = 0;
4192 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4193 if (RT_LIKELY(rc == VINF_SUCCESS))
4194 {
4195 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4196 return (int)u32;
4197 }
4198 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4199 {
4200 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4201 remR3RaiseRC(env->pVM, rc);
4202 return (int)u32;
4203 }
4204 remAbort(rc, __FUNCTION__);
4205 return 0xffff;
4206}
4207
4208int cpu_inl(CPUState *env, int addr)
4209{
4210 uint32_t u32 = 0;
4211 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4212 if (RT_LIKELY(rc == VINF_SUCCESS))
4213 {
4214//if (addr==0x01f0 && u32 == 0x6b6d)
4215// loglevel = ~0;
4216 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4217 return (int)u32;
4218 }
4219 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4220 {
4221 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4222 remR3RaiseRC(env->pVM, rc);
4223 return (int)u32;
4224 }
4225 remAbort(rc, __FUNCTION__);
4226 return 0xffffffff;
4227}
4228
4229#undef LOG_GROUP
4230#define LOG_GROUP LOG_GROUP_REM
4231
4232
4233/* -+- helpers and misc other interfaces -+- */
4234
4235/**
4236 * Perform the CPUID instruction.
4237 *
4238 * ASMCpuId cannot be invoked from some source files where this is used because of global
4239 * register allocations.
4240 *
4241 * @param env Pointer to the recompiler CPU structure.
4242 * @param uOperator CPUID operation (eax).
4243 * @param pvEAX Where to store eax.
4244 * @param pvEBX Where to store ebx.
4245 * @param pvECX Where to store ecx.
4246 * @param pvEDX Where to store edx.
4247 */
4248void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4249{
4250 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4251}
4252
4253
4254#if 0 /* not used */
4255/**
4256 * Interface for qemu hardware to report back fatal errors.
4257 */
4258void hw_error(const char *pszFormat, ...)
4259{
4260 /*
4261 * Bitch about it.
4262 */
4263 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4264 * this in my Odin32 tree at home! */
4265 va_list args;
4266 va_start(args, pszFormat);
4267 RTLogPrintf("fatal error in virtual hardware:");
4268 RTLogPrintfV(pszFormat, args);
4269 va_end(args);
4270 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4271
4272 /*
4273 * If we're in REM context we'll sync back the state before 'jumping' to
4274 * the EMs failure handling.
4275 */
4276 PVM pVM = cpu_single_env->pVM;
4277 if (pVM->rem.s.fInREM)
4278 REMR3StateBack(pVM);
4279 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4280 AssertMsgFailed(("EMR3FatalError returned!\n"));
4281}
4282#endif
4283
4284/**
4285 * Interface for the qemu cpu to report unhandled situation
4286 * raising a fatal VM error.
4287 */
4288void cpu_abort(CPUState *env, const char *pszFormat, ...)
4289{
4290 /*
4291 * Bitch about it.
4292 */
4293 RTLogFlags(NULL, "nodisabled nobuffered");
4294 va_list args;
4295 va_start(args, pszFormat);
4296 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4297 va_end(args);
4298 va_start(args, pszFormat);
4299 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4300 va_end(args);
4301
4302 /*
4303 * If we're in REM context we'll sync back the state before 'jumping' to
4304 * the EMs failure handling.
4305 */
4306 PVM pVM = cpu_single_env->pVM;
4307 if (pVM->rem.s.fInREM)
4308 REMR3StateBack(pVM);
4309 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4310 AssertMsgFailed(("EMR3FatalError returned!\n"));
4311}
4312
4313
4314/**
4315 * Aborts the VM.
4316 *
4317 * @param rc VBox error code.
4318 * @param pszTip Hint about why/when this happend.
4319 */
4320static void remAbort(int rc, const char *pszTip)
4321{
4322 /*
4323 * Bitch about it.
4324 */
4325 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4326 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4327
4328 /*
4329 * Jump back to where we entered the recompiler.
4330 */
4331 PVM pVM = cpu_single_env->pVM;
4332 if (pVM->rem.s.fInREM)
4333 REMR3StateBack(pVM);
4334 EMR3FatalError(pVM, rc);
4335 AssertMsgFailed(("EMR3FatalError returned!\n"));
4336}
4337
4338
4339/**
4340 * Dumps a linux system call.
4341 * @param pVM VM handle.
4342 */
4343void remR3DumpLnxSyscall(PVM pVM)
4344{
4345 static const char *apsz[] =
4346 {
4347 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4348 "sys_exit",
4349 "sys_fork",
4350 "sys_read",
4351 "sys_write",
4352 "sys_open", /* 5 */
4353 "sys_close",
4354 "sys_waitpid",
4355 "sys_creat",
4356 "sys_link",
4357 "sys_unlink", /* 10 */
4358 "sys_execve",
4359 "sys_chdir",
4360 "sys_time",
4361 "sys_mknod",
4362 "sys_chmod", /* 15 */
4363 "sys_lchown16",
4364 "sys_ni_syscall", /* old break syscall holder */
4365 "sys_stat",
4366 "sys_lseek",
4367 "sys_getpid", /* 20 */
4368 "sys_mount",
4369 "sys_oldumount",
4370 "sys_setuid16",
4371 "sys_getuid16",
4372 "sys_stime", /* 25 */
4373 "sys_ptrace",
4374 "sys_alarm",
4375 "sys_fstat",
4376 "sys_pause",
4377 "sys_utime", /* 30 */
4378 "sys_ni_syscall", /* old stty syscall holder */
4379 "sys_ni_syscall", /* old gtty syscall holder */
4380 "sys_access",
4381 "sys_nice",
4382 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4383 "sys_sync",
4384 "sys_kill",
4385 "sys_rename",
4386 "sys_mkdir",
4387 "sys_rmdir", /* 40 */
4388 "sys_dup",
4389 "sys_pipe",
4390 "sys_times",
4391 "sys_ni_syscall", /* old prof syscall holder */
4392 "sys_brk", /* 45 */
4393 "sys_setgid16",
4394 "sys_getgid16",
4395 "sys_signal",
4396 "sys_geteuid16",
4397 "sys_getegid16", /* 50 */
4398 "sys_acct",
4399 "sys_umount", /* recycled never used phys() */
4400 "sys_ni_syscall", /* old lock syscall holder */
4401 "sys_ioctl",
4402 "sys_fcntl", /* 55 */
4403 "sys_ni_syscall", /* old mpx syscall holder */
4404 "sys_setpgid",
4405 "sys_ni_syscall", /* old ulimit syscall holder */
4406 "sys_olduname",
4407 "sys_umask", /* 60 */
4408 "sys_chroot",
4409 "sys_ustat",
4410 "sys_dup2",
4411 "sys_getppid",
4412 "sys_getpgrp", /* 65 */
4413 "sys_setsid",
4414 "sys_sigaction",
4415 "sys_sgetmask",
4416 "sys_ssetmask",
4417 "sys_setreuid16", /* 70 */
4418 "sys_setregid16",
4419 "sys_sigsuspend",
4420 "sys_sigpending",
4421 "sys_sethostname",
4422 "sys_setrlimit", /* 75 */
4423 "sys_old_getrlimit",
4424 "sys_getrusage",
4425 "sys_gettimeofday",
4426 "sys_settimeofday",
4427 "sys_getgroups16", /* 80 */
4428 "sys_setgroups16",
4429 "old_select",
4430 "sys_symlink",
4431 "sys_lstat",
4432 "sys_readlink", /* 85 */
4433 "sys_uselib",
4434 "sys_swapon",
4435 "sys_reboot",
4436 "old_readdir",
4437 "old_mmap", /* 90 */
4438 "sys_munmap",
4439 "sys_truncate",
4440 "sys_ftruncate",
4441 "sys_fchmod",
4442 "sys_fchown16", /* 95 */
4443 "sys_getpriority",
4444 "sys_setpriority",
4445 "sys_ni_syscall", /* old profil syscall holder */
4446 "sys_statfs",
4447 "sys_fstatfs", /* 100 */
4448 "sys_ioperm",
4449 "sys_socketcall",
4450 "sys_syslog",
4451 "sys_setitimer",
4452 "sys_getitimer", /* 105 */
4453 "sys_newstat",
4454 "sys_newlstat",
4455 "sys_newfstat",
4456 "sys_uname",
4457 "sys_iopl", /* 110 */
4458 "sys_vhangup",
4459 "sys_ni_syscall", /* old "idle" system call */
4460 "sys_vm86old",
4461 "sys_wait4",
4462 "sys_swapoff", /* 115 */
4463 "sys_sysinfo",
4464 "sys_ipc",
4465 "sys_fsync",
4466 "sys_sigreturn",
4467 "sys_clone", /* 120 */
4468 "sys_setdomainname",
4469 "sys_newuname",
4470 "sys_modify_ldt",
4471 "sys_adjtimex",
4472 "sys_mprotect", /* 125 */
4473 "sys_sigprocmask",
4474 "sys_ni_syscall", /* old "create_module" */
4475 "sys_init_module",
4476 "sys_delete_module",
4477 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4478 "sys_quotactl",
4479 "sys_getpgid",
4480 "sys_fchdir",
4481 "sys_bdflush",
4482 "sys_sysfs", /* 135 */
4483 "sys_personality",
4484 "sys_ni_syscall", /* reserved for afs_syscall */
4485 "sys_setfsuid16",
4486 "sys_setfsgid16",
4487 "sys_llseek", /* 140 */
4488 "sys_getdents",
4489 "sys_select",
4490 "sys_flock",
4491 "sys_msync",
4492 "sys_readv", /* 145 */
4493 "sys_writev",
4494 "sys_getsid",
4495 "sys_fdatasync",
4496 "sys_sysctl",
4497 "sys_mlock", /* 150 */
4498 "sys_munlock",
4499 "sys_mlockall",
4500 "sys_munlockall",
4501 "sys_sched_setparam",
4502 "sys_sched_getparam", /* 155 */
4503 "sys_sched_setscheduler",
4504 "sys_sched_getscheduler",
4505 "sys_sched_yield",
4506 "sys_sched_get_priority_max",
4507 "sys_sched_get_priority_min", /* 160 */
4508 "sys_sched_rr_get_interval",
4509 "sys_nanosleep",
4510 "sys_mremap",
4511 "sys_setresuid16",
4512 "sys_getresuid16", /* 165 */
4513 "sys_vm86",
4514 "sys_ni_syscall", /* Old sys_query_module */
4515 "sys_poll",
4516 "sys_nfsservctl",
4517 "sys_setresgid16", /* 170 */
4518 "sys_getresgid16",
4519 "sys_prctl",
4520 "sys_rt_sigreturn",
4521 "sys_rt_sigaction",
4522 "sys_rt_sigprocmask", /* 175 */
4523 "sys_rt_sigpending",
4524 "sys_rt_sigtimedwait",
4525 "sys_rt_sigqueueinfo",
4526 "sys_rt_sigsuspend",
4527 "sys_pread64", /* 180 */
4528 "sys_pwrite64",
4529 "sys_chown16",
4530 "sys_getcwd",
4531 "sys_capget",
4532 "sys_capset", /* 185 */
4533 "sys_sigaltstack",
4534 "sys_sendfile",
4535 "sys_ni_syscall", /* reserved for streams1 */
4536 "sys_ni_syscall", /* reserved for streams2 */
4537 "sys_vfork", /* 190 */
4538 "sys_getrlimit",
4539 "sys_mmap2",
4540 "sys_truncate64",
4541 "sys_ftruncate64",
4542 "sys_stat64", /* 195 */
4543 "sys_lstat64",
4544 "sys_fstat64",
4545 "sys_lchown",
4546 "sys_getuid",
4547 "sys_getgid", /* 200 */
4548 "sys_geteuid",
4549 "sys_getegid",
4550 "sys_setreuid",
4551 "sys_setregid",
4552 "sys_getgroups", /* 205 */
4553 "sys_setgroups",
4554 "sys_fchown",
4555 "sys_setresuid",
4556 "sys_getresuid",
4557 "sys_setresgid", /* 210 */
4558 "sys_getresgid",
4559 "sys_chown",
4560 "sys_setuid",
4561 "sys_setgid",
4562 "sys_setfsuid", /* 215 */
4563 "sys_setfsgid",
4564 "sys_pivot_root",
4565 "sys_mincore",
4566 "sys_madvise",
4567 "sys_getdents64", /* 220 */
4568 "sys_fcntl64",
4569 "sys_ni_syscall", /* reserved for TUX */
4570 "sys_ni_syscall",
4571 "sys_gettid",
4572 "sys_readahead", /* 225 */
4573 "sys_setxattr",
4574 "sys_lsetxattr",
4575 "sys_fsetxattr",
4576 "sys_getxattr",
4577 "sys_lgetxattr", /* 230 */
4578 "sys_fgetxattr",
4579 "sys_listxattr",
4580 "sys_llistxattr",
4581 "sys_flistxattr",
4582 "sys_removexattr", /* 235 */
4583 "sys_lremovexattr",
4584 "sys_fremovexattr",
4585 "sys_tkill",
4586 "sys_sendfile64",
4587 "sys_futex", /* 240 */
4588 "sys_sched_setaffinity",
4589 "sys_sched_getaffinity",
4590 "sys_set_thread_area",
4591 "sys_get_thread_area",
4592 "sys_io_setup", /* 245 */
4593 "sys_io_destroy",
4594 "sys_io_getevents",
4595 "sys_io_submit",
4596 "sys_io_cancel",
4597 "sys_fadvise64", /* 250 */
4598 "sys_ni_syscall",
4599 "sys_exit_group",
4600 "sys_lookup_dcookie",
4601 "sys_epoll_create",
4602 "sys_epoll_ctl", /* 255 */
4603 "sys_epoll_wait",
4604 "sys_remap_file_pages",
4605 "sys_set_tid_address",
4606 "sys_timer_create",
4607 "sys_timer_settime", /* 260 */
4608 "sys_timer_gettime",
4609 "sys_timer_getoverrun",
4610 "sys_timer_delete",
4611 "sys_clock_settime",
4612 "sys_clock_gettime", /* 265 */
4613 "sys_clock_getres",
4614 "sys_clock_nanosleep",
4615 "sys_statfs64",
4616 "sys_fstatfs64",
4617 "sys_tgkill", /* 270 */
4618 "sys_utimes",
4619 "sys_fadvise64_64",
4620 "sys_ni_syscall" /* sys_vserver */
4621 };
4622
4623 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4624 switch (uEAX)
4625 {
4626 default:
4627 if (uEAX < ELEMENTS(apsz))
4628 Log(("REM: linux syscall %3d: %s (eip=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4629 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4630 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4631 else
4632 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4633 break;
4634
4635 }
4636}
4637
4638
4639/**
4640 * Dumps an OpenBSD system call.
4641 * @param pVM VM handle.
4642 */
4643void remR3DumpOBsdSyscall(PVM pVM)
4644{
4645 static const char *apsz[] =
4646 {
4647 "SYS_syscall", //0
4648 "SYS_exit", //1
4649 "SYS_fork", //2
4650 "SYS_read", //3
4651 "SYS_write", //4
4652 "SYS_open", //5
4653 "SYS_close", //6
4654 "SYS_wait4", //7
4655 "SYS_8",
4656 "SYS_link", //9
4657 "SYS_unlink", //10
4658 "SYS_11",
4659 "SYS_chdir", //12
4660 "SYS_fchdir", //13
4661 "SYS_mknod", //14
4662 "SYS_chmod", //15
4663 "SYS_chown", //16
4664 "SYS_break", //17
4665 "SYS_18",
4666 "SYS_19",
4667 "SYS_getpid", //20
4668 "SYS_mount", //21
4669 "SYS_unmount", //22
4670 "SYS_setuid", //23
4671 "SYS_getuid", //24
4672 "SYS_geteuid", //25
4673 "SYS_ptrace", //26
4674 "SYS_recvmsg", //27
4675 "SYS_sendmsg", //28
4676 "SYS_recvfrom", //29
4677 "SYS_accept", //30
4678 "SYS_getpeername", //31
4679 "SYS_getsockname", //32
4680 "SYS_access", //33
4681 "SYS_chflags", //34
4682 "SYS_fchflags", //35
4683 "SYS_sync", //36
4684 "SYS_kill", //37
4685 "SYS_38",
4686 "SYS_getppid", //39
4687 "SYS_40",
4688 "SYS_dup", //41
4689 "SYS_opipe", //42
4690 "SYS_getegid", //43
4691 "SYS_profil", //44
4692 "SYS_ktrace", //45
4693 "SYS_sigaction", //46
4694 "SYS_getgid", //47
4695 "SYS_sigprocmask", //48
4696 "SYS_getlogin", //49
4697 "SYS_setlogin", //50
4698 "SYS_acct", //51
4699 "SYS_sigpending", //52
4700 "SYS_osigaltstack", //53
4701 "SYS_ioctl", //54
4702 "SYS_reboot", //55
4703 "SYS_revoke", //56
4704 "SYS_symlink", //57
4705 "SYS_readlink", //58
4706 "SYS_execve", //59
4707 "SYS_umask", //60
4708 "SYS_chroot", //61
4709 "SYS_62",
4710 "SYS_63",
4711 "SYS_64",
4712 "SYS_65",
4713 "SYS_vfork", //66
4714 "SYS_67",
4715 "SYS_68",
4716 "SYS_sbrk", //69
4717 "SYS_sstk", //70
4718 "SYS_61",
4719 "SYS_vadvise", //72
4720 "SYS_munmap", //73
4721 "SYS_mprotect", //74
4722 "SYS_madvise", //75
4723 "SYS_76",
4724 "SYS_77",
4725 "SYS_mincore", //78
4726 "SYS_getgroups", //79
4727 "SYS_setgroups", //80
4728 "SYS_getpgrp", //81
4729 "SYS_setpgid", //82
4730 "SYS_setitimer", //83
4731 "SYS_84",
4732 "SYS_85",
4733 "SYS_getitimer", //86
4734 "SYS_87",
4735 "SYS_88",
4736 "SYS_89",
4737 "SYS_dup2", //90
4738 "SYS_91",
4739 "SYS_fcntl", //92
4740 "SYS_select", //93
4741 "SYS_94",
4742 "SYS_fsync", //95
4743 "SYS_setpriority", //96
4744 "SYS_socket", //97
4745 "SYS_connect", //98
4746 "SYS_99",
4747 "SYS_getpriority", //100
4748 "SYS_101",
4749 "SYS_102",
4750 "SYS_sigreturn", //103
4751 "SYS_bind", //104
4752 "SYS_setsockopt", //105
4753 "SYS_listen", //106
4754 "SYS_107",
4755 "SYS_108",
4756 "SYS_109",
4757 "SYS_110",
4758 "SYS_sigsuspend", //111
4759 "SYS_112",
4760 "SYS_113",
4761 "SYS_114",
4762 "SYS_115",
4763 "SYS_gettimeofday", //116
4764 "SYS_getrusage", //117
4765 "SYS_getsockopt", //118
4766 "SYS_119",
4767 "SYS_readv", //120
4768 "SYS_writev", //121
4769 "SYS_settimeofday", //122
4770 "SYS_fchown", //123
4771 "SYS_fchmod", //124
4772 "SYS_125",
4773 "SYS_setreuid", //126
4774 "SYS_setregid", //127
4775 "SYS_rename", //128
4776 "SYS_129",
4777 "SYS_130",
4778 "SYS_flock", //131
4779 "SYS_mkfifo", //132
4780 "SYS_sendto", //133
4781 "SYS_shutdown", //134
4782 "SYS_socketpair", //135
4783 "SYS_mkdir", //136
4784 "SYS_rmdir", //137
4785 "SYS_utimes", //138
4786 "SYS_139",
4787 "SYS_adjtime", //140
4788 "SYS_141",
4789 "SYS_142",
4790 "SYS_143",
4791 "SYS_144",
4792 "SYS_145",
4793 "SYS_146",
4794 "SYS_setsid", //147
4795 "SYS_quotactl", //148
4796 "SYS_149",
4797 "SYS_150",
4798 "SYS_151",
4799 "SYS_152",
4800 "SYS_153",
4801 "SYS_154",
4802 "SYS_nfssvc", //155
4803 "SYS_156",
4804 "SYS_157",
4805 "SYS_158",
4806 "SYS_159",
4807 "SYS_160",
4808 "SYS_getfh", //161
4809 "SYS_162",
4810 "SYS_163",
4811 "SYS_164",
4812 "SYS_sysarch", //165
4813 "SYS_166",
4814 "SYS_167",
4815 "SYS_168",
4816 "SYS_169",
4817 "SYS_170",
4818 "SYS_171",
4819 "SYS_172",
4820 "SYS_pread", //173
4821 "SYS_pwrite", //174
4822 "SYS_175",
4823 "SYS_176",
4824 "SYS_177",
4825 "SYS_178",
4826 "SYS_179",
4827 "SYS_180",
4828 "SYS_setgid", //181
4829 "SYS_setegid", //182
4830 "SYS_seteuid", //183
4831 "SYS_lfs_bmapv", //184
4832 "SYS_lfs_markv", //185
4833 "SYS_lfs_segclean", //186
4834 "SYS_lfs_segwait", //187
4835 "SYS_188",
4836 "SYS_189",
4837 "SYS_190",
4838 "SYS_pathconf", //191
4839 "SYS_fpathconf", //192
4840 "SYS_swapctl", //193
4841 "SYS_getrlimit", //194
4842 "SYS_setrlimit", //195
4843 "SYS_getdirentries", //196
4844 "SYS_mmap", //197
4845 "SYS___syscall", //198
4846 "SYS_lseek", //199
4847 "SYS_truncate", //200
4848 "SYS_ftruncate", //201
4849 "SYS___sysctl", //202
4850 "SYS_mlock", //203
4851 "SYS_munlock", //204
4852 "SYS_205",
4853 "SYS_futimes", //206
4854 "SYS_getpgid", //207
4855 "SYS_xfspioctl", //208
4856 "SYS_209",
4857 "SYS_210",
4858 "SYS_211",
4859 "SYS_212",
4860 "SYS_213",
4861 "SYS_214",
4862 "SYS_215",
4863 "SYS_216",
4864 "SYS_217",
4865 "SYS_218",
4866 "SYS_219",
4867 "SYS_220",
4868 "SYS_semget", //221
4869 "SYS_222",
4870 "SYS_223",
4871 "SYS_224",
4872 "SYS_msgget", //225
4873 "SYS_msgsnd", //226
4874 "SYS_msgrcv", //227
4875 "SYS_shmat", //228
4876 "SYS_229",
4877 "SYS_shmdt", //230
4878 "SYS_231",
4879 "SYS_clock_gettime", //232
4880 "SYS_clock_settime", //233
4881 "SYS_clock_getres", //234
4882 "SYS_235",
4883 "SYS_236",
4884 "SYS_237",
4885 "SYS_238",
4886 "SYS_239",
4887 "SYS_nanosleep", //240
4888 "SYS_241",
4889 "SYS_242",
4890 "SYS_243",
4891 "SYS_244",
4892 "SYS_245",
4893 "SYS_246",
4894 "SYS_247",
4895 "SYS_248",
4896 "SYS_249",
4897 "SYS_minherit", //250
4898 "SYS_rfork", //251
4899 "SYS_poll", //252
4900 "SYS_issetugid", //253
4901 "SYS_lchown", //254
4902 "SYS_getsid", //255
4903 "SYS_msync", //256
4904 "SYS_257",
4905 "SYS_258",
4906 "SYS_259",
4907 "SYS_getfsstat", //260
4908 "SYS_statfs", //261
4909 "SYS_fstatfs", //262
4910 "SYS_pipe", //263
4911 "SYS_fhopen", //264
4912 "SYS_265",
4913 "SYS_fhstatfs", //266
4914 "SYS_preadv", //267
4915 "SYS_pwritev", //268
4916 "SYS_kqueue", //269
4917 "SYS_kevent", //270
4918 "SYS_mlockall", //271
4919 "SYS_munlockall", //272
4920 "SYS_getpeereid", //273
4921 "SYS_274",
4922 "SYS_275",
4923 "SYS_276",
4924 "SYS_277",
4925 "SYS_278",
4926 "SYS_279",
4927 "SYS_280",
4928 "SYS_getresuid", //281
4929 "SYS_setresuid", //282
4930 "SYS_getresgid", //283
4931 "SYS_setresgid", //284
4932 "SYS_285",
4933 "SYS_mquery", //286
4934 "SYS_closefrom", //287
4935 "SYS_sigaltstack", //288
4936 "SYS_shmget", //289
4937 "SYS_semop", //290
4938 "SYS_stat", //291
4939 "SYS_fstat", //292
4940 "SYS_lstat", //293
4941 "SYS_fhstat", //294
4942 "SYS___semctl", //295
4943 "SYS_shmctl", //296
4944 "SYS_msgctl", //297
4945 "SYS_MAXSYSCALL", //298
4946 //299
4947 //300
4948 };
4949 uint32_t uEAX;
4950 if (!LogIsEnabled())
4951 return;
4952 uEAX = CPUMGetGuestEAX(pVM);
4953 switch (uEAX)
4954 {
4955 default:
4956 if (uEAX < ELEMENTS(apsz))
4957 {
4958 uint32_t au32Args[8] = {0};
4959 PGMPhysSimpleReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
4960 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
4961 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
4962 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
4963 }
4964 else
4965 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
4966 break;
4967 }
4968}
4969
4970
4971#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
4972/**
4973 * The Dll main entry point (stub).
4974 */
4975bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
4976{
4977 return true;
4978}
4979
4980void *memcpy(void *dst, const void *src, size_t size)
4981{
4982 uint8_t*pbDst = dst, *pbSrc = src;
4983 while (size-- > 0)
4984 *pbDst++ = *pbSrc++;
4985 return dst;
4986}
4987
4988#endif
4989
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette