VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 1138

Last change on this file since 1138 was 1078, checked in by vboxsync, 18 years ago

Fixes for V86 segment syncing. (+ cleanup)

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 154.1 KB
Line 
1/** @file
2 *
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006 InnoTek Systemberatung GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License as published by the Free Software Foundation,
13 * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
14 * distribution. VirtualBox OSE is distributed in the hope that it will
15 * be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * If you received this file as part of a commercial VirtualBox
18 * distribution, then only the terms of your commercial VirtualBox
19 * license agreement apply instead of the previous paragraph.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#include "vl.h"
27#include "exec-all.h"
28
29#include <VBox/rem.h>
30#include <VBox/vmapi.h>
31#include <VBox/tm.h>
32#include <VBox/ssm.h>
33#include <VBox/em.h>
34#include <VBox/trpm.h>
35#include <VBox/iom.h>
36#include <VBox/mm.h>
37#include <VBox/pgm.h>
38#include <VBox/pdm.h>
39#include <VBox/dbgf.h>
40#include <VBox/dbg.h>
41#include <VBox/hwaccm.h>
42#include <VBox/patm.h>
43#include <VBox/csam.h>
44#include "REMInternal.h"
45#include <VBox/vm.h>
46#include <VBox/param.h>
47#include <VBox/err.h>
48
49#define LOG_GROUP LOG_GROUP_REM
50#include <VBox/log.h>
51#include <iprt/semaphore.h>
52#include <iprt/asm.h>
53#include <iprt/assert.h>
54#include <iprt/thread.h>
55#include <iprt/string.h>
56
57
58/* Don't wanna include everything. */
59extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
60extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
61extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
62extern void tlb_flush_page(CPUX86State *env, uint32_t addr);
63extern void tlb_flush(CPUState *env, int flush_global);
64extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
65extern void sync_ldtr(CPUX86State *env1, int selector);
66extern int sync_tr(CPUX86State *env1, int selector);
67
68#ifdef VBOX_STRICT
69unsigned long get_phys_page_offset(target_ulong addr);
70#endif
71
72
73/*******************************************************************************
74* Defined Constants And Macros *
75*******************************************************************************/
76
77/** Copy 80-bit fpu register at pSrc to pDst.
78 * This is probably faster than *calling* memcpy.
79 */
80#define REM_COPY_FPU_REG(pDst, pSrc) \
81 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
82
83
84/*******************************************************************************
85* Internal Functions *
86*******************************************************************************/
87static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
88static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
89static void remR3StateUpdate(PVM pVM);
90static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
91static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
92static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
93static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
94static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
95static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
96
97static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
98static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
99static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
100static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
101static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
102static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
103
104
105/*******************************************************************************
106* Global Variables *
107*******************************************************************************/
108
109/** The log level of the recompiler. */
110#if 1
111extern int loglevel;
112#else
113int loglevel = ~0;
114FILE *logfile = NULL;
115#endif
116
117
118/** @todo Move stats to REM::s some rainy day we have nothing do to. */
119#ifdef VBOX_WITH_STATISTICS
120static STAMPROFILEADV gStatExecuteSingleInstr;
121static STAMPROFILEADV gStatCompilationQEmu;
122static STAMPROFILEADV gStatRunCodeQEmu;
123static STAMPROFILEADV gStatTotalTimeQEmu;
124static STAMPROFILEADV gStatTimers;
125static STAMPROFILEADV gStatTBLookup;
126static STAMPROFILEADV gStatIRQ;
127static STAMPROFILEADV gStatRawCheck;
128static STAMPROFILEADV gStatMemRead;
129static STAMPROFILEADV gStatMemWrite;
130static STAMCOUNTER gStatRefuseTFInhibit;
131static STAMCOUNTER gStatRefuseVM86;
132static STAMCOUNTER gStatRefusePaging;
133static STAMCOUNTER gStatRefusePAE;
134static STAMCOUNTER gStatRefuseIOPLNot0;
135static STAMCOUNTER gStatRefuseIF0;
136static STAMCOUNTER gStatRefuseCode16;
137static STAMCOUNTER gStatRefuseWP0;
138static STAMCOUNTER gStatRefuseRing1or2;
139static STAMCOUNTER gStatRefuseCanExecute;
140static STAMCOUNTER gStatREMGDTChange;
141static STAMCOUNTER gStatREMIDTChange;
142static STAMCOUNTER gStatREMLDTRChange;
143static STAMCOUNTER gStatREMTRChange;
144static STAMCOUNTER gStatSelOutOfSync[6];
145static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
146#endif
147
148/*
149 * Global stuff.
150 */
151
152/** MMIO read callbacks. */
153CPUReadMemoryFunc *g_apfnMMIORead[3] =
154{
155 remR3MMIOReadU8,
156 remR3MMIOReadU16,
157 remR3MMIOReadU32
158};
159
160/** MMIO write callbacks. */
161CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
162{
163 remR3MMIOWriteU8,
164 remR3MMIOWriteU16,
165 remR3MMIOWriteU32
166};
167
168/** Handler read callbacks. */
169CPUReadMemoryFunc *g_apfnHandlerRead[3] =
170{
171 remR3HandlerReadU8,
172 remR3HandlerReadU16,
173 remR3HandlerReadU32
174};
175
176/** Handler write callbacks. */
177CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
178{
179 remR3HandlerWriteU8,
180 remR3HandlerWriteU16,
181 remR3HandlerWriteU32
182};
183
184#ifndef PGM_DYNAMIC_RAM_ALLOC
185/* Guest physical RAM base. Not to be used in external code. */
186static uint8_t *phys_ram_base;
187#endif
188
189/*
190 * Instance stuff.
191 */
192/** Pointer to the cpu state. */
193CPUState *cpu_single_env;
194
195
196#ifdef VBOX_WITH_DEBUGGER
197/*
198 * Debugger commands.
199 */
200static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
201
202/** '.remstep' arguments. */
203static const DBGCVARDESC g_aArgRemStep[] =
204{
205 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
206 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
207};
208
209/** Command descriptors. */
210static const DBGCCMD g_aCmds[] =
211{
212 {
213 .pszCmd ="remstep",
214 .cArgsMin = 0,
215 .cArgsMax = 1,
216 .paArgDescs = &g_aArgRemStep[0],
217 .cArgDescs = ELEMENTS(g_aArgRemStep),
218 .pResultDesc = NULL,
219 .fFlags = 0,
220 .pfnHandler = remR3CmdDisasEnableStepping,
221 .pszSyntax = "[on/off]",
222 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
223 "If no arguments show the current state."
224 }
225};
226#endif
227
228
229/*******************************************************************************
230* Internal Functions *
231*******************************************************************************/
232static void remAbort(int rc, const char *pszTip);
233
234
235/* Put them here to avoid unused variable warning. */
236AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
237//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
238//AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
239
240/**
241 * Initializes the REM.
242 *
243 * @returns VBox status code.
244 * @param pVM The VM to operate on.
245 */
246REMR3DECL(int) REMR3Init(PVM pVM)
247{
248 uint32_t u32Dummy;
249 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
250 //AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
251 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
252#if 0 /* not merged yet */
253 Assert(!testmath());
254#endif
255
256 /*
257 * Init some internal data members.
258 */
259 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
260 pVM->rem.s.Env.pVM = pVM;
261#ifdef CPU_RAW_MODE_INIT
262 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
263#endif
264
265 /* ctx. */
266 int rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
267 if (VBOX_FAILURE(rc))
268 {
269 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
270 return rc;
271 }
272 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
273
274 /*
275 * Init the recompiler.
276 */
277 if (!cpu_x86_init(&pVM->rem.s.Env))
278 {
279 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
280 return VERR_GENERAL_FAILURE;
281 }
282 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
283
284 /* allocate code buffer for single instruction emulation. */
285 pVM->rem.s.Env.cbCodeBuffer = 4096;
286 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
287 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
288
289 /* finally, set the cpu_single_env global. */
290 cpu_single_env = &pVM->rem.s.Env;
291
292 /* Nothing is pending by default */
293 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
294
295#ifdef DEBUG_bird
296 //cpu_breakpoint_insert(&pVM->rem.s.Env, some-address);
297#endif
298
299 /*
300 * Register ram types.
301 */
302 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(0, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
303 AssertReleaseMsg(pVM->rem.s.iMMIOMemType > 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
304 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(0, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
305 AssertReleaseMsg(pVM->rem.s.iHandlerMemType > 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
306 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
307
308 /*
309 * Register the saved state data unit.
310 */
311 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
312 NULL, remR3Save, NULL,
313 NULL, remR3Load, NULL);
314 if (VBOX_FAILURE(rc))
315 return rc;
316
317#ifdef VBOX_WITH_DEBUGGER
318 /*
319 * Debugger commands.
320 */
321 static bool fRegisteredCmds = false;
322 if (!fRegisteredCmds)
323 {
324 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
325 if (VBOX_SUCCESS(rc))
326 fRegisteredCmds = true;
327 }
328#endif
329
330#ifdef VBOX_WITH_STATISTICS
331 /*
332 * Statistics.
333 */
334 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
335 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
336 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
337 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
338 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
339 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
340 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
341 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
342 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
343 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
344
345 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
346 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
347 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
348 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
349 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
350 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
351 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
352 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
353 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
354 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
355
356 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
357 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
358 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
359 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
360
361 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
362 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
363 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
364 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
365 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
366 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
367
368 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
369 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
370 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
371 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
372 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
373 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
374
375#endif
376 return rc;
377}
378
379
380/**
381 * Terminates the REM.
382 *
383 * Termination means cleaning up and freeing all resources,
384 * the VM it self is at this point powered off or suspended.
385 *
386 * @returns VBox status code.
387 * @param pVM The VM to operate on.
388 */
389REMR3DECL(int) REMR3Term(PVM pVM)
390{
391 return VINF_SUCCESS;
392}
393
394
395/**
396 * The VM is being reset.
397 *
398 * For the REM component this means to call the cpu_reset() and
399 * reinitialize some state variables.
400 *
401 * @param pVM VM handle.
402 */
403REMR3DECL(void) REMR3Reset(PVM pVM)
404{
405 pVM->rem.s.fIgnoreCR3Load = true;
406 pVM->rem.s.fIgnoreInvlPg = true;
407 pVM->rem.s.fIgnoreCpuMode = true;
408
409 /*
410 * Reset the REM cpu.
411 */
412 cpu_reset(&pVM->rem.s.Env);
413 pVM->rem.s.cInvalidatedPages = 0;
414
415 pVM->rem.s.fIgnoreCR3Load = false;
416 pVM->rem.s.fIgnoreInvlPg = false;
417 pVM->rem.s.fIgnoreCpuMode = false;
418}
419
420
421/**
422 * Execute state save operation.
423 *
424 * @returns VBox status code.
425 * @param pVM VM Handle.
426 * @param pSSM SSM operation handle.
427 */
428static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
429{
430 LogFlow(("remR3Save:\n"));
431
432 /*
433 * Save the required CPU Env bits.
434 * (Not much because we're never in REM when doing the save.)
435 */
436 PREM pRem = &pVM->rem.s;
437 Assert(!pRem->fInREM);
438 SSMR3PutU32(pSSM, pRem->Env.hflags);
439 SSMR3PutMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
440 SSMR3PutU32(pSSM, ~0); /* separator */
441
442 /*
443 * Save the REM stuff.
444 */
445 SSMR3PutUInt(pSSM, pRem->cInvalidatedPages);
446 unsigned i;
447 for (i = 0; i < pRem->cInvalidatedPages; i++)
448 SSMR3PutGCPtr(pSSM, pRem->aGCPtrInvalidatedPages[i]);
449
450 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
451
452 return SSMR3PutU32(pSSM, ~0); /* terminator */
453}
454
455
456/**
457 * Execute state load operation.
458 *
459 * @returns VBox status code.
460 * @param pVM VM Handle.
461 * @param pSSM SSM operation handle.
462 * @param u32Version Data layout version.
463 */
464static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
465{
466 uint32_t u32Dummy;
467 LogFlow(("remR3Load:\n"));
468
469 /*
470 * Validate version.
471 */
472 if (u32Version != REM_SAVED_STATE_VERSION)
473 {
474 Log(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
475 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
476 }
477
478 /*
479 * Do a reset to be on the safe side...
480 */
481 REMR3Reset(pVM);
482
483 /*
484 * Ignore all ignorable notifications.
485 * Not doing this will cause big trouble.
486 */
487 pVM->rem.s.fIgnoreCR3Load = true;
488 pVM->rem.s.fIgnoreInvlPg = true;
489 pVM->rem.s.fIgnoreCpuMode = true;
490
491 /*
492 * Load the required CPU Env bits.
493 * (Not much because we're never in REM when doing the save.)
494 */
495 PREM pRem = &pVM->rem.s;
496 Assert(!pRem->fInREM);
497 SSMR3GetU32(pSSM, &pRem->Env.hflags);
498 SSMR3GetMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
499 uint32_t u32Sep;
500 int rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
501 if (VBOX_FAILURE(rc))
502 return rc;
503 if (u32Sep != ~0)
504 {
505 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
506 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
507 }
508
509 /*
510 * Load the REM stuff.
511 */
512 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
513 if (VBOX_FAILURE(rc))
514 return rc;
515 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
516 {
517 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
518 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
519 }
520 unsigned i;
521 for (i = 0; i < pRem->cInvalidatedPages; i++)
522 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
523
524 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
525 if (VBOX_FAILURE(rc))
526 return rc;
527
528 /* check the terminator. */
529 rc = SSMR3GetU32(pSSM, &u32Sep);
530 if (VBOX_FAILURE(rc))
531 return rc;
532 if (u32Sep != ~0)
533 {
534 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
535 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
536 }
537
538 /*
539 * Get the CPUID features.
540 */
541 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
542
543 /*
544 * Sync the Load Flush the TLB
545 */
546 tlb_flush(&pRem->Env, 1);
547
548#if 0 /** @todo r=bird: this doesn't make sense. WHY? */
549 /*
550 * Clear all lazy flags (only FPU sync for now).
551 */
552 CPUMGetAndClearFPUUsedREM(pVM);
553#endif
554
555 /*
556 * Stop ignoring ignornable notifications.
557 */
558 pVM->rem.s.fIgnoreCpuMode = false;
559 pVM->rem.s.fIgnoreInvlPg = false;
560 pVM->rem.s.fIgnoreCR3Load = false;
561
562 return VINF_SUCCESS;
563}
564
565
566
567#undef LOG_GROUP
568#define LOG_GROUP LOG_GROUP_REM_RUN
569
570/**
571 * Single steps an instruction in recompiled mode.
572 *
573 * Before calling this function the REM state needs to be in sync with
574 * the VM. Call REMR3State() to perform the sync. It's only necessary
575 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
576 * and after calling REMR3StateBack().
577 *
578 * @returns VBox status code.
579 *
580 * @param pVM VM Handle.
581 */
582REMR3DECL(int) REMR3Step(PVM pVM)
583{
584 /*
585 * Lock the REM - we don't wanna have anyone interrupting us
586 * while stepping - and enabled single stepping. We also ignore
587 * pending interrupts and suchlike.
588 */
589 int interrupt_request = pVM->rem.s.Env.interrupt_request;
590 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
591 pVM->rem.s.Env.interrupt_request = 0;
592 cpu_single_step(&pVM->rem.s.Env, 1);
593
594 /*
595 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
596 */
597 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
598 bool fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
599
600 /*
601 * Execute and handle the return code.
602 * We execute without enabling the cpu tick, so on success we'll
603 * just flip it on and off to make sure it moves
604 */
605 int rc = cpu_exec(&pVM->rem.s.Env);
606 if (rc == EXCP_DEBUG)
607 {
608 TMCpuTickResume(pVM);
609 TMCpuTickPause(pVM);
610 TMVirtualResume(pVM);
611 TMVirtualPause(pVM);
612 rc = VINF_EM_DBG_STEPPED;
613 }
614 else
615 {
616 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
617 switch (rc)
618 {
619 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
620 case EXCP_HLT: rc = VINF_EM_HALT; break;
621 case EXCP_RC:
622 rc = pVM->rem.s.rc;
623 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
624 break;
625 default:
626 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
627 rc = VERR_INTERNAL_ERROR;
628 break;
629 }
630 }
631
632 /*
633 * Restore the stuff we changed to prevent interruption.
634 * Unlock the REM.
635 */
636 if (fBp)
637 {
638 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
639 Assert(rc2 == 0); NOREF(rc2);
640 }
641 cpu_single_step(&pVM->rem.s.Env, 0);
642 pVM->rem.s.Env.interrupt_request = interrupt_request;
643
644 return rc;
645}
646
647
648/**
649 * Set a breakpoint using the REM facilities.
650 *
651 * @returns VBox status code.
652 * @param pVM The VM handle.
653 * @param Address The breakpoint address.
654 * @thread The emulation thread.
655 */
656REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
657{
658 VM_ASSERT_EMT(pVM);
659 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
660 {
661 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
662 return VINF_SUCCESS;
663 }
664 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
665 return VERR_REM_NO_MORE_BP_SLOTS;
666}
667
668
669/**
670 * Clears a breakpoint set by REMR3BreakpointSet().
671 *
672 * @returns VBox status code.
673 * @param pVM The VM handle.
674 * @param Address The breakpoint address.
675 * @thread The emulation thread.
676 */
677REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
678{
679 VM_ASSERT_EMT(pVM);
680 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
681 {
682 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
683 return VINF_SUCCESS;
684 }
685 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
686 return VERR_REM_BP_NOT_FOUND;
687}
688
689
690/**
691 * Emulate an instruction.
692 *
693 * This function executes one instruction without letting anyone
694 * interrupt it. This is intended for being called while being in
695 * raw mode and thus will take care of all the state syncing between
696 * REM and the rest.
697 *
698 * @returns VBox status code.
699 * @param pVM VM handle.
700 */
701REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
702{
703 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
704
705 /*
706 * Sync the state and enable single instruction / single stepping.
707 */
708 int rc = REMR3State(pVM);
709 if (VBOX_SUCCESS(rc))
710 {
711 int interrupt_request = pVM->rem.s.Env.interrupt_request;
712 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
713 Assert(!pVM->rem.s.Env.singlestep_enabled);
714#if 1
715
716 /*
717 * Now we set the execute single instruction flag and enter the cpu_exec loop.
718 */
719 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
720 rc = cpu_exec(&pVM->rem.s.Env);
721 switch (rc)
722 {
723 /*
724 * Executed without anything out of the way happening.
725 */
726 case EXCP_SINGLE_INSTR:
727 rc = VINF_EM_RESCHEDULE;
728 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
729 break;
730
731 /*
732 * If we take a trap or start servicing a pending interrupt, we might end up here.
733 * (Timer thread or some other thread wishing EMT's attention.)
734 */
735 case EXCP_INTERRUPT:
736 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
737 rc = VINF_EM_RESCHEDULE;
738 break;
739
740 /*
741 * Single step, we assume!
742 * If there was a breakpoint there we're fucked now.
743 */
744 case EXCP_DEBUG:
745 {
746 /* breakpoint or single step? */
747 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
748 int iBP;
749 rc = VINF_EM_DBG_STEPPED;
750 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
751 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
752 {
753 rc = VINF_EM_DBG_BREAKPOINT;
754 break;
755 }
756 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
757 break;
758 }
759
760 /*
761 * hlt instruction.
762 */
763 case EXCP_HLT:
764 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
765 rc = VINF_EM_HALT;
766 break;
767
768 /*
769 * Switch to RAW-mode.
770 */
771 case EXCP_EXECUTE_RAW:
772 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
773 rc = VINF_EM_RESCHEDULE_RAW;
774 break;
775
776 /*
777 * Switch to hardware accelerated RAW-mode.
778 */
779 case EXCP_EXECUTE_HWACC:
780 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
781 rc = VINF_EM_RESCHEDULE_HWACC;
782 break;
783
784 /*
785 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
786 */
787 case EXCP_RC:
788 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
789 rc = pVM->rem.s.rc;
790 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
791 break;
792
793 /*
794 * Figure out the rest when they arrive....
795 */
796 default:
797 AssertMsgFailed(("rc=%d\n", rc));
798 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
799 rc = VINF_EM_RESCHEDULE;
800 break;
801 }
802
803 /*
804 * Switch back the state.
805 */
806#else
807 pVM->rem.s.Env.interrupt_request = 0;
808 cpu_single_step(&pVM->rem.s.Env, 1);
809
810 /*
811 * Execute and handle the return code.
812 * We execute without enabling the cpu tick, so on success we'll
813 * just flip it on and off to make sure it moves.
814 *
815 * (We do not use emulate_single_instr() because that doesn't enter the
816 * right way in will cause serious trouble if a longjmp was attempted.)
817 */
818 #ifdef DEBUG_bird
819 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
820 #endif
821 int cTimesMax = 16384;
822 uint32_t eip = pVM->rem.s.Env.eip;
823 do
824 {
825 rc = cpu_exec(&pVM->rem.s.Env);
826 } while ( eip == pVM->rem.s.Env.eip
827 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
828 && --cTimesMax > 0);
829 switch (rc)
830 {
831 /*
832 * Single step, we assume!
833 * If there was a breakpoint there we're fucked now.
834 */
835 case EXCP_DEBUG:
836 {
837 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
838 rc = VINF_EM_RESCHEDULE;
839 break;
840 }
841
842 /*
843 * We cannot be interrupted!
844 */
845 case EXCP_INTERRUPT:
846 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
847 rc = VERR_INTERNAL_ERROR;
848 break;
849
850 /*
851 * hlt instruction.
852 */
853 case EXCP_HLT:
854 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
855 rc = VINF_EM_HALT;
856 break;
857
858 /*
859 * Switch to RAW-mode.
860 */
861 case EXCP_EXECUTE_RAW:
862 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
863 rc = VINF_EM_RESCHEDULE_RAW;
864 break;
865
866 /*
867 * Switch to hardware accelerated RAW-mode.
868 */
869 case EXCP_EXECUTE_HWACC:
870 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
871 rc = VINF_EM_RESCHEDULE_HWACC;
872 break;
873
874 /*
875 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
876 */
877 case EXCP_RC:
878 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
879 rc = pVM->rem.s.rc;
880 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
881 break;
882
883 /*
884 * Figure out the rest when they arrive....
885 */
886 default:
887 AssertMsgFailed(("rc=%d\n", rc));
888 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
889 rc = VINF_SUCCESS;
890 break;
891 }
892
893 /*
894 * Switch back the state.
895 */
896 cpu_single_step(&pVM->rem.s.Env, 0);
897#endif
898 pVM->rem.s.Env.interrupt_request = interrupt_request;
899 int rc2 = REMR3StateBack(pVM);
900 AssertRC(rc2);
901 }
902
903 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%08x)\n",
904 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
905 return rc;
906}
907
908
909/**
910 * Runs code in recompiled mode.
911 *
912 * Before calling this function the REM state needs to be in sync with
913 * the VM. Call REMR3State() to perform the sync. It's only necessary
914 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
915 * and after calling REMR3StateBack().
916 *
917 * @returns VBox status code.
918 *
919 * @param pVM VM Handle.
920 */
921REMR3DECL(int) REMR3Run(PVM pVM)
922{
923 Log2(("REMR3Run: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
924 Assert(pVM->rem.s.fInREM);
925////Keyboard / tb stuff:
926//if ( pVM->rem.s.Env.segs[R_CS].selector == 0xf000
927// && pVM->rem.s.Env.eip >= 0xe860
928// && pVM->rem.s.Env.eip <= 0xe880)
929// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
930////A20:
931//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x9020
932// && pVM->rem.s.Env.eip >= 0x970
933// && pVM->rem.s.Env.eip <= 0x9a0)
934// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
935////Speaker (port 61h)
936//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x0010
937// && ( (pVM->rem.s.Env.eip >= 0x90278c10 && pVM->rem.s.Env.eip <= 0x90278c30)
938// || (pVM->rem.s.Env.eip >= 0x9010e250 && pVM->rem.s.Env.eip <= 0x9010e260)
939// )
940// )
941// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
942//DBGFR3InfoLog(pVM, "timers", NULL);
943
944
945 int rc = cpu_exec(&pVM->rem.s.Env);
946 switch (rc)
947 {
948 /*
949 * This happens when the execution was interrupted
950 * by an external event, like pending timers.
951 */
952 case EXCP_INTERRUPT:
953 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
954 rc = VINF_SUCCESS;
955 break;
956
957 /*
958 * hlt instruction.
959 */
960 case EXCP_HLT:
961 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
962 rc = VINF_EM_HALT;
963 break;
964
965 /*
966 * Breakpoint/single step.
967 */
968 case EXCP_DEBUG:
969 {
970#if 0//def DEBUG_bird
971 static int iBP = 0;
972 printf("howdy, breakpoint! iBP=%d\n", iBP);
973 switch (iBP)
974 {
975 case 0:
976 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
977 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
978 //pVM->rem.s.Env.interrupt_request = 0;
979 //pVM->rem.s.Env.exception_index = -1;
980 //g_fInterruptDisabled = 1;
981 rc = VINF_SUCCESS;
982 asm("int3");
983 break;
984 default:
985 asm("int3");
986 break;
987 }
988 iBP++;
989#else
990 /* breakpoint or single step? */
991 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
992 int iBP;
993 rc = VINF_EM_DBG_STEPPED;
994 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
995 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
996 {
997 rc = VINF_EM_DBG_BREAKPOINT;
998 break;
999 }
1000 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1001#endif
1002 break;
1003 }
1004
1005 /*
1006 * Switch to RAW-mode.
1007 */
1008 case EXCP_EXECUTE_RAW:
1009 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1010 rc = VINF_EM_RESCHEDULE_RAW;
1011 break;
1012
1013 /*
1014 * Switch to hardware accelerated RAW-mode.
1015 */
1016 case EXCP_EXECUTE_HWACC:
1017 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1018 rc = VINF_EM_RESCHEDULE_HWACC;
1019 break;
1020
1021 /*
1022 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
1023 */
1024 case EXCP_RC:
1025 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1026 rc = pVM->rem.s.rc;
1027 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1028 break;
1029
1030 /*
1031 * Figure out the rest when they arrive....
1032 */
1033 default:
1034 AssertMsgFailed(("rc=%d\n", rc));
1035 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1036 rc = VINF_SUCCESS;
1037 break;
1038 }
1039
1040 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%08x)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1041 return rc;
1042}
1043
1044
1045/**
1046 * Check if the cpu state is suitable for Raw execution.
1047 *
1048 * @returns boolean
1049 * @param env The CPU env struct.
1050 * @param eip The EIP to check this for (might differ from env->eip).
1051 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1052 * @param pExceptionIndex Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1053 *
1054 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1055 */
1056bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, uint32_t *pExceptionIndex)
1057{
1058 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1059 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1060 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1061
1062 /* Update counter. */
1063 env->pVM->rem.s.cCanExecuteRaw++;
1064
1065 if (HWACCMIsEnabled(env->pVM))
1066 {
1067 env->state |= CPU_RAW_HWACC;
1068
1069 /*
1070 * Create partial context for HWACCMR3CanExecuteGuest
1071 */
1072 CPUMCTX Ctx;
1073 Ctx.cr0 = env->cr[0];
1074 Ctx.cr3 = env->cr[3];
1075 Ctx.cr4 = env->cr[4];
1076
1077 Ctx.tr = env->tr.selector;
1078 Ctx.trHid.u32Base = (uint32_t)env->tr.base;
1079 Ctx.trHid.u32Limit = env->tr.limit;
1080 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1081
1082 Ctx.idtr.cbIdt = env->idt.limit;
1083 Ctx.idtr.pIdt = (uint32_t)env->idt.base;
1084
1085 Ctx.eflags.u32 = env->eflags;
1086
1087 Ctx.cs = env->segs[R_CS].selector;
1088 Ctx.csHid.u32Base = (uint32_t)env->segs[R_CS].base;
1089 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1090 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1091
1092 Ctx.ss = env->segs[R_SS].selector;
1093 Ctx.ssHid.u32Base = (uint32_t)env->segs[R_SS].base;
1094 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1095 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1096
1097 /* Hardware accelerated raw-mode:
1098 *
1099 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1100 */
1101 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1102 {
1103 *pExceptionIndex = EXCP_EXECUTE_HWACC;
1104 return true;
1105 }
1106 return false;
1107 }
1108
1109 /*
1110 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1111 * or 32 bits protected mode ring 0 code
1112 *
1113 * The tests are ordered by the likelyhood of being true during normal execution.
1114 */
1115 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1116 {
1117 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1118 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1119 return false;
1120 }
1121
1122#ifndef VBOX_RAW_V86
1123 if (fFlags & VM_MASK) {
1124 STAM_COUNTER_INC(&gStatRefuseVM86);
1125 Log2(("raw mode refused: VM_MASK\n"));
1126 return false;
1127 }
1128#endif
1129
1130 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1131 {
1132#ifndef DEBUG_bird
1133 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1134#endif
1135 return false;
1136 }
1137
1138 if (env->singlestep_enabled)
1139 {
1140 //Log2(("raw mode refused: Single step\n"));
1141 return false;
1142 }
1143
1144 if (env->nb_breakpoints > 0)
1145 {
1146 //Log2(("raw mode refused: Breakpoints\n"));
1147 return false;
1148 }
1149
1150 uint32_t u32CR0 = env->cr[0];
1151 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1152 {
1153 STAM_COUNTER_INC(&gStatRefusePaging);
1154 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1155 return false;
1156 }
1157
1158 if (env->cr[4] & CR4_PAE_MASK)
1159 {
1160 STAM_COUNTER_INC(&gStatRefusePAE);
1161 //Log2(("raw mode refused: PAE\n"));
1162 return false;
1163 }
1164
1165 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1166 {
1167 if (!EMIsRawRing3Enabled(env->pVM))
1168 return false;
1169
1170 if (!(env->eflags & IF_MASK))
1171 {
1172#ifdef VBOX_RAW_V86
1173 if(!(fFlags & VM_MASK))
1174 return false;
1175#else
1176 STAM_COUNTER_INC(&gStatRefuseIF0);
1177 Log2(("raw mode refused: IF (RawR3)\n"));
1178 return false;
1179#endif
1180 }
1181
1182 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1183 {
1184 STAM_COUNTER_INC(&gStatRefuseWP0);
1185 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1186 return false;
1187 }
1188 }
1189 else
1190 {
1191 if (!EMIsRawRing0Enabled(env->pVM))
1192 return false;
1193
1194 // Let's start with pure 32 bits ring 0 code first
1195 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1196 {
1197 STAM_COUNTER_INC(&gStatRefuseCode16);
1198 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1199 return false;
1200 }
1201
1202 // Only R0
1203 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1204 {
1205 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1206 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1207 return false;
1208 }
1209
1210 if (!(u32CR0 & CR0_WP_MASK))
1211 {
1212 STAM_COUNTER_INC(&gStatRefuseWP0);
1213 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1214 return false;
1215 }
1216
1217 if (PATMIsPatchGCAddr(env->pVM, eip))
1218 {
1219 Log2(("raw r0 mode forced: patch code\n"));
1220 *pExceptionIndex = EXCP_EXECUTE_RAW;
1221 return true;
1222 }
1223
1224#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1225 if (!(env->eflags & IF_MASK))
1226 {
1227 STAM_COUNTER_INC(&gStatRefuseIF0);
1228 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1229 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1230 return false;
1231 }
1232#endif
1233
1234 env->state |= CPU_RAW_RING0;
1235 }
1236
1237 /*
1238 * Don't reschedule the first time we're called, because there might be
1239 * special reasons why we're here that is not covered by the above checks.
1240 */
1241 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1242 {
1243 Log2(("raw mode refused: first scheduling\n"));
1244 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1245 return false;
1246 }
1247
1248 Assert(PGMPhysIsA20Enabled(env->pVM));
1249 *pExceptionIndex = EXCP_EXECUTE_RAW;
1250 return true;
1251}
1252
1253
1254/**
1255 * Fetches a code byte.
1256 *
1257 * @returns Success indicator (bool) for ease of use.
1258 * @param env The CPU environment structure.
1259 * @param GCPtrInstr Where to fetch code.
1260 * @param pu8Byte Where to store the byte on success
1261 */
1262bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1263{
1264 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1265 if (VBOX_SUCCESS(rc))
1266 return true;
1267 return false;
1268}
1269
1270
1271/**
1272 * Flush (or invalidate if you like) page table/dir entry.
1273 *
1274 * (invlpg instruction; tlb_flush_page)
1275 *
1276 * @param env Pointer to cpu environment.
1277 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1278 */
1279void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1280{
1281 PVM pVM = env->pVM;
1282
1283 /*
1284 * When we're replaying invlpg instructions or restoring a saved
1285 * state we disable this path.
1286 */
1287 if (pVM->rem.s.fIgnoreInvlPg)
1288 return;
1289 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1290
1291 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1292
1293 /*
1294 * Update the control registers before calling PGMFlushPage.
1295 */
1296 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1297 pCtx->cr0 = env->cr[0];
1298 pCtx->cr3 = env->cr[3];
1299 pCtx->cr4 = env->cr[4];
1300
1301 /*
1302 * Let PGM do the rest.
1303 */
1304 int rc = PGMInvalidatePage(pVM, GCPtr);
1305 if (VBOX_FAILURE(rc))
1306 {
1307 AssertMsgFailed(("remR3FlushPage %x %x %x %d failed!!\n", GCPtr));
1308 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1309 }
1310 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1311}
1312
1313/**
1314 * Set page table/dir entry. (called from tlb_set_page)
1315 *
1316 * @param env Pointer to cpu environment.
1317 */
1318void remR3SetPage(CPUState *env, CPUTLBEntry *pRead, CPUTLBEntry *pWrite, int prot, int is_user)
1319{
1320 uint32_t virt_addr, addend;
1321
1322 Log2(("tlb_set_page_raw read (%x-%x) write (%x-%x) prot %x is_user %d\n", pRead->address, pRead->addend, pWrite->address, pWrite->addend, prot, is_user));
1323
1324 if (prot & PAGE_WRITE)
1325 {
1326 addend = pWrite->addend;
1327 virt_addr = pWrite->address;
1328 }
1329 else
1330 if (prot & PAGE_READ)
1331 {
1332 addend = pRead->addend;
1333 virt_addr = pRead->address;
1334 }
1335 else
1336 {
1337 // Should never happen!
1338 AssertMsgFailed(("tlb_set_page_raw unexpected protection flags %x\n", prot));
1339 return;
1340 }
1341
1342 // Clear IO_* flags (TODO: are they actually useful for us??)
1343 virt_addr &= ~0xFFF;
1344
1345 /*
1346 * Update the control registers before calling PGMFlushPage.
1347 */
1348 PCPUMCTX pCtx = (PCPUMCTX)env->pVM->rem.s.pCtx;
1349 pCtx->cr0 = env->cr[0];
1350 pCtx->cr3 = env->cr[3];
1351 pCtx->cr4 = env->cr[4];
1352
1353 /*
1354 * Let PGM do the rest.
1355 */
1356 int rc = PGMInvalidatePage(env->pVM, (RTGCPTR)virt_addr);
1357 if (VBOX_FAILURE(rc))
1358 {
1359 AssertMsgFailed(("RAWEx_SetPageEntry %x %x %d failed!!\n", virt_addr, prot, is_user));
1360 VM_FF_SET(env->pVM, VM_FF_PGM_SYNC_CR3);
1361 }
1362}
1363
1364/**
1365 * Called from tlb_protect_code in order to write monitor a code page.
1366 *
1367 * @param env Pointer to the CPU environment.
1368 * @param GCPtr Code page to monitor
1369 */
1370void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1371{
1372 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1373 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1374 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1375 && !(env->eflags & VM_MASK) /* no V86 mode */
1376 && !HWACCMIsEnabled(env->pVM))
1377 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1378}
1379
1380/**
1381 * Called when the CPU is initialized, any of the CRx registers are changed or
1382 * when the A20 line is modified.
1383 *
1384 * @param env Pointer to the CPU environment.
1385 * @param fGlobal Set if the flush is global.
1386 */
1387void remR3FlushTLB(CPUState *env, bool fGlobal)
1388{
1389 PVM pVM = env->pVM;
1390
1391 /*
1392 * When we're replaying invlpg instructions or restoring a saved
1393 * state we disable this path.
1394 */
1395 if (pVM->rem.s.fIgnoreCR3Load)
1396 return;
1397
1398 /*
1399 * The caller doesn't check cr4, so we have to do that for ourselves.
1400 */
1401 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1402 fGlobal = true;
1403 Log(("remR3FlushTLB: CR0=%VGp CR3=%VGp CR4=%VGp %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1404
1405 /*
1406 * Update the control registers before calling PGMR3FlushTLB.
1407 */
1408 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1409 pCtx->cr0 = env->cr[0];
1410 pCtx->cr3 = env->cr[3];
1411 pCtx->cr4 = env->cr[4];
1412
1413 /*
1414 * Let PGM do the rest.
1415 */
1416 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1417}
1418
1419
1420/**
1421 * Called when any of the cr0, cr4 or efer registers is updated.
1422 *
1423 * @param env Pointer to the CPU environment.
1424 */
1425void remR3ChangeCpuMode(CPUState *env)
1426{
1427 int rc;
1428 PVM pVM = env->pVM;
1429
1430 /*
1431 * When we're replaying loads or restoring a saved
1432 * state this path is disabled.
1433 */
1434 if (pVM->rem.s.fIgnoreCpuMode)
1435 return;
1436
1437 /*
1438 * Update the control registers before calling PGMR3ChangeMode()
1439 * as it may need to map whatever cr3 is pointing to.
1440 */
1441 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1442 pCtx->cr0 = env->cr[0];
1443 pCtx->cr3 = env->cr[3];
1444 pCtx->cr4 = env->cr[4];
1445
1446#ifdef TARGET_X86_64
1447 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1448 if (rc != VINF_SUCCESS)
1449 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1450#else
1451 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1452 if (rc != VINF_SUCCESS)
1453 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1454#endif
1455}
1456
1457
1458/**
1459 * Called from compiled code to run dma.
1460 *
1461 * @param env Pointer to the CPU environment.
1462 */
1463void remR3DmaRun(CPUState *env)
1464{
1465 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1466 PDMR3DmaRun(env->pVM);
1467 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1468}
1469
1470/**
1471 * Called from compiled code to schedule pending timers in VMM
1472 *
1473 * @param env Pointer to the CPU environment.
1474 */
1475void remR3TimersRun(CPUState *env)
1476{
1477 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1478 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1479 TMR3TimerQueuesDo(env->pVM);
1480 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1481 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1482}
1483
1484/**
1485 * Record trap occurance
1486 *
1487 * @returns VBox status code
1488 * @param env Pointer to the CPU environment.
1489 * @param uTrap Trap nr
1490 * @param uErrorCode Error code
1491 * @param pvNextEIP Next EIP
1492 */
1493int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1494{
1495 PVM pVM = (PVM)env->pVM;
1496#ifdef VBOX_WITH_STATISTICS
1497 static STAMCOUNTER aStatTrap[255];
1498 static bool aRegisters[ELEMENTS(aStatTrap)];
1499#endif
1500
1501#ifdef VBOX_WITH_STATISTICS
1502 if (uTrap < 255)
1503 {
1504 if (!aRegisters[uTrap])
1505 {
1506 aRegisters[uTrap] = true;
1507 char szStatName[64];
1508 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1509 STAM_REG(env->pVM, &aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1510 }
1511 STAM_COUNTER_INC(&aStatTrap[uTrap]);
1512 }
1513#endif
1514 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1515 if(uTrap < 0x20)
1516 {
1517 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1518
1519 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 128)
1520 {
1521 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1522 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1523 return VERR_REM_TOO_MANY_TRAPS;
1524 }
1525 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1526 pVM->rem.s.cPendingExceptions = 1;
1527 pVM->rem.s.uPendingException = uTrap;
1528 pVM->rem.s.uPendingExcptEIP = env->eip;
1529 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1530 }
1531 else
1532 {
1533 pVM->rem.s.cPendingExceptions = 0;
1534 pVM->rem.s.uPendingException = uTrap;
1535 pVM->rem.s.uPendingExcptEIP = env->eip;
1536 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1537 }
1538 return VINF_SUCCESS;
1539}
1540
1541/*
1542 * Clear current active trap
1543 *
1544 * @param pVM VM Handle.
1545 */
1546void remR3TrapClear(PVM pVM)
1547{
1548 pVM->rem.s.cPendingExceptions = 0;
1549 pVM->rem.s.uPendingException = 0;
1550 pVM->rem.s.uPendingExcptEIP = 0;
1551 pVM->rem.s.uPendingExcptCR2 = 0;
1552}
1553
1554
1555/**
1556 * Syncs the internal REM state with the VM.
1557 *
1558 * This must be called before REMR3Run() is invoked whenever when the REM
1559 * state is not up to date. Calling it several times in a row is not
1560 * permitted.
1561 *
1562 * @returns VBox status code.
1563 *
1564 * @param pVM VM Handle.
1565 *
1566 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1567 * no do this since the majority of the callers don't want any unnecessary of events
1568 * pending that would immediatly interrupt execution.
1569 */
1570REMR3DECL(int) REMR3State(PVM pVM)
1571{
1572 Assert(!pVM->rem.s.fInREM);
1573 Log2(("REMR3State:\n"));
1574 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1575 register const CPUMCTX *pCtx = pVM->rem.s.pCtx;
1576 register unsigned fFlags;
1577
1578 /*
1579 * Copy the registers which requires no special handling.
1580 */
1581 Assert(R_EAX == 0);
1582 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1583 Assert(R_ECX == 1);
1584 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1585 Assert(R_EDX == 2);
1586 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1587 Assert(R_EBX == 3);
1588 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1589 Assert(R_ESP == 4);
1590 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1591 Assert(R_EBP == 5);
1592 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1593 Assert(R_ESI == 6);
1594 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1595 Assert(R_EDI == 7);
1596 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1597 pVM->rem.s.Env.eip = pCtx->eip;
1598
1599 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1600
1601 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1602
1603 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1604 pVM->rem.s.Env.dr[0] = pCtx->dr0;
1605 pVM->rem.s.Env.dr[1] = pCtx->dr1;
1606 pVM->rem.s.Env.dr[2] = pCtx->dr2;
1607 pVM->rem.s.Env.dr[3] = pCtx->dr3;
1608 pVM->rem.s.Env.dr[4] = pCtx->dr4;
1609 pVM->rem.s.Env.dr[5] = pCtx->dr5;
1610 pVM->rem.s.Env.dr[6] = pCtx->dr6;
1611 pVM->rem.s.Env.dr[7] = pCtx->dr7;
1612
1613 /*
1614 * Replay invlpg?
1615 */
1616 if (pVM->rem.s.cInvalidatedPages)
1617 {
1618 pVM->rem.s.fIgnoreInvlPg = true;
1619 RTUINT i;
1620 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1621 {
1622 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1623 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1624 }
1625 pVM->rem.s.fIgnoreInvlPg = false;
1626 pVM->rem.s.cInvalidatedPages = 0;
1627 }
1628
1629 /*
1630 * Registers which are seldomly changed and require special handling / order when changed.
1631 */
1632 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1633 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1634 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1635 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR))
1636 {
1637 if (fFlags & CPUM_CHANGED_FPU_REM)
1638 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1639
1640 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1641 {
1642 pVM->rem.s.fIgnoreCR3Load = true;
1643 tlb_flush(&pVM->rem.s.Env, true);
1644 pVM->rem.s.fIgnoreCR3Load = false;
1645 }
1646
1647 if (fFlags & CPUM_CHANGED_CR4)
1648 {
1649 pVM->rem.s.fIgnoreCR3Load = true;
1650 pVM->rem.s.fIgnoreCpuMode = true;
1651 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1652 pVM->rem.s.fIgnoreCpuMode = false;
1653 pVM->rem.s.fIgnoreCR3Load = false;
1654 }
1655
1656 if (fFlags & CPUM_CHANGED_CR0)
1657 {
1658 pVM->rem.s.fIgnoreCR3Load = true;
1659 pVM->rem.s.fIgnoreCpuMode = true;
1660 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1661 pVM->rem.s.fIgnoreCpuMode = false;
1662 pVM->rem.s.fIgnoreCR3Load = false;
1663 }
1664
1665 if (fFlags & CPUM_CHANGED_CR3)
1666 {
1667 pVM->rem.s.fIgnoreCR3Load = true;
1668 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1669 pVM->rem.s.fIgnoreCR3Load = false;
1670 }
1671
1672 if (fFlags & CPUM_CHANGED_GDTR)
1673 {
1674 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1675 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1676 }
1677
1678 if (fFlags & CPUM_CHANGED_IDTR)
1679 {
1680 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1681 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1682 }
1683
1684 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1685 {
1686 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1687 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1688 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1689 }
1690
1691 if (fFlags & CPUM_CHANGED_LDTR)
1692 {
1693 if (fFlags & CPUM_CHANGED_HIDDEN_SEL_REGS)
1694 {
1695 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1696 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u32Base;
1697 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1698 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1699 }
1700 else
1701 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1702 }
1703
1704 if (fFlags & CPUM_CHANGED_TR)
1705 {
1706 if (fFlags & CPUM_CHANGED_HIDDEN_SEL_REGS)
1707 {
1708 pVM->rem.s.Env.tr.selector = pCtx->tr;
1709 pVM->rem.s.Env.tr.base = pCtx->trHid.u32Base;
1710 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1711 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1712 }
1713 else
1714 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1715
1716 /** @note do_interrupt will fault if the busy flag is still set.... */
1717 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1718 }
1719 }
1720
1721 /*
1722 * Update selector registers.
1723 * This must be done *after* we've synced gdt, ldt and crX registers
1724 * since we're reading the GDT/LDT om sync_seg. This will happen with
1725 * saved state which takes a quick dip into rawmode for instance.
1726 */
1727 /*
1728 * Stack; Note first check this one as the CPL might have changed. The
1729 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1730 */
1731
1732 if (fFlags & CPUM_CHANGED_HIDDEN_SEL_REGS)
1733 {
1734 /* The hidden selector registers are valid in the CPU context. */
1735 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1736
1737 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u32Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1738 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u32Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1739 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u32Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1740 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u32Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1741 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u32Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1742 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u32Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1743
1744 /* Set current CPL. */
1745 if (pCtx->eflags.Bits.u1VM == 1)
1746 cpu_x86_set_cpl(&pVM->rem.s.Env, 3);
1747 else
1748 cpu_x86_set_cpl(&pVM->rem.s.Env, pCtx->ss & 3);
1749 }
1750 else
1751 {
1752 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1753 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1754 {
1755 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1756
1757 cpu_x86_set_cpl(&pVM->rem.s.Env, (pCtx->eflags.Bits.u1VM) ? 3 : (pCtx->ss & 3));
1758 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1759#ifdef VBOX_WITH_STATISTICS
1760 if (pVM->rem.s.Env.segs[R_SS].newselector)
1761 {
1762 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1763 }
1764#endif
1765 }
1766 else
1767 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1768
1769 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1770 {
1771 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1772 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1773#ifdef VBOX_WITH_STATISTICS
1774 if (pVM->rem.s.Env.segs[R_ES].newselector)
1775 {
1776 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1777 }
1778#endif
1779 }
1780 else
1781 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1782
1783 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1784 {
1785 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1786 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1787#ifdef VBOX_WITH_STATISTICS
1788 if (pVM->rem.s.Env.segs[R_CS].newselector)
1789 {
1790 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1791 }
1792#endif
1793 }
1794 else
1795 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1796
1797 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1798 {
1799 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1800 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1801#ifdef VBOX_WITH_STATISTICS
1802 if (pVM->rem.s.Env.segs[R_DS].newselector)
1803 {
1804 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1805 }
1806#endif
1807 }
1808 else
1809 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1810
1811 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1812 * be the same but not the base/limit. */
1813 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1814 {
1815 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1816 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1817#ifdef VBOX_WITH_STATISTICS
1818 if (pVM->rem.s.Env.segs[R_FS].newselector)
1819 {
1820 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1821 }
1822#endif
1823 }
1824 else
1825 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1826
1827 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1828 {
1829 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1830 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1831#ifdef VBOX_WITH_STATISTICS
1832 if (pVM->rem.s.Env.segs[R_GS].newselector)
1833 {
1834 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1835 }
1836#endif
1837 }
1838 else
1839 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1840 }
1841
1842 /*
1843 * Check for traps.
1844 */
1845 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1846 bool fIsSoftwareInterrupt;
1847 uint8_t u8TrapNo;
1848 int rc = TRPMQueryTrap(pVM, &u8TrapNo, &fIsSoftwareInterrupt);
1849 if (VBOX_SUCCESS(rc))
1850 {
1851 #ifdef DEBUG
1852 if (u8TrapNo == 0x80)
1853 {
1854 remR3DumpLnxSyscall(pVM);
1855 remR3DumpOBsdSyscall(pVM);
1856 }
1857 #endif
1858
1859 pVM->rem.s.Env.exception_index = u8TrapNo;
1860 if (!fIsSoftwareInterrupt)
1861 {
1862 pVM->rem.s.Env.exception_is_int = 0;
1863 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
1864 }
1865 else
1866 {
1867 /*
1868 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
1869 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
1870 * for int03 and into.
1871 */
1872 pVM->rem.s.Env.exception_is_int = 1;
1873 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 2;
1874 /* int 3 may be generated by one-byte 0xcc */
1875 if (u8TrapNo == 3)
1876 {
1877 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xcc)
1878 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1879 }
1880 /* int 4 may be generated by one-byte 0xce */
1881 else if (u8TrapNo == 4)
1882 {
1883 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xce)
1884 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1885 }
1886 }
1887
1888 /* get error code and cr2 if needed. */
1889 switch (u8TrapNo)
1890 {
1891 case 0x0e:
1892 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
1893 /* fallthru */
1894 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
1895 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
1896 break;
1897
1898 case 0x11: case 0x08:
1899 default:
1900 pVM->rem.s.Env.error_code = 0;
1901 break;
1902 }
1903
1904 /*
1905 * We can now reset the active trap since the recompiler is gonna have a go at it.
1906 */
1907 rc = TRPMResetTrap(pVM);
1908 AssertRC(rc);
1909 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
1910 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
1911//if (pVM->rem.s.Env.eip == 0x40005a2f)
1912// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP | CPU_RAW_MODE_DISABLED | CPU_RAWR0_MODE_DISABLED;
1913 }
1914
1915 /*
1916 * Clear old interrupt request flags; Check for pending hardware interrupts.
1917 * (See @remark for why we don't check for other FFs.)
1918 */
1919 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
1920 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
1921 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
1922 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
1923
1924 /*
1925 * We're now in REM mode.
1926 */
1927 pVM->rem.s.fInREM = true;
1928 pVM->rem.s.cCanExecuteRaw = 0;
1929 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
1930 Log2(("REMR3State: returns VINF_SUCCESS\n"));
1931 return VINF_SUCCESS;
1932}
1933
1934
1935/**
1936 * Syncs back changes in the REM state to the the VM state.
1937 *
1938 * This must be called after invoking REMR3Run().
1939 * Calling it several times in a row is not permitted.
1940 *
1941 * @returns VBox status code.
1942 *
1943 * @param pVM VM Handle.
1944 */
1945REMR3DECL(int) REMR3StateBack(PVM pVM)
1946{
1947 Log2(("REMR3StateBack:\n"));
1948 Assert(pVM->rem.s.fInREM);
1949 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
1950 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
1951
1952 /*
1953 * Copy back the registers.
1954 * This is done in the order they are declared in the CPUMCTX structure.
1955 */
1956
1957 /** @todo FOP */
1958 /** @todo FPUIP */
1959 /** @todo CS */
1960 /** @todo FPUDP */
1961 /** @todo DS */
1962 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
1963 pCtx->fpu.MXCSR = 0;
1964 pCtx->fpu.MXCSR_MASK = 0;
1965
1966 /** @todo check if FPU/XMM was actually used in the recompiler */
1967 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
1968//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
1969
1970 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
1971 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
1972 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
1973 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
1974 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
1975 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
1976 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
1977
1978 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
1979 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
1980
1981#ifdef VBOX_WITH_STATISTICS
1982 if (pVM->rem.s.Env.segs[R_SS].newselector)
1983 {
1984 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
1985 }
1986 if (pVM->rem.s.Env.segs[R_GS].newselector)
1987 {
1988 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
1989 }
1990 if (pVM->rem.s.Env.segs[R_FS].newselector)
1991 {
1992 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
1993 }
1994 if (pVM->rem.s.Env.segs[R_ES].newselector)
1995 {
1996 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
1997 }
1998 if (pVM->rem.s.Env.segs[R_DS].newselector)
1999 {
2000 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2001 }
2002 if (pVM->rem.s.Env.segs[R_CS].newselector)
2003 {
2004 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2005 }
2006#endif
2007 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2008 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2009 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2010 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2011 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2012
2013 pCtx->eip = pVM->rem.s.Env.eip;
2014 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2015
2016 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2017 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2018 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2019 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2020
2021 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2022 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2023 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2024 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2025 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2026 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2027 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2028 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2029
2030 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2031 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2032 {
2033 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2034 STAM_COUNTER_INC(&gStatREMGDTChange);
2035 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2036 }
2037
2038 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2039 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2040 {
2041 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2042 STAM_COUNTER_INC(&gStatREMIDTChange);
2043 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2044 }
2045
2046 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2047 {
2048 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2049 STAM_COUNTER_INC(&gStatREMLDTRChange);
2050 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2051 }
2052 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2053 {
2054 pCtx->tr = pVM->rem.s.Env.tr.selector;
2055 STAM_COUNTER_INC(&gStatREMTRChange);
2056 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2057 }
2058
2059 /** @todo These values could still be out of sync! */
2060 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2061 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2062 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2063 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2064
2065 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2066 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2067 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2068
2069 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2070 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2071 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2072
2073 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2074 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2075 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2076
2077 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2078 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2079 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2080
2081 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2082 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2083 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2084
2085 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2086 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2087 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2088
2089 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2090 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2091 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2092
2093 /* Sysenter MSR */
2094 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2095 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2096 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2097
2098 remR3TrapClear(pVM);
2099
2100 /*
2101 * Check for traps.
2102 */
2103 if ( pVM->rem.s.Env.exception_index >= 0
2104 && pVM->rem.s.Env.exception_index < 256)
2105 {
2106 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2107 int rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int);
2108 AssertRC(rc);
2109 switch (pVM->rem.s.Env.exception_index)
2110 {
2111 case 0x0e:
2112 TRPMSetFaultAddress(pVM, pCtx->cr2);
2113 /* fallthru */
2114 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2115 case 0x11: case 0x08: /* 0 */
2116 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2117 break;
2118 }
2119
2120 }
2121
2122 /*
2123 * We're not longer in REM mode.
2124 */
2125 pVM->rem.s.fInREM = false;
2126 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2127 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2128 return VINF_SUCCESS;
2129}
2130
2131
2132/**
2133 * This is called by the disassembler when it wants to update the cpu state
2134 * before for instance doing a register dump.
2135 */
2136static void remR3StateUpdate(PVM pVM)
2137{
2138 Assert(pVM->rem.s.fInREM);
2139 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2140
2141 /*
2142 * Copy back the registers.
2143 * This is done in the order they are declared in the CPUMCTX structure.
2144 */
2145
2146 /** @todo FOP */
2147 /** @todo FPUIP */
2148 /** @todo CS */
2149 /** @todo FPUDP */
2150 /** @todo DS */
2151 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2152 pCtx->fpu.MXCSR = 0;
2153 pCtx->fpu.MXCSR_MASK = 0;
2154
2155 /** @todo check if FPU/XMM was actually used in the recompiler */
2156 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2157//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2158
2159 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2160 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2161 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2162 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2163 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2164 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2165 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2166
2167 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2168 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2169
2170 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2171 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2172 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2173 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2174 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2175
2176 pCtx->eip = pVM->rem.s.Env.eip;
2177 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2178
2179 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2180 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2181 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2182 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2183
2184 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2185 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2186 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2187 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2188 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2189 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2190 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2191 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2192
2193 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2194 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2195 {
2196 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2197 STAM_COUNTER_INC(&gStatREMGDTChange);
2198 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2199 }
2200
2201 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2202 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2203 {
2204 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2205 STAM_COUNTER_INC(&gStatREMIDTChange);
2206 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2207 }
2208
2209 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2210 {
2211 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2212 STAM_COUNTER_INC(&gStatREMLDTRChange);
2213 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2214 }
2215 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2216 {
2217 pCtx->tr = pVM->rem.s.Env.tr.selector;
2218 STAM_COUNTER_INC(&gStatREMTRChange);
2219 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2220 }
2221
2222 /** @todo These values could still be out of sync! */
2223 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2224 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2225 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2226 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2227
2228 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2229 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2230 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2231
2232 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2233 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2234 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2235
2236 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2237 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2238 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2239
2240 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2241 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2242 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2243
2244 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2245 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2246 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2247
2248 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2249 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2250 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2251
2252 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2253 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2254 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2255
2256 /* Sysenter MSR */
2257 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2258 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2259 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2260}
2261
2262
2263/**
2264 * Update the VMM state information if we're currently in REM.
2265 *
2266 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2267 * we're currently executing in REM and the VMM state is invalid. This method will of
2268 * course check that we're executing in REM before syncing any data over to the VMM.
2269 *
2270 * @param pVM The VM handle.
2271 */
2272REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2273{
2274 if (pVM->rem.s.fInREM)
2275 remR3StateUpdate(pVM);
2276}
2277
2278
2279#undef LOG_GROUP
2280#define LOG_GROUP LOG_GROUP_REM
2281
2282
2283/**
2284 * Notify the recompiler about Address Gate 20 state change.
2285 *
2286 * This notification is required since A20 gate changes are
2287 * initialized from a device driver and the VM might just as
2288 * well be in REM mode as in RAW mode.
2289 *
2290 * @param pVM VM handle.
2291 * @param fEnable True if the gate should be enabled.
2292 * False if the gate should be disabled.
2293 */
2294REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2295{
2296 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2297 VM_ASSERT_EMT(pVM);
2298 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2299}
2300
2301
2302/**
2303 * Replays the invalidated recorded pages.
2304 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2305 *
2306 * @param pVM VM handle.
2307 */
2308REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2309{
2310 VM_ASSERT_EMT(pVM);
2311
2312 /*
2313 * Sync the required registers.
2314 */
2315 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2316 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2317 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2318 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2319
2320 /*
2321 * Replay the flushes.
2322 */
2323 pVM->rem.s.fIgnoreInvlPg = true;
2324 RTUINT i;
2325 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2326 {
2327 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2328 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2329 }
2330 pVM->rem.s.fIgnoreInvlPg = false;
2331 pVM->rem.s.cInvalidatedPages = 0;
2332}
2333
2334
2335/**
2336 * Replays the invalidated recorded pages.
2337 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2338 *
2339 * @param pVM VM handle.
2340 */
2341REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2342{
2343 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2344 VM_ASSERT_EMT(pVM);
2345
2346 /*
2347 * Replay the flushes.
2348 */
2349 RTUINT i;
2350 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2351 pVM->rem.s.cHandlerNotifications = 0;
2352 for (i = 0; i < c; i++)
2353 {
2354 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2355 switch (pRec->enmKind)
2356 {
2357 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2358 REMR3NotifyHandlerPhysicalRegister(pVM,
2359 pRec->u.PhysicalRegister.enmType,
2360 pRec->u.PhysicalRegister.GCPhys,
2361 pRec->u.PhysicalRegister.cb,
2362 pRec->u.PhysicalRegister.fHasHCHandler);
2363 break;
2364
2365 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2366 REMR3NotifyHandlerPhysicalDeregister(pVM,
2367 pRec->u.PhysicalDeregister.enmType,
2368 pRec->u.PhysicalDeregister.GCPhys,
2369 pRec->u.PhysicalDeregister.cb,
2370 pRec->u.PhysicalDeregister.fHasHCHandler,
2371 pRec->u.PhysicalDeregister.pvHCPtr);
2372 break;
2373
2374 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2375 REMR3NotifyHandlerPhysicalModify(pVM,
2376 pRec->u.PhysicalModify.enmType,
2377 pRec->u.PhysicalModify.GCPhysOld,
2378 pRec->u.PhysicalModify.GCPhysNew,
2379 pRec->u.PhysicalModify.cb,
2380 pRec->u.PhysicalModify.fHasHCHandler,
2381 pRec->u.PhysicalModify.pvHCPtr);
2382 break;
2383
2384 default:
2385 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2386 break;
2387 }
2388 }
2389}
2390
2391
2392/**
2393 * Notify REM about changed code page.
2394 *
2395 * @returns VBox status code.
2396 * @param pVM VM handle.
2397 * @param pvCodePage Code page address
2398 */
2399REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2400{
2401 int rc;
2402 RTGCPHYS PhysGC;
2403 uint64_t flags;
2404
2405 VM_ASSERT_EMT(pVM);
2406
2407 /*
2408 * Get the physical page address.
2409 */
2410 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2411 if (rc == VINF_SUCCESS)
2412 {
2413 /*
2414 * Sync the required registers and flush the whole page.
2415 * (Easier to do the whole page than notifying it about each physical
2416 * byte that was changed.
2417 */
2418 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2419 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2420 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2421 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2422
2423 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2424 }
2425 return VINF_SUCCESS;
2426}
2427
2428/**
2429 * Notification about a successful MMR3PhysRegister() call.
2430 *
2431 * @param pVM VM handle.
2432 * @param GCPhys The physical address the RAM.
2433 * @param cb Size of the memory.
2434 * @param pvRam The HC address of the RAM.
2435 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2436 */
2437REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvRam, unsigned fFlags)
2438{
2439 Log(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2440 VM_ASSERT_EMT(pVM);
2441
2442 /*
2443 * Validate input - we trust the caller.
2444 */
2445 Assert(!GCPhys || pvRam);
2446 Assert(RT_ALIGN_P(pvRam, PAGE_SIZE) == pvRam);
2447 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2448 Assert(cb);
2449 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2450
2451 /*
2452 * Base ram?
2453 */
2454 if (!GCPhys)
2455 {
2456#ifndef PGM_DYNAMIC_RAM_ALLOC
2457 AssertRelease(!phys_ram_base);
2458 phys_ram_base = pvRam;
2459#endif
2460 phys_ram_size = cb;
2461 phys_ram_dirty = MMR3HeapAllocZ(pVM, MM_TAG_REM, cb >> PAGE_SHIFT);
2462 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", cb >> PAGE_SHIFT));
2463 }
2464#ifndef PGM_DYNAMIC_RAM_ALLOC
2465 AssertRelease(phys_ram_base);
2466#endif
2467
2468 /*
2469 * Register the ram.
2470 */
2471#ifdef PGM_DYNAMIC_RAM_ALLOC
2472 if (!GCPhys)
2473 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2474 else
2475 {
2476 uint32_t i;
2477
2478 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2479
2480 AssertRelease(pVM->rem.s.cPhysRegistrations < REM_MAX_PHYS_REGISTRATIONS);
2481 for (i=0;i<pVM->rem.s.cPhysRegistrations;i++)
2482 {
2483 if (pVM->rem.s.aPhysReg[i].GCPhys == GCPhys)
2484 {
2485 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvRam;
2486 pVM->rem.s.aPhysReg[i].cb = cb;
2487 break;
2488 }
2489 }
2490 if (i == pVM->rem.s.cPhysRegistrations)
2491 {
2492 pVM->rem.s.aPhysReg[i].GCPhys = GCPhys;
2493 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvRam;
2494 pVM->rem.s.aPhysReg[i].cb = cb;
2495 pVM->rem.s.cPhysRegistrations++;
2496 }
2497 }
2498#else
2499 cpu_register_physical_memory(GCPhys, cb, ((uintptr_t)pvRam - (uintptr_t)phys_ram_base)
2500 | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2501#endif
2502}
2503
2504
2505/**
2506 * Notification about a successful PGMR3PhysRegisterChunk() call.
2507 *
2508 * @param pVM VM handle.
2509 * @param GCPhys The physical address the RAM.
2510 * @param cb Size of the memory.
2511 * @param pvRam The HC address of the RAM.
2512 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2513 */
2514REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2515{
2516 uint32_t idx;
2517
2518 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2519 VM_ASSERT_EMT(pVM);
2520
2521 /*
2522 * Validate input - we trust the caller.
2523 */
2524 Assert(pvRam);
2525 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2526 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2527 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2528 Assert(fFlags == 0 /* normal RAM */);
2529
2530 if (!pVM->rem.s.paHCVirtToGCPhys)
2531 {
2532 uint32_t size = (_4G >> PGM_DYNAMIC_CHUNK_SHIFT) * sizeof(REMCHUNKINFO);
2533
2534 Assert(phys_ram_size);
2535
2536 pVM->rem.s.paHCVirtToGCPhys = (PREMCHUNKINFO)MMR3HeapAllocZ(pVM, MM_TAG_REM, size);
2537 pVM->rem.s.paGCPhysToHCVirt = (RTHCPTR)MMR3HeapAllocZ(pVM, MM_TAG_REM, (phys_ram_size >> PGM_DYNAMIC_CHUNK_SHIFT)*sizeof(RTHCPTR));
2538 }
2539 pVM->rem.s.paGCPhysToHCVirt[GCPhys >> PGM_DYNAMIC_CHUNK_SHIFT] = pvRam;
2540
2541 idx = (pvRam >> PGM_DYNAMIC_CHUNK_SHIFT);
2542 if (!pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1)
2543 {
2544 pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1 = pvRam;
2545 pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 = GCPhys;
2546 }
2547 else
2548 {
2549 Assert(!pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2);
2550 pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2 = pvRam;
2551 pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 = GCPhys;
2552 }
2553 /* Does the region spawn two chunks? */
2554 if (pvRam & PGM_DYNAMIC_CHUNK_OFFSET_MASK)
2555 {
2556 if (!pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk1)
2557 {
2558 pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk1 = pvRam;
2559 pVM->rem.s.paHCVirtToGCPhys[idx+1].GCPhys1 = GCPhys;
2560 }
2561 else
2562 {
2563 Assert(!pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk2);
2564 pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk2 = pvRam;
2565 pVM->rem.s.paHCVirtToGCPhys[idx+1].GCPhys2 = GCPhys;
2566 }
2567 }
2568 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2569}
2570
2571/**
2572 * Convert GC physical address to HC virt
2573 *
2574 * @returns The HC virt address corresponding to addr.
2575 * @param env The cpu environment.
2576 * @param addr The physical address.
2577 */
2578void *remR3GCPhys2HCVirt(void *env, target_ulong addr)
2579{
2580#ifdef PGM_DYNAMIC_RAM_ALLOC
2581 PVM pVM = ((CPUState *)env)->pVM;
2582 uint32_t i;
2583
2584 /* lookup in pVM->rem.s.aPhysReg array first (for ROM range(s) inside the guest's RAM) */
2585 for (i=0;i<pVM->rem.s.cPhysRegistrations;i++)
2586 {
2587 uint32_t off = addr - pVM->rem.s.aPhysReg[i].GCPhys;
2588 if (off < pVM->rem.s.aPhysReg[i].cb)
2589 {
2590 Log(("remR3GCPhys2HCVirt: %x -> %x\n", addr, pVM->rem.s.aPhysReg[i].HCVirt + off));
2591 return (void *)(pVM->rem.s.aPhysReg[i].HCVirt + off);
2592 }
2593 }
2594 AssertMsg(addr < phys_ram_size, ("remR3GCPhys2HCVirt: unknown physical address %x\n", addr));
2595 Log(("remR3GCPhys2HCVirt: %x -> %x\n", addr, pVM->rem.s.paGCPhysToHCVirt[addr >> PGM_DYNAMIC_CHUNK_SHIFT] + (addr & PGM_DYNAMIC_CHUNK_OFFSET_MASK)));
2596 return (void *)(pVM->rem.s.paGCPhysToHCVirt[addr >> PGM_DYNAMIC_CHUNK_SHIFT] + (addr & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
2597#else
2598 return phys_ram_base + addr;
2599#endif
2600}
2601
2602/**
2603 * Convert GC physical address to HC virt
2604 *
2605 * @returns The HC virt address corresponding to addr.
2606 * @param env The cpu environment.
2607 * @param addr The physical address.
2608 */
2609target_ulong remR3HCVirt2GCPhys(void *env, void *addr)
2610{
2611#ifdef PGM_DYNAMIC_RAM_ALLOC
2612 PVM pVM = ((CPUState *)env)->pVM;
2613 RTHCUINTPTR HCVirt = (RTHCUINTPTR)addr;
2614 uint32_t idx = (HCVirt >> PGM_DYNAMIC_CHUNK_SHIFT);
2615 RTHCUINTPTR off;
2616 RTUINT i;
2617
2618 off = HCVirt - pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1;
2619
2620 if ( pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1
2621 && off < PGM_DYNAMIC_CHUNK_SIZE)
2622 {
2623 Log(("remR3HCVirt2GCPhys %x -> %x\n", addr, pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 + off));
2624 return pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 + off;
2625 }
2626
2627 off = HCVirt - pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2;
2628 if ( pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2
2629 && off < PGM_DYNAMIC_CHUNK_SIZE)
2630 {
2631 Log(("remR3HCVirt2GCPhys %x -> %x\n", addr, pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 + off));
2632 return pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 + off;
2633 }
2634
2635 /* Must be externally registered RAM/ROM range */
2636 for (i=0;i<pVM->rem.s.cPhysRegistrations;i++)
2637 {
2638 uint32_t off = HCVirt - pVM->rem.s.aPhysReg[i].HCVirt;
2639 if (off < pVM->rem.s.aPhysReg[i].cb)
2640 {
2641 Log(("remR3HCVirt2GCPhys %x -> %x\n", addr, pVM->rem.s.aPhysReg[i].GCPhys + off));
2642 return pVM->rem.s.aPhysReg[i].GCPhys + off;
2643 }
2644 }
2645 AssertReleaseMsgFailed(("No translation for physical address %VHv???\n", addr));
2646 return 0;
2647#else
2648 return (target_ulong)addr - (target_ulong)phys_ram_base;
2649#endif
2650}
2651
2652/**
2653 * Grows dynamically allocated guest RAM.
2654 * Will raise a fatal error if the operation fails.
2655 *
2656 * @param physaddr The physical address.
2657 */
2658void remR3GrowDynRange(unsigned long physaddr)
2659{
2660 int rc;
2661 PVM pVM = cpu_single_env->pVM;
2662
2663 Log(("remR3GrowDynRange %VGp\n", physaddr));
2664 rc = PGM3PhysGrowRange(pVM, (RTGCPHYS)physaddr);
2665 if (VBOX_SUCCESS(rc))
2666 return;
2667
2668 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2669 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2670 AssertFatalFailed();
2671}
2672
2673/**
2674 * Notification about a successful MMR3PhysRomRegister() call.
2675 *
2676 * @param pVM VM handle.
2677 * @param GCPhys The physical address of the ROM.
2678 * @param cb The size of the ROM.
2679 * @param pvCopy Pointer to the ROM copy.
2680 */
2681REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy)
2682{
2683#ifdef PGM_DYNAMIC_RAM_ALLOC
2684 uint32_t i;
2685#endif
2686 Log(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p\n", GCPhys, cb, pvCopy));
2687 VM_ASSERT_EMT(pVM);
2688
2689 /*
2690 * Validate input - we trust the caller.
2691 */
2692 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2693 Assert(cb);
2694 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2695 Assert(pvCopy);
2696 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2697
2698 /*
2699 * Register the rom.
2700 */
2701#ifdef PGM_DYNAMIC_RAM_ALLOC
2702 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_ROM);
2703 AssertRelease(pVM->rem.s.cPhysRegistrations < REM_MAX_PHYS_REGISTRATIONS);
2704 for (i=0;i<pVM->rem.s.cPhysRegistrations;i++)
2705 {
2706 if (pVM->rem.s.aPhysReg[i].GCPhys == GCPhys)
2707 {
2708 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvCopy;
2709 pVM->rem.s.aPhysReg[i].cb = cb;
2710 break;
2711 }
2712 }
2713 if (i == pVM->rem.s.cPhysRegistrations)
2714 {
2715 pVM->rem.s.aPhysReg[i].GCPhys = GCPhys;
2716 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvCopy;
2717 pVM->rem.s.aPhysReg[i].cb = cb;
2718 pVM->rem.s.cPhysRegistrations++;
2719 }
2720#else
2721 AssertRelease(phys_ram_base);
2722 cpu_register_physical_memory(GCPhys, cb, ((uintptr_t)pvCopy - (uintptr_t)phys_ram_base) | IO_MEM_ROM);
2723#endif
2724 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2725}
2726
2727
2728/**
2729 * Notification about a successful MMR3PhysRegister() call.
2730 *
2731 * @param pVM VM Handle.
2732 * @param GCPhys Start physical address.
2733 * @param cb The size of the range.
2734 */
2735REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2736{
2737 LogFlow(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2738 VM_ASSERT_EMT(pVM);
2739
2740 /*
2741 * Validate input - we trust the caller.
2742 */
2743 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2744 Assert(cb);
2745 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2746
2747 /*
2748 * Unassigning the memory.
2749 */
2750 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2751}
2752
2753
2754/**
2755 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2756 *
2757 * @param pVM VM Handle.
2758 * @param enmType Handler type.
2759 * @param GCPhys Handler range address.
2760 * @param cb Size of the handler range.
2761 * @param fHasHCHandler Set if the handler has a HC callback function.
2762 *
2763 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2764 * Handler memory type to memory which has no HC handler.
2765 */
2766REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2767{
2768 LogFlow(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d\n",
2769 enmType, GCPhys, cb, fHasHCHandler));
2770 VM_ASSERT_EMT(pVM);
2771 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2772 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2773
2774 if (pVM->rem.s.cHandlerNotifications)
2775 REMR3ReplayHandlerNotifications(pVM);
2776
2777 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2778 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2779 else if (fHasHCHandler)
2780 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2781}
2782
2783
2784/**
2785 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2786 *
2787 * @param pVM VM Handle.
2788 * @param enmType Handler type.
2789 * @param GCPhys Handler range address.
2790 * @param cb Size of the handler range.
2791 * @param fHasHCHandler Set if the handler has a HC callback function.
2792 * @param pvHCPtr The HC virtual address corresponding to GCPhys if available.
2793 */
2794REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, void *pvHCPtr)
2795{
2796 LogFlow(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d pvHCPtr=%p RAM=%08x\n",
2797 enmType, GCPhys, cb, fHasHCHandler, pvHCPtr, MMR3PhysGetRamSize(pVM)));
2798 VM_ASSERT_EMT(pVM);
2799
2800 if (pVM->rem.s.cHandlerNotifications)
2801 REMR3ReplayHandlerNotifications(pVM);
2802
2803 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2804 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2805 else if (fHasHCHandler)
2806 {
2807 if (!pvHCPtr)
2808 {
2809 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2810 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2811 }
2812 else
2813 {
2814 /* This is not prefect, but it'll do for PD monitoring... */
2815 Assert(cb == PAGE_SIZE);
2816 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2817 Assert(remR3HCVirt2GCPhys(cpu_single_env, pvHCPtr) < MMR3PhysGetRamSize(pVM));
2818#ifdef PGM_DYNAMIC_RAM_ALLOC
2819 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2820#else
2821 cpu_register_physical_memory(GCPhys, cb, remR3HCVirt2GCPhys(cpu_single_env, pvHCPtr));
2822#endif
2823 }
2824 }
2825}
2826
2827
2828/**
2829 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2830 *
2831 * @param pVM VM Handle.
2832 * @param enmType Handler type.
2833 * @param GCPhysOld Old handler range address.
2834 * @param GCPhysNew New handler range address.
2835 * @param cb Size of the handler range.
2836 * @param fHasHCHandler Set if the handler has a HC callback function.
2837 * @param pvHCPtr The HC virtual address corresponding to GCPhys if available.
2838 */
2839REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, void *pvHCPtr)
2840{
2841 LogFlow(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%d fHasHCHandler=%d pvHCPtr=%p\n",
2842 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, pvHCPtr));
2843 VM_ASSERT_EMT(pVM);
2844 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2845
2846 if (pVM->rem.s.cHandlerNotifications)
2847 REMR3ReplayHandlerNotifications(pVM);
2848
2849 if (fHasHCHandler)
2850 {
2851 /*
2852 * Reset the old page.
2853 */
2854 if (!pvHCPtr)
2855 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2856 else
2857 {
2858 /* This is not prefect, but it'll do for PD monitoring... */
2859 Assert(cb == PAGE_SIZE);
2860 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2861 Assert(remR3HCVirt2GCPhys(cpu_single_env, pvHCPtr) < MMR3PhysGetRamSize(pVM));
2862#ifdef PGM_DYNAMIC_RAM_ALLOC
2863 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2864#else
2865 cpu_register_physical_memory(GCPhysOld, cb, remR3HCVirt2GCPhys(cpu_single_env, pvHCPtr));
2866#endif
2867 }
2868
2869 /*
2870 * Update the new page.
2871 */
2872 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2873 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2874 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2875 }
2876}
2877
2878
2879/**
2880 * Checks if we're handling access to this page or not.
2881 *
2882 * @returns true if we're trapping access.
2883 * @returns false if we aren't.
2884 * @param pVM The VM handle.
2885 * @param GCPhys The physical address.
2886 *
2887 * @remark This function will only work correctly in VBOX_STRICT builds!
2888 */
2889REMDECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
2890{
2891#ifdef VBOX_STRICT
2892 if (pVM->rem.s.cHandlerNotifications)
2893 REMR3ReplayHandlerNotifications(pVM);
2894
2895 unsigned long off = get_phys_page_offset(GCPhys);
2896 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
2897 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
2898 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
2899#else
2900 return false;
2901#endif
2902}
2903
2904
2905/**
2906 * Deals with a rare case in get_phys_addr_code where the code
2907 * is being monitored.
2908 *
2909 * It could also be an MMIO page, in which case we will raise a fatal error.
2910 *
2911 * @returns The physical address corresponding to addr.
2912 * @param env The cpu environment.
2913 * @param addr The virtual address.
2914 * @param pTLBEntry The TLB entry.
2915 */
2916target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
2917{
2918 PVM pVM = env->pVM;
2919 if ((pTLBEntry->address & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
2920 {
2921 target_ulong ret = pTLBEntry->addend + addr;
2922 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv address=%VGv addend=%VGp ret=%VGp\n",
2923 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->address, (RTGCPHYS)pTLBEntry->addend, ret);
2924 return ret;
2925 }
2926 LogRel(("\nTrying to execute code with memory type address=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
2927 "*** handlers\n",
2928 (RTGCPTR)pTLBEntry->address, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
2929 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
2930 LogRel(("*** mmio\n"));
2931 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
2932 LogRel(("*** phys\n"));
2933 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
2934 cpu_abort(env, "Trying to execute code with memory type address=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
2935 (RTGCPTR)pTLBEntry->address, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
2936 AssertFatalFailed();
2937}
2938
2939/**
2940 * Read guest RAM and ROM.
2941 *
2942 * @param pbSrcPhys The source address. Relative to guest RAM.
2943 * @param pvDst The destination address.
2944 * @param cb Number of bytes
2945 */
2946void remR3PhysReadBytes(uint8_t *pbSrcPhys, void *pvDst, unsigned cb)
2947{
2948 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2949
2950 /*
2951 * Calc the physical address ('off') and check that it's within the RAM.
2952 * ROM is accessed this way, even if it's not part of the RAM.
2953 */
2954 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
2955 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
2956 if (off < (uintptr_t)phys_ram_size)
2957 PGMPhysRead(cpu_single_env->pVM, (RTGCPHYS)off, pvDst, cb);
2958 else
2959 {
2960 /* ROM range outside physical RAM, HC address passed directly */
2961 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
2962 memcpy(pvDst, pbSrcPhys, cb);
2963 }
2964 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2965}
2966
2967/** @todo r=bird: s/Byte/U8/ s/Word/U16/ s/Dword/U32/, see MMIO and other functions.
2968 * It could be an idea to inline these wrapper functions... */
2969
2970/**
2971 * Read guest RAM and ROM.
2972 *
2973 * @param pbSrcPhys The source address. Relative to guest RAM.
2974 */
2975uint8_t remR3PhysReadUByte(uint8_t *pbSrcPhys)
2976{
2977 uint8_t val;
2978
2979 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2980
2981 /*
2982 * Calc the physical address ('off') and check that it's within the RAM.
2983 * ROM is accessed this way, even if it's not part of the RAM.
2984 */
2985 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
2986 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
2987 if (off < (uintptr_t)phys_ram_size)
2988 val = PGMR3PhysReadByte(cpu_single_env->pVM, (RTGCPHYS)off);
2989 else
2990 {
2991 /* ROM range outside physical RAM, HC address passed directly */
2992 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
2993 val = *pbSrcPhys;
2994 }
2995 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2996 return val;
2997}
2998
2999/**
3000 * Read guest RAM and ROM.
3001 *
3002 * @param pbSrcPhys The source address. Relative to guest RAM.
3003 */
3004int8_t remR3PhysReadSByte(uint8_t *pbSrcPhys)
3005{
3006 int8_t val;
3007
3008 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3009
3010 /*
3011 * Calc the physical address ('off') and check that it's within the RAM.
3012 * ROM is accessed this way, even if it's not part of the RAM.
3013 */
3014 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3015 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3016 if (off < (uintptr_t)phys_ram_size)
3017 val = PGMR3PhysReadByte(cpu_single_env->pVM, (RTGCPHYS)off);
3018 else
3019 {
3020 /* ROM range outside physical RAM, HC address passed directly */
3021 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3022 val = *(int8_t *)pbSrcPhys;
3023 }
3024 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3025 return val;
3026}
3027
3028/**
3029 * Read guest RAM and ROM.
3030 *
3031 * @param pbSrcPhys The source address. Relative to guest RAM.
3032 */
3033uint16_t remR3PhysReadUWord(uint8_t *pbSrcPhys)
3034{
3035 uint16_t val;
3036
3037 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3038
3039 /*
3040 * Calc the physical address ('off') and check that it's within the RAM.
3041 * ROM is accessed this way, even if it's not part of the RAM.
3042 */
3043 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3044 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3045 if (off < (uintptr_t)phys_ram_size)
3046 val = PGMR3PhysReadWord(cpu_single_env->pVM, (RTGCPHYS)off);
3047 else
3048 {
3049 /* ROM range outside physical RAM, HC address passed directly */
3050 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3051 val = *(uint16_t *)pbSrcPhys;
3052 }
3053 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3054 return val;
3055}
3056
3057/**
3058 * Read guest RAM and ROM.
3059 *
3060 * @param pbSrcPhys The source address. Relative to guest RAM.
3061 */
3062int16_t remR3PhysReadSWord(uint8_t *pbSrcPhys)
3063{
3064 int16_t val;
3065
3066 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3067
3068 /*
3069 * Calc the physical address ('off') and check that it's within the RAM.
3070 * ROM is accessed this way, even if it's not part of the RAM.
3071 */
3072 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3073 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3074 if (off < (uintptr_t)phys_ram_size)
3075 val = PGMR3PhysReadWord(cpu_single_env->pVM, (RTGCPHYS)off);
3076 else
3077 {
3078 /* ROM range outside physical RAM, HC address passed directly */
3079 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3080 val = *(int16_t *)pbSrcPhys;
3081 }
3082 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3083 return val;
3084}
3085
3086/**
3087 * Read guest RAM and ROM.
3088 *
3089 * @param pbSrcPhys The source address. Relative to guest RAM.
3090 */
3091uint32_t remR3PhysReadULong(uint8_t *pbSrcPhys)
3092{
3093 uint32_t val;
3094
3095 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3096
3097 /*
3098 * Calc the physical address ('off') and check that it's within the RAM.
3099 * ROM is accessed this way, even if it's not part of the RAM.
3100 */
3101 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3102 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3103 if (off < (uintptr_t)phys_ram_size)
3104 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off);
3105 else
3106 {
3107 /* ROM range outside physical RAM, HC address passed directly */
3108 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3109 val = *(uint32_t *)pbSrcPhys;
3110 }
3111 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3112 return val;
3113}
3114
3115/**
3116 * Read guest RAM and ROM.
3117 *
3118 * @param pbSrcPhys The source address. Relative to guest RAM.
3119 */
3120int32_t remR3PhysReadSLong(uint8_t *pbSrcPhys)
3121{
3122 int32_t val;
3123
3124 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3125
3126 /*
3127 * Calc the physical address ('off') and check that it's within the RAM.
3128 * ROM is accessed this way, even if it's not part of the RAM.
3129 */
3130 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3131 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3132 if (off < (uintptr_t)phys_ram_size)
3133 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off);
3134 else
3135 {
3136 /* ROM range outside physical RAM, HC address passed directly */
3137 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3138 val = *(int32_t *)pbSrcPhys;
3139 }
3140 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3141 return val;
3142}
3143
3144/**
3145 * Write guest RAM.
3146 *
3147 * @param pbDstPhys The destination address. Relative to guest RAM.
3148 * @param pvSrc The source address.
3149 * @param cb Number of bytes to write
3150 */
3151void remR3PhysWriteBytes(uint8_t *pbDstPhys, const void *pvSrc, unsigned cb)
3152{
3153 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3154 /*
3155 * Calc the physical address ('off') and check that it's within the RAM.
3156 */
3157 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbDstPhys);
3158 if (off < (uintptr_t)phys_ram_size)
3159 PGMPhysWrite(cpu_single_env->pVM, (RTGCPHYS)off, pvSrc, cb);
3160 else
3161 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, cb));
3162 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3163}
3164
3165
3166/**
3167 * Write guest RAM.
3168 *
3169 * @param pbDstPhys The destination address. Relative to guest RAM.
3170 * @param val Value
3171 */
3172void remR3PhysWriteByte(uint8_t *pbDstPhys, uint8_t val)
3173{
3174 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3175 /*
3176 * Calc the physical address ('off') and check that it's within the RAM.
3177 */
3178 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbDstPhys);
3179 if (off < (uintptr_t)phys_ram_size)
3180 PGMR3PhysWriteByte(cpu_single_env->pVM, (RTGCPHYS)off, val);
3181 else
3182 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, 1));
3183 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3184}
3185
3186/**
3187 * Write guest RAM.
3188 *
3189 * @param pbDstPhys The destination address. Relative to guest RAM.
3190 * @param val Value
3191 */
3192void remR3PhysWriteWord(uint8_t *pbDstPhys, uint16_t val)
3193{
3194 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3195 /*
3196 * Calc the physical address ('off') and check that it's within the RAM.
3197 */
3198 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbDstPhys);
3199 if (off < (uintptr_t)phys_ram_size)
3200 PGMR3PhysWriteWord(cpu_single_env->pVM, (RTGCPHYS)off, val);
3201 else
3202 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, 2));
3203 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3204}
3205
3206/**
3207 * Write guest RAM.
3208 *
3209 * @param pbDstPhys The destination address. Relative to guest RAM.
3210 * @param val Value
3211 */
3212void remR3PhysWriteDword(uint8_t *pbDstPhys, uint32_t val)
3213{
3214 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3215 /*
3216 * Calc the physical address ('off') and check that it's within the RAM.
3217 */
3218 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbDstPhys);
3219 if (off < (uintptr_t)phys_ram_size)
3220 PGMR3PhysWriteDword(cpu_single_env->pVM, (RTGCPHYS)off, val);
3221 else
3222 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, 4));
3223 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3224}
3225
3226
3227
3228#undef LOG_GROUP
3229#define LOG_GROUP LOG_GROUP_REM_MMIO
3230
3231/** Read MMIO memory. */
3232static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3233{
3234 uint32_t u32 = 0;
3235 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3236 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3237 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3238 return u32;
3239}
3240
3241/** Read MMIO memory. */
3242static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3243{
3244 uint32_t u32 = 0;
3245 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3246 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3247 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3248 return u32;
3249}
3250
3251/** Read MMIO memory. */
3252static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3253{
3254 uint32_t u32 = 0;
3255 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3256 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3257 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3258 return u32;
3259}
3260
3261/** Write to MMIO memory. */
3262static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3263{
3264 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3265 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3266 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3267}
3268
3269/** Write to MMIO memory. */
3270static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3271{
3272 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3273 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3274 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3275}
3276
3277/** Write to MMIO memory. */
3278static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3279{
3280 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3281 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3282 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3283}
3284
3285
3286#undef LOG_GROUP
3287#define LOG_GROUP LOG_GROUP_REM_HANDLER
3288
3289/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3290
3291static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3292{
3293 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3294 uint8_t u8;
3295 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3296 return u8;
3297}
3298
3299static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3300{
3301 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3302 uint16_t u16;
3303 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3304 return u16;
3305}
3306
3307static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3308{
3309 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3310 uint32_t u32;
3311 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3312 return u32;
3313}
3314
3315static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3316{
3317 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3318 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3319}
3320
3321static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3322{
3323 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3324 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3325}
3326
3327static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3328{
3329 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3330 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3331}
3332
3333/* -+- disassembly -+- */
3334
3335#undef LOG_GROUP
3336#define LOG_GROUP LOG_GROUP_REM_DISAS
3337
3338
3339/**
3340 * Enables or disables singled stepped disassembly.
3341 *
3342 * @returns VBox status code.
3343 * @param pVM VM handle.
3344 * @param fEnable To enable set this flag, to disable clear it.
3345 */
3346static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3347{
3348 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3349 VM_ASSERT_EMT(pVM);
3350
3351 if (fEnable)
3352 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3353 else
3354 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3355 return VINF_SUCCESS;
3356}
3357
3358
3359/**
3360 * Enables or disables singled stepped disassembly.
3361 *
3362 * @returns VBox status code.
3363 * @param pVM VM handle.
3364 * @param fEnable To enable set this flag, to disable clear it.
3365 */
3366REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3367{
3368 PVMREQ pReq;
3369 int rc;
3370
3371 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3372 if (VM_IS_EMT(pVM))
3373 return remR3DisasEnableStepping(pVM, fEnable);
3374
3375 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3376 AssertRC(rc);
3377 if (VBOX_SUCCESS(rc))
3378 rc = pReq->iStatus;
3379 VMR3ReqFree(pReq);
3380 return rc;
3381}
3382
3383
3384#ifdef VBOX_WITH_DEBUGGER
3385/**
3386 * External Debugger Command: .remstep [on|off|1|0]
3387 */
3388static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3389{
3390 bool fEnable;
3391 int rc;
3392
3393 /* print status */
3394 if (cArgs == 0)
3395 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3396 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3397
3398 /* convert the argument and change the mode. */
3399 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3400 if (VBOX_FAILURE(rc))
3401 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3402 rc = REMR3DisasEnableStepping(pVM, fEnable);
3403 if (VBOX_FAILURE(rc))
3404 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3405 return rc;
3406}
3407#endif
3408
3409
3410/**
3411 * Disassembles n instructions and prints them to the log.
3412 *
3413 * @returns Success indicator.
3414 * @param env Pointer to the recompiler CPU structure.
3415 * @param f32BitCode Indicates that whether or not the code should
3416 * be disassembled as 16 or 32 bit. If -1 the CS
3417 * selector will be inspected.
3418 * @param nrInstructions Nr of instructions to disassemble
3419 * @param pszPrefix
3420 * @remark not currently used for anything but ad-hoc debugging.
3421 */
3422bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3423{
3424 int i;
3425
3426 /*
3427 * Determin 16/32 bit mode.
3428 */
3429 if (f32BitCode == -1)
3430 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3431
3432 /*
3433 * Convert cs:eip to host context address.
3434 * We don't care to much about cross page correctness presently.
3435 */
3436 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3437 void *pvPC;
3438 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3439 {
3440 /* convert eip to physical address. */
3441 int rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3442 GCPtrPC,
3443 env->cr[3],
3444 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3445 &pvPC);
3446 if (VBOX_FAILURE(rc))
3447 {
3448 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3449 return false;
3450 pvPC = (char *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3451 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3452 }
3453 }
3454 else
3455 {
3456 /* physical address */
3457 int rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions*16, &pvPC);
3458 if (VBOX_FAILURE(rc))
3459 return false;
3460 }
3461
3462 /*
3463 * Disassemble.
3464 */
3465 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
3466 DISCPUSTATE Cpu;
3467 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3468 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3469 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3470 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3471 //Cpu.dwUserData[2] = GCPtrPC;
3472
3473 for (i=0;i<nrInstructions;i++)
3474 {
3475 char szOutput[256];
3476 uint32_t cbOp;
3477 if (!DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0]))
3478 return false;
3479 if (pszPrefix)
3480 Log(("%s: %s", pszPrefix, szOutput));
3481 else
3482 Log(("%s", szOutput));
3483
3484 pvPC += cbOp;
3485 }
3486 return true;
3487}
3488
3489
3490/** @todo need to test the new code, using the old code in the mean while. */
3491#define USE_OLD_DUMP_AND_DISASSEMBLY
3492
3493/**
3494 * Disassembles one instruction and prints it to the log.
3495 *
3496 * @returns Success indicator.
3497 * @param env Pointer to the recompiler CPU structure.
3498 * @param f32BitCode Indicates that whether or not the code should
3499 * be disassembled as 16 or 32 bit. If -1 the CS
3500 * selector will be inspected.
3501 * @param pszPrefix
3502 */
3503bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3504{
3505#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3506 PVM pVM = env->pVM;
3507
3508 /*
3509 * Determin 16/32 bit mode.
3510 */
3511 if (f32BitCode == -1)
3512 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3513
3514 /*
3515 * Log registers
3516 */
3517 if (LogIs2Enabled())
3518 {
3519 remR3StateUpdate(pVM);
3520 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3521 }
3522
3523 /*
3524 * Convert cs:eip to host context address.
3525 * We don't care to much about cross page correctness presently.
3526 */
3527 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3528 void *pvPC;
3529 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3530 {
3531 /* convert eip to physical address. */
3532 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
3533 GCPtrPC,
3534 env->cr[3],
3535 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3536 &pvPC);
3537 if (VBOX_FAILURE(rc))
3538 {
3539 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3540 return false;
3541 pvPC = (char *)PATMR3QueryPatchMemHC(pVM, NULL)
3542 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3543 }
3544 }
3545 else
3546 {
3547
3548 /* physical address */
3549 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, &pvPC);
3550 if (VBOX_FAILURE(rc))
3551 return false;
3552 }
3553
3554 /*
3555 * Disassemble.
3556 */
3557 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
3558 DISCPUSTATE Cpu;
3559 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3560 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3561 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3562 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3563 //Cpu.dwUserData[2] = GCPtrPC;
3564 char szOutput[256];
3565 uint32_t cbOp;
3566 if (!DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0]))
3567 return false;
3568
3569 if (!f32BitCode)
3570 {
3571 if (pszPrefix)
3572 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3573 else
3574 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3575 }
3576 else
3577 {
3578 if (pszPrefix)
3579 Log(("%s: %s", pszPrefix, szOutput));
3580 else
3581 Log(("%s", szOutput));
3582 }
3583 return true;
3584
3585#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3586 PVM pVM = env->pVM;
3587 const bool fLog = LogIsEnabled();
3588 const bool fLog2 = LogIs2Enabled();
3589 int rc = VINF_SUCCESS;
3590
3591 /*
3592 * Don't bother if there ain't any log output to do.
3593 */
3594 if (!fLog && !fLog2)
3595 return true;
3596
3597 /*
3598 * Update the state so DBGF reads the correct register values.
3599 */
3600 remR3StateUpdate(pVM);
3601
3602 /*
3603 * Log registers if requested.
3604 */
3605 if (!fLog2)
3606 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3607
3608 /*
3609 * Disassemble to log.
3610 */
3611 if (fLog)
3612 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3613
3614 return VBOX_SUCCESS(rc);
3615#endif
3616}
3617
3618
3619/**
3620 * Disassemble recompiled code.
3621 *
3622 * @param phFileIgnored Ignored, logfile usually.
3623 * @param pvCode Pointer to the code block.
3624 * @param cb Size of the code block.
3625 */
3626void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3627{
3628 if (LogIs2Enabled())
3629 {
3630 unsigned off = 0;
3631 char szOutput[256];
3632 DISCPUSTATE Cpu = {0};
3633 Cpu.mode = CPUMODE_32BIT;
3634
3635 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3636 while (off < cb)
3637 {
3638 uint32_t cbInstr;
3639 if (DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput))
3640 RTLogPrintf("%s", szOutput);
3641 else
3642 {
3643 RTLogPrintf("disas error\n");
3644 cbInstr = 1;
3645 }
3646 off += cbInstr;
3647 }
3648 }
3649 NOREF(phFileIgnored);
3650}
3651
3652
3653/**
3654 * Disassemble guest code.
3655 *
3656 * @param phFileIgnored Ignored, logfile usually.
3657 * @param uCode The guest address of the code to disassemble. (flat?)
3658 * @param cb Number of bytes to disassemble.
3659 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3660 */
3661void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3662{
3663 if (LogIs2Enabled())
3664 {
3665 PVM pVM = cpu_single_env->pVM;
3666
3667 /*
3668 * Update the state so DBGF reads the correct register values (flags).
3669 */
3670 remR3StateUpdate(pVM);
3671
3672 /*
3673 * Do the disassembling.
3674 */
3675 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
3676 RTSEL cs = cpu_single_env->segs[R_CS].selector;
3677 RTGCUINTPTR eip = uCode - cpu_single_env->segs[R_CS].base;
3678 for (;;)
3679 {
3680 char szBuf[256];
3681 size_t cbInstr;
3682 int rc = DBGFR3DisasInstrEx(pVM,
3683 cs,
3684 eip,
3685 0,
3686 szBuf, sizeof(szBuf),
3687 &cbInstr);
3688 if (VBOX_SUCCESS(rc))
3689 RTLogPrintf("%VGp %s\n", uCode, szBuf);
3690 else
3691 {
3692 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
3693 cbInstr = 1;
3694 }
3695
3696 /* next */
3697 if (cb <= cbInstr)
3698 break;
3699 cb -= cbInstr;
3700 uCode += cbInstr;
3701 eip += cbInstr;
3702 }
3703 }
3704 NOREF(phFileIgnored);
3705}
3706
3707
3708/**
3709 * Looks up a guest symbol.
3710 *
3711 * @returns Pointer to symbol name. This is a static buffer.
3712 * @param orig_addr The address in question.
3713 */
3714const char *lookup_symbol(target_ulong orig_addr)
3715{
3716 RTGCINTPTR off = 0;
3717 DBGFSYMBOL Sym;
3718 PVM pVM = cpu_single_env->pVM;
3719 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3720 if (VBOX_SUCCESS(rc))
3721 {
3722 static char szSym[sizeof(Sym.szName) + 48];
3723 if (!off)
3724 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3725 else if (off > 0)
3726 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3727 else
3728 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3729 return szSym;
3730 }
3731 return "<N/A>";
3732}
3733
3734
3735#undef LOG_GROUP
3736#define LOG_GROUP LOG_GROUP_REM
3737
3738
3739/* -+- FF notifications -+- */
3740
3741
3742/**
3743 * Notification about a pending interrupt.
3744 *
3745 * @param pVM VM Handle.
3746 * @param u8Interrupt Interrupt
3747 * @thread The emulation thread.
3748 */
3749REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3750{
3751 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3752 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3753}
3754
3755/**
3756 * Notification about a pending interrupt.
3757 *
3758 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3759 * @param pVM VM Handle.
3760 * @thread The emulation thread.
3761 */
3762REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3763{
3764 return pVM->rem.s.u32PendingInterrupt;
3765}
3766
3767/**
3768 * Notification about the interrupt FF being set.
3769 *
3770 * @param pVM VM Handle.
3771 * @thread The emulation thread.
3772 */
3773REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3774{
3775 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3776 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3777 if (pVM->rem.s.fInREM)
3778 {
3779 if (VM_IS_EMT(pVM))
3780 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3781 else
3782 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_HARD);
3783 }
3784}
3785
3786
3787/**
3788 * Notification about the interrupt FF being set.
3789 *
3790 * @param pVM VM Handle.
3791 * @thread The emulation thread.
3792 */
3793REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3794{
3795 LogFlow(("REMR3NotifyInterruptClear:\n"));
3796 VM_ASSERT_EMT(pVM);
3797 if (pVM->rem.s.fInREM)
3798 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3799}
3800
3801
3802/**
3803 * Notification about pending timer(s).
3804 *
3805 * @param pVM VM Handle.
3806 * @thread Any.
3807 */
3808REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3809{
3810#ifndef DEBUG_bird
3811 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3812#endif
3813 if (pVM->rem.s.fInREM)
3814 {
3815 if (VM_IS_EMT(pVM))
3816 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3817 else
3818 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_TIMER);
3819 }
3820}
3821
3822
3823/**
3824 * Notification about pending DMA transfers.
3825 *
3826 * @param pVM VM Handle.
3827 * @thread Any.
3828 */
3829REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3830{
3831 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3832 if (pVM->rem.s.fInREM)
3833 {
3834 if (VM_IS_EMT(pVM))
3835 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3836 else
3837 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_DMA);
3838 }
3839}
3840
3841
3842/**
3843 * Notification about pending timer(s).
3844 *
3845 * @param pVM VM Handle.
3846 * @thread Any.
3847 */
3848REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3849{
3850 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3851 if (pVM->rem.s.fInREM)
3852 {
3853 if (VM_IS_EMT(pVM))
3854 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3855 else
3856 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3857 }
3858}
3859
3860
3861/**
3862 * Notification about pending FF set by an external thread.
3863 *
3864 * @param pVM VM handle.
3865 * @thread Any.
3866 */
3867REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3868{
3869 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3870 if (pVM->rem.s.fInREM)
3871 {
3872 if (VM_IS_EMT(pVM))
3873 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3874 else
3875 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3876 }
3877}
3878
3879
3880#ifdef VBOX_WITH_STATISTICS
3881void remR3ProfileStart(int statcode)
3882{
3883 STAMPROFILEADV *pStat;
3884 switch(statcode)
3885 {
3886 case STATS_EMULATE_SINGLE_INSTR:
3887 pStat = &gStatExecuteSingleInstr;
3888 break;
3889 case STATS_QEMU_COMPILATION:
3890 pStat = &gStatCompilationQEmu;
3891 break;
3892 case STATS_QEMU_RUN_EMULATED_CODE:
3893 pStat = &gStatRunCodeQEmu;
3894 break;
3895 case STATS_QEMU_TOTAL:
3896 pStat = &gStatTotalTimeQEmu;
3897 break;
3898 case STATS_QEMU_RUN_TIMERS:
3899 pStat = &gStatTimers;
3900 break;
3901 case STATS_TLB_LOOKUP:
3902 pStat= &gStatTBLookup;
3903 break;
3904 case STATS_IRQ_HANDLING:
3905 pStat= &gStatIRQ;
3906 break;
3907 case STATS_RAW_CHECK:
3908 pStat = &gStatRawCheck;
3909 break;
3910
3911 default:
3912 AssertMsgFailed(("unknown stat %d\n", statcode));
3913 return;
3914 }
3915 STAM_PROFILE_ADV_START(pStat, a);
3916}
3917
3918
3919void remR3ProfileStop(int statcode)
3920{
3921 STAMPROFILEADV *pStat;
3922 switch(statcode)
3923 {
3924 case STATS_EMULATE_SINGLE_INSTR:
3925 pStat = &gStatExecuteSingleInstr;
3926 break;
3927 case STATS_QEMU_COMPILATION:
3928 pStat = &gStatCompilationQEmu;
3929 break;
3930 case STATS_QEMU_RUN_EMULATED_CODE:
3931 pStat = &gStatRunCodeQEmu;
3932 break;
3933 case STATS_QEMU_TOTAL:
3934 pStat = &gStatTotalTimeQEmu;
3935 break;
3936 case STATS_QEMU_RUN_TIMERS:
3937 pStat = &gStatTimers;
3938 break;
3939 case STATS_TLB_LOOKUP:
3940 pStat= &gStatTBLookup;
3941 break;
3942 case STATS_IRQ_HANDLING:
3943 pStat= &gStatIRQ;
3944 break;
3945 case STATS_RAW_CHECK:
3946 pStat = &gStatRawCheck;
3947 break;
3948 default:
3949 AssertMsgFailed(("unknown stat %d\n", statcode));
3950 return;
3951 }
3952 STAM_PROFILE_ADV_STOP(pStat, a);
3953}
3954#endif
3955
3956/**
3957 * Raise an RC, force rem exit.
3958 *
3959 * @param pVM VM handle.
3960 * @param rc The rc.
3961 */
3962void remR3RaiseRC(PVM pVM, int rc)
3963{
3964 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
3965 Assert(pVM->rem.s.fInREM);
3966 VM_ASSERT_EMT(pVM);
3967 pVM->rem.s.rc = rc;
3968 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
3969}
3970
3971
3972/* -+- timers -+- */
3973
3974uint64_t cpu_get_tsc(CPUX86State *env)
3975{
3976 return TMCpuTickGet(env->pVM);
3977}
3978
3979
3980/* -+- interrupts -+- */
3981
3982void cpu_set_ferr(CPUX86State *env)
3983{
3984 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
3985 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
3986}
3987
3988int cpu_get_pic_interrupt(CPUState *env)
3989{
3990 uint8_t u8Interrupt;
3991 int rc;
3992
3993 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
3994 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
3995 * with the (a)pic.
3996 */
3997 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
3998 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
3999 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4000 * remove this kludge. */
4001 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4002 {
4003 rc = VINF_SUCCESS;
4004 Assert(env->pVM->rem.s.u32PendingInterrupt >= 0 && env->pVM->rem.s.u32PendingInterrupt <= 255);
4005 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4006 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4007 }
4008 else
4009 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4010
4011 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
4012 if (VBOX_SUCCESS(rc))
4013 {
4014 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4015 env->interrupt_request |= CPU_INTERRUPT_HARD;
4016 return u8Interrupt;
4017 }
4018 return -1;
4019}
4020
4021
4022/* -+- local apic -+- */
4023
4024void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4025{
4026 int rc = PDMApicSetBase(env->pVM, val);
4027 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
4028}
4029
4030uint64_t cpu_get_apic_base(CPUX86State *env)
4031{
4032 uint64_t u64;
4033 int rc = PDMApicGetBase(env->pVM, &u64);
4034 if (VBOX_SUCCESS(rc))
4035 {
4036 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4037 return u64;
4038 }
4039 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
4040 return 0;
4041}
4042
4043void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4044{
4045 int rc = PDMApicSetTPR(env->pVM, val);
4046 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
4047}
4048
4049uint8_t cpu_get_apic_tpr(CPUX86State *env)
4050{
4051 uint8_t u8;
4052 int rc = PDMApicGetTPR(env->pVM, &u8);
4053 if (VBOX_SUCCESS(rc))
4054 {
4055 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4056 return u8;
4057 }
4058 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
4059 return 0;
4060}
4061
4062
4063/* -+- I/O Ports -+- */
4064
4065#undef LOG_GROUP
4066#define LOG_GROUP LOG_GROUP_REM_IOPORT
4067
4068void cpu_outb(CPUState *env, int addr, int val)
4069{
4070 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4071 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4072
4073 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4074 if (rc == VINF_SUCCESS)
4075 return;
4076 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4077 {
4078 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4079 remR3RaiseRC(env->pVM, rc);
4080 return;
4081 }
4082 remAbort(rc, __FUNCTION__);
4083}
4084
4085void cpu_outw(CPUState *env, int addr, int val)
4086{
4087 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4088 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4089 if (rc == VINF_SUCCESS)
4090 return;
4091 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4092 {
4093 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4094 remR3RaiseRC(env->pVM, rc);
4095 return;
4096 }
4097 remAbort(rc, __FUNCTION__);
4098}
4099
4100void cpu_outl(CPUState *env, int addr, int val)
4101{
4102 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4103 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4104 if (rc == VINF_SUCCESS)
4105 return;
4106 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4107 {
4108 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4109 remR3RaiseRC(env->pVM, rc);
4110 return;
4111 }
4112 remAbort(rc, __FUNCTION__);
4113}
4114
4115int cpu_inb(CPUState *env, int addr)
4116{
4117 uint32_t u32 = 0;
4118 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4119 if (rc == VINF_SUCCESS)
4120 {
4121 if (/*addr != 0x61 && */addr != 0x71)
4122 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4123 return (int)u32;
4124 }
4125 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4126 {
4127 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4128 remR3RaiseRC(env->pVM, rc);
4129 return (int)u32;
4130 }
4131 remAbort(rc, __FUNCTION__);
4132 return 0xff;
4133}
4134
4135int cpu_inw(CPUState *env, int addr)
4136{
4137 uint32_t u32 = 0;
4138 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4139 if (rc == VINF_SUCCESS)
4140 {
4141 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4142 return (int)u32;
4143 }
4144 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4145 {
4146 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4147 remR3RaiseRC(env->pVM, rc);
4148 return (int)u32;
4149 }
4150 remAbort(rc, __FUNCTION__);
4151 return 0xffff;
4152}
4153
4154int cpu_inl(CPUState *env, int addr)
4155{
4156 uint32_t u32 = 0;
4157 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4158 if (rc == VINF_SUCCESS)
4159 {
4160//if (addr==0x01f0 && u32 == 0x6b6d)
4161// loglevel = ~0;
4162 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4163 return (int)u32;
4164 }
4165 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4166 {
4167 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4168 remR3RaiseRC(env->pVM, rc);
4169 return (int)u32;
4170 }
4171 remAbort(rc, __FUNCTION__);
4172 return 0xffffffff;
4173}
4174
4175#undef LOG_GROUP
4176#define LOG_GROUP LOG_GROUP_REM
4177
4178
4179/* -+- helpers and misc other interfaces -+- */
4180
4181/**
4182 * Perform the CPUID instruction.
4183 *
4184 * ASMCpuId cannot be invoked from some source files where this is used because of global
4185 * register allocations.
4186 *
4187 * @param env Pointer to the recompiler CPU structure.
4188 * @param uOperator CPUID operation (eax).
4189 * @param pvEAX Where to store eax.
4190 * @param pvEBX Where to store ebx.
4191 * @param pvECX Where to store ecx.
4192 * @param pvEDX Where to store edx.
4193 */
4194void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4195{
4196 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4197}
4198
4199
4200#if 0 /* not used */
4201/**
4202 * Interface for qemu hardware to report back fatal errors.
4203 */
4204void hw_error(const char *pszFormat, ...)
4205{
4206 /*
4207 * Bitch about it.
4208 */
4209 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4210 * this in my Odin32 tree at home! */
4211 va_list args;
4212 va_start(args, pszFormat);
4213 RTLogPrintf("fatal error in virtual hardware:");
4214 RTLogPrintfV(pszFormat, args);
4215 va_end(args);
4216 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4217
4218 /*
4219 * If we're in REM context we'll sync back the state before 'jumping' to
4220 * the EMs failure handling.
4221 */
4222 PVM pVM = cpu_single_env->pVM;
4223 if (pVM->rem.s.fInREM)
4224 REMR3StateBack(pVM);
4225 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4226 AssertMsgFailed(("EMR3FatalError returned!\n"));
4227}
4228#endif
4229
4230/**
4231 * Interface for the qemu cpu to report unhandled situation
4232 * raising a fatal VM error.
4233 */
4234void cpu_abort(CPUState *env, const char *pszFormat, ...)
4235{
4236 /*
4237 * Bitch about it.
4238 */
4239 RTLogFlags(NULL, "nodisabled nobuffered");
4240 va_list args;
4241 va_start(args, pszFormat);
4242 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4243 va_end(args);
4244 va_start(args, pszFormat);
4245 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4246 va_end(args);
4247
4248 /*
4249 * If we're in REM context we'll sync back the state before 'jumping' to
4250 * the EMs failure handling.
4251 */
4252 PVM pVM = cpu_single_env->pVM;
4253 if (pVM->rem.s.fInREM)
4254 REMR3StateBack(pVM);
4255 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4256 AssertMsgFailed(("EMR3FatalError returned!\n"));
4257}
4258
4259
4260/**
4261 * Aborts the VM.
4262 *
4263 * @param rc VBox error code.
4264 * @param pszTip Hint about why/when this happend.
4265 */
4266static void remAbort(int rc, const char *pszTip)
4267{
4268 /*
4269 * Bitch about it.
4270 */
4271 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4272 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4273
4274 /*
4275 * Jump back to where we entered the recompiler.
4276 */
4277 PVM pVM = cpu_single_env->pVM;
4278 if (pVM->rem.s.fInREM)
4279 REMR3StateBack(pVM);
4280 EMR3FatalError(pVM, rc);
4281 AssertMsgFailed(("EMR3FatalError returned!\n"));
4282}
4283
4284
4285/**
4286 * Dumps a linux system call.
4287 * @param pVM VM handle.
4288 */
4289void remR3DumpLnxSyscall(PVM pVM)
4290{
4291 static const char *apsz[] =
4292 {
4293 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4294 "sys_exit",
4295 "sys_fork",
4296 "sys_read",
4297 "sys_write",
4298 "sys_open", /* 5 */
4299 "sys_close",
4300 "sys_waitpid",
4301 "sys_creat",
4302 "sys_link",
4303 "sys_unlink", /* 10 */
4304 "sys_execve",
4305 "sys_chdir",
4306 "sys_time",
4307 "sys_mknod",
4308 "sys_chmod", /* 15 */
4309 "sys_lchown16",
4310 "sys_ni_syscall", /* old break syscall holder */
4311 "sys_stat",
4312 "sys_lseek",
4313 "sys_getpid", /* 20 */
4314 "sys_mount",
4315 "sys_oldumount",
4316 "sys_setuid16",
4317 "sys_getuid16",
4318 "sys_stime", /* 25 */
4319 "sys_ptrace",
4320 "sys_alarm",
4321 "sys_fstat",
4322 "sys_pause",
4323 "sys_utime", /* 30 */
4324 "sys_ni_syscall", /* old stty syscall holder */
4325 "sys_ni_syscall", /* old gtty syscall holder */
4326 "sys_access",
4327 "sys_nice",
4328 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4329 "sys_sync",
4330 "sys_kill",
4331 "sys_rename",
4332 "sys_mkdir",
4333 "sys_rmdir", /* 40 */
4334 "sys_dup",
4335 "sys_pipe",
4336 "sys_times",
4337 "sys_ni_syscall", /* old prof syscall holder */
4338 "sys_brk", /* 45 */
4339 "sys_setgid16",
4340 "sys_getgid16",
4341 "sys_signal",
4342 "sys_geteuid16",
4343 "sys_getegid16", /* 50 */
4344 "sys_acct",
4345 "sys_umount", /* recycled never used phys() */
4346 "sys_ni_syscall", /* old lock syscall holder */
4347 "sys_ioctl",
4348 "sys_fcntl", /* 55 */
4349 "sys_ni_syscall", /* old mpx syscall holder */
4350 "sys_setpgid",
4351 "sys_ni_syscall", /* old ulimit syscall holder */
4352 "sys_olduname",
4353 "sys_umask", /* 60 */
4354 "sys_chroot",
4355 "sys_ustat",
4356 "sys_dup2",
4357 "sys_getppid",
4358 "sys_getpgrp", /* 65 */
4359 "sys_setsid",
4360 "sys_sigaction",
4361 "sys_sgetmask",
4362 "sys_ssetmask",
4363 "sys_setreuid16", /* 70 */
4364 "sys_setregid16",
4365 "sys_sigsuspend",
4366 "sys_sigpending",
4367 "sys_sethostname",
4368 "sys_setrlimit", /* 75 */
4369 "sys_old_getrlimit",
4370 "sys_getrusage",
4371 "sys_gettimeofday",
4372 "sys_settimeofday",
4373 "sys_getgroups16", /* 80 */
4374 "sys_setgroups16",
4375 "old_select",
4376 "sys_symlink",
4377 "sys_lstat",
4378 "sys_readlink", /* 85 */
4379 "sys_uselib",
4380 "sys_swapon",
4381 "sys_reboot",
4382 "old_readdir",
4383 "old_mmap", /* 90 */
4384 "sys_munmap",
4385 "sys_truncate",
4386 "sys_ftruncate",
4387 "sys_fchmod",
4388 "sys_fchown16", /* 95 */
4389 "sys_getpriority",
4390 "sys_setpriority",
4391 "sys_ni_syscall", /* old profil syscall holder */
4392 "sys_statfs",
4393 "sys_fstatfs", /* 100 */
4394 "sys_ioperm",
4395 "sys_socketcall",
4396 "sys_syslog",
4397 "sys_setitimer",
4398 "sys_getitimer", /* 105 */
4399 "sys_newstat",
4400 "sys_newlstat",
4401 "sys_newfstat",
4402 "sys_uname",
4403 "sys_iopl", /* 110 */
4404 "sys_vhangup",
4405 "sys_ni_syscall", /* old "idle" system call */
4406 "sys_vm86old",
4407 "sys_wait4",
4408 "sys_swapoff", /* 115 */
4409 "sys_sysinfo",
4410 "sys_ipc",
4411 "sys_fsync",
4412 "sys_sigreturn",
4413 "sys_clone", /* 120 */
4414 "sys_setdomainname",
4415 "sys_newuname",
4416 "sys_modify_ldt",
4417 "sys_adjtimex",
4418 "sys_mprotect", /* 125 */
4419 "sys_sigprocmask",
4420 "sys_ni_syscall", /* old "create_module" */
4421 "sys_init_module",
4422 "sys_delete_module",
4423 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4424 "sys_quotactl",
4425 "sys_getpgid",
4426 "sys_fchdir",
4427 "sys_bdflush",
4428 "sys_sysfs", /* 135 */
4429 "sys_personality",
4430 "sys_ni_syscall", /* reserved for afs_syscall */
4431 "sys_setfsuid16",
4432 "sys_setfsgid16",
4433 "sys_llseek", /* 140 */
4434 "sys_getdents",
4435 "sys_select",
4436 "sys_flock",
4437 "sys_msync",
4438 "sys_readv", /* 145 */
4439 "sys_writev",
4440 "sys_getsid",
4441 "sys_fdatasync",
4442 "sys_sysctl",
4443 "sys_mlock", /* 150 */
4444 "sys_munlock",
4445 "sys_mlockall",
4446 "sys_munlockall",
4447 "sys_sched_setparam",
4448 "sys_sched_getparam", /* 155 */
4449 "sys_sched_setscheduler",
4450 "sys_sched_getscheduler",
4451 "sys_sched_yield",
4452 "sys_sched_get_priority_max",
4453 "sys_sched_get_priority_min", /* 160 */
4454 "sys_sched_rr_get_interval",
4455 "sys_nanosleep",
4456 "sys_mremap",
4457 "sys_setresuid16",
4458 "sys_getresuid16", /* 165 */
4459 "sys_vm86",
4460 "sys_ni_syscall", /* Old sys_query_module */
4461 "sys_poll",
4462 "sys_nfsservctl",
4463 "sys_setresgid16", /* 170 */
4464 "sys_getresgid16",
4465 "sys_prctl",
4466 "sys_rt_sigreturn",
4467 "sys_rt_sigaction",
4468 "sys_rt_sigprocmask", /* 175 */
4469 "sys_rt_sigpending",
4470 "sys_rt_sigtimedwait",
4471 "sys_rt_sigqueueinfo",
4472 "sys_rt_sigsuspend",
4473 "sys_pread64", /* 180 */
4474 "sys_pwrite64",
4475 "sys_chown16",
4476 "sys_getcwd",
4477 "sys_capget",
4478 "sys_capset", /* 185 */
4479 "sys_sigaltstack",
4480 "sys_sendfile",
4481 "sys_ni_syscall", /* reserved for streams1 */
4482 "sys_ni_syscall", /* reserved for streams2 */
4483 "sys_vfork", /* 190 */
4484 "sys_getrlimit",
4485 "sys_mmap2",
4486 "sys_truncate64",
4487 "sys_ftruncate64",
4488 "sys_stat64", /* 195 */
4489 "sys_lstat64",
4490 "sys_fstat64",
4491 "sys_lchown",
4492 "sys_getuid",
4493 "sys_getgid", /* 200 */
4494 "sys_geteuid",
4495 "sys_getegid",
4496 "sys_setreuid",
4497 "sys_setregid",
4498 "sys_getgroups", /* 205 */
4499 "sys_setgroups",
4500 "sys_fchown",
4501 "sys_setresuid",
4502 "sys_getresuid",
4503 "sys_setresgid", /* 210 */
4504 "sys_getresgid",
4505 "sys_chown",
4506 "sys_setuid",
4507 "sys_setgid",
4508 "sys_setfsuid", /* 215 */
4509 "sys_setfsgid",
4510 "sys_pivot_root",
4511 "sys_mincore",
4512 "sys_madvise",
4513 "sys_getdents64", /* 220 */
4514 "sys_fcntl64",
4515 "sys_ni_syscall", /* reserved for TUX */
4516 "sys_ni_syscall",
4517 "sys_gettid",
4518 "sys_readahead", /* 225 */
4519 "sys_setxattr",
4520 "sys_lsetxattr",
4521 "sys_fsetxattr",
4522 "sys_getxattr",
4523 "sys_lgetxattr", /* 230 */
4524 "sys_fgetxattr",
4525 "sys_listxattr",
4526 "sys_llistxattr",
4527 "sys_flistxattr",
4528 "sys_removexattr", /* 235 */
4529 "sys_lremovexattr",
4530 "sys_fremovexattr",
4531 "sys_tkill",
4532 "sys_sendfile64",
4533 "sys_futex", /* 240 */
4534 "sys_sched_setaffinity",
4535 "sys_sched_getaffinity",
4536 "sys_set_thread_area",
4537 "sys_get_thread_area",
4538 "sys_io_setup", /* 245 */
4539 "sys_io_destroy",
4540 "sys_io_getevents",
4541 "sys_io_submit",
4542 "sys_io_cancel",
4543 "sys_fadvise64", /* 250 */
4544 "sys_ni_syscall",
4545 "sys_exit_group",
4546 "sys_lookup_dcookie",
4547 "sys_epoll_create",
4548 "sys_epoll_ctl", /* 255 */
4549 "sys_epoll_wait",
4550 "sys_remap_file_pages",
4551 "sys_set_tid_address",
4552 "sys_timer_create",
4553 "sys_timer_settime", /* 260 */
4554 "sys_timer_gettime",
4555 "sys_timer_getoverrun",
4556 "sys_timer_delete",
4557 "sys_clock_settime",
4558 "sys_clock_gettime", /* 265 */
4559 "sys_clock_getres",
4560 "sys_clock_nanosleep",
4561 "sys_statfs64",
4562 "sys_fstatfs64",
4563 "sys_tgkill", /* 270 */
4564 "sys_utimes",
4565 "sys_fadvise64_64",
4566 "sys_ni_syscall" /* sys_vserver */
4567 };
4568
4569 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4570 switch (uEAX)
4571 {
4572 default:
4573 if (uEAX < ELEMENTS(apsz))
4574 Log(("REM: linux syscall %3d: %s (eip=%VGv ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4575 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4576 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4577 else
4578 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4579 break;
4580
4581 }
4582}
4583
4584
4585/**
4586 * Dumps an OpenBSD system call.
4587 * @param pVM VM handle.
4588 */
4589void remR3DumpOBsdSyscall(PVM pVM)
4590{
4591 static const char *apsz[] =
4592 {
4593 "SYS_syscall", //0
4594 "SYS_exit", //1
4595 "SYS_fork", //2
4596 "SYS_read", //3
4597 "SYS_write", //4
4598 "SYS_open", //5
4599 "SYS_close", //6
4600 "SYS_wait4", //7
4601 "SYS_8",
4602 "SYS_link", //9
4603 "SYS_unlink", //10
4604 "SYS_11",
4605 "SYS_chdir", //12
4606 "SYS_fchdir", //13
4607 "SYS_mknod", //14
4608 "SYS_chmod", //15
4609 "SYS_chown", //16
4610 "SYS_break", //17
4611 "SYS_18",
4612 "SYS_19",
4613 "SYS_getpid", //20
4614 "SYS_mount", //21
4615 "SYS_unmount", //22
4616 "SYS_setuid", //23
4617 "SYS_getuid", //24
4618 "SYS_geteuid", //25
4619 "SYS_ptrace", //26
4620 "SYS_recvmsg", //27
4621 "SYS_sendmsg", //28
4622 "SYS_recvfrom", //29
4623 "SYS_accept", //30
4624 "SYS_getpeername", //31
4625 "SYS_getsockname", //32
4626 "SYS_access", //33
4627 "SYS_chflags", //34
4628 "SYS_fchflags", //35
4629 "SYS_sync", //36
4630 "SYS_kill", //37
4631 "SYS_38",
4632 "SYS_getppid", //39
4633 "SYS_40",
4634 "SYS_dup", //41
4635 "SYS_opipe", //42
4636 "SYS_getegid", //43
4637 "SYS_profil", //44
4638 "SYS_ktrace", //45
4639 "SYS_sigaction", //46
4640 "SYS_getgid", //47
4641 "SYS_sigprocmask", //48
4642 "SYS_getlogin", //49
4643 "SYS_setlogin", //50
4644 "SYS_acct", //51
4645 "SYS_sigpending", //52
4646 "SYS_osigaltstack", //53
4647 "SYS_ioctl", //54
4648 "SYS_reboot", //55
4649 "SYS_revoke", //56
4650 "SYS_symlink", //57
4651 "SYS_readlink", //58
4652 "SYS_execve", //59
4653 "SYS_umask", //60
4654 "SYS_chroot", //61
4655 "SYS_62",
4656 "SYS_63",
4657 "SYS_64",
4658 "SYS_65",
4659 "SYS_vfork", //66
4660 "SYS_67",
4661 "SYS_68",
4662 "SYS_sbrk", //69
4663 "SYS_sstk", //70
4664 "SYS_61",
4665 "SYS_vadvise", //72
4666 "SYS_munmap", //73
4667 "SYS_mprotect", //74
4668 "SYS_madvise", //75
4669 "SYS_76",
4670 "SYS_77",
4671 "SYS_mincore", //78
4672 "SYS_getgroups", //79
4673 "SYS_setgroups", //80
4674 "SYS_getpgrp", //81
4675 "SYS_setpgid", //82
4676 "SYS_setitimer", //83
4677 "SYS_84",
4678 "SYS_85",
4679 "SYS_getitimer", //86
4680 "SYS_87",
4681 "SYS_88",
4682 "SYS_89",
4683 "SYS_dup2", //90
4684 "SYS_91",
4685 "SYS_fcntl", //92
4686 "SYS_select", //93
4687 "SYS_94",
4688 "SYS_fsync", //95
4689 "SYS_setpriority", //96
4690 "SYS_socket", //97
4691 "SYS_connect", //98
4692 "SYS_99",
4693 "SYS_getpriority", //100
4694 "SYS_101",
4695 "SYS_102",
4696 "SYS_sigreturn", //103
4697 "SYS_bind", //104
4698 "SYS_setsockopt", //105
4699 "SYS_listen", //106
4700 "SYS_107",
4701 "SYS_108",
4702 "SYS_109",
4703 "SYS_110",
4704 "SYS_sigsuspend", //111
4705 "SYS_112",
4706 "SYS_113",
4707 "SYS_114",
4708 "SYS_115",
4709 "SYS_gettimeofday", //116
4710 "SYS_getrusage", //117
4711 "SYS_getsockopt", //118
4712 "SYS_119",
4713 "SYS_readv", //120
4714 "SYS_writev", //121
4715 "SYS_settimeofday", //122
4716 "SYS_fchown", //123
4717 "SYS_fchmod", //124
4718 "SYS_125",
4719 "SYS_setreuid", //126
4720 "SYS_setregid", //127
4721 "SYS_rename", //128
4722 "SYS_129",
4723 "SYS_130",
4724 "SYS_flock", //131
4725 "SYS_mkfifo", //132
4726 "SYS_sendto", //133
4727 "SYS_shutdown", //134
4728 "SYS_socketpair", //135
4729 "SYS_mkdir", //136
4730 "SYS_rmdir", //137
4731 "SYS_utimes", //138
4732 "SYS_139",
4733 "SYS_adjtime", //140
4734 "SYS_141",
4735 "SYS_142",
4736 "SYS_143",
4737 "SYS_144",
4738 "SYS_145",
4739 "SYS_146",
4740 "SYS_setsid", //147
4741 "SYS_quotactl", //148
4742 "SYS_149",
4743 "SYS_150",
4744 "SYS_151",
4745 "SYS_152",
4746 "SYS_153",
4747 "SYS_154",
4748 "SYS_nfssvc", //155
4749 "SYS_156",
4750 "SYS_157",
4751 "SYS_158",
4752 "SYS_159",
4753 "SYS_160",
4754 "SYS_getfh", //161
4755 "SYS_162",
4756 "SYS_163",
4757 "SYS_164",
4758 "SYS_sysarch", //165
4759 "SYS_166",
4760 "SYS_167",
4761 "SYS_168",
4762 "SYS_169",
4763 "SYS_170",
4764 "SYS_171",
4765 "SYS_172",
4766 "SYS_pread", //173
4767 "SYS_pwrite", //174
4768 "SYS_175",
4769 "SYS_176",
4770 "SYS_177",
4771 "SYS_178",
4772 "SYS_179",
4773 "SYS_180",
4774 "SYS_setgid", //181
4775 "SYS_setegid", //182
4776 "SYS_seteuid", //183
4777 "SYS_lfs_bmapv", //184
4778 "SYS_lfs_markv", //185
4779 "SYS_lfs_segclean", //186
4780 "SYS_lfs_segwait", //187
4781 "SYS_188",
4782 "SYS_189",
4783 "SYS_190",
4784 "SYS_pathconf", //191
4785 "SYS_fpathconf", //192
4786 "SYS_swapctl", //193
4787 "SYS_getrlimit", //194
4788 "SYS_setrlimit", //195
4789 "SYS_getdirentries", //196
4790 "SYS_mmap", //197
4791 "SYS___syscall", //198
4792 "SYS_lseek", //199
4793 "SYS_truncate", //200
4794 "SYS_ftruncate", //201
4795 "SYS___sysctl", //202
4796 "SYS_mlock", //203
4797 "SYS_munlock", //204
4798 "SYS_205",
4799 "SYS_futimes", //206
4800 "SYS_getpgid", //207
4801 "SYS_xfspioctl", //208
4802 "SYS_209",
4803 "SYS_210",
4804 "SYS_211",
4805 "SYS_212",
4806 "SYS_213",
4807 "SYS_214",
4808 "SYS_215",
4809 "SYS_216",
4810 "SYS_217",
4811 "SYS_218",
4812 "SYS_219",
4813 "SYS_220",
4814 "SYS_semget", //221
4815 "SYS_222",
4816 "SYS_223",
4817 "SYS_224",
4818 "SYS_msgget", //225
4819 "SYS_msgsnd", //226
4820 "SYS_msgrcv", //227
4821 "SYS_shmat", //228
4822 "SYS_229",
4823 "SYS_shmdt", //230
4824 "SYS_231",
4825 "SYS_clock_gettime", //232
4826 "SYS_clock_settime", //233
4827 "SYS_clock_getres", //234
4828 "SYS_235",
4829 "SYS_236",
4830 "SYS_237",
4831 "SYS_238",
4832 "SYS_239",
4833 "SYS_nanosleep", //240
4834 "SYS_241",
4835 "SYS_242",
4836 "SYS_243",
4837 "SYS_244",
4838 "SYS_245",
4839 "SYS_246",
4840 "SYS_247",
4841 "SYS_248",
4842 "SYS_249",
4843 "SYS_minherit", //250
4844 "SYS_rfork", //251
4845 "SYS_poll", //252
4846 "SYS_issetugid", //253
4847 "SYS_lchown", //254
4848 "SYS_getsid", //255
4849 "SYS_msync", //256
4850 "SYS_257",
4851 "SYS_258",
4852 "SYS_259",
4853 "SYS_getfsstat", //260
4854 "SYS_statfs", //261
4855 "SYS_fstatfs", //262
4856 "SYS_pipe", //263
4857 "SYS_fhopen", //264
4858 "SYS_265",
4859 "SYS_fhstatfs", //266
4860 "SYS_preadv", //267
4861 "SYS_pwritev", //268
4862 "SYS_kqueue", //269
4863 "SYS_kevent", //270
4864 "SYS_mlockall", //271
4865 "SYS_munlockall", //272
4866 "SYS_getpeereid", //273
4867 "SYS_274",
4868 "SYS_275",
4869 "SYS_276",
4870 "SYS_277",
4871 "SYS_278",
4872 "SYS_279",
4873 "SYS_280",
4874 "SYS_getresuid", //281
4875 "SYS_setresuid", //282
4876 "SYS_getresgid", //283
4877 "SYS_setresgid", //284
4878 "SYS_285",
4879 "SYS_mquery", //286
4880 "SYS_closefrom", //287
4881 "SYS_sigaltstack", //288
4882 "SYS_shmget", //289
4883 "SYS_semop", //290
4884 "SYS_stat", //291
4885 "SYS_fstat", //292
4886 "SYS_lstat", //293
4887 "SYS_fhstat", //294
4888 "SYS___semctl", //295
4889 "SYS_shmctl", //296
4890 "SYS_msgctl", //297
4891 "SYS_MAXSYSCALL", //298
4892 //299
4893 //300
4894 };
4895 uint32_t uEAX;
4896#ifndef DEBUG_bird
4897 if (!LogIsEnabled())
4898 return;
4899#endif
4900 uEAX = CPUMGetGuestEAX(pVM);
4901 switch (uEAX)
4902 {
4903 default:
4904 if (uEAX < ELEMENTS(apsz))
4905 {
4906 uint32_t au32Args[8] = {0};
4907 PGMPhysReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
4908 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
4909 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
4910 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
4911 }
4912 else
4913 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
4914 break;
4915 }
4916}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette