VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 45688

Last change on this file since 45688 was 45642, checked in by vboxsync, 12 years ago

recompiler: Use symbolic constants.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 182.5 KB
Line 
1/* $Id: VBoxRecompiler.c 45642 2013-04-19 12:44:27Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_REM
23#include <stdio.h> /* FILE */
24#include "osdep.h"
25#include "config.h"
26#include "cpu.h"
27#include "exec-all.h"
28#include "ioport.h"
29
30#include <VBox/vmm/rem.h>
31#include <VBox/vmm/vmapi.h>
32#include <VBox/vmm/tm.h>
33#include <VBox/vmm/ssm.h>
34#include <VBox/vmm/em.h>
35#include <VBox/vmm/trpm.h>
36#include <VBox/vmm/iom.h>
37#include <VBox/vmm/mm.h>
38#include <VBox/vmm/pgm.h>
39#include <VBox/vmm/pdm.h>
40#include <VBox/vmm/dbgf.h>
41#include <VBox/dbg.h>
42#include <VBox/vmm/hm.h>
43#include <VBox/vmm/patm.h>
44#include <VBox/vmm/csam.h>
45#include "REMInternal.h"
46#include <VBox/vmm/vm.h>
47#include <VBox/vmm/uvm.h>
48#include <VBox/param.h>
49#include <VBox/err.h>
50
51#include <VBox/log.h>
52#include <iprt/semaphore.h>
53#include <iprt/asm.h>
54#include <iprt/assert.h>
55#include <iprt/thread.h>
56#include <iprt/string.h>
57
58/* Don't wanna include everything. */
59extern void cpu_exec_init_all(uintptr_t tb_size);
60extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
61extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
62extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
63extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
64extern void tlb_flush(CPUX86State *env, int flush_global);
65extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
66extern void sync_ldtr(CPUX86State *env1, int selector);
67
68#ifdef VBOX_STRICT
69ram_addr_t get_phys_page_offset(target_ulong addr);
70#endif
71
72
73/*******************************************************************************
74* Defined Constants And Macros *
75*******************************************************************************/
76
77/** Copy 80-bit fpu register at pSrc to pDst.
78 * This is probably faster than *calling* memcpy.
79 */
80#define REM_COPY_FPU_REG(pDst, pSrc) \
81 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
82
83/** How remR3RunLoggingStep operates. */
84#define REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
85
86
87/*******************************************************************************
88* Internal Functions *
89*******************************************************************************/
90static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
91static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
92static void remR3StateUpdate(PVM pVM, PVMCPU pVCpu);
93static int remR3InitPhysRamSizeAndDirtyMap(PVM pVM, bool fGuarded);
94
95static uint32_t remR3MMIOReadU8(void *pvEnv, target_phys_addr_t GCPhys);
96static uint32_t remR3MMIOReadU16(void *pvEnv, target_phys_addr_t GCPhys);
97static uint32_t remR3MMIOReadU32(void *pvEnv, target_phys_addr_t GCPhys);
98static void remR3MMIOWriteU8(void *pvEnv, target_phys_addr_t GCPhys, uint32_t u32);
99static void remR3MMIOWriteU16(void *pvEnv, target_phys_addr_t GCPhys, uint32_t u32);
100static void remR3MMIOWriteU32(void *pvEnv, target_phys_addr_t GCPhys, uint32_t u32);
101
102static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
103static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
104static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
105static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
106static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
107static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
108
109static void remR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM);
110static void remR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler);
111static void remR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM);
112
113/*******************************************************************************
114* Global Variables *
115*******************************************************************************/
116
117/** @todo Move stats to REM::s some rainy day we have nothing do to. */
118#ifdef VBOX_WITH_STATISTICS
119static STAMPROFILEADV gStatExecuteSingleInstr;
120static STAMPROFILEADV gStatCompilationQEmu;
121static STAMPROFILEADV gStatRunCodeQEmu;
122static STAMPROFILEADV gStatTotalTimeQEmu;
123static STAMPROFILEADV gStatTimers;
124static STAMPROFILEADV gStatTBLookup;
125static STAMPROFILEADV gStatIRQ;
126static STAMPROFILEADV gStatRawCheck;
127static STAMPROFILEADV gStatMemRead;
128static STAMPROFILEADV gStatMemWrite;
129static STAMPROFILE gStatGCPhys2HCVirt;
130static STAMCOUNTER gStatCpuGetTSC;
131static STAMCOUNTER gStatRefuseTFInhibit;
132static STAMCOUNTER gStatRefuseVM86;
133static STAMCOUNTER gStatRefusePaging;
134static STAMCOUNTER gStatRefusePAE;
135static STAMCOUNTER gStatRefuseIOPLNot0;
136static STAMCOUNTER gStatRefuseIF0;
137static STAMCOUNTER gStatRefuseCode16;
138static STAMCOUNTER gStatRefuseWP0;
139static STAMCOUNTER gStatRefuseRing1or2;
140static STAMCOUNTER gStatRefuseCanExecute;
141static STAMCOUNTER gaStatRefuseStale[6];
142static STAMCOUNTER gStatREMGDTChange;
143static STAMCOUNTER gStatREMIDTChange;
144static STAMCOUNTER gStatREMLDTRChange;
145static STAMCOUNTER gStatREMTRChange;
146static STAMCOUNTER gStatSelOutOfSync[6];
147static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
148static STAMCOUNTER gStatFlushTBs;
149#endif
150/* in exec.c */
151extern uint32_t tlb_flush_count;
152extern uint32_t tb_flush_count;
153extern uint32_t tb_phys_invalidate_count;
154
155/*
156 * Global stuff.
157 */
158
159/** MMIO read callbacks. */
160CPUReadMemoryFunc *g_apfnMMIORead[3] =
161{
162 remR3MMIOReadU8,
163 remR3MMIOReadU16,
164 remR3MMIOReadU32
165};
166
167/** MMIO write callbacks. */
168CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
169{
170 remR3MMIOWriteU8,
171 remR3MMIOWriteU16,
172 remR3MMIOWriteU32
173};
174
175/** Handler read callbacks. */
176CPUReadMemoryFunc *g_apfnHandlerRead[3] =
177{
178 remR3HandlerReadU8,
179 remR3HandlerReadU16,
180 remR3HandlerReadU32
181};
182
183/** Handler write callbacks. */
184CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
185{
186 remR3HandlerWriteU8,
187 remR3HandlerWriteU16,
188 remR3HandlerWriteU32
189};
190
191
192#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
193/*
194 * Debugger commands.
195 */
196static FNDBGCCMD remR3CmdDisasEnableStepping;;
197
198/** '.remstep' arguments. */
199static const DBGCVARDESC g_aArgRemStep[] =
200{
201 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
202 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
203};
204
205/** Command descriptors. */
206static const DBGCCMD g_aCmds[] =
207{
208 {
209 .pszCmd ="remstep",
210 .cArgsMin = 0,
211 .cArgsMax = 1,
212 .paArgDescs = &g_aArgRemStep[0],
213 .cArgDescs = RT_ELEMENTS(g_aArgRemStep),
214 .fFlags = 0,
215 .pfnHandler = remR3CmdDisasEnableStepping,
216 .pszSyntax = "[on/off]",
217 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
218 "If no arguments show the current state."
219 }
220};
221#endif
222
223/** Prologue code, must be in lower 4G to simplify jumps to/from generated code.
224 * @todo huh??? That cannot be the case on the mac... So, this
225 * point is probably not valid any longer. */
226uint8_t *code_gen_prologue;
227
228
229/*******************************************************************************
230* Internal Functions *
231*******************************************************************************/
232void remAbort(int rc, const char *pszTip);
233extern int testmath(void);
234
235/* Put them here to avoid unused variable warning. */
236AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
237#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
238//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
239/* Why did this have to be identical?? */
240AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
241#else
242AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
243#endif
244
245
246/**
247 * Initializes the REM.
248 *
249 * @returns VBox status code.
250 * @param pVM The VM to operate on.
251 */
252REMR3DECL(int) REMR3Init(PVM pVM)
253{
254 PREMHANDLERNOTIFICATION pCur;
255 uint32_t u32Dummy;
256 int rc;
257 unsigned i;
258
259#ifdef VBOX_ENABLE_VBOXREM64
260 LogRel(("Using 64-bit aware REM\n"));
261#endif
262
263 /*
264 * Assert sanity.
265 */
266 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
267 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
268 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
269#if 0 /* just an annoyance at the moment. */
270#if defined(DEBUG) && !defined(RT_OS_SOLARIS) && !defined(RT_OS_FREEBSD) /// @todo fix the solaris and freebsd math stuff.
271 Assert(!testmath());
272#endif
273#endif
274
275 /*
276 * Init some internal data members.
277 */
278 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
279 pVM->rem.s.Env.pVM = pVM;
280#ifdef CPU_RAW_MODE_INIT
281 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
282#endif
283
284 /*
285 * Initialize the REM critical section.
286 *
287 * Note: This is not a 100% safe solution as updating the internal memory state while another VCPU
288 * is executing code could be dangerous. Taking the REM lock is not an option due to the danger of
289 * deadlocks. (mostly pgm vs rem locking)
290 */
291 rc = PDMR3CritSectInit(pVM, &pVM->rem.s.CritSectRegister, RT_SRC_POS, "REM-Register");
292 AssertRCReturn(rc, rc);
293
294 /* ctx. */
295 pVM->rem.s.pCtx = NULL; /* set when executing code. */
296 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order has changed! REM depends on notification about ALL physical memory registrations\n"));
297
298 /* ignore all notifications */
299 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
300
301 code_gen_prologue = RTMemExecAlloc(_1K);
302 AssertLogRelReturn(code_gen_prologue, VERR_NO_MEMORY);
303
304 cpu_exec_init_all(0);
305
306 /*
307 * Init the recompiler.
308 */
309 if (!cpu_x86_init(&pVM->rem.s.Env, "vbox"))
310 {
311 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
312 return VERR_GENERAL_FAILURE;
313 }
314 PVMCPU pVCpu = VMMGetCpu(pVM);
315 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
316 CPUMGetGuestCpuId(pVCpu, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
317
318 EMRemLock(pVM);
319 cpu_reset(&pVM->rem.s.Env);
320 EMRemUnlock(pVM);
321
322 /* allocate code buffer for single instruction emulation. */
323 pVM->rem.s.Env.cbCodeBuffer = 4096;
324 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
325 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
326
327 /* Finally, set the cpu_single_env global. */
328 cpu_single_env = &pVM->rem.s.Env;
329
330 /* Nothing is pending by default */
331 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
332
333 /*
334 * Register ram types.
335 */
336 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(g_apfnMMIORead, g_apfnMMIOWrite, &pVM->rem.s.Env);
337 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
338 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
339 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
340 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
341
342 /* stop ignoring. */
343 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
344
345 /*
346 * Register the saved state data unit.
347 */
348 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
349 NULL, NULL, NULL,
350 NULL, remR3Save, NULL,
351 NULL, remR3Load, NULL);
352 if (RT_FAILURE(rc))
353 return rc;
354
355#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
356 /*
357 * Debugger commands.
358 */
359 static bool fRegisteredCmds = false;
360 if (!fRegisteredCmds)
361 {
362 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
363 if (RT_SUCCESS(rc))
364 fRegisteredCmds = true;
365 }
366#endif
367
368#ifdef VBOX_WITH_STATISTICS
369 /*
370 * Statistics.
371 */
372 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
373 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
374 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
375 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
376 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer queue processing.");
377 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling translation block lookup.");
378 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling IRQ delivery.");
379 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling remR3CanExecuteRaw calls.");
380 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
381 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
382 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory conversion (PGMR3PhysTlbGCPhys2Ptr).");
383
384 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
385
386 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
387 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
388 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
389 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
390 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
391 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
392 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
393 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
394 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
395 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
396 STAM_REG(pVM, &gaStatRefuseStale[R_ES], STAMTYPE_COUNTER, "/REM/Refuse/StaleES", STAMUNIT_OCCURENCES, "Raw mode refused because of stale ES");
397 STAM_REG(pVM, &gaStatRefuseStale[R_CS], STAMTYPE_COUNTER, "/REM/Refuse/StaleCS", STAMUNIT_OCCURENCES, "Raw mode refused because of stale CS");
398 STAM_REG(pVM, &gaStatRefuseStale[R_SS], STAMTYPE_COUNTER, "/REM/Refuse/StaleSS", STAMUNIT_OCCURENCES, "Raw mode refused because of stale SS");
399 STAM_REG(pVM, &gaStatRefuseStale[R_DS], STAMTYPE_COUNTER, "/REM/Refuse/StaleDS", STAMUNIT_OCCURENCES, "Raw mode refused because of stale DS");
400 STAM_REG(pVM, &gaStatRefuseStale[R_FS], STAMTYPE_COUNTER, "/REM/Refuse/StaleFS", STAMUNIT_OCCURENCES, "Raw mode refused because of stale FS");
401 STAM_REG(pVM, &gaStatRefuseStale[R_GS], STAMTYPE_COUNTER, "/REM/Refuse/StaleGS", STAMUNIT_OCCURENCES, "Raw mode refused because of stale GS");
402 STAM_REG(pVM, &gStatFlushTBs, STAMTYPE_COUNTER, "/REM/FlushTB", STAMUNIT_OCCURENCES, "Number of TB flushes");
403
404 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
405 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
406 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
407 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
408
409 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
410 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
411 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
412 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
413 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
414 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
415
416 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
417 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
418 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
419 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
420 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
421 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
422
423 STAM_REG(pVM, &pVM->rem.s.Env.StatTbFlush, STAMTYPE_PROFILE, "/REM/TbFlush", STAMUNIT_TICKS_PER_CALL, "profiling tb_flush().");
424#endif /* VBOX_WITH_STATISTICS */
425 AssertCompileMemberAlignment(CPUX86State, StatTbFlush, 4);
426 AssertCompileMemberAlignment(CPUX86State, StatTbFlush, 8);
427
428 STAM_REL_REG(pVM, &tb_flush_count, STAMTYPE_U32_RESET, "/REM/TbFlushCount", STAMUNIT_OCCURENCES, "tb_flush() calls");
429 STAM_REL_REG(pVM, &tb_phys_invalidate_count, STAMTYPE_U32_RESET, "/REM/TbPhysInvldCount", STAMUNIT_OCCURENCES, "tb_phys_invalidate() calls");
430 STAM_REL_REG(pVM, &tlb_flush_count, STAMTYPE_U32_RESET, "/REM/TlbFlushCount", STAMUNIT_OCCURENCES, "tlb_flush() calls");
431
432
433#ifdef DEBUG_ALL_LOGGING
434 loglevel = ~0;
435#endif
436
437 /*
438 * Init the handler notification lists.
439 */
440 pVM->rem.s.idxPendingList = UINT32_MAX;
441 pVM->rem.s.idxFreeList = 0;
442
443 for (i = 0 ; i < RT_ELEMENTS(pVM->rem.s.aHandlerNotifications); i++)
444 {
445 pCur = &pVM->rem.s.aHandlerNotifications[i];
446 pCur->idxNext = i + 1;
447 pCur->idxSelf = i;
448 }
449 pCur->idxNext = UINT32_MAX; /* the last record. */
450
451 return rc;
452}
453
454
455/**
456 * Finalizes the REM initialization.
457 *
458 * This is called after all components, devices and drivers has
459 * been initialized. Its main purpose it to finish the RAM related
460 * initialization.
461 *
462 * @returns VBox status code.
463 *
464 * @param pVM The VM handle.
465 */
466REMR3DECL(int) REMR3InitFinalize(PVM pVM)
467{
468 int rc;
469
470 /*
471 * Ram size & dirty bit map.
472 */
473 Assert(!pVM->rem.s.fGCPhysLastRamFixed);
474 pVM->rem.s.fGCPhysLastRamFixed = true;
475#ifdef RT_STRICT
476 rc = remR3InitPhysRamSizeAndDirtyMap(pVM, true /* fGuarded */);
477#else
478 rc = remR3InitPhysRamSizeAndDirtyMap(pVM, false /* fGuarded */);
479#endif
480 return rc;
481}
482
483/**
484 * Initializes ram_list.phys_dirty and ram_list.phys_dirty_size.
485 *
486 * @returns VBox status code.
487 * @param pVM The VM handle.
488 * @param fGuarded Whether to guard the map.
489 */
490static int remR3InitPhysRamSizeAndDirtyMap(PVM pVM, bool fGuarded)
491{
492 int rc = VINF_SUCCESS;
493 RTGCPHYS cb;
494
495 AssertLogRelReturn(QLIST_EMPTY(&ram_list.blocks), VERR_INTERNAL_ERROR_2);
496
497 cb = pVM->rem.s.GCPhysLastRam + 1;
498 AssertLogRelMsgReturn(cb > pVM->rem.s.GCPhysLastRam,
499 ("GCPhysLastRam=%RGp - out of range\n", pVM->rem.s.GCPhysLastRam),
500 VERR_OUT_OF_RANGE);
501
502 ram_list.phys_dirty_size = cb >> PAGE_SHIFT;
503 AssertMsg(((RTGCPHYS)ram_list.phys_dirty_size << PAGE_SHIFT) == cb, ("%RGp\n", cb));
504
505 if (!fGuarded)
506 {
507 ram_list.phys_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, ram_list.phys_dirty_size);
508 AssertLogRelMsgReturn(ram_list.phys_dirty, ("Failed to allocate %u bytes of dirty page map bytes\n", ram_list.phys_dirty_size), VERR_NO_MEMORY);
509 }
510 else
511 {
512 /*
513 * Fill it up the nearest 4GB RAM and leave at least _64KB of guard after it.
514 */
515 uint32_t cbBitmapAligned = RT_ALIGN_32(ram_list.phys_dirty_size, PAGE_SIZE);
516 uint32_t cbBitmapFull = RT_ALIGN_32(ram_list.phys_dirty_size, (_4G >> PAGE_SHIFT));
517 if (cbBitmapFull == cbBitmapAligned)
518 cbBitmapFull += _4G >> PAGE_SHIFT;
519 else if (cbBitmapFull - cbBitmapAligned < _64K)
520 cbBitmapFull += _64K;
521
522 ram_list.phys_dirty = RTMemPageAlloc(cbBitmapFull);
523 AssertLogRelMsgReturn(ram_list.phys_dirty, ("Failed to allocate %u bytes of dirty page map bytes\n", cbBitmapFull), VERR_NO_MEMORY);
524
525 rc = RTMemProtect(ram_list.phys_dirty + cbBitmapAligned, cbBitmapFull - cbBitmapAligned, RTMEM_PROT_NONE);
526 if (RT_FAILURE(rc))
527 {
528 RTMemPageFree(ram_list.phys_dirty, cbBitmapFull);
529 AssertLogRelRCReturn(rc, rc);
530 }
531
532 ram_list.phys_dirty += cbBitmapAligned - ram_list.phys_dirty_size;
533 }
534
535 /* initialize it. */
536 memset(ram_list.phys_dirty, 0xff, ram_list.phys_dirty_size);
537 return rc;
538}
539
540
541/**
542 * Terminates the REM.
543 *
544 * Termination means cleaning up and freeing all resources,
545 * the VM it self is at this point powered off or suspended.
546 *
547 * @returns VBox status code.
548 * @param pVM The VM to operate on.
549 */
550REMR3DECL(int) REMR3Term(PVM pVM)
551{
552#ifdef VBOX_WITH_STATISTICS
553 /*
554 * Statistics.
555 */
556 STAM_DEREG(pVM, &gStatExecuteSingleInstr);
557 STAM_DEREG(pVM, &gStatCompilationQEmu);
558 STAM_DEREG(pVM, &gStatRunCodeQEmu);
559 STAM_DEREG(pVM, &gStatTotalTimeQEmu);
560 STAM_DEREG(pVM, &gStatTimers);
561 STAM_DEREG(pVM, &gStatTBLookup);
562 STAM_DEREG(pVM, &gStatIRQ);
563 STAM_DEREG(pVM, &gStatRawCheck);
564 STAM_DEREG(pVM, &gStatMemRead);
565 STAM_DEREG(pVM, &gStatMemWrite);
566 STAM_DEREG(pVM, &gStatGCPhys2HCVirt);
567
568 STAM_DEREG(pVM, &gStatCpuGetTSC);
569
570 STAM_DEREG(pVM, &gStatRefuseTFInhibit);
571 STAM_DEREG(pVM, &gStatRefuseVM86);
572 STAM_DEREG(pVM, &gStatRefusePaging);
573 STAM_DEREG(pVM, &gStatRefusePAE);
574 STAM_DEREG(pVM, &gStatRefuseIOPLNot0);
575 STAM_DEREG(pVM, &gStatRefuseIF0);
576 STAM_DEREG(pVM, &gStatRefuseCode16);
577 STAM_DEREG(pVM, &gStatRefuseWP0);
578 STAM_DEREG(pVM, &gStatRefuseRing1or2);
579 STAM_DEREG(pVM, &gStatRefuseCanExecute);
580 STAM_DEREG(pVM, &gaStatRefuseStale[0]);
581 STAM_DEREG(pVM, &gaStatRefuseStale[1]);
582 STAM_DEREG(pVM, &gaStatRefuseStale[2]);
583 STAM_DEREG(pVM, &gaStatRefuseStale[3]);
584 STAM_DEREG(pVM, &gaStatRefuseStale[4]);
585 STAM_DEREG(pVM, &gaStatRefuseStale[5]);
586 STAM_DEREG(pVM, &gStatFlushTBs);
587
588 STAM_DEREG(pVM, &gStatREMGDTChange);
589 STAM_DEREG(pVM, &gStatREMLDTRChange);
590 STAM_DEREG(pVM, &gStatREMIDTChange);
591 STAM_DEREG(pVM, &gStatREMTRChange);
592
593 STAM_DEREG(pVM, &gStatSelOutOfSync[0]);
594 STAM_DEREG(pVM, &gStatSelOutOfSync[1]);
595 STAM_DEREG(pVM, &gStatSelOutOfSync[2]);
596 STAM_DEREG(pVM, &gStatSelOutOfSync[3]);
597 STAM_DEREG(pVM, &gStatSelOutOfSync[4]);
598 STAM_DEREG(pVM, &gStatSelOutOfSync[5]);
599
600 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[0]);
601 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[1]);
602 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[2]);
603 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[3]);
604 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[4]);
605 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[5]);
606
607 STAM_DEREG(pVM, &pVM->rem.s.Env.StatTbFlush);
608#endif /* VBOX_WITH_STATISTICS */
609
610 STAM_REL_DEREG(pVM, &tb_flush_count);
611 STAM_REL_DEREG(pVM, &tb_phys_invalidate_count);
612 STAM_REL_DEREG(pVM, &tlb_flush_count);
613
614 return VINF_SUCCESS;
615}
616
617
618/**
619 * The VM is being reset.
620 *
621 * For the REM component this means to call the cpu_reset() and
622 * reinitialize some state variables.
623 *
624 * @param pVM VM handle.
625 */
626REMR3DECL(void) REMR3Reset(PVM pVM)
627{
628 EMRemLock(pVM); /* Only pro forma, we're in a rendezvous. */
629
630 /*
631 * Reset the REM cpu.
632 */
633 Assert(pVM->rem.s.cIgnoreAll == 0);
634 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
635 cpu_reset(&pVM->rem.s.Env);
636 pVM->rem.s.cInvalidatedPages = 0;
637 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
638 Assert(pVM->rem.s.cIgnoreAll == 0);
639
640 /* Clear raw ring 0 init state */
641 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
642
643 /* Flush the TBs the next time we execute code here. */
644 pVM->rem.s.fFlushTBs = true;
645
646 EMRemUnlock(pVM);
647}
648
649
650/**
651 * Execute state save operation.
652 *
653 * @returns VBox status code.
654 * @param pVM VM Handle.
655 * @param pSSM SSM operation handle.
656 */
657static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
658{
659 PREM pRem = &pVM->rem.s;
660
661 /*
662 * Save the required CPU Env bits.
663 * (Not much because we're never in REM when doing the save.)
664 */
665 LogFlow(("remR3Save:\n"));
666 Assert(!pRem->fInREM);
667 SSMR3PutU32(pSSM, pRem->Env.hflags);
668 SSMR3PutU32(pSSM, ~0); /* separator */
669
670 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
671 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
672 SSMR3PutU32(pSSM, pVM->rem.s.u32PendingInterrupt);
673
674 return SSMR3PutU32(pSSM, ~0); /* terminator */
675}
676
677
678/**
679 * Execute state load operation.
680 *
681 * @returns VBox status code.
682 * @param pVM VM Handle.
683 * @param pSSM SSM operation handle.
684 * @param uVersion Data layout version.
685 * @param uPass The data pass.
686 */
687static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
688{
689 uint32_t u32Dummy;
690 uint32_t fRawRing0 = false;
691 uint32_t u32Sep;
692 uint32_t i;
693 int rc;
694 PREM pRem;
695
696 LogFlow(("remR3Load:\n"));
697 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
698
699 /*
700 * Validate version.
701 */
702 if ( uVersion != REM_SAVED_STATE_VERSION
703 && uVersion != REM_SAVED_STATE_VERSION_VER1_6)
704 {
705 AssertMsgFailed(("remR3Load: Invalid version uVersion=%d!\n", uVersion));
706 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
707 }
708
709 /*
710 * Do a reset to be on the safe side...
711 */
712 REMR3Reset(pVM);
713
714 /*
715 * Ignore all ignorable notifications.
716 * (Not doing this will cause serious trouble.)
717 */
718 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
719
720 /*
721 * Load the required CPU Env bits.
722 * (Not much because we're never in REM when doing the save.)
723 */
724 pRem = &pVM->rem.s;
725 Assert(!pRem->fInREM);
726 SSMR3GetU32(pSSM, &pRem->Env.hflags);
727 if (uVersion == REM_SAVED_STATE_VERSION_VER1_6)
728 {
729 /* Redundant REM CPU state has to be loaded, but can be ignored. */
730 CPUX86State_Ver16 temp;
731 SSMR3GetMem(pSSM, &temp, RT_OFFSETOF(CPUX86State_Ver16, jmp_env));
732 }
733
734 rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
735 if (RT_FAILURE(rc))
736 return rc;
737 if (u32Sep != ~0U)
738 {
739 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
740 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
741 }
742
743 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
744 SSMR3GetUInt(pSSM, &fRawRing0);
745 if (fRawRing0)
746 pRem->Env.state |= CPU_RAW_RING0;
747
748 if (uVersion == REM_SAVED_STATE_VERSION_VER1_6)
749 {
750 /*
751 * Load the REM stuff.
752 */
753 /** @todo r=bird: We should just drop all these items, restoring doesn't make
754 * sense. */
755 rc = SSMR3GetU32(pSSM, (uint32_t *)&pRem->cInvalidatedPages);
756 if (RT_FAILURE(rc))
757 return rc;
758 if (pRem->cInvalidatedPages > RT_ELEMENTS(pRem->aGCPtrInvalidatedPages))
759 {
760 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
761 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
762 }
763 for (i = 0; i < pRem->cInvalidatedPages; i++)
764 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
765 }
766
767 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
768 if (RT_FAILURE(rc))
769 return rc;
770
771 /* check the terminator. */
772 rc = SSMR3GetU32(pSSM, &u32Sep);
773 if (RT_FAILURE(rc))
774 return rc;
775 if (u32Sep != ~0U)
776 {
777 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
778 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
779 }
780
781 /*
782 * Get the CPUID features.
783 */
784 PVMCPU pVCpu = VMMGetCpu(pVM);
785 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
786 CPUMGetGuestCpuId(pVCpu, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
787
788 /*
789 * Stop ignoring ignorable notifications.
790 */
791 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
792
793 /*
794 * Sync the whole CPU state when executing code in the recompiler.
795 */
796 for (i = 0; i < pVM->cCpus; i++)
797 {
798 PVMCPU pVCpu = &pVM->aCpus[i];
799 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
800 }
801 return VINF_SUCCESS;
802}
803
804
805
806#undef LOG_GROUP
807#define LOG_GROUP LOG_GROUP_REM_RUN
808
809/**
810 * Single steps an instruction in recompiled mode.
811 *
812 * Before calling this function the REM state needs to be in sync with
813 * the VM. Call REMR3State() to perform the sync. It's only necessary
814 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
815 * and after calling REMR3StateBack().
816 *
817 * @returns VBox status code.
818 *
819 * @param pVM VM Handle.
820 * @param pVCpu VMCPU Handle.
821 */
822REMR3DECL(int) REMR3Step(PVM pVM, PVMCPU pVCpu)
823{
824 int rc, interrupt_request;
825 RTGCPTR GCPtrPC;
826 bool fBp;
827
828 /*
829 * Lock the REM - we don't wanna have anyone interrupting us
830 * while stepping - and enabled single stepping. We also ignore
831 * pending interrupts and suchlike.
832 */
833 interrupt_request = pVM->rem.s.Env.interrupt_request;
834 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_FLUSH_TLB | CPU_INTERRUPT_EXTERNAL_TIMER)));
835 pVM->rem.s.Env.interrupt_request = 0;
836 cpu_single_step(&pVM->rem.s.Env, 1);
837
838 /*
839 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
840 */
841 GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
842 fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC, BP_GDB);
843
844 /*
845 * Execute and handle the return code.
846 * We execute without enabling the cpu tick, so on success we'll
847 * just flip it on and off to make sure it moves
848 */
849 rc = cpu_exec(&pVM->rem.s.Env);
850 if (rc == EXCP_DEBUG)
851 {
852 TMR3NotifyResume(pVM, pVCpu);
853 TMR3NotifySuspend(pVM, pVCpu);
854 rc = VINF_EM_DBG_STEPPED;
855 }
856 else
857 {
858 switch (rc)
859 {
860 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
861 case EXCP_HLT:
862 case EXCP_HALTED: rc = VINF_EM_HALT; break;
863 case EXCP_RC:
864 rc = pVM->rem.s.rc;
865 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
866 break;
867 case EXCP_EXECUTE_RAW:
868 case EXCP_EXECUTE_HM:
869 /** @todo: is it correct? No! */
870 rc = VINF_SUCCESS;
871 break;
872 default:
873 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
874 rc = VERR_INTERNAL_ERROR;
875 break;
876 }
877 }
878
879 /*
880 * Restore the stuff we changed to prevent interruption.
881 * Unlock the REM.
882 */
883 if (fBp)
884 {
885 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC, BP_GDB, NULL);
886 Assert(rc2 == 0); NOREF(rc2);
887 }
888 cpu_single_step(&pVM->rem.s.Env, 0);
889 pVM->rem.s.Env.interrupt_request = interrupt_request;
890
891 return rc;
892}
893
894
895/**
896 * Set a breakpoint using the REM facilities.
897 *
898 * @returns VBox status code.
899 * @param pVM The VM handle.
900 * @param Address The breakpoint address.
901 * @thread The emulation thread.
902 */
903REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
904{
905 VM_ASSERT_EMT(pVM);
906 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address, BP_GDB, NULL))
907 {
908 LogFlow(("REMR3BreakpointSet: Address=%RGv\n", Address));
909 return VINF_SUCCESS;
910 }
911 LogFlow(("REMR3BreakpointSet: Address=%RGv - failed!\n", Address));
912 return VERR_REM_NO_MORE_BP_SLOTS;
913}
914
915
916/**
917 * Clears a breakpoint set by REMR3BreakpointSet().
918 *
919 * @returns VBox status code.
920 * @param pVM The VM handle.
921 * @param Address The breakpoint address.
922 * @thread The emulation thread.
923 */
924REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
925{
926 VM_ASSERT_EMT(pVM);
927 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address, BP_GDB))
928 {
929 LogFlow(("REMR3BreakpointClear: Address=%RGv\n", Address));
930 return VINF_SUCCESS;
931 }
932 LogFlow(("REMR3BreakpointClear: Address=%RGv - not found!\n", Address));
933 return VERR_REM_BP_NOT_FOUND;
934}
935
936
937/**
938 * Emulate an instruction.
939 *
940 * This function executes one instruction without letting anyone
941 * interrupt it. This is intended for being called while being in
942 * raw mode and thus will take care of all the state syncing between
943 * REM and the rest.
944 *
945 * @returns VBox status code.
946 * @param pVM VM handle.
947 * @param pVCpu VMCPU Handle.
948 */
949REMR3DECL(int) REMR3EmulateInstruction(PVM pVM, PVMCPU pVCpu)
950{
951 bool fFlushTBs;
952
953 int rc, rc2;
954 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
955
956 /* Make sure this flag is set; we might never execute remR3CanExecuteRaw in the AMD-V case.
957 * CPU_RAW_HM makes sure we never execute interrupt handlers in the recompiler.
958 */
959 if (HMIsEnabled(pVM))
960 pVM->rem.s.Env.state |= CPU_RAW_HM;
961
962 /* Skip the TB flush as that's rather expensive and not necessary for single instruction emulation. */
963 fFlushTBs = pVM->rem.s.fFlushTBs;
964 pVM->rem.s.fFlushTBs = false;
965
966 /*
967 * Sync the state and enable single instruction / single stepping.
968 */
969 rc = REMR3State(pVM, pVCpu);
970 pVM->rem.s.fFlushTBs = fFlushTBs;
971 if (RT_SUCCESS(rc))
972 {
973 int interrupt_request = pVM->rem.s.Env.interrupt_request;
974 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_FLUSH_TLB | CPU_INTERRUPT_EXTERNAL_TIMER)));
975#ifdef REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
976 cpu_single_step(&pVM->rem.s.Env, 0);
977#endif
978 Assert(!pVM->rem.s.Env.singlestep_enabled);
979
980 /*
981 * Now we set the execute single instruction flag and enter the cpu_exec loop.
982 */
983 TMNotifyStartOfExecution(pVCpu);
984 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
985 rc = cpu_exec(&pVM->rem.s.Env);
986 TMNotifyEndOfExecution(pVCpu);
987 switch (rc)
988 {
989 /*
990 * Executed without anything out of the way happening.
991 */
992 case EXCP_SINGLE_INSTR:
993 rc = VINF_EM_RESCHEDULE;
994 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
995 break;
996
997 /*
998 * If we take a trap or start servicing a pending interrupt, we might end up here.
999 * (Timer thread or some other thread wishing EMT's attention.)
1000 */
1001 case EXCP_INTERRUPT:
1002 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
1003 rc = VINF_EM_RESCHEDULE;
1004 break;
1005
1006 /*
1007 * Single step, we assume!
1008 * If there was a breakpoint there we're fucked now.
1009 */
1010 case EXCP_DEBUG:
1011 if (pVM->rem.s.Env.watchpoint_hit)
1012 {
1013 /** @todo deal with watchpoints */
1014 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Rrc !watchpoint_hit!\n", rc));
1015 rc = VINF_EM_DBG_BREAKPOINT;
1016 }
1017 else
1018 {
1019 CPUBreakpoint *pBP;
1020 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1021 QTAILQ_FOREACH(pBP, &pVM->rem.s.Env.breakpoints, entry)
1022 if (pBP->pc == GCPtrPC)
1023 break;
1024 rc = pBP ? VINF_EM_DBG_BREAKPOINT : VINF_EM_DBG_STEPPED;
1025 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Rrc pBP=%p GCPtrPC=%RGv\n", rc, pBP, GCPtrPC));
1026 }
1027 break;
1028
1029 /*
1030 * hlt instruction.
1031 */
1032 case EXCP_HLT:
1033 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
1034 rc = VINF_EM_HALT;
1035 break;
1036
1037 /*
1038 * The VM has halted.
1039 */
1040 case EXCP_HALTED:
1041 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
1042 rc = VINF_EM_HALT;
1043 break;
1044
1045 /*
1046 * Switch to RAW-mode.
1047 */
1048 case EXCP_EXECUTE_RAW:
1049 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1050 rc = VINF_EM_RESCHEDULE_RAW;
1051 break;
1052
1053 /*
1054 * Switch to hardware accelerated RAW-mode.
1055 */
1056 case EXCP_EXECUTE_HM:
1057 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HM\n"));
1058 rc = VINF_EM_RESCHEDULE_HM;
1059 break;
1060
1061 /*
1062 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1063 */
1064 case EXCP_RC:
1065 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
1066 rc = pVM->rem.s.rc;
1067 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1068 break;
1069
1070 /*
1071 * Figure out the rest when they arrive....
1072 */
1073 default:
1074 AssertMsgFailed(("rc=%d\n", rc));
1075 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
1076 rc = VINF_EM_RESCHEDULE;
1077 break;
1078 }
1079
1080 /*
1081 * Switch back the state.
1082 */
1083 pVM->rem.s.Env.interrupt_request = interrupt_request;
1084 rc2 = REMR3StateBack(pVM, pVCpu);
1085 AssertRC(rc2);
1086 }
1087
1088 Log2(("REMR3EmulateInstruction: returns %Rrc (cs:eip=%04x:%RGv)\n",
1089 rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
1090 return rc;
1091}
1092
1093
1094/**
1095 * Used by REMR3Run to handle the case where CPU_EMULATE_SINGLE_STEP is set.
1096 *
1097 * @returns VBox status code.
1098 *
1099 * @param pVM The VM handle.
1100 * @param pVCpu The Virtual CPU handle.
1101 */
1102static int remR3RunLoggingStep(PVM pVM, PVMCPU pVCpu)
1103{
1104 int rc;
1105
1106 Assert(pVM->rem.s.fInREM);
1107#ifdef REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
1108 cpu_single_step(&pVM->rem.s.Env, 1);
1109#else
1110 Assert(!pVM->rem.s.Env.singlestep_enabled);
1111#endif
1112
1113 /*
1114 * Now we set the execute single instruction flag and enter the cpu_exec loop.
1115 */
1116 for (;;)
1117 {
1118 char szBuf[256];
1119
1120 /*
1121 * Log the current registers state and instruction.
1122 */
1123 remR3StateUpdate(pVM, pVCpu);
1124 DBGFR3Info(pVM->pUVM, "cpumguest", NULL, NULL);
1125 szBuf[0] = '\0';
1126 rc = DBGFR3DisasInstrEx(pVM->pUVM,
1127 pVCpu->idCpu,
1128 0, /* Sel */
1129 0, /* GCPtr */
1130 DBGF_DISAS_FLAGS_CURRENT_GUEST
1131 | DBGF_DISAS_FLAGS_DEFAULT_MODE,
1132 szBuf,
1133 sizeof(szBuf),
1134 NULL);
1135 if (RT_FAILURE(rc))
1136 RTStrPrintf(szBuf, sizeof(szBuf), "DBGFR3DisasInstrEx failed with rc=%Rrc\n", rc);
1137 RTLogPrintf("CPU%d: %s\n", pVCpu->idCpu, szBuf);
1138
1139 /*
1140 * Execute the instruction.
1141 */
1142 TMNotifyStartOfExecution(pVCpu);
1143
1144 if ( pVM->rem.s.Env.exception_index < 0
1145 || pVM->rem.s.Env.exception_index > 256)
1146 pVM->rem.s.Env.exception_index = -1; /** @todo We need to do similar stuff elsewhere, I think. */
1147
1148#ifdef REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
1149 pVM->rem.s.Env.interrupt_request = 0;
1150#else
1151 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
1152#endif
1153 if ( VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
1154 || pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
1155 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
1156 RTLogPrintf("remR3RunLoggingStep: interrupt_request=%#x halted=%d exception_index=%#x\n", rc,
1157 pVM->rem.s.Env.interrupt_request,
1158 pVM->rem.s.Env.halted,
1159 pVM->rem.s.Env.exception_index
1160 );
1161
1162 rc = cpu_exec(&pVM->rem.s.Env);
1163
1164 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> %#x interrupt_request=%#x halted=%d exception_index=%#x\n", rc,
1165 pVM->rem.s.Env.interrupt_request,
1166 pVM->rem.s.Env.halted,
1167 pVM->rem.s.Env.exception_index
1168 );
1169
1170 TMNotifyEndOfExecution(pVCpu);
1171
1172 switch (rc)
1173 {
1174#ifndef REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
1175 /*
1176 * The normal exit.
1177 */
1178 case EXCP_SINGLE_INSTR:
1179 if ( !VM_FF_ISPENDING(pVM, VM_FF_ALL_REM_MASK)
1180 && !VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_ALL_REM_MASK))
1181 continue;
1182 RTLogPrintf("remR3RunLoggingStep: rc=VINF_SUCCESS w/ FFs (%#x/%#x)\n",
1183 pVM->fGlobalForcedActions, pVCpu->fLocalForcedActions);
1184 rc = VINF_SUCCESS;
1185 break;
1186
1187#else
1188 /*
1189 * The normal exit, check for breakpoints at PC just to be sure.
1190 */
1191#endif
1192 case EXCP_DEBUG:
1193 if (pVM->rem.s.Env.watchpoint_hit)
1194 {
1195 /** @todo deal with watchpoints */
1196 Log2(("remR3RunLoggingStep: cpu_exec -> EXCP_DEBUG rc=%Rrc !watchpoint_hit!\n", rc));
1197 rc = VINF_EM_DBG_BREAKPOINT;
1198 }
1199 else
1200 {
1201 CPUBreakpoint *pBP;
1202 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1203 QTAILQ_FOREACH(pBP, &pVM->rem.s.Env.breakpoints, entry)
1204 if (pBP->pc == GCPtrPC)
1205 break;
1206 rc = pBP ? VINF_EM_DBG_BREAKPOINT : VINF_EM_DBG_STEPPED;
1207 Log2(("remR3RunLoggingStep: cpu_exec -> EXCP_DEBUG rc=%Rrc pBP=%p GCPtrPC=%RGv\n", rc, pBP, GCPtrPC));
1208 }
1209#ifdef REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
1210 if (rc == VINF_EM_DBG_STEPPED)
1211 {
1212 if ( !VM_FF_ISPENDING(pVM, VM_FF_ALL_REM_MASK)
1213 && !VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_ALL_REM_MASK))
1214 continue;
1215
1216 RTLogPrintf("remR3RunLoggingStep: rc=VINF_SUCCESS w/ FFs (%#x/%#x)\n",
1217 pVM->fGlobalForcedActions, pVCpu->fLocalForcedActions);
1218 rc = VINF_SUCCESS;
1219 }
1220#endif
1221 break;
1222
1223 /*
1224 * If we take a trap or start servicing a pending interrupt, we might end up here.
1225 * (Timer thread or some other thread wishing EMT's attention.)
1226 */
1227 case EXCP_INTERRUPT:
1228 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> EXCP_INTERRUPT rc=VINF_SUCCESS\n");
1229 rc = VINF_SUCCESS;
1230 break;
1231
1232 /*
1233 * hlt instruction.
1234 */
1235 case EXCP_HLT:
1236 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> EXCP_HLT rc=VINF_EM_HALT\n");
1237 rc = VINF_EM_HALT;
1238 break;
1239
1240 /*
1241 * The VM has halted.
1242 */
1243 case EXCP_HALTED:
1244 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> EXCP_HALTED rc=VINF_EM_HALT\n");
1245 rc = VINF_EM_HALT;
1246 break;
1247
1248 /*
1249 * Switch to RAW-mode.
1250 */
1251 case EXCP_EXECUTE_RAW:
1252 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> EXCP_EXECUTE_RAW rc=VINF_EM_RESCHEDULE_RAW\n");
1253 rc = VINF_EM_RESCHEDULE_RAW;
1254 break;
1255
1256 /*
1257 * Switch to hardware accelerated RAW-mode.
1258 */
1259 case EXCP_EXECUTE_HM:
1260 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> EXCP_EXECUTE_HM rc=VINF_EM_RESCHEDULE_HM\n");
1261 rc = VINF_EM_RESCHEDULE_HM;
1262 break;
1263
1264 /*
1265 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1266 */
1267 case EXCP_RC:
1268 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> EXCP_RC rc=%Rrc\n", pVM->rem.s.rc);
1269 rc = pVM->rem.s.rc;
1270 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1271 break;
1272
1273 /*
1274 * Figure out the rest when they arrive....
1275 */
1276 default:
1277 AssertMsgFailed(("rc=%d\n", rc));
1278 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> %d rc=VINF_EM_RESCHEDULE\n", rc);
1279 rc = VINF_EM_RESCHEDULE;
1280 break;
1281 }
1282 break;
1283 }
1284
1285#ifdef REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
1286// cpu_single_step(&pVM->rem.s.Env, 0);
1287#else
1288 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_SINGLE_INSTR | CPU_INTERRUPT_SINGLE_INSTR_IN_FLIGHT);
1289#endif
1290 return rc;
1291}
1292
1293
1294/**
1295 * Runs code in recompiled mode.
1296 *
1297 * Before calling this function the REM state needs to be in sync with
1298 * the VM. Call REMR3State() to perform the sync. It's only necessary
1299 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
1300 * and after calling REMR3StateBack().
1301 *
1302 * @returns VBox status code.
1303 *
1304 * @param pVM VM Handle.
1305 * @param pVCpu VMCPU Handle.
1306 */
1307REMR3DECL(int) REMR3Run(PVM pVM, PVMCPU pVCpu)
1308{
1309 int rc;
1310
1311 if (RT_UNLIKELY(pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP))
1312 return remR3RunLoggingStep(pVM, pVCpu);
1313
1314 Assert(pVM->rem.s.fInREM);
1315 Log2(("REMR3Run: (cs:eip=%04x:%RGv)\n", pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
1316
1317 TMNotifyStartOfExecution(pVCpu);
1318 rc = cpu_exec(&pVM->rem.s.Env);
1319 TMNotifyEndOfExecution(pVCpu);
1320 switch (rc)
1321 {
1322 /*
1323 * This happens when the execution was interrupted
1324 * by an external event, like pending timers.
1325 */
1326 case EXCP_INTERRUPT:
1327 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
1328 rc = VINF_SUCCESS;
1329 break;
1330
1331 /*
1332 * hlt instruction.
1333 */
1334 case EXCP_HLT:
1335 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
1336 rc = VINF_EM_HALT;
1337 break;
1338
1339 /*
1340 * The VM has halted.
1341 */
1342 case EXCP_HALTED:
1343 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1344 rc = VINF_EM_HALT;
1345 break;
1346
1347 /*
1348 * Breakpoint/single step.
1349 */
1350 case EXCP_DEBUG:
1351 if (pVM->rem.s.Env.watchpoint_hit)
1352 {
1353 /** @todo deal with watchpoints */
1354 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Rrc !watchpoint_hit!\n", rc));
1355 rc = VINF_EM_DBG_BREAKPOINT;
1356 }
1357 else
1358 {
1359 CPUBreakpoint *pBP;
1360 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1361 QTAILQ_FOREACH(pBP, &pVM->rem.s.Env.breakpoints, entry)
1362 if (pBP->pc == GCPtrPC)
1363 break;
1364 rc = pBP ? VINF_EM_DBG_BREAKPOINT : VINF_EM_DBG_STEPPED;
1365 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Rrc pBP=%p GCPtrPC=%RGv\n", rc, pBP, GCPtrPC));
1366 }
1367 break;
1368
1369 /*
1370 * Switch to RAW-mode.
1371 */
1372 case EXCP_EXECUTE_RAW:
1373 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW pc=%RGv\n", pVM->rem.s.Env.eip));
1374 rc = VINF_EM_RESCHEDULE_RAW;
1375 break;
1376
1377 /*
1378 * Switch to hardware accelerated RAW-mode.
1379 */
1380 case EXCP_EXECUTE_HM:
1381 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HM\n"));
1382 rc = VINF_EM_RESCHEDULE_HM;
1383 break;
1384
1385 /*
1386 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1387 */
1388 case EXCP_RC:
1389 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Rrc\n", pVM->rem.s.rc));
1390 rc = pVM->rem.s.rc;
1391 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1392 break;
1393
1394 /*
1395 * Figure out the rest when they arrive....
1396 */
1397 default:
1398 AssertMsgFailed(("rc=%d\n", rc));
1399 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1400 rc = VINF_SUCCESS;
1401 break;
1402 }
1403
1404 Log2(("REMR3Run: returns %Rrc (cs:eip=%04x:%RGv)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
1405 return rc;
1406}
1407
1408
1409/**
1410 * Check if the cpu state is suitable for Raw execution.
1411 *
1412 * @returns true if RAW/HWACC mode is ok, false if we should stay in REM.
1413 *
1414 * @param env The CPU env struct.
1415 * @param eip The EIP to check this for (might differ from env->eip).
1416 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1417 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1418 *
1419 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1420 */
1421bool remR3CanExecuteRaw(CPUX86State *env, RTGCPTR eip, unsigned fFlags, int *piException)
1422{
1423 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1424 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1425 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1426 uint32_t u32CR0;
1427
1428#ifdef IEM_VERIFICATION_MODE
1429 return false;
1430#endif
1431
1432 /* Update counter. */
1433 env->pVM->rem.s.cCanExecuteRaw++;
1434
1435 /* Never when single stepping+logging guest code. */
1436 if (env->state & CPU_EMULATE_SINGLE_STEP)
1437 return false;
1438
1439 if (HMIsEnabled(env->pVM))
1440 {
1441 CPUMCTX Ctx;
1442
1443 env->state |= CPU_RAW_HM;
1444
1445 /*
1446 * The simple check first...
1447 */
1448 if (!EMIsHwVirtExecutionEnabled(env->pVM))
1449 return false;
1450
1451 /*
1452 * Create partial context for HMR3CanExecuteGuest
1453 */
1454 Ctx.cr0 = env->cr[0];
1455 Ctx.cr3 = env->cr[3];
1456 Ctx.cr4 = env->cr[4];
1457
1458 Ctx.tr.Sel = env->tr.selector;
1459 Ctx.tr.ValidSel = env->tr.selector;
1460 Ctx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
1461 Ctx.tr.u64Base = env->tr.base;
1462 Ctx.tr.u32Limit = env->tr.limit;
1463 Ctx.tr.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1464
1465 Ctx.ldtr.Sel = env->ldt.selector;
1466 Ctx.ldtr.ValidSel = env->ldt.selector;
1467 Ctx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
1468 Ctx.ldtr.u64Base = env->ldt.base;
1469 Ctx.ldtr.u32Limit = env->ldt.limit;
1470 Ctx.ldtr.Attr.u = (env->ldt.flags >> 8) & 0xF0FF;
1471
1472 Ctx.idtr.cbIdt = env->idt.limit;
1473 Ctx.idtr.pIdt = env->idt.base;
1474
1475 Ctx.gdtr.cbGdt = env->gdt.limit;
1476 Ctx.gdtr.pGdt = env->gdt.base;
1477
1478 Ctx.rsp = env->regs[R_ESP];
1479 Ctx.rip = env->eip;
1480
1481 Ctx.eflags.u32 = env->eflags;
1482
1483 Ctx.cs.Sel = env->segs[R_CS].selector;
1484 Ctx.cs.ValidSel = env->segs[R_CS].selector;
1485 Ctx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1486 Ctx.cs.u64Base = env->segs[R_CS].base;
1487 Ctx.cs.u32Limit = env->segs[R_CS].limit;
1488 Ctx.cs.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1489
1490 Ctx.ds.Sel = env->segs[R_DS].selector;
1491 Ctx.ds.ValidSel = env->segs[R_DS].selector;
1492 Ctx.ds.fFlags = CPUMSELREG_FLAGS_VALID;
1493 Ctx.ds.u64Base = env->segs[R_DS].base;
1494 Ctx.ds.u32Limit = env->segs[R_DS].limit;
1495 Ctx.ds.Attr.u = (env->segs[R_DS].flags >> 8) & 0xF0FF;
1496
1497 Ctx.es.Sel = env->segs[R_ES].selector;
1498 Ctx.es.ValidSel = env->segs[R_ES].selector;
1499 Ctx.es.fFlags = CPUMSELREG_FLAGS_VALID;
1500 Ctx.es.u64Base = env->segs[R_ES].base;
1501 Ctx.es.u32Limit = env->segs[R_ES].limit;
1502 Ctx.es.Attr.u = (env->segs[R_ES].flags >> 8) & 0xF0FF;
1503
1504 Ctx.fs.Sel = env->segs[R_FS].selector;
1505 Ctx.fs.ValidSel = env->segs[R_FS].selector;
1506 Ctx.fs.fFlags = CPUMSELREG_FLAGS_VALID;
1507 Ctx.fs.u64Base = env->segs[R_FS].base;
1508 Ctx.fs.u32Limit = env->segs[R_FS].limit;
1509 Ctx.fs.Attr.u = (env->segs[R_FS].flags >> 8) & 0xF0FF;
1510
1511 Ctx.gs.Sel = env->segs[R_GS].selector;
1512 Ctx.gs.ValidSel = env->segs[R_GS].selector;
1513 Ctx.gs.fFlags = CPUMSELREG_FLAGS_VALID;
1514 Ctx.gs.u64Base = env->segs[R_GS].base;
1515 Ctx.gs.u32Limit = env->segs[R_GS].limit;
1516 Ctx.gs.Attr.u = (env->segs[R_GS].flags >> 8) & 0xF0FF;
1517
1518 Ctx.ss.Sel = env->segs[R_SS].selector;
1519 Ctx.ss.ValidSel = env->segs[R_SS].selector;
1520 Ctx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
1521 Ctx.ss.u64Base = env->segs[R_SS].base;
1522 Ctx.ss.u32Limit = env->segs[R_SS].limit;
1523 Ctx.ss.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1524
1525 Ctx.msrEFER = env->efer;
1526
1527 /* Hardware accelerated raw-mode:
1528 *
1529 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1530 */
1531 if (HMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1532 {
1533 *piException = EXCP_EXECUTE_HM;
1534 return true;
1535 }
1536 return false;
1537 }
1538
1539 /*
1540 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1541 * or 32 bits protected mode ring 0 code
1542 *
1543 * The tests are ordered by the likelihood of being true during normal execution.
1544 */
1545 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1546 {
1547 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1548 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1549 return false;
1550 }
1551
1552#ifndef VBOX_RAW_V86
1553 if (fFlags & VM_MASK) {
1554 STAM_COUNTER_INC(&gStatRefuseVM86);
1555 Log2(("raw mode refused: VM_MASK\n"));
1556 return false;
1557 }
1558#endif
1559
1560 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1561 {
1562#ifndef DEBUG_bird
1563 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1564#endif
1565 return false;
1566 }
1567
1568 if (env->singlestep_enabled)
1569 {
1570 //Log2(("raw mode refused: Single step\n"));
1571 return false;
1572 }
1573
1574 if (!QTAILQ_EMPTY(&env->breakpoints))
1575 {
1576 //Log2(("raw mode refused: Breakpoints\n"));
1577 return false;
1578 }
1579
1580 if (!QTAILQ_EMPTY(&env->watchpoints))
1581 {
1582 //Log2(("raw mode refused: Watchpoints\n"));
1583 return false;
1584 }
1585
1586 u32CR0 = env->cr[0];
1587 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1588 {
1589 STAM_COUNTER_INC(&gStatRefusePaging);
1590 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1591 return false;
1592 }
1593
1594 if (env->cr[4] & CR4_PAE_MASK)
1595 {
1596 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1597 {
1598 STAM_COUNTER_INC(&gStatRefusePAE);
1599 return false;
1600 }
1601 }
1602
1603 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1604 {
1605 if (!EMIsRawRing3Enabled(env->pVM))
1606 return false;
1607
1608 if (!(env->eflags & IF_MASK))
1609 {
1610 STAM_COUNTER_INC(&gStatRefuseIF0);
1611 Log2(("raw mode refused: IF (RawR3)\n"));
1612 return false;
1613 }
1614
1615 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1616 {
1617 STAM_COUNTER_INC(&gStatRefuseWP0);
1618 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1619 return false;
1620 }
1621 }
1622 else
1623 {
1624 if (!EMIsRawRing0Enabled(env->pVM))
1625 return false;
1626
1627 // Let's start with pure 32 bits ring 0 code first
1628 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1629 {
1630 STAM_COUNTER_INC(&gStatRefuseCode16);
1631 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1632 return false;
1633 }
1634
1635 if (EMIsRawRing1Enabled(env->pVM))
1636 {
1637 /* Only ring 0 and 1 supervisor code. */
1638 if (((fFlags >> HF_CPL_SHIFT) & 3) == 2) /* ring 1 code is moved into ring 2, so we can't support ring-2 in that case. */
1639 {
1640 Log2(("raw r0 mode refused: CPL %d\n", (fFlags >> HF_CPL_SHIFT) & 3));
1641 return false;
1642 }
1643 }
1644 /* Only R0. */
1645 else if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1646 {
1647 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1648 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1649 return false;
1650 }
1651
1652 if (!(u32CR0 & CR0_WP_MASK))
1653 {
1654 STAM_COUNTER_INC(&gStatRefuseWP0);
1655 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1656 return false;
1657 }
1658
1659#ifdef VBOX_WITH_RAW_MODE
1660 if (PATMIsPatchGCAddr(env->pVM, eip))
1661 {
1662 Log2(("raw r0 mode forced: patch code\n"));
1663 *piException = EXCP_EXECUTE_RAW;
1664 return true;
1665 }
1666#endif
1667
1668#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1669 if (!(env->eflags & IF_MASK))
1670 {
1671 STAM_COUNTER_INC(&gStatRefuseIF0);
1672 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1673 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1674 return false;
1675 }
1676#endif
1677
1678#ifndef VBOX_WITH_RAW_RING1
1679 if (((env->eflags >> IOPL_SHIFT) & 3) != 0)
1680 {
1681 Log2(("raw r0 mode refused: IOPL %d\n", ((env->eflags >> IOPL_SHIFT) & 3)));
1682 return false;
1683 }
1684#endif
1685 env->state |= CPU_RAW_RING0;
1686 }
1687
1688 /*
1689 * Don't reschedule the first time we're called, because there might be
1690 * special reasons why we're here that is not covered by the above checks.
1691 */
1692 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1693 {
1694 Log2(("raw mode refused: first scheduling\n"));
1695 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1696 return false;
1697 }
1698
1699 /*
1700 * Stale hidden selectors means raw-mode is unsafe (being very careful).
1701 */
1702 if (env->segs[R_CS].fVBoxFlags & CPUMSELREG_FLAGS_STALE)
1703 {
1704 Log2(("raw mode refused: stale CS (%#x)\n", env->segs[R_CS].selector));
1705 STAM_COUNTER_INC(&gaStatRefuseStale[R_CS]);
1706 return false;
1707 }
1708 if (env->segs[R_SS].fVBoxFlags & CPUMSELREG_FLAGS_STALE)
1709 {
1710 Log2(("raw mode refused: stale SS (%#x)\n", env->segs[R_SS].selector));
1711 STAM_COUNTER_INC(&gaStatRefuseStale[R_SS]);
1712 return false;
1713 }
1714 if (env->segs[R_DS].fVBoxFlags & CPUMSELREG_FLAGS_STALE)
1715 {
1716 Log2(("raw mode refused: stale DS (%#x)\n", env->segs[R_DS].selector));
1717 STAM_COUNTER_INC(&gaStatRefuseStale[R_DS]);
1718 return false;
1719 }
1720 if (env->segs[R_ES].fVBoxFlags & CPUMSELREG_FLAGS_STALE)
1721 {
1722 Log2(("raw mode refused: stale ES (%#x)\n", env->segs[R_ES].selector));
1723 STAM_COUNTER_INC(&gaStatRefuseStale[R_ES]);
1724 return false;
1725 }
1726 if (env->segs[R_FS].fVBoxFlags & CPUMSELREG_FLAGS_STALE)
1727 {
1728 Log2(("raw mode refused: stale FS (%#x)\n", env->segs[R_FS].selector));
1729 STAM_COUNTER_INC(&gaStatRefuseStale[R_FS]);
1730 return false;
1731 }
1732 if (env->segs[R_GS].fVBoxFlags & CPUMSELREG_FLAGS_STALE)
1733 {
1734 Log2(("raw mode refused: stale GS (%#x)\n", env->segs[R_GS].selector));
1735 STAM_COUNTER_INC(&gaStatRefuseStale[R_GS]);
1736 return false;
1737 }
1738
1739/* Assert(env->pVCpu && PGMPhysIsA20Enabled(env->pVCpu));*/
1740 *piException = EXCP_EXECUTE_RAW;
1741 return true;
1742}
1743
1744
1745#ifdef VBOX_WITH_RAW_MODE
1746/**
1747 * Fetches a code byte.
1748 *
1749 * @returns Success indicator (bool) for ease of use.
1750 * @param env The CPU environment structure.
1751 * @param GCPtrInstr Where to fetch code.
1752 * @param pu8Byte Where to store the byte on success
1753 */
1754bool remR3GetOpcode(CPUX86State *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1755{
1756 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1757 if (RT_SUCCESS(rc))
1758 return true;
1759 return false;
1760}
1761#endif /* VBOX_WITH_RAW_MODE */
1762
1763
1764/**
1765 * Flush (or invalidate if you like) page table/dir entry.
1766 *
1767 * (invlpg instruction; tlb_flush_page)
1768 *
1769 * @param env Pointer to cpu environment.
1770 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1771 */
1772void remR3FlushPage(CPUX86State *env, RTGCPTR GCPtr)
1773{
1774 PVM pVM = env->pVM;
1775 PCPUMCTX pCtx;
1776 int rc;
1777
1778 Assert(EMRemIsLockOwner(env->pVM));
1779
1780 /*
1781 * When we're replaying invlpg instructions or restoring a saved
1782 * state we disable this path.
1783 */
1784 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.cIgnoreAll)
1785 return;
1786 LogFlow(("remR3FlushPage: GCPtr=%RGv\n", GCPtr));
1787 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1788
1789 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1790
1791 /*
1792 * Update the control registers before calling PGMFlushPage.
1793 */
1794 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1795 Assert(pCtx);
1796 pCtx->cr0 = env->cr[0];
1797 pCtx->cr3 = env->cr[3];
1798#ifdef VBOX_WITH_RAW_MODE
1799 if ((env->cr[4] ^ pCtx->cr4) & X86_CR4_VME)
1800 VMCPU_FF_SET(env->pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1801#endif
1802 pCtx->cr4 = env->cr[4];
1803
1804 /*
1805 * Let PGM do the rest.
1806 */
1807 Assert(env->pVCpu);
1808 rc = PGMInvalidatePage(env->pVCpu, GCPtr);
1809 if (RT_FAILURE(rc))
1810 {
1811 AssertMsgFailed(("remR3FlushPage %RGv failed with %d!!\n", GCPtr, rc));
1812 VMCPU_FF_SET(env->pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1813 }
1814 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1815}
1816
1817
1818#ifndef REM_PHYS_ADDR_IN_TLB
1819/** Wrapper for PGMR3PhysTlbGCPhys2Ptr. */
1820void *remR3TlbGCPhys2Ptr(CPUX86State *env1, target_ulong physAddr, int fWritable)
1821{
1822 void *pv;
1823 int rc;
1824
1825
1826 /* Address must be aligned enough to fiddle with lower bits */
1827 Assert((physAddr & 0x3) == 0);
1828 /*AssertMsg((env1->a20_mask & physAddr) == physAddr, ("%llx\n", (uint64_t)physAddr));*/
1829
1830 STAM_PROFILE_START(&gStatGCPhys2HCVirt, a);
1831 rc = PGMR3PhysTlbGCPhys2Ptr(env1->pVM, physAddr, true /*fWritable*/, &pv);
1832 STAM_PROFILE_STOP(&gStatGCPhys2HCVirt, a);
1833 Assert( rc == VINF_SUCCESS
1834 || rc == VINF_PGM_PHYS_TLB_CATCH_WRITE
1835 || rc == VERR_PGM_PHYS_TLB_CATCH_ALL
1836 || rc == VERR_PGM_PHYS_TLB_UNASSIGNED);
1837 if (RT_FAILURE(rc))
1838 return (void *)1;
1839 if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE)
1840 return (void *)((uintptr_t)pv | 2);
1841 return pv;
1842}
1843#endif /* REM_PHYS_ADDR_IN_TLB */
1844
1845
1846/**
1847 * Called from tlb_protect_code in order to write monitor a code page.
1848 *
1849 * @param env Pointer to the CPU environment.
1850 * @param GCPtr Code page to monitor
1851 */
1852void remR3ProtectCode(CPUX86State *env, RTGCPTR GCPtr)
1853{
1854#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1855 Assert(env->pVM->rem.s.fInREM);
1856 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1857 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1858 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1859 && !(env->eflags & VM_MASK) /* no V86 mode */
1860 && !HMIsEnabled(env->pVM))
1861 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1862#endif
1863}
1864
1865
1866/**
1867 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1868 *
1869 * @param env Pointer to the CPU environment.
1870 * @param GCPtr Code page to monitor
1871 */
1872void remR3UnprotectCode(CPUX86State *env, RTGCPTR GCPtr)
1873{
1874 Assert(env->pVM->rem.s.fInREM);
1875#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1876 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1877 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1878 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1879 && !(env->eflags & VM_MASK) /* no V86 mode */
1880 && !HMIsEnabled(env->pVM))
1881 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1882#endif
1883}
1884
1885
1886/**
1887 * Called when the CPU is initialized, any of the CRx registers are changed or
1888 * when the A20 line is modified.
1889 *
1890 * @param env Pointer to the CPU environment.
1891 * @param fGlobal Set if the flush is global.
1892 */
1893void remR3FlushTLB(CPUX86State *env, bool fGlobal)
1894{
1895 PVM pVM = env->pVM;
1896 PCPUMCTX pCtx;
1897 Assert(EMRemIsLockOwner(pVM));
1898
1899 /*
1900 * When we're replaying invlpg instructions or restoring a saved
1901 * state we disable this path.
1902 */
1903 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.cIgnoreAll)
1904 return;
1905 Assert(pVM->rem.s.fInREM);
1906
1907 /*
1908 * The caller doesn't check cr4, so we have to do that for ourselves.
1909 */
1910 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1911 fGlobal = true;
1912 Log(("remR3FlushTLB: CR0=%08RX64 CR3=%08RX64 CR4=%08RX64 %s\n", (uint64_t)env->cr[0], (uint64_t)env->cr[3], (uint64_t)env->cr[4], fGlobal ? " global" : ""));
1913
1914 /*
1915 * Update the control registers before calling PGMR3FlushTLB.
1916 */
1917 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1918 Assert(pCtx);
1919 pCtx->cr0 = env->cr[0];
1920 pCtx->cr3 = env->cr[3];
1921#ifdef VBOX_WITH_RAW_MODE
1922 if ((env->cr[4] ^ pCtx->cr4) & X86_CR4_VME)
1923 VMCPU_FF_SET(env->pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1924#endif
1925 pCtx->cr4 = env->cr[4];
1926
1927 /*
1928 * Let PGM do the rest.
1929 */
1930 Assert(env->pVCpu);
1931 PGMFlushTLB(env->pVCpu, env->cr[3], fGlobal);
1932}
1933
1934
1935/**
1936 * Called when any of the cr0, cr4 or efer registers is updated.
1937 *
1938 * @param env Pointer to the CPU environment.
1939 */
1940void remR3ChangeCpuMode(CPUX86State *env)
1941{
1942 PVM pVM = env->pVM;
1943 uint64_t efer;
1944 PCPUMCTX pCtx;
1945 int rc;
1946
1947 /*
1948 * When we're replaying loads or restoring a saved
1949 * state this path is disabled.
1950 */
1951 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.cIgnoreAll)
1952 return;
1953 Assert(pVM->rem.s.fInREM);
1954
1955 /*
1956 * Update the control registers before calling PGMChangeMode()
1957 * as it may need to map whatever cr3 is pointing to.
1958 */
1959 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1960 Assert(pCtx);
1961 pCtx->cr0 = env->cr[0];
1962 pCtx->cr3 = env->cr[3];
1963#ifdef VBOX_WITH_RAW_MODE
1964 if ((env->cr[4] ^ pCtx->cr4) & X86_CR4_VME)
1965 VMCPU_FF_SET(env->pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1966#endif
1967 pCtx->cr4 = env->cr[4];
1968#ifdef TARGET_X86_64
1969 efer = env->efer;
1970 pCtx->msrEFER = efer;
1971#else
1972 efer = 0;
1973#endif
1974 Assert(env->pVCpu);
1975 rc = PGMChangeMode(env->pVCpu, env->cr[0], env->cr[4], efer);
1976 if (rc != VINF_SUCCESS)
1977 {
1978 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
1979 {
1980 Log(("PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc -> remR3RaiseRC\n", env->cr[0], env->cr[4], efer, rc));
1981 remR3RaiseRC(env->pVM, rc);
1982 }
1983 else
1984 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc\n", env->cr[0], env->cr[4], efer, rc);
1985 }
1986}
1987
1988
1989/**
1990 * Called from compiled code to run dma.
1991 *
1992 * @param env Pointer to the CPU environment.
1993 */
1994void remR3DmaRun(CPUX86State *env)
1995{
1996 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1997 PDMR3DmaRun(env->pVM);
1998 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1999}
2000
2001
2002/**
2003 * Called from compiled code to schedule pending timers in VMM
2004 *
2005 * @param env Pointer to the CPU environment.
2006 */
2007void remR3TimersRun(CPUX86State *env)
2008{
2009 LogFlow(("remR3TimersRun:\n"));
2010 LogIt(LOG_INSTANCE, RTLOGGRPFLAGS_LEVEL_5, LOG_GROUP_TM, ("remR3TimersRun\n"));
2011 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
2012 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
2013 TMR3TimerQueuesDo(env->pVM);
2014 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
2015 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
2016}
2017
2018
2019/**
2020 * Record trap occurrence
2021 *
2022 * @returns VBox status code
2023 * @param env Pointer to the CPU environment.
2024 * @param uTrap Trap nr
2025 * @param uErrorCode Error code
2026 * @param pvNextEIP Next EIP
2027 */
2028int remR3NotifyTrap(CPUX86State *env, uint32_t uTrap, uint32_t uErrorCode, RTGCPTR pvNextEIP)
2029{
2030 PVM pVM = env->pVM;
2031#ifdef VBOX_WITH_STATISTICS
2032 static STAMCOUNTER s_aStatTrap[255];
2033 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
2034#endif
2035
2036#ifdef VBOX_WITH_STATISTICS
2037 if (uTrap < 255)
2038 {
2039 if (!s_aRegisters[uTrap])
2040 {
2041 char szStatName[64];
2042 s_aRegisters[uTrap] = true;
2043 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
2044 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
2045 }
2046 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
2047 }
2048#endif
2049 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
2050 if( uTrap < 0x20
2051 && (env->cr[0] & X86_CR0_PE)
2052 && !(env->eflags & X86_EFL_VM))
2053 {
2054#ifdef DEBUG
2055 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
2056#endif
2057 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
2058 {
2059 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
2060 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
2061 return VERR_REM_TOO_MANY_TRAPS;
2062 }
2063 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
2064 {
2065 Log(("remR3NotifyTrap: uTrap=%#x set as pending\n", uTrap));
2066 pVM->rem.s.cPendingExceptions = 1;
2067 }
2068 pVM->rem.s.uPendingException = uTrap;
2069 pVM->rem.s.uPendingExcptEIP = env->eip;
2070 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
2071 }
2072 else
2073 {
2074 pVM->rem.s.cPendingExceptions = 0;
2075 pVM->rem.s.uPendingException = uTrap;
2076 pVM->rem.s.uPendingExcptEIP = env->eip;
2077 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
2078 }
2079 return VINF_SUCCESS;
2080}
2081
2082
2083/*
2084 * Clear current active trap
2085 *
2086 * @param pVM VM Handle.
2087 */
2088void remR3TrapClear(PVM pVM)
2089{
2090 pVM->rem.s.cPendingExceptions = 0;
2091 pVM->rem.s.uPendingException = 0;
2092 pVM->rem.s.uPendingExcptEIP = 0;
2093 pVM->rem.s.uPendingExcptCR2 = 0;
2094}
2095
2096
2097/*
2098 * Record previous call instruction addresses
2099 *
2100 * @param env Pointer to the CPU environment.
2101 */
2102void remR3RecordCall(CPUX86State *env)
2103{
2104#ifdef VBOX_WITH_RAW_MODE
2105 CSAMR3RecordCallAddress(env->pVM, env->eip);
2106#endif
2107}
2108
2109
2110/**
2111 * Syncs the internal REM state with the VM.
2112 *
2113 * This must be called before REMR3Run() is invoked whenever when the REM
2114 * state is not up to date. Calling it several times in a row is not
2115 * permitted.
2116 *
2117 * @returns VBox status code.
2118 *
2119 * @param pVM VM Handle.
2120 * @param pVCpu VMCPU Handle.
2121 *
2122 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
2123 * no do this since the majority of the callers don't want any unnecessary of events
2124 * pending that would immediately interrupt execution.
2125 */
2126REMR3DECL(int) REMR3State(PVM pVM, PVMCPU pVCpu)
2127{
2128 register const CPUMCTX *pCtx;
2129 register unsigned fFlags;
2130 unsigned i;
2131 TRPMEVENT enmType;
2132 uint8_t u8TrapNo;
2133 uint32_t uCpl;
2134 int rc;
2135
2136 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
2137 Log2(("REMR3State:\n"));
2138
2139 pVM->rem.s.Env.pVCpu = pVCpu;
2140 pCtx = pVM->rem.s.pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2141
2142 Assert(!pVM->rem.s.fInREM);
2143 pVM->rem.s.fInStateSync = true;
2144
2145 /*
2146 * If we have to flush TBs, do that immediately.
2147 */
2148 if (pVM->rem.s.fFlushTBs)
2149 {
2150 STAM_COUNTER_INC(&gStatFlushTBs);
2151 tb_flush(&pVM->rem.s.Env);
2152 pVM->rem.s.fFlushTBs = false;
2153 }
2154
2155 /*
2156 * Copy the registers which require no special handling.
2157 */
2158#ifdef TARGET_X86_64
2159 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2160 Assert(R_EAX == 0);
2161 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
2162 Assert(R_ECX == 1);
2163 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
2164 Assert(R_EDX == 2);
2165 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
2166 Assert(R_EBX == 3);
2167 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
2168 Assert(R_ESP == 4);
2169 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
2170 Assert(R_EBP == 5);
2171 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
2172 Assert(R_ESI == 6);
2173 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
2174 Assert(R_EDI == 7);
2175 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
2176 pVM->rem.s.Env.regs[8] = pCtx->r8;
2177 pVM->rem.s.Env.regs[9] = pCtx->r9;
2178 pVM->rem.s.Env.regs[10] = pCtx->r10;
2179 pVM->rem.s.Env.regs[11] = pCtx->r11;
2180 pVM->rem.s.Env.regs[12] = pCtx->r12;
2181 pVM->rem.s.Env.regs[13] = pCtx->r13;
2182 pVM->rem.s.Env.regs[14] = pCtx->r14;
2183 pVM->rem.s.Env.regs[15] = pCtx->r15;
2184
2185 pVM->rem.s.Env.eip = pCtx->rip;
2186
2187 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
2188#else
2189 Assert(R_EAX == 0);
2190 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
2191 Assert(R_ECX == 1);
2192 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
2193 Assert(R_EDX == 2);
2194 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
2195 Assert(R_EBX == 3);
2196 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
2197 Assert(R_ESP == 4);
2198 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
2199 Assert(R_EBP == 5);
2200 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
2201 Assert(R_ESI == 6);
2202 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
2203 Assert(R_EDI == 7);
2204 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
2205 pVM->rem.s.Env.eip = pCtx->eip;
2206
2207 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
2208#endif
2209
2210 pVM->rem.s.Env.cr[2] = pCtx->cr2;
2211
2212 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
2213 for (i=0;i<8;i++)
2214 pVM->rem.s.Env.dr[i] = pCtx->dr[i];
2215
2216#ifdef HF_HALTED_MASK /** @todo remove me when we're up to date again. */
2217 /*
2218 * Clear the halted hidden flag (the interrupt waking up the CPU can
2219 * have been dispatched in raw mode).
2220 */
2221 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
2222#endif
2223
2224 /*
2225 * Replay invlpg? Only if we're not flushing the TLB.
2226 */
2227 fFlags = CPUMR3RemEnter(pVCpu, &uCpl);
2228 LogFlow(("CPUMR3RemEnter %x %x\n", fFlags, uCpl));
2229 if (pVM->rem.s.cInvalidatedPages)
2230 {
2231 if (!(fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH))
2232 {
2233 RTUINT i;
2234
2235 pVM->rem.s.fIgnoreCR3Load = true;
2236 pVM->rem.s.fIgnoreInvlPg = true;
2237 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2238 {
2239 Log2(("REMR3State: invlpg %RGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2240 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2241 }
2242 pVM->rem.s.fIgnoreInvlPg = false;
2243 pVM->rem.s.fIgnoreCR3Load = false;
2244 }
2245 pVM->rem.s.cInvalidatedPages = 0;
2246 }
2247
2248 /* Replay notification changes. */
2249 REMR3ReplayHandlerNotifications(pVM);
2250
2251 /* Update MSRs; before CRx registers! */
2252 pVM->rem.s.Env.efer = pCtx->msrEFER;
2253 pVM->rem.s.Env.star = pCtx->msrSTAR;
2254 pVM->rem.s.Env.pat = pCtx->msrPAT;
2255#ifdef TARGET_X86_64
2256 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
2257 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
2258 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
2259 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
2260
2261 /* Update the internal long mode activate flag according to the new EFER value. */
2262 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
2263 pVM->rem.s.Env.hflags |= HF_LMA_MASK;
2264 else
2265 pVM->rem.s.Env.hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
2266#endif
2267
2268 /* Update the inhibit IRQ mask. */
2269 pVM->rem.s.Env.hflags &= ~HF_INHIBIT_IRQ_MASK;
2270 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2271 {
2272 RTGCPTR InhibitPC = EMGetInhibitInterruptsPC(pVCpu);
2273 if (InhibitPC == pCtx->rip)
2274 pVM->rem.s.Env.hflags |= HF_INHIBIT_IRQ_MASK;
2275 else
2276 {
2277 Log(("Clearing VMCPU_FF_INHIBIT_INTERRUPTS at %RGv - successor %RGv (REM#1)\n", (RTGCPTR)pCtx->rip, InhibitPC));
2278 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2279 }
2280 }
2281
2282 /*
2283 * Sync the A20 gate.
2284 */
2285 bool fA20State = PGMPhysIsA20Enabled(pVCpu);
2286 if (fA20State != RT_BOOL(pVM->rem.s.Env.a20_mask & RT_BIT(20)))
2287 {
2288 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
2289 cpu_x86_set_a20(&pVM->rem.s.Env, fA20State);
2290 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
2291 }
2292
2293 /*
2294 * Registers which are rarely changed and require special handling / order when changed.
2295 */
2296 if (fFlags & ( CPUM_CHANGED_GLOBAL_TLB_FLUSH
2297 | CPUM_CHANGED_CR4
2298 | CPUM_CHANGED_CR0
2299 | CPUM_CHANGED_CR3
2300 | CPUM_CHANGED_GDTR
2301 | CPUM_CHANGED_IDTR
2302 | CPUM_CHANGED_SYSENTER_MSR
2303 | CPUM_CHANGED_LDTR
2304 | CPUM_CHANGED_CPUID
2305 | CPUM_CHANGED_FPU_REM
2306 )
2307 )
2308 {
2309 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
2310 {
2311 pVM->rem.s.fIgnoreCR3Load = true;
2312 tlb_flush(&pVM->rem.s.Env, true);
2313 pVM->rem.s.fIgnoreCR3Load = false;
2314 }
2315
2316 /* CR4 before CR0! */
2317 if (fFlags & CPUM_CHANGED_CR4)
2318 {
2319 pVM->rem.s.fIgnoreCR3Load = true;
2320 pVM->rem.s.fIgnoreCpuMode = true;
2321 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
2322 pVM->rem.s.fIgnoreCpuMode = false;
2323 pVM->rem.s.fIgnoreCR3Load = false;
2324 }
2325
2326 if (fFlags & CPUM_CHANGED_CR0)
2327 {
2328 pVM->rem.s.fIgnoreCR3Load = true;
2329 pVM->rem.s.fIgnoreCpuMode = true;
2330 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
2331 pVM->rem.s.fIgnoreCpuMode = false;
2332 pVM->rem.s.fIgnoreCR3Load = false;
2333 }
2334
2335 if (fFlags & CPUM_CHANGED_CR3)
2336 {
2337 pVM->rem.s.fIgnoreCR3Load = true;
2338 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
2339 pVM->rem.s.fIgnoreCR3Load = false;
2340 }
2341
2342 if (fFlags & CPUM_CHANGED_GDTR)
2343 {
2344 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
2345 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
2346 }
2347
2348 if (fFlags & CPUM_CHANGED_IDTR)
2349 {
2350 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
2351 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
2352 }
2353
2354 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
2355 {
2356 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
2357 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
2358 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
2359 }
2360
2361 if (fFlags & CPUM_CHANGED_LDTR)
2362 {
2363 if (pCtx->ldtr.fFlags & CPUMSELREG_FLAGS_VALID)
2364 {
2365 pVM->rem.s.Env.ldt.selector = pCtx->ldtr.Sel;
2366 pVM->rem.s.Env.ldt.newselector = 0;
2367 pVM->rem.s.Env.ldt.fVBoxFlags = pCtx->ldtr.fFlags;
2368 pVM->rem.s.Env.ldt.base = pCtx->ldtr.u64Base;
2369 pVM->rem.s.Env.ldt.limit = pCtx->ldtr.u32Limit;
2370 pVM->rem.s.Env.ldt.flags = (pCtx->ldtr.Attr.u << 8) & 0xFFFFFF;
2371 }
2372 else
2373 {
2374 AssertFailed(); /* Shouldn't happen, see cpumR3LoadExec. */
2375 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr.Sel);
2376 }
2377 }
2378
2379 if (fFlags & CPUM_CHANGED_CPUID)
2380 {
2381 uint32_t u32Dummy;
2382
2383 /*
2384 * Get the CPUID features.
2385 */
2386 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
2387 CPUMGetGuestCpuId(pVCpu, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
2388 }
2389
2390 /* Sync FPU state after CR4, CPUID and EFER (!). */
2391 if (fFlags & CPUM_CHANGED_FPU_REM)
2392 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
2393 }
2394
2395 /*
2396 * Sync TR unconditionally to make life simpler.
2397 */
2398 pVM->rem.s.Env.tr.selector = pCtx->tr.Sel;
2399 pVM->rem.s.Env.tr.newselector = 0;
2400 pVM->rem.s.Env.tr.fVBoxFlags = pCtx->tr.fFlags;
2401 pVM->rem.s.Env.tr.base = pCtx->tr.u64Base;
2402 pVM->rem.s.Env.tr.limit = pCtx->tr.u32Limit;
2403 pVM->rem.s.Env.tr.flags = (pCtx->tr.Attr.u << 8) & 0xFFFFFF;
2404 /* Note! do_interrupt will fault if the busy flag is still set... */
2405 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
2406
2407 /*
2408 * Update selector registers.
2409 *
2410 * This must be done *after* we've synced gdt, ldt and crX registers
2411 * since we're reading the GDT/LDT om sync_seg. This will happen with
2412 * saved state which takes a quick dip into rawmode for instance.
2413 *
2414 * CPL/Stack; Note first check this one as the CPL might have changed.
2415 * The wrong CPL can cause QEmu to raise an exception in sync_seg!!
2416 */
2417 cpu_x86_set_cpl(&pVM->rem.s.Env, uCpl);
2418 /* Note! QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
2419#define SYNC_IN_SREG(a_pEnv, a_SReg, a_pRemSReg, a_pVBoxSReg) \
2420 do \
2421 { \
2422 if (CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, a_pVBoxSReg)) \
2423 { \
2424 cpu_x86_load_seg_cache(a_pEnv, R_##a_SReg, \
2425 (a_pVBoxSReg)->Sel, \
2426 (a_pVBoxSReg)->u64Base, \
2427 (a_pVBoxSReg)->u32Limit, \
2428 ((a_pVBoxSReg)->Attr.u << 8) & 0xFFFFFF); \
2429 (a_pRemSReg)->fVBoxFlags = (a_pVBoxSReg)->fFlags; \
2430 } \
2431 /* This only-reload-if-changed stuff is the old approach, we should ditch it. */ \
2432 else if ((a_pRemSReg)->selector != (a_pVBoxSReg)->Sel) \
2433 { \
2434 Log2(("REMR3State: " #a_SReg " changed from %04x to %04x!\n", \
2435 (a_pRemSReg)->selector, (a_pVBoxSReg)->Sel)); \
2436 sync_seg(a_pEnv, R_##a_SReg, (a_pVBoxSReg)->Sel); \
2437 if ((a_pRemSReg)->newselector) \
2438 STAM_COUNTER_INC(&gStatSelOutOfSync[R_##a_SReg]); \
2439 } \
2440 else \
2441 (a_pRemSReg)->newselector = 0; \
2442 } while (0)
2443
2444 SYNC_IN_SREG(&pVM->rem.s.Env, CS, &pVM->rem.s.Env.segs[R_CS], &pCtx->cs);
2445 SYNC_IN_SREG(&pVM->rem.s.Env, SS, &pVM->rem.s.Env.segs[R_SS], &pCtx->ss);
2446 SYNC_IN_SREG(&pVM->rem.s.Env, DS, &pVM->rem.s.Env.segs[R_DS], &pCtx->ds);
2447 SYNC_IN_SREG(&pVM->rem.s.Env, ES, &pVM->rem.s.Env.segs[R_ES], &pCtx->es);
2448 SYNC_IN_SREG(&pVM->rem.s.Env, FS, &pVM->rem.s.Env.segs[R_FS], &pCtx->fs);
2449 SYNC_IN_SREG(&pVM->rem.s.Env, GS, &pVM->rem.s.Env.segs[R_GS], &pCtx->gs);
2450 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
2451 * be the same but not the base/limit. */
2452
2453 /*
2454 * Check for traps.
2455 */
2456 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
2457 rc = TRPMQueryTrap(pVCpu, &u8TrapNo, &enmType);
2458 if (RT_SUCCESS(rc))
2459 {
2460#ifdef DEBUG
2461 if (u8TrapNo == 0x80)
2462 {
2463 remR3DumpLnxSyscall(pVCpu);
2464 remR3DumpOBsdSyscall(pVCpu);
2465 }
2466#endif
2467
2468 pVM->rem.s.Env.exception_index = u8TrapNo;
2469 if (enmType != TRPM_SOFTWARE_INT)
2470 {
2471 pVM->rem.s.Env.exception_is_int = 0;
2472 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
2473 }
2474 else
2475 {
2476 /*
2477 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
2478 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
2479 * for int03 and into.
2480 */
2481 pVM->rem.s.Env.exception_is_int = 1;
2482 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 2;
2483 /* int 3 may be generated by one-byte 0xcc */
2484 if (u8TrapNo == 3)
2485 {
2486 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xcc)
2487 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2488 }
2489 /* int 4 may be generated by one-byte 0xce */
2490 else if (u8TrapNo == 4)
2491 {
2492 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xce)
2493 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2494 }
2495 }
2496
2497 /* get error code and cr2 if needed. */
2498 if (enmType == TRPM_TRAP)
2499 {
2500 switch (u8TrapNo)
2501 {
2502 case X86_XCPT_PF:
2503 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVCpu);
2504 /* fallthru */
2505 case X86_XCPT_TS: case X86_XCPT_NP: case X86_XCPT_SS: case X86_XCPT_GP:
2506 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVCpu);
2507 break;
2508
2509 case X86_XCPT_AC: case X86_XCPT_DF:
2510 default:
2511 pVM->rem.s.Env.error_code = 0;
2512 break;
2513 }
2514 }
2515 else
2516 pVM->rem.s.Env.error_code = 0;
2517
2518 /*
2519 * We can now reset the active trap since the recompiler is gonna have a go at it.
2520 */
2521 rc = TRPMResetTrap(pVCpu);
2522 AssertRC(rc);
2523 Log2(("REMR3State: trap=%02x errcd=%RGv cr2=%RGv nexteip=%RGv%s\n", pVM->rem.s.Env.exception_index, (RTGCPTR)pVM->rem.s.Env.error_code,
2524 (RTGCPTR)pVM->rem.s.Env.cr[2], (RTGCPTR)pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
2525 }
2526
2527 /*
2528 * Clear old interrupt request flags; Check for pending hardware interrupts.
2529 * (See @remark for why we don't check for other FFs.)
2530 */
2531 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2532 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2533 || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
2534 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2535
2536 /*
2537 * We're now in REM mode.
2538 */
2539 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_REM);
2540 pVM->rem.s.fInREM = true;
2541 pVM->rem.s.fInStateSync = false;
2542 pVM->rem.s.cCanExecuteRaw = 0;
2543 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2544 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2545 return VINF_SUCCESS;
2546}
2547
2548
2549/**
2550 * Syncs back changes in the REM state to the the VM state.
2551 *
2552 * This must be called after invoking REMR3Run().
2553 * Calling it several times in a row is not permitted.
2554 *
2555 * @returns VBox status code.
2556 *
2557 * @param pVM VM Handle.
2558 * @param pVCpu VMCPU Handle.
2559 */
2560REMR3DECL(int) REMR3StateBack(PVM pVM, PVMCPU pVCpu)
2561{
2562 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2563 Assert(pCtx);
2564 unsigned i;
2565
2566 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2567 Log2(("REMR3StateBack:\n"));
2568 Assert(pVM->rem.s.fInREM);
2569
2570 /*
2571 * Copy back the registers.
2572 * This is done in the order they are declared in the CPUMCTX structure.
2573 */
2574
2575 /** @todo FOP */
2576 /** @todo FPUIP */
2577 /** @todo CS */
2578 /** @todo FPUDP */
2579 /** @todo DS */
2580
2581 /** @todo check if FPU/XMM was actually used in the recompiler */
2582 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2583//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2584
2585#ifdef TARGET_X86_64
2586 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2587 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2588 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2589 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2590 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2591 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2592 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2593 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2594 pCtx->r8 = pVM->rem.s.Env.regs[8];
2595 pCtx->r9 = pVM->rem.s.Env.regs[9];
2596 pCtx->r10 = pVM->rem.s.Env.regs[10];
2597 pCtx->r11 = pVM->rem.s.Env.regs[11];
2598 pCtx->r12 = pVM->rem.s.Env.regs[12];
2599 pCtx->r13 = pVM->rem.s.Env.regs[13];
2600 pCtx->r14 = pVM->rem.s.Env.regs[14];
2601 pCtx->r15 = pVM->rem.s.Env.regs[15];
2602
2603 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2604
2605#else
2606 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2607 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2608 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2609 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2610 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2611 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2612 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2613
2614 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2615#endif
2616
2617#define SYNC_BACK_SREG(a_sreg, a_SREG) \
2618 do \
2619 { \
2620 pCtx->a_sreg.Sel = pVM->rem.s.Env.segs[R_##a_SREG].selector; \
2621 if (!pVM->rem.s.Env.segs[R_SS].newselector) \
2622 { \
2623 pCtx->a_sreg.ValidSel = pVM->rem.s.Env.segs[R_##a_SREG].selector; \
2624 pCtx->a_sreg.fFlags = CPUMSELREG_FLAGS_VALID; \
2625 pCtx->a_sreg.u64Base = pVM->rem.s.Env.segs[R_##a_SREG].base; \
2626 pCtx->a_sreg.u32Limit = pVM->rem.s.Env.segs[R_##a_SREG].limit; \
2627 /* Note! QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */ \
2628 pCtx->a_sreg.Attr.u = (pVM->rem.s.Env.segs[R_##a_SREG].flags >> 8) & 0xF0FF; \
2629 } \
2630 else \
2631 { \
2632 pCtx->a_sreg.fFlags = 0; \
2633 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_##a_SREG]); \
2634 } \
2635 } while (0)
2636
2637 SYNC_BACK_SREG(es, ES);
2638 SYNC_BACK_SREG(cs, CS);
2639 SYNC_BACK_SREG(ss, SS);
2640 SYNC_BACK_SREG(ds, DS);
2641 SYNC_BACK_SREG(fs, FS);
2642 SYNC_BACK_SREG(gs, GS);
2643
2644#ifdef TARGET_X86_64
2645 pCtx->rip = pVM->rem.s.Env.eip;
2646 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2647#else
2648 pCtx->eip = pVM->rem.s.Env.eip;
2649 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2650#endif
2651
2652 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2653 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2654 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2655#ifdef VBOX_WITH_RAW_MODE
2656 if ((pVM->rem.s.Env.cr[4] ^ pCtx->cr4) & X86_CR4_VME)
2657 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2658#endif
2659 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2660
2661 for (i = 0; i < 8; i++)
2662 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2663
2664 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2665 if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
2666 {
2667 pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
2668 STAM_COUNTER_INC(&gStatREMGDTChange);
2669#ifdef VBOX_WITH_RAW_MODE
2670 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
2671#endif
2672 }
2673
2674 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2675 if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
2676 {
2677 pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
2678 STAM_COUNTER_INC(&gStatREMIDTChange);
2679#ifdef VBOX_WITH_RAW_MODE
2680 VMCPU_FF_SET(pVCpu, VMCPU_FF_TRPM_SYNC_IDT);
2681#endif
2682 }
2683
2684 if ( pCtx->ldtr.Sel != pVM->rem.s.Env.ldt.selector
2685 || pCtx->ldtr.ValidSel != pVM->rem.s.Env.ldt.selector
2686 || pCtx->ldtr.u64Base != pVM->rem.s.Env.ldt.base
2687 || pCtx->ldtr.u32Limit != pVM->rem.s.Env.ldt.limit
2688 || pCtx->ldtr.Attr.u != ((pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF)
2689 || !(pCtx->ldtr.fFlags & CPUMSELREG_FLAGS_VALID)
2690 )
2691 {
2692 pCtx->ldtr.Sel = pVM->rem.s.Env.ldt.selector;
2693 pCtx->ldtr.ValidSel = pVM->rem.s.Env.ldt.selector;
2694 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2695 pCtx->ldtr.u64Base = pVM->rem.s.Env.ldt.base;
2696 pCtx->ldtr.u32Limit = pVM->rem.s.Env.ldt.limit;
2697 pCtx->ldtr.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2698 STAM_COUNTER_INC(&gStatREMLDTRChange);
2699#ifdef VBOX_WITH_RAW_MODE
2700 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
2701#endif
2702 }
2703
2704 if ( pCtx->tr.Sel != pVM->rem.s.Env.tr.selector
2705 || pCtx->tr.ValidSel != pVM->rem.s.Env.tr.selector
2706 || pCtx->tr.u64Base != pVM->rem.s.Env.tr.base
2707 || pCtx->tr.u32Limit != pVM->rem.s.Env.tr.limit
2708 /* Qemu and AMD/Intel have different ideas about the busy flag ... */
2709 || pCtx->tr.Attr.u != ( (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF
2710 ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8
2711 : 0)
2712 || !(pCtx->tr.fFlags & CPUMSELREG_FLAGS_VALID)
2713 )
2714 {
2715 Log(("REM: TR changed! %#x{%#llx,%#x,%#x} -> %#x{%llx,%#x,%#x}\n",
2716 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2717 pVM->rem.s.Env.tr.selector, (uint64_t)pVM->rem.s.Env.tr.base, pVM->rem.s.Env.tr.limit,
2718 (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8 : 0));
2719 pCtx->tr.Sel = pVM->rem.s.Env.tr.selector;
2720 pCtx->tr.ValidSel = pVM->rem.s.Env.tr.selector;
2721 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
2722 pCtx->tr.u64Base = pVM->rem.s.Env.tr.base;
2723 pCtx->tr.u32Limit = pVM->rem.s.Env.tr.limit;
2724 pCtx->tr.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2725 if (pCtx->tr.Attr.u)
2726 pCtx->tr.Attr.u |= DESC_TSS_BUSY_MASK >> 8;
2727 STAM_COUNTER_INC(&gStatREMTRChange);
2728#ifdef VBOX_WITH_RAW_MODE
2729 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2730#endif
2731 }
2732
2733 /* Sysenter MSR */
2734 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2735 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2736 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2737
2738 /* System MSRs. */
2739 pCtx->msrEFER = pVM->rem.s.Env.efer;
2740 pCtx->msrSTAR = pVM->rem.s.Env.star;
2741 pCtx->msrPAT = pVM->rem.s.Env.pat;
2742#ifdef TARGET_X86_64
2743 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2744 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2745 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2746 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2747#endif
2748
2749 /* Inhibit interrupt flag. */
2750 if (pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK)
2751 {
2752 Log(("Settings VMCPU_FF_INHIBIT_INTERRUPTS at %RGv (REM)\n", (RTGCPTR)pCtx->rip));
2753 EMSetInhibitInterruptsPC(pVCpu, pCtx->rip);
2754 VMCPU_FF_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2755 }
2756 else if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2757 {
2758 Log(("Clearing VMCPU_FF_INHIBIT_INTERRUPTS at %RGv - successor %RGv (REM#2)\n", (RTGCPTR)pCtx->rip, EMGetInhibitInterruptsPC(pVCpu)));
2759 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2760 }
2761
2762 remR3TrapClear(pVM);
2763
2764 /*
2765 * Check for traps.
2766 */
2767 if ( pVM->rem.s.Env.exception_index >= 0
2768 && pVM->rem.s.Env.exception_index < 256)
2769 {
2770 int rc;
2771
2772 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2773 rc = TRPMAssertTrap(pVCpu, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2774 AssertRC(rc);
2775 switch (pVM->rem.s.Env.exception_index)
2776 {
2777 case X86_XCPT_PF:
2778 TRPMSetFaultAddress(pVCpu, pCtx->cr2);
2779 /* fallthru */
2780 case X86_XCPT_TS: case X86_XCPT_NP: case X86_XCPT_SS: case X86_XCPT_GP:
2781 case X86_XCPT_AC: case X86_XCPT_DF: /* 0 */
2782 TRPMSetErrorCode(pVCpu, pVM->rem.s.Env.error_code);
2783 break;
2784 }
2785
2786 }
2787
2788 /*
2789 * We're not longer in REM mode.
2790 */
2791 CPUMR3RemLeave(pVCpu,
2792 HMIsEnabled(pVM)
2793 || ( pVM->rem.s.Env.segs[R_SS].newselector
2794 | pVM->rem.s.Env.segs[R_GS].newselector
2795 | pVM->rem.s.Env.segs[R_FS].newselector
2796 | pVM->rem.s.Env.segs[R_ES].newselector
2797 | pVM->rem.s.Env.segs[R_DS].newselector
2798 | pVM->rem.s.Env.segs[R_CS].newselector) == 0
2799 );
2800 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_REM);
2801 pVM->rem.s.fInREM = false;
2802 pVM->rem.s.pCtx = NULL;
2803 pVM->rem.s.Env.pVCpu = NULL;
2804 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2805 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2806 return VINF_SUCCESS;
2807}
2808
2809
2810/**
2811 * This is called by the disassembler when it wants to update the cpu state
2812 * before for instance doing a register dump.
2813 */
2814static void remR3StateUpdate(PVM pVM, PVMCPU pVCpu)
2815{
2816 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2817 unsigned i;
2818
2819 Assert(pVM->rem.s.fInREM);
2820
2821 /*
2822 * Copy back the registers.
2823 * This is done in the order they are declared in the CPUMCTX structure.
2824 */
2825
2826 /** @todo FOP */
2827 /** @todo FPUIP */
2828 /** @todo CS */
2829 /** @todo FPUDP */
2830 /** @todo DS */
2831 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2832 pCtx->fpu.MXCSR = 0;
2833 pCtx->fpu.MXCSR_MASK = 0;
2834
2835 /** @todo check if FPU/XMM was actually used in the recompiler */
2836 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2837//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2838
2839#ifdef TARGET_X86_64
2840 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2841 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2842 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2843 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2844 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2845 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2846 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2847 pCtx->r8 = pVM->rem.s.Env.regs[8];
2848 pCtx->r9 = pVM->rem.s.Env.regs[9];
2849 pCtx->r10 = pVM->rem.s.Env.regs[10];
2850 pCtx->r11 = pVM->rem.s.Env.regs[11];
2851 pCtx->r12 = pVM->rem.s.Env.regs[12];
2852 pCtx->r13 = pVM->rem.s.Env.regs[13];
2853 pCtx->r14 = pVM->rem.s.Env.regs[14];
2854 pCtx->r15 = pVM->rem.s.Env.regs[15];
2855
2856 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2857#else
2858 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2859 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2860 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2861 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2862 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2863 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2864 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2865
2866 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2867#endif
2868
2869 SYNC_BACK_SREG(es, ES);
2870 SYNC_BACK_SREG(cs, CS);
2871 SYNC_BACK_SREG(ss, SS);
2872 SYNC_BACK_SREG(ds, DS);
2873 SYNC_BACK_SREG(fs, FS);
2874 SYNC_BACK_SREG(gs, GS);
2875
2876#ifdef TARGET_X86_64
2877 pCtx->rip = pVM->rem.s.Env.eip;
2878 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2879#else
2880 pCtx->eip = pVM->rem.s.Env.eip;
2881 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2882#endif
2883
2884 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2885 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2886 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2887#ifdef VBOX_WITH_RAW_MODE
2888 if ((pVM->rem.s.Env.cr[4] ^ pCtx->cr4) & X86_CR4_VME)
2889 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2890#endif
2891 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2892
2893 for (i = 0; i < 8; i++)
2894 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2895
2896 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2897 if (pCtx->gdtr.pGdt != (RTGCPTR)pVM->rem.s.Env.gdt.base)
2898 {
2899 pCtx->gdtr.pGdt = (RTGCPTR)pVM->rem.s.Env.gdt.base;
2900 STAM_COUNTER_INC(&gStatREMGDTChange);
2901#ifdef VBOX_WITH_RAW_MODE
2902 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
2903#endif
2904 }
2905
2906 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2907 if (pCtx->idtr.pIdt != (RTGCPTR)pVM->rem.s.Env.idt.base)
2908 {
2909 pCtx->idtr.pIdt = (RTGCPTR)pVM->rem.s.Env.idt.base;
2910 STAM_COUNTER_INC(&gStatREMIDTChange);
2911#ifdef VBOX_WITH_RAW_MODE
2912 VMCPU_FF_SET(pVCpu, VMCPU_FF_TRPM_SYNC_IDT);
2913#endif
2914 }
2915
2916 if ( pCtx->ldtr.Sel != pVM->rem.s.Env.ldt.selector
2917 || pCtx->ldtr.ValidSel != pVM->rem.s.Env.ldt.selector
2918 || pCtx->ldtr.u64Base != pVM->rem.s.Env.ldt.base
2919 || pCtx->ldtr.u32Limit != pVM->rem.s.Env.ldt.limit
2920 || pCtx->ldtr.Attr.u != ((pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF)
2921 || !(pCtx->ldtr.fFlags & CPUMSELREG_FLAGS_VALID)
2922 )
2923 {
2924 pCtx->ldtr.Sel = pVM->rem.s.Env.ldt.selector;
2925 pCtx->ldtr.ValidSel = pVM->rem.s.Env.ldt.selector;
2926 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2927 pCtx->ldtr.u64Base = pVM->rem.s.Env.ldt.base;
2928 pCtx->ldtr.u32Limit = pVM->rem.s.Env.ldt.limit;
2929 pCtx->ldtr.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2930 STAM_COUNTER_INC(&gStatREMLDTRChange);
2931#ifdef VBOX_WITH_RAW_MODE
2932 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
2933#endif
2934 }
2935
2936 if ( pCtx->tr.Sel != pVM->rem.s.Env.tr.selector
2937 || pCtx->tr.ValidSel != pVM->rem.s.Env.tr.selector
2938 || pCtx->tr.u64Base != pVM->rem.s.Env.tr.base
2939 || pCtx->tr.u32Limit != pVM->rem.s.Env.tr.limit
2940 /* Qemu and AMD/Intel have different ideas about the busy flag ... */
2941 || pCtx->tr.Attr.u != ( (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF
2942 ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8
2943 : 0)
2944 || !(pCtx->tr.fFlags & CPUMSELREG_FLAGS_VALID)
2945 )
2946 {
2947 Log(("REM: TR changed! %#x{%#llx,%#x,%#x} -> %#x{%llx,%#x,%#x}\n",
2948 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2949 pVM->rem.s.Env.tr.selector, (uint64_t)pVM->rem.s.Env.tr.base, pVM->rem.s.Env.tr.limit,
2950 (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8 : 0));
2951 pCtx->tr.Sel = pVM->rem.s.Env.tr.selector;
2952 pCtx->tr.ValidSel = pVM->rem.s.Env.tr.selector;
2953 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
2954 pCtx->tr.u64Base = pVM->rem.s.Env.tr.base;
2955 pCtx->tr.u32Limit = pVM->rem.s.Env.tr.limit;
2956 pCtx->tr.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2957 if (pCtx->tr.Attr.u)
2958 pCtx->tr.Attr.u |= DESC_TSS_BUSY_MASK >> 8;
2959 STAM_COUNTER_INC(&gStatREMTRChange);
2960#ifdef VBOX_WITH_RAW_MODE
2961 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2962#endif
2963 }
2964
2965 /* Sysenter MSR */
2966 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2967 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2968 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2969
2970 /* System MSRs. */
2971 pCtx->msrEFER = pVM->rem.s.Env.efer;
2972 pCtx->msrSTAR = pVM->rem.s.Env.star;
2973 pCtx->msrPAT = pVM->rem.s.Env.pat;
2974#ifdef TARGET_X86_64
2975 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2976 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2977 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2978 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2979#endif
2980
2981}
2982
2983
2984/**
2985 * Update the VMM state information if we're currently in REM.
2986 *
2987 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2988 * we're currently executing in REM and the VMM state is invalid. This method will of
2989 * course check that we're executing in REM before syncing any data over to the VMM.
2990 *
2991 * @param pVM The VM handle.
2992 * @param pVCpu The VMCPU handle.
2993 */
2994REMR3DECL(void) REMR3StateUpdate(PVM pVM, PVMCPU pVCpu)
2995{
2996 if (pVM->rem.s.fInREM)
2997 remR3StateUpdate(pVM, pVCpu);
2998}
2999
3000
3001#undef LOG_GROUP
3002#define LOG_GROUP LOG_GROUP_REM
3003
3004
3005/**
3006 * Notify the recompiler about Address Gate 20 state change.
3007 *
3008 * This notification is required since A20 gate changes are
3009 * initialized from a device driver and the VM might just as
3010 * well be in REM mode as in RAW mode.
3011 *
3012 * @param pVM VM handle.
3013 * @param pVCpu VMCPU handle.
3014 * @param fEnable True if the gate should be enabled.
3015 * False if the gate should be disabled.
3016 */
3017REMR3DECL(void) REMR3A20Set(PVM pVM, PVMCPU pVCpu, bool fEnable)
3018{
3019 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
3020 VM_ASSERT_EMT(pVM);
3021
3022 /** @todo SMP and the A20 gate... */
3023 if (pVM->rem.s.Env.pVCpu == pVCpu)
3024 {
3025 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
3026 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
3027 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
3028 }
3029}
3030
3031
3032/**
3033 * Replays the handler notification changes
3034 * Called in response to VM_FF_REM_HANDLER_NOTIFY from the RAW execution loop.
3035 *
3036 * @param pVM VM handle.
3037 */
3038REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
3039{
3040 /*
3041 * Replay the flushes.
3042 */
3043 LogFlow(("REMR3ReplayHandlerNotifications:\n"));
3044 VM_ASSERT_EMT(pVM);
3045
3046 /** @todo this isn't ensuring correct replay order. */
3047 if (VM_FF_TESTANDCLEAR(pVM, VM_FF_REM_HANDLER_NOTIFY))
3048 {
3049 uint32_t idxNext;
3050 uint32_t idxRevHead;
3051 uint32_t idxHead;
3052#ifdef VBOX_STRICT
3053 int32_t c = 0;
3054#endif
3055
3056 /* Lockless purging of pending notifications. */
3057 idxHead = ASMAtomicXchgU32(&pVM->rem.s.idxPendingList, UINT32_MAX);
3058 if (idxHead == UINT32_MAX)
3059 return;
3060 Assert(idxHead < RT_ELEMENTS(pVM->rem.s.aHandlerNotifications));
3061
3062 /*
3063 * Reverse the list to process it in FIFO order.
3064 */
3065 idxRevHead = UINT32_MAX;
3066 do
3067 {
3068 /* Save the index of the next rec. */
3069 idxNext = pVM->rem.s.aHandlerNotifications[idxHead].idxNext;
3070 Assert(idxNext < RT_ELEMENTS(pVM->rem.s.aHandlerNotifications) || idxNext == UINT32_MAX);
3071 /* Push the record onto the reversed list. */
3072 pVM->rem.s.aHandlerNotifications[idxHead].idxNext = idxRevHead;
3073 idxRevHead = idxHead;
3074 Assert(++c <= RT_ELEMENTS(pVM->rem.s.aHandlerNotifications));
3075 /* Advance. */
3076 idxHead = idxNext;
3077 } while (idxHead != UINT32_MAX);
3078
3079 /*
3080 * Loop thru the list, reinserting the record into the free list as they are
3081 * processed to avoid having other EMTs running out of entries while we're flushing.
3082 */
3083 idxHead = idxRevHead;
3084 do
3085 {
3086 PREMHANDLERNOTIFICATION pCur = &pVM->rem.s.aHandlerNotifications[idxHead];
3087 uint32_t idxCur;
3088 Assert(--c >= 0);
3089
3090 switch (pCur->enmKind)
3091 {
3092 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
3093 remR3NotifyHandlerPhysicalRegister(pVM,
3094 pCur->u.PhysicalRegister.enmType,
3095 pCur->u.PhysicalRegister.GCPhys,
3096 pCur->u.PhysicalRegister.cb,
3097 pCur->u.PhysicalRegister.fHasHCHandler);
3098 break;
3099
3100 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
3101 remR3NotifyHandlerPhysicalDeregister(pVM,
3102 pCur->u.PhysicalDeregister.enmType,
3103 pCur->u.PhysicalDeregister.GCPhys,
3104 pCur->u.PhysicalDeregister.cb,
3105 pCur->u.PhysicalDeregister.fHasHCHandler,
3106 pCur->u.PhysicalDeregister.fRestoreAsRAM);
3107 break;
3108
3109 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
3110 remR3NotifyHandlerPhysicalModify(pVM,
3111 pCur->u.PhysicalModify.enmType,
3112 pCur->u.PhysicalModify.GCPhysOld,
3113 pCur->u.PhysicalModify.GCPhysNew,
3114 pCur->u.PhysicalModify.cb,
3115 pCur->u.PhysicalModify.fHasHCHandler,
3116 pCur->u.PhysicalModify.fRestoreAsRAM);
3117 break;
3118
3119 default:
3120 AssertReleaseMsgFailed(("enmKind=%d\n", pCur->enmKind));
3121 break;
3122 }
3123
3124 /*
3125 * Advance idxHead.
3126 */
3127 idxCur = idxHead;
3128 idxHead = pCur->idxNext;
3129 Assert(idxHead < RT_ELEMENTS(pVM->rem.s.aHandlerNotifications) || (idxHead == UINT32_MAX && c == 0));
3130
3131 /*
3132 * Put the record back into the free list.
3133 */
3134 do
3135 {
3136 idxNext = ASMAtomicUoReadU32(&pVM->rem.s.idxFreeList);
3137 ASMAtomicWriteU32(&pCur->idxNext, idxNext);
3138 ASMCompilerBarrier();
3139 } while (!ASMAtomicCmpXchgU32(&pVM->rem.s.idxFreeList, idxCur, idxNext));
3140 } while (idxHead != UINT32_MAX);
3141
3142#ifdef VBOX_STRICT
3143 if (pVM->cCpus == 1)
3144 {
3145 unsigned c;
3146 /* Check that all records are now on the free list. */
3147 for (c = 0, idxNext = pVM->rem.s.idxFreeList; idxNext != UINT32_MAX;
3148 idxNext = pVM->rem.s.aHandlerNotifications[idxNext].idxNext)
3149 c++;
3150 AssertReleaseMsg(c == RT_ELEMENTS(pVM->rem.s.aHandlerNotifications), ("%#x != %#x, idxFreeList=%#x\n", c, RT_ELEMENTS(pVM->rem.s.aHandlerNotifications), pVM->rem.s.idxFreeList));
3151 }
3152#endif
3153 }
3154}
3155
3156
3157/**
3158 * Notify REM about changed code page.
3159 *
3160 * @returns VBox status code.
3161 * @param pVM VM handle.
3162 * @param pVCpu VMCPU handle.
3163 * @param pvCodePage Code page address
3164 */
3165REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, PVMCPU pVCpu, RTGCPTR pvCodePage)
3166{
3167#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
3168 int rc;
3169 RTGCPHYS PhysGC;
3170 uint64_t flags;
3171
3172 VM_ASSERT_EMT(pVM);
3173
3174 /*
3175 * Get the physical page address.
3176 */
3177 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
3178 if (rc == VINF_SUCCESS)
3179 {
3180 /*
3181 * Sync the required registers and flush the whole page.
3182 * (Easier to do the whole page than notifying it about each physical
3183 * byte that was changed.
3184 */
3185 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
3186 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
3187 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
3188 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
3189
3190 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
3191 }
3192#endif
3193 return VINF_SUCCESS;
3194}
3195
3196
3197/**
3198 * Notification about a successful MMR3PhysRegister() call.
3199 *
3200 * @param pVM VM handle.
3201 * @param GCPhys The physical address the RAM.
3202 * @param cb Size of the memory.
3203 * @param fFlags Flags of the REM_NOTIFY_PHYS_RAM_FLAGS_* defines.
3204 */
3205REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, unsigned fFlags)
3206{
3207 Log(("REMR3NotifyPhysRamRegister: GCPhys=%RGp cb=%RGp fFlags=%#x\n", GCPhys, cb, fFlags));
3208 VM_ASSERT_EMT(pVM);
3209
3210 /*
3211 * Validate input - we trust the caller.
3212 */
3213 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
3214 Assert(cb);
3215 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
3216 AssertMsg(fFlags == REM_NOTIFY_PHYS_RAM_FLAGS_RAM || fFlags == REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2, ("#x\n", fFlags));
3217
3218 /*
3219 * Base ram? Update GCPhysLastRam.
3220 */
3221 if (fFlags & REM_NOTIFY_PHYS_RAM_FLAGS_RAM)
3222 {
3223 if (GCPhys + (cb - 1) > pVM->rem.s.GCPhysLastRam)
3224 {
3225 AssertReleaseMsg(!pVM->rem.s.fGCPhysLastRamFixed, ("GCPhys=%RGp cb=%RGp\n", GCPhys, cb));
3226 pVM->rem.s.GCPhysLastRam = GCPhys + (cb - 1);
3227 }
3228 }
3229
3230 /*
3231 * Register the ram.
3232 */
3233 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
3234
3235 PDMCritSectEnter(&pVM->rem.s.CritSectRegister, VERR_SEM_BUSY);
3236 cpu_register_physical_memory_offset(GCPhys, cb, GCPhys, GCPhys);
3237 PDMCritSectLeave(&pVM->rem.s.CritSectRegister);
3238
3239 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
3240}
3241
3242
3243/**
3244 * Notification about a successful MMR3PhysRomRegister() call.
3245 *
3246 * @param pVM VM handle.
3247 * @param GCPhys The physical address of the ROM.
3248 * @param cb The size of the ROM.
3249 * @param pvCopy Pointer to the ROM copy.
3250 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
3251 * This function will be called when ever the protection of the
3252 * shadow ROM changes (at reset and end of POST).
3253 */
3254REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
3255{
3256 Log(("REMR3NotifyPhysRomRegister: GCPhys=%RGp cb=%d fShadow=%RTbool\n", GCPhys, cb, fShadow));
3257 VM_ASSERT_EMT(pVM);
3258
3259 /*
3260 * Validate input - we trust the caller.
3261 */
3262 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
3263 Assert(cb);
3264 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
3265
3266 /*
3267 * Register the rom.
3268 */
3269 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
3270
3271 PDMCritSectEnter(&pVM->rem.s.CritSectRegister, VERR_SEM_BUSY);
3272 cpu_register_physical_memory_offset(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM), GCPhys);
3273 PDMCritSectLeave(&pVM->rem.s.CritSectRegister);
3274
3275 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
3276}
3277
3278
3279/**
3280 * Notification about a successful memory deregistration or reservation.
3281 *
3282 * @param pVM VM Handle.
3283 * @param GCPhys Start physical address.
3284 * @param cb The size of the range.
3285 */
3286REMR3DECL(void) REMR3NotifyPhysRamDeregister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
3287{
3288 Log(("REMR3NotifyPhysRamDeregister: GCPhys=%RGp cb=%d\n", GCPhys, cb));
3289 VM_ASSERT_EMT(pVM);
3290
3291 /*
3292 * Validate input - we trust the caller.
3293 */
3294 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
3295 Assert(cb);
3296 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
3297
3298 /*
3299 * Unassigning the memory.
3300 */
3301 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
3302
3303 PDMCritSectEnter(&pVM->rem.s.CritSectRegister, VERR_SEM_BUSY);
3304 cpu_register_physical_memory_offset(GCPhys, cb, IO_MEM_UNASSIGNED, GCPhys);
3305 PDMCritSectLeave(&pVM->rem.s.CritSectRegister);
3306
3307 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
3308}
3309
3310
3311/**
3312 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
3313 *
3314 * @param pVM VM Handle.
3315 * @param enmType Handler type.
3316 * @param GCPhys Handler range address.
3317 * @param cb Size of the handler range.
3318 * @param fHasHCHandler Set if the handler has a HC callback function.
3319 *
3320 * @remark MMR3PhysRomRegister assumes that this function will not apply the
3321 * Handler memory type to memory which has no HC handler.
3322 */
3323static void remR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
3324{
3325 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%d\n",
3326 enmType, GCPhys, cb, fHasHCHandler));
3327
3328 VM_ASSERT_EMT(pVM);
3329 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
3330 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
3331
3332
3333 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
3334
3335 PDMCritSectEnter(&pVM->rem.s.CritSectRegister, VERR_SEM_BUSY);
3336 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
3337 cpu_register_physical_memory_offset(GCPhys, cb, pVM->rem.s.iMMIOMemType, GCPhys);
3338 else if (fHasHCHandler)
3339 cpu_register_physical_memory_offset(GCPhys, cb, pVM->rem.s.iHandlerMemType, GCPhys);
3340 PDMCritSectLeave(&pVM->rem.s.CritSectRegister);
3341
3342 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
3343}
3344
3345/**
3346 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
3347 *
3348 * @param pVM VM Handle.
3349 * @param enmType Handler type.
3350 * @param GCPhys Handler range address.
3351 * @param cb Size of the handler range.
3352 * @param fHasHCHandler Set if the handler has a HC callback function.
3353 *
3354 * @remark MMR3PhysRomRegister assumes that this function will not apply the
3355 * Handler memory type to memory which has no HC handler.
3356 */
3357REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
3358{
3359 REMR3ReplayHandlerNotifications(pVM);
3360
3361 remR3NotifyHandlerPhysicalRegister(pVM, enmType, GCPhys, cb, fHasHCHandler);
3362}
3363
3364/**
3365 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
3366 *
3367 * @param pVM VM Handle.
3368 * @param enmType Handler type.
3369 * @param GCPhys Handler range address.
3370 * @param cb Size of the handler range.
3371 * @param fHasHCHandler Set if the handler has a HC callback function.
3372 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
3373 */
3374static void remR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
3375{
3376 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
3377 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
3378 VM_ASSERT_EMT(pVM);
3379
3380
3381 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
3382
3383 PDMCritSectEnter(&pVM->rem.s.CritSectRegister, VERR_SEM_BUSY);
3384 /** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
3385 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
3386 cpu_register_physical_memory_offset(GCPhys, cb, IO_MEM_UNASSIGNED, GCPhys);
3387 else if (fHasHCHandler)
3388 {
3389 if (!fRestoreAsRAM)
3390 {
3391 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
3392 cpu_register_physical_memory_offset(GCPhys, cb, IO_MEM_UNASSIGNED, GCPhys);
3393 }
3394 else
3395 {
3396 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
3397 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
3398 cpu_register_physical_memory_offset(GCPhys, cb, GCPhys, GCPhys);
3399 }
3400 }
3401 PDMCritSectLeave(&pVM->rem.s.CritSectRegister);
3402
3403 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
3404}
3405
3406/**
3407 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
3408 *
3409 * @param pVM VM Handle.
3410 * @param enmType Handler type.
3411 * @param GCPhys Handler range address.
3412 * @param cb Size of the handler range.
3413 * @param fHasHCHandler Set if the handler has a HC callback function.
3414 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
3415 */
3416REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
3417{
3418 REMR3ReplayHandlerNotifications(pVM);
3419 remR3NotifyHandlerPhysicalDeregister(pVM, enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM);
3420}
3421
3422
3423/**
3424 * Notification about a successful PGMR3HandlerPhysicalModify() call.
3425 *
3426 * @param pVM VM Handle.
3427 * @param enmType Handler type.
3428 * @param GCPhysOld Old handler range address.
3429 * @param GCPhysNew New handler range address.
3430 * @param cb Size of the handler range.
3431 * @param fHasHCHandler Set if the handler has a HC callback function.
3432 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
3433 */
3434static void remR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
3435{
3436 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%RGp GCPhysNew=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
3437 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
3438 VM_ASSERT_EMT(pVM);
3439 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
3440
3441 if (fHasHCHandler)
3442 {
3443 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
3444
3445 /*
3446 * Reset the old page.
3447 */
3448 PDMCritSectEnter(&pVM->rem.s.CritSectRegister, VERR_SEM_BUSY);
3449 if (!fRestoreAsRAM)
3450 cpu_register_physical_memory_offset(GCPhysOld, cb, IO_MEM_UNASSIGNED, GCPhysOld);
3451 else
3452 {
3453 /* This is not perfect, but it'll do for PD monitoring... */
3454 Assert(cb == PAGE_SIZE);
3455 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
3456 cpu_register_physical_memory_offset(GCPhysOld, cb, GCPhysOld, GCPhysOld);
3457 }
3458
3459 /*
3460 * Update the new page.
3461 */
3462 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
3463 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
3464 cpu_register_physical_memory_offset(GCPhysNew, cb, pVM->rem.s.iHandlerMemType, GCPhysNew);
3465 PDMCritSectLeave(&pVM->rem.s.CritSectRegister);
3466
3467 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
3468 }
3469}
3470
3471/**
3472 * Notification about a successful PGMR3HandlerPhysicalModify() call.
3473 *
3474 * @param pVM VM Handle.
3475 * @param enmType Handler type.
3476 * @param GCPhysOld Old handler range address.
3477 * @param GCPhysNew New handler range address.
3478 * @param cb Size of the handler range.
3479 * @param fHasHCHandler Set if the handler has a HC callback function.
3480 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
3481 */
3482REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
3483{
3484 REMR3ReplayHandlerNotifications(pVM);
3485
3486 remR3NotifyHandlerPhysicalModify(pVM, enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM);
3487}
3488
3489/**
3490 * Checks if we're handling access to this page or not.
3491 *
3492 * @returns true if we're trapping access.
3493 * @returns false if we aren't.
3494 * @param pVM The VM handle.
3495 * @param GCPhys The physical address.
3496 *
3497 * @remark This function will only work correctly in VBOX_STRICT builds!
3498 */
3499REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
3500{
3501#ifdef VBOX_STRICT
3502 ram_addr_t off;
3503 REMR3ReplayHandlerNotifications(pVM);
3504
3505 off = get_phys_page_offset(GCPhys);
3506 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
3507 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
3508 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
3509#else
3510 return false;
3511#endif
3512}
3513
3514
3515/**
3516 * Deals with a rare case in get_phys_addr_code where the code
3517 * is being monitored.
3518 *
3519 * It could also be an MMIO page, in which case we will raise a fatal error.
3520 *
3521 * @returns The physical address corresponding to addr.
3522 * @param env The cpu environment.
3523 * @param addr The virtual address.
3524 * @param pTLBEntry The TLB entry.
3525 */
3526target_ulong remR3PhysGetPhysicalAddressCode(CPUX86State *env,
3527 target_ulong addr,
3528 CPUTLBEntry *pTLBEntry,
3529 target_phys_addr_t ioTLBEntry)
3530{
3531 PVM pVM = env->pVM;
3532
3533 if ((ioTLBEntry & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
3534 {
3535 /* If code memory is being monitored, appropriate IOTLB entry will have
3536 handler IO type, and addend will provide real physical address, no
3537 matter if we store VA in TLB or not, as handlers are always passed PA */
3538 target_ulong ret = (ioTLBEntry & TARGET_PAGE_MASK) + addr;
3539 return ret;
3540 }
3541 LogRel(("\nTrying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv! (iHandlerMemType=%#x iMMIOMemType=%#x IOTLB=%RGp)\n"
3542 "*** handlers\n",
3543 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType, (RTGCPHYS)ioTLBEntry));
3544 DBGFR3Info(pVM->pUVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
3545 LogRel(("*** mmio\n"));
3546 DBGFR3Info(pVM->pUVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
3547 LogRel(("*** phys\n"));
3548 DBGFR3Info(pVM->pUVM, "phys", NULL, DBGFR3InfoLogRelHlp());
3549 cpu_abort(env, "Trying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
3550 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
3551 AssertFatalFailed();
3552}
3553
3554/**
3555 * Read guest RAM and ROM.
3556 *
3557 * @param SrcGCPhys The source address (guest physical).
3558 * @param pvDst The destination address.
3559 * @param cb Number of bytes
3560 */
3561void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3562{
3563 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3564 VBOX_CHECK_ADDR(SrcGCPhys);
3565 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3566#ifdef VBOX_DEBUG_PHYS
3567 LogRel(("read(%d): %08x\n", cb, (uint32_t)SrcGCPhys));
3568#endif
3569 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3570}
3571
3572
3573/**
3574 * Read guest RAM and ROM, unsigned 8-bit.
3575 *
3576 * @param SrcGCPhys The source address (guest physical).
3577 */
3578RTCCUINTREG remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3579{
3580 uint8_t val;
3581 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3582 VBOX_CHECK_ADDR(SrcGCPhys);
3583 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3584 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3585#ifdef VBOX_DEBUG_PHYS
3586 LogRel(("readu8: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3587#endif
3588 return val;
3589}
3590
3591
3592/**
3593 * Read guest RAM and ROM, signed 8-bit.
3594 *
3595 * @param SrcGCPhys The source address (guest physical).
3596 */
3597RTCCINTREG remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3598{
3599 int8_t val;
3600 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3601 VBOX_CHECK_ADDR(SrcGCPhys);
3602 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3603 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3604#ifdef VBOX_DEBUG_PHYS
3605 LogRel(("reads8: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3606#endif
3607 return val;
3608}
3609
3610
3611/**
3612 * Read guest RAM and ROM, unsigned 16-bit.
3613 *
3614 * @param SrcGCPhys The source address (guest physical).
3615 */
3616RTCCUINTREG remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3617{
3618 uint16_t val;
3619 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3620 VBOX_CHECK_ADDR(SrcGCPhys);
3621 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3622 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3623#ifdef VBOX_DEBUG_PHYS
3624 LogRel(("readu16: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3625#endif
3626 return val;
3627}
3628
3629
3630/**
3631 * Read guest RAM and ROM, signed 16-bit.
3632 *
3633 * @param SrcGCPhys The source address (guest physical).
3634 */
3635RTCCINTREG remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3636{
3637 int16_t val;
3638 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3639 VBOX_CHECK_ADDR(SrcGCPhys);
3640 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3641 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3642#ifdef VBOX_DEBUG_PHYS
3643 LogRel(("reads16: %x <- %08x\n", (uint16_t)val, (uint32_t)SrcGCPhys));
3644#endif
3645 return val;
3646}
3647
3648
3649/**
3650 * Read guest RAM and ROM, unsigned 32-bit.
3651 *
3652 * @param SrcGCPhys The source address (guest physical).
3653 */
3654RTCCUINTREG remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3655{
3656 uint32_t val;
3657 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3658 VBOX_CHECK_ADDR(SrcGCPhys);
3659 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3660 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3661#ifdef VBOX_DEBUG_PHYS
3662 LogRel(("readu32: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3663#endif
3664 return val;
3665}
3666
3667
3668/**
3669 * Read guest RAM and ROM, signed 32-bit.
3670 *
3671 * @param SrcGCPhys The source address (guest physical).
3672 */
3673RTCCINTREG remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3674{
3675 int32_t val;
3676 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3677 VBOX_CHECK_ADDR(SrcGCPhys);
3678 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3679 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3680#ifdef VBOX_DEBUG_PHYS
3681 LogRel(("reads32: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3682#endif
3683 return val;
3684}
3685
3686
3687/**
3688 * Read guest RAM and ROM, unsigned 64-bit.
3689 *
3690 * @param SrcGCPhys The source address (guest physical).
3691 */
3692uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3693{
3694 uint64_t val;
3695 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3696 VBOX_CHECK_ADDR(SrcGCPhys);
3697 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3698 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3699#ifdef VBOX_DEBUG_PHYS
3700 LogRel(("readu64: %llx <- %08x\n", val, (uint32_t)SrcGCPhys));
3701#endif
3702 return val;
3703}
3704
3705
3706/**
3707 * Read guest RAM and ROM, signed 64-bit.
3708 *
3709 * @param SrcGCPhys The source address (guest physical).
3710 */
3711int64_t remR3PhysReadS64(RTGCPHYS SrcGCPhys)
3712{
3713 int64_t val;
3714 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3715 VBOX_CHECK_ADDR(SrcGCPhys);
3716 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3717 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3718#ifdef VBOX_DEBUG_PHYS
3719 LogRel(("reads64: %llx <- %08x\n", val, (uint32_t)SrcGCPhys));
3720#endif
3721 return val;
3722}
3723
3724
3725/**
3726 * Write guest RAM.
3727 *
3728 * @param DstGCPhys The destination address (guest physical).
3729 * @param pvSrc The source address.
3730 * @param cb Number of bytes to write
3731 */
3732void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3733{
3734 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3735 VBOX_CHECK_ADDR(DstGCPhys);
3736 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3737 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3738#ifdef VBOX_DEBUG_PHYS
3739 LogRel(("write(%d): %08x\n", cb, (uint32_t)DstGCPhys));
3740#endif
3741}
3742
3743
3744/**
3745 * Write guest RAM, unsigned 8-bit.
3746 *
3747 * @param DstGCPhys The destination address (guest physical).
3748 * @param val Value
3749 */
3750void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3751{
3752 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3753 VBOX_CHECK_ADDR(DstGCPhys);
3754 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3755 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3756#ifdef VBOX_DEBUG_PHYS
3757 LogRel(("writeu8: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3758#endif
3759}
3760
3761
3762/**
3763 * Write guest RAM, unsigned 8-bit.
3764 *
3765 * @param DstGCPhys The destination address (guest physical).
3766 * @param val Value
3767 */
3768void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3769{
3770 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3771 VBOX_CHECK_ADDR(DstGCPhys);
3772 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3773 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3774#ifdef VBOX_DEBUG_PHYS
3775 LogRel(("writeu16: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3776#endif
3777}
3778
3779
3780/**
3781 * Write guest RAM, unsigned 32-bit.
3782 *
3783 * @param DstGCPhys The destination address (guest physical).
3784 * @param val Value
3785 */
3786void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3787{
3788 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3789 VBOX_CHECK_ADDR(DstGCPhys);
3790 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3791 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3792#ifdef VBOX_DEBUG_PHYS
3793 LogRel(("writeu32: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3794#endif
3795}
3796
3797
3798/**
3799 * Write guest RAM, unsigned 64-bit.
3800 *
3801 * @param DstGCPhys The destination address (guest physical).
3802 * @param val Value
3803 */
3804void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3805{
3806 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3807 VBOX_CHECK_ADDR(DstGCPhys);
3808 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3809 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3810#ifdef VBOX_DEBUG_PHYS
3811 LogRel(("writeu64: %llx -> %08x\n", val, (uint32_t)DstGCPhys));
3812#endif
3813}
3814
3815#undef LOG_GROUP
3816#define LOG_GROUP LOG_GROUP_REM_MMIO
3817
3818/** Read MMIO memory. */
3819static uint32_t remR3MMIOReadU8(void *pvEnv, target_phys_addr_t GCPhys)
3820{
3821 CPUX86State *env = (CPUX86State *)pvEnv;
3822 uint32_t u32 = 0;
3823 int rc = IOMMMIORead(env->pVM, env->pVCpu, GCPhys, &u32, 1);
3824 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3825 Log2(("remR3MMIOReadU8: GCPhys=%RGp -> %02x\n", (RTGCPHYS)GCPhys, u32));
3826 return u32;
3827}
3828
3829/** Read MMIO memory. */
3830static uint32_t remR3MMIOReadU16(void *pvEnv, target_phys_addr_t GCPhys)
3831{
3832 CPUX86State *env = (CPUX86State *)pvEnv;
3833 uint32_t u32 = 0;
3834 int rc = IOMMMIORead(env->pVM, env->pVCpu, GCPhys, &u32, 2);
3835 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3836 Log2(("remR3MMIOReadU16: GCPhys=%RGp -> %04x\n", (RTGCPHYS)GCPhys, u32));
3837 return u32;
3838}
3839
3840/** Read MMIO memory. */
3841static uint32_t remR3MMIOReadU32(void *pvEnv, target_phys_addr_t GCPhys)
3842{
3843 CPUX86State *env = (CPUX86State *)pvEnv;
3844 uint32_t u32 = 0;
3845 int rc = IOMMMIORead(env->pVM, env->pVCpu, GCPhys, &u32, 4);
3846 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3847 Log2(("remR3MMIOReadU32: GCPhys=%RGp -> %08x\n", (RTGCPHYS)GCPhys, u32));
3848 return u32;
3849}
3850
3851/** Write to MMIO memory. */
3852static void remR3MMIOWriteU8(void *pvEnv, target_phys_addr_t GCPhys, uint32_t u32)
3853{
3854 CPUX86State *env = (CPUX86State *)pvEnv;
3855 int rc;
3856 Log2(("remR3MMIOWriteU8: GCPhys=%RGp u32=%#x\n", (RTGCPHYS)GCPhys, u32));
3857 rc = IOMMMIOWrite(env->pVM, env->pVCpu, GCPhys, u32, 1);
3858 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3859}
3860
3861/** Write to MMIO memory. */
3862static void remR3MMIOWriteU16(void *pvEnv, target_phys_addr_t GCPhys, uint32_t u32)
3863{
3864 CPUX86State *env = (CPUX86State *)pvEnv;
3865 int rc;
3866 Log2(("remR3MMIOWriteU16: GCPhys=%RGp u32=%#x\n", (RTGCPHYS)GCPhys, u32));
3867 rc = IOMMMIOWrite(env->pVM, env->pVCpu, GCPhys, u32, 2);
3868 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3869}
3870
3871/** Write to MMIO memory. */
3872static void remR3MMIOWriteU32(void *pvEnv, target_phys_addr_t GCPhys, uint32_t u32)
3873{
3874 CPUX86State *env = (CPUX86State *)pvEnv;
3875 int rc;
3876 Log2(("remR3MMIOWriteU32: GCPhys=%RGp u32=%#x\n", (RTGCPHYS)GCPhys, u32));
3877 rc = IOMMMIOWrite(env->pVM, env->pVCpu, GCPhys, u32, 4);
3878 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3879}
3880
3881
3882#undef LOG_GROUP
3883#define LOG_GROUP LOG_GROUP_REM_HANDLER
3884
3885/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3886
3887static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3888{
3889 uint8_t u8;
3890 Log2(("remR3HandlerReadU8: GCPhys=%RGp\n", (RTGCPHYS)GCPhys));
3891 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3892 return u8;
3893}
3894
3895static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3896{
3897 uint16_t u16;
3898 Log2(("remR3HandlerReadU16: GCPhys=%RGp\n", (RTGCPHYS)GCPhys));
3899 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3900 return u16;
3901}
3902
3903static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3904{
3905 uint32_t u32;
3906 Log2(("remR3HandlerReadU32: GCPhys=%RGp\n", (RTGCPHYS)GCPhys));
3907 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3908 return u32;
3909}
3910
3911static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3912{
3913 Log2(("remR3HandlerWriteU8: GCPhys=%RGp u32=%#x\n", (RTGCPHYS)GCPhys, u32));
3914 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3915}
3916
3917static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3918{
3919 Log2(("remR3HandlerWriteU16: GCPhys=%RGp u32=%#x\n", (RTGCPHYS)GCPhys, u32));
3920 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3921}
3922
3923static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3924{
3925 Log2(("remR3HandlerWriteU32: GCPhys=%RGp u32=%#x\n", (RTGCPHYS)GCPhys, u32));
3926 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3927}
3928
3929/* -+- disassembly -+- */
3930
3931#undef LOG_GROUP
3932#define LOG_GROUP LOG_GROUP_REM_DISAS
3933
3934
3935/**
3936 * Enables or disables singled stepped disassembly.
3937 *
3938 * @returns VBox status code.
3939 * @param pVM VM handle.
3940 * @param fEnable To enable set this flag, to disable clear it.
3941 */
3942static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3943{
3944 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3945 VM_ASSERT_EMT(pVM);
3946
3947 if (fEnable)
3948 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3949 else
3950 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3951#ifdef REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
3952 cpu_single_step(&pVM->rem.s.Env, fEnable);
3953#endif
3954 return VINF_SUCCESS;
3955}
3956
3957
3958/**
3959 * Enables or disables singled stepped disassembly.
3960 *
3961 * @returns VBox status code.
3962 * @param pVM VM handle.
3963 * @param fEnable To enable set this flag, to disable clear it.
3964 */
3965REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3966{
3967 int rc;
3968
3969 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3970 if (VM_IS_EMT(pVM))
3971 return remR3DisasEnableStepping(pVM, fEnable);
3972
3973 rc = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3974 AssertRC(rc);
3975 return rc;
3976}
3977
3978
3979#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3980/**
3981 * External Debugger Command: .remstep [on|off|1|0]
3982 */
3983static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3984{
3985 int rc;
3986 PVM pVM = pUVM->pVM;
3987
3988 if (cArgs == 0)
3989 /*
3990 * Print the current status.
3991 */
3992 rc = DBGCCmdHlpPrintf(pCmdHlp, "DisasStepping is %s\n",
3993 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3994 else
3995 {
3996 /*
3997 * Convert the argument and change the mode.
3998 */
3999 bool fEnable;
4000 rc = DBGCCmdHlpVarToBool(pCmdHlp, &paArgs[0], &fEnable);
4001 if (RT_SUCCESS(rc))
4002 {
4003 rc = REMR3DisasEnableStepping(pVM, fEnable);
4004 if (RT_SUCCESS(rc))
4005 rc = DBGCCmdHlpPrintf(pCmdHlp, "DisasStepping was %s\n", fEnable ? "enabled" : "disabled");
4006 else
4007 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "REMR3DisasEnableStepping");
4008 }
4009 else
4010 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToBool");
4011 }
4012 return rc;
4013}
4014#endif /* VBOX_WITH_DEBUGGER && !win.amd64 */
4015
4016
4017/**
4018 * Disassembles one instruction and prints it to the log.
4019 *
4020 * @returns Success indicator.
4021 * @param env Pointer to the recompiler CPU structure.
4022 * @param f32BitCode Indicates that whether or not the code should
4023 * be disassembled as 16 or 32 bit. If -1 the CS
4024 * selector will be inspected.
4025 * @param pszPrefix
4026 */
4027bool remR3DisasInstr(CPUX86State *env, int f32BitCode, char *pszPrefix)
4028{
4029 PVM pVM = env->pVM;
4030 const bool fLog = LogIsEnabled();
4031 const bool fLog2 = LogIs2Enabled();
4032 int rc = VINF_SUCCESS;
4033
4034 /*
4035 * Don't bother if there ain't any log output to do.
4036 */
4037 if (!fLog && !fLog2)
4038 return true;
4039
4040 /*
4041 * Update the state so DBGF reads the correct register values.
4042 */
4043 remR3StateUpdate(pVM, env->pVCpu);
4044
4045 /*
4046 * Log registers if requested.
4047 */
4048 if (fLog2)
4049 DBGFR3_INFO_LOG(pVM, "cpumguest", pszPrefix);
4050
4051 /*
4052 * Disassemble to log.
4053 */
4054 if (fLog)
4055 {
4056 PVMCPU pVCpu = VMMGetCpu(pVM);
4057 char szBuf[256];
4058 szBuf[0] = '\0';
4059 int rc = DBGFR3DisasInstrEx(pVCpu->pVMR3->pUVM,
4060 pVCpu->idCpu,
4061 0, /* Sel */
4062 0, /* GCPtr */
4063 DBGF_DISAS_FLAGS_CURRENT_GUEST
4064 | DBGF_DISAS_FLAGS_DEFAULT_MODE,
4065 szBuf,
4066 sizeof(szBuf),
4067 NULL);
4068 if (RT_FAILURE(rc))
4069 RTStrPrintf(szBuf, sizeof(szBuf), "DBGFR3DisasInstrEx failed with rc=%Rrc\n", rc);
4070 if (pszPrefix && *pszPrefix)
4071 RTLogPrintf("%s-CPU%d: %s\n", pszPrefix, pVCpu->idCpu, szBuf);
4072 else
4073 RTLogPrintf("CPU%d: %s\n", pVCpu->idCpu, szBuf);
4074 }
4075
4076 return RT_SUCCESS(rc);
4077}
4078
4079
4080/**
4081 * Disassemble recompiled code.
4082 *
4083 * @param phFileIgnored Ignored, logfile usually.
4084 * @param pvCode Pointer to the code block.
4085 * @param cb Size of the code block.
4086 */
4087void disas(FILE *phFile, void *pvCode, unsigned long cb)
4088{
4089 if (LogIs2Enabled())
4090 {
4091 unsigned off = 0;
4092 char szOutput[256];
4093 DISCPUSTATE Cpu;
4094#ifdef RT_ARCH_X86
4095 DISCPUMODE enmCpuMode = DISCPUMODE_32BIT;
4096#else
4097 DISCPUMODE enmCpuMode = DISCPUMODE_64BIT;
4098#endif
4099
4100 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
4101 while (off < cb)
4102 {
4103 uint32_t cbInstr;
4104 int rc = DISInstrToStr((uint8_t const *)pvCode + off, enmCpuMode,
4105 &Cpu, &cbInstr, szOutput, sizeof(szOutput));
4106 if (RT_SUCCESS(rc))
4107 RTLogPrintf("%s", szOutput);
4108 else
4109 {
4110 RTLogPrintf("disas error %Rrc\n", rc);
4111 cbInstr = 1;
4112 }
4113 off += cbInstr;
4114 }
4115 }
4116}
4117
4118
4119/**
4120 * Disassemble guest code.
4121 *
4122 * @param phFileIgnored Ignored, logfile usually.
4123 * @param uCode The guest address of the code to disassemble. (flat?)
4124 * @param cb Number of bytes to disassemble.
4125 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
4126 */
4127void target_disas(FILE *phFile, target_ulong uCode, target_ulong cb, int fFlags)
4128{
4129 if (LogIs2Enabled())
4130 {
4131 PVM pVM = cpu_single_env->pVM;
4132 PVMCPU pVCpu = cpu_single_env->pVCpu;
4133 RTSEL cs;
4134 RTGCUINTPTR eip;
4135
4136 Assert(pVCpu);
4137
4138 /*
4139 * Update the state so DBGF reads the correct register values (flags).
4140 */
4141 remR3StateUpdate(pVM, pVCpu);
4142
4143 /*
4144 * Do the disassembling.
4145 */
4146 RTLogPrintf("Guest Code: PC=%llx %llx bytes fFlags=%d\n", (uint64_t)uCode, (uint64_t)cb, fFlags);
4147 cs = cpu_single_env->segs[R_CS].selector;
4148 eip = uCode - cpu_single_env->segs[R_CS].base;
4149 for (;;)
4150 {
4151 char szBuf[256];
4152 uint32_t cbInstr;
4153 int rc = DBGFR3DisasInstrEx(pVM->pUVM,
4154 pVCpu->idCpu,
4155 cs,
4156 eip,
4157 DBGF_DISAS_FLAGS_DEFAULT_MODE,
4158 szBuf, sizeof(szBuf),
4159 &cbInstr);
4160 if (RT_SUCCESS(rc))
4161 RTLogPrintf("%llx %s\n", (uint64_t)uCode, szBuf);
4162 else
4163 {
4164 RTLogPrintf("%llx %04x:%llx: %s\n", (uint64_t)uCode, cs, (uint64_t)eip, szBuf);
4165 cbInstr = 1;
4166 }
4167
4168 /* next */
4169 if (cb <= cbInstr)
4170 break;
4171 cb -= cbInstr;
4172 uCode += cbInstr;
4173 eip += cbInstr;
4174 }
4175 }
4176}
4177
4178
4179/**
4180 * Looks up a guest symbol.
4181 *
4182 * @returns Pointer to symbol name. This is a static buffer.
4183 * @param orig_addr The address in question.
4184 */
4185const char *lookup_symbol(target_ulong orig_addr)
4186{
4187 PVM pVM = cpu_single_env->pVM;
4188 RTGCINTPTR off = 0;
4189 RTDBGSYMBOL Sym;
4190 DBGFADDRESS Addr;
4191
4192 int rc = DBGFR3AsSymbolByAddr(pVM->pUVM, DBGF_AS_GLOBAL, DBGFR3AddrFromFlat(pVM->pUVM, &Addr, orig_addr),
4193 &off, &Sym, NULL /*phMod*/);
4194 if (RT_SUCCESS(rc))
4195 {
4196 static char szSym[sizeof(Sym.szName) + 48];
4197 if (!off)
4198 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
4199 else if (off > 0)
4200 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
4201 else
4202 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
4203 return szSym;
4204 }
4205 return "<N/A>";
4206}
4207
4208
4209#undef LOG_GROUP
4210#define LOG_GROUP LOG_GROUP_REM
4211
4212
4213/* -+- FF notifications -+- */
4214
4215
4216/**
4217 * Notification about a pending interrupt.
4218 *
4219 * @param pVM VM Handle.
4220 * @param pVCpu VMCPU Handle.
4221 * @param u8Interrupt Interrupt
4222 * @thread The emulation thread.
4223 */
4224REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, PVMCPU pVCpu, uint8_t u8Interrupt)
4225{
4226 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
4227 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
4228}
4229
4230/**
4231 * Notification about a pending interrupt.
4232 *
4233 * @returns Pending interrupt or REM_NO_PENDING_IRQ
4234 * @param pVM VM Handle.
4235 * @param pVCpu VMCPU Handle.
4236 * @thread The emulation thread.
4237 */
4238REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM, PVMCPU pVCpu)
4239{
4240 return pVM->rem.s.u32PendingInterrupt;
4241}
4242
4243/**
4244 * Notification about the interrupt FF being set.
4245 *
4246 * @param pVM VM Handle.
4247 * @param pVCpu VMCPU Handle.
4248 * @thread The emulation thread.
4249 */
4250REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM, PVMCPU pVCpu)
4251{
4252#ifndef IEM_VERIFICATION_MODE
4253 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
4254 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
4255 if (pVM->rem.s.fInREM)
4256 {
4257 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
4258 CPU_INTERRUPT_EXTERNAL_HARD);
4259 }
4260#endif
4261}
4262
4263
4264/**
4265 * Notification about the interrupt FF being set.
4266 *
4267 * @param pVM VM Handle.
4268 * @param pVCpu VMCPU Handle.
4269 * @thread Any.
4270 */
4271REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM, PVMCPU pVCpu)
4272{
4273 LogFlow(("REMR3NotifyInterruptClear:\n"));
4274 if (pVM->rem.s.fInREM)
4275 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
4276}
4277
4278
4279/**
4280 * Notification about pending timer(s).
4281 *
4282 * @param pVM VM Handle.
4283 * @param pVCpuDst The target cpu for this notification.
4284 * TM will not broadcast pending timer events, but use
4285 * a dedicated EMT for them. So, only interrupt REM
4286 * execution if the given CPU is executing in REM.
4287 * @thread Any.
4288 */
4289REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM, PVMCPU pVCpuDst)
4290{
4291#ifndef IEM_VERIFICATION_MODE
4292#ifndef DEBUG_bird
4293 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
4294#endif
4295 if (pVM->rem.s.fInREM)
4296 {
4297 if (pVM->rem.s.Env.pVCpu == pVCpuDst)
4298 {
4299 LogIt(LOG_INSTANCE, RTLOGGRPFLAGS_LEVEL_5, LOG_GROUP_TM, ("REMR3NotifyTimerPending: setting\n"));
4300 ASMAtomicOrS32((int32_t volatile *)&pVM->rem.s.Env.interrupt_request,
4301 CPU_INTERRUPT_EXTERNAL_TIMER);
4302 }
4303 else
4304 LogIt(LOG_INSTANCE, RTLOGGRPFLAGS_LEVEL_5, LOG_GROUP_TM, ("REMR3NotifyTimerPending: pVCpu:%p != pVCpuDst:%p\n", pVM->rem.s.Env.pVCpu, pVCpuDst));
4305 }
4306 else
4307 LogIt(LOG_INSTANCE, RTLOGGRPFLAGS_LEVEL_5, LOG_GROUP_TM, ("REMR3NotifyTimerPending: !fInREM; cpu state=%d\n", VMCPU_GET_STATE(pVCpuDst)));
4308#endif
4309}
4310
4311
4312/**
4313 * Notification about pending DMA transfers.
4314 *
4315 * @param pVM VM Handle.
4316 * @thread Any.
4317 */
4318REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
4319{
4320#ifndef IEM_VERIFICATION_MODE
4321 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
4322 if (pVM->rem.s.fInREM)
4323 {
4324 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
4325 CPU_INTERRUPT_EXTERNAL_DMA);
4326 }
4327#endif
4328}
4329
4330
4331/**
4332 * Notification about pending timer(s).
4333 *
4334 * @param pVM VM Handle.
4335 * @thread Any.
4336 */
4337REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
4338{
4339#ifndef IEM_VERIFICATION_MODE
4340 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
4341 if (pVM->rem.s.fInREM)
4342 {
4343 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
4344 CPU_INTERRUPT_EXTERNAL_EXIT);
4345 }
4346#endif
4347}
4348
4349
4350/**
4351 * Notification about pending FF set by an external thread.
4352 *
4353 * @param pVM VM handle.
4354 * @thread Any.
4355 */
4356REMR3DECL(void) REMR3NotifyFF(PVM pVM)
4357{
4358#ifndef IEM_VERIFICATION_MODE
4359 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
4360 if (pVM->rem.s.fInREM)
4361 {
4362 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
4363 CPU_INTERRUPT_EXTERNAL_EXIT);
4364 }
4365#endif
4366}
4367
4368
4369#ifdef VBOX_WITH_STATISTICS
4370void remR3ProfileStart(int statcode)
4371{
4372 STAMPROFILEADV *pStat;
4373 switch(statcode)
4374 {
4375 case STATS_EMULATE_SINGLE_INSTR:
4376 pStat = &gStatExecuteSingleInstr;
4377 break;
4378 case STATS_QEMU_COMPILATION:
4379 pStat = &gStatCompilationQEmu;
4380 break;
4381 case STATS_QEMU_RUN_EMULATED_CODE:
4382 pStat = &gStatRunCodeQEmu;
4383 break;
4384 case STATS_QEMU_TOTAL:
4385 pStat = &gStatTotalTimeQEmu;
4386 break;
4387 case STATS_QEMU_RUN_TIMERS:
4388 pStat = &gStatTimers;
4389 break;
4390 case STATS_TLB_LOOKUP:
4391 pStat= &gStatTBLookup;
4392 break;
4393 case STATS_IRQ_HANDLING:
4394 pStat= &gStatIRQ;
4395 break;
4396 case STATS_RAW_CHECK:
4397 pStat = &gStatRawCheck;
4398 break;
4399
4400 default:
4401 AssertMsgFailed(("unknown stat %d\n", statcode));
4402 return;
4403 }
4404 STAM_PROFILE_ADV_START(pStat, a);
4405}
4406
4407
4408void remR3ProfileStop(int statcode)
4409{
4410 STAMPROFILEADV *pStat;
4411 switch(statcode)
4412 {
4413 case STATS_EMULATE_SINGLE_INSTR:
4414 pStat = &gStatExecuteSingleInstr;
4415 break;
4416 case STATS_QEMU_COMPILATION:
4417 pStat = &gStatCompilationQEmu;
4418 break;
4419 case STATS_QEMU_RUN_EMULATED_CODE:
4420 pStat = &gStatRunCodeQEmu;
4421 break;
4422 case STATS_QEMU_TOTAL:
4423 pStat = &gStatTotalTimeQEmu;
4424 break;
4425 case STATS_QEMU_RUN_TIMERS:
4426 pStat = &gStatTimers;
4427 break;
4428 case STATS_TLB_LOOKUP:
4429 pStat= &gStatTBLookup;
4430 break;
4431 case STATS_IRQ_HANDLING:
4432 pStat= &gStatIRQ;
4433 break;
4434 case STATS_RAW_CHECK:
4435 pStat = &gStatRawCheck;
4436 break;
4437 default:
4438 AssertMsgFailed(("unknown stat %d\n", statcode));
4439 return;
4440 }
4441 STAM_PROFILE_ADV_STOP(pStat, a);
4442}
4443#endif
4444
4445/**
4446 * Raise an RC, force rem exit.
4447 *
4448 * @param pVM VM handle.
4449 * @param rc The rc.
4450 */
4451void remR3RaiseRC(PVM pVM, int rc)
4452{
4453 Log(("remR3RaiseRC: rc=%Rrc\n", rc));
4454 Assert(pVM->rem.s.fInREM);
4455 VM_ASSERT_EMT(pVM);
4456 pVM->rem.s.rc = rc;
4457 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
4458}
4459
4460
4461/* -+- timers -+- */
4462
4463uint64_t cpu_get_tsc(CPUX86State *env)
4464{
4465 STAM_COUNTER_INC(&gStatCpuGetTSC);
4466 return TMCpuTickGet(env->pVCpu);
4467}
4468
4469
4470/* -+- interrupts -+- */
4471
4472void cpu_set_ferr(CPUX86State *env)
4473{
4474 int rc = PDMIsaSetIrq(env->pVM, 13, 1, 0 /*uTagSrc*/);
4475 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4476}
4477
4478int cpu_get_pic_interrupt(CPUX86State *env)
4479{
4480 uint8_t u8Interrupt;
4481 int rc;
4482
4483 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4484 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4485 * with the (a)pic.
4486 */
4487 /* Note! We assume we will go directly to the recompiler to handle the pending interrupt! */
4488 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4489 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4490 * remove this kludge. */
4491 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4492 {
4493 rc = VINF_SUCCESS;
4494 Assert(env->pVM->rem.s.u32PendingInterrupt <= 255);
4495 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4496 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4497 }
4498 else
4499 rc = PDMGetInterrupt(env->pVCpu, &u8Interrupt);
4500
4501 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Rrc pc=%04x:%08llx ~flags=%08llx\n",
4502 u8Interrupt, rc, env->segs[R_CS].selector, (uint64_t)env->eip, (uint64_t)env->eflags));
4503 if (RT_SUCCESS(rc))
4504 {
4505 if (VMCPU_FF_ISPENDING(env->pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
4506 env->interrupt_request |= CPU_INTERRUPT_HARD;
4507 return u8Interrupt;
4508 }
4509 return -1;
4510}
4511
4512
4513/* -+- local apic -+- */
4514
4515#if 0 /* CPUMSetGuestMsr does this now. */
4516void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4517{
4518 int rc = PDMApicSetBase(env->pVM, val);
4519 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Rrc\n", val, rc)); NOREF(rc);
4520}
4521#endif
4522
4523uint64_t cpu_get_apic_base(CPUX86State *env)
4524{
4525 uint64_t u64;
4526 int rc = CPUMQueryGuestMsr(env->pVCpu, MSR_IA32_APICBASE, &u64);
4527 if (RT_SUCCESS(rc))
4528 {
4529 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4530 return u64;
4531 }
4532 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Rrc)\n", rc));
4533 return 0;
4534}
4535
4536void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4537{
4538 int rc = PDMApicSetTPR(env->pVCpu, val << 4); /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
4539 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Rrc\n", val, rc)); NOREF(rc);
4540}
4541
4542uint8_t cpu_get_apic_tpr(CPUX86State *env)
4543{
4544 uint8_t u8;
4545 int rc = PDMApicGetTPR(env->pVCpu, &u8, NULL);
4546 if (RT_SUCCESS(rc))
4547 {
4548 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4549 return u8 >> 4; /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
4550 }
4551 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Rrc)\n", rc));
4552 return 0;
4553}
4554
4555/**
4556 * Read an MSR.
4557 *
4558 * @retval 0 success.
4559 * @retval -1 failure, raise \#GP(0).
4560 * @param env The cpu state.
4561 * @param idMsr The MSR to read.
4562 * @param puValue Where to return the value.
4563 */
4564int cpu_rdmsr(CPUX86State *env, uint32_t idMsr, uint64_t *puValue)
4565{
4566 Assert(env->pVCpu);
4567 return CPUMQueryGuestMsr(env->pVCpu, idMsr, puValue) == VINF_SUCCESS ? 0 : -1;
4568}
4569
4570/**
4571 * Write to an MSR.
4572 *
4573 * @retval 0 success.
4574 * @retval -1 failure, raise \#GP(0).
4575 * @param env The cpu state.
4576 * @param idMsr The MSR to read.
4577 * @param puValue Where to return the value.
4578 */
4579int cpu_wrmsr(CPUX86State *env, uint32_t idMsr, uint64_t uValue)
4580{
4581 Assert(env->pVCpu);
4582 return CPUMSetGuestMsr(env->pVCpu, idMsr, uValue) == VINF_SUCCESS ? 0 : -1;
4583}
4584
4585/* -+- I/O Ports -+- */
4586
4587#undef LOG_GROUP
4588#define LOG_GROUP LOG_GROUP_REM_IOPORT
4589
4590void cpu_outb(CPUX86State *env, pio_addr_t addr, uint8_t val)
4591{
4592 int rc;
4593
4594 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4595 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4596
4597 rc = IOMIOPortWrite(env->pVM, env->pVCpu, (RTIOPORT)addr, val, 1);
4598 if (RT_LIKELY(rc == VINF_SUCCESS))
4599 return;
4600 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4601 {
4602 Log(("cpu_outb: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4603 remR3RaiseRC(env->pVM, rc);
4604 return;
4605 }
4606 remAbort(rc, __FUNCTION__);
4607}
4608
4609void cpu_outw(CPUX86State *env, pio_addr_t addr, uint16_t val)
4610{
4611 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4612 int rc = IOMIOPortWrite(env->pVM, env->pVCpu, (RTIOPORT)addr, val, 2);
4613 if (RT_LIKELY(rc == VINF_SUCCESS))
4614 return;
4615 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4616 {
4617 Log(("cpu_outw: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4618 remR3RaiseRC(env->pVM, rc);
4619 return;
4620 }
4621 remAbort(rc, __FUNCTION__);
4622}
4623
4624void cpu_outl(CPUX86State *env, pio_addr_t addr, uint32_t val)
4625{
4626 int rc;
4627 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4628 rc = IOMIOPortWrite(env->pVM, env->pVCpu, (RTIOPORT)addr, val, 4);
4629 if (RT_LIKELY(rc == VINF_SUCCESS))
4630 return;
4631 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4632 {
4633 Log(("cpu_outl: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4634 remR3RaiseRC(env->pVM, rc);
4635 return;
4636 }
4637 remAbort(rc, __FUNCTION__);
4638}
4639
4640uint8_t cpu_inb(CPUX86State *env, pio_addr_t addr)
4641{
4642 uint32_t u32 = 0;
4643 int rc = IOMIOPortRead(env->pVM, env->pVCpu, (RTIOPORT)addr, &u32, 1);
4644 if (RT_LIKELY(rc == VINF_SUCCESS))
4645 {
4646 if (/*addr != 0x61 && */addr != 0x71)
4647 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4648 return (uint8_t)u32;
4649 }
4650 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4651 {
4652 Log(("cpu_inb: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4653 remR3RaiseRC(env->pVM, rc);
4654 return (uint8_t)u32;
4655 }
4656 remAbort(rc, __FUNCTION__);
4657 return UINT8_C(0xff);
4658}
4659
4660uint16_t cpu_inw(CPUX86State *env, pio_addr_t addr)
4661{
4662 uint32_t u32 = 0;
4663 int rc = IOMIOPortRead(env->pVM, env->pVCpu, (RTIOPORT)addr, &u32, 2);
4664 if (RT_LIKELY(rc == VINF_SUCCESS))
4665 {
4666 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4667 return (uint16_t)u32;
4668 }
4669 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4670 {
4671 Log(("cpu_inw: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4672 remR3RaiseRC(env->pVM, rc);
4673 return (uint16_t)u32;
4674 }
4675 remAbort(rc, __FUNCTION__);
4676 return UINT16_C(0xffff);
4677}
4678
4679uint32_t cpu_inl(CPUX86State *env, pio_addr_t addr)
4680{
4681 uint32_t u32 = 0;
4682 int rc = IOMIOPortRead(env->pVM, env->pVCpu, (RTIOPORT)addr, &u32, 4);
4683 if (RT_LIKELY(rc == VINF_SUCCESS))
4684 {
4685//if (addr==0x01f0 && u32 == 0x6b6d)
4686// loglevel = ~0;
4687 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4688 return u32;
4689 }
4690 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4691 {
4692 Log(("cpu_inl: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4693 remR3RaiseRC(env->pVM, rc);
4694 return u32;
4695 }
4696 remAbort(rc, __FUNCTION__);
4697 return UINT32_C(0xffffffff);
4698}
4699
4700#undef LOG_GROUP
4701#define LOG_GROUP LOG_GROUP_REM
4702
4703
4704/* -+- helpers and misc other interfaces -+- */
4705
4706/**
4707 * Perform the CPUID instruction.
4708 *
4709 * @param env Pointer to the recompiler CPU structure.
4710 * @param idx The CPUID leaf (eax).
4711 * @param idxSub The CPUID sub-leaf (ecx) where applicable.
4712 * @param pvEAX Where to store eax.
4713 * @param pvEBX Where to store ebx.
4714 * @param pvECX Where to store ecx.
4715 * @param pvEDX Where to store edx.
4716 */
4717void cpu_x86_cpuid(CPUX86State *env, uint32_t idx, uint32_t idxSub,
4718 uint32_t *pEAX, uint32_t *pEBX, uint32_t *pECX, uint32_t *pEDX)
4719{
4720 NOREF(idxSub);
4721 CPUMGetGuestCpuId(env->pVCpu, idx, pEAX, pEBX, pECX, pEDX);
4722}
4723
4724
4725#if 0 /* not used */
4726/**
4727 * Interface for qemu hardware to report back fatal errors.
4728 */
4729void hw_error(const char *pszFormat, ...)
4730{
4731 /*
4732 * Bitch about it.
4733 */
4734 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4735 * this in my Odin32 tree at home! */
4736 va_list args;
4737 va_start(args, pszFormat);
4738 RTLogPrintf("fatal error in virtual hardware:");
4739 RTLogPrintfV(pszFormat, args);
4740 va_end(args);
4741 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4742
4743 /*
4744 * If we're in REM context we'll sync back the state before 'jumping' to
4745 * the EMs failure handling.
4746 */
4747 PVM pVM = cpu_single_env->pVM;
4748 if (pVM->rem.s.fInREM)
4749 REMR3StateBack(pVM);
4750 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4751 AssertMsgFailed(("EMR3FatalError returned!\n"));
4752}
4753#endif
4754
4755/**
4756 * Interface for the qemu cpu to report unhandled situation
4757 * raising a fatal VM error.
4758 */
4759void cpu_abort(CPUX86State *env, const char *pszFormat, ...)
4760{
4761 va_list va;
4762 PVM pVM;
4763 PVMCPU pVCpu;
4764 char szMsg[256];
4765
4766 /*
4767 * Bitch about it.
4768 */
4769 RTLogFlags(NULL, "nodisabled nobuffered");
4770 RTLogFlush(NULL);
4771
4772 va_start(va, pszFormat);
4773#if defined(RT_OS_WINDOWS) && ARCH_BITS == 64
4774 /* It's a bit complicated when mixing MSC and GCC on AMD64. This is a bit ugly, but it works. */
4775 unsigned cArgs = 0;
4776 uintptr_t auArgs[6] = {0,0,0,0,0,0};
4777 const char *psz = strchr(pszFormat, '%');
4778 while (psz && cArgs < 6)
4779 {
4780 auArgs[cArgs++] = va_arg(va, uintptr_t);
4781 psz = strchr(psz + 1, '%');
4782 }
4783 switch (cArgs)
4784 {
4785 case 1: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0]); break;
4786 case 2: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0], auArgs[1]); break;
4787 case 3: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0], auArgs[1], auArgs[2]); break;
4788 case 4: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0], auArgs[1], auArgs[2], auArgs[3]); break;
4789 case 5: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0], auArgs[1], auArgs[2], auArgs[3], auArgs[4]); break;
4790 case 6: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0], auArgs[1], auArgs[2], auArgs[3], auArgs[4], auArgs[5]); break;
4791 default:
4792 case 0: RTStrPrintf(szMsg, sizeof(szMsg), "%s", pszFormat); break;
4793 }
4794#else
4795 RTStrPrintfV(szMsg, sizeof(szMsg), pszFormat, va);
4796#endif
4797 va_end(va);
4798
4799 RTLogPrintf("fatal error in recompiler cpu: %s\n", szMsg);
4800 RTLogRelPrintf("fatal error in recompiler cpu: %s\n", szMsg);
4801
4802 /*
4803 * If we're in REM context we'll sync back the state before 'jumping' to
4804 * the EMs failure handling.
4805 */
4806 pVM = cpu_single_env->pVM;
4807 pVCpu = cpu_single_env->pVCpu;
4808 Assert(pVCpu);
4809
4810 if (pVM->rem.s.fInREM)
4811 REMR3StateBack(pVM, pVCpu);
4812 EMR3FatalError(pVCpu, VERR_REM_VIRTUAL_CPU_ERROR);
4813 AssertMsgFailed(("EMR3FatalError returned!\n"));
4814}
4815
4816
4817/**
4818 * Aborts the VM.
4819 *
4820 * @param rc VBox error code.
4821 * @param pszTip Hint about why/when this happened.
4822 */
4823void remAbort(int rc, const char *pszTip)
4824{
4825 PVM pVM;
4826 PVMCPU pVCpu;
4827
4828 /*
4829 * Bitch about it.
4830 */
4831 RTLogPrintf("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip);
4832 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip));
4833
4834 /*
4835 * Jump back to where we entered the recompiler.
4836 */
4837 pVM = cpu_single_env->pVM;
4838 pVCpu = cpu_single_env->pVCpu;
4839 Assert(pVCpu);
4840
4841 if (pVM->rem.s.fInREM)
4842 REMR3StateBack(pVM, pVCpu);
4843
4844 EMR3FatalError(pVCpu, rc);
4845 AssertMsgFailed(("EMR3FatalError returned!\n"));
4846}
4847
4848
4849/**
4850 * Dumps a linux system call.
4851 * @param pVCpu VMCPU handle.
4852 */
4853void remR3DumpLnxSyscall(PVMCPU pVCpu)
4854{
4855 static const char *apsz[] =
4856 {
4857 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4858 "sys_exit",
4859 "sys_fork",
4860 "sys_read",
4861 "sys_write",
4862 "sys_open", /* 5 */
4863 "sys_close",
4864 "sys_waitpid",
4865 "sys_creat",
4866 "sys_link",
4867 "sys_unlink", /* 10 */
4868 "sys_execve",
4869 "sys_chdir",
4870 "sys_time",
4871 "sys_mknod",
4872 "sys_chmod", /* 15 */
4873 "sys_lchown16",
4874 "sys_ni_syscall", /* old break syscall holder */
4875 "sys_stat",
4876 "sys_lseek",
4877 "sys_getpid", /* 20 */
4878 "sys_mount",
4879 "sys_oldumount",
4880 "sys_setuid16",
4881 "sys_getuid16",
4882 "sys_stime", /* 25 */
4883 "sys_ptrace",
4884 "sys_alarm",
4885 "sys_fstat",
4886 "sys_pause",
4887 "sys_utime", /* 30 */
4888 "sys_ni_syscall", /* old stty syscall holder */
4889 "sys_ni_syscall", /* old gtty syscall holder */
4890 "sys_access",
4891 "sys_nice",
4892 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4893 "sys_sync",
4894 "sys_kill",
4895 "sys_rename",
4896 "sys_mkdir",
4897 "sys_rmdir", /* 40 */
4898 "sys_dup",
4899 "sys_pipe",
4900 "sys_times",
4901 "sys_ni_syscall", /* old prof syscall holder */
4902 "sys_brk", /* 45 */
4903 "sys_setgid16",
4904 "sys_getgid16",
4905 "sys_signal",
4906 "sys_geteuid16",
4907 "sys_getegid16", /* 50 */
4908 "sys_acct",
4909 "sys_umount", /* recycled never used phys() */
4910 "sys_ni_syscall", /* old lock syscall holder */
4911 "sys_ioctl",
4912 "sys_fcntl", /* 55 */
4913 "sys_ni_syscall", /* old mpx syscall holder */
4914 "sys_setpgid",
4915 "sys_ni_syscall", /* old ulimit syscall holder */
4916 "sys_olduname",
4917 "sys_umask", /* 60 */
4918 "sys_chroot",
4919 "sys_ustat",
4920 "sys_dup2",
4921 "sys_getppid",
4922 "sys_getpgrp", /* 65 */
4923 "sys_setsid",
4924 "sys_sigaction",
4925 "sys_sgetmask",
4926 "sys_ssetmask",
4927 "sys_setreuid16", /* 70 */
4928 "sys_setregid16",
4929 "sys_sigsuspend",
4930 "sys_sigpending",
4931 "sys_sethostname",
4932 "sys_setrlimit", /* 75 */
4933 "sys_old_getrlimit",
4934 "sys_getrusage",
4935 "sys_gettimeofday",
4936 "sys_settimeofday",
4937 "sys_getgroups16", /* 80 */
4938 "sys_setgroups16",
4939 "old_select",
4940 "sys_symlink",
4941 "sys_lstat",
4942 "sys_readlink", /* 85 */
4943 "sys_uselib",
4944 "sys_swapon",
4945 "sys_reboot",
4946 "old_readdir",
4947 "old_mmap", /* 90 */
4948 "sys_munmap",
4949 "sys_truncate",
4950 "sys_ftruncate",
4951 "sys_fchmod",
4952 "sys_fchown16", /* 95 */
4953 "sys_getpriority",
4954 "sys_setpriority",
4955 "sys_ni_syscall", /* old profil syscall holder */
4956 "sys_statfs",
4957 "sys_fstatfs", /* 100 */
4958 "sys_ioperm",
4959 "sys_socketcall",
4960 "sys_syslog",
4961 "sys_setitimer",
4962 "sys_getitimer", /* 105 */
4963 "sys_newstat",
4964 "sys_newlstat",
4965 "sys_newfstat",
4966 "sys_uname",
4967 "sys_iopl", /* 110 */
4968 "sys_vhangup",
4969 "sys_ni_syscall", /* old "idle" system call */
4970 "sys_vm86old",
4971 "sys_wait4",
4972 "sys_swapoff", /* 115 */
4973 "sys_sysinfo",
4974 "sys_ipc",
4975 "sys_fsync",
4976 "sys_sigreturn",
4977 "sys_clone", /* 120 */
4978 "sys_setdomainname",
4979 "sys_newuname",
4980 "sys_modify_ldt",
4981 "sys_adjtimex",
4982 "sys_mprotect", /* 125 */
4983 "sys_sigprocmask",
4984 "sys_ni_syscall", /* old "create_module" */
4985 "sys_init_module",
4986 "sys_delete_module",
4987 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4988 "sys_quotactl",
4989 "sys_getpgid",
4990 "sys_fchdir",
4991 "sys_bdflush",
4992 "sys_sysfs", /* 135 */
4993 "sys_personality",
4994 "sys_ni_syscall", /* reserved for afs_syscall */
4995 "sys_setfsuid16",
4996 "sys_setfsgid16",
4997 "sys_llseek", /* 140 */
4998 "sys_getdents",
4999 "sys_select",
5000 "sys_flock",
5001 "sys_msync",
5002 "sys_readv", /* 145 */
5003 "sys_writev",
5004 "sys_getsid",
5005 "sys_fdatasync",
5006 "sys_sysctl",
5007 "sys_mlock", /* 150 */
5008 "sys_munlock",
5009 "sys_mlockall",
5010 "sys_munlockall",
5011 "sys_sched_setparam",
5012 "sys_sched_getparam", /* 155 */
5013 "sys_sched_setscheduler",
5014 "sys_sched_getscheduler",
5015 "sys_sched_yield",
5016 "sys_sched_get_priority_max",
5017 "sys_sched_get_priority_min", /* 160 */
5018 "sys_sched_rr_get_interval",
5019 "sys_nanosleep",
5020 "sys_mremap",
5021 "sys_setresuid16",
5022 "sys_getresuid16", /* 165 */
5023 "sys_vm86",
5024 "sys_ni_syscall", /* Old sys_query_module */
5025 "sys_poll",
5026 "sys_nfsservctl",
5027 "sys_setresgid16", /* 170 */
5028 "sys_getresgid16",
5029 "sys_prctl",
5030 "sys_rt_sigreturn",
5031 "sys_rt_sigaction",
5032 "sys_rt_sigprocmask", /* 175 */
5033 "sys_rt_sigpending",
5034 "sys_rt_sigtimedwait",
5035 "sys_rt_sigqueueinfo",
5036 "sys_rt_sigsuspend",
5037 "sys_pread64", /* 180 */
5038 "sys_pwrite64",
5039 "sys_chown16",
5040 "sys_getcwd",
5041 "sys_capget",
5042 "sys_capset", /* 185 */
5043 "sys_sigaltstack",
5044 "sys_sendfile",
5045 "sys_ni_syscall", /* reserved for streams1 */
5046 "sys_ni_syscall", /* reserved for streams2 */
5047 "sys_vfork", /* 190 */
5048 "sys_getrlimit",
5049 "sys_mmap2",
5050 "sys_truncate64",
5051 "sys_ftruncate64",
5052 "sys_stat64", /* 195 */
5053 "sys_lstat64",
5054 "sys_fstat64",
5055 "sys_lchown",
5056 "sys_getuid",
5057 "sys_getgid", /* 200 */
5058 "sys_geteuid",
5059 "sys_getegid",
5060 "sys_setreuid",
5061 "sys_setregid",
5062 "sys_getgroups", /* 205 */
5063 "sys_setgroups",
5064 "sys_fchown",
5065 "sys_setresuid",
5066 "sys_getresuid",
5067 "sys_setresgid", /* 210 */
5068 "sys_getresgid",
5069 "sys_chown",
5070 "sys_setuid",
5071 "sys_setgid",
5072 "sys_setfsuid", /* 215 */
5073 "sys_setfsgid",
5074 "sys_pivot_root",
5075 "sys_mincore",
5076 "sys_madvise",
5077 "sys_getdents64", /* 220 */
5078 "sys_fcntl64",
5079 "sys_ni_syscall", /* reserved for TUX */
5080 "sys_ni_syscall",
5081 "sys_gettid",
5082 "sys_readahead", /* 225 */
5083 "sys_setxattr",
5084 "sys_lsetxattr",
5085 "sys_fsetxattr",
5086 "sys_getxattr",
5087 "sys_lgetxattr", /* 230 */
5088 "sys_fgetxattr",
5089 "sys_listxattr",
5090 "sys_llistxattr",
5091 "sys_flistxattr",
5092 "sys_removexattr", /* 235 */
5093 "sys_lremovexattr",
5094 "sys_fremovexattr",
5095 "sys_tkill",
5096 "sys_sendfile64",
5097 "sys_futex", /* 240 */
5098 "sys_sched_setaffinity",
5099 "sys_sched_getaffinity",
5100 "sys_set_thread_area",
5101 "sys_get_thread_area",
5102 "sys_io_setup", /* 245 */
5103 "sys_io_destroy",
5104 "sys_io_getevents",
5105 "sys_io_submit",
5106 "sys_io_cancel",
5107 "sys_fadvise64", /* 250 */
5108 "sys_ni_syscall",
5109 "sys_exit_group",
5110 "sys_lookup_dcookie",
5111 "sys_epoll_create",
5112 "sys_epoll_ctl", /* 255 */
5113 "sys_epoll_wait",
5114 "sys_remap_file_pages",
5115 "sys_set_tid_address",
5116 "sys_timer_create",
5117 "sys_timer_settime", /* 260 */
5118 "sys_timer_gettime",
5119 "sys_timer_getoverrun",
5120 "sys_timer_delete",
5121 "sys_clock_settime",
5122 "sys_clock_gettime", /* 265 */
5123 "sys_clock_getres",
5124 "sys_clock_nanosleep",
5125 "sys_statfs64",
5126 "sys_fstatfs64",
5127 "sys_tgkill", /* 270 */
5128 "sys_utimes",
5129 "sys_fadvise64_64",
5130 "sys_ni_syscall" /* sys_vserver */
5131 };
5132
5133 uint32_t uEAX = CPUMGetGuestEAX(pVCpu);
5134 switch (uEAX)
5135 {
5136 default:
5137 if (uEAX < RT_ELEMENTS(apsz))
5138 Log(("REM: linux syscall %3d: %s (eip=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
5139 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVCpu), CPUMGetGuestEBX(pVCpu), CPUMGetGuestECX(pVCpu),
5140 CPUMGetGuestEDX(pVCpu), CPUMGetGuestESI(pVCpu), CPUMGetGuestEDI(pVCpu), CPUMGetGuestEBP(pVCpu)));
5141 else
5142 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVCpu), uEAX, uEAX));
5143 break;
5144
5145 }
5146}
5147
5148
5149/**
5150 * Dumps an OpenBSD system call.
5151 * @param pVCpu VMCPU handle.
5152 */
5153void remR3DumpOBsdSyscall(PVMCPU pVCpu)
5154{
5155 static const char *apsz[] =
5156 {
5157 "SYS_syscall", //0
5158 "SYS_exit", //1
5159 "SYS_fork", //2
5160 "SYS_read", //3
5161 "SYS_write", //4
5162 "SYS_open", //5
5163 "SYS_close", //6
5164 "SYS_wait4", //7
5165 "SYS_8",
5166 "SYS_link", //9
5167 "SYS_unlink", //10
5168 "SYS_11",
5169 "SYS_chdir", //12
5170 "SYS_fchdir", //13
5171 "SYS_mknod", //14
5172 "SYS_chmod", //15
5173 "SYS_chown", //16
5174 "SYS_break", //17
5175 "SYS_18",
5176 "SYS_19",
5177 "SYS_getpid", //20
5178 "SYS_mount", //21
5179 "SYS_unmount", //22
5180 "SYS_setuid", //23
5181 "SYS_getuid", //24
5182 "SYS_geteuid", //25
5183 "SYS_ptrace", //26
5184 "SYS_recvmsg", //27
5185 "SYS_sendmsg", //28
5186 "SYS_recvfrom", //29
5187 "SYS_accept", //30
5188 "SYS_getpeername", //31
5189 "SYS_getsockname", //32
5190 "SYS_access", //33
5191 "SYS_chflags", //34
5192 "SYS_fchflags", //35
5193 "SYS_sync", //36
5194 "SYS_kill", //37
5195 "SYS_38",
5196 "SYS_getppid", //39
5197 "SYS_40",
5198 "SYS_dup", //41
5199 "SYS_opipe", //42
5200 "SYS_getegid", //43
5201 "SYS_profil", //44
5202 "SYS_ktrace", //45
5203 "SYS_sigaction", //46
5204 "SYS_getgid", //47
5205 "SYS_sigprocmask", //48
5206 "SYS_getlogin", //49
5207 "SYS_setlogin", //50
5208 "SYS_acct", //51
5209 "SYS_sigpending", //52
5210 "SYS_osigaltstack", //53
5211 "SYS_ioctl", //54
5212 "SYS_reboot", //55
5213 "SYS_revoke", //56
5214 "SYS_symlink", //57
5215 "SYS_readlink", //58
5216 "SYS_execve", //59
5217 "SYS_umask", //60
5218 "SYS_chroot", //61
5219 "SYS_62",
5220 "SYS_63",
5221 "SYS_64",
5222 "SYS_65",
5223 "SYS_vfork", //66
5224 "SYS_67",
5225 "SYS_68",
5226 "SYS_sbrk", //69
5227 "SYS_sstk", //70
5228 "SYS_61",
5229 "SYS_vadvise", //72
5230 "SYS_munmap", //73
5231 "SYS_mprotect", //74
5232 "SYS_madvise", //75
5233 "SYS_76",
5234 "SYS_77",
5235 "SYS_mincore", //78
5236 "SYS_getgroups", //79
5237 "SYS_setgroups", //80
5238 "SYS_getpgrp", //81
5239 "SYS_setpgid", //82
5240 "SYS_setitimer", //83
5241 "SYS_84",
5242 "SYS_85",
5243 "SYS_getitimer", //86
5244 "SYS_87",
5245 "SYS_88",
5246 "SYS_89",
5247 "SYS_dup2", //90
5248 "SYS_91",
5249 "SYS_fcntl", //92
5250 "SYS_select", //93
5251 "SYS_94",
5252 "SYS_fsync", //95
5253 "SYS_setpriority", //96
5254 "SYS_socket", //97
5255 "SYS_connect", //98
5256 "SYS_99",
5257 "SYS_getpriority", //100
5258 "SYS_101",
5259 "SYS_102",
5260 "SYS_sigreturn", //103
5261 "SYS_bind", //104
5262 "SYS_setsockopt", //105
5263 "SYS_listen", //106
5264 "SYS_107",
5265 "SYS_108",
5266 "SYS_109",
5267 "SYS_110",
5268 "SYS_sigsuspend", //111
5269 "SYS_112",
5270 "SYS_113",
5271 "SYS_114",
5272 "SYS_115",
5273 "SYS_gettimeofday", //116
5274 "SYS_getrusage", //117
5275 "SYS_getsockopt", //118
5276 "SYS_119",
5277 "SYS_readv", //120
5278 "SYS_writev", //121
5279 "SYS_settimeofday", //122
5280 "SYS_fchown", //123
5281 "SYS_fchmod", //124
5282 "SYS_125",
5283 "SYS_setreuid", //126
5284 "SYS_setregid", //127
5285 "SYS_rename", //128
5286 "SYS_129",
5287 "SYS_130",
5288 "SYS_flock", //131
5289 "SYS_mkfifo", //132
5290 "SYS_sendto", //133
5291 "SYS_shutdown", //134
5292 "SYS_socketpair", //135
5293 "SYS_mkdir", //136
5294 "SYS_rmdir", //137
5295 "SYS_utimes", //138
5296 "SYS_139",
5297 "SYS_adjtime", //140
5298 "SYS_141",
5299 "SYS_142",
5300 "SYS_143",
5301 "SYS_144",
5302 "SYS_145",
5303 "SYS_146",
5304 "SYS_setsid", //147
5305 "SYS_quotactl", //148
5306 "SYS_149",
5307 "SYS_150",
5308 "SYS_151",
5309 "SYS_152",
5310 "SYS_153",
5311 "SYS_154",
5312 "SYS_nfssvc", //155
5313 "SYS_156",
5314 "SYS_157",
5315 "SYS_158",
5316 "SYS_159",
5317 "SYS_160",
5318 "SYS_getfh", //161
5319 "SYS_162",
5320 "SYS_163",
5321 "SYS_164",
5322 "SYS_sysarch", //165
5323 "SYS_166",
5324 "SYS_167",
5325 "SYS_168",
5326 "SYS_169",
5327 "SYS_170",
5328 "SYS_171",
5329 "SYS_172",
5330 "SYS_pread", //173
5331 "SYS_pwrite", //174
5332 "SYS_175",
5333 "SYS_176",
5334 "SYS_177",
5335 "SYS_178",
5336 "SYS_179",
5337 "SYS_180",
5338 "SYS_setgid", //181
5339 "SYS_setegid", //182
5340 "SYS_seteuid", //183
5341 "SYS_lfs_bmapv", //184
5342 "SYS_lfs_markv", //185
5343 "SYS_lfs_segclean", //186
5344 "SYS_lfs_segwait", //187
5345 "SYS_188",
5346 "SYS_189",
5347 "SYS_190",
5348 "SYS_pathconf", //191
5349 "SYS_fpathconf", //192
5350 "SYS_swapctl", //193
5351 "SYS_getrlimit", //194
5352 "SYS_setrlimit", //195
5353 "SYS_getdirentries", //196
5354 "SYS_mmap", //197
5355 "SYS___syscall", //198
5356 "SYS_lseek", //199
5357 "SYS_truncate", //200
5358 "SYS_ftruncate", //201
5359 "SYS___sysctl", //202
5360 "SYS_mlock", //203
5361 "SYS_munlock", //204
5362 "SYS_205",
5363 "SYS_futimes", //206
5364 "SYS_getpgid", //207
5365 "SYS_xfspioctl", //208
5366 "SYS_209",
5367 "SYS_210",
5368 "SYS_211",
5369 "SYS_212",
5370 "SYS_213",
5371 "SYS_214",
5372 "SYS_215",
5373 "SYS_216",
5374 "SYS_217",
5375 "SYS_218",
5376 "SYS_219",
5377 "SYS_220",
5378 "SYS_semget", //221
5379 "SYS_222",
5380 "SYS_223",
5381 "SYS_224",
5382 "SYS_msgget", //225
5383 "SYS_msgsnd", //226
5384 "SYS_msgrcv", //227
5385 "SYS_shmat", //228
5386 "SYS_229",
5387 "SYS_shmdt", //230
5388 "SYS_231",
5389 "SYS_clock_gettime", //232
5390 "SYS_clock_settime", //233
5391 "SYS_clock_getres", //234
5392 "SYS_235",
5393 "SYS_236",
5394 "SYS_237",
5395 "SYS_238",
5396 "SYS_239",
5397 "SYS_nanosleep", //240
5398 "SYS_241",
5399 "SYS_242",
5400 "SYS_243",
5401 "SYS_244",
5402 "SYS_245",
5403 "SYS_246",
5404 "SYS_247",
5405 "SYS_248",
5406 "SYS_249",
5407 "SYS_minherit", //250
5408 "SYS_rfork", //251
5409 "SYS_poll", //252
5410 "SYS_issetugid", //253
5411 "SYS_lchown", //254
5412 "SYS_getsid", //255
5413 "SYS_msync", //256
5414 "SYS_257",
5415 "SYS_258",
5416 "SYS_259",
5417 "SYS_getfsstat", //260
5418 "SYS_statfs", //261
5419 "SYS_fstatfs", //262
5420 "SYS_pipe", //263
5421 "SYS_fhopen", //264
5422 "SYS_265",
5423 "SYS_fhstatfs", //266
5424 "SYS_preadv", //267
5425 "SYS_pwritev", //268
5426 "SYS_kqueue", //269
5427 "SYS_kevent", //270
5428 "SYS_mlockall", //271
5429 "SYS_munlockall", //272
5430 "SYS_getpeereid", //273
5431 "SYS_274",
5432 "SYS_275",
5433 "SYS_276",
5434 "SYS_277",
5435 "SYS_278",
5436 "SYS_279",
5437 "SYS_280",
5438 "SYS_getresuid", //281
5439 "SYS_setresuid", //282
5440 "SYS_getresgid", //283
5441 "SYS_setresgid", //284
5442 "SYS_285",
5443 "SYS_mquery", //286
5444 "SYS_closefrom", //287
5445 "SYS_sigaltstack", //288
5446 "SYS_shmget", //289
5447 "SYS_semop", //290
5448 "SYS_stat", //291
5449 "SYS_fstat", //292
5450 "SYS_lstat", //293
5451 "SYS_fhstat", //294
5452 "SYS___semctl", //295
5453 "SYS_shmctl", //296
5454 "SYS_msgctl", //297
5455 "SYS_MAXSYSCALL", //298
5456 //299
5457 //300
5458 };
5459 uint32_t uEAX;
5460 if (!LogIsEnabled())
5461 return;
5462 uEAX = CPUMGetGuestEAX(pVCpu);
5463 switch (uEAX)
5464 {
5465 default:
5466 if (uEAX < RT_ELEMENTS(apsz))
5467 {
5468 uint32_t au32Args[8] = {0};
5469 PGMPhysSimpleReadGCPtr(pVCpu, au32Args, CPUMGetGuestESP(pVCpu), sizeof(au32Args));
5470 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
5471 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVCpu), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
5472 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
5473 }
5474 else
5475 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVCpu), uEAX, uEAX);
5476 break;
5477 }
5478}
5479
5480
5481#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
5482/**
5483 * The Dll main entry point (stub).
5484 */
5485bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
5486{
5487 return true;
5488}
5489
5490void *memcpy(void *dst, const void *src, size_t size)
5491{
5492 uint8_t*pbDst = dst, *pbSrc = src;
5493 while (size-- > 0)
5494 *pbDst++ = *pbSrc++;
5495 return dst;
5496}
5497
5498#endif
5499
5500void cpu_smm_update(CPUX86State *env)
5501{
5502}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette