VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 1057

Last change on this file since 1057 was 1057, checked in by vboxsync, 18 years ago

Trapping and virtualizing TSC (both disabled).

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 155.4 KB
Line 
1/** @file
2 *
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006 InnoTek Systemberatung GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License as published by the Free Software Foundation,
13 * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
14 * distribution. VirtualBox OSE is distributed in the hope that it will
15 * be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * If you received this file as part of a commercial VirtualBox
18 * distribution, then only the terms of your commercial VirtualBox
19 * license agreement apply instead of the previous paragraph.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#include "vl.h"
27#include "exec-all.h"
28
29#include <VBox/rem.h>
30#include <VBox/vmapi.h>
31#include <VBox/tm.h>
32#include <VBox/ssm.h>
33#include <VBox/em.h>
34#include <VBox/trpm.h>
35#include <VBox/iom.h>
36#include <VBox/mm.h>
37#include <VBox/pgm.h>
38#include <VBox/pdm.h>
39#include <VBox/dbgf.h>
40#include <VBox/dbg.h>
41#include <VBox/hwaccm.h>
42#include <VBox/patm.h>
43#include <VBox/csam.h>
44#include "REMInternal.h"
45#include <VBox/vm.h>
46#include <VBox/param.h>
47#include <VBox/err.h>
48
49#define LOG_GROUP LOG_GROUP_REM
50#include <VBox/log.h>
51#include <iprt/semaphore.h>
52#include <iprt/asm.h>
53#include <iprt/assert.h>
54#include <iprt/thread.h>
55#include <iprt/string.h>
56
57////#define VBOX_RAW_V86
58
59/* Don't wanna include everything. */
60extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
61extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
62extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
63extern void tlb_flush_page(CPUX86State *env, uint32_t addr);
64extern void tlb_flush(CPUState *env, int flush_global);
65extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
66extern void sync_ldtr(CPUX86State *env1, int selector);
67extern int sync_tr(CPUX86State *env1, int selector);
68
69#ifdef VBOX_STRICT
70unsigned long get_phys_page_offset(target_ulong addr);
71#endif
72
73
74/*******************************************************************************
75* Defined Constants And Macros *
76*******************************************************************************/
77
78/** Copy 80-bit fpu register at pSrc to pDst.
79 * This is probably faster than *calling* memcpy.
80 */
81#define REM_COPY_FPU_REG(pDst, pSrc) \
82 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
83
84
85/*******************************************************************************
86* Internal Functions *
87*******************************************************************************/
88static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
89static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
90static void remR3StateUpdate(PVM pVM);
91static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
92static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
93static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
94static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
95static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
96static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
97
98static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
99static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
100static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
101static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
102static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
103static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
104
105
106/*******************************************************************************
107* Global Variables *
108*******************************************************************************/
109
110/** The log level of the recompiler. */
111#if 1
112extern int loglevel;
113#else
114int loglevel = ~0;
115FILE *logfile = NULL;
116#endif
117
118
119/** @todo Move stats to REM::s some rainy day we have nothing do to. */
120#ifdef VBOX_WITH_STATISTICS
121static STAMPROFILEADV gStatExecuteSingleInstr;
122static STAMPROFILEADV gStatCompilationQEmu;
123static STAMPROFILEADV gStatRunCodeQEmu;
124static STAMPROFILEADV gStatTotalTimeQEmu;
125static STAMPROFILEADV gStatTimers;
126static STAMPROFILEADV gStatTBLookup;
127static STAMPROFILEADV gStatIRQ;
128static STAMPROFILEADV gStatRawCheck;
129static STAMPROFILEADV gStatMemRead;
130static STAMPROFILEADV gStatMemWrite;
131static STAMCOUNTER gStatRefuseTFInhibit;
132static STAMCOUNTER gStatRefuseVM86;
133static STAMCOUNTER gStatRefusePaging;
134static STAMCOUNTER gStatRefusePAE;
135static STAMCOUNTER gStatRefuseIOPLNot0;
136static STAMCOUNTER gStatRefuseIF0;
137static STAMCOUNTER gStatRefuseCode16;
138static STAMCOUNTER gStatRefuseWP0;
139static STAMCOUNTER gStatRefuseRing1or2;
140static STAMCOUNTER gStatRefuseCanExecute;
141static STAMCOUNTER gStatREMGDTChange;
142static STAMCOUNTER gStatREMIDTChange;
143static STAMCOUNTER gStatREMLDTRChange;
144static STAMCOUNTER gStatREMTRChange;
145static STAMCOUNTER gStatSelOutOfSync[6];
146static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
147#endif
148
149/*
150 * Global stuff.
151 */
152
153/** MMIO read callbacks. */
154CPUReadMemoryFunc *g_apfnMMIORead[3] =
155{
156 remR3MMIOReadU8,
157 remR3MMIOReadU16,
158 remR3MMIOReadU32
159};
160
161/** MMIO write callbacks. */
162CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
163{
164 remR3MMIOWriteU8,
165 remR3MMIOWriteU16,
166 remR3MMIOWriteU32
167};
168
169/** Handler read callbacks. */
170CPUReadMemoryFunc *g_apfnHandlerRead[3] =
171{
172 remR3HandlerReadU8,
173 remR3HandlerReadU16,
174 remR3HandlerReadU32
175};
176
177/** Handler write callbacks. */
178CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
179{
180 remR3HandlerWriteU8,
181 remR3HandlerWriteU16,
182 remR3HandlerWriteU32
183};
184
185#ifndef PGM_DYNAMIC_RAM_ALLOC
186/* Guest physical RAM base. Not to be used in external code. */
187static uint8_t *phys_ram_base;
188#endif
189
190/*
191 * Instance stuff.
192 */
193/** Pointer to the cpu state. */
194CPUState *cpu_single_env;
195
196
197#ifdef VBOX_WITH_DEBUGGER
198/*
199 * Debugger commands.
200 */
201static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
202
203/** '.remstep' arguments. */
204static const DBGCVARDESC g_aArgRemStep[] =
205{
206 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
207 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
208};
209
210/** Command descriptors. */
211static const DBGCCMD g_aCmds[] =
212{
213 {
214 .pszCmd ="remstep",
215 .cArgsMin = 0,
216 .cArgsMax = 1,
217 .paArgDescs = &g_aArgRemStep[0],
218 .cArgDescs = ELEMENTS(g_aArgRemStep),
219 .pResultDesc = NULL,
220 .fFlags = 0,
221 .pfnHandler = remR3CmdDisasEnableStepping,
222 .pszSyntax = "[on/off]",
223 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
224 "If no arguments show the current state."
225 }
226};
227#endif
228
229
230/*******************************************************************************
231* Internal Functions *
232*******************************************************************************/
233static void remAbort(int rc, const char *pszTip);
234
235
236/* Put them here to avoid unused variable warning. */
237AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
238//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
239//AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
240
241/**
242 * Initializes the REM.
243 *
244 * @returns VBox status code.
245 * @param pVM The VM to operate on.
246 */
247REMR3DECL(int) REMR3Init(PVM pVM)
248{
249 uint32_t u32Dummy;
250 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
251 //AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
252 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
253#if 0 /* not merged yet */
254 Assert(!testmath());
255#endif
256
257 /*
258 * Init some internal data members.
259 */
260 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
261 pVM->rem.s.Env.pVM = pVM;
262#ifdef CPU_RAW_MODE_INIT
263 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
264#endif
265
266 /* ctx. */
267 int rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
268 if (VBOX_FAILURE(rc))
269 {
270 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
271 return rc;
272 }
273 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
274
275 /*
276 * Init the recompiler.
277 */
278 if (!cpu_x86_init(&pVM->rem.s.Env))
279 {
280 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
281 return VERR_GENERAL_FAILURE;
282 }
283 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
284
285 /* allocate code buffer for single instruction emulation. */
286 pVM->rem.s.Env.cbCodeBuffer = 4096;
287 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
288 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
289
290 /* finally, set the cpu_single_env global. */
291 cpu_single_env = &pVM->rem.s.Env;
292
293 /* Nothing is pending by default */
294 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
295
296#ifdef DEBUG_bird
297 //cpu_breakpoint_insert(&pVM->rem.s.Env, some-address);
298#endif
299
300 /*
301 * Register ram types.
302 */
303 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(0, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
304 AssertReleaseMsg(pVM->rem.s.iMMIOMemType > 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
305 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(0, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
306 AssertReleaseMsg(pVM->rem.s.iHandlerMemType > 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
307 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
308
309 /*
310 * Register the saved state data unit.
311 */
312 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
313 NULL, remR3Save, NULL,
314 NULL, remR3Load, NULL);
315 if (VBOX_FAILURE(rc))
316 return rc;
317
318#ifdef VBOX_WITH_DEBUGGER
319 /*
320 * Debugger commands.
321 */
322 static bool fRegisteredCmds = false;
323 if (!fRegisteredCmds)
324 {
325 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
326 if (VBOX_SUCCESS(rc))
327 fRegisteredCmds = true;
328 }
329#endif
330
331#ifdef VBOX_WITH_STATISTICS
332 /*
333 * Statistics.
334 */
335 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
336 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
337 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
338 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
339 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
340 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
341 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
342 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
343 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
344 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
345
346 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
347 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
348 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
349 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
350 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
351 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
352 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
353 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
354 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
355 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
356
357 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
358 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
359 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
360 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
361
362 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
363 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
364 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
365 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
366 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
367 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
368
369 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
370 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
371 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
372 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
373 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
374 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
375
376#endif
377 return rc;
378}
379
380
381/**
382 * Terminates the REM.
383 *
384 * Termination means cleaning up and freeing all resources,
385 * the VM it self is at this point powered off or suspended.
386 *
387 * @returns VBox status code.
388 * @param pVM The VM to operate on.
389 */
390REMR3DECL(int) REMR3Term(PVM pVM)
391{
392 return VINF_SUCCESS;
393}
394
395
396/**
397 * The VM is being reset.
398 *
399 * For the REM component this means to call the cpu_reset() and
400 * reinitialize some state variables.
401 *
402 * @param pVM VM handle.
403 */
404REMR3DECL(void) REMR3Reset(PVM pVM)
405{
406 pVM->rem.s.fIgnoreCR3Load = true;
407 pVM->rem.s.fIgnoreInvlPg = true;
408 pVM->rem.s.fIgnoreCpuMode = true;
409
410 /*
411 * Reset the REM cpu.
412 */
413 cpu_reset(&pVM->rem.s.Env);
414 pVM->rem.s.cInvalidatedPages = 0;
415
416 pVM->rem.s.fIgnoreCR3Load = false;
417 pVM->rem.s.fIgnoreInvlPg = false;
418 pVM->rem.s.fIgnoreCpuMode = false;
419}
420
421
422/**
423 * Execute state save operation.
424 *
425 * @returns VBox status code.
426 * @param pVM VM Handle.
427 * @param pSSM SSM operation handle.
428 */
429static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
430{
431 LogFlow(("remR3Save:\n"));
432
433 /*
434 * Save the required CPU Env bits.
435 * (Not much because we're never in REM when doing the save.)
436 */
437 PREM pRem = &pVM->rem.s;
438 Assert(!pRem->fInREM);
439 SSMR3PutU32(pSSM, pRem->Env.hflags);
440 SSMR3PutMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
441 SSMR3PutU32(pSSM, ~0); /* separator */
442
443 /*
444 * Save the REM stuff.
445 */
446 SSMR3PutUInt(pSSM, pRem->cInvalidatedPages);
447 unsigned i;
448 for (i = 0; i < pRem->cInvalidatedPages; i++)
449 SSMR3PutGCPtr(pSSM, pRem->aGCPtrInvalidatedPages[i]);
450
451 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
452
453 return SSMR3PutU32(pSSM, ~0); /* terminator */
454}
455
456
457/**
458 * Execute state load operation.
459 *
460 * @returns VBox status code.
461 * @param pVM VM Handle.
462 * @param pSSM SSM operation handle.
463 * @param u32Version Data layout version.
464 */
465static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
466{
467 uint32_t u32Dummy;
468 LogFlow(("remR3Load:\n"));
469
470 /*
471 * Validate version.
472 */
473 if (u32Version != REM_SAVED_STATE_VERSION)
474 {
475 Log(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
476 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
477 }
478
479 /*
480 * Do a reset to be on the safe side...
481 */
482 REMR3Reset(pVM);
483
484 /*
485 * Ignore all ignorable notifications.
486 * Not doing this will cause big trouble.
487 */
488 pVM->rem.s.fIgnoreCR3Load = true;
489 pVM->rem.s.fIgnoreInvlPg = true;
490 pVM->rem.s.fIgnoreCpuMode = true;
491
492 /*
493 * Load the required CPU Env bits.
494 * (Not much because we're never in REM when doing the save.)
495 */
496 PREM pRem = &pVM->rem.s;
497 Assert(!pRem->fInREM);
498 SSMR3GetU32(pSSM, &pRem->Env.hflags);
499 SSMR3GetMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
500 uint32_t u32Sep;
501 int rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
502 if (VBOX_FAILURE(rc))
503 return rc;
504 if (u32Sep != ~0)
505 {
506 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
507 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
508 }
509
510 /*
511 * Load the REM stuff.
512 */
513 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
514 if (VBOX_FAILURE(rc))
515 return rc;
516 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
517 {
518 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
519 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
520 }
521 unsigned i;
522 for (i = 0; i < pRem->cInvalidatedPages; i++)
523 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
524
525 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
526 if (VBOX_FAILURE(rc))
527 return rc;
528
529 /* check the terminator. */
530 rc = SSMR3GetU32(pSSM, &u32Sep);
531 if (VBOX_FAILURE(rc))
532 return rc;
533 if (u32Sep != ~0)
534 {
535 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
536 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
537 }
538
539 /*
540 * Get the CPUID features.
541 */
542 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
543
544 /*
545 * Sync the Load Flush the TLB
546 */
547 tlb_flush(&pRem->Env, 1);
548
549#if 0 /** @todo r=bird: this doesn't make sense. WHY? */
550 /*
551 * Clear all lazy flags (only FPU sync for now).
552 */
553 CPUMGetAndClearFPUUsedREM(pVM);
554#endif
555
556 /*
557 * Stop ignoring ignornable notifications.
558 */
559 pVM->rem.s.fIgnoreCpuMode = false;
560 pVM->rem.s.fIgnoreInvlPg = false;
561 pVM->rem.s.fIgnoreCR3Load = false;
562
563 return VINF_SUCCESS;
564}
565
566
567
568#undef LOG_GROUP
569#define LOG_GROUP LOG_GROUP_REM_RUN
570
571/**
572 * Single steps an instruction in recompiled mode.
573 *
574 * Before calling this function the REM state needs to be in sync with
575 * the VM. Call REMR3State() to perform the sync. It's only necessary
576 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
577 * and after calling REMR3StateBack().
578 *
579 * @returns VBox status code.
580 *
581 * @param pVM VM Handle.
582 */
583REMR3DECL(int) REMR3Step(PVM pVM)
584{
585 /*
586 * Lock the REM - we don't wanna have anyone interrupting us
587 * while stepping - and enabled single stepping. We also ignore
588 * pending interrupts and suchlike.
589 */
590 int interrupt_request = pVM->rem.s.Env.interrupt_request;
591 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
592 pVM->rem.s.Env.interrupt_request = 0;
593 cpu_single_step(&pVM->rem.s.Env, 1);
594
595 /*
596 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
597 */
598 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
599 bool fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
600
601 /*
602 * Execute and handle the return code.
603 * We execute without enabling the cpu tick, so on success we'll
604 * just flip it on and off to make sure it moves
605 */
606 int rc = cpu_exec(&pVM->rem.s.Env);
607 if (rc == EXCP_DEBUG)
608 {
609 TMCpuTickResume(pVM);
610 TMCpuTickPause(pVM);
611 TMVirtualResume(pVM);
612 TMVirtualPause(pVM);
613 rc = VINF_EM_DBG_STEPPED;
614 }
615 else
616 {
617 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
618 switch (rc)
619 {
620 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
621 case EXCP_HLT: rc = VINF_EM_HALT; break;
622 case EXCP_RC:
623 rc = pVM->rem.s.rc;
624 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
625 break;
626 default:
627 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
628 rc = VERR_INTERNAL_ERROR;
629 break;
630 }
631 }
632
633 /*
634 * Restore the stuff we changed to prevent interruption.
635 * Unlock the REM.
636 */
637 if (fBp)
638 {
639 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
640 Assert(rc2 == 0); NOREF(rc2);
641 }
642 cpu_single_step(&pVM->rem.s.Env, 0);
643 pVM->rem.s.Env.interrupt_request = interrupt_request;
644
645 return rc;
646}
647
648
649/**
650 * Set a breakpoint using the REM facilities.
651 *
652 * @returns VBox status code.
653 * @param pVM The VM handle.
654 * @param Address The breakpoint address.
655 * @thread The emulation thread.
656 */
657REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
658{
659 VM_ASSERT_EMT(pVM);
660 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
661 {
662 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
663 return VINF_SUCCESS;
664 }
665 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
666 return VERR_REM_NO_MORE_BP_SLOTS;
667}
668
669
670/**
671 * Clears a breakpoint set by REMR3BreakpointSet().
672 *
673 * @returns VBox status code.
674 * @param pVM The VM handle.
675 * @param Address The breakpoint address.
676 * @thread The emulation thread.
677 */
678REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
679{
680 VM_ASSERT_EMT(pVM);
681 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
682 {
683 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
684 return VINF_SUCCESS;
685 }
686 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
687 return VERR_REM_BP_NOT_FOUND;
688}
689
690
691/**
692 * Emulate an instruction.
693 *
694 * This function executes one instruction without letting anyone
695 * interrupt it. This is intended for being called while being in
696 * raw mode and thus will take care of all the state syncing between
697 * REM and the rest.
698 *
699 * @returns VBox status code.
700 * @param pVM VM handle.
701 */
702REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
703{
704 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
705
706 /*
707 * Sync the state and enable single instruction / single stepping.
708 */
709 int rc = REMR3State(pVM);
710 if (VBOX_SUCCESS(rc))
711 {
712 int interrupt_request = pVM->rem.s.Env.interrupt_request;
713 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
714 Assert(!pVM->rem.s.Env.singlestep_enabled);
715#if 1
716
717 /*
718 * Now we set the execute single instruction flag and enter the cpu_exec loop.
719 */
720 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
721 rc = cpu_exec(&pVM->rem.s.Env);
722 switch (rc)
723 {
724 /*
725 * Executed without anything out of the way happening.
726 */
727 case EXCP_SINGLE_INSTR:
728 rc = VINF_EM_RESCHEDULE;
729 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
730 break;
731
732 /*
733 * If we take a trap or start servicing a pending interrupt, we might end up here.
734 * (Timer thread or some other thread wishing EMT's attention.)
735 */
736 case EXCP_INTERRUPT:
737 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
738 rc = VINF_EM_RESCHEDULE;
739 break;
740
741 /*
742 * Single step, we assume!
743 * If there was a breakpoint there we're fucked now.
744 */
745 case EXCP_DEBUG:
746 {
747 /* breakpoint or single step? */
748 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
749 int iBP;
750 rc = VINF_EM_DBG_STEPPED;
751 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
752 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
753 {
754 rc = VINF_EM_DBG_BREAKPOINT;
755 break;
756 }
757 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
758 break;
759 }
760
761 /*
762 * hlt instruction.
763 */
764 case EXCP_HLT:
765 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
766 rc = VINF_EM_HALT;
767 break;
768
769 /*
770 * Switch to RAW-mode.
771 */
772 case EXCP_EXECUTE_RAW:
773 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
774 rc = VINF_EM_RESCHEDULE_RAW;
775 break;
776
777 /*
778 * Switch to hardware accelerated RAW-mode.
779 */
780 case EXCP_EXECUTE_HWACC:
781 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
782 rc = VINF_EM_RESCHEDULE_HWACC;
783 break;
784
785 /*
786 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
787 */
788 case EXCP_RC:
789 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
790 rc = pVM->rem.s.rc;
791 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
792 break;
793
794 /*
795 * Figure out the rest when they arrive....
796 */
797 default:
798 AssertMsgFailed(("rc=%d\n", rc));
799 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
800 rc = VINF_EM_RESCHEDULE;
801 break;
802 }
803
804 /*
805 * Switch back the state.
806 */
807#else
808 pVM->rem.s.Env.interrupt_request = 0;
809 cpu_single_step(&pVM->rem.s.Env, 1);
810
811 /*
812 * Execute and handle the return code.
813 * We execute without enabling the cpu tick, so on success we'll
814 * just flip it on and off to make sure it moves.
815 *
816 * (We do not use emulate_single_instr() because that doesn't enter the
817 * right way in will cause serious trouble if a longjmp was attempted.)
818 */
819 #ifdef DEBUG_bird
820 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
821 #endif
822 int cTimesMax = 16384;
823 uint32_t eip = pVM->rem.s.Env.eip;
824 do
825 {
826 rc = cpu_exec(&pVM->rem.s.Env);
827 } while ( eip == pVM->rem.s.Env.eip
828 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
829 && --cTimesMax > 0);
830 switch (rc)
831 {
832 /*
833 * Single step, we assume!
834 * If there was a breakpoint there we're fucked now.
835 */
836 case EXCP_DEBUG:
837 {
838 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
839 rc = VINF_EM_RESCHEDULE;
840 break;
841 }
842
843 /*
844 * We cannot be interrupted!
845 */
846 case EXCP_INTERRUPT:
847 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
848 rc = VERR_INTERNAL_ERROR;
849 break;
850
851 /*
852 * hlt instruction.
853 */
854 case EXCP_HLT:
855 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
856 rc = VINF_EM_HALT;
857 break;
858
859 /*
860 * Switch to RAW-mode.
861 */
862 case EXCP_EXECUTE_RAW:
863 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
864 rc = VINF_EM_RESCHEDULE_RAW;
865 break;
866
867 /*
868 * Switch to hardware accelerated RAW-mode.
869 */
870 case EXCP_EXECUTE_HWACC:
871 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
872 rc = VINF_EM_RESCHEDULE_HWACC;
873 break;
874
875 /*
876 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
877 */
878 case EXCP_RC:
879 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
880 rc = pVM->rem.s.rc;
881 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
882 break;
883
884 /*
885 * Figure out the rest when they arrive....
886 */
887 default:
888 AssertMsgFailed(("rc=%d\n", rc));
889 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
890 rc = VINF_SUCCESS;
891 break;
892 }
893
894 /*
895 * Switch back the state.
896 */
897 cpu_single_step(&pVM->rem.s.Env, 0);
898#endif
899 pVM->rem.s.Env.interrupt_request = interrupt_request;
900 int rc2 = REMR3StateBack(pVM);
901 AssertRC(rc2);
902 }
903
904 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%08x)\n",
905 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
906 return rc;
907}
908
909
910/**
911 * Runs code in recompiled mode.
912 *
913 * Before calling this function the REM state needs to be in sync with
914 * the VM. Call REMR3State() to perform the sync. It's only necessary
915 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
916 * and after calling REMR3StateBack().
917 *
918 * @returns VBox status code.
919 *
920 * @param pVM VM Handle.
921 */
922REMR3DECL(int) REMR3Run(PVM pVM)
923{
924 Log2(("REMR3Run: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
925 Assert(pVM->rem.s.fInREM);
926////Keyboard / tb stuff:
927//if ( pVM->rem.s.Env.segs[R_CS].selector == 0xf000
928// && pVM->rem.s.Env.eip >= 0xe860
929// && pVM->rem.s.Env.eip <= 0xe880)
930// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
931////A20:
932//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x9020
933// && pVM->rem.s.Env.eip >= 0x970
934// && pVM->rem.s.Env.eip <= 0x9a0)
935// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
936////Speaker (port 61h)
937//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x0010
938// && ( (pVM->rem.s.Env.eip >= 0x90278c10 && pVM->rem.s.Env.eip <= 0x90278c30)
939// || (pVM->rem.s.Env.eip >= 0x9010e250 && pVM->rem.s.Env.eip <= 0x9010e260)
940// )
941// )
942// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
943//DBGFR3InfoLog(pVM, "timers", NULL);
944
945
946 int rc = cpu_exec(&pVM->rem.s.Env);
947 switch (rc)
948 {
949 /*
950 * This happens when the execution was interrupted
951 * by an external event, like pending timers.
952 */
953 case EXCP_INTERRUPT:
954 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
955 rc = VINF_SUCCESS;
956 break;
957
958 /*
959 * hlt instruction.
960 */
961 case EXCP_HLT:
962 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
963 rc = VINF_EM_HALT;
964 break;
965
966 /*
967 * Breakpoint/single step.
968 */
969 case EXCP_DEBUG:
970 {
971#if 0//def DEBUG_bird
972 static int iBP = 0;
973 printf("howdy, breakpoint! iBP=%d\n", iBP);
974 switch (iBP)
975 {
976 case 0:
977 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
978 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
979 //pVM->rem.s.Env.interrupt_request = 0;
980 //pVM->rem.s.Env.exception_index = -1;
981 //g_fInterruptDisabled = 1;
982 rc = VINF_SUCCESS;
983 asm("int3");
984 break;
985 default:
986 asm("int3");
987 break;
988 }
989 iBP++;
990#else
991 /* breakpoint or single step? */
992 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
993 int iBP;
994 rc = VINF_EM_DBG_STEPPED;
995 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
996 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
997 {
998 rc = VINF_EM_DBG_BREAKPOINT;
999 break;
1000 }
1001 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1002#endif
1003 break;
1004 }
1005
1006 /*
1007 * Switch to RAW-mode.
1008 */
1009 case EXCP_EXECUTE_RAW:
1010 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1011 rc = VINF_EM_RESCHEDULE_RAW;
1012 break;
1013
1014 /*
1015 * Switch to hardware accelerated RAW-mode.
1016 */
1017 case EXCP_EXECUTE_HWACC:
1018 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1019 rc = VINF_EM_RESCHEDULE_HWACC;
1020 break;
1021
1022 /*
1023 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
1024 */
1025 case EXCP_RC:
1026 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1027 rc = pVM->rem.s.rc;
1028 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1029 break;
1030
1031 /*
1032 * Figure out the rest when they arrive....
1033 */
1034 default:
1035 AssertMsgFailed(("rc=%d\n", rc));
1036 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1037 rc = VINF_SUCCESS;
1038 break;
1039 }
1040
1041 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%08x)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1042 return rc;
1043}
1044
1045
1046/**
1047 * Check if the cpu state is suitable for Raw execution.
1048 *
1049 * @returns boolean
1050 * @param env The CPU env struct.
1051 * @param eip The EIP to check this for (might differ from env->eip).
1052 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1053 * @param pExceptionIndex Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1054 *
1055 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1056 */
1057bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, uint32_t *pExceptionIndex)
1058{
1059 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1060 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1061 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1062
1063 /* Update counter. */
1064 env->pVM->rem.s.cCanExecuteRaw++;
1065
1066 if (HWACCMIsEnabled(env->pVM))
1067 {
1068 env->state |= CPU_RAW_HWACC;
1069
1070 /*
1071 * Create partial context for HWACCMR3CanExecuteGuest
1072 */
1073 CPUMCTX Ctx;
1074 Ctx.cr0 = env->cr[0];
1075 Ctx.cr3 = env->cr[3];
1076 Ctx.cr4 = env->cr[4];
1077
1078 Ctx.tr = env->tr.selector;
1079 Ctx.trHid.u32Base = (uint32_t)env->tr.base;
1080 Ctx.trHid.u32Limit = env->tr.limit;
1081 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1082
1083 Ctx.idtr.cbIdt = env->idt.limit;
1084 Ctx.idtr.pIdt = (uint32_t)env->idt.base;
1085
1086 Ctx.eflags.u32 = env->eflags;
1087
1088 Ctx.cs = env->segs[R_CS].selector;
1089 Ctx.csHid.u32Base = (uint32_t)env->segs[R_CS].base;
1090 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1091 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1092
1093 Ctx.ss = env->segs[R_SS].selector;
1094 Ctx.ssHid.u32Base = (uint32_t)env->segs[R_SS].base;
1095 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1096 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1097
1098 /* Hardware accelerated raw-mode:
1099 *
1100 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1101 */
1102 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1103 {
1104 *pExceptionIndex = EXCP_EXECUTE_HWACC;
1105 return true;
1106 }
1107 return false;
1108 }
1109
1110 /*
1111 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1112 * or 32 bits protected mode ring 0 code
1113 *
1114 * The tests are ordered by the likelyhood of being true during normal execution.
1115 */
1116 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1117 {
1118 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1119 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1120 return false;
1121 }
1122
1123#ifndef VBOX_RAW_V86
1124 if (fFlags & VM_MASK) {
1125 STAM_COUNTER_INC(&gStatRefuseVM86);
1126 Log2(("raw mode refused: VM_MASK\n"));
1127 return false;
1128 }
1129#endif
1130
1131 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1132 {
1133#ifndef DEBUG_bird
1134 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1135#endif
1136 return false;
1137 }
1138
1139 if (env->singlestep_enabled)
1140 {
1141 //Log2(("raw mode refused: Single step\n"));
1142 return false;
1143 }
1144
1145 if (env->nb_breakpoints > 0)
1146 {
1147 //Log2(("raw mode refused: Breakpoints\n"));
1148 return false;
1149 }
1150
1151 uint32_t u32CR0 = env->cr[0];
1152 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1153 {
1154 STAM_COUNTER_INC(&gStatRefusePaging);
1155 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1156 return false;
1157 }
1158
1159 if (env->cr[4] & CR4_PAE_MASK)
1160 {
1161 STAM_COUNTER_INC(&gStatRefusePAE);
1162 //Log2(("raw mode refused: PAE\n"));
1163 return false;
1164 }
1165
1166 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1167 {
1168 if (!EMIsRawRing3Enabled(env->pVM))
1169 return false;
1170
1171 if (!(env->eflags & IF_MASK))
1172 {
1173#ifdef VBOX_RAW_V86
1174 if(!(fFlags & VM_MASK))
1175 return false;
1176#else
1177 STAM_COUNTER_INC(&gStatRefuseIF0);
1178 Log2(("raw mode refused: IF (RawR3)\n"));
1179 return false;
1180#endif
1181 }
1182
1183 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1184 {
1185 STAM_COUNTER_INC(&gStatRefuseWP0);
1186 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1187 return false;
1188 }
1189 }
1190 else
1191 {
1192 if (!EMIsRawRing0Enabled(env->pVM))
1193 return false;
1194
1195 // Let's start with pure 32 bits ring 0 code first
1196 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1197 {
1198 STAM_COUNTER_INC(&gStatRefuseCode16);
1199 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1200 return false;
1201 }
1202
1203 // Only R0
1204 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1205 {
1206 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1207 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1208 return false;
1209 }
1210
1211 if (!(u32CR0 & CR0_WP_MASK))
1212 {
1213 STAM_COUNTER_INC(&gStatRefuseWP0);
1214 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1215 return false;
1216 }
1217
1218 if (PATMIsPatchGCAddr(env->pVM, eip))
1219 {
1220 Log2(("raw r0 mode forced: patch code\n"));
1221 *pExceptionIndex = EXCP_EXECUTE_RAW;
1222 return true;
1223 }
1224
1225#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1226 if (!(env->eflags & IF_MASK))
1227 {
1228 STAM_COUNTER_INC(&gStatRefuseIF0);
1229 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1230 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1231 return false;
1232 }
1233#endif
1234
1235 env->state |= CPU_RAW_RING0;
1236 }
1237
1238 /*
1239 * Don't reschedule the first time we're called, because there might be
1240 * special reasons why we're here that is not covered by the above checks.
1241 */
1242 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1243 {
1244 Log2(("raw mode refused: first scheduling\n"));
1245 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1246 return false;
1247 }
1248
1249 Assert(PGMPhysIsA20Enabled(env->pVM));
1250 *pExceptionIndex = EXCP_EXECUTE_RAW;
1251 return true;
1252}
1253
1254
1255/**
1256 * Fetches a code byte.
1257 *
1258 * @returns Success indicator (bool) for ease of use.
1259 * @param env The CPU environment structure.
1260 * @param GCPtrInstr Where to fetch code.
1261 * @param pu8Byte Where to store the byte on success
1262 */
1263bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1264{
1265 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1266 if (VBOX_SUCCESS(rc))
1267 return true;
1268 return false;
1269}
1270
1271
1272/**
1273 * Flush (or invalidate if you like) page table/dir entry.
1274 *
1275 * (invlpg instruction; tlb_flush_page)
1276 *
1277 * @param env Pointer to cpu environment.
1278 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1279 */
1280void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1281{
1282 PVM pVM = env->pVM;
1283
1284 /*
1285 * When we're replaying invlpg instructions or restoring a saved
1286 * state we disable this path.
1287 */
1288 if (pVM->rem.s.fIgnoreInvlPg)
1289 return;
1290 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1291
1292 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1293
1294 /*
1295 * Update the control registers before calling PGMFlushPage.
1296 */
1297 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1298 pCtx->cr0 = env->cr[0];
1299 pCtx->cr3 = env->cr[3];
1300 pCtx->cr4 = env->cr[4];
1301
1302 /*
1303 * Let PGM do the rest.
1304 */
1305 int rc = PGMInvalidatePage(pVM, GCPtr);
1306 if (VBOX_FAILURE(rc))
1307 {
1308 AssertMsgFailed(("remR3FlushPage %x %x %x %d failed!!\n", GCPtr));
1309 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1310 }
1311 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1312}
1313
1314/**
1315 * Set page table/dir entry. (called from tlb_set_page)
1316 *
1317 * @param env Pointer to cpu environment.
1318 */
1319void remR3SetPage(CPUState *env, CPUTLBEntry *pRead, CPUTLBEntry *pWrite, int prot, int is_user)
1320{
1321 uint32_t virt_addr, addend;
1322
1323 Log2(("tlb_set_page_raw read (%x-%x) write (%x-%x) prot %x is_user %d\n", pRead->address, pRead->addend, pWrite->address, pWrite->addend, prot, is_user));
1324
1325 if (prot & PAGE_WRITE)
1326 {
1327 addend = pWrite->addend;
1328 virt_addr = pWrite->address;
1329 }
1330 else
1331 if (prot & PAGE_READ)
1332 {
1333 addend = pRead->addend;
1334 virt_addr = pRead->address;
1335 }
1336 else
1337 {
1338 // Should never happen!
1339 AssertMsgFailed(("tlb_set_page_raw unexpected protection flags %x\n", prot));
1340 return;
1341 }
1342
1343 // Clear IO_* flags (TODO: are they actually useful for us??)
1344 virt_addr &= ~0xFFF;
1345
1346 /*
1347 * Update the control registers before calling PGMFlushPage.
1348 */
1349 PCPUMCTX pCtx = (PCPUMCTX)env->pVM->rem.s.pCtx;
1350 pCtx->cr0 = env->cr[0];
1351 pCtx->cr3 = env->cr[3];
1352 pCtx->cr4 = env->cr[4];
1353
1354 /*
1355 * Let PGM do the rest.
1356 */
1357 int rc = PGMInvalidatePage(env->pVM, (RTGCPTR)virt_addr);
1358 if (VBOX_FAILURE(rc))
1359 {
1360 AssertMsgFailed(("RAWEx_SetPageEntry %x %x %d failed!!\n", virt_addr, prot, is_user));
1361 VM_FF_SET(env->pVM, VM_FF_PGM_SYNC_CR3);
1362 }
1363}
1364
1365/**
1366 * Called from tlb_protect_code in order to write monitor a code page.
1367 *
1368 * @param env Pointer to the CPU environment.
1369 * @param GCPtr Code page to monitor
1370 */
1371void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1372{
1373 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1374 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1375 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1376 && !(env->eflags & VM_MASK) /* no V86 mode */
1377 && !HWACCMIsEnabled(env->pVM))
1378 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1379}
1380
1381/**
1382 * Called when the CPU is initialized, any of the CRx registers are changed or
1383 * when the A20 line is modified.
1384 *
1385 * @param env Pointer to the CPU environment.
1386 * @param fGlobal Set if the flush is global.
1387 */
1388void remR3FlushTLB(CPUState *env, bool fGlobal)
1389{
1390 PVM pVM = env->pVM;
1391
1392 /*
1393 * When we're replaying invlpg instructions or restoring a saved
1394 * state we disable this path.
1395 */
1396 if (pVM->rem.s.fIgnoreCR3Load)
1397 return;
1398
1399 /*
1400 * The caller doesn't check cr4, so we have to do that for ourselves.
1401 */
1402 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1403 fGlobal = true;
1404 Log(("remR3FlushTLB: CR0=%VGp CR3=%VGp CR4=%VGp %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1405
1406 /*
1407 * Update the control registers before calling PGMR3FlushTLB.
1408 */
1409 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1410 pCtx->cr0 = env->cr[0];
1411 pCtx->cr3 = env->cr[3];
1412 pCtx->cr4 = env->cr[4];
1413
1414 /*
1415 * Let PGM do the rest.
1416 */
1417 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1418}
1419
1420
1421/**
1422 * Called when any of the cr0, cr4 or efer registers is updated.
1423 *
1424 * @param env Pointer to the CPU environment.
1425 */
1426void remR3ChangeCpuMode(CPUState *env)
1427{
1428 int rc;
1429 PVM pVM = env->pVM;
1430
1431 /*
1432 * When we're replaying loads or restoring a saved
1433 * state this path is disabled.
1434 */
1435 if (pVM->rem.s.fIgnoreCpuMode)
1436 return;
1437
1438 /*
1439 * Update the control registers before calling PGMR3ChangeMode()
1440 * as it may need to map whatever cr3 is pointing to.
1441 */
1442 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1443 pCtx->cr0 = env->cr[0];
1444 pCtx->cr3 = env->cr[3];
1445 pCtx->cr4 = env->cr[4];
1446
1447#ifdef TARGET_X86_64
1448 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1449 if (rc != VINF_SUCCESS)
1450 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1451#else
1452 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1453 if (rc != VINF_SUCCESS)
1454 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1455#endif
1456}
1457
1458
1459/**
1460 * Called from compiled code to run dma.
1461 *
1462 * @param env Pointer to the CPU environment.
1463 */
1464void remR3DmaRun(CPUState *env)
1465{
1466 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1467 PDMR3DmaRun(env->pVM);
1468 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1469}
1470
1471/**
1472 * Called from compiled code to schedule pending timers in VMM
1473 *
1474 * @param env Pointer to the CPU environment.
1475 */
1476void remR3TimersRun(CPUState *env)
1477{
1478 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1479 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1480 TMR3TimerQueuesDo(env->pVM);
1481 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1482 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1483}
1484
1485/**
1486 * Record trap occurance
1487 *
1488 * @returns VBox status code
1489 * @param env Pointer to the CPU environment.
1490 * @param uTrap Trap nr
1491 * @param uErrorCode Error code
1492 * @param pvNextEIP Next EIP
1493 */
1494int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1495{
1496 PVM pVM = (PVM)env->pVM;
1497#ifdef VBOX_WITH_STATISTICS
1498 static STAMCOUNTER aStatTrap[255];
1499 static bool aRegisters[ELEMENTS(aStatTrap)];
1500#endif
1501
1502#ifdef VBOX_WITH_STATISTICS
1503 if (uTrap < 255)
1504 {
1505 if (!aRegisters[uTrap])
1506 {
1507 aRegisters[uTrap] = true;
1508 char szStatName[64];
1509 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1510 STAM_REG(env->pVM, &aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1511 }
1512 STAM_COUNTER_INC(&aStatTrap[uTrap]);
1513 }
1514#endif
1515 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1516 if(uTrap < 0x20)
1517 {
1518 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1519
1520 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 128)
1521 {
1522 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1523 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1524 return VERR_REM_TOO_MANY_TRAPS;
1525 }
1526 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1527 pVM->rem.s.cPendingExceptions = 1;
1528 pVM->rem.s.uPendingException = uTrap;
1529 pVM->rem.s.uPendingExcptEIP = env->eip;
1530 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1531 }
1532 else
1533 {
1534 pVM->rem.s.cPendingExceptions = 0;
1535 pVM->rem.s.uPendingException = uTrap;
1536 pVM->rem.s.uPendingExcptEIP = env->eip;
1537 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1538 }
1539 return VINF_SUCCESS;
1540}
1541
1542/*
1543 * Clear current active trap
1544 *
1545 * @param pVM VM Handle.
1546 */
1547void remR3TrapClear(PVM pVM)
1548{
1549 pVM->rem.s.cPendingExceptions = 0;
1550 pVM->rem.s.uPendingException = 0;
1551 pVM->rem.s.uPendingExcptEIP = 0;
1552 pVM->rem.s.uPendingExcptCR2 = 0;
1553}
1554
1555
1556/**
1557 * Syncs the internal REM state with the VM.
1558 *
1559 * This must be called before REMR3Run() is invoked whenever when the REM
1560 * state is not up to date. Calling it several times in a row is not
1561 * permitted.
1562 *
1563 * @returns VBox status code.
1564 *
1565 * @param pVM VM Handle.
1566 *
1567 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1568 * no do this since the majority of the callers don't want any unnecessary of events
1569 * pending that would immediatly interrupt execution.
1570 */
1571REMR3DECL(int) REMR3State(PVM pVM)
1572{
1573 Assert(!pVM->rem.s.fInREM);
1574 Log2(("REMR3State:\n"));
1575 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1576 register const CPUMCTX *pCtx = pVM->rem.s.pCtx;
1577 register unsigned fFlags;
1578
1579 /*
1580 * Copy the registers which requires no special handling.
1581 */
1582 Assert(R_EAX == 0);
1583 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1584 Assert(R_ECX == 1);
1585 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1586 Assert(R_EDX == 2);
1587 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1588 Assert(R_EBX == 3);
1589 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1590 Assert(R_ESP == 4);
1591 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1592 Assert(R_EBP == 5);
1593 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1594 Assert(R_ESI == 6);
1595 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1596 Assert(R_EDI == 7);
1597 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1598 pVM->rem.s.Env.eip = pCtx->eip;
1599
1600 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1601
1602 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1603
1604 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1605 pVM->rem.s.Env.dr[0] = pCtx->dr0;
1606 pVM->rem.s.Env.dr[1] = pCtx->dr1;
1607 pVM->rem.s.Env.dr[2] = pCtx->dr2;
1608 pVM->rem.s.Env.dr[3] = pCtx->dr3;
1609 pVM->rem.s.Env.dr[4] = pCtx->dr4;
1610 pVM->rem.s.Env.dr[5] = pCtx->dr5;
1611 pVM->rem.s.Env.dr[6] = pCtx->dr6;
1612 pVM->rem.s.Env.dr[7] = pCtx->dr7;
1613
1614 /*
1615 * Replay invlpg?
1616 */
1617 if (pVM->rem.s.cInvalidatedPages)
1618 {
1619 pVM->rem.s.fIgnoreInvlPg = true;
1620 RTUINT i;
1621 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1622 {
1623 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1624 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1625 }
1626 pVM->rem.s.fIgnoreInvlPg = false;
1627 pVM->rem.s.cInvalidatedPages = 0;
1628 }
1629
1630 /*
1631 * Registers which are seldomly changed and require special handling / order when changed.
1632 */
1633 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1634 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1635 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1636 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR))
1637 {
1638 if (fFlags & CPUM_CHANGED_FPU_REM)
1639 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1640
1641 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1642 {
1643 pVM->rem.s.fIgnoreCR3Load = true;
1644 tlb_flush(&pVM->rem.s.Env, true);
1645 pVM->rem.s.fIgnoreCR3Load = false;
1646 }
1647
1648 if (fFlags & CPUM_CHANGED_CR4)
1649 {
1650 pVM->rem.s.fIgnoreCR3Load = true;
1651 pVM->rem.s.fIgnoreCpuMode = true;
1652 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1653 pVM->rem.s.fIgnoreCpuMode = false;
1654 pVM->rem.s.fIgnoreCR3Load = false;
1655 }
1656
1657 if (fFlags & CPUM_CHANGED_CR0)
1658 {
1659 pVM->rem.s.fIgnoreCR3Load = true;
1660 pVM->rem.s.fIgnoreCpuMode = true;
1661 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1662 pVM->rem.s.fIgnoreCpuMode = false;
1663 pVM->rem.s.fIgnoreCR3Load = false;
1664 }
1665
1666 if (fFlags & CPUM_CHANGED_CR3)
1667 {
1668 pVM->rem.s.fIgnoreCR3Load = true;
1669 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1670 pVM->rem.s.fIgnoreCR3Load = false;
1671 }
1672
1673 if (fFlags & CPUM_CHANGED_GDTR)
1674 {
1675 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1676 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1677 }
1678
1679 if (fFlags & CPUM_CHANGED_IDTR)
1680 {
1681 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1682 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1683 }
1684
1685 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1686 {
1687 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1688 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1689 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1690 }
1691
1692 if (fFlags & CPUM_CHANGED_LDTR)
1693 {
1694 if (fFlags & CPUM_CHANGED_HIDDEN_SEL_REGS)
1695 {
1696 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1697 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u32Base;
1698 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1699 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1700 }
1701 else
1702 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1703 }
1704
1705 if (fFlags & CPUM_CHANGED_TR)
1706 {
1707 if (fFlags & CPUM_CHANGED_HIDDEN_SEL_REGS)
1708 {
1709 pVM->rem.s.Env.tr.selector = pCtx->tr;
1710 pVM->rem.s.Env.tr.base = pCtx->trHid.u32Base;
1711 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1712 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1713 }
1714 else
1715 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1716
1717 /** @note do_interrupt will fault if the busy flag is still set.... */
1718 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1719 }
1720 }
1721
1722 /*
1723 * Update selector registers.
1724 * This must be done *after* we've synced gdt, ldt and crX registers
1725 * since we're reading the GDT/LDT om sync_seg. This will happen with
1726 * saved state which takes a quick dip into rawmode for instance.
1727 */
1728 /*
1729 * Stack; Note first check this one as the CPL might have changed. The
1730 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1731 */
1732
1733 if (fFlags & CPUM_CHANGED_HIDDEN_SEL_REGS)
1734 {
1735 /* The hidden selector registers are valid in the CPU context. */
1736 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1737
1738 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u32Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1739 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u32Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1740 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u32Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1741 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u32Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1742 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u32Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1743 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u32Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1744
1745 /* Set current CPL. */
1746 if (pCtx->eflags.Bits.u1VM == 1)
1747 cpu_x86_set_cpl(&pVM->rem.s.Env, 3);
1748 else
1749 cpu_x86_set_cpl(&pVM->rem.s.Env, pCtx->ss & 3);
1750 }
1751 else
1752 {
1753 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1754 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1755 {
1756 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1757 if (pCtx->eflags.Bits.u1VM == 1)
1758 {
1759 cpu_x86_set_cpl(&pVM->rem.s.Env, 3);
1760 pVM->rem.s.Env.segs[R_SS].selector = (uint16_t)pCtx->ss;
1761 }
1762 else
1763 {
1764 cpu_x86_set_cpl(&pVM->rem.s.Env, pCtx->ss & 3);
1765 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1766#ifdef VBOX_WITH_STATISTICS
1767 if (pVM->rem.s.Env.segs[R_SS].newselector)
1768 {
1769 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1770 }
1771#endif
1772 }
1773 }
1774 else
1775 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1776
1777 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1778 {
1779 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1780 if (pCtx->eflags.Bits.u1VM == 1)
1781 {
1782 pVM->rem.s.Env.segs[R_ES].selector = (uint16_t)pCtx->es;
1783 }
1784 else
1785 {
1786 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1787#ifdef VBOX_WITH_STATISTICS
1788 if (pVM->rem.s.Env.segs[R_ES].newselector)
1789 {
1790 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1791 }
1792#endif
1793 }
1794 }
1795 else
1796 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1797
1798 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1799 {
1800 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1801 if (pCtx->eflags.Bits.u1VM == 1)
1802 {
1803 pVM->rem.s.Env.segs[R_CS].selector = (uint16_t)pCtx->cs;
1804 }
1805 else
1806 {
1807 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1808#ifdef VBOX_WITH_STATISTICS
1809 if (pVM->rem.s.Env.segs[R_CS].newselector)
1810 {
1811 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1812 }
1813#endif
1814 }
1815 }
1816 else
1817 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1818
1819 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1820 {
1821 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1822 if (pCtx->eflags.Bits.u1VM == 1)
1823 {
1824 pVM->rem.s.Env.segs[R_DS].selector = (uint16_t)pCtx->ds;
1825 }
1826 else
1827 {
1828 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1829#ifdef VBOX_WITH_STATISTICS
1830 if (pVM->rem.s.Env.segs[R_DS].newselector)
1831 {
1832 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1833 }
1834#endif
1835 }
1836 }
1837 else
1838 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1839
1840 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1841 * be the same but not the base/limit. */
1842 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1843 {
1844 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1845 if (pCtx->eflags.Bits.u1VM == 1)
1846 {
1847 pVM->rem.s.Env.segs[R_FS].selector = (uint16_t)pCtx->fs;
1848 }
1849 else
1850 {
1851 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1852#ifdef VBOX_WITH_STATISTICS
1853 if (pVM->rem.s.Env.segs[R_FS].newselector)
1854 {
1855 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1856 }
1857#endif
1858 }
1859 }
1860 else
1861 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1862
1863 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1864 {
1865 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1866 if (pCtx->eflags.Bits.u1VM == 1)
1867 {
1868 pVM->rem.s.Env.segs[R_GS].selector = (uint16_t)pCtx->gs;
1869 }
1870 else
1871 {
1872 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1873#ifdef VBOX_WITH_STATISTICS
1874 if (pVM->rem.s.Env.segs[R_GS].newselector)
1875 {
1876 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1877 }
1878#endif
1879 }
1880 }
1881 else
1882 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1883 }
1884
1885 /*
1886 * Check for traps.
1887 */
1888 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1889 bool fIsSoftwareInterrupt;
1890 uint8_t u8TrapNo;
1891 int rc = TRPMQueryTrap(pVM, &u8TrapNo, &fIsSoftwareInterrupt);
1892 if (VBOX_SUCCESS(rc))
1893 {
1894 #ifdef DEBUG
1895 if (u8TrapNo == 0x80)
1896 {
1897 remR3DumpLnxSyscall(pVM);
1898 remR3DumpOBsdSyscall(pVM);
1899 }
1900 #endif
1901
1902 pVM->rem.s.Env.exception_index = u8TrapNo;
1903 if (!fIsSoftwareInterrupt)
1904 {
1905 pVM->rem.s.Env.exception_is_int = 0;
1906 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
1907 }
1908 else
1909 {
1910 /*
1911 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
1912 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
1913 * for int03 and into.
1914 */
1915 pVM->rem.s.Env.exception_is_int = 1;
1916 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 2;
1917 /* int 3 may be generated by one-byte 0xcc */
1918 if (u8TrapNo == 3)
1919 {
1920 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xcc)
1921 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1922 }
1923 /* int 4 may be generated by one-byte 0xce */
1924 else if (u8TrapNo == 4)
1925 {
1926 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xce)
1927 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1928 }
1929 }
1930
1931 /* get error code and cr2 if needed. */
1932 switch (u8TrapNo)
1933 {
1934 case 0x0e:
1935 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
1936 /* fallthru */
1937 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
1938 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
1939 break;
1940
1941 case 0x11: case 0x08:
1942 default:
1943 pVM->rem.s.Env.error_code = 0;
1944 break;
1945 }
1946
1947 /*
1948 * We can now reset the active trap since the recompiler is gonna have a go at it.
1949 */
1950 rc = TRPMResetTrap(pVM);
1951 AssertRC(rc);
1952 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
1953 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
1954//if (pVM->rem.s.Env.eip == 0x40005a2f)
1955// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP | CPU_RAW_MODE_DISABLED | CPU_RAWR0_MODE_DISABLED;
1956 }
1957
1958 /*
1959 * Clear old interrupt request flags; Check for pending hardware interrupts.
1960 * (See @remark for why we don't check for other FFs.)
1961 */
1962 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
1963 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
1964 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
1965 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
1966
1967 /*
1968 * We're now in REM mode.
1969 */
1970 pVM->rem.s.fInREM = true;
1971 pVM->rem.s.cCanExecuteRaw = 0;
1972 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
1973 Log2(("REMR3State: returns VINF_SUCCESS\n"));
1974 return VINF_SUCCESS;
1975}
1976
1977
1978/**
1979 * Syncs back changes in the REM state to the the VM state.
1980 *
1981 * This must be called after invoking REMR3Run().
1982 * Calling it several times in a row is not permitted.
1983 *
1984 * @returns VBox status code.
1985 *
1986 * @param pVM VM Handle.
1987 */
1988REMR3DECL(int) REMR3StateBack(PVM pVM)
1989{
1990 Log2(("REMR3StateBack:\n"));
1991 Assert(pVM->rem.s.fInREM);
1992 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
1993 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
1994
1995 /*
1996 * Copy back the registers.
1997 * This is done in the order they are declared in the CPUMCTX structure.
1998 */
1999
2000 /** @todo FOP */
2001 /** @todo FPUIP */
2002 /** @todo CS */
2003 /** @todo FPUDP */
2004 /** @todo DS */
2005 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2006 pCtx->fpu.MXCSR = 0;
2007 pCtx->fpu.MXCSR_MASK = 0;
2008
2009 /** @todo check if FPU/XMM was actually used in the recompiler */
2010 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2011//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2012
2013 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2014 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2015 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2016 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2017 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2018 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2019 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2020
2021 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2022 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2023
2024#ifdef VBOX_WITH_STATISTICS
2025 if (pVM->rem.s.Env.segs[R_SS].newselector)
2026 {
2027 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2028 }
2029 if (pVM->rem.s.Env.segs[R_GS].newselector)
2030 {
2031 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2032 }
2033 if (pVM->rem.s.Env.segs[R_FS].newselector)
2034 {
2035 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2036 }
2037 if (pVM->rem.s.Env.segs[R_ES].newselector)
2038 {
2039 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2040 }
2041 if (pVM->rem.s.Env.segs[R_DS].newselector)
2042 {
2043 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2044 }
2045 if (pVM->rem.s.Env.segs[R_CS].newselector)
2046 {
2047 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2048 }
2049#endif
2050 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2051 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2052 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2053 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2054 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2055
2056 pCtx->eip = pVM->rem.s.Env.eip;
2057 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2058
2059 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2060 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2061 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2062 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2063
2064 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2065 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2066 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2067 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2068 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2069 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2070 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2071 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2072
2073 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2074 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2075 {
2076 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2077 STAM_COUNTER_INC(&gStatREMGDTChange);
2078 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2079 }
2080
2081 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2082 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2083 {
2084 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2085 STAM_COUNTER_INC(&gStatREMIDTChange);
2086 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2087 }
2088
2089 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2090 {
2091 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2092 STAM_COUNTER_INC(&gStatREMLDTRChange);
2093 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2094 }
2095 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2096 {
2097 pCtx->tr = pVM->rem.s.Env.tr.selector;
2098 STAM_COUNTER_INC(&gStatREMTRChange);
2099 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2100 }
2101
2102 /** @todo These values could still be out of sync! */
2103 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2104 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2105 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2106 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2107
2108 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2109 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2110 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2111
2112 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2113 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2114 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2115
2116 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2117 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2118 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2119
2120 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2121 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2122 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2123
2124 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2125 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2126 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2127
2128 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2129 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2130 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2131
2132 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2133 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2134 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2135
2136 /* Sysenter MSR */
2137 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2138 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2139 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2140
2141 remR3TrapClear(pVM);
2142
2143 /*
2144 * Check for traps.
2145 */
2146 if ( pVM->rem.s.Env.exception_index >= 0
2147 && pVM->rem.s.Env.exception_index < 256)
2148 {
2149 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2150 int rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int);
2151 AssertRC(rc);
2152 switch (pVM->rem.s.Env.exception_index)
2153 {
2154 case 0x0e:
2155 TRPMSetFaultAddress(pVM, pCtx->cr2);
2156 /* fallthru */
2157 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2158 case 0x11: case 0x08: /* 0 */
2159 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2160 break;
2161 }
2162
2163 }
2164
2165 /*
2166 * We're not longer in REM mode.
2167 */
2168 pVM->rem.s.fInREM = false;
2169 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2170 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2171 return VINF_SUCCESS;
2172}
2173
2174
2175/**
2176 * This is called by the disassembler when it wants to update the cpu state
2177 * before for instance doing a register dump.
2178 */
2179static void remR3StateUpdate(PVM pVM)
2180{
2181 Assert(pVM->rem.s.fInREM);
2182 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2183
2184 /*
2185 * Copy back the registers.
2186 * This is done in the order they are declared in the CPUMCTX structure.
2187 */
2188
2189 /** @todo FOP */
2190 /** @todo FPUIP */
2191 /** @todo CS */
2192 /** @todo FPUDP */
2193 /** @todo DS */
2194 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2195 pCtx->fpu.MXCSR = 0;
2196 pCtx->fpu.MXCSR_MASK = 0;
2197
2198 /** @todo check if FPU/XMM was actually used in the recompiler */
2199 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2200//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2201
2202 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2203 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2204 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2205 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2206 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2207 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2208 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2209
2210 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2211 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2212
2213 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2214 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2215 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2216 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2217 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2218
2219 pCtx->eip = pVM->rem.s.Env.eip;
2220 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2221
2222 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2223 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2224 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2225 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2226
2227 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2228 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2229 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2230 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2231 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2232 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2233 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2234 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2235
2236 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2237 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2238 {
2239 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2240 STAM_COUNTER_INC(&gStatREMGDTChange);
2241 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2242 }
2243
2244 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2245 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2246 {
2247 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2248 STAM_COUNTER_INC(&gStatREMIDTChange);
2249 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2250 }
2251
2252 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2253 {
2254 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2255 STAM_COUNTER_INC(&gStatREMLDTRChange);
2256 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2257 }
2258 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2259 {
2260 pCtx->tr = pVM->rem.s.Env.tr.selector;
2261 STAM_COUNTER_INC(&gStatREMTRChange);
2262 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2263 }
2264
2265 /** @todo These values could still be out of sync! */
2266 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2267 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2268 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2269 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2270
2271 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2272 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2273 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2274
2275 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2276 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2277 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2278
2279 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2280 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2281 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2282
2283 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2284 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2285 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2286
2287 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2288 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2289 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2290
2291 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2292 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2293 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2294
2295 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2296 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2297 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2298
2299 /* Sysenter MSR */
2300 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2301 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2302 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2303}
2304
2305
2306/**
2307 * Update the VMM state information if we're currently in REM.
2308 *
2309 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2310 * we're currently executing in REM and the VMM state is invalid. This method will of
2311 * course check that we're executing in REM before syncing any data over to the VMM.
2312 *
2313 * @param pVM The VM handle.
2314 */
2315REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2316{
2317 if (pVM->rem.s.fInREM)
2318 remR3StateUpdate(pVM);
2319}
2320
2321
2322#undef LOG_GROUP
2323#define LOG_GROUP LOG_GROUP_REM
2324
2325
2326/**
2327 * Notify the recompiler about Address Gate 20 state change.
2328 *
2329 * This notification is required since A20 gate changes are
2330 * initialized from a device driver and the VM might just as
2331 * well be in REM mode as in RAW mode.
2332 *
2333 * @param pVM VM handle.
2334 * @param fEnable True if the gate should be enabled.
2335 * False if the gate should be disabled.
2336 */
2337REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2338{
2339 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2340 VM_ASSERT_EMT(pVM);
2341 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2342}
2343
2344
2345/**
2346 * Replays the invalidated recorded pages.
2347 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2348 *
2349 * @param pVM VM handle.
2350 */
2351REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2352{
2353 VM_ASSERT_EMT(pVM);
2354
2355 /*
2356 * Sync the required registers.
2357 */
2358 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2359 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2360 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2361 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2362
2363 /*
2364 * Replay the flushes.
2365 */
2366 pVM->rem.s.fIgnoreInvlPg = true;
2367 RTUINT i;
2368 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2369 {
2370 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2371 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2372 }
2373 pVM->rem.s.fIgnoreInvlPg = false;
2374 pVM->rem.s.cInvalidatedPages = 0;
2375}
2376
2377
2378/**
2379 * Replays the invalidated recorded pages.
2380 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2381 *
2382 * @param pVM VM handle.
2383 */
2384REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2385{
2386 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2387 VM_ASSERT_EMT(pVM);
2388
2389 /*
2390 * Replay the flushes.
2391 */
2392 RTUINT i;
2393 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2394 pVM->rem.s.cHandlerNotifications = 0;
2395 for (i = 0; i < c; i++)
2396 {
2397 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2398 switch (pRec->enmKind)
2399 {
2400 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2401 REMR3NotifyHandlerPhysicalRegister(pVM,
2402 pRec->u.PhysicalRegister.enmType,
2403 pRec->u.PhysicalRegister.GCPhys,
2404 pRec->u.PhysicalRegister.cb,
2405 pRec->u.PhysicalRegister.fHasHCHandler);
2406 break;
2407
2408 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2409 REMR3NotifyHandlerPhysicalDeregister(pVM,
2410 pRec->u.PhysicalDeregister.enmType,
2411 pRec->u.PhysicalDeregister.GCPhys,
2412 pRec->u.PhysicalDeregister.cb,
2413 pRec->u.PhysicalDeregister.fHasHCHandler,
2414 pRec->u.PhysicalDeregister.pvHCPtr);
2415 break;
2416
2417 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2418 REMR3NotifyHandlerPhysicalModify(pVM,
2419 pRec->u.PhysicalModify.enmType,
2420 pRec->u.PhysicalModify.GCPhysOld,
2421 pRec->u.PhysicalModify.GCPhysNew,
2422 pRec->u.PhysicalModify.cb,
2423 pRec->u.PhysicalModify.fHasHCHandler,
2424 pRec->u.PhysicalModify.pvHCPtr);
2425 break;
2426
2427 default:
2428 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2429 break;
2430 }
2431 }
2432}
2433
2434
2435/**
2436 * Notify REM about changed code page.
2437 *
2438 * @returns VBox status code.
2439 * @param pVM VM handle.
2440 * @param pvCodePage Code page address
2441 */
2442REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2443{
2444 int rc;
2445 RTGCPHYS PhysGC;
2446 uint64_t flags;
2447
2448 VM_ASSERT_EMT(pVM);
2449
2450 /*
2451 * Get the physical page address.
2452 */
2453 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2454 if (rc == VINF_SUCCESS)
2455 {
2456 /*
2457 * Sync the required registers and flush the whole page.
2458 * (Easier to do the whole page than notifying it about each physical
2459 * byte that was changed.
2460 */
2461 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2462 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2463 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2464 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2465
2466 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2467 }
2468 return VINF_SUCCESS;
2469}
2470
2471/**
2472 * Notification about a successful MMR3PhysRegister() call.
2473 *
2474 * @param pVM VM handle.
2475 * @param GCPhys The physical address the RAM.
2476 * @param cb Size of the memory.
2477 * @param pvRam The HC address of the RAM.
2478 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2479 */
2480REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvRam, unsigned fFlags)
2481{
2482 Log(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2483 VM_ASSERT_EMT(pVM);
2484
2485 /*
2486 * Validate input - we trust the caller.
2487 */
2488 Assert(!GCPhys || pvRam);
2489 Assert(RT_ALIGN_P(pvRam, PAGE_SIZE) == pvRam);
2490 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2491 Assert(cb);
2492 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2493
2494 /*
2495 * Base ram?
2496 */
2497 if (!GCPhys)
2498 {
2499#ifndef PGM_DYNAMIC_RAM_ALLOC
2500 AssertRelease(!phys_ram_base);
2501 phys_ram_base = pvRam;
2502#endif
2503 phys_ram_size = cb;
2504 phys_ram_dirty = MMR3HeapAllocZ(pVM, MM_TAG_REM, cb >> PAGE_SHIFT);
2505 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", cb >> PAGE_SHIFT));
2506 }
2507#ifndef PGM_DYNAMIC_RAM_ALLOC
2508 AssertRelease(phys_ram_base);
2509#endif
2510
2511 /*
2512 * Register the ram.
2513 */
2514#ifdef PGM_DYNAMIC_RAM_ALLOC
2515 if (!GCPhys)
2516 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2517 else
2518 {
2519 uint32_t i;
2520
2521 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2522
2523 AssertRelease(pVM->rem.s.cPhysRegistrations < REM_MAX_PHYS_REGISTRATIONS);
2524 for (i=0;i<pVM->rem.s.cPhysRegistrations;i++)
2525 {
2526 if (pVM->rem.s.aPhysReg[i].GCPhys == GCPhys)
2527 {
2528 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvRam;
2529 pVM->rem.s.aPhysReg[i].cb = cb;
2530 break;
2531 }
2532 }
2533 if (i == pVM->rem.s.cPhysRegistrations)
2534 {
2535 pVM->rem.s.aPhysReg[i].GCPhys = GCPhys;
2536 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvRam;
2537 pVM->rem.s.aPhysReg[i].cb = cb;
2538 pVM->rem.s.cPhysRegistrations++;
2539 }
2540 }
2541#else
2542 cpu_register_physical_memory(GCPhys, cb, ((uintptr_t)pvRam - (uintptr_t)phys_ram_base)
2543 | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2544#endif
2545}
2546
2547
2548/**
2549 * Notification about a successful PGMR3PhysRegisterChunk() call.
2550 *
2551 * @param pVM VM handle.
2552 * @param GCPhys The physical address the RAM.
2553 * @param cb Size of the memory.
2554 * @param pvRam The HC address of the RAM.
2555 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2556 */
2557REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2558{
2559 uint32_t idx;
2560
2561 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2562 VM_ASSERT_EMT(pVM);
2563
2564 /*
2565 * Validate input - we trust the caller.
2566 */
2567 Assert(pvRam);
2568 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2569 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2570 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2571 Assert(fFlags == 0 /* normal RAM */);
2572
2573 if (!pVM->rem.s.paHCVirtToGCPhys)
2574 {
2575 uint32_t size = (_4G >> PGM_DYNAMIC_CHUNK_SHIFT) * sizeof(REMCHUNKINFO);
2576
2577 Assert(phys_ram_size);
2578
2579 pVM->rem.s.paHCVirtToGCPhys = (PREMCHUNKINFO)MMR3HeapAllocZ(pVM, MM_TAG_REM, size);
2580 pVM->rem.s.paGCPhysToHCVirt = (RTHCPTR)MMR3HeapAllocZ(pVM, MM_TAG_REM, (phys_ram_size >> PGM_DYNAMIC_CHUNK_SHIFT)*sizeof(RTHCPTR));
2581 }
2582 pVM->rem.s.paGCPhysToHCVirt[GCPhys >> PGM_DYNAMIC_CHUNK_SHIFT] = pvRam;
2583
2584 idx = (pvRam >> PGM_DYNAMIC_CHUNK_SHIFT);
2585 if (!pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1)
2586 {
2587 pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1 = pvRam;
2588 pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 = GCPhys;
2589 }
2590 else
2591 {
2592 Assert(!pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2);
2593 pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2 = pvRam;
2594 pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 = GCPhys;
2595 }
2596 /* Does the region spawn two chunks? */
2597 if (pvRam & PGM_DYNAMIC_CHUNK_OFFSET_MASK)
2598 {
2599 if (!pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk1)
2600 {
2601 pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk1 = pvRam;
2602 pVM->rem.s.paHCVirtToGCPhys[idx+1].GCPhys1 = GCPhys;
2603 }
2604 else
2605 {
2606 Assert(!pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk2);
2607 pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk2 = pvRam;
2608 pVM->rem.s.paHCVirtToGCPhys[idx+1].GCPhys2 = GCPhys;
2609 }
2610 }
2611 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2612}
2613
2614/**
2615 * Convert GC physical address to HC virt
2616 *
2617 * @returns The HC virt address corresponding to addr.
2618 * @param env The cpu environment.
2619 * @param addr The physical address.
2620 */
2621void *remR3GCPhys2HCVirt(void *env, target_ulong addr)
2622{
2623#ifdef PGM_DYNAMIC_RAM_ALLOC
2624 PVM pVM = ((CPUState *)env)->pVM;
2625 uint32_t i;
2626
2627 /* lookup in pVM->rem.s.aPhysReg array first (for ROM range(s) inside the guest's RAM) */
2628 for (i=0;i<pVM->rem.s.cPhysRegistrations;i++)
2629 {
2630 uint32_t off = addr - pVM->rem.s.aPhysReg[i].GCPhys;
2631 if (off < pVM->rem.s.aPhysReg[i].cb)
2632 {
2633 Log(("remR3GCPhys2HCVirt: %x -> %x\n", addr, pVM->rem.s.aPhysReg[i].HCVirt + off));
2634 return (void *)(pVM->rem.s.aPhysReg[i].HCVirt + off);
2635 }
2636 }
2637 AssertMsg(addr < phys_ram_size, ("remR3GCPhys2HCVirt: unknown physical address %x\n", addr));
2638 Log(("remR3GCPhys2HCVirt: %x -> %x\n", addr, pVM->rem.s.paGCPhysToHCVirt[addr >> PGM_DYNAMIC_CHUNK_SHIFT] + (addr & PGM_DYNAMIC_CHUNK_OFFSET_MASK)));
2639 return (void *)(pVM->rem.s.paGCPhysToHCVirt[addr >> PGM_DYNAMIC_CHUNK_SHIFT] + (addr & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
2640#else
2641 return phys_ram_base + addr;
2642#endif
2643}
2644
2645/**
2646 * Convert GC physical address to HC virt
2647 *
2648 * @returns The HC virt address corresponding to addr.
2649 * @param env The cpu environment.
2650 * @param addr The physical address.
2651 */
2652target_ulong remR3HCVirt2GCPhys(void *env, void *addr)
2653{
2654#ifdef PGM_DYNAMIC_RAM_ALLOC
2655 PVM pVM = ((CPUState *)env)->pVM;
2656 RTHCUINTPTR HCVirt = (RTHCUINTPTR)addr;
2657 uint32_t idx = (HCVirt >> PGM_DYNAMIC_CHUNK_SHIFT);
2658 RTHCUINTPTR off;
2659 RTUINT i;
2660
2661 off = HCVirt - pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1;
2662
2663 if ( pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1
2664 && off < PGM_DYNAMIC_CHUNK_SIZE)
2665 {
2666 Log(("remR3HCVirt2GCPhys %x -> %x\n", addr, pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 + off));
2667 return pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 + off;
2668 }
2669
2670 off = HCVirt - pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2;
2671 if ( pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2
2672 && off < PGM_DYNAMIC_CHUNK_SIZE)
2673 {
2674 Log(("remR3HCVirt2GCPhys %x -> %x\n", addr, pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 + off));
2675 return pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 + off;
2676 }
2677
2678 /* Must be externally registered RAM/ROM range */
2679 for (i=0;i<pVM->rem.s.cPhysRegistrations;i++)
2680 {
2681 uint32_t off = HCVirt - pVM->rem.s.aPhysReg[i].HCVirt;
2682 if (off < pVM->rem.s.aPhysReg[i].cb)
2683 {
2684 Log(("remR3HCVirt2GCPhys %x -> %x\n", addr, pVM->rem.s.aPhysReg[i].GCPhys + off));
2685 return pVM->rem.s.aPhysReg[i].GCPhys + off;
2686 }
2687 }
2688 AssertReleaseMsgFailed(("No translation for physical address %VHv???\n", addr));
2689 return 0;
2690#else
2691 return (target_ulong)addr - (target_ulong)phys_ram_base;
2692#endif
2693}
2694
2695/**
2696 * Grows dynamically allocated guest RAM.
2697 * Will raise a fatal error if the operation fails.
2698 *
2699 * @param physaddr The physical address.
2700 */
2701void remR3GrowDynRange(unsigned long physaddr)
2702{
2703 int rc;
2704 PVM pVM = cpu_single_env->pVM;
2705
2706 Log(("remR3GrowDynRange %VGp\n", physaddr));
2707 rc = PGM3PhysGrowRange(pVM, (RTGCPHYS)physaddr);
2708 if (VBOX_SUCCESS(rc))
2709 return;
2710
2711 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2712 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2713 AssertFatalFailed();
2714}
2715
2716/**
2717 * Notification about a successful MMR3PhysRomRegister() call.
2718 *
2719 * @param pVM VM handle.
2720 * @param GCPhys The physical address of the ROM.
2721 * @param cb The size of the ROM.
2722 * @param pvCopy Pointer to the ROM copy.
2723 */
2724REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy)
2725{
2726#ifdef PGM_DYNAMIC_RAM_ALLOC
2727 uint32_t i;
2728#endif
2729 Log(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p\n", GCPhys, cb, pvCopy));
2730 VM_ASSERT_EMT(pVM);
2731
2732 /*
2733 * Validate input - we trust the caller.
2734 */
2735 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2736 Assert(cb);
2737 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2738 Assert(pvCopy);
2739 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2740
2741 /*
2742 * Register the rom.
2743 */
2744#ifdef PGM_DYNAMIC_RAM_ALLOC
2745 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_ROM);
2746 AssertRelease(pVM->rem.s.cPhysRegistrations < REM_MAX_PHYS_REGISTRATIONS);
2747 for (i=0;i<pVM->rem.s.cPhysRegistrations;i++)
2748 {
2749 if (pVM->rem.s.aPhysReg[i].GCPhys == GCPhys)
2750 {
2751 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvCopy;
2752 pVM->rem.s.aPhysReg[i].cb = cb;
2753 break;
2754 }
2755 }
2756 if (i == pVM->rem.s.cPhysRegistrations)
2757 {
2758 pVM->rem.s.aPhysReg[i].GCPhys = GCPhys;
2759 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvCopy;
2760 pVM->rem.s.aPhysReg[i].cb = cb;
2761 pVM->rem.s.cPhysRegistrations++;
2762 }
2763#else
2764 AssertRelease(phys_ram_base);
2765 cpu_register_physical_memory(GCPhys, cb, ((uintptr_t)pvCopy - (uintptr_t)phys_ram_base) | IO_MEM_ROM);
2766#endif
2767 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2768}
2769
2770
2771/**
2772 * Notification about a successful MMR3PhysRegister() call.
2773 *
2774 * @param pVM VM Handle.
2775 * @param GCPhys Start physical address.
2776 * @param cb The size of the range.
2777 */
2778REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2779{
2780 LogFlow(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2781 VM_ASSERT_EMT(pVM);
2782
2783 /*
2784 * Validate input - we trust the caller.
2785 */
2786 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2787 Assert(cb);
2788 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2789
2790 /*
2791 * Unassigning the memory.
2792 */
2793 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2794}
2795
2796
2797/**
2798 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2799 *
2800 * @param pVM VM Handle.
2801 * @param enmType Handler type.
2802 * @param GCPhys Handler range address.
2803 * @param cb Size of the handler range.
2804 * @param fHasHCHandler Set if the handler has a HC callback function.
2805 *
2806 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2807 * Handler memory type to memory which has no HC handler.
2808 */
2809REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2810{
2811 LogFlow(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d\n",
2812 enmType, GCPhys, cb, fHasHCHandler));
2813 VM_ASSERT_EMT(pVM);
2814 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2815 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2816
2817 if (pVM->rem.s.cHandlerNotifications)
2818 REMR3ReplayHandlerNotifications(pVM);
2819
2820 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2821 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2822 else if (fHasHCHandler)
2823 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2824}
2825
2826
2827/**
2828 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2829 *
2830 * @param pVM VM Handle.
2831 * @param enmType Handler type.
2832 * @param GCPhys Handler range address.
2833 * @param cb Size of the handler range.
2834 * @param fHasHCHandler Set if the handler has a HC callback function.
2835 * @param pvHCPtr The HC virtual address corresponding to GCPhys if available.
2836 */
2837REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, void *pvHCPtr)
2838{
2839 LogFlow(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d pvHCPtr=%p RAM=%08x\n",
2840 enmType, GCPhys, cb, fHasHCHandler, pvHCPtr, MMR3PhysGetRamSize(pVM)));
2841 VM_ASSERT_EMT(pVM);
2842
2843 if (pVM->rem.s.cHandlerNotifications)
2844 REMR3ReplayHandlerNotifications(pVM);
2845
2846 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2847 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2848 else if (fHasHCHandler)
2849 {
2850 if (!pvHCPtr)
2851 {
2852 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2853 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2854 }
2855 else
2856 {
2857 /* This is not prefect, but it'll do for PD monitoring... */
2858 Assert(cb == PAGE_SIZE);
2859 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2860 Assert(remR3HCVirt2GCPhys(cpu_single_env, pvHCPtr) < MMR3PhysGetRamSize(pVM));
2861#ifdef PGM_DYNAMIC_RAM_ALLOC
2862 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2863#else
2864 cpu_register_physical_memory(GCPhys, cb, remR3HCVirt2GCPhys(cpu_single_env, pvHCPtr));
2865#endif
2866 }
2867 }
2868}
2869
2870
2871/**
2872 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2873 *
2874 * @param pVM VM Handle.
2875 * @param enmType Handler type.
2876 * @param GCPhysOld Old handler range address.
2877 * @param GCPhysNew New handler range address.
2878 * @param cb Size of the handler range.
2879 * @param fHasHCHandler Set if the handler has a HC callback function.
2880 * @param pvHCPtr The HC virtual address corresponding to GCPhys if available.
2881 */
2882REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, void *pvHCPtr)
2883{
2884 LogFlow(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%d fHasHCHandler=%d pvHCPtr=%p\n",
2885 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, pvHCPtr));
2886 VM_ASSERT_EMT(pVM);
2887 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2888
2889 if (pVM->rem.s.cHandlerNotifications)
2890 REMR3ReplayHandlerNotifications(pVM);
2891
2892 if (fHasHCHandler)
2893 {
2894 /*
2895 * Reset the old page.
2896 */
2897 if (!pvHCPtr)
2898 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2899 else
2900 {
2901 /* This is not prefect, but it'll do for PD monitoring... */
2902 Assert(cb == PAGE_SIZE);
2903 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2904 Assert(remR3HCVirt2GCPhys(cpu_single_env, pvHCPtr) < MMR3PhysGetRamSize(pVM));
2905#ifdef PGM_DYNAMIC_RAM_ALLOC
2906 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2907#else
2908 cpu_register_physical_memory(GCPhysOld, cb, remR3HCVirt2GCPhys(cpu_single_env, pvHCPtr));
2909#endif
2910 }
2911
2912 /*
2913 * Update the new page.
2914 */
2915 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2916 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2917 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2918 }
2919}
2920
2921
2922/**
2923 * Checks if we're handling access to this page or not.
2924 *
2925 * @returns true if we're trapping access.
2926 * @returns false if we aren't.
2927 * @param pVM The VM handle.
2928 * @param GCPhys The physical address.
2929 *
2930 * @remark This function will only work correctly in VBOX_STRICT builds!
2931 */
2932REMDECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
2933{
2934#ifdef VBOX_STRICT
2935 if (pVM->rem.s.cHandlerNotifications)
2936 REMR3ReplayHandlerNotifications(pVM);
2937
2938 unsigned long off = get_phys_page_offset(GCPhys);
2939 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
2940 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
2941 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
2942#else
2943 return false;
2944#endif
2945}
2946
2947
2948/**
2949 * Deals with a rare case in get_phys_addr_code where the code
2950 * is being monitored.
2951 *
2952 * It could also be an MMIO page, in which case we will raise a fatal error.
2953 *
2954 * @returns The physical address corresponding to addr.
2955 * @param env The cpu environment.
2956 * @param addr The virtual address.
2957 * @param pTLBEntry The TLB entry.
2958 */
2959target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
2960{
2961 PVM pVM = env->pVM;
2962 if ((pTLBEntry->address & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
2963 {
2964 target_ulong ret = pTLBEntry->addend + addr;
2965 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv address=%VGv addend=%VGp ret=%VGp\n",
2966 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->address, (RTGCPHYS)pTLBEntry->addend, ret);
2967 return ret;
2968 }
2969 LogRel(("\nTrying to execute code with memory type address=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
2970 "*** handlers\n",
2971 (RTGCPTR)pTLBEntry->address, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
2972 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
2973 LogRel(("*** mmio\n"));
2974 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
2975 LogRel(("*** phys\n"));
2976 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
2977 cpu_abort(env, "Trying to execute code with memory type address=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
2978 (RTGCPTR)pTLBEntry->address, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
2979 AssertFatalFailed();
2980}
2981
2982/**
2983 * Read guest RAM and ROM.
2984 *
2985 * @param pbSrcPhys The source address. Relative to guest RAM.
2986 * @param pvDst The destination address.
2987 * @param cb Number of bytes
2988 */
2989void remR3PhysReadBytes(uint8_t *pbSrcPhys, void *pvDst, unsigned cb)
2990{
2991 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2992
2993 /*
2994 * Calc the physical address ('off') and check that it's within the RAM.
2995 * ROM is accessed this way, even if it's not part of the RAM.
2996 */
2997 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
2998 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
2999 if (off < (uintptr_t)phys_ram_size)
3000 PGMPhysRead(cpu_single_env->pVM, (RTGCPHYS)off, pvDst, cb);
3001 else
3002 {
3003 /* ROM range outside physical RAM, HC address passed directly */
3004 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3005 memcpy(pvDst, pbSrcPhys, cb);
3006 }
3007 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3008}
3009
3010/** @todo r=bird: s/Byte/U8/ s/Word/U16/ s/Dword/U32/, see MMIO and other functions.
3011 * It could be an idea to inline these wrapper functions... */
3012
3013/**
3014 * Read guest RAM and ROM.
3015 *
3016 * @param pbSrcPhys The source address. Relative to guest RAM.
3017 */
3018uint8_t remR3PhysReadUByte(uint8_t *pbSrcPhys)
3019{
3020 uint8_t val;
3021
3022 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3023
3024 /*
3025 * Calc the physical address ('off') and check that it's within the RAM.
3026 * ROM is accessed this way, even if it's not part of the RAM.
3027 */
3028 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3029 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3030 if (off < (uintptr_t)phys_ram_size)
3031 val = PGMR3PhysReadByte(cpu_single_env->pVM, (RTGCPHYS)off);
3032 else
3033 {
3034 /* ROM range outside physical RAM, HC address passed directly */
3035 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3036 val = *pbSrcPhys;
3037 }
3038 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3039 return val;
3040}
3041
3042/**
3043 * Read guest RAM and ROM.
3044 *
3045 * @param pbSrcPhys The source address. Relative to guest RAM.
3046 */
3047int8_t remR3PhysReadSByte(uint8_t *pbSrcPhys)
3048{
3049 int8_t val;
3050
3051 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3052
3053 /*
3054 * Calc the physical address ('off') and check that it's within the RAM.
3055 * ROM is accessed this way, even if it's not part of the RAM.
3056 */
3057 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3058 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3059 if (off < (uintptr_t)phys_ram_size)
3060 val = PGMR3PhysReadByte(cpu_single_env->pVM, (RTGCPHYS)off);
3061 else
3062 {
3063 /* ROM range outside physical RAM, HC address passed directly */
3064 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3065 val = *(int8_t *)pbSrcPhys;
3066 }
3067 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3068 return val;
3069}
3070
3071/**
3072 * Read guest RAM and ROM.
3073 *
3074 * @param pbSrcPhys The source address. Relative to guest RAM.
3075 */
3076uint16_t remR3PhysReadUWord(uint8_t *pbSrcPhys)
3077{
3078 uint16_t val;
3079
3080 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3081
3082 /*
3083 * Calc the physical address ('off') and check that it's within the RAM.
3084 * ROM is accessed this way, even if it's not part of the RAM.
3085 */
3086 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3087 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3088 if (off < (uintptr_t)phys_ram_size)
3089 val = PGMR3PhysReadWord(cpu_single_env->pVM, (RTGCPHYS)off);
3090 else
3091 {
3092 /* ROM range outside physical RAM, HC address passed directly */
3093 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3094 val = *(uint16_t *)pbSrcPhys;
3095 }
3096 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3097 return val;
3098}
3099
3100/**
3101 * Read guest RAM and ROM.
3102 *
3103 * @param pbSrcPhys The source address. Relative to guest RAM.
3104 */
3105int16_t remR3PhysReadSWord(uint8_t *pbSrcPhys)
3106{
3107 int16_t val;
3108
3109 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3110
3111 /*
3112 * Calc the physical address ('off') and check that it's within the RAM.
3113 * ROM is accessed this way, even if it's not part of the RAM.
3114 */
3115 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3116 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3117 if (off < (uintptr_t)phys_ram_size)
3118 val = PGMR3PhysReadWord(cpu_single_env->pVM, (RTGCPHYS)off);
3119 else
3120 {
3121 /* ROM range outside physical RAM, HC address passed directly */
3122 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3123 val = *(int16_t *)pbSrcPhys;
3124 }
3125 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3126 return val;
3127}
3128
3129/**
3130 * Read guest RAM and ROM.
3131 *
3132 * @param pbSrcPhys The source address. Relative to guest RAM.
3133 */
3134uint32_t remR3PhysReadULong(uint8_t *pbSrcPhys)
3135{
3136 uint32_t val;
3137
3138 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3139
3140 /*
3141 * Calc the physical address ('off') and check that it's within the RAM.
3142 * ROM is accessed this way, even if it's not part of the RAM.
3143 */
3144 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3145 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3146 if (off < (uintptr_t)phys_ram_size)
3147 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off);
3148 else
3149 {
3150 /* ROM range outside physical RAM, HC address passed directly */
3151 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3152 val = *(uint32_t *)pbSrcPhys;
3153 }
3154 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3155 return val;
3156}
3157
3158/**
3159 * Read guest RAM and ROM.
3160 *
3161 * @param pbSrcPhys The source address. Relative to guest RAM.
3162 */
3163int32_t remR3PhysReadSLong(uint8_t *pbSrcPhys)
3164{
3165 int32_t val;
3166
3167 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3168
3169 /*
3170 * Calc the physical address ('off') and check that it's within the RAM.
3171 * ROM is accessed this way, even if it's not part of the RAM.
3172 */
3173 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3174 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3175 if (off < (uintptr_t)phys_ram_size)
3176 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off);
3177 else
3178 {
3179 /* ROM range outside physical RAM, HC address passed directly */
3180 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3181 val = *(int32_t *)pbSrcPhys;
3182 }
3183 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3184 return val;
3185}
3186
3187/**
3188 * Write guest RAM.
3189 *
3190 * @param pbDstPhys The destination address. Relative to guest RAM.
3191 * @param pvSrc The source address.
3192 * @param cb Number of bytes to write
3193 */
3194void remR3PhysWriteBytes(uint8_t *pbDstPhys, const void *pvSrc, unsigned cb)
3195{
3196 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3197 /*
3198 * Calc the physical address ('off') and check that it's within the RAM.
3199 */
3200 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbDstPhys);
3201 if (off < (uintptr_t)phys_ram_size)
3202 PGMPhysWrite(cpu_single_env->pVM, (RTGCPHYS)off, pvSrc, cb);
3203 else
3204 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, cb));
3205 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3206}
3207
3208
3209/**
3210 * Write guest RAM.
3211 *
3212 * @param pbDstPhys The destination address. Relative to guest RAM.
3213 * @param val Value
3214 */
3215void remR3PhysWriteByte(uint8_t *pbDstPhys, uint8_t val)
3216{
3217 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3218 /*
3219 * Calc the physical address ('off') and check that it's within the RAM.
3220 */
3221 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbDstPhys);
3222 if (off < (uintptr_t)phys_ram_size)
3223 PGMR3PhysWriteByte(cpu_single_env->pVM, (RTGCPHYS)off, val);
3224 else
3225 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, 1));
3226 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3227}
3228
3229/**
3230 * Write guest RAM.
3231 *
3232 * @param pbDstPhys The destination address. Relative to guest RAM.
3233 * @param val Value
3234 */
3235void remR3PhysWriteWord(uint8_t *pbDstPhys, uint16_t val)
3236{
3237 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3238 /*
3239 * Calc the physical address ('off') and check that it's within the RAM.
3240 */
3241 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbDstPhys);
3242 if (off < (uintptr_t)phys_ram_size)
3243 PGMR3PhysWriteWord(cpu_single_env->pVM, (RTGCPHYS)off, val);
3244 else
3245 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, 2));
3246 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3247}
3248
3249/**
3250 * Write guest RAM.
3251 *
3252 * @param pbDstPhys The destination address. Relative to guest RAM.
3253 * @param val Value
3254 */
3255void remR3PhysWriteDword(uint8_t *pbDstPhys, uint32_t val)
3256{
3257 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3258 /*
3259 * Calc the physical address ('off') and check that it's within the RAM.
3260 */
3261 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbDstPhys);
3262 if (off < (uintptr_t)phys_ram_size)
3263 PGMR3PhysWriteDword(cpu_single_env->pVM, (RTGCPHYS)off, val);
3264 else
3265 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, 4));
3266 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3267}
3268
3269
3270
3271#undef LOG_GROUP
3272#define LOG_GROUP LOG_GROUP_REM_MMIO
3273
3274/** Read MMIO memory. */
3275static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3276{
3277 uint32_t u32 = 0;
3278 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3279 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3280 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3281 return u32;
3282}
3283
3284/** Read MMIO memory. */
3285static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3286{
3287 uint32_t u32 = 0;
3288 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3289 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3290 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3291 return u32;
3292}
3293
3294/** Read MMIO memory. */
3295static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3296{
3297 uint32_t u32 = 0;
3298 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3299 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3300 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3301 return u32;
3302}
3303
3304/** Write to MMIO memory. */
3305static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3306{
3307 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3308 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3309 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3310}
3311
3312/** Write to MMIO memory. */
3313static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3314{
3315 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3316 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3317 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3318}
3319
3320/** Write to MMIO memory. */
3321static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3322{
3323 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3324 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3325 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3326}
3327
3328
3329#undef LOG_GROUP
3330#define LOG_GROUP LOG_GROUP_REM_HANDLER
3331
3332/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3333
3334static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3335{
3336 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3337 uint8_t u8;
3338 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3339 return u8;
3340}
3341
3342static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3343{
3344 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3345 uint16_t u16;
3346 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3347 return u16;
3348}
3349
3350static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3351{
3352 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3353 uint32_t u32;
3354 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3355 return u32;
3356}
3357
3358static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3359{
3360 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3361 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3362}
3363
3364static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3365{
3366 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3367 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3368}
3369
3370static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3371{
3372 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3373 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3374}
3375
3376/* -+- disassembly -+- */
3377
3378#undef LOG_GROUP
3379#define LOG_GROUP LOG_GROUP_REM_DISAS
3380
3381
3382/**
3383 * Enables or disables singled stepped disassembly.
3384 *
3385 * @returns VBox status code.
3386 * @param pVM VM handle.
3387 * @param fEnable To enable set this flag, to disable clear it.
3388 */
3389static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3390{
3391 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3392 VM_ASSERT_EMT(pVM);
3393
3394 if (fEnable)
3395 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3396 else
3397 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3398 return VINF_SUCCESS;
3399}
3400
3401
3402/**
3403 * Enables or disables singled stepped disassembly.
3404 *
3405 * @returns VBox status code.
3406 * @param pVM VM handle.
3407 * @param fEnable To enable set this flag, to disable clear it.
3408 */
3409REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3410{
3411 PVMREQ pReq;
3412 int rc;
3413
3414 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3415 if (VM_IS_EMT(pVM))
3416 return remR3DisasEnableStepping(pVM, fEnable);
3417
3418 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3419 AssertRC(rc);
3420 if (VBOX_SUCCESS(rc))
3421 rc = pReq->iStatus;
3422 VMR3ReqFree(pReq);
3423 return rc;
3424}
3425
3426
3427#ifdef VBOX_WITH_DEBUGGER
3428/**
3429 * External Debugger Command: .remstep [on|off|1|0]
3430 */
3431static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3432{
3433 bool fEnable;
3434 int rc;
3435
3436 /* print status */
3437 if (cArgs == 0)
3438 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3439 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3440
3441 /* convert the argument and change the mode. */
3442 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3443 if (VBOX_FAILURE(rc))
3444 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3445 rc = REMR3DisasEnableStepping(pVM, fEnable);
3446 if (VBOX_FAILURE(rc))
3447 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3448 return rc;
3449}
3450#endif
3451
3452
3453/**
3454 * Disassembles n instructions and prints them to the log.
3455 *
3456 * @returns Success indicator.
3457 * @param env Pointer to the recompiler CPU structure.
3458 * @param f32BitCode Indicates that whether or not the code should
3459 * be disassembled as 16 or 32 bit. If -1 the CS
3460 * selector will be inspected.
3461 * @param nrInstructions Nr of instructions to disassemble
3462 * @param pszPrefix
3463 * @remark not currently used for anything but ad-hoc debugging.
3464 */
3465bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3466{
3467 int i;
3468
3469 /*
3470 * Determin 16/32 bit mode.
3471 */
3472 if (f32BitCode == -1)
3473 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3474
3475 /*
3476 * Convert cs:eip to host context address.
3477 * We don't care to much about cross page correctness presently.
3478 */
3479 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3480 void *pvPC;
3481 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3482 {
3483 /* convert eip to physical address. */
3484 int rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3485 GCPtrPC,
3486 env->cr[3],
3487 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3488 &pvPC);
3489 if (VBOX_FAILURE(rc))
3490 {
3491 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3492 return false;
3493 pvPC = (char *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3494 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3495 }
3496 }
3497 else
3498 {
3499 /* physical address */
3500 int rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions*16, &pvPC);
3501 if (VBOX_FAILURE(rc))
3502 return false;
3503 }
3504
3505 /*
3506 * Disassemble.
3507 */
3508 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
3509 DISCPUSTATE Cpu;
3510 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3511 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3512 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3513 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3514 //Cpu.dwUserData[2] = GCPtrPC;
3515
3516 for (i=0;i<nrInstructions;i++)
3517 {
3518 char szOutput[256];
3519 uint32_t cbOp;
3520 if (!DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0]))
3521 return false;
3522 if (pszPrefix)
3523 Log(("%s: %s", pszPrefix, szOutput));
3524 else
3525 Log(("%s", szOutput));
3526
3527 pvPC += cbOp;
3528 }
3529 return true;
3530}
3531
3532
3533/** @todo need to test the new code, using the old code in the mean while. */
3534#define USE_OLD_DUMP_AND_DISASSEMBLY
3535
3536/**
3537 * Disassembles one instruction and prints it to the log.
3538 *
3539 * @returns Success indicator.
3540 * @param env Pointer to the recompiler CPU structure.
3541 * @param f32BitCode Indicates that whether or not the code should
3542 * be disassembled as 16 or 32 bit. If -1 the CS
3543 * selector will be inspected.
3544 * @param pszPrefix
3545 */
3546bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3547{
3548#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3549 PVM pVM = env->pVM;
3550
3551 /*
3552 * Determin 16/32 bit mode.
3553 */
3554 if (f32BitCode == -1)
3555 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3556
3557 /*
3558 * Log registers
3559 */
3560 if (LogIs2Enabled())
3561 {
3562 remR3StateUpdate(pVM);
3563 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3564 }
3565
3566 /*
3567 * Convert cs:eip to host context address.
3568 * We don't care to much about cross page correctness presently.
3569 */
3570 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3571 void *pvPC;
3572 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3573 {
3574 /* convert eip to physical address. */
3575 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
3576 GCPtrPC,
3577 env->cr[3],
3578 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3579 &pvPC);
3580 if (VBOX_FAILURE(rc))
3581 {
3582 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3583 return false;
3584 pvPC = (char *)PATMR3QueryPatchMemHC(pVM, NULL)
3585 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3586 }
3587 }
3588 else
3589 {
3590
3591 /* physical address */
3592 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, &pvPC);
3593 if (VBOX_FAILURE(rc))
3594 return false;
3595 }
3596
3597 /*
3598 * Disassemble.
3599 */
3600 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
3601 DISCPUSTATE Cpu;
3602 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3603 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3604 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3605 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3606 //Cpu.dwUserData[2] = GCPtrPC;
3607 char szOutput[256];
3608 uint32_t cbOp;
3609 if (!DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0]))
3610 return false;
3611
3612 if (!f32BitCode)
3613 {
3614 if (pszPrefix)
3615 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3616 else
3617 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3618 }
3619 else
3620 {
3621 if (pszPrefix)
3622 Log(("%s: %s", pszPrefix, szOutput));
3623 else
3624 Log(("%s", szOutput));
3625 }
3626 return true;
3627
3628#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3629 PVM pVM = env->pVM;
3630 const bool fLog = LogIsEnabled();
3631 const bool fLog2 = LogIs2Enabled();
3632 int rc = VINF_SUCCESS;
3633
3634 /*
3635 * Don't bother if there ain't any log output to do.
3636 */
3637 if (!fLog && !fLog2)
3638 return true;
3639
3640 /*
3641 * Update the state so DBGF reads the correct register values.
3642 */
3643 remR3StateUpdate(pVM);
3644
3645 /*
3646 * Log registers if requested.
3647 */
3648 if (!fLog2)
3649 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3650
3651 /*
3652 * Disassemble to log.
3653 */
3654 if (fLog)
3655 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3656
3657 return VBOX_SUCCESS(rc);
3658#endif
3659}
3660
3661
3662/**
3663 * Disassemble recompiled code.
3664 *
3665 * @param phFileIgnored Ignored, logfile usually.
3666 * @param pvCode Pointer to the code block.
3667 * @param cb Size of the code block.
3668 */
3669void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3670{
3671 if (LogIs2Enabled())
3672 {
3673 unsigned off = 0;
3674 char szOutput[256];
3675 DISCPUSTATE Cpu = {0};
3676 Cpu.mode = CPUMODE_32BIT;
3677
3678 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3679 while (off < cb)
3680 {
3681 uint32_t cbInstr;
3682 if (DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput))
3683 RTLogPrintf("%s", szOutput);
3684 else
3685 {
3686 RTLogPrintf("disas error\n");
3687 cbInstr = 1;
3688 }
3689 off += cbInstr;
3690 }
3691 }
3692 NOREF(phFileIgnored);
3693}
3694
3695
3696/**
3697 * Disassemble guest code.
3698 *
3699 * @param phFileIgnored Ignored, logfile usually.
3700 * @param uCode The guest address of the code to disassemble. (flat?)
3701 * @param cb Number of bytes to disassemble.
3702 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3703 */
3704void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3705{
3706 if (LogIs2Enabled())
3707 {
3708 PVM pVM = cpu_single_env->pVM;
3709
3710 /*
3711 * Update the state so DBGF reads the correct register values (flags).
3712 */
3713 remR3StateUpdate(pVM);
3714
3715 /*
3716 * Do the disassembling.
3717 */
3718 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
3719 RTSEL cs = cpu_single_env->segs[R_CS].selector;
3720 RTGCUINTPTR eip = uCode - cpu_single_env->segs[R_CS].base;
3721 for (;;)
3722 {
3723 char szBuf[256];
3724 size_t cbInstr;
3725 int rc = DBGFR3DisasInstrEx(pVM,
3726 cs,
3727 eip,
3728 0,
3729 szBuf, sizeof(szBuf),
3730 &cbInstr);
3731 if (VBOX_SUCCESS(rc))
3732 RTLogPrintf("%VGp %s\n", uCode, szBuf);
3733 else
3734 {
3735 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
3736 cbInstr = 1;
3737 }
3738
3739 /* next */
3740 if (cb <= cbInstr)
3741 break;
3742 cb -= cbInstr;
3743 uCode += cbInstr;
3744 eip += cbInstr;
3745 }
3746 }
3747 NOREF(phFileIgnored);
3748}
3749
3750
3751/**
3752 * Looks up a guest symbol.
3753 *
3754 * @returns Pointer to symbol name. This is a static buffer.
3755 * @param orig_addr The address in question.
3756 */
3757const char *lookup_symbol(target_ulong orig_addr)
3758{
3759 RTGCINTPTR off = 0;
3760 DBGFSYMBOL Sym;
3761 PVM pVM = cpu_single_env->pVM;
3762 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3763 if (VBOX_SUCCESS(rc))
3764 {
3765 static char szSym[sizeof(Sym.szName) + 48];
3766 if (!off)
3767 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3768 else if (off > 0)
3769 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3770 else
3771 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3772 return szSym;
3773 }
3774 return "<N/A>";
3775}
3776
3777
3778#undef LOG_GROUP
3779#define LOG_GROUP LOG_GROUP_REM
3780
3781
3782/* -+- FF notifications -+- */
3783
3784
3785/**
3786 * Notification about a pending interrupt.
3787 *
3788 * @param pVM VM Handle.
3789 * @param u8Interrupt Interrupt
3790 * @thread The emulation thread.
3791 */
3792REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3793{
3794 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3795 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3796}
3797
3798/**
3799 * Notification about a pending interrupt.
3800 *
3801 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3802 * @param pVM VM Handle.
3803 * @thread The emulation thread.
3804 */
3805REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3806{
3807 return pVM->rem.s.u32PendingInterrupt;
3808}
3809
3810/**
3811 * Notification about the interrupt FF being set.
3812 *
3813 * @param pVM VM Handle.
3814 * @thread The emulation thread.
3815 */
3816REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3817{
3818 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3819 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3820 if (pVM->rem.s.fInREM)
3821 {
3822 if (VM_IS_EMT(pVM))
3823 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3824 else
3825 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_HARD);
3826 }
3827}
3828
3829
3830/**
3831 * Notification about the interrupt FF being set.
3832 *
3833 * @param pVM VM Handle.
3834 * @thread The emulation thread.
3835 */
3836REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3837{
3838 LogFlow(("REMR3NotifyInterruptClear:\n"));
3839 VM_ASSERT_EMT(pVM);
3840 if (pVM->rem.s.fInREM)
3841 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3842}
3843
3844
3845/**
3846 * Notification about pending timer(s).
3847 *
3848 * @param pVM VM Handle.
3849 * @thread Any.
3850 */
3851REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3852{
3853#ifndef DEBUG_bird
3854 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3855#endif
3856 if (pVM->rem.s.fInREM)
3857 {
3858 if (VM_IS_EMT(pVM))
3859 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3860 else
3861 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_TIMER);
3862 }
3863}
3864
3865
3866/**
3867 * Notification about pending DMA transfers.
3868 *
3869 * @param pVM VM Handle.
3870 * @thread Any.
3871 */
3872REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3873{
3874 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3875 if (pVM->rem.s.fInREM)
3876 {
3877 if (VM_IS_EMT(pVM))
3878 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3879 else
3880 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_DMA);
3881 }
3882}
3883
3884
3885/**
3886 * Notification about pending timer(s).
3887 *
3888 * @param pVM VM Handle.
3889 * @thread Any.
3890 */
3891REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3892{
3893 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3894 if (pVM->rem.s.fInREM)
3895 {
3896 if (VM_IS_EMT(pVM))
3897 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3898 else
3899 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3900 }
3901}
3902
3903
3904/**
3905 * Notification about pending FF set by an external thread.
3906 *
3907 * @param pVM VM handle.
3908 * @thread Any.
3909 */
3910REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3911{
3912 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3913 if (pVM->rem.s.fInREM)
3914 {
3915 if (VM_IS_EMT(pVM))
3916 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3917 else
3918 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3919 }
3920}
3921
3922
3923#ifdef VBOX_WITH_STATISTICS
3924void remR3ProfileStart(int statcode)
3925{
3926 STAMPROFILEADV *pStat;
3927 switch(statcode)
3928 {
3929 case STATS_EMULATE_SINGLE_INSTR:
3930 pStat = &gStatExecuteSingleInstr;
3931 break;
3932 case STATS_QEMU_COMPILATION:
3933 pStat = &gStatCompilationQEmu;
3934 break;
3935 case STATS_QEMU_RUN_EMULATED_CODE:
3936 pStat = &gStatRunCodeQEmu;
3937 break;
3938 case STATS_QEMU_TOTAL:
3939 pStat = &gStatTotalTimeQEmu;
3940 break;
3941 case STATS_QEMU_RUN_TIMERS:
3942 pStat = &gStatTimers;
3943 break;
3944 case STATS_TLB_LOOKUP:
3945 pStat= &gStatTBLookup;
3946 break;
3947 case STATS_IRQ_HANDLING:
3948 pStat= &gStatIRQ;
3949 break;
3950 case STATS_RAW_CHECK:
3951 pStat = &gStatRawCheck;
3952 break;
3953
3954 default:
3955 AssertMsgFailed(("unknown stat %d\n", statcode));
3956 return;
3957 }
3958 STAM_PROFILE_ADV_START(pStat, a);
3959}
3960
3961
3962void remR3ProfileStop(int statcode)
3963{
3964 STAMPROFILEADV *pStat;
3965 switch(statcode)
3966 {
3967 case STATS_EMULATE_SINGLE_INSTR:
3968 pStat = &gStatExecuteSingleInstr;
3969 break;
3970 case STATS_QEMU_COMPILATION:
3971 pStat = &gStatCompilationQEmu;
3972 break;
3973 case STATS_QEMU_RUN_EMULATED_CODE:
3974 pStat = &gStatRunCodeQEmu;
3975 break;
3976 case STATS_QEMU_TOTAL:
3977 pStat = &gStatTotalTimeQEmu;
3978 break;
3979 case STATS_QEMU_RUN_TIMERS:
3980 pStat = &gStatTimers;
3981 break;
3982 case STATS_TLB_LOOKUP:
3983 pStat= &gStatTBLookup;
3984 break;
3985 case STATS_IRQ_HANDLING:
3986 pStat= &gStatIRQ;
3987 break;
3988 case STATS_RAW_CHECK:
3989 pStat = &gStatRawCheck;
3990 break;
3991 default:
3992 AssertMsgFailed(("unknown stat %d\n", statcode));
3993 return;
3994 }
3995 STAM_PROFILE_ADV_STOP(pStat, a);
3996}
3997#endif
3998
3999/**
4000 * Raise an RC, force rem exit.
4001 *
4002 * @param pVM VM handle.
4003 * @param rc The rc.
4004 */
4005void remR3RaiseRC(PVM pVM, int rc)
4006{
4007 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
4008 Assert(pVM->rem.s.fInREM);
4009 VM_ASSERT_EMT(pVM);
4010 pVM->rem.s.rc = rc;
4011 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
4012}
4013
4014
4015/* -+- timers -+- */
4016
4017uint64_t cpu_get_tsc(CPUX86State *env)
4018{
4019 return TMCpuTickGet(env->pVM);
4020}
4021
4022
4023/* -+- interrupts -+- */
4024
4025void cpu_set_ferr(CPUX86State *env)
4026{
4027 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
4028 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4029}
4030
4031int cpu_get_pic_interrupt(CPUState *env)
4032{
4033 uint8_t u8Interrupt;
4034 int rc;
4035
4036 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4037 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4038 * with the (a)pic.
4039 */
4040 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4041 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4042 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4043 * remove this kludge. */
4044 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4045 {
4046 rc = VINF_SUCCESS;
4047 Assert(env->pVM->rem.s.u32PendingInterrupt >= 0 && env->pVM->rem.s.u32PendingInterrupt <= 255);
4048 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4049 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4050 }
4051 else
4052 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4053
4054 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
4055 if (VBOX_SUCCESS(rc))
4056 {
4057 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4058 env->interrupt_request |= CPU_INTERRUPT_HARD;
4059 return u8Interrupt;
4060 }
4061 return -1;
4062}
4063
4064
4065/* -+- local apic -+- */
4066
4067void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4068{
4069 int rc = PDMApicSetBase(env->pVM, val);
4070 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
4071}
4072
4073uint64_t cpu_get_apic_base(CPUX86State *env)
4074{
4075 uint64_t u64;
4076 int rc = PDMApicGetBase(env->pVM, &u64);
4077 if (VBOX_SUCCESS(rc))
4078 {
4079 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4080 return u64;
4081 }
4082 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
4083 return 0;
4084}
4085
4086void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4087{
4088 int rc = PDMApicSetTPR(env->pVM, val);
4089 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
4090}
4091
4092uint8_t cpu_get_apic_tpr(CPUX86State *env)
4093{
4094 uint8_t u8;
4095 int rc = PDMApicGetTPR(env->pVM, &u8);
4096 if (VBOX_SUCCESS(rc))
4097 {
4098 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4099 return u8;
4100 }
4101 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
4102 return 0;
4103}
4104
4105
4106/* -+- I/O Ports -+- */
4107
4108#undef LOG_GROUP
4109#define LOG_GROUP LOG_GROUP_REM_IOPORT
4110
4111void cpu_outb(CPUState *env, int addr, int val)
4112{
4113 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4114 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4115
4116 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4117 if (rc == VINF_SUCCESS)
4118 return;
4119 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4120 {
4121 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4122 remR3RaiseRC(env->pVM, rc);
4123 return;
4124 }
4125 remAbort(rc, __FUNCTION__);
4126}
4127
4128void cpu_outw(CPUState *env, int addr, int val)
4129{
4130 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4131 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4132 if (rc == VINF_SUCCESS)
4133 return;
4134 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4135 {
4136 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4137 remR3RaiseRC(env->pVM, rc);
4138 return;
4139 }
4140 remAbort(rc, __FUNCTION__);
4141}
4142
4143void cpu_outl(CPUState *env, int addr, int val)
4144{
4145 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4146 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4147 if (rc == VINF_SUCCESS)
4148 return;
4149 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4150 {
4151 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4152 remR3RaiseRC(env->pVM, rc);
4153 return;
4154 }
4155 remAbort(rc, __FUNCTION__);
4156}
4157
4158int cpu_inb(CPUState *env, int addr)
4159{
4160 uint32_t u32 = 0;
4161 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4162 if (rc == VINF_SUCCESS)
4163 {
4164 if (/*addr != 0x61 && */addr != 0x71)
4165 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4166 return (int)u32;
4167 }
4168 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4169 {
4170 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4171 remR3RaiseRC(env->pVM, rc);
4172 return (int)u32;
4173 }
4174 remAbort(rc, __FUNCTION__);
4175 return 0xff;
4176}
4177
4178int cpu_inw(CPUState *env, int addr)
4179{
4180 uint32_t u32 = 0;
4181 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4182 if (rc == VINF_SUCCESS)
4183 {
4184 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4185 return (int)u32;
4186 }
4187 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4188 {
4189 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4190 remR3RaiseRC(env->pVM, rc);
4191 return (int)u32;
4192 }
4193 remAbort(rc, __FUNCTION__);
4194 return 0xffff;
4195}
4196
4197int cpu_inl(CPUState *env, int addr)
4198{
4199 uint32_t u32 = 0;
4200 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4201 if (rc == VINF_SUCCESS)
4202 {
4203//if (addr==0x01f0 && u32 == 0x6b6d)
4204// loglevel = ~0;
4205 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4206 return (int)u32;
4207 }
4208 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4209 {
4210 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4211 remR3RaiseRC(env->pVM, rc);
4212 return (int)u32;
4213 }
4214 remAbort(rc, __FUNCTION__);
4215 return 0xffffffff;
4216}
4217
4218#undef LOG_GROUP
4219#define LOG_GROUP LOG_GROUP_REM
4220
4221
4222/* -+- helpers and misc other interfaces -+- */
4223
4224/**
4225 * Perform the CPUID instruction.
4226 *
4227 * ASMCpuId cannot be invoked from some source files where this is used because of global
4228 * register allocations.
4229 *
4230 * @param env Pointer to the recompiler CPU structure.
4231 * @param uOperator CPUID operation (eax).
4232 * @param pvEAX Where to store eax.
4233 * @param pvEBX Where to store ebx.
4234 * @param pvECX Where to store ecx.
4235 * @param pvEDX Where to store edx.
4236 */
4237void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4238{
4239 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4240}
4241
4242
4243#if 0 /* not used */
4244/**
4245 * Interface for qemu hardware to report back fatal errors.
4246 */
4247void hw_error(const char *pszFormat, ...)
4248{
4249 /*
4250 * Bitch about it.
4251 */
4252 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4253 * this in my Odin32 tree at home! */
4254 va_list args;
4255 va_start(args, pszFormat);
4256 RTLogPrintf("fatal error in virtual hardware:");
4257 RTLogPrintfV(pszFormat, args);
4258 va_end(args);
4259 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4260
4261 /*
4262 * If we're in REM context we'll sync back the state before 'jumping' to
4263 * the EMs failure handling.
4264 */
4265 PVM pVM = cpu_single_env->pVM;
4266 if (pVM->rem.s.fInREM)
4267 REMR3StateBack(pVM);
4268 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4269 AssertMsgFailed(("EMR3FatalError returned!\n"));
4270}
4271#endif
4272
4273/**
4274 * Interface for the qemu cpu to report unhandled situation
4275 * raising a fatal VM error.
4276 */
4277void cpu_abort(CPUState *env, const char *pszFormat, ...)
4278{
4279 /*
4280 * Bitch about it.
4281 */
4282 RTLogFlags(NULL, "nodisabled nobuffered");
4283 va_list args;
4284 va_start(args, pszFormat);
4285 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4286 va_end(args);
4287 va_start(args, pszFormat);
4288 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4289 va_end(args);
4290
4291 /*
4292 * If we're in REM context we'll sync back the state before 'jumping' to
4293 * the EMs failure handling.
4294 */
4295 PVM pVM = cpu_single_env->pVM;
4296 if (pVM->rem.s.fInREM)
4297 REMR3StateBack(pVM);
4298 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4299 AssertMsgFailed(("EMR3FatalError returned!\n"));
4300}
4301
4302
4303/**
4304 * Aborts the VM.
4305 *
4306 * @param rc VBox error code.
4307 * @param pszTip Hint about why/when this happend.
4308 */
4309static void remAbort(int rc, const char *pszTip)
4310{
4311 /*
4312 * Bitch about it.
4313 */
4314 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4315 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4316
4317 /*
4318 * Jump back to where we entered the recompiler.
4319 */
4320 PVM pVM = cpu_single_env->pVM;
4321 if (pVM->rem.s.fInREM)
4322 REMR3StateBack(pVM);
4323 EMR3FatalError(pVM, rc);
4324 AssertMsgFailed(("EMR3FatalError returned!\n"));
4325}
4326
4327
4328/**
4329 * Dumps a linux system call.
4330 * @param pVM VM handle.
4331 */
4332void remR3DumpLnxSyscall(PVM pVM)
4333{
4334 static const char *apsz[] =
4335 {
4336 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4337 "sys_exit",
4338 "sys_fork",
4339 "sys_read",
4340 "sys_write",
4341 "sys_open", /* 5 */
4342 "sys_close",
4343 "sys_waitpid",
4344 "sys_creat",
4345 "sys_link",
4346 "sys_unlink", /* 10 */
4347 "sys_execve",
4348 "sys_chdir",
4349 "sys_time",
4350 "sys_mknod",
4351 "sys_chmod", /* 15 */
4352 "sys_lchown16",
4353 "sys_ni_syscall", /* old break syscall holder */
4354 "sys_stat",
4355 "sys_lseek",
4356 "sys_getpid", /* 20 */
4357 "sys_mount",
4358 "sys_oldumount",
4359 "sys_setuid16",
4360 "sys_getuid16",
4361 "sys_stime", /* 25 */
4362 "sys_ptrace",
4363 "sys_alarm",
4364 "sys_fstat",
4365 "sys_pause",
4366 "sys_utime", /* 30 */
4367 "sys_ni_syscall", /* old stty syscall holder */
4368 "sys_ni_syscall", /* old gtty syscall holder */
4369 "sys_access",
4370 "sys_nice",
4371 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4372 "sys_sync",
4373 "sys_kill",
4374 "sys_rename",
4375 "sys_mkdir",
4376 "sys_rmdir", /* 40 */
4377 "sys_dup",
4378 "sys_pipe",
4379 "sys_times",
4380 "sys_ni_syscall", /* old prof syscall holder */
4381 "sys_brk", /* 45 */
4382 "sys_setgid16",
4383 "sys_getgid16",
4384 "sys_signal",
4385 "sys_geteuid16",
4386 "sys_getegid16", /* 50 */
4387 "sys_acct",
4388 "sys_umount", /* recycled never used phys() */
4389 "sys_ni_syscall", /* old lock syscall holder */
4390 "sys_ioctl",
4391 "sys_fcntl", /* 55 */
4392 "sys_ni_syscall", /* old mpx syscall holder */
4393 "sys_setpgid",
4394 "sys_ni_syscall", /* old ulimit syscall holder */
4395 "sys_olduname",
4396 "sys_umask", /* 60 */
4397 "sys_chroot",
4398 "sys_ustat",
4399 "sys_dup2",
4400 "sys_getppid",
4401 "sys_getpgrp", /* 65 */
4402 "sys_setsid",
4403 "sys_sigaction",
4404 "sys_sgetmask",
4405 "sys_ssetmask",
4406 "sys_setreuid16", /* 70 */
4407 "sys_setregid16",
4408 "sys_sigsuspend",
4409 "sys_sigpending",
4410 "sys_sethostname",
4411 "sys_setrlimit", /* 75 */
4412 "sys_old_getrlimit",
4413 "sys_getrusage",
4414 "sys_gettimeofday",
4415 "sys_settimeofday",
4416 "sys_getgroups16", /* 80 */
4417 "sys_setgroups16",
4418 "old_select",
4419 "sys_symlink",
4420 "sys_lstat",
4421 "sys_readlink", /* 85 */
4422 "sys_uselib",
4423 "sys_swapon",
4424 "sys_reboot",
4425 "old_readdir",
4426 "old_mmap", /* 90 */
4427 "sys_munmap",
4428 "sys_truncate",
4429 "sys_ftruncate",
4430 "sys_fchmod",
4431 "sys_fchown16", /* 95 */
4432 "sys_getpriority",
4433 "sys_setpriority",
4434 "sys_ni_syscall", /* old profil syscall holder */
4435 "sys_statfs",
4436 "sys_fstatfs", /* 100 */
4437 "sys_ioperm",
4438 "sys_socketcall",
4439 "sys_syslog",
4440 "sys_setitimer",
4441 "sys_getitimer", /* 105 */
4442 "sys_newstat",
4443 "sys_newlstat",
4444 "sys_newfstat",
4445 "sys_uname",
4446 "sys_iopl", /* 110 */
4447 "sys_vhangup",
4448 "sys_ni_syscall", /* old "idle" system call */
4449 "sys_vm86old",
4450 "sys_wait4",
4451 "sys_swapoff", /* 115 */
4452 "sys_sysinfo",
4453 "sys_ipc",
4454 "sys_fsync",
4455 "sys_sigreturn",
4456 "sys_clone", /* 120 */
4457 "sys_setdomainname",
4458 "sys_newuname",
4459 "sys_modify_ldt",
4460 "sys_adjtimex",
4461 "sys_mprotect", /* 125 */
4462 "sys_sigprocmask",
4463 "sys_ni_syscall", /* old "create_module" */
4464 "sys_init_module",
4465 "sys_delete_module",
4466 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4467 "sys_quotactl",
4468 "sys_getpgid",
4469 "sys_fchdir",
4470 "sys_bdflush",
4471 "sys_sysfs", /* 135 */
4472 "sys_personality",
4473 "sys_ni_syscall", /* reserved for afs_syscall */
4474 "sys_setfsuid16",
4475 "sys_setfsgid16",
4476 "sys_llseek", /* 140 */
4477 "sys_getdents",
4478 "sys_select",
4479 "sys_flock",
4480 "sys_msync",
4481 "sys_readv", /* 145 */
4482 "sys_writev",
4483 "sys_getsid",
4484 "sys_fdatasync",
4485 "sys_sysctl",
4486 "sys_mlock", /* 150 */
4487 "sys_munlock",
4488 "sys_mlockall",
4489 "sys_munlockall",
4490 "sys_sched_setparam",
4491 "sys_sched_getparam", /* 155 */
4492 "sys_sched_setscheduler",
4493 "sys_sched_getscheduler",
4494 "sys_sched_yield",
4495 "sys_sched_get_priority_max",
4496 "sys_sched_get_priority_min", /* 160 */
4497 "sys_sched_rr_get_interval",
4498 "sys_nanosleep",
4499 "sys_mremap",
4500 "sys_setresuid16",
4501 "sys_getresuid16", /* 165 */
4502 "sys_vm86",
4503 "sys_ni_syscall", /* Old sys_query_module */
4504 "sys_poll",
4505 "sys_nfsservctl",
4506 "sys_setresgid16", /* 170 */
4507 "sys_getresgid16",
4508 "sys_prctl",
4509 "sys_rt_sigreturn",
4510 "sys_rt_sigaction",
4511 "sys_rt_sigprocmask", /* 175 */
4512 "sys_rt_sigpending",
4513 "sys_rt_sigtimedwait",
4514 "sys_rt_sigqueueinfo",
4515 "sys_rt_sigsuspend",
4516 "sys_pread64", /* 180 */
4517 "sys_pwrite64",
4518 "sys_chown16",
4519 "sys_getcwd",
4520 "sys_capget",
4521 "sys_capset", /* 185 */
4522 "sys_sigaltstack",
4523 "sys_sendfile",
4524 "sys_ni_syscall", /* reserved for streams1 */
4525 "sys_ni_syscall", /* reserved for streams2 */
4526 "sys_vfork", /* 190 */
4527 "sys_getrlimit",
4528 "sys_mmap2",
4529 "sys_truncate64",
4530 "sys_ftruncate64",
4531 "sys_stat64", /* 195 */
4532 "sys_lstat64",
4533 "sys_fstat64",
4534 "sys_lchown",
4535 "sys_getuid",
4536 "sys_getgid", /* 200 */
4537 "sys_geteuid",
4538 "sys_getegid",
4539 "sys_setreuid",
4540 "sys_setregid",
4541 "sys_getgroups", /* 205 */
4542 "sys_setgroups",
4543 "sys_fchown",
4544 "sys_setresuid",
4545 "sys_getresuid",
4546 "sys_setresgid", /* 210 */
4547 "sys_getresgid",
4548 "sys_chown",
4549 "sys_setuid",
4550 "sys_setgid",
4551 "sys_setfsuid", /* 215 */
4552 "sys_setfsgid",
4553 "sys_pivot_root",
4554 "sys_mincore",
4555 "sys_madvise",
4556 "sys_getdents64", /* 220 */
4557 "sys_fcntl64",
4558 "sys_ni_syscall", /* reserved for TUX */
4559 "sys_ni_syscall",
4560 "sys_gettid",
4561 "sys_readahead", /* 225 */
4562 "sys_setxattr",
4563 "sys_lsetxattr",
4564 "sys_fsetxattr",
4565 "sys_getxattr",
4566 "sys_lgetxattr", /* 230 */
4567 "sys_fgetxattr",
4568 "sys_listxattr",
4569 "sys_llistxattr",
4570 "sys_flistxattr",
4571 "sys_removexattr", /* 235 */
4572 "sys_lremovexattr",
4573 "sys_fremovexattr",
4574 "sys_tkill",
4575 "sys_sendfile64",
4576 "sys_futex", /* 240 */
4577 "sys_sched_setaffinity",
4578 "sys_sched_getaffinity",
4579 "sys_set_thread_area",
4580 "sys_get_thread_area",
4581 "sys_io_setup", /* 245 */
4582 "sys_io_destroy",
4583 "sys_io_getevents",
4584 "sys_io_submit",
4585 "sys_io_cancel",
4586 "sys_fadvise64", /* 250 */
4587 "sys_ni_syscall",
4588 "sys_exit_group",
4589 "sys_lookup_dcookie",
4590 "sys_epoll_create",
4591 "sys_epoll_ctl", /* 255 */
4592 "sys_epoll_wait",
4593 "sys_remap_file_pages",
4594 "sys_set_tid_address",
4595 "sys_timer_create",
4596 "sys_timer_settime", /* 260 */
4597 "sys_timer_gettime",
4598 "sys_timer_getoverrun",
4599 "sys_timer_delete",
4600 "sys_clock_settime",
4601 "sys_clock_gettime", /* 265 */
4602 "sys_clock_getres",
4603 "sys_clock_nanosleep",
4604 "sys_statfs64",
4605 "sys_fstatfs64",
4606 "sys_tgkill", /* 270 */
4607 "sys_utimes",
4608 "sys_fadvise64_64",
4609 "sys_ni_syscall" /* sys_vserver */
4610 };
4611
4612 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4613 switch (uEAX)
4614 {
4615 default:
4616 if (uEAX < ELEMENTS(apsz))
4617 Log(("REM: linux syscall %3d: %s (eip=%VGv ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4618 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4619 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4620 else
4621 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4622 break;
4623
4624 }
4625}
4626
4627
4628/**
4629 * Dumps an OpenBSD system call.
4630 * @param pVM VM handle.
4631 */
4632void remR3DumpOBsdSyscall(PVM pVM)
4633{
4634 static const char *apsz[] =
4635 {
4636 "SYS_syscall", //0
4637 "SYS_exit", //1
4638 "SYS_fork", //2
4639 "SYS_read", //3
4640 "SYS_write", //4
4641 "SYS_open", //5
4642 "SYS_close", //6
4643 "SYS_wait4", //7
4644 "SYS_8",
4645 "SYS_link", //9
4646 "SYS_unlink", //10
4647 "SYS_11",
4648 "SYS_chdir", //12
4649 "SYS_fchdir", //13
4650 "SYS_mknod", //14
4651 "SYS_chmod", //15
4652 "SYS_chown", //16
4653 "SYS_break", //17
4654 "SYS_18",
4655 "SYS_19",
4656 "SYS_getpid", //20
4657 "SYS_mount", //21
4658 "SYS_unmount", //22
4659 "SYS_setuid", //23
4660 "SYS_getuid", //24
4661 "SYS_geteuid", //25
4662 "SYS_ptrace", //26
4663 "SYS_recvmsg", //27
4664 "SYS_sendmsg", //28
4665 "SYS_recvfrom", //29
4666 "SYS_accept", //30
4667 "SYS_getpeername", //31
4668 "SYS_getsockname", //32
4669 "SYS_access", //33
4670 "SYS_chflags", //34
4671 "SYS_fchflags", //35
4672 "SYS_sync", //36
4673 "SYS_kill", //37
4674 "SYS_38",
4675 "SYS_getppid", //39
4676 "SYS_40",
4677 "SYS_dup", //41
4678 "SYS_opipe", //42
4679 "SYS_getegid", //43
4680 "SYS_profil", //44
4681 "SYS_ktrace", //45
4682 "SYS_sigaction", //46
4683 "SYS_getgid", //47
4684 "SYS_sigprocmask", //48
4685 "SYS_getlogin", //49
4686 "SYS_setlogin", //50
4687 "SYS_acct", //51
4688 "SYS_sigpending", //52
4689 "SYS_osigaltstack", //53
4690 "SYS_ioctl", //54
4691 "SYS_reboot", //55
4692 "SYS_revoke", //56
4693 "SYS_symlink", //57
4694 "SYS_readlink", //58
4695 "SYS_execve", //59
4696 "SYS_umask", //60
4697 "SYS_chroot", //61
4698 "SYS_62",
4699 "SYS_63",
4700 "SYS_64",
4701 "SYS_65",
4702 "SYS_vfork", //66
4703 "SYS_67",
4704 "SYS_68",
4705 "SYS_sbrk", //69
4706 "SYS_sstk", //70
4707 "SYS_61",
4708 "SYS_vadvise", //72
4709 "SYS_munmap", //73
4710 "SYS_mprotect", //74
4711 "SYS_madvise", //75
4712 "SYS_76",
4713 "SYS_77",
4714 "SYS_mincore", //78
4715 "SYS_getgroups", //79
4716 "SYS_setgroups", //80
4717 "SYS_getpgrp", //81
4718 "SYS_setpgid", //82
4719 "SYS_setitimer", //83
4720 "SYS_84",
4721 "SYS_85",
4722 "SYS_getitimer", //86
4723 "SYS_87",
4724 "SYS_88",
4725 "SYS_89",
4726 "SYS_dup2", //90
4727 "SYS_91",
4728 "SYS_fcntl", //92
4729 "SYS_select", //93
4730 "SYS_94",
4731 "SYS_fsync", //95
4732 "SYS_setpriority", //96
4733 "SYS_socket", //97
4734 "SYS_connect", //98
4735 "SYS_99",
4736 "SYS_getpriority", //100
4737 "SYS_101",
4738 "SYS_102",
4739 "SYS_sigreturn", //103
4740 "SYS_bind", //104
4741 "SYS_setsockopt", //105
4742 "SYS_listen", //106
4743 "SYS_107",
4744 "SYS_108",
4745 "SYS_109",
4746 "SYS_110",
4747 "SYS_sigsuspend", //111
4748 "SYS_112",
4749 "SYS_113",
4750 "SYS_114",
4751 "SYS_115",
4752 "SYS_gettimeofday", //116
4753 "SYS_getrusage", //117
4754 "SYS_getsockopt", //118
4755 "SYS_119",
4756 "SYS_readv", //120
4757 "SYS_writev", //121
4758 "SYS_settimeofday", //122
4759 "SYS_fchown", //123
4760 "SYS_fchmod", //124
4761 "SYS_125",
4762 "SYS_setreuid", //126
4763 "SYS_setregid", //127
4764 "SYS_rename", //128
4765 "SYS_129",
4766 "SYS_130",
4767 "SYS_flock", //131
4768 "SYS_mkfifo", //132
4769 "SYS_sendto", //133
4770 "SYS_shutdown", //134
4771 "SYS_socketpair", //135
4772 "SYS_mkdir", //136
4773 "SYS_rmdir", //137
4774 "SYS_utimes", //138
4775 "SYS_139",
4776 "SYS_adjtime", //140
4777 "SYS_141",
4778 "SYS_142",
4779 "SYS_143",
4780 "SYS_144",
4781 "SYS_145",
4782 "SYS_146",
4783 "SYS_setsid", //147
4784 "SYS_quotactl", //148
4785 "SYS_149",
4786 "SYS_150",
4787 "SYS_151",
4788 "SYS_152",
4789 "SYS_153",
4790 "SYS_154",
4791 "SYS_nfssvc", //155
4792 "SYS_156",
4793 "SYS_157",
4794 "SYS_158",
4795 "SYS_159",
4796 "SYS_160",
4797 "SYS_getfh", //161
4798 "SYS_162",
4799 "SYS_163",
4800 "SYS_164",
4801 "SYS_sysarch", //165
4802 "SYS_166",
4803 "SYS_167",
4804 "SYS_168",
4805 "SYS_169",
4806 "SYS_170",
4807 "SYS_171",
4808 "SYS_172",
4809 "SYS_pread", //173
4810 "SYS_pwrite", //174
4811 "SYS_175",
4812 "SYS_176",
4813 "SYS_177",
4814 "SYS_178",
4815 "SYS_179",
4816 "SYS_180",
4817 "SYS_setgid", //181
4818 "SYS_setegid", //182
4819 "SYS_seteuid", //183
4820 "SYS_lfs_bmapv", //184
4821 "SYS_lfs_markv", //185
4822 "SYS_lfs_segclean", //186
4823 "SYS_lfs_segwait", //187
4824 "SYS_188",
4825 "SYS_189",
4826 "SYS_190",
4827 "SYS_pathconf", //191
4828 "SYS_fpathconf", //192
4829 "SYS_swapctl", //193
4830 "SYS_getrlimit", //194
4831 "SYS_setrlimit", //195
4832 "SYS_getdirentries", //196
4833 "SYS_mmap", //197
4834 "SYS___syscall", //198
4835 "SYS_lseek", //199
4836 "SYS_truncate", //200
4837 "SYS_ftruncate", //201
4838 "SYS___sysctl", //202
4839 "SYS_mlock", //203
4840 "SYS_munlock", //204
4841 "SYS_205",
4842 "SYS_futimes", //206
4843 "SYS_getpgid", //207
4844 "SYS_xfspioctl", //208
4845 "SYS_209",
4846 "SYS_210",
4847 "SYS_211",
4848 "SYS_212",
4849 "SYS_213",
4850 "SYS_214",
4851 "SYS_215",
4852 "SYS_216",
4853 "SYS_217",
4854 "SYS_218",
4855 "SYS_219",
4856 "SYS_220",
4857 "SYS_semget", //221
4858 "SYS_222",
4859 "SYS_223",
4860 "SYS_224",
4861 "SYS_msgget", //225
4862 "SYS_msgsnd", //226
4863 "SYS_msgrcv", //227
4864 "SYS_shmat", //228
4865 "SYS_229",
4866 "SYS_shmdt", //230
4867 "SYS_231",
4868 "SYS_clock_gettime", //232
4869 "SYS_clock_settime", //233
4870 "SYS_clock_getres", //234
4871 "SYS_235",
4872 "SYS_236",
4873 "SYS_237",
4874 "SYS_238",
4875 "SYS_239",
4876 "SYS_nanosleep", //240
4877 "SYS_241",
4878 "SYS_242",
4879 "SYS_243",
4880 "SYS_244",
4881 "SYS_245",
4882 "SYS_246",
4883 "SYS_247",
4884 "SYS_248",
4885 "SYS_249",
4886 "SYS_minherit", //250
4887 "SYS_rfork", //251
4888 "SYS_poll", //252
4889 "SYS_issetugid", //253
4890 "SYS_lchown", //254
4891 "SYS_getsid", //255
4892 "SYS_msync", //256
4893 "SYS_257",
4894 "SYS_258",
4895 "SYS_259",
4896 "SYS_getfsstat", //260
4897 "SYS_statfs", //261
4898 "SYS_fstatfs", //262
4899 "SYS_pipe", //263
4900 "SYS_fhopen", //264
4901 "SYS_265",
4902 "SYS_fhstatfs", //266
4903 "SYS_preadv", //267
4904 "SYS_pwritev", //268
4905 "SYS_kqueue", //269
4906 "SYS_kevent", //270
4907 "SYS_mlockall", //271
4908 "SYS_munlockall", //272
4909 "SYS_getpeereid", //273
4910 "SYS_274",
4911 "SYS_275",
4912 "SYS_276",
4913 "SYS_277",
4914 "SYS_278",
4915 "SYS_279",
4916 "SYS_280",
4917 "SYS_getresuid", //281
4918 "SYS_setresuid", //282
4919 "SYS_getresgid", //283
4920 "SYS_setresgid", //284
4921 "SYS_285",
4922 "SYS_mquery", //286
4923 "SYS_closefrom", //287
4924 "SYS_sigaltstack", //288
4925 "SYS_shmget", //289
4926 "SYS_semop", //290
4927 "SYS_stat", //291
4928 "SYS_fstat", //292
4929 "SYS_lstat", //293
4930 "SYS_fhstat", //294
4931 "SYS___semctl", //295
4932 "SYS_shmctl", //296
4933 "SYS_msgctl", //297
4934 "SYS_MAXSYSCALL", //298
4935 //299
4936 //300
4937 };
4938 uint32_t uEAX;
4939#ifndef DEBUG_bird
4940 if (!LogIsEnabled())
4941 return;
4942#endif
4943 uEAX = CPUMGetGuestEAX(pVM);
4944 switch (uEAX)
4945 {
4946 default:
4947 if (uEAX < ELEMENTS(apsz))
4948 {
4949 uint32_t au32Args[8] = {0};
4950 PGMPhysReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
4951 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
4952 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
4953 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
4954 }
4955 else
4956 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
4957 break;
4958 }
4959}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette