VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 3016

Last change on this file since 3016 was 2981, checked in by vboxsync, 18 years ago

InnoTek -> innotek: all the headers and comments.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 167.9 KB
Line 
1/* $Id: VBoxRecompiler.c 2981 2007-06-01 16:01:28Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 innotek GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License as published by the Free Software Foundation,
13 * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
14 * distribution. VirtualBox OSE is distributed in the hope that it will
15 * be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * If you received this file as part of a commercial VirtualBox
18 * distribution, then only the terms of your commercial VirtualBox
19 * license agreement apply instead of the previous paragraph.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "exec-all.h"
29
30#include <VBox/rem.h>
31#include <VBox/vmapi.h>
32#include <VBox/tm.h>
33#include <VBox/ssm.h>
34#include <VBox/em.h>
35#include <VBox/trpm.h>
36#include <VBox/iom.h>
37#include <VBox/mm.h>
38#include <VBox/pgm.h>
39#include <VBox/pdm.h>
40#include <VBox/dbgf.h>
41#include <VBox/dbg.h>
42#include <VBox/hwaccm.h>
43#include <VBox/patm.h>
44#include <VBox/csam.h>
45#include "REMInternal.h"
46#include <VBox/vm.h>
47#include <VBox/param.h>
48#include <VBox/err.h>
49
50#include <VBox/log.h>
51#include <iprt/semaphore.h>
52#include <iprt/asm.h>
53#include <iprt/assert.h>
54#include <iprt/thread.h>
55#include <iprt/string.h>
56
57/* Don't wanna include everything. */
58extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
59extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
60extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
61extern void tlb_flush_page(CPUX86State *env, uint32_t addr);
62extern void tlb_flush(CPUState *env, int flush_global);
63extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
64extern void sync_ldtr(CPUX86State *env1, int selector);
65extern int sync_tr(CPUX86State *env1, int selector);
66
67#ifdef VBOX_STRICT
68unsigned long get_phys_page_offset(target_ulong addr);
69#endif
70
71
72/*******************************************************************************
73* Defined Constants And Macros *
74*******************************************************************************/
75
76/** Copy 80-bit fpu register at pSrc to pDst.
77 * This is probably faster than *calling* memcpy.
78 */
79#define REM_COPY_FPU_REG(pDst, pSrc) \
80 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
81
82
83/*******************************************************************************
84* Internal Functions *
85*******************************************************************************/
86static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
87static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
88static void remR3StateUpdate(PVM pVM);
89
90#if defined(PGM_DYNAMIC_RAM_ALLOC) && !defined(REM_PHYS_ADDR_IN_TLB)
91DECLINLINE(target_ulong) remR3HCVirt2GCPhysInlined(PVM pVM, void *addr);
92DECLINLINE(void *) remR3GCPhys2HCVirtInlined(PVM pVM, target_ulong addr);
93#endif
94
95static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
96static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
97static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
98static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
99static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
100static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
101
102static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
103static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
104static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
105static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
106static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
107static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
108
109
110/*******************************************************************************
111* Global Variables *
112*******************************************************************************/
113
114/** @todo Move stats to REM::s some rainy day we have nothing do to. */
115#ifdef VBOX_WITH_STATISTICS
116static STAMPROFILEADV gStatExecuteSingleInstr;
117static STAMPROFILEADV gStatCompilationQEmu;
118static STAMPROFILEADV gStatRunCodeQEmu;
119static STAMPROFILEADV gStatTotalTimeQEmu;
120static STAMPROFILEADV gStatTimers;
121static STAMPROFILEADV gStatTBLookup;
122static STAMPROFILEADV gStatIRQ;
123static STAMPROFILEADV gStatRawCheck;
124static STAMPROFILEADV gStatMemRead;
125static STAMPROFILEADV gStatMemWrite;
126#ifndef REM_PHYS_ADDR_IN_TLB
127static STAMPROFILEADV gStatMemReadHCPtr;
128static STAMPROFILEADV gStatMemWriteHCPtr;
129#endif
130#ifdef PGM_DYNAMIC_RAM_ALLOC
131static STAMPROFILE gStatGCPhys2HCVirt;
132static STAMPROFILE gStatHCVirt2GCPhys;
133#endif
134static STAMCOUNTER gStatCpuGetTSC;
135static STAMCOUNTER gStatRefuseTFInhibit;
136static STAMCOUNTER gStatRefuseVM86;
137static STAMCOUNTER gStatRefusePaging;
138static STAMCOUNTER gStatRefusePAE;
139static STAMCOUNTER gStatRefuseIOPLNot0;
140static STAMCOUNTER gStatRefuseIF0;
141static STAMCOUNTER gStatRefuseCode16;
142static STAMCOUNTER gStatRefuseWP0;
143static STAMCOUNTER gStatRefuseRing1or2;
144static STAMCOUNTER gStatRefuseCanExecute;
145static STAMCOUNTER gStatREMGDTChange;
146static STAMCOUNTER gStatREMIDTChange;
147static STAMCOUNTER gStatREMLDTRChange;
148static STAMCOUNTER gStatREMTRChange;
149static STAMCOUNTER gStatSelOutOfSync[6];
150static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
151#endif
152
153/*
154 * Global stuff.
155 */
156
157/** MMIO read callbacks. */
158CPUReadMemoryFunc *g_apfnMMIORead[3] =
159{
160 remR3MMIOReadU8,
161 remR3MMIOReadU16,
162 remR3MMIOReadU32
163};
164
165/** MMIO write callbacks. */
166CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
167{
168 remR3MMIOWriteU8,
169 remR3MMIOWriteU16,
170 remR3MMIOWriteU32
171};
172
173/** Handler read callbacks. */
174CPUReadMemoryFunc *g_apfnHandlerRead[3] =
175{
176 remR3HandlerReadU8,
177 remR3HandlerReadU16,
178 remR3HandlerReadU32
179};
180
181/** Handler write callbacks. */
182CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
183{
184 remR3HandlerWriteU8,
185 remR3HandlerWriteU16,
186 remR3HandlerWriteU32
187};
188
189
190#ifdef VBOX_WITH_DEBUGGER
191/*
192 * Debugger commands.
193 */
194static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
195
196/** '.remstep' arguments. */
197static const DBGCVARDESC g_aArgRemStep[] =
198{
199 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
200 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
201};
202
203/** Command descriptors. */
204static const DBGCCMD g_aCmds[] =
205{
206 {
207 .pszCmd ="remstep",
208 .cArgsMin = 0,
209 .cArgsMax = 1,
210 .paArgDescs = &g_aArgRemStep[0],
211 .cArgDescs = ELEMENTS(g_aArgRemStep),
212 .pResultDesc = NULL,
213 .fFlags = 0,
214 .pfnHandler = remR3CmdDisasEnableStepping,
215 .pszSyntax = "[on/off]",
216 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
217 "If no arguments show the current state."
218 }
219};
220#endif
221
222
223/* Instantiate the structure signatures. */
224#define REM_STRUCT_OP 0
225#include "InnoTek/structs.h"
226
227
228
229/*******************************************************************************
230* Internal Functions *
231*******************************************************************************/
232static void remAbort(int rc, const char *pszTip);
233extern int testmath(void);
234
235/* Put them here to avoid unused variable warning. */
236AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
237#if !defined(IPRT_NO_CRT) && (defined(__LINUX__) || defined(__DARWIN__) || defined(__WIN__))
238AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
239#else
240AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
241#endif
242
243
244/**
245 * Initializes the REM.
246 *
247 * @returns VBox status code.
248 * @param pVM The VM to operate on.
249 */
250REMR3DECL(int) REMR3Init(PVM pVM)
251{
252 uint32_t u32Dummy;
253 unsigned i;
254
255 /*
256 * Assert sanity.
257 */
258 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
259 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
260 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
261#ifdef DEBUG
262 Assert(!testmath());
263#endif
264 ASSERT_STRUCT_TABLE(Misc);
265 ASSERT_STRUCT_TABLE(TLB);
266 ASSERT_STRUCT_TABLE(SegmentCache);
267 ASSERT_STRUCT_TABLE(XMMReg);
268 ASSERT_STRUCT_TABLE(MMXReg);
269 ASSERT_STRUCT_TABLE(float_status);
270 ASSERT_STRUCT_TABLE(float32u);
271 ASSERT_STRUCT_TABLE(float64u);
272 ASSERT_STRUCT_TABLE(floatx80u);
273 ASSERT_STRUCT_TABLE(CPUState);
274
275 /*
276 * Init some internal data members.
277 */
278 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
279 pVM->rem.s.Env.pVM = pVM;
280#ifdef CPU_RAW_MODE_INIT
281 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
282#endif
283
284 /* ctx. */
285 int rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
286 if (VBOX_FAILURE(rc))
287 {
288 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
289 return rc;
290 }
291 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
292
293 /* ignore all notifications */
294 pVM->rem.s.fIgnoreAll = true;
295
296 /*
297 * Init the recompiler.
298 */
299 if (!cpu_x86_init(&pVM->rem.s.Env))
300 {
301 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
302 return VERR_GENERAL_FAILURE;
303 }
304 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
305 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
306
307 /* allocate code buffer for single instruction emulation. */
308 pVM->rem.s.Env.cbCodeBuffer = 4096;
309 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
310 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
311
312 /* finally, set the cpu_single_env global. */
313 cpu_single_env = &pVM->rem.s.Env;
314
315 /* Nothing is pending by default */
316 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
317
318 /*
319 * Register ram types.
320 */
321 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
322 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
323 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
324 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
325 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
326
327 /* stop ignoring. */
328 pVM->rem.s.fIgnoreAll = false;
329
330 /*
331 * Register the saved state data unit.
332 */
333 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
334 NULL, remR3Save, NULL,
335 NULL, remR3Load, NULL);
336 if (VBOX_FAILURE(rc))
337 return rc;
338
339#ifdef VBOX_WITH_DEBUGGER
340 /*
341 * Debugger commands.
342 */
343 static bool fRegisteredCmds = false;
344 if (!fRegisteredCmds)
345 {
346 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
347 if (VBOX_SUCCESS(rc))
348 fRegisteredCmds = true;
349 }
350#endif
351
352#ifdef VBOX_WITH_STATISTICS
353 /*
354 * Statistics.
355 */
356 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
357 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
358 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
359 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
360 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
361 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
362 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
363 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
364 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
365 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
366#ifndef REM_PHYS_ADDR_IN_TLB
367 STAM_REG(pVM, &gStatMemReadHCPtr, STAMTYPE_PROFILE, "/PROF/REM/MemReadHCPtr", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
368 STAM_REG(pVM, &gStatMemWriteHCPtr, STAMTYPE_PROFILE, "/PROF/REM/MemWriteHCPtr", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
369#endif
370#ifdef PGM_DYNAMIC_RAM_ALLOC
371 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
372 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
373#endif
374
375 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
376
377 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
378 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
379 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
380 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
381 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
382 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
383 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
384 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
385 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
386 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
387
388 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
389 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
390 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
391 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
392
393 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
394 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
395 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
396 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
397 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
398 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
399
400 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
401 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
402 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
403 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
404 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
405 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
406
407
408#endif
409
410#ifdef DEBUG_ALL_LOGGING
411 loglevel = ~0;
412#endif
413
414 return rc;
415}
416
417
418/**
419 * Terminates the REM.
420 *
421 * Termination means cleaning up and freeing all resources,
422 * the VM it self is at this point powered off or suspended.
423 *
424 * @returns VBox status code.
425 * @param pVM The VM to operate on.
426 */
427REMR3DECL(int) REMR3Term(PVM pVM)
428{
429 return VINF_SUCCESS;
430}
431
432
433/**
434 * The VM is being reset.
435 *
436 * For the REM component this means to call the cpu_reset() and
437 * reinitialize some state variables.
438 *
439 * @param pVM VM handle.
440 */
441REMR3DECL(void) REMR3Reset(PVM pVM)
442{
443 /*
444 * Reset the REM cpu.
445 */
446 pVM->rem.s.fIgnoreAll = true;
447 cpu_reset(&pVM->rem.s.Env);
448 pVM->rem.s.cInvalidatedPages = 0;
449 pVM->rem.s.fIgnoreAll = false;
450}
451
452
453/**
454 * Execute state save operation.
455 *
456 * @returns VBox status code.
457 * @param pVM VM Handle.
458 * @param pSSM SSM operation handle.
459 */
460static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
461{
462 LogFlow(("remR3Save:\n"));
463
464 /*
465 * Save the required CPU Env bits.
466 * (Not much because we're never in REM when doing the save.)
467 */
468 PREM pRem = &pVM->rem.s;
469 Assert(!pRem->fInREM);
470 SSMR3PutU32(pSSM, pRem->Env.hflags);
471 SSMR3PutMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
472 SSMR3PutU32(pSSM, ~0); /* separator */
473
474 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
475 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
476
477 /*
478 * Save the REM stuff.
479 */
480 SSMR3PutUInt(pSSM, pRem->cInvalidatedPages);
481 unsigned i;
482 for (i = 0; i < pRem->cInvalidatedPages; i++)
483 SSMR3PutGCPtr(pSSM, pRem->aGCPtrInvalidatedPages[i]);
484
485 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
486
487 return SSMR3PutU32(pSSM, ~0); /* terminator */
488}
489
490
491/**
492 * Execute state load operation.
493 *
494 * @returns VBox status code.
495 * @param pVM VM Handle.
496 * @param pSSM SSM operation handle.
497 * @param u32Version Data layout version.
498 */
499static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
500{
501 uint32_t u32Dummy;
502 uint32_t fRawRing0 = false;
503 LogFlow(("remR3Load:\n"));
504
505 /*
506 * Validate version.
507 */
508 if (u32Version != REM_SAVED_STATE_VERSION)
509 {
510 Log(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
511 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
512 }
513
514 /*
515 * Do a reset to be on the safe side...
516 */
517 REMR3Reset(pVM);
518
519 /*
520 * Ignore all ignorable notifications.
521 * (Not doing this will cause serious trouble.)
522 */
523 pVM->rem.s.fIgnoreAll = true;
524
525 /*
526 * Load the required CPU Env bits.
527 * (Not much because we're never in REM when doing the save.)
528 */
529 PREM pRem = &pVM->rem.s;
530 Assert(!pRem->fInREM);
531 SSMR3GetU32(pSSM, &pRem->Env.hflags);
532 SSMR3GetMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
533 uint32_t u32Sep;
534 int rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
535 if (VBOX_FAILURE(rc))
536 return rc;
537 if (u32Sep != ~0)
538 {
539 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
540 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
541 }
542
543 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
544 SSMR3GetUInt(pSSM, &fRawRing0);
545 if (fRawRing0)
546 pRem->Env.state |= CPU_RAW_RING0;
547
548 /*
549 * Load the REM stuff.
550 */
551 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
552 if (VBOX_FAILURE(rc))
553 return rc;
554 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
555 {
556 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
557 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
558 }
559 unsigned i;
560 for (i = 0; i < pRem->cInvalidatedPages; i++)
561 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
562
563 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
564 if (VBOX_FAILURE(rc))
565 return rc;
566
567 /* check the terminator. */
568 rc = SSMR3GetU32(pSSM, &u32Sep);
569 if (VBOX_FAILURE(rc))
570 return rc;
571 if (u32Sep != ~0)
572 {
573 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
574 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
575 }
576
577 /*
578 * Get the CPUID features.
579 */
580 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
581 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
582
583 /*
584 * Sync the Load Flush the TLB
585 */
586 tlb_flush(&pRem->Env, 1);
587
588#if 0 /** @todo r=bird: this doesn't make sense. WHY? */
589 /*
590 * Clear all lazy flags (only FPU sync for now).
591 */
592 CPUMGetAndClearFPUUsedREM(pVM);
593#endif
594
595 /*
596 * Stop ignoring ignornable notifications.
597 */
598 pVM->rem.s.fIgnoreAll = false;
599
600 return VINF_SUCCESS;
601}
602
603
604
605#undef LOG_GROUP
606#define LOG_GROUP LOG_GROUP_REM_RUN
607
608/**
609 * Single steps an instruction in recompiled mode.
610 *
611 * Before calling this function the REM state needs to be in sync with
612 * the VM. Call REMR3State() to perform the sync. It's only necessary
613 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
614 * and after calling REMR3StateBack().
615 *
616 * @returns VBox status code.
617 *
618 * @param pVM VM Handle.
619 */
620REMR3DECL(int) REMR3Step(PVM pVM)
621{
622 /*
623 * Lock the REM - we don't wanna have anyone interrupting us
624 * while stepping - and enabled single stepping. We also ignore
625 * pending interrupts and suchlike.
626 */
627 int interrupt_request = pVM->rem.s.Env.interrupt_request;
628 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
629 pVM->rem.s.Env.interrupt_request = 0;
630 cpu_single_step(&pVM->rem.s.Env, 1);
631
632 /*
633 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
634 */
635 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
636 bool fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
637
638 /*
639 * Execute and handle the return code.
640 * We execute without enabling the cpu tick, so on success we'll
641 * just flip it on and off to make sure it moves
642 */
643 int rc = cpu_exec(&pVM->rem.s.Env);
644 if (rc == EXCP_DEBUG)
645 {
646 TMCpuTickResume(pVM);
647 TMCpuTickPause(pVM);
648 TMVirtualResume(pVM);
649 TMVirtualPause(pVM);
650 rc = VINF_EM_DBG_STEPPED;
651 }
652 else
653 {
654 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
655 switch (rc)
656 {
657 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
658 case EXCP_HLT:
659 case EXCP_HALTED: rc = VINF_EM_HALT; break;
660 case EXCP_RC:
661 rc = pVM->rem.s.rc;
662 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
663 break;
664 default:
665 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
666 rc = VERR_INTERNAL_ERROR;
667 break;
668 }
669 }
670
671 /*
672 * Restore the stuff we changed to prevent interruption.
673 * Unlock the REM.
674 */
675 if (fBp)
676 {
677 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
678 Assert(rc2 == 0); NOREF(rc2);
679 }
680 cpu_single_step(&pVM->rem.s.Env, 0);
681 pVM->rem.s.Env.interrupt_request = interrupt_request;
682
683 return rc;
684}
685
686
687/**
688 * Set a breakpoint using the REM facilities.
689 *
690 * @returns VBox status code.
691 * @param pVM The VM handle.
692 * @param Address The breakpoint address.
693 * @thread The emulation thread.
694 */
695REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
696{
697 VM_ASSERT_EMT(pVM);
698 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
699 {
700 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
701 return VINF_SUCCESS;
702 }
703 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
704 return VERR_REM_NO_MORE_BP_SLOTS;
705}
706
707
708/**
709 * Clears a breakpoint set by REMR3BreakpointSet().
710 *
711 * @returns VBox status code.
712 * @param pVM The VM handle.
713 * @param Address The breakpoint address.
714 * @thread The emulation thread.
715 */
716REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
717{
718 VM_ASSERT_EMT(pVM);
719 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
720 {
721 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
722 return VINF_SUCCESS;
723 }
724 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
725 return VERR_REM_BP_NOT_FOUND;
726}
727
728
729/**
730 * Emulate an instruction.
731 *
732 * This function executes one instruction without letting anyone
733 * interrupt it. This is intended for being called while being in
734 * raw mode and thus will take care of all the state syncing between
735 * REM and the rest.
736 *
737 * @returns VBox status code.
738 * @param pVM VM handle.
739 */
740REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
741{
742 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", pVM->rem.s.pCtx->cs, pVM->rem.s.pCtx->eip));
743
744 /*
745 * Sync the state and enable single instruction / single stepping.
746 */
747 int rc = REMR3State(pVM);
748 if (VBOX_SUCCESS(rc))
749 {
750 int interrupt_request = pVM->rem.s.Env.interrupt_request;
751 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
752 Assert(!pVM->rem.s.Env.singlestep_enabled);
753#if 1
754
755 /*
756 * Now we set the execute single instruction flag and enter the cpu_exec loop.
757 */
758 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
759 rc = cpu_exec(&pVM->rem.s.Env);
760 switch (rc)
761 {
762 /*
763 * Executed without anything out of the way happening.
764 */
765 case EXCP_SINGLE_INSTR:
766 rc = VINF_EM_RESCHEDULE;
767 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
768 break;
769
770 /*
771 * If we take a trap or start servicing a pending interrupt, we might end up here.
772 * (Timer thread or some other thread wishing EMT's attention.)
773 */
774 case EXCP_INTERRUPT:
775 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
776 rc = VINF_EM_RESCHEDULE;
777 break;
778
779 /*
780 * Single step, we assume!
781 * If there was a breakpoint there we're fucked now.
782 */
783 case EXCP_DEBUG:
784 {
785 /* breakpoint or single step? */
786 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
787 int iBP;
788 rc = VINF_EM_DBG_STEPPED;
789 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
790 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
791 {
792 rc = VINF_EM_DBG_BREAKPOINT;
793 break;
794 }
795 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
796 break;
797 }
798
799 /*
800 * hlt instruction.
801 */
802 case EXCP_HLT:
803 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
804 rc = VINF_EM_HALT;
805 break;
806
807 /*
808 * The VM has halted.
809 */
810 case EXCP_HALTED:
811 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
812 rc = VINF_EM_HALT;
813 break;
814
815 /*
816 * Switch to RAW-mode.
817 */
818 case EXCP_EXECUTE_RAW:
819 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
820 rc = VINF_EM_RESCHEDULE_RAW;
821 break;
822
823 /*
824 * Switch to hardware accelerated RAW-mode.
825 */
826 case EXCP_EXECUTE_HWACC:
827 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
828 rc = VINF_EM_RESCHEDULE_HWACC;
829 break;
830
831 /*
832 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
833 */
834 case EXCP_RC:
835 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
836 rc = pVM->rem.s.rc;
837 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
838 break;
839
840 /*
841 * Figure out the rest when they arrive....
842 */
843 default:
844 AssertMsgFailed(("rc=%d\n", rc));
845 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
846 rc = VINF_EM_RESCHEDULE;
847 break;
848 }
849
850 /*
851 * Switch back the state.
852 */
853#else
854 pVM->rem.s.Env.interrupt_request = 0;
855 cpu_single_step(&pVM->rem.s.Env, 1);
856
857 /*
858 * Execute and handle the return code.
859 * We execute without enabling the cpu tick, so on success we'll
860 * just flip it on and off to make sure it moves.
861 *
862 * (We do not use emulate_single_instr() because that doesn't enter the
863 * right way in will cause serious trouble if a longjmp was attempted.)
864 */
865# ifdef DEBUG_bird
866 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
867# endif
868 int cTimesMax = 16384;
869 uint32_t eip = pVM->rem.s.Env.eip;
870 do
871 {
872 rc = cpu_exec(&pVM->rem.s.Env);
873
874 } while ( eip == pVM->rem.s.Env.eip
875 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
876 && --cTimesMax > 0);
877 switch (rc)
878 {
879 /*
880 * Single step, we assume!
881 * If there was a breakpoint there we're fucked now.
882 */
883 case EXCP_DEBUG:
884 {
885 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
886 rc = VINF_EM_RESCHEDULE;
887 break;
888 }
889
890 /*
891 * We cannot be interrupted!
892 */
893 case EXCP_INTERRUPT:
894 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
895 rc = VERR_INTERNAL_ERROR;
896 break;
897
898 /*
899 * hlt instruction.
900 */
901 case EXCP_HLT:
902 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
903 rc = VINF_EM_HALT;
904 break;
905
906 /*
907 * The VM has halted.
908 */
909 case EXCP_HALTED:
910 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
911 rc = VINF_EM_HALT;
912 break;
913
914 /*
915 * Switch to RAW-mode.
916 */
917 case EXCP_EXECUTE_RAW:
918 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
919 rc = VINF_EM_RESCHEDULE_RAW;
920 break;
921
922 /*
923 * Switch to hardware accelerated RAW-mode.
924 */
925 case EXCP_EXECUTE_HWACC:
926 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
927 rc = VINF_EM_RESCHEDULE_HWACC;
928 break;
929
930 /*
931 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
932 */
933 case EXCP_RC:
934 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
935 rc = pVM->rem.s.rc;
936 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
937 break;
938
939 /*
940 * Figure out the rest when they arrive....
941 */
942 default:
943 AssertMsgFailed(("rc=%d\n", rc));
944 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
945 rc = VINF_SUCCESS;
946 break;
947 }
948
949 /*
950 * Switch back the state.
951 */
952 cpu_single_step(&pVM->rem.s.Env, 0);
953#endif
954 pVM->rem.s.Env.interrupt_request = interrupt_request;
955 int rc2 = REMR3StateBack(pVM);
956 AssertRC(rc2);
957 }
958
959 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%08x)\n",
960 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
961 return rc;
962}
963
964
965/**
966 * Runs code in recompiled mode.
967 *
968 * Before calling this function the REM state needs to be in sync with
969 * the VM. Call REMR3State() to perform the sync. It's only necessary
970 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
971 * and after calling REMR3StateBack().
972 *
973 * @returns VBox status code.
974 *
975 * @param pVM VM Handle.
976 */
977REMR3DECL(int) REMR3Run(PVM pVM)
978{
979 Log2(("REMR3Run: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
980 Assert(pVM->rem.s.fInREM);
981////Keyboard / tb stuff:
982//if ( pVM->rem.s.Env.segs[R_CS].selector == 0xf000
983// && pVM->rem.s.Env.eip >= 0xe860
984// && pVM->rem.s.Env.eip <= 0xe880)
985// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
986////A20:
987//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x9020
988// && pVM->rem.s.Env.eip >= 0x970
989// && pVM->rem.s.Env.eip <= 0x9a0)
990// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
991////Speaker (port 61h)
992//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x0010
993// && ( (pVM->rem.s.Env.eip >= 0x90278c10 && pVM->rem.s.Env.eip <= 0x90278c30)
994// || (pVM->rem.s.Env.eip >= 0x9010e250 && pVM->rem.s.Env.eip <= 0x9010e260)
995// )
996// )
997// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
998//DBGFR3InfoLog(pVM, "timers", NULL);
999
1000
1001 int rc = cpu_exec(&pVM->rem.s.Env);
1002 switch (rc)
1003 {
1004 /*
1005 * This happens when the execution was interrupted
1006 * by an external event, like pending timers.
1007 */
1008 case EXCP_INTERRUPT:
1009 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
1010 rc = VINF_SUCCESS;
1011 break;
1012
1013 /*
1014 * hlt instruction.
1015 */
1016 case EXCP_HLT:
1017 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
1018 rc = VINF_EM_HALT;
1019 break;
1020
1021 /*
1022 * The VM has halted.
1023 */
1024 case EXCP_HALTED:
1025 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1026 rc = VINF_EM_HALT;
1027 break;
1028
1029 /*
1030 * Breakpoint/single step.
1031 */
1032 case EXCP_DEBUG:
1033 {
1034#if 0//def DEBUG_bird
1035 static int iBP = 0;
1036 printf("howdy, breakpoint! iBP=%d\n", iBP);
1037 switch (iBP)
1038 {
1039 case 0:
1040 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1041 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1042 //pVM->rem.s.Env.interrupt_request = 0;
1043 //pVM->rem.s.Env.exception_index = -1;
1044 //g_fInterruptDisabled = 1;
1045 rc = VINF_SUCCESS;
1046 asm("int3");
1047 break;
1048 default:
1049 asm("int3");
1050 break;
1051 }
1052 iBP++;
1053#else
1054 /* breakpoint or single step? */
1055 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1056 int iBP;
1057 rc = VINF_EM_DBG_STEPPED;
1058 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1059 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1060 {
1061 rc = VINF_EM_DBG_BREAKPOINT;
1062 break;
1063 }
1064 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1065#endif
1066 break;
1067 }
1068
1069 /*
1070 * Switch to RAW-mode.
1071 */
1072 case EXCP_EXECUTE_RAW:
1073 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1074 rc = VINF_EM_RESCHEDULE_RAW;
1075 break;
1076
1077 /*
1078 * Switch to hardware accelerated RAW-mode.
1079 */
1080 case EXCP_EXECUTE_HWACC:
1081 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1082 rc = VINF_EM_RESCHEDULE_HWACC;
1083 break;
1084
1085 /*
1086 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
1087 */
1088 case EXCP_RC:
1089 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1090 rc = pVM->rem.s.rc;
1091 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1092 break;
1093
1094 /*
1095 * Figure out the rest when they arrive....
1096 */
1097 default:
1098 AssertMsgFailed(("rc=%d\n", rc));
1099 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1100 rc = VINF_SUCCESS;
1101 break;
1102 }
1103
1104 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%08x)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1105 return rc;
1106}
1107
1108
1109/**
1110 * Check if the cpu state is suitable for Raw execution.
1111 *
1112 * @returns boolean
1113 * @param env The CPU env struct.
1114 * @param eip The EIP to check this for (might differ from env->eip).
1115 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1116 * @param pExceptionIndex Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1117 *
1118 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1119 */
1120bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, uint32_t *pExceptionIndex)
1121{
1122 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1123 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1124 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1125
1126 /* Update counter. */
1127 env->pVM->rem.s.cCanExecuteRaw++;
1128
1129 if (HWACCMIsEnabled(env->pVM))
1130 {
1131 env->state |= CPU_RAW_HWACC;
1132
1133 /*
1134 * Create partial context for HWACCMR3CanExecuteGuest
1135 */
1136 CPUMCTX Ctx;
1137 Ctx.cr0 = env->cr[0];
1138 Ctx.cr3 = env->cr[3];
1139 Ctx.cr4 = env->cr[4];
1140
1141 Ctx.tr = env->tr.selector;
1142 Ctx.trHid.u32Base = (uint32_t)env->tr.base;
1143 Ctx.trHid.u32Limit = env->tr.limit;
1144 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1145
1146 Ctx.idtr.cbIdt = env->idt.limit;
1147 Ctx.idtr.pIdt = (uint32_t)env->idt.base;
1148
1149 Ctx.eflags.u32 = env->eflags;
1150
1151 Ctx.cs = env->segs[R_CS].selector;
1152 Ctx.csHid.u32Base = (uint32_t)env->segs[R_CS].base;
1153 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1154 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1155
1156 Ctx.ss = env->segs[R_SS].selector;
1157 Ctx.ssHid.u32Base = (uint32_t)env->segs[R_SS].base;
1158 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1159 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1160
1161 /* Hardware accelerated raw-mode:
1162 *
1163 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1164 */
1165 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1166 {
1167 *pExceptionIndex = EXCP_EXECUTE_HWACC;
1168 return true;
1169 }
1170 return false;
1171 }
1172
1173 /*
1174 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1175 * or 32 bits protected mode ring 0 code
1176 *
1177 * The tests are ordered by the likelyhood of being true during normal execution.
1178 */
1179 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1180 {
1181 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1182 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1183 return false;
1184 }
1185
1186#ifndef VBOX_RAW_V86
1187 if (fFlags & VM_MASK) {
1188 STAM_COUNTER_INC(&gStatRefuseVM86);
1189 Log2(("raw mode refused: VM_MASK\n"));
1190 return false;
1191 }
1192#endif
1193
1194 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1195 {
1196#ifndef DEBUG_bird
1197 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1198#endif
1199 return false;
1200 }
1201
1202 if (env->singlestep_enabled)
1203 {
1204 //Log2(("raw mode refused: Single step\n"));
1205 return false;
1206 }
1207
1208 if (env->nb_breakpoints > 0)
1209 {
1210 //Log2(("raw mode refused: Breakpoints\n"));
1211 return false;
1212 }
1213
1214 uint32_t u32CR0 = env->cr[0];
1215 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1216 {
1217 STAM_COUNTER_INC(&gStatRefusePaging);
1218 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1219 return false;
1220 }
1221
1222 if (env->cr[4] & CR4_PAE_MASK)
1223 {
1224 STAM_COUNTER_INC(&gStatRefusePAE);
1225 //Log2(("raw mode refused: PAE\n"));
1226 return false;
1227 }
1228
1229 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1230 {
1231 if (!EMIsRawRing3Enabled(env->pVM))
1232 return false;
1233
1234 if (!(env->eflags & IF_MASK))
1235 {
1236 STAM_COUNTER_INC(&gStatRefuseIF0);
1237 Log2(("raw mode refused: IF (RawR3)\n"));
1238 return false;
1239 }
1240
1241 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1242 {
1243 STAM_COUNTER_INC(&gStatRefuseWP0);
1244 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1245 return false;
1246 }
1247 }
1248 else
1249 {
1250 if (!EMIsRawRing0Enabled(env->pVM))
1251 return false;
1252
1253 // Let's start with pure 32 bits ring 0 code first
1254 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1255 {
1256 STAM_COUNTER_INC(&gStatRefuseCode16);
1257 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1258 return false;
1259 }
1260
1261 // Only R0
1262 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1263 {
1264 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1265 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1266 return false;
1267 }
1268
1269 if (!(u32CR0 & CR0_WP_MASK))
1270 {
1271 STAM_COUNTER_INC(&gStatRefuseWP0);
1272 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1273 return false;
1274 }
1275
1276 if (PATMIsPatchGCAddr(env->pVM, eip))
1277 {
1278 Log2(("raw r0 mode forced: patch code\n"));
1279 *pExceptionIndex = EXCP_EXECUTE_RAW;
1280 return true;
1281 }
1282
1283#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1284 if (!(env->eflags & IF_MASK))
1285 {
1286 STAM_COUNTER_INC(&gStatRefuseIF0);
1287 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1288 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1289 return false;
1290 }
1291#endif
1292
1293 env->state |= CPU_RAW_RING0;
1294 }
1295
1296 /*
1297 * Don't reschedule the first time we're called, because there might be
1298 * special reasons why we're here that is not covered by the above checks.
1299 */
1300 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1301 {
1302 Log2(("raw mode refused: first scheduling\n"));
1303 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1304 return false;
1305 }
1306
1307 Assert(PGMPhysIsA20Enabled(env->pVM));
1308 *pExceptionIndex = EXCP_EXECUTE_RAW;
1309 return true;
1310}
1311
1312
1313/**
1314 * Fetches a code byte.
1315 *
1316 * @returns Success indicator (bool) for ease of use.
1317 * @param env The CPU environment structure.
1318 * @param GCPtrInstr Where to fetch code.
1319 * @param pu8Byte Where to store the byte on success
1320 */
1321bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1322{
1323 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1324 if (VBOX_SUCCESS(rc))
1325 return true;
1326 return false;
1327}
1328
1329
1330/**
1331 * Flush (or invalidate if you like) page table/dir entry.
1332 *
1333 * (invlpg instruction; tlb_flush_page)
1334 *
1335 * @param env Pointer to cpu environment.
1336 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1337 */
1338void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1339{
1340 PVM pVM = env->pVM;
1341
1342 /*
1343 * When we're replaying invlpg instructions or restoring a saved
1344 * state we disable this path.
1345 */
1346 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1347 return;
1348 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1349 Assert(pVM->rem.s.fInREM);
1350
1351 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1352
1353 /*
1354 * Update the control registers before calling PGMFlushPage.
1355 */
1356 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1357 pCtx->cr0 = env->cr[0];
1358 pCtx->cr3 = env->cr[3];
1359 pCtx->cr4 = env->cr[4];
1360
1361 /*
1362 * Let PGM do the rest.
1363 */
1364 int rc = PGMInvalidatePage(pVM, GCPtr);
1365 if (VBOX_FAILURE(rc))
1366 {
1367 AssertMsgFailed(("remR3FlushPage %x %x %x %d failed!!\n", GCPtr));
1368 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1369 }
1370 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1371}
1372
1373/**
1374 * Set page table/dir entry. (called from tlb_set_page)
1375 *
1376 * @param env Pointer to cpu environment.
1377 */
1378void remR3SetPage(CPUState *env, CPUTLBEntry *pTLBEntry, CPUTLBEntry *pTLBEntryIgnored, int prot, int is_user)
1379{
1380 target_ulong virt_addr;
1381 if (env->pVM->rem.s.fIgnoreSetPage || env->pVM->rem.s.fIgnoreAll)
1382 return;
1383 Assert(env->pVM->rem.s.fInREM || env->pVM->rem.s.fInStateSync);
1384
1385#ifndef PGM_DYNAMIC_RAM_ALLOC
1386 if(!is_user && !(env->state & CPU_RAW_RING0))
1387 return; /* We are currently not interested in kernel pages */
1388#endif
1389
1390#if !defined(PGM_DYNAMIC_RAM_ALLOC) && !defined(REM_PHYS_ADDR_IN_TLB)
1391 Log2(("tlb_set_page_raw (r=%x|w=%x)-%x prot %x is_user %d phys base %x\n",
1392 pTLBEntry->addr_read, pTLBEntry->addr_write, pTLBEntry->addend, prot, is_user, phys_ram_base));
1393#else /* PGM_DYNAMIC_RAM_ALLOC */
1394 Log2(("tlb_set_page_raw (r=%x|w=%x)-%x prot %x is_user %d\n",
1395 pTLBEntry->addr_read, pTLBEntry->addr_write, pTLBEntry->addend, prot, is_user));
1396#endif/* PGM_DYNAMIC_RAM_ALLOC */
1397
1398 /*
1399 * Extract the virtual address.
1400 */
1401 if (prot & PAGE_WRITE)
1402 virt_addr = pTLBEntry->addr_write;
1403 else if (prot & PAGE_READ)
1404 virt_addr = pTLBEntry->addr_read;
1405 else
1406 AssertMsgFailedReturnVoid(("tlb_set_page_raw unexpected protection flags %x\n", prot));
1407 virt_addr &= TARGET_PAGE_MASK;
1408
1409 /*
1410 * Update the control registers before calling PGMFlushPage.
1411 */
1412 PCPUMCTX pCtx = (PCPUMCTX)env->pVM->rem.s.pCtx;
1413 pCtx->cr0 = env->cr[0];
1414 pCtx->cr3 = env->cr[3];
1415 pCtx->cr4 = env->cr[4];
1416
1417 /*
1418 * Let PGM do the rest.
1419 */
1420 int rc = PGMInvalidatePage(env->pVM, (RTGCPTR)virt_addr);
1421 if (VBOX_FAILURE(rc))
1422 {
1423#ifdef VBOX_STRICT
1424 target_ulong addend = pTLBEntry->addend;
1425 target_ulong phys_addr;
1426
1427 if (!(addend & IO_MEM_ROM))
1428# ifdef REM_PHYS_ADDR_IN_TLB
1429 phys_addr = virt_addr + addend;
1430# elif defined(PGM_DYNAMIC_RAM_ALLOC)
1431 phys_addr = remR3HCVirt2GCPhysInlined(env->pVM, (void *)(virt_addr + addend));
1432# else
1433 phys_addr = virt_addr - (uintptr_t)phys_ram_base + addend;
1434# endif
1435 else
1436 phys_addr = addend;
1437 AssertMsgFailed(("RAWEx_SetPageEntry %x %x %x %d failed!!\n", virt_addr, phys_addr, prot, is_user));
1438#endif /* VBOX_STRICT */
1439 VM_FF_SET(env->pVM, VM_FF_PGM_SYNC_CR3);
1440 }
1441}
1442
1443/**
1444 * Called from tlb_protect_code in order to write monitor a code page.
1445 *
1446 * @param env Pointer to the CPU environment.
1447 * @param GCPtr Code page to monitor
1448 */
1449void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1450{
1451 Assert(env->pVM->rem.s.fInREM);
1452 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1453 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1454 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1455 && !(env->eflags & VM_MASK) /* no V86 mode */
1456 && !HWACCMIsEnabled(env->pVM))
1457 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1458}
1459
1460/**
1461 * Called when the CPU is initialized, any of the CRx registers are changed or
1462 * when the A20 line is modified.
1463 *
1464 * @param env Pointer to the CPU environment.
1465 * @param fGlobal Set if the flush is global.
1466 */
1467void remR3FlushTLB(CPUState *env, bool fGlobal)
1468{
1469 PVM pVM = env->pVM;
1470
1471 /*
1472 * When we're replaying invlpg instructions or restoring a saved
1473 * state we disable this path.
1474 */
1475 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1476 return;
1477 Assert(pVM->rem.s.fInREM);
1478
1479 /*
1480 * The caller doesn't check cr4, so we have to do that for ourselves.
1481 */
1482 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1483 fGlobal = true;
1484 Log(("remR3FlushTLB: CR0=%VGp CR3=%VGp CR4=%VGp %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1485
1486 /*
1487 * Update the control registers before calling PGMR3FlushTLB.
1488 */
1489 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1490 pCtx->cr0 = env->cr[0];
1491 pCtx->cr3 = env->cr[3];
1492 pCtx->cr4 = env->cr[4];
1493
1494 /*
1495 * Let PGM do the rest.
1496 */
1497 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1498}
1499
1500
1501/**
1502 * Called when any of the cr0, cr4 or efer registers is updated.
1503 *
1504 * @param env Pointer to the CPU environment.
1505 */
1506void remR3ChangeCpuMode(CPUState *env)
1507{
1508 int rc;
1509 PVM pVM = env->pVM;
1510
1511 /*
1512 * When we're replaying loads or restoring a saved
1513 * state this path is disabled.
1514 */
1515 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1516 return;
1517 Assert(pVM->rem.s.fInREM);
1518
1519 /*
1520 * Update the control registers before calling PGMR3ChangeMode()
1521 * as it may need to map whatever cr3 is pointing to.
1522 */
1523 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1524 pCtx->cr0 = env->cr[0];
1525 pCtx->cr3 = env->cr[3];
1526 pCtx->cr4 = env->cr[4];
1527
1528#ifdef TARGET_X86_64
1529 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1530 if (rc != VINF_SUCCESS)
1531 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1532#else
1533 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1534 if (rc != VINF_SUCCESS)
1535 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1536#endif
1537}
1538
1539
1540/**
1541 * Called from compiled code to run dma.
1542 *
1543 * @param env Pointer to the CPU environment.
1544 */
1545void remR3DmaRun(CPUState *env)
1546{
1547 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1548 PDMR3DmaRun(env->pVM);
1549 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1550}
1551
1552/**
1553 * Called from compiled code to schedule pending timers in VMM
1554 *
1555 * @param env Pointer to the CPU environment.
1556 */
1557void remR3TimersRun(CPUState *env)
1558{
1559 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1560 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1561 TMR3TimerQueuesDo(env->pVM);
1562 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1563 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1564}
1565
1566/**
1567 * Record trap occurance
1568 *
1569 * @returns VBox status code
1570 * @param env Pointer to the CPU environment.
1571 * @param uTrap Trap nr
1572 * @param uErrorCode Error code
1573 * @param pvNextEIP Next EIP
1574 */
1575int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1576{
1577 PVM pVM = (PVM)env->pVM;
1578#ifdef VBOX_WITH_STATISTICS
1579 static STAMCOUNTER aStatTrap[255];
1580 static bool aRegisters[ELEMENTS(aStatTrap)];
1581#endif
1582
1583#ifdef VBOX_WITH_STATISTICS
1584 if (uTrap < 255)
1585 {
1586 if (!aRegisters[uTrap])
1587 {
1588 aRegisters[uTrap] = true;
1589 char szStatName[64];
1590 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1591 STAM_REG(env->pVM, &aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1592 }
1593 STAM_COUNTER_INC(&aStatTrap[uTrap]);
1594 }
1595#endif
1596 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1597 if(uTrap < 0x20)
1598 {
1599#ifdef DEBUG
1600 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1601#endif
1602 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 128)
1603 {
1604 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1605 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1606 return VERR_REM_TOO_MANY_TRAPS;
1607 }
1608 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1609 pVM->rem.s.cPendingExceptions = 1;
1610 pVM->rem.s.uPendingException = uTrap;
1611 pVM->rem.s.uPendingExcptEIP = env->eip;
1612 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1613 }
1614 else
1615 {
1616 pVM->rem.s.cPendingExceptions = 0;
1617 pVM->rem.s.uPendingException = uTrap;
1618 pVM->rem.s.uPendingExcptEIP = env->eip;
1619 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1620 }
1621 return VINF_SUCCESS;
1622}
1623
1624/*
1625 * Clear current active trap
1626 *
1627 * @param pVM VM Handle.
1628 */
1629void remR3TrapClear(PVM pVM)
1630{
1631 pVM->rem.s.cPendingExceptions = 0;
1632 pVM->rem.s.uPendingException = 0;
1633 pVM->rem.s.uPendingExcptEIP = 0;
1634 pVM->rem.s.uPendingExcptCR2 = 0;
1635}
1636
1637
1638/**
1639 * Syncs the internal REM state with the VM.
1640 *
1641 * This must be called before REMR3Run() is invoked whenever when the REM
1642 * state is not up to date. Calling it several times in a row is not
1643 * permitted.
1644 *
1645 * @returns VBox status code.
1646 *
1647 * @param pVM VM Handle.
1648 *
1649 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1650 * no do this since the majority of the callers don't want any unnecessary of events
1651 * pending that would immediatly interrupt execution.
1652 */
1653REMR3DECL(int) REMR3State(PVM pVM)
1654{
1655 Log2(("REMR3State:\n"));
1656 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1657 register const CPUMCTX *pCtx = pVM->rem.s.pCtx;
1658 register unsigned fFlags;
1659 bool fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1660
1661 Assert(!pVM->rem.s.fInREM);
1662 pVM->rem.s.fInStateSync = true;
1663
1664 /*
1665 * Copy the registers which requires no special handling.
1666 */
1667 Assert(R_EAX == 0);
1668 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1669 Assert(R_ECX == 1);
1670 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1671 Assert(R_EDX == 2);
1672 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1673 Assert(R_EBX == 3);
1674 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1675 Assert(R_ESP == 4);
1676 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1677 Assert(R_EBP == 5);
1678 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1679 Assert(R_ESI == 6);
1680 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1681 Assert(R_EDI == 7);
1682 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1683 pVM->rem.s.Env.eip = pCtx->eip;
1684
1685 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1686
1687 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1688
1689 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1690 pVM->rem.s.Env.dr[0] = pCtx->dr0;
1691 pVM->rem.s.Env.dr[1] = pCtx->dr1;
1692 pVM->rem.s.Env.dr[2] = pCtx->dr2;
1693 pVM->rem.s.Env.dr[3] = pCtx->dr3;
1694 pVM->rem.s.Env.dr[4] = pCtx->dr4;
1695 pVM->rem.s.Env.dr[5] = pCtx->dr5;
1696 pVM->rem.s.Env.dr[6] = pCtx->dr6;
1697 pVM->rem.s.Env.dr[7] = pCtx->dr7;
1698
1699 /*
1700 * Clear the halted hidden flag (the interrupt waking up the CPU can
1701 * have been dispatched in raw mode).
1702 */
1703 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1704
1705 /* Set current CPL */
1706 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1707
1708 /*
1709 * Replay invlpg?
1710 */
1711 if (pVM->rem.s.cInvalidatedPages)
1712 {
1713 pVM->rem.s.fIgnoreInvlPg = true;
1714 RTUINT i;
1715 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1716 {
1717 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1718 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1719 }
1720 pVM->rem.s.fIgnoreInvlPg = false;
1721 pVM->rem.s.cInvalidatedPages = 0;
1722 }
1723
1724 /*
1725 * Registers which are rarely changed and require special handling / order when changed.
1726 */
1727 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1728 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1729 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1730 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR))
1731 {
1732 if (fFlags & CPUM_CHANGED_FPU_REM)
1733 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1734
1735 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1736 {
1737 pVM->rem.s.fIgnoreCR3Load = true;
1738 tlb_flush(&pVM->rem.s.Env, true);
1739 pVM->rem.s.fIgnoreCR3Load = false;
1740 }
1741
1742 if (fFlags & CPUM_CHANGED_CR4)
1743 {
1744 pVM->rem.s.fIgnoreCR3Load = true;
1745 pVM->rem.s.fIgnoreCpuMode = true;
1746 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1747 pVM->rem.s.fIgnoreCpuMode = false;
1748 pVM->rem.s.fIgnoreCR3Load = false;
1749 }
1750
1751 if (fFlags & CPUM_CHANGED_CR0)
1752 {
1753 pVM->rem.s.fIgnoreCR3Load = true;
1754 pVM->rem.s.fIgnoreCpuMode = true;
1755 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1756 pVM->rem.s.fIgnoreCpuMode = false;
1757 pVM->rem.s.fIgnoreCR3Load = false;
1758 }
1759
1760 if (fFlags & CPUM_CHANGED_CR3)
1761 {
1762 pVM->rem.s.fIgnoreCR3Load = true;
1763 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1764 pVM->rem.s.fIgnoreCR3Load = false;
1765 }
1766
1767 if (fFlags & CPUM_CHANGED_GDTR)
1768 {
1769 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1770 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1771 }
1772
1773 if (fFlags & CPUM_CHANGED_IDTR)
1774 {
1775 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1776 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1777 }
1778
1779 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1780 {
1781 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1782 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1783 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1784 }
1785
1786 if (fFlags & CPUM_CHANGED_LDTR)
1787 {
1788 if (fHiddenSelRegsValid)
1789 {
1790 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1791 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u32Base;
1792 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1793 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1794 }
1795 else
1796 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1797 }
1798
1799 if (fFlags & CPUM_CHANGED_TR)
1800 {
1801 if (fHiddenSelRegsValid)
1802 {
1803 pVM->rem.s.Env.tr.selector = pCtx->tr;
1804 pVM->rem.s.Env.tr.base = pCtx->trHid.u32Base;
1805 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1806 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1807 }
1808 else
1809 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1810
1811 /** @note do_interrupt will fault if the busy flag is still set.... */
1812 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1813 }
1814 }
1815
1816 /*
1817 * Update selector registers.
1818 * This must be done *after* we've synced gdt, ldt and crX registers
1819 * since we're reading the GDT/LDT om sync_seg. This will happen with
1820 * saved state which takes a quick dip into rawmode for instance.
1821 */
1822 /*
1823 * Stack; Note first check this one as the CPL might have changed. The
1824 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1825 */
1826
1827 if (fHiddenSelRegsValid)
1828 {
1829 /* The hidden selector registers are valid in the CPU context. */
1830 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1831
1832 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u32Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1833 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u32Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1834 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u32Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1835 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u32Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1836 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u32Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1837 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u32Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1838 }
1839 else
1840 {
1841 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1842 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1843 {
1844 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1845
1846 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1847#ifdef VBOX_WITH_STATISTICS
1848 if (pVM->rem.s.Env.segs[R_SS].newselector)
1849 {
1850 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1851 }
1852#endif
1853 }
1854 else
1855 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1856
1857 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1858 {
1859 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1860 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1861#ifdef VBOX_WITH_STATISTICS
1862 if (pVM->rem.s.Env.segs[R_ES].newselector)
1863 {
1864 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1865 }
1866#endif
1867 }
1868 else
1869 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1870
1871 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1872 {
1873 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1874 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1875#ifdef VBOX_WITH_STATISTICS
1876 if (pVM->rem.s.Env.segs[R_CS].newselector)
1877 {
1878 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1879 }
1880#endif
1881 }
1882 else
1883 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1884
1885 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1886 {
1887 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1888 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1889#ifdef VBOX_WITH_STATISTICS
1890 if (pVM->rem.s.Env.segs[R_DS].newselector)
1891 {
1892 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1893 }
1894#endif
1895 }
1896 else
1897 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1898
1899 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1900 * be the same but not the base/limit. */
1901 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1902 {
1903 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1904 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1905#ifdef VBOX_WITH_STATISTICS
1906 if (pVM->rem.s.Env.segs[R_FS].newselector)
1907 {
1908 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1909 }
1910#endif
1911 }
1912 else
1913 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1914
1915 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1916 {
1917 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1918 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1919#ifdef VBOX_WITH_STATISTICS
1920 if (pVM->rem.s.Env.segs[R_GS].newselector)
1921 {
1922 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1923 }
1924#endif
1925 }
1926 else
1927 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1928 }
1929
1930 /*
1931 * Check for traps.
1932 */
1933 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1934 TRPMEVENT enmType;
1935 uint8_t u8TrapNo;
1936 int rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
1937 if (VBOX_SUCCESS(rc))
1938 {
1939 #ifdef DEBUG
1940 if (u8TrapNo == 0x80)
1941 {
1942 remR3DumpLnxSyscall(pVM);
1943 remR3DumpOBsdSyscall(pVM);
1944 }
1945 #endif
1946
1947 pVM->rem.s.Env.exception_index = u8TrapNo;
1948 if (enmType != TRPM_SOFTWARE_INT)
1949 {
1950 pVM->rem.s.Env.exception_is_int = 0;
1951 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
1952 }
1953 else
1954 {
1955 /*
1956 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
1957 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
1958 * for int03 and into.
1959 */
1960 pVM->rem.s.Env.exception_is_int = 1;
1961 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 2;
1962 /* int 3 may be generated by one-byte 0xcc */
1963 if (u8TrapNo == 3)
1964 {
1965 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xcc)
1966 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1967 }
1968 /* int 4 may be generated by one-byte 0xce */
1969 else if (u8TrapNo == 4)
1970 {
1971 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xce)
1972 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1973 }
1974 }
1975
1976 /* get error code and cr2 if needed. */
1977 switch (u8TrapNo)
1978 {
1979 case 0x0e:
1980 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
1981 /* fallthru */
1982 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
1983 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
1984 break;
1985
1986 case 0x11: case 0x08:
1987 default:
1988 pVM->rem.s.Env.error_code = 0;
1989 break;
1990 }
1991
1992 /*
1993 * We can now reset the active trap since the recompiler is gonna have a go at it.
1994 */
1995 rc = TRPMResetTrap(pVM);
1996 AssertRC(rc);
1997 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
1998 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
1999 }
2000
2001 /*
2002 * Clear old interrupt request flags; Check for pending hardware interrupts.
2003 * (See @remark for why we don't check for other FFs.)
2004 */
2005 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2006 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2007 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
2008 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2009
2010 /*
2011 * We're now in REM mode.
2012 */
2013 pVM->rem.s.fInREM = true;
2014 pVM->rem.s.fInStateSync = false;
2015 pVM->rem.s.cCanExecuteRaw = 0;
2016 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2017 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2018 return VINF_SUCCESS;
2019}
2020
2021
2022/**
2023 * Syncs back changes in the REM state to the the VM state.
2024 *
2025 * This must be called after invoking REMR3Run().
2026 * Calling it several times in a row is not permitted.
2027 *
2028 * @returns VBox status code.
2029 *
2030 * @param pVM VM Handle.
2031 */
2032REMR3DECL(int) REMR3StateBack(PVM pVM)
2033{
2034 Log2(("REMR3StateBack:\n"));
2035 Assert(pVM->rem.s.fInREM);
2036 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2037 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2038
2039 /*
2040 * Copy back the registers.
2041 * This is done in the order they are declared in the CPUMCTX structure.
2042 */
2043
2044 /** @todo FOP */
2045 /** @todo FPUIP */
2046 /** @todo CS */
2047 /** @todo FPUDP */
2048 /** @todo DS */
2049 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2050 pCtx->fpu.MXCSR = 0;
2051 pCtx->fpu.MXCSR_MASK = 0;
2052
2053 /** @todo check if FPU/XMM was actually used in the recompiler */
2054 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2055//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2056
2057 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2058 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2059 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2060 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2061 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2062 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2063 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2064
2065 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2066 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2067
2068#ifdef VBOX_WITH_STATISTICS
2069 if (pVM->rem.s.Env.segs[R_SS].newselector)
2070 {
2071 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2072 }
2073 if (pVM->rem.s.Env.segs[R_GS].newselector)
2074 {
2075 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2076 }
2077 if (pVM->rem.s.Env.segs[R_FS].newselector)
2078 {
2079 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2080 }
2081 if (pVM->rem.s.Env.segs[R_ES].newselector)
2082 {
2083 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2084 }
2085 if (pVM->rem.s.Env.segs[R_DS].newselector)
2086 {
2087 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2088 }
2089 if (pVM->rem.s.Env.segs[R_CS].newselector)
2090 {
2091 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2092 }
2093#endif
2094 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2095 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2096 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2097 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2098 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2099
2100 pCtx->eip = pVM->rem.s.Env.eip;
2101 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2102
2103 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2104 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2105 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2106 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2107
2108 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2109 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2110 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2111 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2112 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2113 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2114 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2115 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2116
2117 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2118 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2119 {
2120 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2121 STAM_COUNTER_INC(&gStatREMGDTChange);
2122 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2123 }
2124
2125 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2126 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2127 {
2128 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2129 STAM_COUNTER_INC(&gStatREMIDTChange);
2130 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2131 }
2132
2133 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2134 {
2135 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2136 STAM_COUNTER_INC(&gStatREMLDTRChange);
2137 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2138 }
2139 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2140 {
2141 pCtx->tr = pVM->rem.s.Env.tr.selector;
2142 STAM_COUNTER_INC(&gStatREMTRChange);
2143 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2144 }
2145
2146 /** @todo These values could still be out of sync! */
2147 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2148 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2149 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2150 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2151
2152 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2153 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2154 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2155
2156 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2157 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2158 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2159
2160 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2161 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2162 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2163
2164 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2165 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2166 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2167
2168 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2169 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2170 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2171
2172 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2173 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2174 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2175
2176 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2177 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2178 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2179
2180 /* Sysenter MSR */
2181 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2182 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2183 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2184
2185 remR3TrapClear(pVM);
2186
2187 /*
2188 * Check for traps.
2189 */
2190 if ( pVM->rem.s.Env.exception_index >= 0
2191 && pVM->rem.s.Env.exception_index < 256)
2192 {
2193 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2194 int rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2195 AssertRC(rc);
2196 switch (pVM->rem.s.Env.exception_index)
2197 {
2198 case 0x0e:
2199 TRPMSetFaultAddress(pVM, pCtx->cr2);
2200 /* fallthru */
2201 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2202 case 0x11: case 0x08: /* 0 */
2203 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2204 break;
2205 }
2206
2207 }
2208
2209 /*
2210 * We're not longer in REM mode.
2211 */
2212 pVM->rem.s.fInREM = false;
2213 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2214 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2215 return VINF_SUCCESS;
2216}
2217
2218
2219/**
2220 * This is called by the disassembler when it wants to update the cpu state
2221 * before for instance doing a register dump.
2222 */
2223static void remR3StateUpdate(PVM pVM)
2224{
2225 Assert(pVM->rem.s.fInREM);
2226 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2227
2228 /*
2229 * Copy back the registers.
2230 * This is done in the order they are declared in the CPUMCTX structure.
2231 */
2232
2233 /** @todo FOP */
2234 /** @todo FPUIP */
2235 /** @todo CS */
2236 /** @todo FPUDP */
2237 /** @todo DS */
2238 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2239 pCtx->fpu.MXCSR = 0;
2240 pCtx->fpu.MXCSR_MASK = 0;
2241
2242 /** @todo check if FPU/XMM was actually used in the recompiler */
2243 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2244//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2245
2246 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2247 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2248 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2249 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2250 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2251 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2252 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2253
2254 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2255 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2256
2257 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2258 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2259 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2260 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2261 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2262
2263 pCtx->eip = pVM->rem.s.Env.eip;
2264 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2265
2266 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2267 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2268 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2269 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2270
2271 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2272 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2273 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2274 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2275 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2276 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2277 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2278 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2279
2280 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2281 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2282 {
2283 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2284 STAM_COUNTER_INC(&gStatREMGDTChange);
2285 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2286 }
2287
2288 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2289 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2290 {
2291 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2292 STAM_COUNTER_INC(&gStatREMIDTChange);
2293 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2294 }
2295
2296 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2297 {
2298 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2299 STAM_COUNTER_INC(&gStatREMLDTRChange);
2300 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2301 }
2302 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2303 {
2304 pCtx->tr = pVM->rem.s.Env.tr.selector;
2305 STAM_COUNTER_INC(&gStatREMTRChange);
2306 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2307 }
2308
2309 /** @todo These values could still be out of sync! */
2310 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2311 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2312 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2313 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2314
2315 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2316 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2317 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2318
2319 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2320 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2321 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2322
2323 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2324 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2325 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2326
2327 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2328 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2329 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2330
2331 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2332 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2333 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2334
2335 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2336 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2337 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2338
2339 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2340 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2341 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2342
2343 /* Sysenter MSR */
2344 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2345 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2346 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2347}
2348
2349
2350/**
2351 * Update the VMM state information if we're currently in REM.
2352 *
2353 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2354 * we're currently executing in REM and the VMM state is invalid. This method will of
2355 * course check that we're executing in REM before syncing any data over to the VMM.
2356 *
2357 * @param pVM The VM handle.
2358 */
2359REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2360{
2361 if (pVM->rem.s.fInREM)
2362 remR3StateUpdate(pVM);
2363}
2364
2365
2366#undef LOG_GROUP
2367#define LOG_GROUP LOG_GROUP_REM
2368
2369
2370/**
2371 * Notify the recompiler about Address Gate 20 state change.
2372 *
2373 * This notification is required since A20 gate changes are
2374 * initialized from a device driver and the VM might just as
2375 * well be in REM mode as in RAW mode.
2376 *
2377 * @param pVM VM handle.
2378 * @param fEnable True if the gate should be enabled.
2379 * False if the gate should be disabled.
2380 */
2381REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2382{
2383 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2384 VM_ASSERT_EMT(pVM);
2385 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2386}
2387
2388
2389/**
2390 * Replays the invalidated recorded pages.
2391 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2392 *
2393 * @param pVM VM handle.
2394 */
2395REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2396{
2397 VM_ASSERT_EMT(pVM);
2398
2399 /*
2400 * Sync the required registers.
2401 */
2402 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2403 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2404 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2405 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2406
2407 /*
2408 * Replay the flushes.
2409 */
2410 pVM->rem.s.fIgnoreInvlPg = true;
2411 RTUINT i;
2412 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2413 {
2414 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2415 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2416 }
2417 pVM->rem.s.fIgnoreInvlPg = false;
2418 pVM->rem.s.cInvalidatedPages = 0;
2419}
2420
2421
2422/**
2423 * Replays the invalidated recorded pages.
2424 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2425 *
2426 * @param pVM VM handle.
2427 */
2428REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2429{
2430 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2431 VM_ASSERT_EMT(pVM);
2432
2433 /*
2434 * Replay the flushes.
2435 */
2436 RTUINT i;
2437 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2438 pVM->rem.s.cHandlerNotifications = 0;
2439 for (i = 0; i < c; i++)
2440 {
2441 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2442 switch (pRec->enmKind)
2443 {
2444 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2445 REMR3NotifyHandlerPhysicalRegister(pVM,
2446 pRec->u.PhysicalRegister.enmType,
2447 pRec->u.PhysicalRegister.GCPhys,
2448 pRec->u.PhysicalRegister.cb,
2449 pRec->u.PhysicalRegister.fHasHCHandler);
2450 break;
2451
2452 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2453 REMR3NotifyHandlerPhysicalDeregister(pVM,
2454 pRec->u.PhysicalDeregister.enmType,
2455 pRec->u.PhysicalDeregister.GCPhys,
2456 pRec->u.PhysicalDeregister.cb,
2457 pRec->u.PhysicalDeregister.fHasHCHandler,
2458 pRec->u.PhysicalDeregister.pvHCPtr);
2459 break;
2460
2461 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2462 REMR3NotifyHandlerPhysicalModify(pVM,
2463 pRec->u.PhysicalModify.enmType,
2464 pRec->u.PhysicalModify.GCPhysOld,
2465 pRec->u.PhysicalModify.GCPhysNew,
2466 pRec->u.PhysicalModify.cb,
2467 pRec->u.PhysicalModify.fHasHCHandler,
2468 pRec->u.PhysicalModify.pvHCPtr);
2469 break;
2470
2471 default:
2472 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2473 break;
2474 }
2475 }
2476}
2477
2478
2479/**
2480 * Notify REM about changed code page.
2481 *
2482 * @returns VBox status code.
2483 * @param pVM VM handle.
2484 * @param pvCodePage Code page address
2485 */
2486REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2487{
2488 int rc;
2489 RTGCPHYS PhysGC;
2490 uint64_t flags;
2491
2492 VM_ASSERT_EMT(pVM);
2493
2494 /*
2495 * Get the physical page address.
2496 */
2497 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2498 if (rc == VINF_SUCCESS)
2499 {
2500 /*
2501 * Sync the required registers and flush the whole page.
2502 * (Easier to do the whole page than notifying it about each physical
2503 * byte that was changed.
2504 */
2505 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2506 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2507 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2508 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2509
2510 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2511 }
2512 return VINF_SUCCESS;
2513}
2514
2515/**
2516 * Notification about a successful MMR3PhysRegister() call.
2517 *
2518 * @param pVM VM handle.
2519 * @param GCPhys The physical address the RAM.
2520 * @param cb Size of the memory.
2521 * @param pvRam The HC address of the RAM.
2522 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2523 */
2524REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvRam, unsigned fFlags)
2525{
2526 LogFlow(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2527 VM_ASSERT_EMT(pVM);
2528
2529 /*
2530 * Validate input - we trust the caller.
2531 */
2532 Assert(!GCPhys || pvRam);
2533 Assert(RT_ALIGN_P(pvRam, PAGE_SIZE) == pvRam);
2534 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2535 Assert(cb);
2536 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2537
2538 /*
2539 * Base ram?
2540 */
2541 if (!GCPhys)
2542 {
2543#if !defined(PGM_DYNAMIC_RAM_ALLOC) && !defined(REM_PHYS_ADDR_IN_TLB)
2544 AssertRelease(!phys_ram_base);
2545 phys_ram_base = pvRam;
2546#endif
2547 phys_ram_size = cb;
2548 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2549#ifndef VBOX_STRICT
2550 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2551 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2552#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2553 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2554 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2555 uint32_t cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2556 int rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2557 AssertRC(rc);
2558 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2559#endif
2560 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2561 }
2562
2563 /*
2564 * Register the ram.
2565 */
2566 Assert(!pVM->rem.s.fIgnoreAll);
2567 pVM->rem.s.fIgnoreAll = true;
2568
2569#ifdef PGM_DYNAMIC_RAM_ALLOC
2570 if (!GCPhys)
2571 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2572 else
2573 {
2574# ifndef REM_PHYS_ADDR_IN_TLB
2575 uint32_t i;
2576# endif
2577
2578 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2579
2580# ifndef REM_PHYS_ADDR_IN_TLB
2581 AssertRelease(pVM->rem.s.cPhysRegistrations < REM_MAX_PHYS_REGISTRATIONS);
2582 for (i = 0; i < pVM->rem.s.cPhysRegistrations; i++)
2583 {
2584 if (pVM->rem.s.aPhysReg[i].GCPhys == GCPhys)
2585 {
2586 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvRam;
2587 pVM->rem.s.aPhysReg[i].cb = cb;
2588 break;
2589 }
2590 }
2591 if (i == pVM->rem.s.cPhysRegistrations)
2592 {
2593 pVM->rem.s.aPhysReg[i].GCPhys = GCPhys;
2594 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvRam;
2595 pVM->rem.s.aPhysReg[i].cb = cb;
2596 pVM->rem.s.cPhysRegistrations++;
2597 }
2598# endif /* !REM_PHYS_ADDR_IN_TLB */
2599 }
2600#elif defined(REM_PHYS_ADDR_IN_TLB)
2601 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2602#else
2603 AssertRelease(phys_ram_base);
2604 cpu_register_physical_memory(GCPhys, cb, ((uintptr_t)pvRam - (uintptr_t)phys_ram_base)
2605 | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2606#endif
2607 Assert(pVM->rem.s.fIgnoreAll);
2608 pVM->rem.s.fIgnoreAll = false;
2609}
2610
2611
2612/**
2613 * Notification about a successful PGMR3PhysRegisterChunk() call.
2614 *
2615 * @param pVM VM handle.
2616 * @param GCPhys The physical address the RAM.
2617 * @param cb Size of the memory.
2618 * @param pvRam The HC address of the RAM.
2619 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2620 */
2621REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2622{
2623#ifdef PGM_DYNAMIC_RAM_ALLOC
2624# ifndef REM_PHYS_ADDR_IN_TLB
2625 uint32_t idx;
2626#endif
2627
2628 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2629 VM_ASSERT_EMT(pVM);
2630
2631 /*
2632 * Validate input - we trust the caller.
2633 */
2634 Assert(pvRam);
2635 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2636 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2637 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2638 Assert(fFlags == 0 /* normal RAM */);
2639
2640# ifndef REM_PHYS_ADDR_IN_TLB
2641 if (!pVM->rem.s.paHCVirtToGCPhys)
2642 {
2643 uint32_t size = (_4G >> PGM_DYNAMIC_CHUNK_SHIFT) * sizeof(REMCHUNKINFO);
2644
2645 Assert(phys_ram_size);
2646
2647 pVM->rem.s.paHCVirtToGCPhys = (PREMCHUNKINFO)MMR3HeapAllocZ(pVM, MM_TAG_REM, size);
2648 pVM->rem.s.paGCPhysToHCVirt = (RTHCPTR)MMR3HeapAllocZ(pVM, MM_TAG_REM, (phys_ram_size >> PGM_DYNAMIC_CHUNK_SHIFT)*sizeof(RTHCPTR));
2649 }
2650 pVM->rem.s.paGCPhysToHCVirt[GCPhys >> PGM_DYNAMIC_CHUNK_SHIFT] = pvRam;
2651
2652 idx = (pvRam >> PGM_DYNAMIC_CHUNK_SHIFT);
2653 if (!pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1)
2654 {
2655 pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1 = pvRam;
2656 pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 = GCPhys;
2657 }
2658 else
2659 {
2660 Assert(!pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2);
2661 pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2 = pvRam;
2662 pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 = GCPhys;
2663 }
2664 /* Does the region spawn two chunks? */
2665 if (pvRam & PGM_DYNAMIC_CHUNK_OFFSET_MASK)
2666 {
2667 if (!pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk1)
2668 {
2669 pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk1 = pvRam;
2670 pVM->rem.s.paHCVirtToGCPhys[idx+1].GCPhys1 = GCPhys;
2671 }
2672 else
2673 {
2674 Assert(!pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk2);
2675 pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk2 = pvRam;
2676 pVM->rem.s.paHCVirtToGCPhys[idx+1].GCPhys2 = GCPhys;
2677 }
2678 }
2679# endif /* !REM_PHYS_ADDR_IN_TLB */
2680
2681 Assert(!pVM->rem.s.fIgnoreAll);
2682 pVM->rem.s.fIgnoreAll = true;
2683
2684 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2685
2686 Assert(pVM->rem.s.fIgnoreAll);
2687 pVM->rem.s.fIgnoreAll = false;
2688
2689#else
2690 AssertReleaseFailed();
2691#endif
2692}
2693
2694
2695#ifdef PGM_DYNAMIC_RAM_ALLOC
2696# ifndef REM_PHYS_ADDR_IN_TLB
2697#if 0
2698static const uint8_t gabZeroPage[PAGE_SIZE];
2699#endif
2700
2701/**
2702 * Convert GC physical address to HC virt
2703 *
2704 * @returns The HC virt address corresponding to addr.
2705 * @param env The cpu environment.
2706 * @param addr The physical address.
2707 */
2708DECLINLINE(void *) remR3GCPhys2HCVirtInlined(PVM pVM, target_ulong addr)
2709{
2710 uint32_t i;
2711 void *pv;
2712 STAM_PROFILE_START(&gStatGCPhys2HCVirt, a);
2713
2714#if 1
2715 /* lookup in pVM->rem.s.aPhysReg array first (for ROM range(s) inside the guest's RAM) */
2716 for (i = 0; i < pVM->rem.s.cPhysRegistrations; i++)
2717 {
2718 RTGCPHYS off = addr - pVM->rem.s.aPhysReg[i].GCPhys;
2719 if (off < pVM->rem.s.aPhysReg[i].cb)
2720 {
2721 pv = (void *)(pVM->rem.s.aPhysReg[i].HCVirt + off);
2722 Log2(("remR3GCPhys2HCVirt: %x -> %x\n", addr, pv));
2723 STAM_PROFILE_STOP(&gStatGCPhys2HCVirt, a);
2724 return pv;
2725 }
2726 }
2727 AssertMsg(addr < phys_ram_size, ("remR3GCPhys2HCVirt: unknown physical address %x\n", addr));
2728 pv = (void *)(pVM->rem.s.paGCPhysToHCVirt[addr >> PGM_DYNAMIC_CHUNK_SHIFT] + (addr & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
2729 Log2(("remR3GCPhys2HCVirt: %x -> %x\n", addr, pv));
2730#else
2731 /** @todo figure out why this is faster than the above code. */
2732 int rc = PGMPhysGCPhys2HCPtr(pVM, addr & X86_PTE_PAE_PG_MASK, PAGE_SIZE, &pv);
2733 if (RT_FAILURE(rc))
2734 {
2735 AssertMsgFailed(("remR3GCPhys2HCVirt: unknown physical address %x\n", addr));
2736 pv = gabZeroPage;
2737 }
2738 pv = (void *)((uintptr_t)pv | (addr & PAGE_OFFSET_MASK));
2739#endif
2740 return pv;
2741}
2742
2743
2744/**
2745 * Convert GC physical address to HC virt
2746 *
2747 * @returns The HC virt address corresponding to addr.
2748 * @param env The cpu environment.
2749 * @param addr The physical address.
2750 */
2751DECLINLINE(target_ulong) remR3HCVirt2GCPhysInlined(PVM pVM, void *addr)
2752{
2753 RTHCUINTPTR HCVirt = (RTHCUINTPTR)addr;
2754 uint32_t idx = (HCVirt >> PGM_DYNAMIC_CHUNK_SHIFT);
2755 RTHCUINTPTR off;
2756 RTUINT i;
2757 target_ulong GCPhys;
2758
2759 off = HCVirt - pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1;
2760
2761 if ( pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1
2762 && off < PGM_DYNAMIC_CHUNK_SIZE)
2763 {
2764 GCPhys = pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 + off;
2765 Log2(("remR3HCVirt2GCPhys %x -> %x\n", addr, GCPhys));
2766 return GCPhys;
2767 }
2768
2769 off = HCVirt - pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2;
2770 if ( pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2
2771 && off < PGM_DYNAMIC_CHUNK_SIZE)
2772 {
2773 GCPhys = pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 + off;
2774 Log2(("remR3HCVirt2GCPhys %x -> %x\n", addr, GCPhys));
2775 return GCPhys;
2776 }
2777
2778 /* Must be externally registered RAM/ROM range */
2779 for (i = 0; i < pVM->rem.s.cPhysRegistrations; i++)
2780 {
2781 uint32_t off = HCVirt - pVM->rem.s.aPhysReg[i].HCVirt;
2782 if (off < pVM->rem.s.aPhysReg[i].cb)
2783 {
2784 GCPhys = pVM->rem.s.aPhysReg[i].GCPhys + off;
2785 Log2(("remR3HCVirt2GCPhys %x -> %x\n", addr, GCPhys));
2786 return GCPhys;
2787 }
2788 }
2789 AssertReleaseMsgFailed(("No translation for physical address %VHv???\n", addr));
2790 return 0;
2791}
2792
2793/**
2794 * Convert GC physical address to HC virt
2795 *
2796 * @returns The HC virt address corresponding to addr.
2797 * @param env The cpu environment.
2798 * @param addr The physical address.
2799 */
2800void *remR3GCPhys2HCVirt(void *env, target_ulong addr)
2801{
2802 PVM pVM = ((CPUState *)env)->pVM;
2803 void *pv;
2804 STAM_PROFILE_START(&gStatGCPhys2HCVirt, a);
2805 pv = remR3GCPhys2HCVirtInlined(pVM, addr);
2806 STAM_PROFILE_STOP(&gStatGCPhys2HCVirt, a);
2807 return pv;
2808}
2809
2810
2811/**
2812 * Convert GC physical address to HC virt
2813 *
2814 * @returns The HC virt address corresponding to addr.
2815 * @param env The cpu environment.
2816 * @param addr The physical address.
2817 */
2818target_ulong remR3HCVirt2GCPhys(void *env, void *addr)
2819{
2820 PVM pVM = ((CPUState *)env)->pVM;
2821 target_ulong GCPhys;
2822 STAM_PROFILE_START(&gStatHCVirt2GCPhys, a);
2823 GCPhys = remR3HCVirt2GCPhysInlined(pVM, addr);
2824 STAM_PROFILE_STOP(&gStatHCVirt2GCPhys, a);
2825 return GCPhys;
2826}
2827
2828# endif /* !REM_PHYS_ADDR_IN_TLB */
2829
2830/**
2831 * Grows dynamically allocated guest RAM.
2832 * Will raise a fatal error if the operation fails.
2833 *
2834 * @param physaddr The physical address.
2835 */
2836void remR3GrowDynRange(unsigned long physaddr)
2837{
2838 int rc;
2839 PVM pVM = cpu_single_env->pVM;
2840
2841 Log(("remR3GrowDynRange %VGp\n", physaddr));
2842 rc = PGM3PhysGrowRange(pVM, (RTGCPHYS)physaddr);
2843 if (VBOX_SUCCESS(rc))
2844 return;
2845
2846 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2847 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2848 AssertFatalFailed();
2849}
2850
2851#endif /* PGM_DYNAMIC_RAM_ALLOC */
2852
2853
2854/**
2855 * Notification about a successful MMR3PhysRomRegister() call.
2856 *
2857 * @param pVM VM handle.
2858 * @param GCPhys The physical address of the ROM.
2859 * @param cb The size of the ROM.
2860 * @param pvCopy Pointer to the ROM copy.
2861 */
2862REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy)
2863{
2864#if defined(PGM_DYNAMIC_RAM_ALLOC) && !defined(REM_PHYS_ADDR_IN_TLB)
2865 uint32_t i;
2866#endif
2867 LogFlow(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p\n", GCPhys, cb, pvCopy));
2868 VM_ASSERT_EMT(pVM);
2869
2870 /*
2871 * Validate input - we trust the caller.
2872 */
2873 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2874 Assert(cb);
2875 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2876 Assert(pvCopy);
2877 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2878
2879 /*
2880 * Register the rom.
2881 */
2882 Assert(!pVM->rem.s.fIgnoreAll);
2883 pVM->rem.s.fIgnoreAll = true;
2884
2885#ifdef REM_PHYS_ADDR_IN_TLB
2886 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_ROM);
2887#elif defined(PGM_DYNAMIC_RAM_ALLOC)
2888 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_ROM);
2889 AssertRelease(pVM->rem.s.cPhysRegistrations < REM_MAX_PHYS_REGISTRATIONS);
2890 for (i = 0; i < pVM->rem.s.cPhysRegistrations; i++)
2891 {
2892 if (pVM->rem.s.aPhysReg[i].GCPhys == GCPhys)
2893 {
2894 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvCopy;
2895 pVM->rem.s.aPhysReg[i].cb = cb;
2896 break;
2897 }
2898 }
2899 if (i == pVM->rem.s.cPhysRegistrations)
2900 {
2901 pVM->rem.s.aPhysReg[i].GCPhys = GCPhys;
2902 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvCopy;
2903 pVM->rem.s.aPhysReg[i].cb = cb;
2904 pVM->rem.s.cPhysRegistrations++;
2905 }
2906#else
2907 AssertRelease(phys_ram_base);
2908 cpu_register_physical_memory(GCPhys, cb, ((uintptr_t)pvCopy - (uintptr_t)phys_ram_base) | IO_MEM_ROM);
2909#endif
2910
2911 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2912
2913 Assert(pVM->rem.s.fIgnoreAll);
2914 pVM->rem.s.fIgnoreAll = false;
2915}
2916
2917
2918/**
2919 * Notification about a successful MMR3PhysRegister() call.
2920 *
2921 * @param pVM VM Handle.
2922 * @param GCPhys Start physical address.
2923 * @param cb The size of the range.
2924 */
2925REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2926{
2927 LogFlow(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2928 VM_ASSERT_EMT(pVM);
2929
2930 /*
2931 * Validate input - we trust the caller.
2932 */
2933 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2934 Assert(cb);
2935 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2936
2937 /*
2938 * Unassigning the memory.
2939 */
2940 Assert(!pVM->rem.s.fIgnoreAll);
2941 pVM->rem.s.fIgnoreAll = true;
2942
2943 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2944
2945 Assert(pVM->rem.s.fIgnoreAll);
2946 pVM->rem.s.fIgnoreAll = false;
2947}
2948
2949
2950/**
2951 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2952 *
2953 * @param pVM VM Handle.
2954 * @param enmType Handler type.
2955 * @param GCPhys Handler range address.
2956 * @param cb Size of the handler range.
2957 * @param fHasHCHandler Set if the handler has a HC callback function.
2958 *
2959 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2960 * Handler memory type to memory which has no HC handler.
2961 */
2962REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2963{
2964 LogFlow(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d\n",
2965 enmType, GCPhys, cb, fHasHCHandler));
2966 VM_ASSERT_EMT(pVM);
2967 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2968 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2969
2970 if (pVM->rem.s.cHandlerNotifications)
2971 REMR3ReplayHandlerNotifications(pVM);
2972
2973 Assert(!pVM->rem.s.fIgnoreAll);
2974 pVM->rem.s.fIgnoreAll = true;
2975
2976 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2977 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2978 else if (fHasHCHandler)
2979 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2980
2981 Assert(pVM->rem.s.fIgnoreAll);
2982 pVM->rem.s.fIgnoreAll = false;
2983}
2984
2985
2986/**
2987 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2988 *
2989 * @param pVM VM Handle.
2990 * @param enmType Handler type.
2991 * @param GCPhys Handler range address.
2992 * @param cb Size of the handler range.
2993 * @param fHasHCHandler Set if the handler has a HC callback function.
2994 * @param pvHCPtr The HC virtual address corresponding to GCPhys if available.
2995 */
2996REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, void *pvHCPtr)
2997{
2998 LogFlow(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d pvHCPtr=%p RAM=%08x\n",
2999 enmType, GCPhys, cb, fHasHCHandler, pvHCPtr, MMR3PhysGetRamSize(pVM)));
3000 VM_ASSERT_EMT(pVM);
3001
3002 if (pVM->rem.s.cHandlerNotifications)
3003 REMR3ReplayHandlerNotifications(pVM);
3004
3005 Assert(!pVM->rem.s.fIgnoreAll);
3006 pVM->rem.s.fIgnoreAll = true;
3007
3008 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
3009 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
3010 else if (fHasHCHandler)
3011 {
3012 if (!pvHCPtr)
3013 {
3014 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
3015 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
3016 }
3017 else
3018 {
3019 /* This is not perfect, but it'll do for PD monitoring... */
3020 Assert(cb == PAGE_SIZE);
3021 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
3022#ifdef REM_PHYS_ADDR_IN_TLB
3023 cpu_register_physical_memory(GCPhys, cb, GCPhys);
3024#elif defined(PGM_DYNAMIC_RAM_ALLOC)
3025 Assert(remR3HCVirt2GCPhysInlined(pVM, pvHCPtr) < MMR3PhysGetRamSize(pVM));
3026 cpu_register_physical_memory(GCPhys, cb, GCPhys);
3027#else
3028 Assert((uintptr_t)pvHCPtr - (uintptr_t)phys_ram_base < MMR3PhysGetRamSize(pVM));
3029 cpu_register_physical_memory(GCPhys, cb, (uintptr_t)pvHCPtr - (uintptr_t)phys_ram_base);
3030#endif
3031 }
3032 }
3033
3034 Assert(pVM->rem.s.fIgnoreAll);
3035 pVM->rem.s.fIgnoreAll = false;
3036}
3037
3038
3039/**
3040 * Notification about a successful PGMR3HandlerPhysicalModify() call.
3041 *
3042 * @param pVM VM Handle.
3043 * @param enmType Handler type.
3044 * @param GCPhysOld Old handler range address.
3045 * @param GCPhysNew New handler range address.
3046 * @param cb Size of the handler range.
3047 * @param fHasHCHandler Set if the handler has a HC callback function.
3048 * @param pvHCPtr The HC virtual address corresponding to GCPhys if available.
3049 */
3050REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, void *pvHCPtr)
3051{
3052 LogFlow(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%d fHasHCHandler=%d pvHCPtr=%p\n",
3053 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, pvHCPtr));
3054 VM_ASSERT_EMT(pVM);
3055 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
3056
3057 if (pVM->rem.s.cHandlerNotifications)
3058 REMR3ReplayHandlerNotifications(pVM);
3059
3060 if (fHasHCHandler)
3061 {
3062 Assert(!pVM->rem.s.fIgnoreAll);
3063 pVM->rem.s.fIgnoreAll = true;
3064
3065 /*
3066 * Reset the old page.
3067 */
3068 if (!pvHCPtr)
3069 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
3070 else
3071 {
3072 /* This is not perfect, but it'll do for PD monitoring... */
3073 Assert(cb == PAGE_SIZE);
3074 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
3075#ifdef REM_PHYS_ADDR_IN_TLB
3076 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
3077#elif defined(PGM_DYNAMIC_RAM_ALLOC)
3078 Assert(remR3HCVirt2GCPhysInlined(pVM, pvHCPtr) < MMR3PhysGetRamSize(pVM));
3079 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
3080#else
3081 AssertMsg((uintptr_t)pvHCPtr - (uintptr_t)phys_ram_base < MMR3PhysGetRamSize(pVM),
3082 ("pvHCPtr=%p phys_ram_base=%p size=%RX64 cb=%RGp\n", pvHCPtr, phys_ram_base, MMR3PhysGetRamSize(pVM), cb));
3083 cpu_register_physical_memory(GCPhysOld, cb, (uintptr_t)pvHCPtr - (uintptr_t)phys_ram_base);
3084#endif
3085 }
3086
3087 /*
3088 * Update the new page.
3089 */
3090 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
3091 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
3092 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
3093
3094 Assert(pVM->rem.s.fIgnoreAll);
3095 pVM->rem.s.fIgnoreAll = false;
3096 }
3097}
3098
3099
3100/**
3101 * Checks if we're handling access to this page or not.
3102 *
3103 * @returns true if we're trapping access.
3104 * @returns false if we aren't.
3105 * @param pVM The VM handle.
3106 * @param GCPhys The physical address.
3107 *
3108 * @remark This function will only work correctly in VBOX_STRICT builds!
3109 */
3110REMDECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
3111{
3112#ifdef VBOX_STRICT
3113 if (pVM->rem.s.cHandlerNotifications)
3114 REMR3ReplayHandlerNotifications(pVM);
3115
3116 unsigned long off = get_phys_page_offset(GCPhys);
3117 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
3118 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
3119 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
3120#else
3121 return false;
3122#endif
3123}
3124
3125
3126/**
3127 * Deals with a rare case in get_phys_addr_code where the code
3128 * is being monitored.
3129 *
3130 * It could also be an MMIO page, in which case we will raise a fatal error.
3131 *
3132 * @returns The physical address corresponding to addr.
3133 * @param env The cpu environment.
3134 * @param addr The virtual address.
3135 * @param pTLBEntry The TLB entry.
3136 */
3137target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
3138{
3139 PVM pVM = env->pVM;
3140 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
3141 {
3142 target_ulong ret = pTLBEntry->addend + addr;
3143 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv addr_code=%VGv addend=%VGp ret=%VGp\n",
3144 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
3145 return ret;
3146 }
3147 LogRel(("\nTrying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
3148 "*** handlers\n",
3149 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
3150 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
3151 LogRel(("*** mmio\n"));
3152 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
3153 LogRel(("*** phys\n"));
3154 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
3155 cpu_abort(env, "Trying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
3156 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
3157 AssertFatalFailed();
3158}
3159
3160
3161/** Validate the physical address passed to the read functions.
3162 * Useful for finding non-guest-ram reads/writes. */
3163#if 1 /* disable if it becomes bothersome... */
3164# define VBOX_CHECK_ADDR(GCPhys) AssertMsg(PGMPhysIsGCPhysValid(cpu_single_env->pVM, (GCPhys)), ("%VGp\n", (GCPhys)))
3165#else
3166# define VBOX_CHECK_ADDR(GCPhys) do { } while (0)
3167#endif
3168
3169/**
3170 * Read guest RAM and ROM.
3171 *
3172 * @param SrcGCPhys The source address (guest physical).
3173 * @param pvDst The destination address.
3174 * @param cb Number of bytes
3175 */
3176void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3177{
3178 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3179 VBOX_CHECK_ADDR(SrcGCPhys);
3180 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3181 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3182}
3183
3184
3185/**
3186 * Read guest RAM and ROM, unsigned 8-bit.
3187 *
3188 * @param SrcGCPhys The source address (guest physical).
3189 */
3190uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3191{
3192 uint8_t val;
3193 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3194 VBOX_CHECK_ADDR(SrcGCPhys);
3195 val = PGMR3PhysReadByte(cpu_single_env->pVM, SrcGCPhys);
3196 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3197 return val;
3198}
3199
3200
3201/**
3202 * Read guest RAM and ROM, signed 8-bit.
3203 *
3204 * @param SrcGCPhys The source address (guest physical).
3205 */
3206int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3207{
3208 int8_t val;
3209 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3210 VBOX_CHECK_ADDR(SrcGCPhys);
3211 val = PGMR3PhysReadByte(cpu_single_env->pVM, SrcGCPhys);
3212 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3213 return val;
3214}
3215
3216
3217/**
3218 * Read guest RAM and ROM, unsigned 16-bit.
3219 *
3220 * @param SrcGCPhys The source address (guest physical).
3221 */
3222uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3223{
3224 uint16_t val;
3225 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3226 VBOX_CHECK_ADDR(SrcGCPhys);
3227 val = PGMR3PhysReadWord(cpu_single_env->pVM, SrcGCPhys);
3228 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3229 return val;
3230}
3231
3232
3233/**
3234 * Read guest RAM and ROM, signed 16-bit.
3235 *
3236 * @param SrcGCPhys The source address (guest physical).
3237 */
3238int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3239{
3240 uint16_t val;
3241 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3242 VBOX_CHECK_ADDR(SrcGCPhys);
3243 val = PGMR3PhysReadWord(cpu_single_env->pVM, SrcGCPhys);
3244 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3245 return val;
3246}
3247
3248
3249/**
3250 * Read guest RAM and ROM, unsigned 32-bit.
3251 *
3252 * @param SrcGCPhys The source address (guest physical).
3253 */
3254uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3255{
3256 uint32_t val;
3257 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3258 VBOX_CHECK_ADDR(SrcGCPhys);
3259 val = PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys);
3260 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3261 return val;
3262}
3263
3264
3265/**
3266 * Read guest RAM and ROM, signed 32-bit.
3267 *
3268 * @param SrcGCPhys The source address (guest physical).
3269 */
3270int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3271{
3272 int32_t val;
3273 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3274 VBOX_CHECK_ADDR(SrcGCPhys);
3275 val = PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys);
3276 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3277 return val;
3278}
3279
3280
3281/**
3282 * Read guest RAM and ROM, unsigned 64-bit.
3283 *
3284 * @param SrcGCPhys The source address (guest physical).
3285 */
3286uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3287{
3288 uint64_t val;
3289 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3290 VBOX_CHECK_ADDR(SrcGCPhys);
3291 val = PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys)
3292 | ((uint64_t)PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys + 4) << 32); /** @todo fix me! */
3293 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3294 return val;
3295}
3296
3297
3298/**
3299 * Write guest RAM.
3300 *
3301 * @param DstGCPhys The destination address (guest physical).
3302 * @param pvSrc The source address.
3303 * @param cb Number of bytes to write
3304 */
3305void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3306{
3307 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3308 VBOX_CHECK_ADDR(DstGCPhys);
3309 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3310 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3311}
3312
3313
3314/**
3315 * Write guest RAM, unsigned 8-bit.
3316 *
3317 * @param DstGCPhys The destination address (guest physical).
3318 * @param val Value
3319 */
3320void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3321{
3322 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3323 VBOX_CHECK_ADDR(DstGCPhys);
3324 PGMR3PhysWriteByte(cpu_single_env->pVM, DstGCPhys, val);
3325 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3326}
3327
3328
3329/**
3330 * Write guest RAM, unsigned 8-bit.
3331 *
3332 * @param DstGCPhys The destination address (guest physical).
3333 * @param val Value
3334 */
3335void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3336{
3337 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3338 VBOX_CHECK_ADDR(DstGCPhys);
3339 PGMR3PhysWriteWord(cpu_single_env->pVM, DstGCPhys, val);
3340 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3341}
3342
3343
3344/**
3345 * Write guest RAM, unsigned 32-bit.
3346 *
3347 * @param DstGCPhys The destination address (guest physical).
3348 * @param val Value
3349 */
3350void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3351{
3352 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3353 VBOX_CHECK_ADDR(DstGCPhys);
3354 PGMR3PhysWriteDword(cpu_single_env->pVM, DstGCPhys, val);
3355 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3356}
3357
3358
3359/**
3360 * Write guest RAM, unsigned 64-bit.
3361 *
3362 * @param DstGCPhys The destination address (guest physical).
3363 * @param val Value
3364 */
3365void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3366{
3367 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3368 VBOX_CHECK_ADDR(DstGCPhys);
3369 PGMR3PhysWriteDword(cpu_single_env->pVM, DstGCPhys, (uint32_t)val); /** @todo add U64 interface. */
3370 PGMR3PhysWriteDword(cpu_single_env->pVM, DstGCPhys + 4, val >> 32);
3371 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3372}
3373
3374
3375#ifndef REM_PHYS_ADDR_IN_TLB
3376
3377/**
3378 * Read guest RAM and ROM.
3379 *
3380 * @param pbSrcPhys The source address. Relative to guest RAM.
3381 * @param pvDst The destination address.
3382 * @param cb Number of bytes
3383 */
3384void remR3PhysReadHCPtr(uint8_t *pbSrcPhys, void *pvDst, unsigned cb)
3385{
3386 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3387
3388 /*
3389 * Calc the physical address ('off') and check that it's within the RAM.
3390 * ROM is accessed this way, even if it's not part of the RAM.
3391 */
3392#ifdef PGM_DYNAMIC_RAM_ALLOC
3393 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3394#else
3395 uintptr_t off = pbSrcPhys - phys_ram_base;
3396#endif
3397 PGMPhysRead(cpu_single_env->pVM, (RTGCPHYS)off, pvDst, cb);
3398 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3399}
3400
3401
3402/**
3403 * Read guest RAM and ROM, unsigned 8-bit.
3404 *
3405 * @param pbSrcPhys The source address. Relative to guest RAM.
3406 */
3407uint8_t remR3PhysReadHCPtrU8(uint8_t *pbSrcPhys)
3408{
3409 uint8_t val;
3410
3411 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3412
3413 /*
3414 * Calc the physical address ('off') and check that it's within the RAM.
3415 * ROM is accessed this way, even if it's not part of the RAM.
3416 */
3417#ifdef PGM_DYNAMIC_RAM_ALLOC
3418 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3419#else
3420 uintptr_t off = pbSrcPhys - phys_ram_base;
3421#endif
3422 val = PGMR3PhysReadByte(cpu_single_env->pVM, (RTGCPHYS)off);
3423 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3424 return val;
3425}
3426
3427
3428/**
3429 * Read guest RAM and ROM, signed 8-bit.
3430 *
3431 * @param pbSrcPhys The source address. Relative to guest RAM.
3432 */
3433int8_t remR3PhysReadHCPtrS8(uint8_t *pbSrcPhys)
3434{
3435 int8_t val;
3436
3437 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3438
3439 /*
3440 * Calc the physical address ('off') and check that it's within the RAM.
3441 * ROM is accessed this way, even if it's not part of the RAM.
3442 */
3443#ifdef PGM_DYNAMIC_RAM_ALLOC
3444 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3445#else
3446 uintptr_t off = pbSrcPhys - phys_ram_base;
3447#endif
3448 val = PGMR3PhysReadByte(cpu_single_env->pVM, (RTGCPHYS)off);
3449 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3450 return val;
3451}
3452
3453
3454/**
3455 * Read guest RAM and ROM, unsigned 16-bit.
3456 *
3457 * @param pbSrcPhys The source address. Relative to guest RAM.
3458 */
3459uint16_t remR3PhysReadHCPtrU16(uint8_t *pbSrcPhys)
3460{
3461 uint16_t val;
3462
3463 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3464
3465 /*
3466 * Calc the physical address ('off') and check that it's within the RAM.
3467 * ROM is accessed this way, even if it's not part of the RAM.
3468 */
3469#ifdef PGM_DYNAMIC_RAM_ALLOC
3470 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3471#else
3472 uintptr_t off = pbSrcPhys - phys_ram_base;
3473#endif
3474 val = PGMR3PhysReadWord(cpu_single_env->pVM, (RTGCPHYS)off);
3475 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3476 return val;
3477}
3478
3479
3480/**
3481 * Read guest RAM and ROM, signed 16-bit.
3482 *
3483 * @param pbSrcPhys The source address. Relative to guest RAM.
3484 */
3485int16_t remR3PhysReadHCPtrS16(uint8_t *pbSrcPhys)
3486{
3487 int16_t val;
3488
3489 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3490
3491 /*
3492 * Calc the physical address ('off') and check that it's within the RAM.
3493 * ROM is accessed this way, even if it's not part of the RAM.
3494 */
3495 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3496#ifdef PGM_DYNAMIC_RAM_ALLOC
3497 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3498#else
3499 uintptr_t off = pbSrcPhys - phys_ram_base;
3500#endif
3501 val = PGMR3PhysReadWord(cpu_single_env->pVM, (RTGCPHYS)off);
3502 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3503 return val;
3504}
3505
3506
3507/**
3508 * Read guest RAM and ROM, unsigned 32-bit.
3509 *
3510 * @param pbSrcPhys The source address. Relative to guest RAM.
3511 */
3512uint32_t remR3PhysReadHCPtrU32(uint8_t *pbSrcPhys)
3513{
3514 uint32_t val;
3515
3516 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3517
3518 /*
3519 * Calc the physical address ('off') and check that it's within the RAM.
3520 * ROM is accessed this way, even if it's not part of the RAM.
3521 */
3522#ifdef PGM_DYNAMIC_RAM_ALLOC
3523 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3524#else
3525 uintptr_t off = pbSrcPhys - phys_ram_base;
3526#endif
3527 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off);
3528 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3529 return val;
3530}
3531
3532
3533/**
3534 * Read guest RAM and ROM, signed 32-bit.
3535 *
3536 * @param pbSrcPhys The source address. Relative to guest RAM.
3537 */
3538int32_t remR3PhysReadHCPtrS32(uint8_t *pbSrcPhys)
3539{
3540 int32_t val;
3541
3542 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3543
3544 /*
3545 * Calc the physical address ('off') and check that it's within the RAM.
3546 * ROM is accessed this way, even if it's not part of the RAM.
3547 */
3548#ifdef PGM_DYNAMIC_RAM_ALLOC
3549 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3550#else
3551 uintptr_t off = pbSrcPhys - phys_ram_base;
3552#endif
3553 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off);
3554 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3555 return val;
3556}
3557
3558
3559/**
3560 * Read guest RAM and ROM, unsigned 64-bit.
3561 *
3562 * @param pbSrcPhys The source address. Relative to guest RAM.
3563 */
3564uint64_t remR3PhysReadHCPtrU64(uint8_t *pbSrcPhys)
3565{
3566 uint64_t val;
3567
3568 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3569
3570 /*
3571 * Calc the physical address ('off') and check that it's within the RAM.
3572 * ROM is accessed this way, even if it's not part of the RAM.
3573 */
3574#ifdef PGM_DYNAMIC_RAM_ALLOC
3575 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3576#else
3577 uintptr_t off = pbSrcPhys - phys_ram_base;
3578#endif
3579 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off)
3580 | ((uint64_t)PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off + 4) << 32); /** @todo fix me! */
3581 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3582 return val;
3583}
3584
3585
3586/**
3587 * Write guest RAM.
3588 *
3589 * @param pbDstPhys The destination address. Relative to guest RAM.
3590 * @param pvSrc The source address.
3591 * @param cb Number of bytes to write
3592 */
3593void remR3PhysWriteHCPtr(uint8_t *pbDstPhys, const void *pvSrc, unsigned cb)
3594{
3595 STAM_PROFILE_ADV_START(&gStatMemWriteHCPtr, a);
3596 /*
3597 * Calc the physical address ('off') and check that it's within the RAM.
3598 */
3599#ifdef PGM_DYNAMIC_RAM_ALLOC
3600 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbDstPhys);
3601#else
3602 uintptr_t off = pbDstPhys - phys_ram_base;
3603#endif
3604 PGMPhysWrite(cpu_single_env->pVM, (RTGCPHYS)off, pvSrc, cb);
3605 STAM_PROFILE_ADV_STOP(&gStatMemWriteHCPtr, a);
3606}
3607
3608
3609/**
3610 * Write guest RAM, unsigned 8-bit.
3611 *
3612 * @param pbDstPhys The destination address. Relative to guest RAM.
3613 * @param val Value
3614 */
3615void remR3PhysWriteHCPtrU8(uint8_t *pbDstPhys, uint8_t val)
3616{
3617 STAM_PROFILE_ADV_START(&gStatMemWriteHCPtr, a);
3618 /*
3619 * Calc the physical address ('off') and check that it's within the RAM.
3620 */
3621#ifdef PGM_DYNAMIC_RAM_ALLOC
3622 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbDstPhys);
3623#else
3624 uintptr_t off = pbDstPhys - phys_ram_base;
3625#endif
3626 PGMR3PhysWriteByte(cpu_single_env->pVM, (RTGCPHYS)off, val);
3627 STAM_PROFILE_ADV_STOP(&gStatMemWriteHCPtr, a);
3628}
3629
3630
3631/**
3632 * Write guest RAM, unsigned 16-bit.
3633 *
3634 * @param pbDstPhys The destination address. Relative to guest RAM.
3635 * @param val Value
3636 */
3637void remR3PhysWriteHCPtrU16(uint8_t *pbDstPhys, uint16_t val)
3638{
3639 STAM_PROFILE_ADV_START(&gStatMemWriteHCPtr, a);
3640 /*
3641 * Calc the physical address ('off') and check that it's within the RAM.
3642 */
3643#ifdef PGM_DYNAMIC_RAM_ALLOC
3644 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbDstPhys);
3645#else
3646 uintptr_t off = pbDstPhys - phys_ram_base;
3647#endif
3648 PGMR3PhysWriteWord(cpu_single_env->pVM, (RTGCPHYS)off, val);
3649 STAM_PROFILE_ADV_STOP(&gStatMemWriteHCPtr, a);
3650}
3651
3652
3653/**
3654 * Write guest RAM, unsigned 32-bit.
3655 *
3656 * @param pbDstPhys The destination address. Relative to guest RAM.
3657 * @param val Value
3658 */
3659void remR3PhysWriteHCPtrU32(uint8_t *pbDstPhys, uint32_t val)
3660{
3661 STAM_PROFILE_ADV_START(&gStatMemWriteHCPtr, a);
3662 /*
3663 * Calc the physical address ('off') and check that it's within the RAM.
3664 */
3665#ifdef PGM_DYNAMIC_RAM_ALLOC
3666 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbDstPhys);
3667#else
3668 uintptr_t off = pbDstPhys - phys_ram_base;
3669#endif
3670 PGMR3PhysWriteDword(cpu_single_env->pVM, (RTGCPHYS)off, val);
3671 STAM_PROFILE_ADV_STOP(&gStatMemWriteHCPtr, a);
3672}
3673
3674
3675/**
3676 * Write guest RAM, unsigned 64-bit.
3677 *
3678 * @param pbDstPhys The destination address. Relative to guest RAM.
3679 * @param val Value
3680 */
3681void remR3PhysWriteHCPtrU64(uint8_t *pbDstPhys, uint64_t val)
3682{
3683 STAM_PROFILE_ADV_START(&gStatMemWriteHCPtr, a);
3684 /*
3685 * Calc the physical address ('off') and check that it's within the RAM.
3686 */
3687#ifdef PGM_DYNAMIC_RAM_ALLOC
3688 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbDstPhys);
3689#else
3690 uintptr_t off = pbDstPhys - phys_ram_base;
3691#endif
3692 PGMR3PhysWriteDword(cpu_single_env->pVM, (RTGCPHYS)off, (uint32_t)val); /** @todo add U64 interface. */
3693 PGMR3PhysWriteDword(cpu_single_env->pVM, (RTGCPHYS)off + 4, val >> 32);
3694 STAM_PROFILE_ADV_STOP(&gStatMemWriteHCPtr, a);
3695}
3696
3697#endif /* !REM_PHYS_ADDR_IN_TLB */
3698
3699
3700#undef LOG_GROUP
3701#define LOG_GROUP LOG_GROUP_REM_MMIO
3702
3703/** Read MMIO memory. */
3704static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3705{
3706 uint32_t u32 = 0;
3707 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3708 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3709 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3710 return u32;
3711}
3712
3713/** Read MMIO memory. */
3714static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3715{
3716 uint32_t u32 = 0;
3717 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3718 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3719 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3720 return u32;
3721}
3722
3723/** Read MMIO memory. */
3724static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3725{
3726 uint32_t u32 = 0;
3727 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3728 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3729 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3730 return u32;
3731}
3732
3733/** Write to MMIO memory. */
3734static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3735{
3736 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3737 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3738 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3739}
3740
3741/** Write to MMIO memory. */
3742static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3743{
3744 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3745 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3746 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3747}
3748
3749/** Write to MMIO memory. */
3750static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3751{
3752 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3753 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3754 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3755}
3756
3757
3758#undef LOG_GROUP
3759#define LOG_GROUP LOG_GROUP_REM_HANDLER
3760
3761/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3762
3763static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3764{
3765 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3766 uint8_t u8;
3767 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3768 return u8;
3769}
3770
3771static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3772{
3773 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3774 uint16_t u16;
3775 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3776 return u16;
3777}
3778
3779static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3780{
3781 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3782 uint32_t u32;
3783 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3784 return u32;
3785}
3786
3787static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3788{
3789 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3790 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3791}
3792
3793static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3794{
3795 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3796 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3797}
3798
3799static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3800{
3801 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3802 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3803}
3804
3805/* -+- disassembly -+- */
3806
3807#undef LOG_GROUP
3808#define LOG_GROUP LOG_GROUP_REM_DISAS
3809
3810
3811/**
3812 * Enables or disables singled stepped disassembly.
3813 *
3814 * @returns VBox status code.
3815 * @param pVM VM handle.
3816 * @param fEnable To enable set this flag, to disable clear it.
3817 */
3818static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3819{
3820 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3821 VM_ASSERT_EMT(pVM);
3822
3823 if (fEnable)
3824 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3825 else
3826 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3827 return VINF_SUCCESS;
3828}
3829
3830
3831/**
3832 * Enables or disables singled stepped disassembly.
3833 *
3834 * @returns VBox status code.
3835 * @param pVM VM handle.
3836 * @param fEnable To enable set this flag, to disable clear it.
3837 */
3838REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3839{
3840 PVMREQ pReq;
3841 int rc;
3842
3843 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3844 if (VM_IS_EMT(pVM))
3845 return remR3DisasEnableStepping(pVM, fEnable);
3846
3847 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3848 AssertRC(rc);
3849 if (VBOX_SUCCESS(rc))
3850 rc = pReq->iStatus;
3851 VMR3ReqFree(pReq);
3852 return rc;
3853}
3854
3855
3856#ifdef VBOX_WITH_DEBUGGER
3857/**
3858 * External Debugger Command: .remstep [on|off|1|0]
3859 */
3860static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3861{
3862 bool fEnable;
3863 int rc;
3864
3865 /* print status */
3866 if (cArgs == 0)
3867 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3868 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3869
3870 /* convert the argument and change the mode. */
3871 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3872 if (VBOX_FAILURE(rc))
3873 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3874 rc = REMR3DisasEnableStepping(pVM, fEnable);
3875 if (VBOX_FAILURE(rc))
3876 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3877 return rc;
3878}
3879#endif
3880
3881
3882/**
3883 * Disassembles n instructions and prints them to the log.
3884 *
3885 * @returns Success indicator.
3886 * @param env Pointer to the recompiler CPU structure.
3887 * @param f32BitCode Indicates that whether or not the code should
3888 * be disassembled as 16 or 32 bit. If -1 the CS
3889 * selector will be inspected.
3890 * @param nrInstructions Nr of instructions to disassemble
3891 * @param pszPrefix
3892 * @remark not currently used for anything but ad-hoc debugging.
3893 */
3894bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3895{
3896 int i;
3897
3898 /*
3899 * Determin 16/32 bit mode.
3900 */
3901 if (f32BitCode == -1)
3902 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3903
3904 /*
3905 * Convert cs:eip to host context address.
3906 * We don't care to much about cross page correctness presently.
3907 */
3908 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3909 void *pvPC;
3910 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3911 {
3912 /* convert eip to physical address. */
3913 int rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3914 GCPtrPC,
3915 env->cr[3],
3916 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3917 &pvPC);
3918 if (VBOX_FAILURE(rc))
3919 {
3920 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3921 return false;
3922 pvPC = (char *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3923 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3924 }
3925 }
3926 else
3927 {
3928 /* physical address */
3929 int rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16, &pvPC);
3930 if (VBOX_FAILURE(rc))
3931 return false;
3932 }
3933
3934 /*
3935 * Disassemble.
3936 */
3937 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
3938 DISCPUSTATE Cpu;
3939 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3940 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3941 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3942 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3943 //Cpu.dwUserData[2] = GCPtrPC;
3944
3945 for (i=0;i<nrInstructions;i++)
3946 {
3947 char szOutput[256];
3948 uint32_t cbOp;
3949 if (!DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0]))
3950 return false;
3951 if (pszPrefix)
3952 Log(("%s: %s", pszPrefix, szOutput));
3953 else
3954 Log(("%s", szOutput));
3955
3956 pvPC += cbOp;
3957 }
3958 return true;
3959}
3960
3961
3962/** @todo need to test the new code, using the old code in the mean while. */
3963#define USE_OLD_DUMP_AND_DISASSEMBLY
3964
3965/**
3966 * Disassembles one instruction and prints it to the log.
3967 *
3968 * @returns Success indicator.
3969 * @param env Pointer to the recompiler CPU structure.
3970 * @param f32BitCode Indicates that whether or not the code should
3971 * be disassembled as 16 or 32 bit. If -1 the CS
3972 * selector will be inspected.
3973 * @param pszPrefix
3974 */
3975bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3976{
3977#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3978 PVM pVM = env->pVM;
3979
3980 /*
3981 * Determin 16/32 bit mode.
3982 */
3983 if (f32BitCode == -1)
3984 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3985
3986 /*
3987 * Log registers
3988 */
3989 if (LogIs2Enabled())
3990 {
3991 remR3StateUpdate(pVM);
3992 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3993 }
3994
3995 /*
3996 * Convert cs:eip to host context address.
3997 * We don't care to much about cross page correctness presently.
3998 */
3999 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
4000 void *pvPC;
4001 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
4002 {
4003 /* convert eip to physical address. */
4004 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
4005 GCPtrPC,
4006 env->cr[3],
4007 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
4008 &pvPC);
4009 if (VBOX_FAILURE(rc))
4010 {
4011 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
4012 return false;
4013 pvPC = (char *)PATMR3QueryPatchMemHC(pVM, NULL)
4014 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
4015 }
4016 }
4017 else
4018 {
4019
4020 /* physical address */
4021 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, &pvPC);
4022 if (VBOX_FAILURE(rc))
4023 return false;
4024 }
4025
4026 /*
4027 * Disassemble.
4028 */
4029 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
4030 DISCPUSTATE Cpu;
4031 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
4032 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
4033 //Cpu.dwUserData[0] = (uintptr_t)pVM;
4034 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
4035 //Cpu.dwUserData[2] = GCPtrPC;
4036 char szOutput[256];
4037 uint32_t cbOp;
4038 if (!DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0]))
4039 return false;
4040
4041 if (!f32BitCode)
4042 {
4043 if (pszPrefix)
4044 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
4045 else
4046 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
4047 }
4048 else
4049 {
4050 if (pszPrefix)
4051 Log(("%s: %s", pszPrefix, szOutput));
4052 else
4053 Log(("%s", szOutput));
4054 }
4055 return true;
4056
4057#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
4058 PVM pVM = env->pVM;
4059 const bool fLog = LogIsEnabled();
4060 const bool fLog2 = LogIs2Enabled();
4061 int rc = VINF_SUCCESS;
4062
4063 /*
4064 * Don't bother if there ain't any log output to do.
4065 */
4066 if (!fLog && !fLog2)
4067 return true;
4068
4069 /*
4070 * Update the state so DBGF reads the correct register values.
4071 */
4072 remR3StateUpdate(pVM);
4073
4074 /*
4075 * Log registers if requested.
4076 */
4077 if (!fLog2)
4078 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
4079
4080 /*
4081 * Disassemble to log.
4082 */
4083 if (fLog)
4084 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
4085
4086 return VBOX_SUCCESS(rc);
4087#endif
4088}
4089
4090
4091/**
4092 * Disassemble recompiled code.
4093 *
4094 * @param phFileIgnored Ignored, logfile usually.
4095 * @param pvCode Pointer to the code block.
4096 * @param cb Size of the code block.
4097 */
4098void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
4099{
4100 if (LogIs2Enabled())
4101 {
4102 unsigned off = 0;
4103 char szOutput[256];
4104 DISCPUSTATE Cpu = {0};
4105 Cpu.mode = CPUMODE_32BIT;
4106
4107 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
4108 while (off < cb)
4109 {
4110 uint32_t cbInstr;
4111 if (DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput))
4112 RTLogPrintf("%s", szOutput);
4113 else
4114 {
4115 RTLogPrintf("disas error\n");
4116 cbInstr = 1;
4117 }
4118 off += cbInstr;
4119 }
4120 }
4121 NOREF(phFileIgnored);
4122}
4123
4124
4125/**
4126 * Disassemble guest code.
4127 *
4128 * @param phFileIgnored Ignored, logfile usually.
4129 * @param uCode The guest address of the code to disassemble. (flat?)
4130 * @param cb Number of bytes to disassemble.
4131 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
4132 */
4133void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
4134{
4135 if (LogIs2Enabled())
4136 {
4137 PVM pVM = cpu_single_env->pVM;
4138
4139 /*
4140 * Update the state so DBGF reads the correct register values (flags).
4141 */
4142 remR3StateUpdate(pVM);
4143
4144 /*
4145 * Do the disassembling.
4146 */
4147 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
4148 RTSEL cs = cpu_single_env->segs[R_CS].selector;
4149 RTGCUINTPTR eip = uCode - cpu_single_env->segs[R_CS].base;
4150 for (;;)
4151 {
4152 char szBuf[256];
4153 uint32_t cbInstr;
4154 int rc = DBGFR3DisasInstrEx(pVM,
4155 cs,
4156 eip,
4157 0,
4158 szBuf, sizeof(szBuf),
4159 &cbInstr);
4160 if (VBOX_SUCCESS(rc))
4161 RTLogPrintf("%VGp %s\n", uCode, szBuf);
4162 else
4163 {
4164 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
4165 cbInstr = 1;
4166 }
4167
4168 /* next */
4169 if (cb <= cbInstr)
4170 break;
4171 cb -= cbInstr;
4172 uCode += cbInstr;
4173 eip += cbInstr;
4174 }
4175 }
4176 NOREF(phFileIgnored);
4177}
4178
4179
4180/**
4181 * Looks up a guest symbol.
4182 *
4183 * @returns Pointer to symbol name. This is a static buffer.
4184 * @param orig_addr The address in question.
4185 */
4186const char *lookup_symbol(target_ulong orig_addr)
4187{
4188 RTGCINTPTR off = 0;
4189 DBGFSYMBOL Sym;
4190 PVM pVM = cpu_single_env->pVM;
4191 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
4192 if (VBOX_SUCCESS(rc))
4193 {
4194 static char szSym[sizeof(Sym.szName) + 48];
4195 if (!off)
4196 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
4197 else if (off > 0)
4198 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
4199 else
4200 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
4201 return szSym;
4202 }
4203 return "<N/A>";
4204}
4205
4206
4207#undef LOG_GROUP
4208#define LOG_GROUP LOG_GROUP_REM
4209
4210
4211/* -+- FF notifications -+- */
4212
4213
4214/**
4215 * Notification about a pending interrupt.
4216 *
4217 * @param pVM VM Handle.
4218 * @param u8Interrupt Interrupt
4219 * @thread The emulation thread.
4220 */
4221REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
4222{
4223 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
4224 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
4225}
4226
4227/**
4228 * Notification about a pending interrupt.
4229 *
4230 * @returns Pending interrupt or REM_NO_PENDING_IRQ
4231 * @param pVM VM Handle.
4232 * @thread The emulation thread.
4233 */
4234REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
4235{
4236 return pVM->rem.s.u32PendingInterrupt;
4237}
4238
4239/**
4240 * Notification about the interrupt FF being set.
4241 *
4242 * @param pVM VM Handle.
4243 * @thread The emulation thread.
4244 */
4245REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
4246{
4247 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
4248 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
4249 if (pVM->rem.s.fInREM)
4250 {
4251 if (VM_IS_EMT(pVM))
4252 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
4253 else
4254 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_HARD);
4255 }
4256}
4257
4258
4259/**
4260 * Notification about the interrupt FF being set.
4261 *
4262 * @param pVM VM Handle.
4263 * @thread The emulation thread.
4264 */
4265REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
4266{
4267 LogFlow(("REMR3NotifyInterruptClear:\n"));
4268 VM_ASSERT_EMT(pVM);
4269 if (pVM->rem.s.fInREM)
4270 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
4271}
4272
4273
4274/**
4275 * Notification about pending timer(s).
4276 *
4277 * @param pVM VM Handle.
4278 * @thread Any.
4279 */
4280REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
4281{
4282#ifndef DEBUG_bird
4283 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
4284#endif
4285 if (pVM->rem.s.fInREM)
4286 {
4287 if (VM_IS_EMT(pVM))
4288 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
4289 else
4290 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_TIMER);
4291 }
4292}
4293
4294
4295/**
4296 * Notification about pending DMA transfers.
4297 *
4298 * @param pVM VM Handle.
4299 * @thread Any.
4300 */
4301REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
4302{
4303 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
4304 if (pVM->rem.s.fInREM)
4305 {
4306 if (VM_IS_EMT(pVM))
4307 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
4308 else
4309 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_DMA);
4310 }
4311}
4312
4313
4314/**
4315 * Notification about pending timer(s).
4316 *
4317 * @param pVM VM Handle.
4318 * @thread Any.
4319 */
4320REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
4321{
4322 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
4323 if (pVM->rem.s.fInREM)
4324 {
4325 if (VM_IS_EMT(pVM))
4326 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
4327 else
4328 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
4329 }
4330}
4331
4332
4333/**
4334 * Notification about pending FF set by an external thread.
4335 *
4336 * @param pVM VM handle.
4337 * @thread Any.
4338 */
4339REMR3DECL(void) REMR3NotifyFF(PVM pVM)
4340{
4341 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
4342 if (pVM->rem.s.fInREM)
4343 {
4344 if (VM_IS_EMT(pVM))
4345 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
4346 else
4347 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
4348 }
4349}
4350
4351
4352#ifdef VBOX_WITH_STATISTICS
4353void remR3ProfileStart(int statcode)
4354{
4355 STAMPROFILEADV *pStat;
4356 switch(statcode)
4357 {
4358 case STATS_EMULATE_SINGLE_INSTR:
4359 pStat = &gStatExecuteSingleInstr;
4360 break;
4361 case STATS_QEMU_COMPILATION:
4362 pStat = &gStatCompilationQEmu;
4363 break;
4364 case STATS_QEMU_RUN_EMULATED_CODE:
4365 pStat = &gStatRunCodeQEmu;
4366 break;
4367 case STATS_QEMU_TOTAL:
4368 pStat = &gStatTotalTimeQEmu;
4369 break;
4370 case STATS_QEMU_RUN_TIMERS:
4371 pStat = &gStatTimers;
4372 break;
4373 case STATS_TLB_LOOKUP:
4374 pStat= &gStatTBLookup;
4375 break;
4376 case STATS_IRQ_HANDLING:
4377 pStat= &gStatIRQ;
4378 break;
4379 case STATS_RAW_CHECK:
4380 pStat = &gStatRawCheck;
4381 break;
4382
4383 default:
4384 AssertMsgFailed(("unknown stat %d\n", statcode));
4385 return;
4386 }
4387 STAM_PROFILE_ADV_START(pStat, a);
4388}
4389
4390
4391void remR3ProfileStop(int statcode)
4392{
4393 STAMPROFILEADV *pStat;
4394 switch(statcode)
4395 {
4396 case STATS_EMULATE_SINGLE_INSTR:
4397 pStat = &gStatExecuteSingleInstr;
4398 break;
4399 case STATS_QEMU_COMPILATION:
4400 pStat = &gStatCompilationQEmu;
4401 break;
4402 case STATS_QEMU_RUN_EMULATED_CODE:
4403 pStat = &gStatRunCodeQEmu;
4404 break;
4405 case STATS_QEMU_TOTAL:
4406 pStat = &gStatTotalTimeQEmu;
4407 break;
4408 case STATS_QEMU_RUN_TIMERS:
4409 pStat = &gStatTimers;
4410 break;
4411 case STATS_TLB_LOOKUP:
4412 pStat= &gStatTBLookup;
4413 break;
4414 case STATS_IRQ_HANDLING:
4415 pStat= &gStatIRQ;
4416 break;
4417 case STATS_RAW_CHECK:
4418 pStat = &gStatRawCheck;
4419 break;
4420 default:
4421 AssertMsgFailed(("unknown stat %d\n", statcode));
4422 return;
4423 }
4424 STAM_PROFILE_ADV_STOP(pStat, a);
4425}
4426#endif
4427
4428/**
4429 * Raise an RC, force rem exit.
4430 *
4431 * @param pVM VM handle.
4432 * @param rc The rc.
4433 */
4434void remR3RaiseRC(PVM pVM, int rc)
4435{
4436 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
4437 Assert(pVM->rem.s.fInREM);
4438 VM_ASSERT_EMT(pVM);
4439 pVM->rem.s.rc = rc;
4440 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
4441}
4442
4443
4444/* -+- timers -+- */
4445
4446uint64_t cpu_get_tsc(CPUX86State *env)
4447{
4448 STAM_COUNTER_INC(&gStatCpuGetTSC);
4449 return TMCpuTickGet(env->pVM);
4450}
4451
4452
4453/* -+- interrupts -+- */
4454
4455void cpu_set_ferr(CPUX86State *env)
4456{
4457 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
4458 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4459}
4460
4461int cpu_get_pic_interrupt(CPUState *env)
4462{
4463 uint8_t u8Interrupt;
4464 int rc;
4465
4466 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4467 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4468 * with the (a)pic.
4469 */
4470 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4471 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4472 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4473 * remove this kludge. */
4474 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4475 {
4476 rc = VINF_SUCCESS;
4477 Assert(env->pVM->rem.s.u32PendingInterrupt >= 0 && env->pVM->rem.s.u32PendingInterrupt <= 255);
4478 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4479 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4480 }
4481 else
4482 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4483
4484 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
4485 if (VBOX_SUCCESS(rc))
4486 {
4487 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4488 env->interrupt_request |= CPU_INTERRUPT_HARD;
4489 return u8Interrupt;
4490 }
4491 return -1;
4492}
4493
4494
4495/* -+- local apic -+- */
4496
4497void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4498{
4499 int rc = PDMApicSetBase(env->pVM, val);
4500 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
4501}
4502
4503uint64_t cpu_get_apic_base(CPUX86State *env)
4504{
4505 uint64_t u64;
4506 int rc = PDMApicGetBase(env->pVM, &u64);
4507 if (VBOX_SUCCESS(rc))
4508 {
4509 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4510 return u64;
4511 }
4512 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
4513 return 0;
4514}
4515
4516void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4517{
4518 int rc = PDMApicSetTPR(env->pVM, val);
4519 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
4520}
4521
4522uint8_t cpu_get_apic_tpr(CPUX86State *env)
4523{
4524 uint8_t u8;
4525 int rc = PDMApicGetTPR(env->pVM, &u8);
4526 if (VBOX_SUCCESS(rc))
4527 {
4528 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4529 return u8;
4530 }
4531 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
4532 return 0;
4533}
4534
4535
4536/* -+- I/O Ports -+- */
4537
4538#undef LOG_GROUP
4539#define LOG_GROUP LOG_GROUP_REM_IOPORT
4540
4541void cpu_outb(CPUState *env, int addr, int val)
4542{
4543 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4544 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4545
4546 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4547 if (rc == VINF_SUCCESS)
4548 return;
4549 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4550 {
4551 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4552 remR3RaiseRC(env->pVM, rc);
4553 return;
4554 }
4555 remAbort(rc, __FUNCTION__);
4556}
4557
4558void cpu_outw(CPUState *env, int addr, int val)
4559{
4560 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4561 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4562 if (rc == VINF_SUCCESS)
4563 return;
4564 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4565 {
4566 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4567 remR3RaiseRC(env->pVM, rc);
4568 return;
4569 }
4570 remAbort(rc, __FUNCTION__);
4571}
4572
4573void cpu_outl(CPUState *env, int addr, int val)
4574{
4575 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4576 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4577 if (rc == VINF_SUCCESS)
4578 return;
4579 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4580 {
4581 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4582 remR3RaiseRC(env->pVM, rc);
4583 return;
4584 }
4585 remAbort(rc, __FUNCTION__);
4586}
4587
4588int cpu_inb(CPUState *env, int addr)
4589{
4590 uint32_t u32 = 0;
4591 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4592 if (rc == VINF_SUCCESS)
4593 {
4594 if (/*addr != 0x61 && */addr != 0x71)
4595 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4596 return (int)u32;
4597 }
4598 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4599 {
4600 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4601 remR3RaiseRC(env->pVM, rc);
4602 return (int)u32;
4603 }
4604 remAbort(rc, __FUNCTION__);
4605 return 0xff;
4606}
4607
4608int cpu_inw(CPUState *env, int addr)
4609{
4610 uint32_t u32 = 0;
4611 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4612 if (rc == VINF_SUCCESS)
4613 {
4614 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4615 return (int)u32;
4616 }
4617 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4618 {
4619 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4620 remR3RaiseRC(env->pVM, rc);
4621 return (int)u32;
4622 }
4623 remAbort(rc, __FUNCTION__);
4624 return 0xffff;
4625}
4626
4627int cpu_inl(CPUState *env, int addr)
4628{
4629 uint32_t u32 = 0;
4630 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4631 if (rc == VINF_SUCCESS)
4632 {
4633//if (addr==0x01f0 && u32 == 0x6b6d)
4634// loglevel = ~0;
4635 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4636 return (int)u32;
4637 }
4638 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4639 {
4640 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4641 remR3RaiseRC(env->pVM, rc);
4642 return (int)u32;
4643 }
4644 remAbort(rc, __FUNCTION__);
4645 return 0xffffffff;
4646}
4647
4648#undef LOG_GROUP
4649#define LOG_GROUP LOG_GROUP_REM
4650
4651
4652/* -+- helpers and misc other interfaces -+- */
4653
4654/**
4655 * Perform the CPUID instruction.
4656 *
4657 * ASMCpuId cannot be invoked from some source files where this is used because of global
4658 * register allocations.
4659 *
4660 * @param env Pointer to the recompiler CPU structure.
4661 * @param uOperator CPUID operation (eax).
4662 * @param pvEAX Where to store eax.
4663 * @param pvEBX Where to store ebx.
4664 * @param pvECX Where to store ecx.
4665 * @param pvEDX Where to store edx.
4666 */
4667void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4668{
4669 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4670}
4671
4672
4673#if 0 /* not used */
4674/**
4675 * Interface for qemu hardware to report back fatal errors.
4676 */
4677void hw_error(const char *pszFormat, ...)
4678{
4679 /*
4680 * Bitch about it.
4681 */
4682 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4683 * this in my Odin32 tree at home! */
4684 va_list args;
4685 va_start(args, pszFormat);
4686 RTLogPrintf("fatal error in virtual hardware:");
4687 RTLogPrintfV(pszFormat, args);
4688 va_end(args);
4689 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4690
4691 /*
4692 * If we're in REM context we'll sync back the state before 'jumping' to
4693 * the EMs failure handling.
4694 */
4695 PVM pVM = cpu_single_env->pVM;
4696 if (pVM->rem.s.fInREM)
4697 REMR3StateBack(pVM);
4698 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4699 AssertMsgFailed(("EMR3FatalError returned!\n"));
4700}
4701#endif
4702
4703/**
4704 * Interface for the qemu cpu to report unhandled situation
4705 * raising a fatal VM error.
4706 */
4707void cpu_abort(CPUState *env, const char *pszFormat, ...)
4708{
4709 /*
4710 * Bitch about it.
4711 */
4712 RTLogFlags(NULL, "nodisabled nobuffered");
4713 va_list args;
4714 va_start(args, pszFormat);
4715 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4716 va_end(args);
4717 va_start(args, pszFormat);
4718 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4719 va_end(args);
4720
4721 /*
4722 * If we're in REM context we'll sync back the state before 'jumping' to
4723 * the EMs failure handling.
4724 */
4725 PVM pVM = cpu_single_env->pVM;
4726 if (pVM->rem.s.fInREM)
4727 REMR3StateBack(pVM);
4728 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4729 AssertMsgFailed(("EMR3FatalError returned!\n"));
4730}
4731
4732
4733/**
4734 * Aborts the VM.
4735 *
4736 * @param rc VBox error code.
4737 * @param pszTip Hint about why/when this happend.
4738 */
4739static void remAbort(int rc, const char *pszTip)
4740{
4741 /*
4742 * Bitch about it.
4743 */
4744 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4745 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4746
4747 /*
4748 * Jump back to where we entered the recompiler.
4749 */
4750 PVM pVM = cpu_single_env->pVM;
4751 if (pVM->rem.s.fInREM)
4752 REMR3StateBack(pVM);
4753 EMR3FatalError(pVM, rc);
4754 AssertMsgFailed(("EMR3FatalError returned!\n"));
4755}
4756
4757
4758/**
4759 * Dumps a linux system call.
4760 * @param pVM VM handle.
4761 */
4762void remR3DumpLnxSyscall(PVM pVM)
4763{
4764 static const char *apsz[] =
4765 {
4766 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4767 "sys_exit",
4768 "sys_fork",
4769 "sys_read",
4770 "sys_write",
4771 "sys_open", /* 5 */
4772 "sys_close",
4773 "sys_waitpid",
4774 "sys_creat",
4775 "sys_link",
4776 "sys_unlink", /* 10 */
4777 "sys_execve",
4778 "sys_chdir",
4779 "sys_time",
4780 "sys_mknod",
4781 "sys_chmod", /* 15 */
4782 "sys_lchown16",
4783 "sys_ni_syscall", /* old break syscall holder */
4784 "sys_stat",
4785 "sys_lseek",
4786 "sys_getpid", /* 20 */
4787 "sys_mount",
4788 "sys_oldumount",
4789 "sys_setuid16",
4790 "sys_getuid16",
4791 "sys_stime", /* 25 */
4792 "sys_ptrace",
4793 "sys_alarm",
4794 "sys_fstat",
4795 "sys_pause",
4796 "sys_utime", /* 30 */
4797 "sys_ni_syscall", /* old stty syscall holder */
4798 "sys_ni_syscall", /* old gtty syscall holder */
4799 "sys_access",
4800 "sys_nice",
4801 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4802 "sys_sync",
4803 "sys_kill",
4804 "sys_rename",
4805 "sys_mkdir",
4806 "sys_rmdir", /* 40 */
4807 "sys_dup",
4808 "sys_pipe",
4809 "sys_times",
4810 "sys_ni_syscall", /* old prof syscall holder */
4811 "sys_brk", /* 45 */
4812 "sys_setgid16",
4813 "sys_getgid16",
4814 "sys_signal",
4815 "sys_geteuid16",
4816 "sys_getegid16", /* 50 */
4817 "sys_acct",
4818 "sys_umount", /* recycled never used phys() */
4819 "sys_ni_syscall", /* old lock syscall holder */
4820 "sys_ioctl",
4821 "sys_fcntl", /* 55 */
4822 "sys_ni_syscall", /* old mpx syscall holder */
4823 "sys_setpgid",
4824 "sys_ni_syscall", /* old ulimit syscall holder */
4825 "sys_olduname",
4826 "sys_umask", /* 60 */
4827 "sys_chroot",
4828 "sys_ustat",
4829 "sys_dup2",
4830 "sys_getppid",
4831 "sys_getpgrp", /* 65 */
4832 "sys_setsid",
4833 "sys_sigaction",
4834 "sys_sgetmask",
4835 "sys_ssetmask",
4836 "sys_setreuid16", /* 70 */
4837 "sys_setregid16",
4838 "sys_sigsuspend",
4839 "sys_sigpending",
4840 "sys_sethostname",
4841 "sys_setrlimit", /* 75 */
4842 "sys_old_getrlimit",
4843 "sys_getrusage",
4844 "sys_gettimeofday",
4845 "sys_settimeofday",
4846 "sys_getgroups16", /* 80 */
4847 "sys_setgroups16",
4848 "old_select",
4849 "sys_symlink",
4850 "sys_lstat",
4851 "sys_readlink", /* 85 */
4852 "sys_uselib",
4853 "sys_swapon",
4854 "sys_reboot",
4855 "old_readdir",
4856 "old_mmap", /* 90 */
4857 "sys_munmap",
4858 "sys_truncate",
4859 "sys_ftruncate",
4860 "sys_fchmod",
4861 "sys_fchown16", /* 95 */
4862 "sys_getpriority",
4863 "sys_setpriority",
4864 "sys_ni_syscall", /* old profil syscall holder */
4865 "sys_statfs",
4866 "sys_fstatfs", /* 100 */
4867 "sys_ioperm",
4868 "sys_socketcall",
4869 "sys_syslog",
4870 "sys_setitimer",
4871 "sys_getitimer", /* 105 */
4872 "sys_newstat",
4873 "sys_newlstat",
4874 "sys_newfstat",
4875 "sys_uname",
4876 "sys_iopl", /* 110 */
4877 "sys_vhangup",
4878 "sys_ni_syscall", /* old "idle" system call */
4879 "sys_vm86old",
4880 "sys_wait4",
4881 "sys_swapoff", /* 115 */
4882 "sys_sysinfo",
4883 "sys_ipc",
4884 "sys_fsync",
4885 "sys_sigreturn",
4886 "sys_clone", /* 120 */
4887 "sys_setdomainname",
4888 "sys_newuname",
4889 "sys_modify_ldt",
4890 "sys_adjtimex",
4891 "sys_mprotect", /* 125 */
4892 "sys_sigprocmask",
4893 "sys_ni_syscall", /* old "create_module" */
4894 "sys_init_module",
4895 "sys_delete_module",
4896 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4897 "sys_quotactl",
4898 "sys_getpgid",
4899 "sys_fchdir",
4900 "sys_bdflush",
4901 "sys_sysfs", /* 135 */
4902 "sys_personality",
4903 "sys_ni_syscall", /* reserved for afs_syscall */
4904 "sys_setfsuid16",
4905 "sys_setfsgid16",
4906 "sys_llseek", /* 140 */
4907 "sys_getdents",
4908 "sys_select",
4909 "sys_flock",
4910 "sys_msync",
4911 "sys_readv", /* 145 */
4912 "sys_writev",
4913 "sys_getsid",
4914 "sys_fdatasync",
4915 "sys_sysctl",
4916 "sys_mlock", /* 150 */
4917 "sys_munlock",
4918 "sys_mlockall",
4919 "sys_munlockall",
4920 "sys_sched_setparam",
4921 "sys_sched_getparam", /* 155 */
4922 "sys_sched_setscheduler",
4923 "sys_sched_getscheduler",
4924 "sys_sched_yield",
4925 "sys_sched_get_priority_max",
4926 "sys_sched_get_priority_min", /* 160 */
4927 "sys_sched_rr_get_interval",
4928 "sys_nanosleep",
4929 "sys_mremap",
4930 "sys_setresuid16",
4931 "sys_getresuid16", /* 165 */
4932 "sys_vm86",
4933 "sys_ni_syscall", /* Old sys_query_module */
4934 "sys_poll",
4935 "sys_nfsservctl",
4936 "sys_setresgid16", /* 170 */
4937 "sys_getresgid16",
4938 "sys_prctl",
4939 "sys_rt_sigreturn",
4940 "sys_rt_sigaction",
4941 "sys_rt_sigprocmask", /* 175 */
4942 "sys_rt_sigpending",
4943 "sys_rt_sigtimedwait",
4944 "sys_rt_sigqueueinfo",
4945 "sys_rt_sigsuspend",
4946 "sys_pread64", /* 180 */
4947 "sys_pwrite64",
4948 "sys_chown16",
4949 "sys_getcwd",
4950 "sys_capget",
4951 "sys_capset", /* 185 */
4952 "sys_sigaltstack",
4953 "sys_sendfile",
4954 "sys_ni_syscall", /* reserved for streams1 */
4955 "sys_ni_syscall", /* reserved for streams2 */
4956 "sys_vfork", /* 190 */
4957 "sys_getrlimit",
4958 "sys_mmap2",
4959 "sys_truncate64",
4960 "sys_ftruncate64",
4961 "sys_stat64", /* 195 */
4962 "sys_lstat64",
4963 "sys_fstat64",
4964 "sys_lchown",
4965 "sys_getuid",
4966 "sys_getgid", /* 200 */
4967 "sys_geteuid",
4968 "sys_getegid",
4969 "sys_setreuid",
4970 "sys_setregid",
4971 "sys_getgroups", /* 205 */
4972 "sys_setgroups",
4973 "sys_fchown",
4974 "sys_setresuid",
4975 "sys_getresuid",
4976 "sys_setresgid", /* 210 */
4977 "sys_getresgid",
4978 "sys_chown",
4979 "sys_setuid",
4980 "sys_setgid",
4981 "sys_setfsuid", /* 215 */
4982 "sys_setfsgid",
4983 "sys_pivot_root",
4984 "sys_mincore",
4985 "sys_madvise",
4986 "sys_getdents64", /* 220 */
4987 "sys_fcntl64",
4988 "sys_ni_syscall", /* reserved for TUX */
4989 "sys_ni_syscall",
4990 "sys_gettid",
4991 "sys_readahead", /* 225 */
4992 "sys_setxattr",
4993 "sys_lsetxattr",
4994 "sys_fsetxattr",
4995 "sys_getxattr",
4996 "sys_lgetxattr", /* 230 */
4997 "sys_fgetxattr",
4998 "sys_listxattr",
4999 "sys_llistxattr",
5000 "sys_flistxattr",
5001 "sys_removexattr", /* 235 */
5002 "sys_lremovexattr",
5003 "sys_fremovexattr",
5004 "sys_tkill",
5005 "sys_sendfile64",
5006 "sys_futex", /* 240 */
5007 "sys_sched_setaffinity",
5008 "sys_sched_getaffinity",
5009 "sys_set_thread_area",
5010 "sys_get_thread_area",
5011 "sys_io_setup", /* 245 */
5012 "sys_io_destroy",
5013 "sys_io_getevents",
5014 "sys_io_submit",
5015 "sys_io_cancel",
5016 "sys_fadvise64", /* 250 */
5017 "sys_ni_syscall",
5018 "sys_exit_group",
5019 "sys_lookup_dcookie",
5020 "sys_epoll_create",
5021 "sys_epoll_ctl", /* 255 */
5022 "sys_epoll_wait",
5023 "sys_remap_file_pages",
5024 "sys_set_tid_address",
5025 "sys_timer_create",
5026 "sys_timer_settime", /* 260 */
5027 "sys_timer_gettime",
5028 "sys_timer_getoverrun",
5029 "sys_timer_delete",
5030 "sys_clock_settime",
5031 "sys_clock_gettime", /* 265 */
5032 "sys_clock_getres",
5033 "sys_clock_nanosleep",
5034 "sys_statfs64",
5035 "sys_fstatfs64",
5036 "sys_tgkill", /* 270 */
5037 "sys_utimes",
5038 "sys_fadvise64_64",
5039 "sys_ni_syscall" /* sys_vserver */
5040 };
5041
5042 uint32_t uEAX = CPUMGetGuestEAX(pVM);
5043 switch (uEAX)
5044 {
5045 default:
5046 if (uEAX < ELEMENTS(apsz))
5047 Log(("REM: linux syscall %3d: %s (eip=%VGv ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
5048 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
5049 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
5050 else
5051 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
5052 break;
5053
5054 }
5055}
5056
5057
5058/**
5059 * Dumps an OpenBSD system call.
5060 * @param pVM VM handle.
5061 */
5062void remR3DumpOBsdSyscall(PVM pVM)
5063{
5064 static const char *apsz[] =
5065 {
5066 "SYS_syscall", //0
5067 "SYS_exit", //1
5068 "SYS_fork", //2
5069 "SYS_read", //3
5070 "SYS_write", //4
5071 "SYS_open", //5
5072 "SYS_close", //6
5073 "SYS_wait4", //7
5074 "SYS_8",
5075 "SYS_link", //9
5076 "SYS_unlink", //10
5077 "SYS_11",
5078 "SYS_chdir", //12
5079 "SYS_fchdir", //13
5080 "SYS_mknod", //14
5081 "SYS_chmod", //15
5082 "SYS_chown", //16
5083 "SYS_break", //17
5084 "SYS_18",
5085 "SYS_19",
5086 "SYS_getpid", //20
5087 "SYS_mount", //21
5088 "SYS_unmount", //22
5089 "SYS_setuid", //23
5090 "SYS_getuid", //24
5091 "SYS_geteuid", //25
5092 "SYS_ptrace", //26
5093 "SYS_recvmsg", //27
5094 "SYS_sendmsg", //28
5095 "SYS_recvfrom", //29
5096 "SYS_accept", //30
5097 "SYS_getpeername", //31
5098 "SYS_getsockname", //32
5099 "SYS_access", //33
5100 "SYS_chflags", //34
5101 "SYS_fchflags", //35
5102 "SYS_sync", //36
5103 "SYS_kill", //37
5104 "SYS_38",
5105 "SYS_getppid", //39
5106 "SYS_40",
5107 "SYS_dup", //41
5108 "SYS_opipe", //42
5109 "SYS_getegid", //43
5110 "SYS_profil", //44
5111 "SYS_ktrace", //45
5112 "SYS_sigaction", //46
5113 "SYS_getgid", //47
5114 "SYS_sigprocmask", //48
5115 "SYS_getlogin", //49
5116 "SYS_setlogin", //50
5117 "SYS_acct", //51
5118 "SYS_sigpending", //52
5119 "SYS_osigaltstack", //53
5120 "SYS_ioctl", //54
5121 "SYS_reboot", //55
5122 "SYS_revoke", //56
5123 "SYS_symlink", //57
5124 "SYS_readlink", //58
5125 "SYS_execve", //59
5126 "SYS_umask", //60
5127 "SYS_chroot", //61
5128 "SYS_62",
5129 "SYS_63",
5130 "SYS_64",
5131 "SYS_65",
5132 "SYS_vfork", //66
5133 "SYS_67",
5134 "SYS_68",
5135 "SYS_sbrk", //69
5136 "SYS_sstk", //70
5137 "SYS_61",
5138 "SYS_vadvise", //72
5139 "SYS_munmap", //73
5140 "SYS_mprotect", //74
5141 "SYS_madvise", //75
5142 "SYS_76",
5143 "SYS_77",
5144 "SYS_mincore", //78
5145 "SYS_getgroups", //79
5146 "SYS_setgroups", //80
5147 "SYS_getpgrp", //81
5148 "SYS_setpgid", //82
5149 "SYS_setitimer", //83
5150 "SYS_84",
5151 "SYS_85",
5152 "SYS_getitimer", //86
5153 "SYS_87",
5154 "SYS_88",
5155 "SYS_89",
5156 "SYS_dup2", //90
5157 "SYS_91",
5158 "SYS_fcntl", //92
5159 "SYS_select", //93
5160 "SYS_94",
5161 "SYS_fsync", //95
5162 "SYS_setpriority", //96
5163 "SYS_socket", //97
5164 "SYS_connect", //98
5165 "SYS_99",
5166 "SYS_getpriority", //100
5167 "SYS_101",
5168 "SYS_102",
5169 "SYS_sigreturn", //103
5170 "SYS_bind", //104
5171 "SYS_setsockopt", //105
5172 "SYS_listen", //106
5173 "SYS_107",
5174 "SYS_108",
5175 "SYS_109",
5176 "SYS_110",
5177 "SYS_sigsuspend", //111
5178 "SYS_112",
5179 "SYS_113",
5180 "SYS_114",
5181 "SYS_115",
5182 "SYS_gettimeofday", //116
5183 "SYS_getrusage", //117
5184 "SYS_getsockopt", //118
5185 "SYS_119",
5186 "SYS_readv", //120
5187 "SYS_writev", //121
5188 "SYS_settimeofday", //122
5189 "SYS_fchown", //123
5190 "SYS_fchmod", //124
5191 "SYS_125",
5192 "SYS_setreuid", //126
5193 "SYS_setregid", //127
5194 "SYS_rename", //128
5195 "SYS_129",
5196 "SYS_130",
5197 "SYS_flock", //131
5198 "SYS_mkfifo", //132
5199 "SYS_sendto", //133
5200 "SYS_shutdown", //134
5201 "SYS_socketpair", //135
5202 "SYS_mkdir", //136
5203 "SYS_rmdir", //137
5204 "SYS_utimes", //138
5205 "SYS_139",
5206 "SYS_adjtime", //140
5207 "SYS_141",
5208 "SYS_142",
5209 "SYS_143",
5210 "SYS_144",
5211 "SYS_145",
5212 "SYS_146",
5213 "SYS_setsid", //147
5214 "SYS_quotactl", //148
5215 "SYS_149",
5216 "SYS_150",
5217 "SYS_151",
5218 "SYS_152",
5219 "SYS_153",
5220 "SYS_154",
5221 "SYS_nfssvc", //155
5222 "SYS_156",
5223 "SYS_157",
5224 "SYS_158",
5225 "SYS_159",
5226 "SYS_160",
5227 "SYS_getfh", //161
5228 "SYS_162",
5229 "SYS_163",
5230 "SYS_164",
5231 "SYS_sysarch", //165
5232 "SYS_166",
5233 "SYS_167",
5234 "SYS_168",
5235 "SYS_169",
5236 "SYS_170",
5237 "SYS_171",
5238 "SYS_172",
5239 "SYS_pread", //173
5240 "SYS_pwrite", //174
5241 "SYS_175",
5242 "SYS_176",
5243 "SYS_177",
5244 "SYS_178",
5245 "SYS_179",
5246 "SYS_180",
5247 "SYS_setgid", //181
5248 "SYS_setegid", //182
5249 "SYS_seteuid", //183
5250 "SYS_lfs_bmapv", //184
5251 "SYS_lfs_markv", //185
5252 "SYS_lfs_segclean", //186
5253 "SYS_lfs_segwait", //187
5254 "SYS_188",
5255 "SYS_189",
5256 "SYS_190",
5257 "SYS_pathconf", //191
5258 "SYS_fpathconf", //192
5259 "SYS_swapctl", //193
5260 "SYS_getrlimit", //194
5261 "SYS_setrlimit", //195
5262 "SYS_getdirentries", //196
5263 "SYS_mmap", //197
5264 "SYS___syscall", //198
5265 "SYS_lseek", //199
5266 "SYS_truncate", //200
5267 "SYS_ftruncate", //201
5268 "SYS___sysctl", //202
5269 "SYS_mlock", //203
5270 "SYS_munlock", //204
5271 "SYS_205",
5272 "SYS_futimes", //206
5273 "SYS_getpgid", //207
5274 "SYS_xfspioctl", //208
5275 "SYS_209",
5276 "SYS_210",
5277 "SYS_211",
5278 "SYS_212",
5279 "SYS_213",
5280 "SYS_214",
5281 "SYS_215",
5282 "SYS_216",
5283 "SYS_217",
5284 "SYS_218",
5285 "SYS_219",
5286 "SYS_220",
5287 "SYS_semget", //221
5288 "SYS_222",
5289 "SYS_223",
5290 "SYS_224",
5291 "SYS_msgget", //225
5292 "SYS_msgsnd", //226
5293 "SYS_msgrcv", //227
5294 "SYS_shmat", //228
5295 "SYS_229",
5296 "SYS_shmdt", //230
5297 "SYS_231",
5298 "SYS_clock_gettime", //232
5299 "SYS_clock_settime", //233
5300 "SYS_clock_getres", //234
5301 "SYS_235",
5302 "SYS_236",
5303 "SYS_237",
5304 "SYS_238",
5305 "SYS_239",
5306 "SYS_nanosleep", //240
5307 "SYS_241",
5308 "SYS_242",
5309 "SYS_243",
5310 "SYS_244",
5311 "SYS_245",
5312 "SYS_246",
5313 "SYS_247",
5314 "SYS_248",
5315 "SYS_249",
5316 "SYS_minherit", //250
5317 "SYS_rfork", //251
5318 "SYS_poll", //252
5319 "SYS_issetugid", //253
5320 "SYS_lchown", //254
5321 "SYS_getsid", //255
5322 "SYS_msync", //256
5323 "SYS_257",
5324 "SYS_258",
5325 "SYS_259",
5326 "SYS_getfsstat", //260
5327 "SYS_statfs", //261
5328 "SYS_fstatfs", //262
5329 "SYS_pipe", //263
5330 "SYS_fhopen", //264
5331 "SYS_265",
5332 "SYS_fhstatfs", //266
5333 "SYS_preadv", //267
5334 "SYS_pwritev", //268
5335 "SYS_kqueue", //269
5336 "SYS_kevent", //270
5337 "SYS_mlockall", //271
5338 "SYS_munlockall", //272
5339 "SYS_getpeereid", //273
5340 "SYS_274",
5341 "SYS_275",
5342 "SYS_276",
5343 "SYS_277",
5344 "SYS_278",
5345 "SYS_279",
5346 "SYS_280",
5347 "SYS_getresuid", //281
5348 "SYS_setresuid", //282
5349 "SYS_getresgid", //283
5350 "SYS_setresgid", //284
5351 "SYS_285",
5352 "SYS_mquery", //286
5353 "SYS_closefrom", //287
5354 "SYS_sigaltstack", //288
5355 "SYS_shmget", //289
5356 "SYS_semop", //290
5357 "SYS_stat", //291
5358 "SYS_fstat", //292
5359 "SYS_lstat", //293
5360 "SYS_fhstat", //294
5361 "SYS___semctl", //295
5362 "SYS_shmctl", //296
5363 "SYS_msgctl", //297
5364 "SYS_MAXSYSCALL", //298
5365 //299
5366 //300
5367 };
5368 uint32_t uEAX;
5369 if (!LogIsEnabled())
5370 return;
5371 uEAX = CPUMGetGuestEAX(pVM);
5372 switch (uEAX)
5373 {
5374 default:
5375 if (uEAX < ELEMENTS(apsz))
5376 {
5377 uint32_t au32Args[8] = {0};
5378 PGMPhysReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
5379 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
5380 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
5381 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
5382 }
5383 else
5384 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
5385 break;
5386 }
5387}
5388
5389
5390#if defined(IPRT_NO_CRT) && defined(__WIN__) && defined(__X86__)
5391/**
5392 * The Dll main entry point (stub).
5393 */
5394bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
5395{
5396 return true;
5397}
5398
5399void *memcpy(void *dst, const void *src, size_t size)
5400{
5401 uint8_t*pbDst = dst, *pbSrc = src;
5402 while (size-- > 0)
5403 *pbDst++ = *pbSrc++;
5404 return dst;
5405}
5406
5407#endif
5408
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette