VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 1

Last change on this file since 1 was 1, checked in by vboxsync, 55 years ago

import

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 154.8 KB
Line 
1/** @file
2 *
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006 InnoTek Systemberatung GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License as published by the Free Software Foundation,
13 * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
14 * distribution. VirtualBox OSE is distributed in the hope that it will
15 * be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * If you received this file as part of a commercial VirtualBox
18 * distribution, then only the terms of your commercial VirtualBox
19 * license agreement apply instead of the previous paragraph.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#include "vl.h"
27#include "exec-all.h"
28
29#include <VBox/rem.h>
30#include <VBox/vmapi.h>
31#include <VBox/tm.h>
32#include <VBox/ssm.h>
33#include <VBox/em.h>
34#include <VBox/trpm.h>
35#include <VBox/iom.h>
36#include <VBox/mm.h>
37#include <VBox/pgm.h>
38#include <VBox/pdm.h>
39#include <VBox/dbgf.h>
40#include <VBox/dbg.h>
41#include <VBox/hwaccm.h>
42#include <VBox/patm.h>
43#include <VBox/csam.h>
44#include "REMInternal.h"
45#include <VBox/vm.h>
46#include <VBox/param.h>
47#include <VBox/err.h>
48
49#define LOG_GROUP LOG_GROUP_REM
50#include <VBox/log.h>
51#include <iprt/semaphore.h>
52#include <iprt/asm.h>
53#include <iprt/assert.h>
54#include <iprt/thread.h>
55#include <iprt/string.h>
56
57////#define VBOX_RAW_V86
58
59/* Don't wanna include everything. */
60extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
61extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
62extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
63extern void tlb_flush_page(CPUX86State *env, uint32_t addr);
64extern void tlb_flush(CPUState *env, int flush_global);
65extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
66extern void sync_ldtr(CPUX86State *env1, int selector);
67extern int sync_tr(CPUX86State *env1, int selector);
68
69#ifdef VBOX_STRICT
70unsigned long get_phys_page_offset(target_ulong addr);
71#endif
72
73
74/*******************************************************************************
75* Defined Constants And Macros *
76*******************************************************************************/
77
78/** Copy 80-bit fpu register at pSrc to pDst.
79 * This is probably faster than *calling* memcpy.
80 */
81#define REM_COPY_FPU_REG(pDst, pSrc) \
82 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
83
84
85/*******************************************************************************
86* Internal Functions *
87*******************************************************************************/
88static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
89static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
90static void remR3StateUpdate(PVM pVM);
91static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
92static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
93static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
94static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
95static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
96static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
97
98static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
99static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
100static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
101static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
102static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
103static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
104
105
106/*******************************************************************************
107* Global Variables *
108*******************************************************************************/
109
110/** The log level of the recompiler. */
111#if 1
112extern int loglevel;
113#else
114int loglevel = ~0;
115FILE *logfile = NULL;
116#endif
117
118
119/** @todo Move stats to REM::s some rainy day we have nothing do to. */
120#ifdef VBOX_WITH_STATISTICS
121static STAMPROFILEADV gStatExecuteSingleInstr;
122static STAMPROFILEADV gStatCompilationQEmu;
123static STAMPROFILEADV gStatRunCodeQEmu;
124static STAMPROFILEADV gStatTotalTimeQEmu;
125static STAMPROFILEADV gStatTimers;
126static STAMPROFILEADV gStatTBLookup;
127static STAMPROFILEADV gStatIRQ;
128static STAMPROFILEADV gStatRawCheck;
129static STAMPROFILEADV gStatMemRead;
130static STAMPROFILEADV gStatMemWrite;
131static STAMCOUNTER gStatRefuseTFInhibit;
132static STAMCOUNTER gStatRefuseVM86;
133static STAMCOUNTER gStatRefusePaging;
134static STAMCOUNTER gStatRefusePAE;
135static STAMCOUNTER gStatRefuseIOPLNot0;
136static STAMCOUNTER gStatRefuseIF0;
137static STAMCOUNTER gStatRefuseCode16;
138static STAMCOUNTER gStatRefuseWP0;
139static STAMCOUNTER gStatRefuseRing1or2;
140static STAMCOUNTER gStatRefuseCanExecute;
141static STAMCOUNTER gStatREMGDTChange;
142static STAMCOUNTER gStatREMIDTChange;
143static STAMCOUNTER gStatREMLDTRChange;
144static STAMCOUNTER gStatREMTRChange;
145static STAMCOUNTER gStatSelOutOfSync[6];
146static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
147#endif
148
149/*
150 * Global stuff.
151 */
152
153/** MMIO read callbacks. */
154CPUReadMemoryFunc *g_apfnMMIORead[3] =
155{
156 remR3MMIOReadU8,
157 remR3MMIOReadU16,
158 remR3MMIOReadU32
159};
160
161/** MMIO write callbacks. */
162CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
163{
164 remR3MMIOWriteU8,
165 remR3MMIOWriteU16,
166 remR3MMIOWriteU32
167};
168
169/** Handler read callbacks. */
170CPUReadMemoryFunc *g_apfnHandlerRead[3] =
171{
172 remR3HandlerReadU8,
173 remR3HandlerReadU16,
174 remR3HandlerReadU32
175};
176
177/** Handler write callbacks. */
178CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
179{
180 remR3HandlerWriteU8,
181 remR3HandlerWriteU16,
182 remR3HandlerWriteU32
183};
184
185#ifndef PGM_DYNAMIC_RAM_ALLOC
186/* Guest physical RAM base. Not to be used in external code. */
187static uint8_t *phys_ram_base;
188#endif
189
190/*
191 * Instance stuff.
192 */
193/** Pointer to the cpu state. */
194CPUState *cpu_single_env;
195
196
197#ifdef VBOX_WITH_DEBUGGER
198/*
199 * Debugger commands.
200 */
201static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
202
203/** '.remstep' arguments. */
204static const DBGCVARDESC g_aArgRemStep[] =
205{
206 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
207 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
208};
209
210/** Command descriptors. */
211static const DBGCCMD g_aCmds[] =
212{
213 {
214 .pszCmd ="remstep",
215 .cArgsMin = 0,
216 .cArgsMax = 1,
217 .paArgDescs = &g_aArgRemStep[0],
218 .cArgDescs = ELEMENTS(g_aArgRemStep),
219 .pResultDesc = NULL,
220 .fFlags = 0,
221 .pfnHandler = remR3CmdDisasEnableStepping,
222 .pszSyntax = "[on/off]",
223 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
224 "If no arguments show the current state."
225 }
226};
227#endif
228
229
230/*******************************************************************************
231* Internal Functions *
232*******************************************************************************/
233static void remAbort(int rc, const char *pszTip);
234
235
236/* Put them here to avoid unused variable warning. */
237AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
238//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
239//AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
240
241/**
242 * Initializes the REM.
243 *
244 * @returns VBox status code.
245 * @param pVM The VM to operate on.
246 */
247REMR3DECL(int) REMR3Init(PVM pVM)
248{
249 uint32_t u32Dummy;
250 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
251 //AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
252 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
253#if 0 /* not merged yet */
254 Assert(!testmath());
255#endif
256
257 /*
258 * Init some internal data members.
259 */
260 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
261 pVM->rem.s.Env.pVM = pVM;
262#ifdef CPU_RAW_MODE_INIT
263 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
264#endif
265
266 /* ctx. */
267 int rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
268 if (VBOX_FAILURE(rc))
269 {
270 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
271 return rc;
272 }
273 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
274
275 /*
276 * Init the recompiler.
277 */
278 if (!cpu_x86_init(&pVM->rem.s.Env))
279 {
280 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
281 return VERR_GENERAL_FAILURE;
282 }
283 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
284
285 /* allocate code buffer for single instruction emulation. */
286 pVM->rem.s.Env.cbCodeBuffer = 4096;
287 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
288 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
289
290 /* finally, set the cpu_single_env global. */
291 cpu_single_env = &pVM->rem.s.Env;
292
293 /* Nothing is pending by default */
294 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
295
296#ifdef DEBUG_bird
297 //cpu_breakpoint_insert(&pVM->rem.s.Env, some-address);
298#endif
299
300 /*
301 * Register ram types.
302 */
303 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(0, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
304 AssertReleaseMsg(pVM->rem.s.iMMIOMemType > 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
305 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(0, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
306 AssertReleaseMsg(pVM->rem.s.iHandlerMemType > 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
307 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
308
309 /*
310 * Register the saved state data unit.
311 */
312 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
313 NULL, remR3Save, NULL,
314 NULL, remR3Load, NULL);
315 if (VBOX_FAILURE(rc))
316 return rc;
317
318#ifdef VBOX_WITH_DEBUGGER
319 /*
320 * Debugger commands.
321 */
322 static bool fRegisteredCmds = false;
323 if (!fRegisteredCmds)
324 {
325 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
326 if (VBOX_SUCCESS(rc))
327 fRegisteredCmds = true;
328 }
329#endif
330
331#ifdef VBOX_WITH_STATISTICS
332 /*
333 * Statistics.
334 */
335 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
336 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
337 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
338 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
339 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
340 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
341 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
342 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
343 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
344 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
345
346 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
347 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
348 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
349 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
350 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
351 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
352 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
353 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
354 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
355 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
356
357 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
358 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
359 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
360 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
361
362 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
363 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
364 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
365 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
366 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
367 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
368
369 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
370 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
371 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
372 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
373 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
374 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
375
376#endif
377 return rc;
378}
379
380
381/**
382 * Terminates the REM.
383 *
384 * Termination means cleaning up and freeing all resources,
385 * the VM it self is at this point powered off or suspended.
386 *
387 * @returns VBox status code.
388 * @param pVM The VM to operate on.
389 */
390REMR3DECL(int) REMR3Term(PVM pVM)
391{
392 return VINF_SUCCESS;
393}
394
395
396/**
397 * The VM is being reset.
398 *
399 * For the REM component this means to call the cpu_reset() and
400 * reinitialize some state variables.
401 *
402 * @param pVM VM handle.
403 */
404REMR3DECL(void) REMR3Reset(PVM pVM)
405{
406 pVM->rem.s.fIgnoreCR3Load = true;
407 pVM->rem.s.fIgnoreInvlPg = true;
408 pVM->rem.s.fIgnoreCpuMode = true;
409
410 /*
411 * Reset the REM cpu.
412 */
413 cpu_reset(&pVM->rem.s.Env);
414 pVM->rem.s.cInvalidatedPages = 0;
415
416 pVM->rem.s.fIgnoreCR3Load = false;
417 pVM->rem.s.fIgnoreInvlPg = false;
418 pVM->rem.s.fIgnoreCpuMode = false;
419}
420
421
422/**
423 * Execute state save operation.
424 *
425 * @returns VBox status code.
426 * @param pVM VM Handle.
427 * @param pSSM SSM operation handle.
428 */
429static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
430{
431 LogFlow(("remR3Save:\n"));
432
433 /*
434 * Save the required CPU Env bits.
435 * (Not much because we're never in REM when doing the save.)
436 */
437 PREM pRem = &pVM->rem.s;
438 Assert(!pRem->fInREM);
439 SSMR3PutU32(pSSM, pRem->Env.hflags);
440 SSMR3PutMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
441 SSMR3PutU32(pSSM, ~0); /* separator */
442
443 /*
444 * Save the REM stuff.
445 */
446 SSMR3PutUInt(pSSM, pRem->cInvalidatedPages);
447 unsigned i;
448 for (i = 0; i < pRem->cInvalidatedPages; i++)
449 SSMR3PutGCPtr(pSSM, pRem->aGCPtrInvalidatedPages[i]);
450
451 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
452
453 return SSMR3PutU32(pSSM, ~0); /* terminator */
454}
455
456
457/**
458 * Execute state load operation.
459 *
460 * @returns VBox status code.
461 * @param pVM VM Handle.
462 * @param pSSM SSM operation handle.
463 * @param u32Version Data layout version.
464 */
465static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
466{
467 uint32_t u32Dummy;
468 LogFlow(("remR3Load:\n"));
469
470 /*
471 * Validate version.
472 */
473 if (u32Version != REM_SAVED_STATE_VERSION)
474 {
475 Log(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
476 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
477 }
478
479 /*
480 * Do a reset to be on the safe side...
481 */
482 REMR3Reset(pVM);
483
484 /*
485 * Ignore all ignorable notifications.
486 * Not doing this will cause big trouble.
487 */
488 pVM->rem.s.fIgnoreCR3Load = true;
489 pVM->rem.s.fIgnoreInvlPg = true;
490 pVM->rem.s.fIgnoreCpuMode = true;
491
492 /*
493 * Load the required CPU Env bits.
494 * (Not much because we're never in REM when doing the save.)
495 */
496 PREM pRem = &pVM->rem.s;
497 Assert(!pRem->fInREM);
498 SSMR3GetU32(pSSM, &pRem->Env.hflags);
499 SSMR3GetMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
500 uint32_t u32Sep;
501 int rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
502 if (VBOX_FAILURE(rc))
503 return rc;
504 if (u32Sep != ~0)
505 {
506 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
507 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
508 }
509
510 /*
511 * Load the REM stuff.
512 */
513 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
514 if (VBOX_FAILURE(rc))
515 return rc;
516 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
517 {
518 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
519 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
520 }
521 unsigned i;
522 for (i = 0; i < pRem->cInvalidatedPages; i++)
523 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
524
525 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
526 if (VBOX_FAILURE(rc))
527 return rc;
528
529 /* check the terminator. */
530 rc = SSMR3GetU32(pSSM, &u32Sep);
531 if (VBOX_FAILURE(rc))
532 return rc;
533 if (u32Sep != ~0)
534 {
535 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
536 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
537 }
538
539 /*
540 * Get the CPUID features.
541 */
542 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
543
544 /*
545 * Sync the Load Flush the TLB
546 */
547 tlb_flush(&pRem->Env, 1);
548
549#if 0 /** @todo r=bird: this doesn't make sense. WHY? */
550 /*
551 * Clear all lazy flags (only FPU sync for now).
552 */
553 CPUMGetAndClearFPUUsedREM(pVM);
554#endif
555
556 /*
557 * Stop ignoring ignornable notifications.
558 */
559 pVM->rem.s.fIgnoreCpuMode = false;
560 pVM->rem.s.fIgnoreInvlPg = false;
561 pVM->rem.s.fIgnoreCR3Load = false;
562
563 return VINF_SUCCESS;
564}
565
566
567
568#undef LOG_GROUP
569#define LOG_GROUP LOG_GROUP_REM_RUN
570
571/**
572 * Single steps an instruction in recompiled mode.
573 *
574 * Before calling this function the REM state needs to be in sync with
575 * the VM. Call REMR3State() to perform the sync. It's only necessary
576 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
577 * and after calling REMR3StateBack().
578 *
579 * @returns VBox status code.
580 *
581 * @param pVM VM Handle.
582 */
583REMR3DECL(int) REMR3Step(PVM pVM)
584{
585 /*
586 * Lock the REM - we don't wanna have anyone interrupting us
587 * while stepping - and enabled single stepping. We also ignore
588 * pending interrupts and suchlike.
589 */
590 int interrupt_request = pVM->rem.s.Env.interrupt_request;
591 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
592 pVM->rem.s.Env.interrupt_request = 0;
593 cpu_single_step(&pVM->rem.s.Env, 1);
594
595 /*
596 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
597 */
598 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
599 bool fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
600
601 /*
602 * Execute and handle the return code.
603 * We execute without enabling the cpu tick, so on success we'll
604 * just flip it on and off to make sure it moves
605 */
606 int rc = cpu_exec(&pVM->rem.s.Env);
607 if (rc == EXCP_DEBUG)
608 {
609 TMCpuTickResume(pVM);
610 TMCpuTickPause(pVM);
611 TMVirtualResume(pVM);
612 TMVirtualPause(pVM);
613 rc = VINF_EM_DBG_STEPPED;
614 }
615 else
616 {
617 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
618 switch (rc)
619 {
620 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
621 case EXCP_HLT: rc = VINF_EM_HALT; break;
622 case EXCP_RC:
623 rc = pVM->rem.s.rc;
624 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
625 break;
626 default:
627 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
628 rc = VERR_INTERNAL_ERROR;
629 break;
630 }
631 }
632
633 /*
634 * Restore the stuff we changed to prevent interruption.
635 * Unlock the REM.
636 */
637 if (fBp)
638 {
639 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
640 Assert(rc2 == 0); NOREF(rc2);
641 }
642 cpu_single_step(&pVM->rem.s.Env, 0);
643 pVM->rem.s.Env.interrupt_request = interrupt_request;
644
645 return rc;
646}
647
648
649/**
650 * Set a breakpoint using the REM facilities.
651 *
652 * @returns VBox status code.
653 * @param pVM The VM handle.
654 * @param Address The breakpoint address.
655 * @thread The emulation thread.
656 */
657REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
658{
659 VM_ASSERT_EMT(pVM);
660 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
661 {
662 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
663 return VINF_SUCCESS;
664 }
665 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
666 return VERR_REM_NO_MORE_BP_SLOTS;
667}
668
669
670/**
671 * Clears a breakpoint set by REMR3BreakpointSet().
672 *
673 * @returns VBox status code.
674 * @param pVM The VM handle.
675 * @param Address The breakpoint address.
676 * @thread The emulation thread.
677 */
678REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
679{
680 VM_ASSERT_EMT(pVM);
681 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
682 {
683 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
684 return VINF_SUCCESS;
685 }
686 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
687 return VERR_REM_BP_NOT_FOUND;
688}
689
690
691/**
692 * Emulate an instruction.
693 *
694 * This function executes one instruction without letting anyone
695 * interrupt it. This is intended for being called while being in
696 * raw mode and thus will take care of all the state syncing between
697 * REM and the rest.
698 *
699 * @returns VBox status code.
700 * @param pVM VM handle.
701 */
702REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
703{
704 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
705
706 /*
707 * Sync the state and enable single instruction / single stepping.
708 */
709 int rc = REMR3State(pVM);
710 if (VBOX_SUCCESS(rc))
711 {
712 int interrupt_request = pVM->rem.s.Env.interrupt_request;
713 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
714 Assert(!pVM->rem.s.Env.singlestep_enabled);
715#if 1
716
717 /*
718 * Now we set the execute single instruction flag and enter the cpu_exec loop.
719 */
720 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
721 TMCpuTickResume(pVM);
722 rc = cpu_exec(&pVM->rem.s.Env);
723 TMCpuTickPause(pVM);
724 switch (rc)
725 {
726 /*
727 * Executed without anything out of the way happening.
728 */
729 case EXCP_SINGLE_INSTR:
730 rc = VINF_EM_RESCHEDULE;
731 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
732 break;
733
734 /*
735 * If we take a trap or start servicing a pending interrupt, we might end up here.
736 * (Timer thread or some other thread wishing EMT's attention.)
737 */
738 case EXCP_INTERRUPT:
739 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
740 rc = VINF_EM_RESCHEDULE;
741 break;
742
743 /*
744 * Single step, we assume!
745 * If there was a breakpoint there we're fucked now.
746 */
747 case EXCP_DEBUG:
748 {
749 /* breakpoint or single step? */
750 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
751 int iBP;
752 rc = VINF_EM_DBG_STEPPED;
753 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
754 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
755 {
756 rc = VINF_EM_DBG_BREAKPOINT;
757 break;
758 }
759 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
760 break;
761 }
762
763 /*
764 * hlt instruction.
765 */
766 case EXCP_HLT:
767 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
768 rc = VINF_EM_HALT;
769 break;
770
771 /*
772 * Switch to RAW-mode.
773 */
774 case EXCP_EXECUTE_RAW:
775 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
776 rc = VINF_EM_RESCHEDULE_RAW;
777 break;
778
779 /*
780 * Switch to hardware accelerated RAW-mode.
781 */
782 case EXCP_EXECUTE_HWACC:
783 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
784 rc = VINF_EM_RESCHEDULE_HWACC;
785 break;
786
787 /*
788 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
789 */
790 case EXCP_RC:
791 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
792 rc = pVM->rem.s.rc;
793 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
794 break;
795
796 /*
797 * Figure out the rest when they arrive....
798 */
799 default:
800 AssertMsgFailed(("rc=%d\n", rc));
801 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
802 rc = VINF_EM_RESCHEDULE;
803 break;
804 }
805
806 /*
807 * Switch back the state.
808 */
809#else
810 pVM->rem.s.Env.interrupt_request = 0;
811 cpu_single_step(&pVM->rem.s.Env, 1);
812
813 /*
814 * Execute and handle the return code.
815 * We execute without enabling the cpu tick, so on success we'll
816 * just flip it on and off to make sure it moves.
817 *
818 * (We do not use emulate_single_instr() because that doesn't enter the
819 * right way in will cause serious trouble if a longjmp was attempted.)
820 */
821 #ifdef DEBUG_bird
822 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
823 #endif
824 int cTimesMax = 16384;
825 uint32_t eip = pVM->rem.s.Env.eip;
826 do
827 {
828 TMCpuTickResume(pVM);
829 rc = cpu_exec(&pVM->rem.s.Env);
830 TMCpuTickPause(pVM);
831
832 } while ( eip == pVM->rem.s.Env.eip
833 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
834 && --cTimesMax > 0);
835 switch (rc)
836 {
837 /*
838 * Single step, we assume!
839 * If there was a breakpoint there we're fucked now.
840 */
841 case EXCP_DEBUG:
842 {
843 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
844 rc = VINF_EM_RESCHEDULE;
845 break;
846 }
847
848 /*
849 * We cannot be interrupted!
850 */
851 case EXCP_INTERRUPT:
852 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
853 rc = VERR_INTERNAL_ERROR;
854 break;
855
856 /*
857 * hlt instruction.
858 */
859 case EXCP_HLT:
860 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
861 rc = VINF_EM_HALT;
862 break;
863
864 /*
865 * Switch to RAW-mode.
866 */
867 case EXCP_EXECUTE_RAW:
868 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
869 rc = VINF_EM_RESCHEDULE_RAW;
870 break;
871
872 /*
873 * Switch to hardware accelerated RAW-mode.
874 */
875 case EXCP_EXECUTE_HWACC:
876 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
877 rc = VINF_EM_RESCHEDULE_HWACC;
878 break;
879
880 /*
881 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
882 */
883 case EXCP_RC:
884 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
885 rc = pVM->rem.s.rc;
886 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
887 break;
888
889 /*
890 * Figure out the rest when they arrive....
891 */
892 default:
893 AssertMsgFailed(("rc=%d\n", rc));
894 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
895 rc = VINF_SUCCESS;
896 break;
897 }
898
899 /*
900 * Switch back the state.
901 */
902 cpu_single_step(&pVM->rem.s.Env, 0);
903#endif
904 pVM->rem.s.Env.interrupt_request = interrupt_request;
905 int rc2 = REMR3StateBack(pVM);
906 AssertRC(rc2);
907 }
908
909 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%08x)\n",
910 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
911 return rc;
912}
913
914
915/**
916 * Runs code in recompiled mode.
917 *
918 * Before calling this function the REM state needs to be in sync with
919 * the VM. Call REMR3State() to perform the sync. It's only necessary
920 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
921 * and after calling REMR3StateBack().
922 *
923 * @returns VBox status code.
924 *
925 * @param pVM VM Handle.
926 */
927REMR3DECL(int) REMR3Run(PVM pVM)
928{
929 Log2(("REMR3Run: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
930 Assert(pVM->rem.s.fInREM);
931////Keyboard / tb stuff:
932//if ( pVM->rem.s.Env.segs[R_CS].selector == 0xf000
933// && pVM->rem.s.Env.eip >= 0xe860
934// && pVM->rem.s.Env.eip <= 0xe880)
935// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
936////A20:
937//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x9020
938// && pVM->rem.s.Env.eip >= 0x970
939// && pVM->rem.s.Env.eip <= 0x9a0)
940// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
941////Speaker (port 61h)
942//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x0010
943// && ( (pVM->rem.s.Env.eip >= 0x90278c10 && pVM->rem.s.Env.eip <= 0x90278c30)
944// || (pVM->rem.s.Env.eip >= 0x9010e250 && pVM->rem.s.Env.eip <= 0x9010e260)
945// )
946// )
947// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
948//DBGFR3InfoLog(pVM, "timers", NULL);
949
950
951 TMCpuTickResume(pVM);
952 int rc = cpu_exec(&pVM->rem.s.Env);
953 TMCpuTickPause(pVM);
954 switch (rc)
955 {
956 /*
957 * This happens when the execution was interrupted
958 * by an external event, like pending timers.
959 */
960 case EXCP_INTERRUPT:
961 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
962 rc = VINF_SUCCESS;
963 break;
964
965 /*
966 * hlt instruction.
967 */
968 case EXCP_HLT:
969 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
970 rc = VINF_EM_HALT;
971 break;
972
973 /*
974 * Breakpoint/single step.
975 */
976 case EXCP_DEBUG:
977 {
978#if 0//def DEBUG_bird
979 static int iBP = 0;
980 printf("howdy, breakpoint! iBP=%d\n", iBP);
981 switch (iBP)
982 {
983 case 0:
984 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
985 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
986 //pVM->rem.s.Env.interrupt_request = 0;
987 //pVM->rem.s.Env.exception_index = -1;
988 //g_fInterruptDisabled = 1;
989 rc = VINF_SUCCESS;
990 asm("int3");
991 break;
992 default:
993 asm("int3");
994 break;
995 }
996 iBP++;
997#else
998 /* breakpoint or single step? */
999 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1000 int iBP;
1001 rc = VINF_EM_DBG_STEPPED;
1002 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1003 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1004 {
1005 rc = VINF_EM_DBG_BREAKPOINT;
1006 break;
1007 }
1008 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1009#endif
1010 break;
1011 }
1012
1013 /*
1014 * Switch to RAW-mode.
1015 */
1016 case EXCP_EXECUTE_RAW:
1017 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1018 rc = VINF_EM_RESCHEDULE_RAW;
1019 break;
1020
1021 /*
1022 * Switch to hardware accelerated RAW-mode.
1023 */
1024 case EXCP_EXECUTE_HWACC:
1025 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1026 rc = VINF_EM_RESCHEDULE_HWACC;
1027 break;
1028
1029 /*
1030 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
1031 */
1032 case EXCP_RC:
1033 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1034 rc = pVM->rem.s.rc;
1035 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1036 break;
1037
1038 /*
1039 * Figure out the rest when they arrive....
1040 */
1041 default:
1042 AssertMsgFailed(("rc=%d\n", rc));
1043 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1044 rc = VINF_SUCCESS;
1045 break;
1046 }
1047
1048 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%08x)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1049 return rc;
1050}
1051
1052
1053/**
1054 * Check if the cpu state is suitable for Raw execution.
1055 *
1056 * @returns boolean
1057 * @param env The CPU env struct.
1058 * @param eip The EIP to check this for (might differ from env->eip).
1059 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1060 * @param pExceptionIndex Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1061 *
1062 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1063 */
1064bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, uint32_t *pExceptionIndex)
1065{
1066 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1067 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1068 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1069
1070 /* Update counter. */
1071 env->pVM->rem.s.cCanExecuteRaw++;
1072
1073 if (HWACCMIsEnabled(env->pVM))
1074 {
1075 env->state |= CPU_RAW_HWACC;
1076
1077 /*
1078 * Create partial context for HWACCMR3CanExecuteGuest
1079 */
1080 CPUMCTX Ctx;
1081 Ctx.cr0 = env->cr[0];
1082 Ctx.cr3 = env->cr[3];
1083 Ctx.cr4 = env->cr[4];
1084
1085 Ctx.tr = env->tr.selector;
1086 Ctx.trHid.u32Base = (uint32_t)env->tr.base;
1087 Ctx.trHid.u32Limit = env->tr.limit;
1088 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1089
1090 Ctx.idtr.cbIdt = env->idt.limit;
1091 Ctx.idtr.pIdt = (uint32_t)env->idt.base;
1092
1093 Ctx.eflags.u32 = env->eflags;
1094
1095 Ctx.cs = env->segs[R_CS].selector;
1096 Ctx.csHid.u32Base = (uint32_t)env->segs[R_CS].base;
1097 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1098 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1099
1100 Ctx.ss = env->segs[R_SS].selector;
1101 Ctx.ssHid.u32Base = (uint32_t)env->segs[R_SS].base;
1102 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1103 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1104
1105 /* Hardware accelerated raw-mode:
1106 *
1107 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1108 */
1109 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1110 {
1111 *pExceptionIndex = EXCP_EXECUTE_HWACC;
1112 return true;
1113 }
1114 return false;
1115 }
1116
1117 /*
1118 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1119 * or 32 bits protected mode ring 0 code
1120 *
1121 * The tests are ordered by the likelyhood of being true during normal execution.
1122 */
1123 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1124 {
1125 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1126 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1127 return false;
1128 }
1129
1130#ifndef VBOX_RAW_V86
1131 if (fFlags & VM_MASK) {
1132 STAM_COUNTER_INC(&gStatRefuseVM86);
1133 Log2(("raw mode refused: VM_MASK\n"));
1134 return false;
1135 }
1136#endif
1137
1138 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1139 {
1140#ifndef DEBUG_bird
1141 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1142#endif
1143 return false;
1144 }
1145
1146 if (env->singlestep_enabled)
1147 {
1148 //Log2(("raw mode refused: Single step\n"));
1149 return false;
1150 }
1151
1152 if (env->nb_breakpoints > 0)
1153 {
1154 //Log2(("raw mode refused: Breakpoints\n"));
1155 return false;
1156 }
1157
1158 uint32_t u32CR0 = env->cr[0];
1159 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1160 {
1161 STAM_COUNTER_INC(&gStatRefusePaging);
1162 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1163 return false;
1164 }
1165
1166 if (env->cr[4] & CR4_PAE_MASK)
1167 {
1168 STAM_COUNTER_INC(&gStatRefusePAE);
1169 //Log2(("raw mode refused: PAE\n"));
1170 return false;
1171 }
1172
1173 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1174 {
1175 if (!EMIsRawRing3Enabled(env->pVM))
1176 return false;
1177
1178 if (!(env->eflags & IF_MASK))
1179 {
1180#ifdef VBOX_RAW_V86
1181 if(!(fFlags & VM_MASK))
1182 return false;
1183#else
1184 STAM_COUNTER_INC(&gStatRefuseIF0);
1185 Log2(("raw mode refused: IF (RawR3)\n"));
1186 return false;
1187#endif
1188 }
1189
1190 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1191 {
1192 STAM_COUNTER_INC(&gStatRefuseWP0);
1193 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1194 return false;
1195 }
1196 }
1197 else
1198 {
1199 if (!EMIsRawRing0Enabled(env->pVM))
1200 return false;
1201
1202 // Let's start with pure 32 bits ring 0 code first
1203 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1204 {
1205 STAM_COUNTER_INC(&gStatRefuseCode16);
1206 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1207 return false;
1208 }
1209
1210 // Only R0
1211 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1212 {
1213 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1214 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1215 return false;
1216 }
1217
1218 if (!(u32CR0 & CR0_WP_MASK))
1219 {
1220 STAM_COUNTER_INC(&gStatRefuseWP0);
1221 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1222 return false;
1223 }
1224
1225 if (PATMIsPatchGCAddr(env->pVM, eip))
1226 {
1227 Log2(("raw r0 mode forced: patch code\n"));
1228 *pExceptionIndex = EXCP_EXECUTE_RAW;
1229 return true;
1230 }
1231
1232#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1233 if (!(env->eflags & IF_MASK))
1234 {
1235 STAM_COUNTER_INC(&gStatRefuseIF0);
1236 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1237 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1238 return false;
1239 }
1240#endif
1241
1242 env->state |= CPU_RAW_RING0;
1243 }
1244
1245 /*
1246 * Don't reschedule the first time we're called, because there might be
1247 * special reasons why we're here that is not covered by the above checks.
1248 */
1249 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1250 {
1251 Log2(("raw mode refused: first scheduling\n"));
1252 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1253 return false;
1254 }
1255
1256 Assert(PGMPhysIsA20Enabled(env->pVM));
1257 *pExceptionIndex = EXCP_EXECUTE_RAW;
1258 return true;
1259}
1260
1261
1262/**
1263 * Fetches a code byte.
1264 *
1265 * @returns Success indicator (bool) for ease of use.
1266 * @param env The CPU environment structure.
1267 * @param GCPtrInstr Where to fetch code.
1268 * @param pu8Byte Where to store the byte on success
1269 */
1270bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1271{
1272 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1273 if (VBOX_SUCCESS(rc))
1274 return true;
1275 return false;
1276}
1277
1278
1279/**
1280 * Flush (or invalidate if you like) page table/dir entry.
1281 *
1282 * (invlpg instruction; tlb_flush_page)
1283 *
1284 * @param env Pointer to cpu environment.
1285 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1286 */
1287void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1288{
1289 PVM pVM = env->pVM;
1290
1291 /*
1292 * When we're replaying invlpg instructions or restoring a saved
1293 * state we disable this path.
1294 */
1295 if (pVM->rem.s.fIgnoreInvlPg)
1296 return;
1297 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1298
1299 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1300
1301 /*
1302 * Update the control registers before calling PGMFlushPage.
1303 */
1304 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1305 pCtx->cr0 = env->cr[0];
1306 pCtx->cr3 = env->cr[3];
1307 pCtx->cr4 = env->cr[4];
1308
1309 /*
1310 * Let PGM do the rest.
1311 */
1312 int rc = PGMInvalidatePage(pVM, GCPtr);
1313 if (VBOX_FAILURE(rc))
1314 {
1315 AssertMsgFailed(("remR3FlushPage %x %x %x %d failed!!\n", GCPtr));
1316 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1317 }
1318 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1319}
1320
1321/**
1322 * Set page table/dir entry. (called from tlb_set_page)
1323 *
1324 * @param env Pointer to cpu environment.
1325 */
1326void remR3SetPage(CPUState *env, CPUTLBEntry *pRead, CPUTLBEntry *pWrite, int prot, int is_user)
1327{
1328 uint32_t virt_addr, addend;
1329
1330 Log2(("tlb_set_page_raw read (%x-%x) write (%x-%x) prot %x is_user %d\n", pRead->address, pRead->addend, pWrite->address, pWrite->addend, prot, is_user));
1331
1332 if (prot & PAGE_WRITE)
1333 {
1334 addend = pWrite->addend;
1335 virt_addr = pWrite->address;
1336 }
1337 else
1338 if (prot & PAGE_READ)
1339 {
1340 addend = pRead->addend;
1341 virt_addr = pRead->address;
1342 }
1343 else
1344 {
1345 // Should never happen!
1346 AssertMsgFailed(("tlb_set_page_raw unexpected protection flags %x\n", prot));
1347 return;
1348 }
1349
1350 // Clear IO_* flags (TODO: are they actually useful for us??)
1351 virt_addr &= ~0xFFF;
1352
1353 /*
1354 * Update the control registers before calling PGMFlushPage.
1355 */
1356 PCPUMCTX pCtx = (PCPUMCTX)env->pVM->rem.s.pCtx;
1357 pCtx->cr0 = env->cr[0];
1358 pCtx->cr3 = env->cr[3];
1359 pCtx->cr4 = env->cr[4];
1360
1361 /*
1362 * Let PGM do the rest.
1363 */
1364 int rc = PGMInvalidatePage(env->pVM, (RTGCPTR)virt_addr);
1365 if (VBOX_FAILURE(rc))
1366 {
1367 AssertMsgFailed(("RAWEx_SetPageEntry %x %x %d failed!!\n", virt_addr, prot, is_user));
1368 VM_FF_SET(env->pVM, VM_FF_PGM_SYNC_CR3);
1369 }
1370}
1371
1372/**
1373 * Called from tlb_protect_code in order to write monitor a code page.
1374 *
1375 * @param env Pointer to the CPU environment.
1376 * @param GCPtr Code page to monitor
1377 */
1378void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1379{
1380 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1381 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1382 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1383 && !(env->eflags & VM_MASK) /* no V86 mode */
1384 && !HWACCMIsEnabled(env->pVM))
1385 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1386}
1387
1388/**
1389 * Called when the CPU is initialized, any of the CRx registers are changed or
1390 * when the A20 line is modified.
1391 *
1392 * @param env Pointer to the CPU environment.
1393 * @param fGlobal Set if the flush is global.
1394 */
1395void remR3FlushTLB(CPUState *env, bool fGlobal)
1396{
1397 PVM pVM = env->pVM;
1398
1399 /*
1400 * When we're replaying invlpg instructions or restoring a saved
1401 * state we disable this path.
1402 */
1403 if (pVM->rem.s.fIgnoreCR3Load)
1404 return;
1405
1406 /*
1407 * The caller doesn't check cr4, so we have to do that for ourselves.
1408 */
1409 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1410 fGlobal = true;
1411 Log(("remR3FlushTLB: CR0=%VGp CR3=%VGp CR4=%VGp %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1412
1413 /*
1414 * Update the control registers before calling PGMR3FlushTLB.
1415 */
1416 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1417 pCtx->cr0 = env->cr[0];
1418 pCtx->cr3 = env->cr[3];
1419 pCtx->cr4 = env->cr[4];
1420
1421 /*
1422 * Let PGM do the rest.
1423 */
1424 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1425}
1426
1427
1428/**
1429 * Called when any of the cr0, cr4 or efer registers is updated.
1430 *
1431 * @param env Pointer to the CPU environment.
1432 */
1433void remR3ChangeCpuMode(CPUState *env)
1434{
1435 int rc;
1436 PVM pVM = env->pVM;
1437
1438 /*
1439 * When we're replaying loads or restoring a saved
1440 * state this path is disabled.
1441 */
1442 if (pVM->rem.s.fIgnoreCpuMode)
1443 return;
1444
1445 /*
1446 * Update the control registers before calling PGMR3ChangeMode()
1447 * as it may need to map whatever cr3 is pointing to.
1448 */
1449 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1450 pCtx->cr0 = env->cr[0];
1451 pCtx->cr3 = env->cr[3];
1452 pCtx->cr4 = env->cr[4];
1453
1454#ifdef TARGET_X86_64
1455 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1456 if (rc != VINF_SUCCESS)
1457 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1458#else
1459 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1460 if (rc != VINF_SUCCESS)
1461 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1462#endif
1463}
1464
1465
1466/**
1467 * Called from compiled code to run dma.
1468 *
1469 * @param env Pointer to the CPU environment.
1470 */
1471void remR3DmaRun(CPUState *env)
1472{
1473 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1474 PDMR3DmaRun(env->pVM);
1475 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1476}
1477
1478/**
1479 * Called from compiled code to schedule pending timers in VMM
1480 *
1481 * @param env Pointer to the CPU environment.
1482 */
1483void remR3TimersRun(CPUState *env)
1484{
1485 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1486 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1487 TMR3TimerQueuesDo(env->pVM);
1488 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1489 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1490}
1491
1492/**
1493 * Record trap occurance
1494 *
1495 * @returns VBox status code
1496 * @param env Pointer to the CPU environment.
1497 * @param uTrap Trap nr
1498 * @param uErrorCode Error code
1499 * @param pvNextEIP Next EIP
1500 */
1501int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1502{
1503 PVM pVM = (PVM)env->pVM;
1504#ifdef VBOX_WITH_STATISTICS
1505 static STAMCOUNTER aStatTrap[255];
1506 static bool aRegisters[ELEMENTS(aStatTrap)];
1507#endif
1508
1509#ifdef VBOX_WITH_STATISTICS
1510 if (uTrap < 255)
1511 {
1512 if (!aRegisters[uTrap])
1513 {
1514 aRegisters[uTrap] = true;
1515 char szStatName[64];
1516 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1517 STAM_REG(env->pVM, &aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1518 }
1519 STAM_COUNTER_INC(&aStatTrap[uTrap]);
1520 }
1521#endif
1522 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1523 if(uTrap < 0x20)
1524 {
1525 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1526
1527 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 128)
1528 {
1529 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1530 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1531 return VERR_REM_TOO_MANY_TRAPS;
1532 }
1533 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1534 pVM->rem.s.cPendingExceptions = 1;
1535 pVM->rem.s.uPendingException = uTrap;
1536 pVM->rem.s.uPendingExcptEIP = env->eip;
1537 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1538 }
1539 else
1540 {
1541 pVM->rem.s.cPendingExceptions = 0;
1542 pVM->rem.s.uPendingException = uTrap;
1543 pVM->rem.s.uPendingExcptEIP = env->eip;
1544 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1545 }
1546 return VINF_SUCCESS;
1547}
1548
1549/*
1550 * Clear current active trap
1551 *
1552 * @param pVM VM Handle.
1553 */
1554void remR3TrapClear(PVM pVM)
1555{
1556 pVM->rem.s.cPendingExceptions = 0;
1557 pVM->rem.s.uPendingException = 0;
1558 pVM->rem.s.uPendingExcptEIP = 0;
1559 pVM->rem.s.uPendingExcptCR2 = 0;
1560}
1561
1562
1563/**
1564 * Syncs the internal REM state with the VM.
1565 *
1566 * This must be called before REMR3Run() is invoked whenever when the REM
1567 * state is not up to date. Calling it several times in a row is not
1568 * permitted.
1569 *
1570 * @returns VBox status code.
1571 *
1572 * @param pVM VM Handle.
1573 *
1574 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1575 * no do this since the majority of the callers don't want any unnecessary of events
1576 * pending that would immediatly interrupt execution.
1577 */
1578REMR3DECL(int) REMR3State(PVM pVM)
1579{
1580 Assert(!pVM->rem.s.fInREM);
1581 Log2(("REMR3State:\n"));
1582 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1583 register const CPUMCTX *pCtx = pVM->rem.s.pCtx;
1584 register unsigned fFlags;
1585
1586 /*
1587 * Copy the registers which requires no special handling.
1588 */
1589 Assert(R_EAX == 0);
1590 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1591 Assert(R_ECX == 1);
1592 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1593 Assert(R_EDX == 2);
1594 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1595 Assert(R_EBX == 3);
1596 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1597 Assert(R_ESP == 4);
1598 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1599 Assert(R_EBP == 5);
1600 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1601 Assert(R_ESI == 6);
1602 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1603 Assert(R_EDI == 7);
1604 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1605 pVM->rem.s.Env.eip = pCtx->eip;
1606
1607 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1608
1609 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1610
1611 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1612 pVM->rem.s.Env.dr[0] = pCtx->dr0;
1613 pVM->rem.s.Env.dr[1] = pCtx->dr1;
1614 pVM->rem.s.Env.dr[2] = pCtx->dr2;
1615 pVM->rem.s.Env.dr[3] = pCtx->dr3;
1616 pVM->rem.s.Env.dr[4] = pCtx->dr4;
1617 pVM->rem.s.Env.dr[5] = pCtx->dr5;
1618 pVM->rem.s.Env.dr[6] = pCtx->dr6;
1619 pVM->rem.s.Env.dr[7] = pCtx->dr7;
1620
1621 /*
1622 * Replay invlpg?
1623 */
1624 if (pVM->rem.s.cInvalidatedPages)
1625 {
1626 pVM->rem.s.fIgnoreInvlPg = true;
1627 RTUINT i;
1628 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1629 {
1630 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1631 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1632 }
1633 pVM->rem.s.fIgnoreInvlPg = false;
1634 pVM->rem.s.cInvalidatedPages = 0;
1635 }
1636
1637 /*
1638 * Registers which are seldomly changed and require special handling / order when changed.
1639 */
1640 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1641 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1642 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1643 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR))
1644 {
1645 if (fFlags & CPUM_CHANGED_FPU_REM)
1646 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1647
1648 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1649 {
1650 pVM->rem.s.fIgnoreCR3Load = true;
1651 tlb_flush(&pVM->rem.s.Env, true);
1652 pVM->rem.s.fIgnoreCR3Load = false;
1653 }
1654
1655 if (fFlags & CPUM_CHANGED_CR4)
1656 {
1657 pVM->rem.s.fIgnoreCR3Load = true;
1658 pVM->rem.s.fIgnoreCpuMode = true;
1659 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1660 pVM->rem.s.fIgnoreCpuMode = false;
1661 pVM->rem.s.fIgnoreCR3Load = false;
1662 }
1663
1664 if (fFlags & CPUM_CHANGED_CR0)
1665 {
1666 pVM->rem.s.fIgnoreCR3Load = true;
1667 pVM->rem.s.fIgnoreCpuMode = true;
1668 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1669 pVM->rem.s.fIgnoreCpuMode = false;
1670 pVM->rem.s.fIgnoreCR3Load = false;
1671 }
1672
1673 if (fFlags & CPUM_CHANGED_CR3)
1674 {
1675 pVM->rem.s.fIgnoreCR3Load = true;
1676 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1677 pVM->rem.s.fIgnoreCR3Load = false;
1678 }
1679
1680 if (fFlags & CPUM_CHANGED_GDTR)
1681 {
1682 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1683 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1684 }
1685
1686 if (fFlags & CPUM_CHANGED_IDTR)
1687 {
1688 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1689 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1690 }
1691
1692 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1693 {
1694 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1695 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1696 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1697 }
1698
1699 if (fFlags & CPUM_CHANGED_LDTR)
1700 {
1701 if (fFlags & CPUM_CHANGED_HIDDEN_SEL_REGS)
1702 {
1703 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1704 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u32Base;
1705 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1706 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1707 }
1708 else
1709 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1710 }
1711
1712 if (fFlags & CPUM_CHANGED_TR)
1713 {
1714 if (fFlags & CPUM_CHANGED_HIDDEN_SEL_REGS)
1715 {
1716 pVM->rem.s.Env.tr.selector = pCtx->tr;
1717 pVM->rem.s.Env.tr.base = pCtx->trHid.u32Base;
1718 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1719 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1720 }
1721 else
1722 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1723
1724 /** @note do_interrupt will fault if the busy flag is still set.... */
1725 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1726 }
1727 }
1728
1729 /*
1730 * Update selector registers.
1731 * This must be done *after* we've synced gdt, ldt and crX registers
1732 * since we're reading the GDT/LDT om sync_seg. This will happen with
1733 * saved state which takes a quick dip into rawmode for instance.
1734 */
1735 /*
1736 * Stack; Note first check this one as the CPL might have changed. The
1737 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1738 */
1739
1740 if (fFlags & CPUM_CHANGED_HIDDEN_SEL_REGS)
1741 {
1742 /* The hidden selector registers are valid in the CPU context. */
1743 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1744
1745 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u32Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1746 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u32Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1747 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u32Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1748 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u32Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1749 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u32Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1750 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u32Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1751
1752 /* Set current CPL. */
1753 if (pCtx->eflags.Bits.u1VM == 1)
1754 cpu_x86_set_cpl(&pVM->rem.s.Env, 3);
1755 else
1756 cpu_x86_set_cpl(&pVM->rem.s.Env, pCtx->ss & 3);
1757 }
1758 else
1759 {
1760 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1761 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1762 {
1763 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1764 if (pCtx->eflags.Bits.u1VM == 1)
1765 {
1766 cpu_x86_set_cpl(&pVM->rem.s.Env, 3);
1767 pVM->rem.s.Env.segs[R_SS].selector = (uint16_t)pCtx->ss;
1768 }
1769 else
1770 {
1771 cpu_x86_set_cpl(&pVM->rem.s.Env, pCtx->ss & 3);
1772 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1773#ifdef VBOX_WITH_STATISTICS
1774 if (pVM->rem.s.Env.segs[R_SS].newselector)
1775 {
1776 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1777 }
1778#endif
1779 }
1780 }
1781 else
1782 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1783
1784 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1785 {
1786 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1787 if (pCtx->eflags.Bits.u1VM == 1)
1788 {
1789 pVM->rem.s.Env.segs[R_ES].selector = (uint16_t)pCtx->es;
1790 }
1791 else
1792 {
1793 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1794#ifdef VBOX_WITH_STATISTICS
1795 if (pVM->rem.s.Env.segs[R_ES].newselector)
1796 {
1797 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1798 }
1799#endif
1800 }
1801 }
1802 else
1803 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1804
1805 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1806 {
1807 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1808 if (pCtx->eflags.Bits.u1VM == 1)
1809 {
1810 pVM->rem.s.Env.segs[R_CS].selector = (uint16_t)pCtx->cs;
1811 }
1812 else
1813 {
1814 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1815#ifdef VBOX_WITH_STATISTICS
1816 if (pVM->rem.s.Env.segs[R_CS].newselector)
1817 {
1818 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1819 }
1820#endif
1821 }
1822 }
1823 else
1824 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1825
1826 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1827 {
1828 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1829 if (pCtx->eflags.Bits.u1VM == 1)
1830 {
1831 pVM->rem.s.Env.segs[R_DS].selector = (uint16_t)pCtx->ds;
1832 }
1833 else
1834 {
1835 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1836#ifdef VBOX_WITH_STATISTICS
1837 if (pVM->rem.s.Env.segs[R_DS].newselector)
1838 {
1839 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1840 }
1841#endif
1842 }
1843 }
1844 else
1845 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1846
1847 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1848 * be the same but not the base/limit. */
1849 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1850 {
1851 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1852 if (pCtx->eflags.Bits.u1VM == 1)
1853 {
1854 pVM->rem.s.Env.segs[R_FS].selector = (uint16_t)pCtx->fs;
1855 }
1856 else
1857 {
1858 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1859#ifdef VBOX_WITH_STATISTICS
1860 if (pVM->rem.s.Env.segs[R_FS].newselector)
1861 {
1862 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1863 }
1864#endif
1865 }
1866 }
1867 else
1868 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1869
1870 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1871 {
1872 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1873 if (pCtx->eflags.Bits.u1VM == 1)
1874 {
1875 pVM->rem.s.Env.segs[R_GS].selector = (uint16_t)pCtx->gs;
1876 }
1877 else
1878 {
1879 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1880#ifdef VBOX_WITH_STATISTICS
1881 if (pVM->rem.s.Env.segs[R_GS].newselector)
1882 {
1883 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1884 }
1885#endif
1886 }
1887 }
1888 else
1889 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1890 }
1891
1892 /*
1893 * Check for traps.
1894 */
1895 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1896 bool fIsSoftwareInterrupt;
1897 uint8_t u8TrapNo;
1898 int rc = TRPMQueryTrap(pVM, &u8TrapNo, &fIsSoftwareInterrupt);
1899 if (VBOX_SUCCESS(rc))
1900 {
1901 #ifdef DEBUG
1902 if (u8TrapNo == 0x80)
1903 {
1904 remR3DumpLnxSyscall(pVM);
1905 remR3DumpOBsdSyscall(pVM);
1906 }
1907 #endif
1908
1909 pVM->rem.s.Env.exception_index = u8TrapNo;
1910 if (!fIsSoftwareInterrupt)
1911 {
1912 pVM->rem.s.Env.exception_is_int = 0;
1913 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
1914 }
1915 else
1916 {
1917 /*
1918 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
1919 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
1920 * for int03 and into.
1921 */
1922 pVM->rem.s.Env.exception_is_int = 1;
1923 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 2;
1924 /* int 3 may be generated by one-byte 0xcc */
1925 if (u8TrapNo == 3)
1926 {
1927 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xcc)
1928 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1929 }
1930 /* int 4 may be generated by one-byte 0xce */
1931 else if (u8TrapNo == 4)
1932 {
1933 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xce)
1934 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1935 }
1936 }
1937
1938 /* get error code and cr2 if needed. */
1939 switch (u8TrapNo)
1940 {
1941 case 0x0e:
1942 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
1943 /* fallthru */
1944 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
1945 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
1946 break;
1947
1948 case 0x11: case 0x08:
1949 default:
1950 pVM->rem.s.Env.error_code = 0;
1951 break;
1952 }
1953
1954 /*
1955 * We can now reset the active trap since the recompiler is gonna have a go at it.
1956 */
1957 rc = TRPMResetTrap(pVM);
1958 AssertRC(rc);
1959 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
1960 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
1961//if (pVM->rem.s.Env.eip == 0x40005a2f)
1962// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP | CPU_RAW_MODE_DISABLED | CPU_RAWR0_MODE_DISABLED;
1963 }
1964
1965 /*
1966 * Clear old interrupt request flags; Check for pending hardware interrupts.
1967 * (See @remark for why we don't check for other FFs.)
1968 */
1969 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
1970 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
1971 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
1972 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
1973
1974 /*
1975 * We're now in REM mode.
1976 */
1977 pVM->rem.s.fInREM = true;
1978 pVM->rem.s.cCanExecuteRaw = 0;
1979 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
1980 Log2(("REMR3State: returns VINF_SUCCESS\n"));
1981 return VINF_SUCCESS;
1982}
1983
1984
1985/**
1986 * Syncs back changes in the REM state to the the VM state.
1987 *
1988 * This must be called after invoking REMR3Run().
1989 * Calling it several times in a row is not permitted.
1990 *
1991 * @returns VBox status code.
1992 *
1993 * @param pVM VM Handle.
1994 */
1995REMR3DECL(int) REMR3StateBack(PVM pVM)
1996{
1997 Log2(("REMR3StateBack:\n"));
1998 Assert(pVM->rem.s.fInREM);
1999 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2000 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2001
2002 /*
2003 * Copy back the registers.
2004 * This is done in the order they are declared in the CPUMCTX structure.
2005 */
2006
2007 /** @todo FOP */
2008 /** @todo FPUIP */
2009 /** @todo CS */
2010 /** @todo FPUDP */
2011 /** @todo DS */
2012 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2013 pCtx->fpu.MXCSR = 0;
2014 pCtx->fpu.MXCSR_MASK = 0;
2015
2016 /** @todo check if FPU/XMM was actually used in the recompiler */
2017 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2018//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2019
2020 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2021 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2022 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2023 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2024 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2025 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2026 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2027
2028 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2029 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2030
2031#ifdef VBOX_WITH_STATISTICS
2032 if (pVM->rem.s.Env.segs[R_SS].newselector)
2033 {
2034 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2035 }
2036 if (pVM->rem.s.Env.segs[R_GS].newselector)
2037 {
2038 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2039 }
2040 if (pVM->rem.s.Env.segs[R_FS].newselector)
2041 {
2042 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2043 }
2044 if (pVM->rem.s.Env.segs[R_ES].newselector)
2045 {
2046 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2047 }
2048 if (pVM->rem.s.Env.segs[R_DS].newselector)
2049 {
2050 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2051 }
2052 if (pVM->rem.s.Env.segs[R_CS].newselector)
2053 {
2054 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2055 }
2056#endif
2057 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2058 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2059 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2060 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2061 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2062
2063 pCtx->eip = pVM->rem.s.Env.eip;
2064 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2065
2066 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2067 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2068 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2069 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2070
2071 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2072 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2073 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2074 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2075 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2076 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2077 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2078 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2079
2080 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2081 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2082 {
2083 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2084 STAM_COUNTER_INC(&gStatREMGDTChange);
2085 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2086 }
2087
2088 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2089 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2090 {
2091 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2092 STAM_COUNTER_INC(&gStatREMIDTChange);
2093 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2094 }
2095
2096 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2097 {
2098 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2099 STAM_COUNTER_INC(&gStatREMLDTRChange);
2100 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2101 }
2102 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2103 {
2104 pCtx->tr = pVM->rem.s.Env.tr.selector;
2105 STAM_COUNTER_INC(&gStatREMTRChange);
2106 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2107 }
2108
2109 /** @todo These values could still be out of sync! */
2110 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2111 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2112 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2113 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2114
2115 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2116 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2117 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2118
2119 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2120 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2121 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2122
2123 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2124 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2125 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2126
2127 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2128 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2129 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2130
2131 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2132 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2133 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2134
2135 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2136 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2137 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2138
2139 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2140 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2141 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2142
2143 /* Sysenter MSR */
2144 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2145 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2146 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2147
2148 remR3TrapClear(pVM);
2149
2150 /*
2151 * Check for traps.
2152 */
2153 if ( pVM->rem.s.Env.exception_index >= 0
2154 && pVM->rem.s.Env.exception_index < 256)
2155 {
2156 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2157 int rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int);
2158 AssertRC(rc);
2159 switch (pVM->rem.s.Env.exception_index)
2160 {
2161 case 0x0e:
2162 TRPMSetFaultAddress(pVM, pCtx->cr2);
2163 /* fallthru */
2164 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2165 case 0x11: case 0x08: /* 0 */
2166 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2167 break;
2168 }
2169
2170 }
2171
2172 /*
2173 * We're not longer in REM mode.
2174 */
2175 pVM->rem.s.fInREM = false;
2176 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2177 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2178 return VINF_SUCCESS;
2179}
2180
2181
2182/**
2183 * This is called by the disassembler when it wants to update the cpu state
2184 * before for instance doing a register dump.
2185 */
2186static void remR3StateUpdate(PVM pVM)
2187{
2188 Assert(pVM->rem.s.fInREM);
2189 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2190
2191 /*
2192 * Copy back the registers.
2193 * This is done in the order they are declared in the CPUMCTX structure.
2194 */
2195
2196 /** @todo FOP */
2197 /** @todo FPUIP */
2198 /** @todo CS */
2199 /** @todo FPUDP */
2200 /** @todo DS */
2201 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2202 pCtx->fpu.MXCSR = 0;
2203 pCtx->fpu.MXCSR_MASK = 0;
2204
2205 /** @todo check if FPU/XMM was actually used in the recompiler */
2206 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2207//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2208
2209 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2210 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2211 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2212 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2213 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2214 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2215 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2216
2217 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2218 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2219
2220 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2221 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2222 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2223 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2224 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2225
2226 pCtx->eip = pVM->rem.s.Env.eip;
2227 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2228
2229 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2230 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2231 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2232 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2233
2234 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2235 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2236 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2237 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2238 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2239 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2240 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2241 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2242
2243 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2244 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2245 {
2246 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2247 STAM_COUNTER_INC(&gStatREMGDTChange);
2248 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2249 }
2250
2251 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2252 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2253 {
2254 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2255 STAM_COUNTER_INC(&gStatREMIDTChange);
2256 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2257 }
2258
2259 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2260 {
2261 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2262 STAM_COUNTER_INC(&gStatREMLDTRChange);
2263 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2264 }
2265 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2266 {
2267 pCtx->tr = pVM->rem.s.Env.tr.selector;
2268 STAM_COUNTER_INC(&gStatREMTRChange);
2269 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2270 }
2271
2272 /** @todo These values could still be out of sync! */
2273 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2274 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2275 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2276 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2277
2278 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2279 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2280 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2281
2282 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2283 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2284 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2285
2286 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2287 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2288 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2289
2290 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2291 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2292 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2293
2294 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2295 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2296 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2297
2298 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2299 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2300 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2301
2302 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2303 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2304 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2305
2306 /* Sysenter MSR */
2307 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2308 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2309 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2310}
2311
2312
2313/**
2314 * Update the VMM state information if we're currently in REM.
2315 *
2316 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2317 * we're currently executing in REM and the VMM state is invalid. This method will of
2318 * course check that we're executing in REM before syncing any data over to the VMM.
2319 *
2320 * @param pVM The VM handle.
2321 */
2322REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2323{
2324 if (pVM->rem.s.fInREM)
2325 remR3StateUpdate(pVM);
2326}
2327
2328
2329#undef LOG_GROUP
2330#define LOG_GROUP LOG_GROUP_REM
2331
2332
2333/**
2334 * Notify the recompiler about Address Gate 20 state change.
2335 *
2336 * This notification is required since A20 gate changes are
2337 * initialized from a device driver and the VM might just as
2338 * well be in REM mode as in RAW mode.
2339 *
2340 * @param pVM VM handle.
2341 * @param fEnable True if the gate should be enabled.
2342 * False if the gate should be disabled.
2343 */
2344REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2345{
2346 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2347 VM_ASSERT_EMT(pVM);
2348 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2349}
2350
2351
2352/**
2353 * Replays the invalidated recorded pages.
2354 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2355 *
2356 * @param pVM VM handle.
2357 */
2358REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2359{
2360 VM_ASSERT_EMT(pVM);
2361
2362 /*
2363 * Sync the required registers.
2364 */
2365 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2366 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2367 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2368 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2369
2370 /*
2371 * Replay the flushes.
2372 */
2373 pVM->rem.s.fIgnoreInvlPg = true;
2374 RTUINT i;
2375 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2376 {
2377 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2378 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2379 }
2380 pVM->rem.s.fIgnoreInvlPg = false;
2381 pVM->rem.s.cInvalidatedPages = 0;
2382}
2383
2384
2385/**
2386 * Replays the invalidated recorded pages.
2387 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2388 *
2389 * @param pVM VM handle.
2390 */
2391REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2392{
2393 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2394 VM_ASSERT_EMT(pVM);
2395
2396 /*
2397 * Replay the flushes.
2398 */
2399 RTUINT i;
2400 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2401 pVM->rem.s.cHandlerNotifications = 0;
2402 for (i = 0; i < c; i++)
2403 {
2404 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2405 switch (pRec->enmKind)
2406 {
2407 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2408 REMR3NotifyHandlerPhysicalRegister(pVM,
2409 pRec->u.PhysicalRegister.enmType,
2410 pRec->u.PhysicalRegister.GCPhys,
2411 pRec->u.PhysicalRegister.cb,
2412 pRec->u.PhysicalRegister.fHasHCHandler);
2413 break;
2414
2415 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2416 REMR3NotifyHandlerPhysicalDeregister(pVM,
2417 pRec->u.PhysicalDeregister.enmType,
2418 pRec->u.PhysicalDeregister.GCPhys,
2419 pRec->u.PhysicalDeregister.cb,
2420 pRec->u.PhysicalDeregister.fHasHCHandler,
2421 pRec->u.PhysicalDeregister.pvHCPtr);
2422 break;
2423
2424 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2425 REMR3NotifyHandlerPhysicalModify(pVM,
2426 pRec->u.PhysicalModify.enmType,
2427 pRec->u.PhysicalModify.GCPhysOld,
2428 pRec->u.PhysicalModify.GCPhysNew,
2429 pRec->u.PhysicalModify.cb,
2430 pRec->u.PhysicalModify.fHasHCHandler,
2431 pRec->u.PhysicalModify.pvHCPtr);
2432 break;
2433
2434 default:
2435 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2436 break;
2437 }
2438 }
2439}
2440
2441
2442/**
2443 * Notify REM about changed code page.
2444 *
2445 * @returns VBox status code.
2446 * @param pVM VM handle.
2447 * @param pvCodePage Code page address
2448 */
2449REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2450{
2451 int rc;
2452 RTGCPHYS PhysGC;
2453 uint64_t flags;
2454
2455 VM_ASSERT_EMT(pVM);
2456
2457 /*
2458 * Get the physical page address.
2459 */
2460 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2461 if (rc == VINF_SUCCESS)
2462 {
2463 /*
2464 * Sync the required registers and flush the whole page.
2465 * (Easier to do the whole page than notifying it about each physical
2466 * byte that was changed.
2467 */
2468 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2469 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2470 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2471 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2472
2473 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2474 }
2475 return VINF_SUCCESS;
2476}
2477
2478/**
2479 * Notification about a successful MMR3PhysRegister() call.
2480 *
2481 * @param pVM VM handle.
2482 * @param GCPhys The physical address the RAM.
2483 * @param cb Size of the memory.
2484 * @param pvRam The HC address of the RAM.
2485 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2486 */
2487REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvRam, unsigned fFlags)
2488{
2489 Log(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2490 VM_ASSERT_EMT(pVM);
2491
2492 /*
2493 * Validate input - we trust the caller.
2494 */
2495 Assert(!GCPhys || pvRam);
2496 Assert(RT_ALIGN_P(pvRam, PAGE_SIZE) == pvRam);
2497 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2498 Assert(cb);
2499 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2500
2501 /*
2502 * Base ram?
2503 */
2504 if (!GCPhys)
2505 {
2506#ifndef PGM_DYNAMIC_RAM_ALLOC
2507 AssertRelease(!phys_ram_base);
2508 phys_ram_base = pvRam;
2509#endif
2510 phys_ram_size = cb;
2511 phys_ram_dirty = MMR3HeapAllocZ(pVM, MM_TAG_REM, cb >> PAGE_SHIFT);
2512 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", cb >> PAGE_SHIFT));
2513 }
2514#ifndef PGM_DYNAMIC_RAM_ALLOC
2515 AssertRelease(phys_ram_base);
2516#endif
2517
2518 /*
2519 * Register the ram.
2520 */
2521#ifdef PGM_DYNAMIC_RAM_ALLOC
2522 if (!GCPhys)
2523 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2524 else
2525 {
2526 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2527
2528 AssertRelease(pVM->rem.s.cPhysRegistrations < REM_MAX_PHYS_REGISTRATIONS);
2529 pVM->rem.s.aPhysReg[pVM->rem.s.cPhysRegistrations].GCPhys = GCPhys;
2530 pVM->rem.s.aPhysReg[pVM->rem.s.cPhysRegistrations].HCVirt = (RTHCUINTPTR)pvRam;
2531 pVM->rem.s.aPhysReg[pVM->rem.s.cPhysRegistrations].cb = cb;
2532 pVM->rem.s.cPhysRegistrations++;
2533 }
2534#else
2535 cpu_register_physical_memory(GCPhys, cb, ((uintptr_t)pvRam - (uintptr_t)phys_ram_base)
2536 | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2537#endif
2538}
2539
2540
2541/**
2542 * Notification about a successful PGMR3PhysRegisterChunk() call.
2543 *
2544 * @param pVM VM handle.
2545 * @param GCPhys The physical address the RAM.
2546 * @param cb Size of the memory.
2547 * @param pvRam The HC address of the RAM.
2548 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2549 */
2550REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2551{
2552 uint32_t idx;
2553
2554 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2555 VM_ASSERT_EMT(pVM);
2556
2557 /*
2558 * Validate input - we trust the caller.
2559 */
2560 Assert(pvRam);
2561 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2562 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2563 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2564 Assert(fFlags == 0 /* normal RAM */);
2565
2566 if (!pVM->rem.s.paHCVirtToGCPhys)
2567 {
2568 uint32_t size = (_4G >> PGM_DYNAMIC_CHUNK_SHIFT) * sizeof(REMCHUNKINFO);
2569
2570 Assert(phys_ram_size);
2571
2572 pVM->rem.s.paHCVirtToGCPhys = (PREMCHUNKINFO)MMR3HeapAllocZ(pVM, MM_TAG_REM, size);
2573 pVM->rem.s.paGCPhysToHCVirt = (RTHCPTR)MMR3HeapAllocZ(pVM, MM_TAG_REM, (phys_ram_size >> PGM_DYNAMIC_CHUNK_SHIFT)*sizeof(RTHCPTR));
2574 }
2575 pVM->rem.s.paGCPhysToHCVirt[GCPhys >> PGM_DYNAMIC_CHUNK_SHIFT] = pvRam;
2576
2577 idx = (pvRam >> PGM_DYNAMIC_CHUNK_SHIFT);
2578 if (!pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1)
2579 {
2580 pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1 = pvRam;
2581 pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 = GCPhys;
2582 }
2583 else
2584 {
2585 Assert(!pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2);
2586 pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2 = pvRam;
2587 pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 = GCPhys;
2588 }
2589 /* Does the region spawn two chunks? */
2590 if (pvRam & PGM_DYNAMIC_CHUNK_OFFSET_MASK)
2591 {
2592 if (!pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk1)
2593 {
2594 pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk1 = pvRam;
2595 pVM->rem.s.paHCVirtToGCPhys[idx+1].GCPhys1 = GCPhys;
2596 }
2597 else
2598 {
2599 Assert(!pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk2);
2600 pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk2 = pvRam;
2601 pVM->rem.s.paHCVirtToGCPhys[idx+1].GCPhys2 = GCPhys;
2602 }
2603 }
2604 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2605}
2606
2607/**
2608 * Convert GC physical address to HC virt
2609 *
2610 * @returns The HC virt address corresponding to addr.
2611 * @param env The cpu environment.
2612 * @param addr The physical address.
2613 */
2614void *remR3GCPhys2HCVirt(void *env, target_ulong addr)
2615{
2616#ifdef PGM_DYNAMIC_RAM_ALLOC
2617 PVM pVM = ((CPUState *)env)->pVM;
2618 uint32_t i;
2619
2620 /* lookup in pVM->rem.s.aPhysReg array first (for ROM range(s) inside the guest's RAM) */
2621 for (i=0;i<pVM->rem.s.cPhysRegistrations;i++)
2622 {
2623 uint32_t off = addr - pVM->rem.s.aPhysReg[i].GCPhys;
2624 if (off < pVM->rem.s.aPhysReg[i].cb)
2625 {
2626 Log(("remR3GCPhys2HCVirt: %x -> %x\n", addr, pVM->rem.s.aPhysReg[i].HCVirt + off));
2627 return (void *)(pVM->rem.s.aPhysReg[i].HCVirt + off);
2628 }
2629 }
2630 Assert(addr < phys_ram_size);
2631 Log(("remR3GCPhys2HCVirt: %x -> %x\n", addr, pVM->rem.s.paGCPhysToHCVirt[addr >> PGM_DYNAMIC_CHUNK_SHIFT] + (addr & PGM_DYNAMIC_CHUNK_OFFSET_MASK)));
2632 return (void *)(pVM->rem.s.paGCPhysToHCVirt[addr >> PGM_DYNAMIC_CHUNK_SHIFT] + (addr & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
2633#else
2634 return phys_ram_base + addr;
2635#endif
2636}
2637
2638/**
2639 * Convert GC physical address to HC virt
2640 *
2641 * @returns The HC virt address corresponding to addr.
2642 * @param env The cpu environment.
2643 * @param addr The physical address.
2644 */
2645target_ulong remR3HCVirt2GCPhys(void *env, void *addr)
2646{
2647#ifdef PGM_DYNAMIC_RAM_ALLOC
2648 PVM pVM = ((CPUState *)env)->pVM;
2649 RTHCUINTPTR HCVirt = (RTHCUINTPTR)addr;
2650 uint32_t idx = (HCVirt >> PGM_DYNAMIC_CHUNK_SHIFT);
2651 RTHCUINTPTR off;
2652 RTUINT i;
2653
2654 off = HCVirt - pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1;
2655
2656 if ( pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1
2657 && off < PGM_DYNAMIC_CHUNK_SIZE)
2658 {
2659 Log(("remR3HCVirt2GCPhys %x -> %x\n", addr, pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 + off));
2660 return pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 + off;
2661 }
2662
2663 off = HCVirt - pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2;
2664 if ( pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2
2665 && off < PGM_DYNAMIC_CHUNK_SIZE)
2666 {
2667 Log(("remR3HCVirt2GCPhys %x -> %x\n", addr, pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 + off));
2668 return pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 + off;
2669 }
2670
2671 /* Must be externally registered RAM/ROM range */
2672 for (i=0;i<pVM->rem.s.cPhysRegistrations;i++)
2673 {
2674 uint32_t off = HCVirt - pVM->rem.s.aPhysReg[i].HCVirt;
2675 if (off < pVM->rem.s.aPhysReg[i].cb)
2676 {
2677 Log(("remR3HCVirt2GCPhys %x -> %x\n", addr, pVM->rem.s.aPhysReg[i].GCPhys + off));
2678 return pVM->rem.s.aPhysReg[i].GCPhys + off;
2679 }
2680 }
2681 AssertReleaseMsgFailed(("No translation for physical address %p???\n", addr));
2682 return 0;
2683#else
2684 return (target_ulong)addr - (target_ulong)phys_ram_base;
2685#endif
2686}
2687
2688/**
2689 * Grows dynamically allocated guest RAM.
2690 * Will raise a fatal error if the operation fails.
2691 *
2692 * @param physaddr The physical address.
2693 */
2694void remR3GrowDynRange(unsigned long physaddr)
2695{
2696 int rc;
2697 PVM pVM = cpu_single_env->pVM;
2698
2699 Log(("remR3GrowDynRange %VGp\n", physaddr));
2700 rc = PGM3PhysGrowRange(pVM, (RTGCPHYS)physaddr);
2701 if (VBOX_SUCCESS(rc))
2702 return;
2703
2704 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2705 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2706 AssertFatalFailed();
2707}
2708
2709/**
2710 * Notification about a successful MMR3PhysRomRegister() call.
2711 *
2712 * @param pVM VM handle.
2713 * @param GCPhys The physical address of the ROM.
2714 * @param cb The size of the ROM.
2715 * @param pvCopy Pointer to the ROM copy.
2716 */
2717REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy)
2718{
2719 Log(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p\n", GCPhys, cb, pvCopy));
2720 VM_ASSERT_EMT(pVM);
2721
2722 /*
2723 * Validate input - we trust the caller.
2724 */
2725 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2726 Assert(cb);
2727 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2728 Assert(pvCopy);
2729 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2730
2731 /*
2732 * Register the rom.
2733 */
2734#ifdef PGM_DYNAMIC_RAM_ALLOC
2735 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_ROM);
2736 AssertRelease(pVM->rem.s.cPhysRegistrations < REM_MAX_PHYS_REGISTRATIONS);
2737 pVM->rem.s.aPhysReg[pVM->rem.s.cPhysRegistrations].GCPhys = GCPhys;
2738 pVM->rem.s.aPhysReg[pVM->rem.s.cPhysRegistrations].HCVirt = (RTHCUINTPTR)pvCopy;
2739 pVM->rem.s.aPhysReg[pVM->rem.s.cPhysRegistrations].cb = cb;
2740 pVM->rem.s.cPhysRegistrations++;
2741#else
2742 AssertRelease(phys_ram_base);
2743 cpu_register_physical_memory(GCPhys, cb, ((uintptr_t)pvCopy - (uintptr_t)phys_ram_base) | IO_MEM_ROM);
2744#endif
2745 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2746}
2747
2748
2749/**
2750 * Notification about a successful MMR3PhysRegister() call.
2751 *
2752 * @param pVM VM Handle.
2753 * @param GCPhys Start physical address.
2754 * @param cb The size of the range.
2755 */
2756REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2757{
2758 LogFlow(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2759 VM_ASSERT_EMT(pVM);
2760
2761 /*
2762 * Validate input - we trust the caller.
2763 */
2764 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2765 Assert(cb);
2766 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2767
2768 /*
2769 * Unassigning the memory.
2770 */
2771 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2772}
2773
2774
2775/**
2776 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2777 *
2778 * @param pVM VM Handle.
2779 * @param enmType Handler type.
2780 * @param GCPhys Handler range address.
2781 * @param cb Size of the handler range.
2782 * @param fHasHCHandler Set if the handler has a HC callback function.
2783 *
2784 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2785 * Handler memory type to memory which has no HC handler.
2786 */
2787REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2788{
2789 LogFlow(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d\n",
2790 enmType, GCPhys, cb, fHasHCHandler));
2791 VM_ASSERT_EMT(pVM);
2792 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2793 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2794
2795 if (pVM->rem.s.cHandlerNotifications)
2796 REMR3ReplayHandlerNotifications(pVM);
2797
2798 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2799 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2800 else if (fHasHCHandler)
2801 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2802}
2803
2804
2805/**
2806 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2807 *
2808 * @param pVM VM Handle.
2809 * @param enmType Handler type.
2810 * @param GCPhys Handler range address.
2811 * @param cb Size of the handler range.
2812 * @param fHasHCHandler Set if the handler has a HC callback function.
2813 * @param pvHCPtr The HC virtual address corresponding to GCPhys if available.
2814 */
2815REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, void *pvHCPtr)
2816{
2817 LogFlow(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d pvHCPtr=%p RAM=%08x\n",
2818 enmType, GCPhys, cb, fHasHCHandler, pvHCPtr, MMR3PhysGetRamSize(pVM)));
2819 VM_ASSERT_EMT(pVM);
2820
2821 if (pVM->rem.s.cHandlerNotifications)
2822 REMR3ReplayHandlerNotifications(pVM);
2823
2824 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2825 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2826 else if (fHasHCHandler)
2827 {
2828 if (!pvHCPtr)
2829 {
2830 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2831 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2832 }
2833 else
2834 {
2835 /* This is not prefect, but it'll do for PD monitoring... */
2836 Assert(cb == PAGE_SIZE);
2837 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2838 Assert(remR3HCVirt2GCPhys(cpu_single_env, pvHCPtr) < MMR3PhysGetRamSize(pVM));
2839#ifdef PGM_DYNAMIC_RAM_ALLOC
2840 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2841#else
2842 cpu_register_physical_memory(GCPhys, cb, remR3HCVirt2GCPhys(cpu_single_env, pvHCPtr));
2843#endif
2844 }
2845 }
2846}
2847
2848
2849/**
2850 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2851 *
2852 * @param pVM VM Handle.
2853 * @param enmType Handler type.
2854 * @param GCPhysOld Old handler range address.
2855 * @param GCPhysNew New handler range address.
2856 * @param cb Size of the handler range.
2857 * @param fHasHCHandler Set if the handler has a HC callback function.
2858 * @param pvHCPtr The HC virtual address corresponding to GCPhys if available.
2859 */
2860REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, void *pvHCPtr)
2861{
2862 LogFlow(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%d fHasHCHandler=%d pvHCPtr=%p\n",
2863 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, pvHCPtr));
2864 VM_ASSERT_EMT(pVM);
2865 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2866
2867 if (pVM->rem.s.cHandlerNotifications)
2868 REMR3ReplayHandlerNotifications(pVM);
2869
2870 if (fHasHCHandler)
2871 {
2872 /*
2873 * Reset the old page.
2874 */
2875 if (!pvHCPtr)
2876 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2877 else
2878 {
2879 /* This is not prefect, but it'll do for PD monitoring... */
2880 Assert(cb == PAGE_SIZE);
2881 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2882 Assert(remR3HCVirt2GCPhys(cpu_single_env, pvHCPtr) < MMR3PhysGetRamSize(pVM));
2883#ifdef PGM_DYNAMIC_RAM_ALLOC
2884 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2885#else
2886 cpu_register_physical_memory(GCPhysOld, cb, remR3HCVirt2GCPhys(cpu_single_env, pvHCPtr));
2887#endif
2888 }
2889
2890 /*
2891 * Update the new page.
2892 */
2893 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2894 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2895 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2896 }
2897}
2898
2899
2900/**
2901 * Checks if we're handling access to this page or not.
2902 *
2903 * @returns true if we're trapping access.
2904 * @returns false if we aren't.
2905 * @param pVM The VM handle.
2906 * @param GCPhys The physical address.
2907 *
2908 * @remark This function will only work correctly in VBOX_STRICT builds!
2909 */
2910REMDECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
2911{
2912#ifdef VBOX_STRICT
2913 if (pVM->rem.s.cHandlerNotifications)
2914 REMR3ReplayHandlerNotifications(pVM);
2915
2916 unsigned long off = get_phys_page_offset(GCPhys);
2917 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
2918 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
2919 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
2920#else
2921 return false;
2922#endif
2923}
2924
2925
2926/**
2927 * Deals with a rare case in get_phys_addr_code where the code
2928 * is being monitored.
2929 *
2930 * It could also be an MMIO page, in which case we will raise a fatal error.
2931 *
2932 * @returns The physical address corresponding to addr.
2933 * @param env The cpu environment.
2934 * @param addr The virtual address.
2935 * @param pTLBEntry The TLB entry.
2936 */
2937target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
2938{
2939 PVM pVM = env->pVM;
2940 if ((pTLBEntry->address & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
2941 {
2942 target_ulong ret = pTLBEntry->addend + addr;
2943 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv address=%VGv addend=%VGp ret=%VGp\n",
2944 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->address, (RTGCPHYS)pTLBEntry->addend, ret);
2945 return ret;
2946 }
2947 LogRel(("\nTrying to execute code with memory type address=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
2948 "*** handlers\n",
2949 (RTGCPTR)pTLBEntry->address, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
2950 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
2951 LogRel(("*** mmio\n"));
2952 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
2953 LogRel(("*** phys\n"));
2954 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
2955 cpu_abort(env, "Trying to execute code with memory type address=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
2956 (RTGCPTR)pTLBEntry->address, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
2957 AssertFatalFailed();
2958}
2959
2960/**
2961 * Read guest RAM and ROM.
2962 *
2963 * @param pbSrcPhys The source address. Relative to guest RAM.
2964 * @param pvDst The destination address.
2965 * @param cb Number of bytes
2966 */
2967void remR3PhysReadBytes(uint8_t *pbSrcPhys, void *pvDst, unsigned cb)
2968{
2969 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2970
2971 /*
2972 * Calc the physical address ('off') and check that it's within the RAM.
2973 * ROM is accessed this way, even if it's not part of the RAM.
2974 */
2975 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
2976 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
2977 if (off < (uintptr_t)phys_ram_size)
2978 PGMPhysRead(cpu_single_env->pVM, (RTGCPHYS)off, pvDst, cb);
2979 else
2980 {
2981 /* ROM range outside physical RAM, HC address passed directly */
2982 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
2983 memcpy(pvDst, pbSrcPhys, cb);
2984 }
2985 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2986}
2987
2988/** @todo r=bird: s/Byte/U8/ s/Word/U16/ s/Dword/U32/, see MMIO and other functions.
2989 * It could be an idea to inline these wrapper functions... */
2990
2991/**
2992 * Read guest RAM and ROM.
2993 *
2994 * @param pbSrcPhys The source address. Relative to guest RAM.
2995 */
2996uint8_t remR3PhysReadUByte(uint8_t *pbSrcPhys)
2997{
2998 uint8_t val;
2999
3000 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3001
3002 /*
3003 * Calc the physical address ('off') and check that it's within the RAM.
3004 * ROM is accessed this way, even if it's not part of the RAM.
3005 */
3006 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3007 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3008 if (off < (uintptr_t)phys_ram_size)
3009 val = PGMR3PhysReadByte(cpu_single_env->pVM, (RTGCPHYS)off);
3010 else
3011 {
3012 /* ROM range outside physical RAM, HC address passed directly */
3013 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3014 val = *pbSrcPhys;
3015 }
3016 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3017 return val;
3018}
3019
3020/**
3021 * Read guest RAM and ROM.
3022 *
3023 * @param pbSrcPhys The source address. Relative to guest RAM.
3024 */
3025int8_t remR3PhysReadSByte(uint8_t *pbSrcPhys)
3026{
3027 int8_t val;
3028
3029 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3030
3031 /*
3032 * Calc the physical address ('off') and check that it's within the RAM.
3033 * ROM is accessed this way, even if it's not part of the RAM.
3034 */
3035 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3036 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3037 if (off < (uintptr_t)phys_ram_size)
3038 val = PGMR3PhysReadByte(cpu_single_env->pVM, (RTGCPHYS)off);
3039 else
3040 {
3041 /* ROM range outside physical RAM, HC address passed directly */
3042 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3043 val = *(int8_t *)pbSrcPhys;
3044 }
3045 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3046 return val;
3047}
3048
3049/**
3050 * Read guest RAM and ROM.
3051 *
3052 * @param pbSrcPhys The source address. Relative to guest RAM.
3053 */
3054uint16_t remR3PhysReadUWord(uint8_t *pbSrcPhys)
3055{
3056 uint16_t val;
3057
3058 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3059
3060 /*
3061 * Calc the physical address ('off') and check that it's within the RAM.
3062 * ROM is accessed this way, even if it's not part of the RAM.
3063 */
3064 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3065 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3066 if (off < (uintptr_t)phys_ram_size)
3067 val = PGMR3PhysReadWord(cpu_single_env->pVM, (RTGCPHYS)off);
3068 else
3069 {
3070 /* ROM range outside physical RAM, HC address passed directly */
3071 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3072 val = *(uint16_t *)pbSrcPhys;
3073 }
3074 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3075 return val;
3076}
3077
3078/**
3079 * Read guest RAM and ROM.
3080 *
3081 * @param pbSrcPhys The source address. Relative to guest RAM.
3082 */
3083int16_t remR3PhysReadSWord(uint8_t *pbSrcPhys)
3084{
3085 int16_t val;
3086
3087 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3088
3089 /*
3090 * Calc the physical address ('off') and check that it's within the RAM.
3091 * ROM is accessed this way, even if it's not part of the RAM.
3092 */
3093 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3094 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3095 if (off < (uintptr_t)phys_ram_size)
3096 val = PGMR3PhysReadWord(cpu_single_env->pVM, (RTGCPHYS)off);
3097 else
3098 {
3099 /* ROM range outside physical RAM, HC address passed directly */
3100 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3101 val = *(int16_t *)pbSrcPhys;
3102 }
3103 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3104 return val;
3105}
3106
3107/**
3108 * Read guest RAM and ROM.
3109 *
3110 * @param pbSrcPhys The source address. Relative to guest RAM.
3111 */
3112uint32_t remR3PhysReadULong(uint8_t *pbSrcPhys)
3113{
3114 uint32_t val;
3115
3116 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3117
3118 /*
3119 * Calc the physical address ('off') and check that it's within the RAM.
3120 * ROM is accessed this way, even if it's not part of the RAM.
3121 */
3122 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3123 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3124 if (off < (uintptr_t)phys_ram_size)
3125 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off);
3126 else
3127 {
3128 /* ROM range outside physical RAM, HC address passed directly */
3129 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3130 val = *(uint32_t *)pbSrcPhys;
3131 }
3132 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3133 return val;
3134}
3135
3136/**
3137 * Read guest RAM and ROM.
3138 *
3139 * @param pbSrcPhys The source address. Relative to guest RAM.
3140 */
3141int32_t remR3PhysReadSLong(uint8_t *pbSrcPhys)
3142{
3143 int32_t val;
3144
3145 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3146
3147 /*
3148 * Calc the physical address ('off') and check that it's within the RAM.
3149 * ROM is accessed this way, even if it's not part of the RAM.
3150 */
3151 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3152 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3153 if (off < (uintptr_t)phys_ram_size)
3154 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off);
3155 else
3156 {
3157 /* ROM range outside physical RAM, HC address passed directly */
3158 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3159 val = *(int32_t *)pbSrcPhys;
3160 }
3161 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3162 return val;
3163}
3164
3165/**
3166 * Write guest RAM.
3167 *
3168 * @param pbDstPhys The destination address. Relative to guest RAM.
3169 * @param pvSrc The source address.
3170 * @param cb Number of bytes to write
3171 */
3172void remR3PhysWriteBytes(uint8_t *pbDstPhys, const void *pvSrc, unsigned cb)
3173{
3174 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3175 /*
3176 * Calc the physical address ('off') and check that it's within the RAM.
3177 */
3178 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbDstPhys);
3179 if (off < (uintptr_t)phys_ram_size)
3180 PGMPhysWrite(cpu_single_env->pVM, (RTGCPHYS)off, pvSrc, cb);
3181 else
3182 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, cb));
3183 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3184}
3185
3186
3187/**
3188 * Write guest RAM.
3189 *
3190 * @param pbDstPhys The destination address. Relative to guest RAM.
3191 * @param val Value
3192 */
3193void remR3PhysWriteByte(uint8_t *pbDstPhys, uint8_t val)
3194{
3195 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3196 /*
3197 * Calc the physical address ('off') and check that it's within the RAM.
3198 */
3199 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbDstPhys);
3200 if (off < (uintptr_t)phys_ram_size)
3201 PGMR3PhysWriteByte(cpu_single_env->pVM, (RTGCPHYS)off, val);
3202 else
3203 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, 1));
3204 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3205}
3206
3207/**
3208 * Write guest RAM.
3209 *
3210 * @param pbDstPhys The destination address. Relative to guest RAM.
3211 * @param val Value
3212 */
3213void remR3PhysWriteWord(uint8_t *pbDstPhys, uint16_t val)
3214{
3215 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3216 /*
3217 * Calc the physical address ('off') and check that it's within the RAM.
3218 */
3219 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbDstPhys);
3220 if (off < (uintptr_t)phys_ram_size)
3221 PGMR3PhysWriteWord(cpu_single_env->pVM, (RTGCPHYS)off, val);
3222 else
3223 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, 2));
3224 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3225}
3226
3227/**
3228 * Write guest RAM.
3229 *
3230 * @param pbDstPhys The destination address. Relative to guest RAM.
3231 * @param val Value
3232 */
3233void remR3PhysWriteDword(uint8_t *pbDstPhys, uint32_t val)
3234{
3235 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3236 /*
3237 * Calc the physical address ('off') and check that it's within the RAM.
3238 */
3239 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbDstPhys);
3240 if (off < (uintptr_t)phys_ram_size)
3241 PGMR3PhysWriteDword(cpu_single_env->pVM, (RTGCPHYS)off, val);
3242 else
3243 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, 4));
3244 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3245}
3246
3247
3248
3249#undef LOG_GROUP
3250#define LOG_GROUP LOG_GROUP_REM_MMIO
3251
3252/** Read MMIO memory. */
3253static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3254{
3255 uint32_t u32 = 0;
3256 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3257 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3258 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3259 return u32;
3260}
3261
3262/** Read MMIO memory. */
3263static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3264{
3265 uint32_t u32 = 0;
3266 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3267 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3268 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3269 return u32;
3270}
3271
3272/** Read MMIO memory. */
3273static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3274{
3275 uint32_t u32 = 0;
3276 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3277 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3278 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3279 return u32;
3280}
3281
3282/** Write to MMIO memory. */
3283static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3284{
3285 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3286 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3287 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3288}
3289
3290/** Write to MMIO memory. */
3291static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3292{
3293 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3294 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3295 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3296}
3297
3298/** Write to MMIO memory. */
3299static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3300{
3301 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3302 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3303 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3304}
3305
3306
3307#undef LOG_GROUP
3308#define LOG_GROUP LOG_GROUP_REM_HANDLER
3309
3310/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3311
3312static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3313{
3314 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3315 uint8_t u8;
3316 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3317 return u8;
3318}
3319
3320static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3321{
3322 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3323 uint16_t u16;
3324 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3325 return u16;
3326}
3327
3328static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3329{
3330 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3331 uint32_t u32;
3332 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3333 return u32;
3334}
3335
3336static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3337{
3338 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3339 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3340}
3341
3342static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3343{
3344 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3345 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3346}
3347
3348static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3349{
3350 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3351 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3352}
3353
3354/* -+- disassembly -+- */
3355
3356#undef LOG_GROUP
3357#define LOG_GROUP LOG_GROUP_REM_DISAS
3358
3359
3360/**
3361 * Enables or disables singled stepped disassembly.
3362 *
3363 * @returns VBox status code.
3364 * @param pVM VM handle.
3365 * @param fEnable To enable set this flag, to disable clear it.
3366 */
3367static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3368{
3369 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3370 VM_ASSERT_EMT(pVM);
3371
3372 if (fEnable)
3373 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3374 else
3375 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3376 return VINF_SUCCESS;
3377}
3378
3379
3380/**
3381 * Enables or disables singled stepped disassembly.
3382 *
3383 * @returns VBox status code.
3384 * @param pVM VM handle.
3385 * @param fEnable To enable set this flag, to disable clear it.
3386 */
3387REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3388{
3389 PVMREQ pReq;
3390 int rc;
3391
3392 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3393 if (VM_IS_EMT(pVM))
3394 return remR3DisasEnableStepping(pVM, fEnable);
3395
3396 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3397 AssertRC(rc);
3398 if (VBOX_SUCCESS(rc))
3399 rc = pReq->iStatus;
3400 VMR3ReqFree(pReq);
3401 return rc;
3402}
3403
3404
3405#ifdef VBOX_WITH_DEBUGGER
3406/**
3407 * External Debugger Command: .remstep [on|off|1|0]
3408 */
3409static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3410{
3411 bool fEnable;
3412 int rc;
3413
3414 /* print status */
3415 if (cArgs == 0)
3416 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3417 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3418
3419 /* convert the argument and change the mode. */
3420 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3421 if (VBOX_FAILURE(rc))
3422 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3423 rc = REMR3DisasEnableStepping(pVM, fEnable);
3424 if (VBOX_FAILURE(rc))
3425 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3426 return rc;
3427}
3428#endif
3429
3430
3431/**
3432 * Disassembles n instructions and prints them to the log.
3433 *
3434 * @returns Success indicator.
3435 * @param env Pointer to the recompiler CPU structure.
3436 * @param f32BitCode Indicates that whether or not the code should
3437 * be disassembled as 16 or 32 bit. If -1 the CS
3438 * selector will be inspected.
3439 * @param nrInstructions Nr of instructions to disassemble
3440 * @param pszPrefix
3441 * @remark not currently used for anything but ad-hoc debugging.
3442 */
3443bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3444{
3445 int i;
3446
3447 /*
3448 * Determin 16/32 bit mode.
3449 */
3450 if (f32BitCode == -1)
3451 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3452
3453 /*
3454 * Convert cs:eip to host context address.
3455 * We don't care to much about cross page correctness presently.
3456 */
3457 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3458 void *pvPC;
3459 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3460 {
3461 /* convert eip to physical address. */
3462 int rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3463 GCPtrPC,
3464 env->cr[3],
3465 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3466 &pvPC);
3467 if (VBOX_FAILURE(rc))
3468 {
3469 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3470 return false;
3471 pvPC = (char *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3472 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3473 }
3474 }
3475 else
3476 {
3477 /* physical address */
3478 int rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, &pvPC);
3479 if (VBOX_FAILURE(rc))
3480 return false;
3481 }
3482
3483 /*
3484 * Disassemble.
3485 */
3486 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
3487 DISCPUSTATE Cpu;
3488 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3489 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3490 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3491 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3492 //Cpu.dwUserData[2] = GCPtrPC;
3493
3494 for (i=0;i<nrInstructions;i++)
3495 {
3496 char szOutput[256];
3497 uint32_t cbOp;
3498 if (!DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0]))
3499 return false;
3500 if (pszPrefix)
3501 Log(("%s: %s", pszPrefix, szOutput));
3502 else
3503 Log(("%s", szOutput));
3504
3505 pvPC += cbOp;
3506 }
3507 return true;
3508}
3509
3510
3511/** @todo need to test the new code, using the old code in the mean while. */
3512#define USE_OLD_DUMP_AND_DISASSEMBLY
3513
3514/**
3515 * Disassembles one instruction and prints it to the log.
3516 *
3517 * @returns Success indicator.
3518 * @param env Pointer to the recompiler CPU structure.
3519 * @param f32BitCode Indicates that whether or not the code should
3520 * be disassembled as 16 or 32 bit. If -1 the CS
3521 * selector will be inspected.
3522 * @param pszPrefix
3523 */
3524bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3525{
3526#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3527 PVM pVM = env->pVM;
3528
3529 /*
3530 * Determin 16/32 bit mode.
3531 */
3532 if (f32BitCode == -1)
3533 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3534
3535 /*
3536 * Log registers
3537 */
3538 if (LogIs2Enabled())
3539 {
3540 remR3StateUpdate(pVM);
3541 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3542 }
3543
3544 /*
3545 * Convert cs:eip to host context address.
3546 * We don't care to much about cross page correctness presently.
3547 */
3548 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3549 void *pvPC;
3550 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3551 {
3552 /* convert eip to physical address. */
3553 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
3554 GCPtrPC,
3555 env->cr[3],
3556 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3557 &pvPC);
3558 if (VBOX_FAILURE(rc))
3559 {
3560 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3561 return false;
3562 pvPC = (char *)PATMR3QueryPatchMemHC(pVM, NULL)
3563 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3564 }
3565 }
3566 else
3567 {
3568
3569 /* physical address */
3570 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, &pvPC);
3571 if (VBOX_FAILURE(rc))
3572 return false;
3573 }
3574
3575 /*
3576 * Disassemble.
3577 */
3578 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
3579 DISCPUSTATE Cpu;
3580 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3581 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3582 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3583 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3584 //Cpu.dwUserData[2] = GCPtrPC;
3585 char szOutput[256];
3586 uint32_t cbOp;
3587 if (!DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0]))
3588 return false;
3589
3590 if (!f32BitCode)
3591 {
3592 if (pszPrefix)
3593 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3594 else
3595 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3596 }
3597 else
3598 {
3599 if (pszPrefix)
3600 Log(("%s: %s", pszPrefix, szOutput));
3601 else
3602 Log(("%s", szOutput));
3603 }
3604 return true;
3605
3606#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3607 PVM pVM = env->pVM;
3608 const bool fLog = LogIsEnabled();
3609 const bool fLog2 = LogIs2Enabled();
3610 int rc = VINF_SUCCESS;
3611
3612 /*
3613 * Don't bother if there ain't any log output to do.
3614 */
3615 if (!fLog && !fLog2)
3616 return true;
3617
3618 /*
3619 * Update the state so DBGF reads the correct register values.
3620 */
3621 remR3StateUpdate(pVM);
3622
3623 /*
3624 * Log registers if requested.
3625 */
3626 if (!fLog2)
3627 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3628
3629 /*
3630 * Disassemble to log.
3631 */
3632 if (fLog)
3633 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3634
3635 return VBOX_SUCCESS(rc);
3636#endif
3637}
3638
3639
3640/**
3641 * Disassemble recompiled code.
3642 *
3643 * @param phFileIgnored Ignored, logfile usually.
3644 * @param pvCode Pointer to the code block.
3645 * @param cb Size of the code block.
3646 */
3647void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3648{
3649 if (LogIs2Enabled())
3650 {
3651 unsigned off = 0;
3652 char szOutput[256];
3653 DISCPUSTATE Cpu = {0};
3654 Cpu.mode = CPUMODE_32BIT;
3655
3656 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3657 while (off < cb)
3658 {
3659 uint32_t cbInstr;
3660 if (DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput))
3661 RTLogPrintf("%s", szOutput);
3662 else
3663 {
3664 RTLogPrintf("disas error\n");
3665 cbInstr = 1;
3666 }
3667 off += cbInstr;
3668 }
3669 }
3670 NOREF(phFileIgnored);
3671}
3672
3673
3674/**
3675 * Disassemble guest code.
3676 *
3677 * @param phFileIgnored Ignored, logfile usually.
3678 * @param uCode The guest address of the code to disassemble. (flat?)
3679 * @param cb Number of bytes to disassemble.
3680 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3681 */
3682void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3683{
3684 if (LogIs2Enabled())
3685 {
3686 PVM pVM = cpu_single_env->pVM;
3687
3688 /*
3689 * Update the state so DBGF reads the correct register values (flags).
3690 */
3691 remR3StateUpdate(pVM);
3692
3693 /*
3694 * Do the disassembling.
3695 */
3696 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
3697 RTSEL cs = cpu_single_env->segs[R_CS].selector;
3698 RTGCUINTPTR eip = uCode - cpu_single_env->segs[R_CS].base;
3699 for (;;)
3700 {
3701 char szBuf[256];
3702 size_t cbInstr;
3703 int rc = DBGFR3DisasInstrEx(pVM,
3704 cs,
3705 eip,
3706 0,
3707 szBuf, sizeof(szBuf),
3708 &cbInstr);
3709 if (VBOX_SUCCESS(rc))
3710 RTLogPrintf("%VGp %s\n", uCode, szBuf);
3711 else
3712 {
3713 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
3714 cbInstr = 1;
3715 }
3716
3717 /* next */
3718 if (cb <= cbInstr)
3719 break;
3720 cb -= cbInstr;
3721 uCode += cbInstr;
3722 eip += cbInstr;
3723 }
3724 }
3725 NOREF(phFileIgnored);
3726}
3727
3728
3729/**
3730 * Looks up a guest symbol.
3731 *
3732 * @returns Pointer to symbol name. This is a static buffer.
3733 * @param orig_addr The address in question.
3734 */
3735const char *lookup_symbol(target_ulong orig_addr)
3736{
3737 RTGCINTPTR off = 0;
3738 DBGFSYMBOL Sym;
3739 PVM pVM = cpu_single_env->pVM;
3740 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3741 if (VBOX_SUCCESS(rc))
3742 {
3743 static char szSym[sizeof(Sym.szName) + 48];
3744 if (!off)
3745 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3746 else if (off > 0)
3747 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3748 else
3749 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3750 return szSym;
3751 }
3752 return "<N/A>";
3753}
3754
3755
3756#undef LOG_GROUP
3757#define LOG_GROUP LOG_GROUP_REM
3758
3759
3760/* -+- FF notifications -+- */
3761
3762
3763/**
3764 * Notification about a pending interrupt.
3765 *
3766 * @param pVM VM Handle.
3767 * @param u8Interrupt Interrupt
3768 * @thread The emulation thread.
3769 */
3770REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3771{
3772 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3773 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3774}
3775
3776/**
3777 * Notification about a pending interrupt.
3778 *
3779 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3780 * @param pVM VM Handle.
3781 * @thread The emulation thread.
3782 */
3783REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3784{
3785 return pVM->rem.s.u32PendingInterrupt;
3786}
3787
3788/**
3789 * Notification about the interrupt FF being set.
3790 *
3791 * @param pVM VM Handle.
3792 * @thread The emulation thread.
3793 */
3794REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3795{
3796 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3797 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3798 if (pVM->rem.s.fInREM)
3799 {
3800 if (VM_IS_EMT(pVM))
3801 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3802 else
3803 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_HARD);
3804 }
3805}
3806
3807
3808/**
3809 * Notification about the interrupt FF being set.
3810 *
3811 * @param pVM VM Handle.
3812 * @thread The emulation thread.
3813 */
3814REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3815{
3816 LogFlow(("REMR3NotifyInterruptClear:\n"));
3817 VM_ASSERT_EMT(pVM);
3818 if (pVM->rem.s.fInREM)
3819 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3820}
3821
3822
3823/**
3824 * Notification about pending timer(s).
3825 *
3826 * @param pVM VM Handle.
3827 * @thread Any.
3828 */
3829REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3830{
3831#ifndef DEBUG_bird
3832 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3833#endif
3834 if (pVM->rem.s.fInREM)
3835 {
3836 if (VM_IS_EMT(pVM))
3837 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3838 else
3839 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_TIMER);
3840 }
3841}
3842
3843
3844/**
3845 * Notification about pending DMA transfers.
3846 *
3847 * @param pVM VM Handle.
3848 * @thread Any.
3849 */
3850REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3851{
3852 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3853 if (pVM->rem.s.fInREM)
3854 {
3855 if (VM_IS_EMT(pVM))
3856 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3857 else
3858 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_DMA);
3859 }
3860}
3861
3862
3863/**
3864 * Notification about pending timer(s).
3865 *
3866 * @param pVM VM Handle.
3867 * @thread Any.
3868 */
3869REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3870{
3871 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3872 if (pVM->rem.s.fInREM)
3873 {
3874 if (VM_IS_EMT(pVM))
3875 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3876 else
3877 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3878 }
3879}
3880
3881
3882/**
3883 * Notification about pending FF set by an external thread.
3884 *
3885 * @param pVM VM handle.
3886 * @thread Any.
3887 */
3888REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3889{
3890 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3891 if (pVM->rem.s.fInREM)
3892 {
3893 if (VM_IS_EMT(pVM))
3894 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3895 else
3896 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3897 }
3898}
3899
3900
3901#ifdef VBOX_WITH_STATISTICS
3902void remR3ProfileStart(int statcode)
3903{
3904 STAMPROFILEADV *pStat;
3905 switch(statcode)
3906 {
3907 case STATS_EMULATE_SINGLE_INSTR:
3908 pStat = &gStatExecuteSingleInstr;
3909 break;
3910 case STATS_QEMU_COMPILATION:
3911 pStat = &gStatCompilationQEmu;
3912 break;
3913 case STATS_QEMU_RUN_EMULATED_CODE:
3914 pStat = &gStatRunCodeQEmu;
3915 break;
3916 case STATS_QEMU_TOTAL:
3917 pStat = &gStatTotalTimeQEmu;
3918 break;
3919 case STATS_QEMU_RUN_TIMERS:
3920 pStat = &gStatTimers;
3921 break;
3922 case STATS_TLB_LOOKUP:
3923 pStat= &gStatTBLookup;
3924 break;
3925 case STATS_IRQ_HANDLING:
3926 pStat= &gStatIRQ;
3927 break;
3928 case STATS_RAW_CHECK:
3929 pStat = &gStatRawCheck;
3930 break;
3931
3932 default:
3933 AssertMsgFailed(("unknown stat %d\n", statcode));
3934 return;
3935 }
3936 STAM_PROFILE_ADV_START(pStat, a);
3937}
3938
3939
3940void remR3ProfileStop(int statcode)
3941{
3942 STAMPROFILEADV *pStat;
3943 switch(statcode)
3944 {
3945 case STATS_EMULATE_SINGLE_INSTR:
3946 pStat = &gStatExecuteSingleInstr;
3947 break;
3948 case STATS_QEMU_COMPILATION:
3949 pStat = &gStatCompilationQEmu;
3950 break;
3951 case STATS_QEMU_RUN_EMULATED_CODE:
3952 pStat = &gStatRunCodeQEmu;
3953 break;
3954 case STATS_QEMU_TOTAL:
3955 pStat = &gStatTotalTimeQEmu;
3956 break;
3957 case STATS_QEMU_RUN_TIMERS:
3958 pStat = &gStatTimers;
3959 break;
3960 case STATS_TLB_LOOKUP:
3961 pStat= &gStatTBLookup;
3962 break;
3963 case STATS_IRQ_HANDLING:
3964 pStat= &gStatIRQ;
3965 break;
3966 case STATS_RAW_CHECK:
3967 pStat = &gStatRawCheck;
3968 break;
3969 default:
3970 AssertMsgFailed(("unknown stat %d\n", statcode));
3971 return;
3972 }
3973 STAM_PROFILE_ADV_STOP(pStat, a);
3974}
3975#endif
3976
3977/**
3978 * Raise an RC, force rem exit.
3979 *
3980 * @param pVM VM handle.
3981 * @param rc The rc.
3982 */
3983void remR3RaiseRC(PVM pVM, int rc)
3984{
3985 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
3986 Assert(pVM->rem.s.fInREM);
3987 VM_ASSERT_EMT(pVM);
3988 pVM->rem.s.rc = rc;
3989 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
3990}
3991
3992
3993/* -+- timers -+- */
3994
3995uint64_t cpu_get_tsc(CPUX86State *env)
3996{
3997 return TMCpuTickGet(env->pVM);
3998}
3999
4000
4001/* -+- interrupts -+- */
4002
4003void cpu_set_ferr(CPUX86State *env)
4004{
4005 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
4006 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4007}
4008
4009int cpu_get_pic_interrupt(CPUState *env)
4010{
4011 uint8_t u8Interrupt;
4012 int rc;
4013
4014 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4015 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4016 * with the (a)pic.
4017 */
4018 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4019 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4020 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4021 * remove this kludge. */
4022 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4023 {
4024 rc = VINF_SUCCESS;
4025 Assert(env->pVM->rem.s.u32PendingInterrupt >= 0 && env->pVM->rem.s.u32PendingInterrupt <= 255);
4026 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4027 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4028 }
4029 else
4030 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4031
4032 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
4033 if (VBOX_SUCCESS(rc))
4034 {
4035 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4036 env->interrupt_request |= CPU_INTERRUPT_HARD;
4037 return u8Interrupt;
4038 }
4039 return -1;
4040}
4041
4042
4043/* -+- local apic -+- */
4044
4045void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4046{
4047 int rc = PDMApicSetBase(env->pVM, val);
4048 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
4049}
4050
4051uint64_t cpu_get_apic_base(CPUX86State *env)
4052{
4053 uint64_t u64;
4054 int rc = PDMApicGetBase(env->pVM, &u64);
4055 if (VBOX_SUCCESS(rc))
4056 {
4057 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4058 return u64;
4059 }
4060 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
4061 return 0;
4062}
4063
4064void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4065{
4066 int rc = PDMApicSetTPR(env->pVM, val);
4067 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
4068}
4069
4070uint8_t cpu_get_apic_tpr(CPUX86State *env)
4071{
4072 uint8_t u8;
4073 int rc = PDMApicGetTPR(env->pVM, &u8);
4074 if (VBOX_SUCCESS(rc))
4075 {
4076 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4077 return u8;
4078 }
4079 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
4080 return 0;
4081}
4082
4083
4084/* -+- I/O Ports -+- */
4085
4086#undef LOG_GROUP
4087#define LOG_GROUP LOG_GROUP_REM_IOPORT
4088
4089void cpu_outb(CPUState *env, int addr, int val)
4090{
4091 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4092 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4093
4094 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4095 if (rc == VINF_SUCCESS)
4096 return;
4097 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4098 {
4099 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4100 remR3RaiseRC(env->pVM, rc);
4101 return;
4102 }
4103 remAbort(rc, __FUNCTION__);
4104}
4105
4106void cpu_outw(CPUState *env, int addr, int val)
4107{
4108 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4109 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4110 if (rc == VINF_SUCCESS)
4111 return;
4112 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4113 {
4114 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4115 remR3RaiseRC(env->pVM, rc);
4116 return;
4117 }
4118 remAbort(rc, __FUNCTION__);
4119}
4120
4121void cpu_outl(CPUState *env, int addr, int val)
4122{
4123 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4124 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4125 if (rc == VINF_SUCCESS)
4126 return;
4127 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4128 {
4129 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4130 remR3RaiseRC(env->pVM, rc);
4131 return;
4132 }
4133 remAbort(rc, __FUNCTION__);
4134}
4135
4136int cpu_inb(CPUState *env, int addr)
4137{
4138 uint32_t u32 = 0;
4139 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4140 if (rc == VINF_SUCCESS)
4141 {
4142 if (/*addr != 0x61 && */addr != 0x71)
4143 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4144 return (int)u32;
4145 }
4146 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4147 {
4148 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4149 remR3RaiseRC(env->pVM, rc);
4150 return (int)u32;
4151 }
4152 remAbort(rc, __FUNCTION__);
4153 return 0xff;
4154}
4155
4156int cpu_inw(CPUState *env, int addr)
4157{
4158 uint32_t u32 = 0;
4159 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4160 if (rc == VINF_SUCCESS)
4161 {
4162 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4163 return (int)u32;
4164 }
4165 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4166 {
4167 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4168 remR3RaiseRC(env->pVM, rc);
4169 return (int)u32;
4170 }
4171 remAbort(rc, __FUNCTION__);
4172 return 0xffff;
4173}
4174
4175int cpu_inl(CPUState *env, int addr)
4176{
4177 uint32_t u32 = 0;
4178 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4179 if (rc == VINF_SUCCESS)
4180 {
4181//if (addr==0x01f0 && u32 == 0x6b6d)
4182// loglevel = ~0;
4183 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4184 return (int)u32;
4185 }
4186 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4187 {
4188 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4189 remR3RaiseRC(env->pVM, rc);
4190 return (int)u32;
4191 }
4192 remAbort(rc, __FUNCTION__);
4193 return 0xffffffff;
4194}
4195
4196#undef LOG_GROUP
4197#define LOG_GROUP LOG_GROUP_REM
4198
4199
4200/* -+- helpers and misc other interfaces -+- */
4201
4202/**
4203 * Perform the CPUID instruction.
4204 *
4205 * ASMCpuId cannot be invoked from some source files where this is used because of global
4206 * register allocations.
4207 *
4208 * @param env Pointer to the recompiler CPU structure.
4209 * @param uOperator CPUID operation (eax).
4210 * @param pvEAX Where to store eax.
4211 * @param pvEBX Where to store ebx.
4212 * @param pvECX Where to store ecx.
4213 * @param pvEDX Where to store edx.
4214 */
4215void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4216{
4217 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4218}
4219
4220
4221#if 0 /* not used */
4222/**
4223 * Interface for qemu hardware to report back fatal errors.
4224 */
4225void hw_error(const char *pszFormat, ...)
4226{
4227 /*
4228 * Bitch about it.
4229 */
4230 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4231 * this in my Odin32 tree at home! */
4232 va_list args;
4233 va_start(args, pszFormat);
4234 RTLogPrintf("fatal error in virtual hardware:");
4235 RTLogPrintfV(pszFormat, args);
4236 va_end(args);
4237 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4238
4239 /*
4240 * If we're in REM context we'll sync back the state before 'jumping' to
4241 * the EMs failure handling.
4242 */
4243 PVM pVM = cpu_single_env->pVM;
4244 if (pVM->rem.s.fInREM)
4245 REMR3StateBack(pVM);
4246 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4247 AssertMsgFailed(("EMR3FatalError returned!\n"));
4248}
4249#endif
4250
4251/**
4252 * Interface for the qemu cpu to report unhandled situation
4253 * raising a fatal VM error.
4254 */
4255void cpu_abort(CPUState *env, const char *pszFormat, ...)
4256{
4257 /*
4258 * Bitch about it.
4259 */
4260 RTLogFlags(NULL, "nodisabled nobuffered");
4261 va_list args;
4262 va_start(args, pszFormat);
4263 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4264 va_end(args);
4265 va_start(args, pszFormat);
4266 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4267 va_end(args);
4268
4269 /*
4270 * If we're in REM context we'll sync back the state before 'jumping' to
4271 * the EMs failure handling.
4272 */
4273 PVM pVM = cpu_single_env->pVM;
4274 if (pVM->rem.s.fInREM)
4275 REMR3StateBack(pVM);
4276 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4277 AssertMsgFailed(("EMR3FatalError returned!\n"));
4278}
4279
4280
4281/**
4282 * Aborts the VM.
4283 *
4284 * @param rc VBox error code.
4285 * @param pszTip Hint about why/when this happend.
4286 */
4287static void remAbort(int rc, const char *pszTip)
4288{
4289 /*
4290 * Bitch about it.
4291 */
4292 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4293 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4294
4295 /*
4296 * Jump back to where we entered the recompiler.
4297 */
4298 PVM pVM = cpu_single_env->pVM;
4299 if (pVM->rem.s.fInREM)
4300 REMR3StateBack(pVM);
4301 EMR3FatalError(pVM, rc);
4302 AssertMsgFailed(("EMR3FatalError returned!\n"));
4303}
4304
4305
4306/**
4307 * Dumps a linux system call.
4308 * @param pVM VM handle.
4309 */
4310void remR3DumpLnxSyscall(PVM pVM)
4311{
4312 static const char *apsz[] =
4313 {
4314 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4315 "sys_exit",
4316 "sys_fork",
4317 "sys_read",
4318 "sys_write",
4319 "sys_open", /* 5 */
4320 "sys_close",
4321 "sys_waitpid",
4322 "sys_creat",
4323 "sys_link",
4324 "sys_unlink", /* 10 */
4325 "sys_execve",
4326 "sys_chdir",
4327 "sys_time",
4328 "sys_mknod",
4329 "sys_chmod", /* 15 */
4330 "sys_lchown16",
4331 "sys_ni_syscall", /* old break syscall holder */
4332 "sys_stat",
4333 "sys_lseek",
4334 "sys_getpid", /* 20 */
4335 "sys_mount",
4336 "sys_oldumount",
4337 "sys_setuid16",
4338 "sys_getuid16",
4339 "sys_stime", /* 25 */
4340 "sys_ptrace",
4341 "sys_alarm",
4342 "sys_fstat",
4343 "sys_pause",
4344 "sys_utime", /* 30 */
4345 "sys_ni_syscall", /* old stty syscall holder */
4346 "sys_ni_syscall", /* old gtty syscall holder */
4347 "sys_access",
4348 "sys_nice",
4349 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4350 "sys_sync",
4351 "sys_kill",
4352 "sys_rename",
4353 "sys_mkdir",
4354 "sys_rmdir", /* 40 */
4355 "sys_dup",
4356 "sys_pipe",
4357 "sys_times",
4358 "sys_ni_syscall", /* old prof syscall holder */
4359 "sys_brk", /* 45 */
4360 "sys_setgid16",
4361 "sys_getgid16",
4362 "sys_signal",
4363 "sys_geteuid16",
4364 "sys_getegid16", /* 50 */
4365 "sys_acct",
4366 "sys_umount", /* recycled never used phys() */
4367 "sys_ni_syscall", /* old lock syscall holder */
4368 "sys_ioctl",
4369 "sys_fcntl", /* 55 */
4370 "sys_ni_syscall", /* old mpx syscall holder */
4371 "sys_setpgid",
4372 "sys_ni_syscall", /* old ulimit syscall holder */
4373 "sys_olduname",
4374 "sys_umask", /* 60 */
4375 "sys_chroot",
4376 "sys_ustat",
4377 "sys_dup2",
4378 "sys_getppid",
4379 "sys_getpgrp", /* 65 */
4380 "sys_setsid",
4381 "sys_sigaction",
4382 "sys_sgetmask",
4383 "sys_ssetmask",
4384 "sys_setreuid16", /* 70 */
4385 "sys_setregid16",
4386 "sys_sigsuspend",
4387 "sys_sigpending",
4388 "sys_sethostname",
4389 "sys_setrlimit", /* 75 */
4390 "sys_old_getrlimit",
4391 "sys_getrusage",
4392 "sys_gettimeofday",
4393 "sys_settimeofday",
4394 "sys_getgroups16", /* 80 */
4395 "sys_setgroups16",
4396 "old_select",
4397 "sys_symlink",
4398 "sys_lstat",
4399 "sys_readlink", /* 85 */
4400 "sys_uselib",
4401 "sys_swapon",
4402 "sys_reboot",
4403 "old_readdir",
4404 "old_mmap", /* 90 */
4405 "sys_munmap",
4406 "sys_truncate",
4407 "sys_ftruncate",
4408 "sys_fchmod",
4409 "sys_fchown16", /* 95 */
4410 "sys_getpriority",
4411 "sys_setpriority",
4412 "sys_ni_syscall", /* old profil syscall holder */
4413 "sys_statfs",
4414 "sys_fstatfs", /* 100 */
4415 "sys_ioperm",
4416 "sys_socketcall",
4417 "sys_syslog",
4418 "sys_setitimer",
4419 "sys_getitimer", /* 105 */
4420 "sys_newstat",
4421 "sys_newlstat",
4422 "sys_newfstat",
4423 "sys_uname",
4424 "sys_iopl", /* 110 */
4425 "sys_vhangup",
4426 "sys_ni_syscall", /* old "idle" system call */
4427 "sys_vm86old",
4428 "sys_wait4",
4429 "sys_swapoff", /* 115 */
4430 "sys_sysinfo",
4431 "sys_ipc",
4432 "sys_fsync",
4433 "sys_sigreturn",
4434 "sys_clone", /* 120 */
4435 "sys_setdomainname",
4436 "sys_newuname",
4437 "sys_modify_ldt",
4438 "sys_adjtimex",
4439 "sys_mprotect", /* 125 */
4440 "sys_sigprocmask",
4441 "sys_ni_syscall", /* old "create_module" */
4442 "sys_init_module",
4443 "sys_delete_module",
4444 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4445 "sys_quotactl",
4446 "sys_getpgid",
4447 "sys_fchdir",
4448 "sys_bdflush",
4449 "sys_sysfs", /* 135 */
4450 "sys_personality",
4451 "sys_ni_syscall", /* reserved for afs_syscall */
4452 "sys_setfsuid16",
4453 "sys_setfsgid16",
4454 "sys_llseek", /* 140 */
4455 "sys_getdents",
4456 "sys_select",
4457 "sys_flock",
4458 "sys_msync",
4459 "sys_readv", /* 145 */
4460 "sys_writev",
4461 "sys_getsid",
4462 "sys_fdatasync",
4463 "sys_sysctl",
4464 "sys_mlock", /* 150 */
4465 "sys_munlock",
4466 "sys_mlockall",
4467 "sys_munlockall",
4468 "sys_sched_setparam",
4469 "sys_sched_getparam", /* 155 */
4470 "sys_sched_setscheduler",
4471 "sys_sched_getscheduler",
4472 "sys_sched_yield",
4473 "sys_sched_get_priority_max",
4474 "sys_sched_get_priority_min", /* 160 */
4475 "sys_sched_rr_get_interval",
4476 "sys_nanosleep",
4477 "sys_mremap",
4478 "sys_setresuid16",
4479 "sys_getresuid16", /* 165 */
4480 "sys_vm86",
4481 "sys_ni_syscall", /* Old sys_query_module */
4482 "sys_poll",
4483 "sys_nfsservctl",
4484 "sys_setresgid16", /* 170 */
4485 "sys_getresgid16",
4486 "sys_prctl",
4487 "sys_rt_sigreturn",
4488 "sys_rt_sigaction",
4489 "sys_rt_sigprocmask", /* 175 */
4490 "sys_rt_sigpending",
4491 "sys_rt_sigtimedwait",
4492 "sys_rt_sigqueueinfo",
4493 "sys_rt_sigsuspend",
4494 "sys_pread64", /* 180 */
4495 "sys_pwrite64",
4496 "sys_chown16",
4497 "sys_getcwd",
4498 "sys_capget",
4499 "sys_capset", /* 185 */
4500 "sys_sigaltstack",
4501 "sys_sendfile",
4502 "sys_ni_syscall", /* reserved for streams1 */
4503 "sys_ni_syscall", /* reserved for streams2 */
4504 "sys_vfork", /* 190 */
4505 "sys_getrlimit",
4506 "sys_mmap2",
4507 "sys_truncate64",
4508 "sys_ftruncate64",
4509 "sys_stat64", /* 195 */
4510 "sys_lstat64",
4511 "sys_fstat64",
4512 "sys_lchown",
4513 "sys_getuid",
4514 "sys_getgid", /* 200 */
4515 "sys_geteuid",
4516 "sys_getegid",
4517 "sys_setreuid",
4518 "sys_setregid",
4519 "sys_getgroups", /* 205 */
4520 "sys_setgroups",
4521 "sys_fchown",
4522 "sys_setresuid",
4523 "sys_getresuid",
4524 "sys_setresgid", /* 210 */
4525 "sys_getresgid",
4526 "sys_chown",
4527 "sys_setuid",
4528 "sys_setgid",
4529 "sys_setfsuid", /* 215 */
4530 "sys_setfsgid",
4531 "sys_pivot_root",
4532 "sys_mincore",
4533 "sys_madvise",
4534 "sys_getdents64", /* 220 */
4535 "sys_fcntl64",
4536 "sys_ni_syscall", /* reserved for TUX */
4537 "sys_ni_syscall",
4538 "sys_gettid",
4539 "sys_readahead", /* 225 */
4540 "sys_setxattr",
4541 "sys_lsetxattr",
4542 "sys_fsetxattr",
4543 "sys_getxattr",
4544 "sys_lgetxattr", /* 230 */
4545 "sys_fgetxattr",
4546 "sys_listxattr",
4547 "sys_llistxattr",
4548 "sys_flistxattr",
4549 "sys_removexattr", /* 235 */
4550 "sys_lremovexattr",
4551 "sys_fremovexattr",
4552 "sys_tkill",
4553 "sys_sendfile64",
4554 "sys_futex", /* 240 */
4555 "sys_sched_setaffinity",
4556 "sys_sched_getaffinity",
4557 "sys_set_thread_area",
4558 "sys_get_thread_area",
4559 "sys_io_setup", /* 245 */
4560 "sys_io_destroy",
4561 "sys_io_getevents",
4562 "sys_io_submit",
4563 "sys_io_cancel",
4564 "sys_fadvise64", /* 250 */
4565 "sys_ni_syscall",
4566 "sys_exit_group",
4567 "sys_lookup_dcookie",
4568 "sys_epoll_create",
4569 "sys_epoll_ctl", /* 255 */
4570 "sys_epoll_wait",
4571 "sys_remap_file_pages",
4572 "sys_set_tid_address",
4573 "sys_timer_create",
4574 "sys_timer_settime", /* 260 */
4575 "sys_timer_gettime",
4576 "sys_timer_getoverrun",
4577 "sys_timer_delete",
4578 "sys_clock_settime",
4579 "sys_clock_gettime", /* 265 */
4580 "sys_clock_getres",
4581 "sys_clock_nanosleep",
4582 "sys_statfs64",
4583 "sys_fstatfs64",
4584 "sys_tgkill", /* 270 */
4585 "sys_utimes",
4586 "sys_fadvise64_64",
4587 "sys_ni_syscall" /* sys_vserver */
4588 };
4589
4590 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4591 switch (uEAX)
4592 {
4593 default:
4594 if (uEAX < ELEMENTS(apsz))
4595 Log(("REM: linux syscall %3d: %s (eip=%VGv ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4596 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4597 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4598 else
4599 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4600 break;
4601
4602 }
4603}
4604
4605
4606/**
4607 * Dumps an OpenBSD system call.
4608 * @param pVM VM handle.
4609 */
4610void remR3DumpOBsdSyscall(PVM pVM)
4611{
4612 static const char *apsz[] =
4613 {
4614 "SYS_syscall", //0
4615 "SYS_exit", //1
4616 "SYS_fork", //2
4617 "SYS_read", //3
4618 "SYS_write", //4
4619 "SYS_open", //5
4620 "SYS_close", //6
4621 "SYS_wait4", //7
4622 "SYS_8",
4623 "SYS_link", //9
4624 "SYS_unlink", //10
4625 "SYS_11",
4626 "SYS_chdir", //12
4627 "SYS_fchdir", //13
4628 "SYS_mknod", //14
4629 "SYS_chmod", //15
4630 "SYS_chown", //16
4631 "SYS_break", //17
4632 "SYS_18",
4633 "SYS_19",
4634 "SYS_getpid", //20
4635 "SYS_mount", //21
4636 "SYS_unmount", //22
4637 "SYS_setuid", //23
4638 "SYS_getuid", //24
4639 "SYS_geteuid", //25
4640 "SYS_ptrace", //26
4641 "SYS_recvmsg", //27
4642 "SYS_sendmsg", //28
4643 "SYS_recvfrom", //29
4644 "SYS_accept", //30
4645 "SYS_getpeername", //31
4646 "SYS_getsockname", //32
4647 "SYS_access", //33
4648 "SYS_chflags", //34
4649 "SYS_fchflags", //35
4650 "SYS_sync", //36
4651 "SYS_kill", //37
4652 "SYS_38",
4653 "SYS_getppid", //39
4654 "SYS_40",
4655 "SYS_dup", //41
4656 "SYS_opipe", //42
4657 "SYS_getegid", //43
4658 "SYS_profil", //44
4659 "SYS_ktrace", //45
4660 "SYS_sigaction", //46
4661 "SYS_getgid", //47
4662 "SYS_sigprocmask", //48
4663 "SYS_getlogin", //49
4664 "SYS_setlogin", //50
4665 "SYS_acct", //51
4666 "SYS_sigpending", //52
4667 "SYS_osigaltstack", //53
4668 "SYS_ioctl", //54
4669 "SYS_reboot", //55
4670 "SYS_revoke", //56
4671 "SYS_symlink", //57
4672 "SYS_readlink", //58
4673 "SYS_execve", //59
4674 "SYS_umask", //60
4675 "SYS_chroot", //61
4676 "SYS_62",
4677 "SYS_63",
4678 "SYS_64",
4679 "SYS_65",
4680 "SYS_vfork", //66
4681 "SYS_67",
4682 "SYS_68",
4683 "SYS_sbrk", //69
4684 "SYS_sstk", //70
4685 "SYS_61",
4686 "SYS_vadvise", //72
4687 "SYS_munmap", //73
4688 "SYS_mprotect", //74
4689 "SYS_madvise", //75
4690 "SYS_76",
4691 "SYS_77",
4692 "SYS_mincore", //78
4693 "SYS_getgroups", //79
4694 "SYS_setgroups", //80
4695 "SYS_getpgrp", //81
4696 "SYS_setpgid", //82
4697 "SYS_setitimer", //83
4698 "SYS_84",
4699 "SYS_85",
4700 "SYS_getitimer", //86
4701 "SYS_87",
4702 "SYS_88",
4703 "SYS_89",
4704 "SYS_dup2", //90
4705 "SYS_91",
4706 "SYS_fcntl", //92
4707 "SYS_select", //93
4708 "SYS_94",
4709 "SYS_fsync", //95
4710 "SYS_setpriority", //96
4711 "SYS_socket", //97
4712 "SYS_connect", //98
4713 "SYS_99",
4714 "SYS_getpriority", //100
4715 "SYS_101",
4716 "SYS_102",
4717 "SYS_sigreturn", //103
4718 "SYS_bind", //104
4719 "SYS_setsockopt", //105
4720 "SYS_listen", //106
4721 "SYS_107",
4722 "SYS_108",
4723 "SYS_109",
4724 "SYS_110",
4725 "SYS_sigsuspend", //111
4726 "SYS_112",
4727 "SYS_113",
4728 "SYS_114",
4729 "SYS_115",
4730 "SYS_gettimeofday", //116
4731 "SYS_getrusage", //117
4732 "SYS_getsockopt", //118
4733 "SYS_119",
4734 "SYS_readv", //120
4735 "SYS_writev", //121
4736 "SYS_settimeofday", //122
4737 "SYS_fchown", //123
4738 "SYS_fchmod", //124
4739 "SYS_125",
4740 "SYS_setreuid", //126
4741 "SYS_setregid", //127
4742 "SYS_rename", //128
4743 "SYS_129",
4744 "SYS_130",
4745 "SYS_flock", //131
4746 "SYS_mkfifo", //132
4747 "SYS_sendto", //133
4748 "SYS_shutdown", //134
4749 "SYS_socketpair", //135
4750 "SYS_mkdir", //136
4751 "SYS_rmdir", //137
4752 "SYS_utimes", //138
4753 "SYS_139",
4754 "SYS_adjtime", //140
4755 "SYS_141",
4756 "SYS_142",
4757 "SYS_143",
4758 "SYS_144",
4759 "SYS_145",
4760 "SYS_146",
4761 "SYS_setsid", //147
4762 "SYS_quotactl", //148
4763 "SYS_149",
4764 "SYS_150",
4765 "SYS_151",
4766 "SYS_152",
4767 "SYS_153",
4768 "SYS_154",
4769 "SYS_nfssvc", //155
4770 "SYS_156",
4771 "SYS_157",
4772 "SYS_158",
4773 "SYS_159",
4774 "SYS_160",
4775 "SYS_getfh", //161
4776 "SYS_162",
4777 "SYS_163",
4778 "SYS_164",
4779 "SYS_sysarch", //165
4780 "SYS_166",
4781 "SYS_167",
4782 "SYS_168",
4783 "SYS_169",
4784 "SYS_170",
4785 "SYS_171",
4786 "SYS_172",
4787 "SYS_pread", //173
4788 "SYS_pwrite", //174
4789 "SYS_175",
4790 "SYS_176",
4791 "SYS_177",
4792 "SYS_178",
4793 "SYS_179",
4794 "SYS_180",
4795 "SYS_setgid", //181
4796 "SYS_setegid", //182
4797 "SYS_seteuid", //183
4798 "SYS_lfs_bmapv", //184
4799 "SYS_lfs_markv", //185
4800 "SYS_lfs_segclean", //186
4801 "SYS_lfs_segwait", //187
4802 "SYS_188",
4803 "SYS_189",
4804 "SYS_190",
4805 "SYS_pathconf", //191
4806 "SYS_fpathconf", //192
4807 "SYS_swapctl", //193
4808 "SYS_getrlimit", //194
4809 "SYS_setrlimit", //195
4810 "SYS_getdirentries", //196
4811 "SYS_mmap", //197
4812 "SYS___syscall", //198
4813 "SYS_lseek", //199
4814 "SYS_truncate", //200
4815 "SYS_ftruncate", //201
4816 "SYS___sysctl", //202
4817 "SYS_mlock", //203
4818 "SYS_munlock", //204
4819 "SYS_205",
4820 "SYS_futimes", //206
4821 "SYS_getpgid", //207
4822 "SYS_xfspioctl", //208
4823 "SYS_209",
4824 "SYS_210",
4825 "SYS_211",
4826 "SYS_212",
4827 "SYS_213",
4828 "SYS_214",
4829 "SYS_215",
4830 "SYS_216",
4831 "SYS_217",
4832 "SYS_218",
4833 "SYS_219",
4834 "SYS_220",
4835 "SYS_semget", //221
4836 "SYS_222",
4837 "SYS_223",
4838 "SYS_224",
4839 "SYS_msgget", //225
4840 "SYS_msgsnd", //226
4841 "SYS_msgrcv", //227
4842 "SYS_shmat", //228
4843 "SYS_229",
4844 "SYS_shmdt", //230
4845 "SYS_231",
4846 "SYS_clock_gettime", //232
4847 "SYS_clock_settime", //233
4848 "SYS_clock_getres", //234
4849 "SYS_235",
4850 "SYS_236",
4851 "SYS_237",
4852 "SYS_238",
4853 "SYS_239",
4854 "SYS_nanosleep", //240
4855 "SYS_241",
4856 "SYS_242",
4857 "SYS_243",
4858 "SYS_244",
4859 "SYS_245",
4860 "SYS_246",
4861 "SYS_247",
4862 "SYS_248",
4863 "SYS_249",
4864 "SYS_minherit", //250
4865 "SYS_rfork", //251
4866 "SYS_poll", //252
4867 "SYS_issetugid", //253
4868 "SYS_lchown", //254
4869 "SYS_getsid", //255
4870 "SYS_msync", //256
4871 "SYS_257",
4872 "SYS_258",
4873 "SYS_259",
4874 "SYS_getfsstat", //260
4875 "SYS_statfs", //261
4876 "SYS_fstatfs", //262
4877 "SYS_pipe", //263
4878 "SYS_fhopen", //264
4879 "SYS_265",
4880 "SYS_fhstatfs", //266
4881 "SYS_preadv", //267
4882 "SYS_pwritev", //268
4883 "SYS_kqueue", //269
4884 "SYS_kevent", //270
4885 "SYS_mlockall", //271
4886 "SYS_munlockall", //272
4887 "SYS_getpeereid", //273
4888 "SYS_274",
4889 "SYS_275",
4890 "SYS_276",
4891 "SYS_277",
4892 "SYS_278",
4893 "SYS_279",
4894 "SYS_280",
4895 "SYS_getresuid", //281
4896 "SYS_setresuid", //282
4897 "SYS_getresgid", //283
4898 "SYS_setresgid", //284
4899 "SYS_285",
4900 "SYS_mquery", //286
4901 "SYS_closefrom", //287
4902 "SYS_sigaltstack", //288
4903 "SYS_shmget", //289
4904 "SYS_semop", //290
4905 "SYS_stat", //291
4906 "SYS_fstat", //292
4907 "SYS_lstat", //293
4908 "SYS_fhstat", //294
4909 "SYS___semctl", //295
4910 "SYS_shmctl", //296
4911 "SYS_msgctl", //297
4912 "SYS_MAXSYSCALL", //298
4913 //299
4914 //300
4915 };
4916 uint32_t uEAX;
4917#ifndef DEBUG_bird
4918 if (!LogIsEnabled())
4919 return;
4920#endif
4921 uEAX = CPUMGetGuestEAX(pVM);
4922 switch (uEAX)
4923 {
4924 default:
4925 if (uEAX < ELEMENTS(apsz))
4926 {
4927 uint32_t au32Args[8] = {0};
4928 PGMPhysReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
4929 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
4930 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
4931 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
4932 }
4933 else
4934 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
4935 break;
4936 }
4937}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette