VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 12023

Last change on this file since 12023 was 12023, checked in by vboxsync, 16 years ago

Must sync the HF_LMA_MASK too

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 155.1 KB
Line 
1/* $Id: VBoxRecompiler.c 12023 2008-09-03 09:52:16Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "exec-all.h"
29
30#include <VBox/rem.h>
31#include <VBox/vmapi.h>
32#include <VBox/tm.h>
33#include <VBox/ssm.h>
34#include <VBox/em.h>
35#include <VBox/trpm.h>
36#include <VBox/iom.h>
37#include <VBox/mm.h>
38#include <VBox/pgm.h>
39#include <VBox/pdm.h>
40#include <VBox/dbgf.h>
41#include <VBox/dbg.h>
42#include <VBox/hwaccm.h>
43#include <VBox/patm.h>
44#include <VBox/csam.h>
45#include "REMInternal.h"
46#include <VBox/vm.h>
47#include <VBox/param.h>
48#include <VBox/err.h>
49
50#include <VBox/log.h>
51#include <iprt/semaphore.h>
52#include <iprt/asm.h>
53#include <iprt/assert.h>
54#include <iprt/thread.h>
55#include <iprt/string.h>
56
57/* Don't wanna include everything. */
58extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
59extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
60extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
61extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
62extern void tlb_flush(CPUState *env, int flush_global);
63extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
64extern void sync_ldtr(CPUX86State *env1, int selector);
65extern int sync_tr(CPUX86State *env1, int selector);
66
67#ifdef VBOX_STRICT
68unsigned long get_phys_page_offset(target_ulong addr);
69#endif
70
71
72/*******************************************************************************
73* Defined Constants And Macros *
74*******************************************************************************/
75
76/** Copy 80-bit fpu register at pSrc to pDst.
77 * This is probably faster than *calling* memcpy.
78 */
79#define REM_COPY_FPU_REG(pDst, pSrc) \
80 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
81
82
83/*******************************************************************************
84* Internal Functions *
85*******************************************************************************/
86static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
87static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
88static void remR3StateUpdate(PVM pVM);
89
90static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
91static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
92static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
93static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
94static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
95static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
96
97static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
98static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
99static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
100static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
101static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
102static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
103
104
105/*******************************************************************************
106* Global Variables *
107*******************************************************************************/
108
109/** @todo Move stats to REM::s some rainy day we have nothing do to. */
110#ifdef VBOX_WITH_STATISTICS
111static STAMPROFILEADV gStatExecuteSingleInstr;
112static STAMPROFILEADV gStatCompilationQEmu;
113static STAMPROFILEADV gStatRunCodeQEmu;
114static STAMPROFILEADV gStatTotalTimeQEmu;
115static STAMPROFILEADV gStatTimers;
116static STAMPROFILEADV gStatTBLookup;
117static STAMPROFILEADV gStatIRQ;
118static STAMPROFILEADV gStatRawCheck;
119static STAMPROFILEADV gStatMemRead;
120static STAMPROFILEADV gStatMemWrite;
121static STAMPROFILE gStatGCPhys2HCVirt;
122static STAMPROFILE gStatHCVirt2GCPhys;
123static STAMCOUNTER gStatCpuGetTSC;
124static STAMCOUNTER gStatRefuseTFInhibit;
125static STAMCOUNTER gStatRefuseVM86;
126static STAMCOUNTER gStatRefusePaging;
127static STAMCOUNTER gStatRefusePAE;
128static STAMCOUNTER gStatRefuseIOPLNot0;
129static STAMCOUNTER gStatRefuseIF0;
130static STAMCOUNTER gStatRefuseCode16;
131static STAMCOUNTER gStatRefuseWP0;
132static STAMCOUNTER gStatRefuseRing1or2;
133static STAMCOUNTER gStatRefuseCanExecute;
134static STAMCOUNTER gStatREMGDTChange;
135static STAMCOUNTER gStatREMIDTChange;
136static STAMCOUNTER gStatREMLDTRChange;
137static STAMCOUNTER gStatREMTRChange;
138static STAMCOUNTER gStatSelOutOfSync[6];
139static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
140#endif
141
142/*
143 * Global stuff.
144 */
145
146/** MMIO read callbacks. */
147CPUReadMemoryFunc *g_apfnMMIORead[3] =
148{
149 remR3MMIOReadU8,
150 remR3MMIOReadU16,
151 remR3MMIOReadU32
152};
153
154/** MMIO write callbacks. */
155CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
156{
157 remR3MMIOWriteU8,
158 remR3MMIOWriteU16,
159 remR3MMIOWriteU32
160};
161
162/** Handler read callbacks. */
163CPUReadMemoryFunc *g_apfnHandlerRead[3] =
164{
165 remR3HandlerReadU8,
166 remR3HandlerReadU16,
167 remR3HandlerReadU32
168};
169
170/** Handler write callbacks. */
171CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
172{
173 remR3HandlerWriteU8,
174 remR3HandlerWriteU16,
175 remR3HandlerWriteU32
176};
177
178
179#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDWS) && defined(RT_ARCH_AMD64))
180/*
181 * Debugger commands.
182 */
183static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
184
185/** '.remstep' arguments. */
186static const DBGCVARDESC g_aArgRemStep[] =
187{
188 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
189 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
190};
191
192/** Command descriptors. */
193static const DBGCCMD g_aCmds[] =
194{
195 {
196 .pszCmd ="remstep",
197 .cArgsMin = 0,
198 .cArgsMax = 1,
199 .paArgDescs = &g_aArgRemStep[0],
200 .cArgDescs = ELEMENTS(g_aArgRemStep),
201 .pResultDesc = NULL,
202 .fFlags = 0,
203 .pfnHandler = remR3CmdDisasEnableStepping,
204 .pszSyntax = "[on/off]",
205 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
206 "If no arguments show the current state."
207 }
208};
209#endif
210
211
212/* Instantiate the structure signatures. */
213#define REM_STRUCT_OP 0
214#include "Sun/structs.h"
215
216
217
218/*******************************************************************************
219* Internal Functions *
220*******************************************************************************/
221static void remAbort(int rc, const char *pszTip);
222extern int testmath(void);
223
224/* Put them here to avoid unused variable warning. */
225AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
226#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
227//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
228/* Why did this have to be identical?? */
229AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
230#else
231AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
232#endif
233
234
235/**
236 * Initializes the REM.
237 *
238 * @returns VBox status code.
239 * @param pVM The VM to operate on.
240 */
241REMR3DECL(int) REMR3Init(PVM pVM)
242{
243 uint32_t u32Dummy;
244 unsigned i;
245
246 /*
247 * Assert sanity.
248 */
249 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
250 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
251 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
252#if defined(DEBUG) && !defined(RT_OS_SOLARIS) /// @todo fix the solaris math stuff.
253 Assert(!testmath());
254#endif
255 ASSERT_STRUCT_TABLE(Misc);
256 ASSERT_STRUCT_TABLE(TLB);
257 ASSERT_STRUCT_TABLE(SegmentCache);
258 ASSERT_STRUCT_TABLE(XMMReg);
259 ASSERT_STRUCT_TABLE(MMXReg);
260 ASSERT_STRUCT_TABLE(float_status);
261 ASSERT_STRUCT_TABLE(float32u);
262 ASSERT_STRUCT_TABLE(float64u);
263 ASSERT_STRUCT_TABLE(floatx80u);
264 ASSERT_STRUCT_TABLE(CPUState);
265
266 /*
267 * Init some internal data members.
268 */
269 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
270 pVM->rem.s.Env.pVM = pVM;
271#ifdef CPU_RAW_MODE_INIT
272 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
273#endif
274
275 /* ctx. */
276 int rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
277 if (VBOX_FAILURE(rc))
278 {
279 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
280 return rc;
281 }
282 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
283
284 /* ignore all notifications */
285 pVM->rem.s.fIgnoreAll = true;
286
287 /*
288 * Init the recompiler.
289 */
290 if (!cpu_x86_init(&pVM->rem.s.Env))
291 {
292 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
293 return VERR_GENERAL_FAILURE;
294 }
295 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
296 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
297
298 /* allocate code buffer for single instruction emulation. */
299 pVM->rem.s.Env.cbCodeBuffer = 4096;
300 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
301 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
302
303 /* finally, set the cpu_single_env global. */
304 cpu_single_env = &pVM->rem.s.Env;
305
306 /* Nothing is pending by default */
307 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
308
309 /*
310 * Register ram types.
311 */
312 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
313 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
314 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
315 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
316 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
317
318 /* stop ignoring. */
319 pVM->rem.s.fIgnoreAll = false;
320
321 /*
322 * Register the saved state data unit.
323 */
324 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
325 NULL, remR3Save, NULL,
326 NULL, remR3Load, NULL);
327 if (VBOX_FAILURE(rc))
328 return rc;
329
330#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
331 /*
332 * Debugger commands.
333 */
334 static bool fRegisteredCmds = false;
335 if (!fRegisteredCmds)
336 {
337 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
338 if (VBOX_SUCCESS(rc))
339 fRegisteredCmds = true;
340 }
341#endif
342
343#ifdef VBOX_WITH_STATISTICS
344 /*
345 * Statistics.
346 */
347 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
348 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
349 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
350 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
351 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
352 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
353 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
354 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
355 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
356 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
357 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
358 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
359
360 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
361
362 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
363 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
364 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
365 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
366 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
367 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
368 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
369 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
370 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
371 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
372
373 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
374 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
375 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
376 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
377
378 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
379 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
380 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
381 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
382 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
383 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
384
385 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
386 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
387 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
388 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
389 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
390 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
391
392
393#endif
394
395#ifdef DEBUG_ALL_LOGGING
396 loglevel = ~0;
397#endif
398
399 return rc;
400}
401
402
403/**
404 * Terminates the REM.
405 *
406 * Termination means cleaning up and freeing all resources,
407 * the VM it self is at this point powered off or suspended.
408 *
409 * @returns VBox status code.
410 * @param pVM The VM to operate on.
411 */
412REMR3DECL(int) REMR3Term(PVM pVM)
413{
414 return VINF_SUCCESS;
415}
416
417
418/**
419 * The VM is being reset.
420 *
421 * For the REM component this means to call the cpu_reset() and
422 * reinitialize some state variables.
423 *
424 * @param pVM VM handle.
425 */
426REMR3DECL(void) REMR3Reset(PVM pVM)
427{
428 /*
429 * Reset the REM cpu.
430 */
431 pVM->rem.s.fIgnoreAll = true;
432 cpu_reset(&pVM->rem.s.Env);
433 pVM->rem.s.cInvalidatedPages = 0;
434 pVM->rem.s.fIgnoreAll = false;
435
436 /* Clear raw ring 0 init state */
437 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
438}
439
440
441/**
442 * Execute state save operation.
443 *
444 * @returns VBox status code.
445 * @param pVM VM Handle.
446 * @param pSSM SSM operation handle.
447 */
448static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
449{
450 LogFlow(("remR3Save:\n"));
451
452 /*
453 * Save the required CPU Env bits.
454 * (Not much because we're never in REM when doing the save.)
455 */
456 PREM pRem = &pVM->rem.s;
457 Assert(!pRem->fInREM);
458 SSMR3PutU32(pSSM, pRem->Env.hflags);
459 SSMR3PutU32(pSSM, ~0); /* separator */
460
461 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
462 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
463 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
464
465 return SSMR3PutU32(pSSM, ~0); /* terminator */
466}
467
468
469/**
470 * Execute state load operation.
471 *
472 * @returns VBox status code.
473 * @param pVM VM Handle.
474 * @param pSSM SSM operation handle.
475 * @param u32Version Data layout version.
476 */
477static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
478{
479 uint32_t u32Dummy;
480 uint32_t fRawRing0 = false;
481 LogFlow(("remR3Load:\n"));
482
483 /*
484 * Validate version.
485 */
486 if ( u32Version != REM_SAVED_STATE_VERSION
487 && u32Version != REM_SAVED_STATE_VERSION_VER1_6)
488 {
489 AssertMsgFailed(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
490 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
491 }
492
493 /*
494 * Do a reset to be on the safe side...
495 */
496 REMR3Reset(pVM);
497
498 /*
499 * Ignore all ignorable notifications.
500 * (Not doing this will cause serious trouble.)
501 */
502 pVM->rem.s.fIgnoreAll = true;
503
504 /*
505 * Load the required CPU Env bits.
506 * (Not much because we're never in REM when doing the save.)
507 */
508 PREM pRem = &pVM->rem.s;
509 Assert(!pRem->fInREM);
510 SSMR3GetU32(pSSM, &pRem->Env.hflags);
511 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
512 {
513 /* Redundant REM CPU state has to be loaded, but can be ignored. */
514 CPUX86State_Ver16 temp;
515 SSMR3GetMem(pSSM, &temp, RT_OFFSETOF(CPUX86State_Ver16, jmp_env));
516 }
517
518 uint32_t u32Sep;
519 int rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
520 if (VBOX_FAILURE(rc))
521 return rc;
522 if (u32Sep != ~0)
523 {
524 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
525 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
526 }
527
528 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
529 SSMR3GetUInt(pSSM, &fRawRing0);
530 if (fRawRing0)
531 pRem->Env.state |= CPU_RAW_RING0;
532
533 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
534 {
535 /*
536 * Load the REM stuff.
537 */
538 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
539 if (VBOX_FAILURE(rc))
540 return rc;
541 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
542 {
543 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
544 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
545 }
546 unsigned i;
547 for (i = 0; i < pRem->cInvalidatedPages; i++)
548 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
549 }
550
551 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
552 if (VBOX_FAILURE(rc))
553 return rc;
554
555 /* check the terminator. */
556 rc = SSMR3GetU32(pSSM, &u32Sep);
557 if (VBOX_FAILURE(rc))
558 return rc;
559 if (u32Sep != ~0)
560 {
561 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
562 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
563 }
564
565 /*
566 * Get the CPUID features.
567 */
568 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
569 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
570
571 /*
572 * Sync the Load Flush the TLB
573 */
574 tlb_flush(&pRem->Env, 1);
575
576 /*
577 * Stop ignoring ignornable notifications.
578 */
579 pVM->rem.s.fIgnoreAll = false;
580
581 /*
582 * Sync the whole CPU state when executing code in the recompiler.
583 */
584 CPUMSetChangedFlags(pVM, CPUM_CHANGED_ALL);
585 return VINF_SUCCESS;
586}
587
588
589
590#undef LOG_GROUP
591#define LOG_GROUP LOG_GROUP_REM_RUN
592
593/**
594 * Single steps an instruction in recompiled mode.
595 *
596 * Before calling this function the REM state needs to be in sync with
597 * the VM. Call REMR3State() to perform the sync. It's only necessary
598 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
599 * and after calling REMR3StateBack().
600 *
601 * @returns VBox status code.
602 *
603 * @param pVM VM Handle.
604 */
605REMR3DECL(int) REMR3Step(PVM pVM)
606{
607 /*
608 * Lock the REM - we don't wanna have anyone interrupting us
609 * while stepping - and enabled single stepping. We also ignore
610 * pending interrupts and suchlike.
611 */
612 int interrupt_request = pVM->rem.s.Env.interrupt_request;
613 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
614 pVM->rem.s.Env.interrupt_request = 0;
615 cpu_single_step(&pVM->rem.s.Env, 1);
616
617 /*
618 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
619 */
620 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
621 bool fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
622
623 /*
624 * Execute and handle the return code.
625 * We execute without enabling the cpu tick, so on success we'll
626 * just flip it on and off to make sure it moves
627 */
628 int rc = cpu_exec(&pVM->rem.s.Env);
629 if (rc == EXCP_DEBUG)
630 {
631 TMCpuTickResume(pVM);
632 TMCpuTickPause(pVM);
633 TMVirtualResume(pVM);
634 TMVirtualPause(pVM);
635 rc = VINF_EM_DBG_STEPPED;
636 }
637 else
638 {
639 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
640 switch (rc)
641 {
642 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
643 case EXCP_HLT:
644 case EXCP_HALTED: rc = VINF_EM_HALT; break;
645 case EXCP_RC:
646 rc = pVM->rem.s.rc;
647 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
648 break;
649 default:
650 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
651 rc = VERR_INTERNAL_ERROR;
652 break;
653 }
654 }
655
656 /*
657 * Restore the stuff we changed to prevent interruption.
658 * Unlock the REM.
659 */
660 if (fBp)
661 {
662 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
663 Assert(rc2 == 0); NOREF(rc2);
664 }
665 cpu_single_step(&pVM->rem.s.Env, 0);
666 pVM->rem.s.Env.interrupt_request = interrupt_request;
667
668 return rc;
669}
670
671
672/**
673 * Set a breakpoint using the REM facilities.
674 *
675 * @returns VBox status code.
676 * @param pVM The VM handle.
677 * @param Address The breakpoint address.
678 * @thread The emulation thread.
679 */
680REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
681{
682 VM_ASSERT_EMT(pVM);
683 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
684 {
685 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
686 return VINF_SUCCESS;
687 }
688 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
689 return VERR_REM_NO_MORE_BP_SLOTS;
690}
691
692
693/**
694 * Clears a breakpoint set by REMR3BreakpointSet().
695 *
696 * @returns VBox status code.
697 * @param pVM The VM handle.
698 * @param Address The breakpoint address.
699 * @thread The emulation thread.
700 */
701REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
702{
703 VM_ASSERT_EMT(pVM);
704 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
705 {
706 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
707 return VINF_SUCCESS;
708 }
709 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
710 return VERR_REM_BP_NOT_FOUND;
711}
712
713
714/**
715 * Emulate an instruction.
716 *
717 * This function executes one instruction without letting anyone
718 * interrupt it. This is intended for being called while being in
719 * raw mode and thus will take care of all the state syncing between
720 * REM and the rest.
721 *
722 * @returns VBox status code.
723 * @param pVM VM handle.
724 */
725REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
726{
727 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
728
729 /* Make sure this flag is set; we might never execute remR3CanExecuteRaw in the AMD-V case.
730 * CPU_RAW_HWACC makes sure we never execute interrupt handlers in the recompiler.
731 */
732 if (HWACCMIsEnabled(pVM))
733 pVM->rem.s.Env.state |= CPU_RAW_HWACC;
734
735 /*
736 * Sync the state and enable single instruction / single stepping.
737 */
738 int rc = REMR3State(pVM);
739 if (VBOX_SUCCESS(rc))
740 {
741 int interrupt_request = pVM->rem.s.Env.interrupt_request;
742 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
743 Assert(!pVM->rem.s.Env.singlestep_enabled);
744#if 1
745
746 /*
747 * Now we set the execute single instruction flag and enter the cpu_exec loop.
748 */
749 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
750 rc = cpu_exec(&pVM->rem.s.Env);
751 switch (rc)
752 {
753 /*
754 * Executed without anything out of the way happening.
755 */
756 case EXCP_SINGLE_INSTR:
757 rc = VINF_EM_RESCHEDULE;
758 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
759 break;
760
761 /*
762 * If we take a trap or start servicing a pending interrupt, we might end up here.
763 * (Timer thread or some other thread wishing EMT's attention.)
764 */
765 case EXCP_INTERRUPT:
766 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
767 rc = VINF_EM_RESCHEDULE;
768 break;
769
770 /*
771 * Single step, we assume!
772 * If there was a breakpoint there we're fucked now.
773 */
774 case EXCP_DEBUG:
775 {
776 /* breakpoint or single step? */
777 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
778 int iBP;
779 rc = VINF_EM_DBG_STEPPED;
780 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
781 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
782 {
783 rc = VINF_EM_DBG_BREAKPOINT;
784 break;
785 }
786 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
787 break;
788 }
789
790 /*
791 * hlt instruction.
792 */
793 case EXCP_HLT:
794 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
795 rc = VINF_EM_HALT;
796 break;
797
798 /*
799 * The VM has halted.
800 */
801 case EXCP_HALTED:
802 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
803 rc = VINF_EM_HALT;
804 break;
805
806 /*
807 * Switch to RAW-mode.
808 */
809 case EXCP_EXECUTE_RAW:
810 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
811 rc = VINF_EM_RESCHEDULE_RAW;
812 break;
813
814 /*
815 * Switch to hardware accelerated RAW-mode.
816 */
817 case EXCP_EXECUTE_HWACC:
818 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
819 rc = VINF_EM_RESCHEDULE_HWACC;
820 break;
821
822 /*
823 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
824 */
825 case EXCP_RC:
826 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
827 rc = pVM->rem.s.rc;
828 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
829 break;
830
831 /*
832 * Figure out the rest when they arrive....
833 */
834 default:
835 AssertMsgFailed(("rc=%d\n", rc));
836 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
837 rc = VINF_EM_RESCHEDULE;
838 break;
839 }
840
841 /*
842 * Switch back the state.
843 */
844#else
845 pVM->rem.s.Env.interrupt_request = 0;
846 cpu_single_step(&pVM->rem.s.Env, 1);
847
848 /*
849 * Execute and handle the return code.
850 * We execute without enabling the cpu tick, so on success we'll
851 * just flip it on and off to make sure it moves.
852 *
853 * (We do not use emulate_single_instr() because that doesn't enter the
854 * right way in will cause serious trouble if a longjmp was attempted.)
855 */
856# ifdef DEBUG_bird
857 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
858# endif
859 int cTimesMax = 16384;
860 uint32_t eip = pVM->rem.s.Env.eip;
861 do
862 {
863 rc = cpu_exec(&pVM->rem.s.Env);
864
865 } while ( eip == pVM->rem.s.Env.eip
866 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
867 && --cTimesMax > 0);
868 switch (rc)
869 {
870 /*
871 * Single step, we assume!
872 * If there was a breakpoint there we're fucked now.
873 */
874 case EXCP_DEBUG:
875 {
876 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
877 rc = VINF_EM_RESCHEDULE;
878 break;
879 }
880
881 /*
882 * We cannot be interrupted!
883 */
884 case EXCP_INTERRUPT:
885 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
886 rc = VERR_INTERNAL_ERROR;
887 break;
888
889 /*
890 * hlt instruction.
891 */
892 case EXCP_HLT:
893 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
894 rc = VINF_EM_HALT;
895 break;
896
897 /*
898 * The VM has halted.
899 */
900 case EXCP_HALTED:
901 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
902 rc = VINF_EM_HALT;
903 break;
904
905 /*
906 * Switch to RAW-mode.
907 */
908 case EXCP_EXECUTE_RAW:
909 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
910 rc = VINF_EM_RESCHEDULE_RAW;
911 break;
912
913 /*
914 * Switch to hardware accelerated RAW-mode.
915 */
916 case EXCP_EXECUTE_HWACC:
917 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
918 rc = VINF_EM_RESCHEDULE_HWACC;
919 break;
920
921 /*
922 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
923 */
924 case EXCP_RC:
925 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
926 rc = pVM->rem.s.rc;
927 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
928 break;
929
930 /*
931 * Figure out the rest when they arrive....
932 */
933 default:
934 AssertMsgFailed(("rc=%d\n", rc));
935 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
936 rc = VINF_SUCCESS;
937 break;
938 }
939
940 /*
941 * Switch back the state.
942 */
943 cpu_single_step(&pVM->rem.s.Env, 0);
944#endif
945 pVM->rem.s.Env.interrupt_request = interrupt_request;
946 int rc2 = REMR3StateBack(pVM);
947 AssertRC(rc2);
948 }
949
950 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%08x)\n",
951 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
952 return rc;
953}
954
955
956/**
957 * Runs code in recompiled mode.
958 *
959 * Before calling this function the REM state needs to be in sync with
960 * the VM. Call REMR3State() to perform the sync. It's only necessary
961 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
962 * and after calling REMR3StateBack().
963 *
964 * @returns VBox status code.
965 *
966 * @param pVM VM Handle.
967 */
968REMR3DECL(int) REMR3Run(PVM pVM)
969{
970 Log2(("REMR3Run: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
971 Assert(pVM->rem.s.fInREM);
972
973 int rc = cpu_exec(&pVM->rem.s.Env);
974 switch (rc)
975 {
976 /*
977 * This happens when the execution was interrupted
978 * by an external event, like pending timers.
979 */
980 case EXCP_INTERRUPT:
981 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
982 rc = VINF_SUCCESS;
983 break;
984
985 /*
986 * hlt instruction.
987 */
988 case EXCP_HLT:
989 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
990 rc = VINF_EM_HALT;
991 break;
992
993 /*
994 * The VM has halted.
995 */
996 case EXCP_HALTED:
997 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
998 rc = VINF_EM_HALT;
999 break;
1000
1001 /*
1002 * Breakpoint/single step.
1003 */
1004 case EXCP_DEBUG:
1005 {
1006#if 0//def DEBUG_bird
1007 static int iBP = 0;
1008 printf("howdy, breakpoint! iBP=%d\n", iBP);
1009 switch (iBP)
1010 {
1011 case 0:
1012 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1013 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1014 //pVM->rem.s.Env.interrupt_request = 0;
1015 //pVM->rem.s.Env.exception_index = -1;
1016 //g_fInterruptDisabled = 1;
1017 rc = VINF_SUCCESS;
1018 asm("int3");
1019 break;
1020 default:
1021 asm("int3");
1022 break;
1023 }
1024 iBP++;
1025#else
1026 /* breakpoint or single step? */
1027 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1028 int iBP;
1029 rc = VINF_EM_DBG_STEPPED;
1030 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1031 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1032 {
1033 rc = VINF_EM_DBG_BREAKPOINT;
1034 break;
1035 }
1036 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1037#endif
1038 break;
1039 }
1040
1041 /*
1042 * Switch to RAW-mode.
1043 */
1044 case EXCP_EXECUTE_RAW:
1045 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1046 rc = VINF_EM_RESCHEDULE_RAW;
1047 break;
1048
1049 /*
1050 * Switch to hardware accelerated RAW-mode.
1051 */
1052 case EXCP_EXECUTE_HWACC:
1053 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1054 rc = VINF_EM_RESCHEDULE_HWACC;
1055 break;
1056
1057 /*
1058 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1059 */
1060 case EXCP_RC:
1061 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1062 rc = pVM->rem.s.rc;
1063 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1064 break;
1065
1066 /*
1067 * Figure out the rest when they arrive....
1068 */
1069 default:
1070 AssertMsgFailed(("rc=%d\n", rc));
1071 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1072 rc = VINF_SUCCESS;
1073 break;
1074 }
1075
1076 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%08x)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1077 return rc;
1078}
1079
1080
1081/**
1082 * Check if the cpu state is suitable for Raw execution.
1083 *
1084 * @returns boolean
1085 * @param env The CPU env struct.
1086 * @param eip The EIP to check this for (might differ from env->eip).
1087 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1088 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1089 *
1090 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1091 */
1092bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1093{
1094 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1095 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1096 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1097
1098 /* Update counter. */
1099 env->pVM->rem.s.cCanExecuteRaw++;
1100
1101 if (HWACCMIsEnabled(env->pVM))
1102 {
1103 env->state |= CPU_RAW_HWACC;
1104
1105 /*
1106 * Create partial context for HWACCMR3CanExecuteGuest
1107 */
1108 CPUMCTX Ctx;
1109 Ctx.cr0 = env->cr[0];
1110 Ctx.cr3 = env->cr[3];
1111 Ctx.cr4 = env->cr[4];
1112
1113 Ctx.tr = env->tr.selector;
1114 Ctx.trHid.u64Base = env->tr.base;
1115 Ctx.trHid.u32Limit = env->tr.limit;
1116 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1117
1118 Ctx.idtr.cbIdt = env->idt.limit;
1119 Ctx.idtr.pIdt = env->idt.base;
1120
1121 Ctx.eflags.u32 = env->eflags;
1122
1123 Ctx.cs = env->segs[R_CS].selector;
1124 Ctx.csHid.u64Base = env->segs[R_CS].base;
1125 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1126 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1127
1128 Ctx.ss = env->segs[R_SS].selector;
1129 Ctx.ssHid.u64Base = env->segs[R_SS].base;
1130 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1131 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1132
1133 Ctx.msrEFER = env->efer;
1134
1135 /* Hardware accelerated raw-mode:
1136 *
1137 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1138 */
1139 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1140 {
1141 *piException = EXCP_EXECUTE_HWACC;
1142 return true;
1143 }
1144 return false;
1145 }
1146
1147 /*
1148 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1149 * or 32 bits protected mode ring 0 code
1150 *
1151 * The tests are ordered by the likelyhood of being true during normal execution.
1152 */
1153 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1154 {
1155 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1156 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1157 return false;
1158 }
1159
1160#ifndef VBOX_RAW_V86
1161 if (fFlags & VM_MASK) {
1162 STAM_COUNTER_INC(&gStatRefuseVM86);
1163 Log2(("raw mode refused: VM_MASK\n"));
1164 return false;
1165 }
1166#endif
1167
1168 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1169 {
1170#ifndef DEBUG_bird
1171 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1172#endif
1173 return false;
1174 }
1175
1176 if (env->singlestep_enabled)
1177 {
1178 //Log2(("raw mode refused: Single step\n"));
1179 return false;
1180 }
1181
1182 if (env->nb_breakpoints > 0)
1183 {
1184 //Log2(("raw mode refused: Breakpoints\n"));
1185 return false;
1186 }
1187
1188 uint32_t u32CR0 = env->cr[0];
1189 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1190 {
1191 STAM_COUNTER_INC(&gStatRefusePaging);
1192 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1193 return false;
1194 }
1195
1196 if (env->cr[4] & CR4_PAE_MASK)
1197 {
1198 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1199 {
1200 STAM_COUNTER_INC(&gStatRefusePAE);
1201 return false;
1202 }
1203 }
1204
1205 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1206 {
1207 if (!EMIsRawRing3Enabled(env->pVM))
1208 return false;
1209
1210 if (!(env->eflags & IF_MASK))
1211 {
1212 STAM_COUNTER_INC(&gStatRefuseIF0);
1213 Log2(("raw mode refused: IF (RawR3)\n"));
1214 return false;
1215 }
1216
1217 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1218 {
1219 STAM_COUNTER_INC(&gStatRefuseWP0);
1220 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1221 return false;
1222 }
1223 }
1224 else
1225 {
1226 if (!EMIsRawRing0Enabled(env->pVM))
1227 return false;
1228
1229 // Let's start with pure 32 bits ring 0 code first
1230 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1231 {
1232 STAM_COUNTER_INC(&gStatRefuseCode16);
1233 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1234 return false;
1235 }
1236
1237 // Only R0
1238 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1239 {
1240 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1241 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1242 return false;
1243 }
1244
1245 if (!(u32CR0 & CR0_WP_MASK))
1246 {
1247 STAM_COUNTER_INC(&gStatRefuseWP0);
1248 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1249 return false;
1250 }
1251
1252 if (PATMIsPatchGCAddr(env->pVM, eip))
1253 {
1254 Log2(("raw r0 mode forced: patch code\n"));
1255 *piException = EXCP_EXECUTE_RAW;
1256 return true;
1257 }
1258
1259#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1260 if (!(env->eflags & IF_MASK))
1261 {
1262 STAM_COUNTER_INC(&gStatRefuseIF0);
1263 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1264 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1265 return false;
1266 }
1267#endif
1268
1269 env->state |= CPU_RAW_RING0;
1270 }
1271
1272 /*
1273 * Don't reschedule the first time we're called, because there might be
1274 * special reasons why we're here that is not covered by the above checks.
1275 */
1276 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1277 {
1278 Log2(("raw mode refused: first scheduling\n"));
1279 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1280 return false;
1281 }
1282
1283 Assert(PGMPhysIsA20Enabled(env->pVM));
1284 *piException = EXCP_EXECUTE_RAW;
1285 return true;
1286}
1287
1288
1289/**
1290 * Fetches a code byte.
1291 *
1292 * @returns Success indicator (bool) for ease of use.
1293 * @param env The CPU environment structure.
1294 * @param GCPtrInstr Where to fetch code.
1295 * @param pu8Byte Where to store the byte on success
1296 */
1297bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1298{
1299 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1300 if (VBOX_SUCCESS(rc))
1301 return true;
1302 return false;
1303}
1304
1305
1306/**
1307 * Flush (or invalidate if you like) page table/dir entry.
1308 *
1309 * (invlpg instruction; tlb_flush_page)
1310 *
1311 * @param env Pointer to cpu environment.
1312 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1313 */
1314void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1315{
1316 PVM pVM = env->pVM;
1317
1318 /*
1319 * When we're replaying invlpg instructions or restoring a saved
1320 * state we disable this path.
1321 */
1322 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1323 return;
1324 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1325 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1326
1327 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1328
1329 /*
1330 * Update the control registers before calling PGMFlushPage.
1331 */
1332 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1333 pCtx->cr0 = env->cr[0];
1334 pCtx->cr3 = env->cr[3];
1335 pCtx->cr4 = env->cr[4];
1336
1337 /*
1338 * Let PGM do the rest.
1339 */
1340 int rc = PGMInvalidatePage(pVM, GCPtr);
1341 if (VBOX_FAILURE(rc))
1342 {
1343 AssertMsgFailed(("remR3FlushPage %VGv failed with %d!!\n", GCPtr, rc));
1344 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1345 }
1346 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1347}
1348
1349
1350/**
1351 * Called from tlb_protect_code in order to write monitor a code page.
1352 *
1353 * @param env Pointer to the CPU environment.
1354 * @param GCPtr Code page to monitor
1355 */
1356void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1357{
1358 Assert(env->pVM->rem.s.fInREM);
1359 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1360 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1361 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1362 && !(env->eflags & VM_MASK) /* no V86 mode */
1363 && !HWACCMIsEnabled(env->pVM))
1364 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1365}
1366
1367/**
1368 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1369 *
1370 * @param env Pointer to the CPU environment.
1371 * @param GCPtr Code page to monitor
1372 */
1373void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
1374{
1375 Assert(env->pVM->rem.s.fInREM);
1376 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1377 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1378 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1379 && !(env->eflags & VM_MASK) /* no V86 mode */
1380 && !HWACCMIsEnabled(env->pVM))
1381 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1382}
1383
1384
1385/**
1386 * Called when the CPU is initialized, any of the CRx registers are changed or
1387 * when the A20 line is modified.
1388 *
1389 * @param env Pointer to the CPU environment.
1390 * @param fGlobal Set if the flush is global.
1391 */
1392void remR3FlushTLB(CPUState *env, bool fGlobal)
1393{
1394 PVM pVM = env->pVM;
1395
1396 /*
1397 * When we're replaying invlpg instructions or restoring a saved
1398 * state we disable this path.
1399 */
1400 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1401 return;
1402 Assert(pVM->rem.s.fInREM);
1403
1404 /*
1405 * The caller doesn't check cr4, so we have to do that for ourselves.
1406 */
1407 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1408 fGlobal = true;
1409 Log(("remR3FlushTLB: CR0=%VGp CR3=%VGp CR4=%VGp %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1410
1411 /*
1412 * Update the control registers before calling PGMR3FlushTLB.
1413 */
1414 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1415 pCtx->cr0 = env->cr[0];
1416 pCtx->cr3 = env->cr[3];
1417 pCtx->cr4 = env->cr[4];
1418
1419 /*
1420 * Let PGM do the rest.
1421 */
1422 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1423}
1424
1425
1426/**
1427 * Called when any of the cr0, cr4 or efer registers is updated.
1428 *
1429 * @param env Pointer to the CPU environment.
1430 */
1431void remR3ChangeCpuMode(CPUState *env)
1432{
1433 int rc;
1434 PVM pVM = env->pVM;
1435
1436 /*
1437 * When we're replaying loads or restoring a saved
1438 * state this path is disabled.
1439 */
1440 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1441 return;
1442 Assert(pVM->rem.s.fInREM);
1443
1444 /*
1445 * Update the control registers before calling PGMChangeMode()
1446 * as it may need to map whatever cr3 is pointing to.
1447 */
1448 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1449 pCtx->cr0 = env->cr[0];
1450 pCtx->cr3 = env->cr[3];
1451 pCtx->cr4 = env->cr[4];
1452
1453#ifdef TARGET_X86_64
1454 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1455 if (rc != VINF_SUCCESS)
1456 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1457#else
1458 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1459 if (rc != VINF_SUCCESS)
1460 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1461#endif
1462}
1463
1464
1465/**
1466 * Called from compiled code to run dma.
1467 *
1468 * @param env Pointer to the CPU environment.
1469 */
1470void remR3DmaRun(CPUState *env)
1471{
1472 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1473 PDMR3DmaRun(env->pVM);
1474 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1475}
1476
1477
1478/**
1479 * Called from compiled code to schedule pending timers in VMM
1480 *
1481 * @param env Pointer to the CPU environment.
1482 */
1483void remR3TimersRun(CPUState *env)
1484{
1485 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1486 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1487 TMR3TimerQueuesDo(env->pVM);
1488 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1489 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1490}
1491
1492
1493/**
1494 * Record trap occurance
1495 *
1496 * @returns VBox status code
1497 * @param env Pointer to the CPU environment.
1498 * @param uTrap Trap nr
1499 * @param uErrorCode Error code
1500 * @param pvNextEIP Next EIP
1501 */
1502int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1503{
1504 PVM pVM = env->pVM;
1505#ifdef VBOX_WITH_STATISTICS
1506 static STAMCOUNTER s_aStatTrap[255];
1507 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1508#endif
1509
1510#ifdef VBOX_WITH_STATISTICS
1511 if (uTrap < 255)
1512 {
1513 if (!s_aRegisters[uTrap])
1514 {
1515 s_aRegisters[uTrap] = true;
1516 char szStatName[64];
1517 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1518 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1519 }
1520 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1521 }
1522#endif
1523 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%VGv\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1524 if( uTrap < 0x20
1525 && (env->cr[0] & X86_CR0_PE)
1526 && !(env->eflags & X86_EFL_VM))
1527 {
1528#ifdef DEBUG
1529 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1530#endif
1531 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1532 {
1533 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1534 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1535 return VERR_REM_TOO_MANY_TRAPS;
1536 }
1537 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1538 pVM->rem.s.cPendingExceptions = 1;
1539 pVM->rem.s.uPendingException = uTrap;
1540 pVM->rem.s.uPendingExcptEIP = env->eip;
1541 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1542 }
1543 else
1544 {
1545 pVM->rem.s.cPendingExceptions = 0;
1546 pVM->rem.s.uPendingException = uTrap;
1547 pVM->rem.s.uPendingExcptEIP = env->eip;
1548 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1549 }
1550 return VINF_SUCCESS;
1551}
1552
1553
1554/*
1555 * Clear current active trap
1556 *
1557 * @param pVM VM Handle.
1558 */
1559void remR3TrapClear(PVM pVM)
1560{
1561 pVM->rem.s.cPendingExceptions = 0;
1562 pVM->rem.s.uPendingException = 0;
1563 pVM->rem.s.uPendingExcptEIP = 0;
1564 pVM->rem.s.uPendingExcptCR2 = 0;
1565}
1566
1567
1568/*
1569 * Record previous call instruction addresses
1570 *
1571 * @param env Pointer to the CPU environment.
1572 */
1573void remR3RecordCall(CPUState *env)
1574{
1575 CSAMR3RecordCallAddress(env->pVM, env->eip);
1576}
1577
1578
1579/**
1580 * Syncs the internal REM state with the VM.
1581 *
1582 * This must be called before REMR3Run() is invoked whenever when the REM
1583 * state is not up to date. Calling it several times in a row is not
1584 * permitted.
1585 *
1586 * @returns VBox status code.
1587 *
1588 * @param pVM VM Handle.
1589 *
1590 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1591 * no do this since the majority of the callers don't want any unnecessary of events
1592 * pending that would immediatly interrupt execution.
1593 */
1594REMR3DECL(int) REMR3State(PVM pVM)
1595{
1596 Log2(("REMR3State:\n"));
1597 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1598 register const CPUMCTX *pCtx = pVM->rem.s.pCtx;
1599 register unsigned fFlags;
1600 bool fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1601
1602 Assert(!pVM->rem.s.fInREM);
1603 pVM->rem.s.fInStateSync = true;
1604
1605 /*
1606 * Copy the registers which require no special handling.
1607 */
1608#ifdef TARGET_X86_64
1609 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
1610 Assert(R_EAX == 0);
1611 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
1612 Assert(R_ECX == 1);
1613 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
1614 Assert(R_EDX == 2);
1615 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
1616 Assert(R_EBX == 3);
1617 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
1618 Assert(R_ESP == 4);
1619 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
1620 Assert(R_EBP == 5);
1621 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
1622 Assert(R_ESI == 6);
1623 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
1624 Assert(R_EDI == 7);
1625 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
1626 pVM->rem.s.Env.regs[8] = pCtx->r8;
1627 pVM->rem.s.Env.regs[9] = pCtx->r9;
1628 pVM->rem.s.Env.regs[10] = pCtx->r10;
1629 pVM->rem.s.Env.regs[11] = pCtx->r11;
1630 pVM->rem.s.Env.regs[12] = pCtx->r12;
1631 pVM->rem.s.Env.regs[13] = pCtx->r13;
1632 pVM->rem.s.Env.regs[14] = pCtx->r14;
1633 pVM->rem.s.Env.regs[15] = pCtx->r15;
1634
1635 pVM->rem.s.Env.eip = pCtx->rip;
1636
1637 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
1638#else
1639 Assert(R_EAX == 0);
1640 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1641 Assert(R_ECX == 1);
1642 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1643 Assert(R_EDX == 2);
1644 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1645 Assert(R_EBX == 3);
1646 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1647 Assert(R_ESP == 4);
1648 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1649 Assert(R_EBP == 5);
1650 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1651 Assert(R_ESI == 6);
1652 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1653 Assert(R_EDI == 7);
1654 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1655 pVM->rem.s.Env.eip = pCtx->eip;
1656
1657 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1658#endif
1659
1660 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1661
1662 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1663 pVM->rem.s.Env.dr[0] = pCtx->dr0;
1664 pVM->rem.s.Env.dr[1] = pCtx->dr1;
1665 pVM->rem.s.Env.dr[2] = pCtx->dr2;
1666 pVM->rem.s.Env.dr[3] = pCtx->dr3;
1667 pVM->rem.s.Env.dr[4] = pCtx->dr4;
1668 pVM->rem.s.Env.dr[5] = pCtx->dr5;
1669 pVM->rem.s.Env.dr[6] = pCtx->dr6;
1670 pVM->rem.s.Env.dr[7] = pCtx->dr7;
1671
1672 /*
1673 * Clear the halted hidden flag (the interrupt waking up the CPU can
1674 * have been dispatched in raw mode).
1675 */
1676 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1677
1678 /*
1679 * Replay invlpg?
1680 */
1681 if (pVM->rem.s.cInvalidatedPages)
1682 {
1683 pVM->rem.s.fIgnoreInvlPg = true;
1684 RTUINT i;
1685 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1686 {
1687 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1688 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1689 }
1690 pVM->rem.s.fIgnoreInvlPg = false;
1691 pVM->rem.s.cInvalidatedPages = 0;
1692 }
1693
1694 /* Replay notification changes? */
1695 if (pVM->rem.s.cHandlerNotifications)
1696 REMR3ReplayHandlerNotifications(pVM);
1697
1698 /* Update MSRs; before CRx registers! */
1699 pVM->rem.s.Env.efer = pCtx->msrEFER;
1700 pVM->rem.s.Env.star = pCtx->msrSTAR;
1701 pVM->rem.s.Env.pat = pCtx->msrPAT;
1702#ifdef TARGET_X86_64
1703 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1704 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1705 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1706 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1707
1708 /* Update the internal long mode activate flag according to the new EFER value. */
1709 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1710 pVM->rem.s.Env.hflags |= HF_LMA_MASK;
1711 else
1712 pVM->rem.s.Env.hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
1713#endif
1714
1715
1716 /*
1717 * Registers which are rarely changed and require special handling / order when changed.
1718 */
1719 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1720 LogFlow(("CPUMGetAndClearChangedFlagsREM %x\n", fFlags));
1721 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1722 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1723 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
1724 {
1725 if (fFlags & CPUM_CHANGED_FPU_REM)
1726 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1727
1728 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1729 {
1730 pVM->rem.s.fIgnoreCR3Load = true;
1731 tlb_flush(&pVM->rem.s.Env, true);
1732 pVM->rem.s.fIgnoreCR3Load = false;
1733 }
1734
1735 /* CR4 before CR0! */
1736 if (fFlags & CPUM_CHANGED_CR4)
1737 {
1738 pVM->rem.s.fIgnoreCR3Load = true;
1739 pVM->rem.s.fIgnoreCpuMode = true;
1740 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1741 pVM->rem.s.fIgnoreCpuMode = false;
1742 pVM->rem.s.fIgnoreCR3Load = false;
1743 }
1744
1745 if (fFlags & CPUM_CHANGED_CR0)
1746 {
1747 pVM->rem.s.fIgnoreCR3Load = true;
1748 pVM->rem.s.fIgnoreCpuMode = true;
1749 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1750 pVM->rem.s.fIgnoreCpuMode = false;
1751 pVM->rem.s.fIgnoreCR3Load = false;
1752 }
1753
1754 if (fFlags & CPUM_CHANGED_CR3)
1755 {
1756 pVM->rem.s.fIgnoreCR3Load = true;
1757 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1758 pVM->rem.s.fIgnoreCR3Load = false;
1759 }
1760
1761 if (fFlags & CPUM_CHANGED_GDTR)
1762 {
1763 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1764 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1765 }
1766
1767 if (fFlags & CPUM_CHANGED_IDTR)
1768 {
1769 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1770 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1771 }
1772
1773 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1774 {
1775 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1776 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1777 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1778 }
1779
1780 if (fFlags & CPUM_CHANGED_LDTR)
1781 {
1782 if (fHiddenSelRegsValid)
1783 {
1784 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1785 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u64Base;
1786 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1787 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1788 }
1789 else
1790 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1791 }
1792
1793 if (fFlags & CPUM_CHANGED_TR)
1794 {
1795 if (fHiddenSelRegsValid)
1796 {
1797 pVM->rem.s.Env.tr.selector = pCtx->tr;
1798 pVM->rem.s.Env.tr.base = pCtx->trHid.u64Base;
1799 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1800 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1801 }
1802 else
1803 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1804
1805 /** @note do_interrupt will fault if the busy flag is still set.... */
1806 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1807 }
1808
1809 if (fFlags & CPUM_CHANGED_CPUID)
1810 {
1811 uint32_t u32Dummy;
1812
1813 /*
1814 * Get the CPUID features.
1815 */
1816 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
1817 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
1818 }
1819 }
1820
1821 /*
1822 * Update selector registers.
1823 * This must be done *after* we've synced gdt, ldt and crX registers
1824 * since we're reading the GDT/LDT om sync_seg. This will happen with
1825 * saved state which takes a quick dip into rawmode for instance.
1826 */
1827 /*
1828 * Stack; Note first check this one as the CPL might have changed. The
1829 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1830 */
1831
1832 if (fHiddenSelRegsValid)
1833 {
1834 /* The hidden selector registers are valid in the CPU context. */
1835 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1836
1837 /* Set current CPL */
1838 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1839
1840 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1841 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1842 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1843 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1844 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1845 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1846 }
1847 else
1848 {
1849 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1850 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1851 {
1852 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1853
1854 cpu_x86_set_cpl(&pVM->rem.s.Env, (pCtx->eflags.Bits.u1VM) ? 3 : (pCtx->ss & 3));
1855 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1856#ifdef VBOX_WITH_STATISTICS
1857 if (pVM->rem.s.Env.segs[R_SS].newselector)
1858 {
1859 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1860 }
1861#endif
1862 }
1863 else
1864 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1865
1866 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1867 {
1868 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1869 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1870#ifdef VBOX_WITH_STATISTICS
1871 if (pVM->rem.s.Env.segs[R_ES].newselector)
1872 {
1873 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1874 }
1875#endif
1876 }
1877 else
1878 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1879
1880 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1881 {
1882 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1883 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1884#ifdef VBOX_WITH_STATISTICS
1885 if (pVM->rem.s.Env.segs[R_CS].newselector)
1886 {
1887 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1888 }
1889#endif
1890 }
1891 else
1892 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1893
1894 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1895 {
1896 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1897 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1898#ifdef VBOX_WITH_STATISTICS
1899 if (pVM->rem.s.Env.segs[R_DS].newselector)
1900 {
1901 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1902 }
1903#endif
1904 }
1905 else
1906 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1907
1908 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1909 * be the same but not the base/limit. */
1910 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1911 {
1912 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1913 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1914#ifdef VBOX_WITH_STATISTICS
1915 if (pVM->rem.s.Env.segs[R_FS].newselector)
1916 {
1917 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1918 }
1919#endif
1920 }
1921 else
1922 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1923
1924 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1925 {
1926 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1927 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1928#ifdef VBOX_WITH_STATISTICS
1929 if (pVM->rem.s.Env.segs[R_GS].newselector)
1930 {
1931 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1932 }
1933#endif
1934 }
1935 else
1936 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1937 }
1938
1939 /*
1940 * Check for traps.
1941 */
1942 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1943 TRPMEVENT enmType;
1944 uint8_t u8TrapNo;
1945 int rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
1946 if (VBOX_SUCCESS(rc))
1947 {
1948#ifdef DEBUG
1949 if (u8TrapNo == 0x80)
1950 {
1951 remR3DumpLnxSyscall(pVM);
1952 remR3DumpOBsdSyscall(pVM);
1953 }
1954#endif
1955
1956 pVM->rem.s.Env.exception_index = u8TrapNo;
1957 if (enmType != TRPM_SOFTWARE_INT)
1958 {
1959 pVM->rem.s.Env.exception_is_int = 0;
1960 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
1961 }
1962 else
1963 {
1964 /*
1965 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
1966 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
1967 * for int03 and into.
1968 */
1969 pVM->rem.s.Env.exception_is_int = 1;
1970 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 2;
1971 /* int 3 may be generated by one-byte 0xcc */
1972 if (u8TrapNo == 3)
1973 {
1974 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xcc)
1975 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1976 }
1977 /* int 4 may be generated by one-byte 0xce */
1978 else if (u8TrapNo == 4)
1979 {
1980 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xce)
1981 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1982 }
1983 }
1984
1985 /* get error code and cr2 if needed. */
1986 switch (u8TrapNo)
1987 {
1988 case 0x0e:
1989 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
1990 /* fallthru */
1991 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
1992 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
1993 break;
1994
1995 case 0x11: case 0x08:
1996 default:
1997 pVM->rem.s.Env.error_code = 0;
1998 break;
1999 }
2000
2001 /*
2002 * We can now reset the active trap since the recompiler is gonna have a go at it.
2003 */
2004 rc = TRPMResetTrap(pVM);
2005 AssertRC(rc);
2006 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
2007 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
2008 }
2009
2010 /*
2011 * Clear old interrupt request flags; Check for pending hardware interrupts.
2012 * (See @remark for why we don't check for other FFs.)
2013 */
2014 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2015 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2016 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
2017 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2018
2019 /*
2020 * We're now in REM mode.
2021 */
2022 pVM->rem.s.fInREM = true;
2023 pVM->rem.s.fInStateSync = false;
2024 pVM->rem.s.cCanExecuteRaw = 0;
2025 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2026 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2027 return VINF_SUCCESS;
2028}
2029
2030
2031/**
2032 * Syncs back changes in the REM state to the the VM state.
2033 *
2034 * This must be called after invoking REMR3Run().
2035 * Calling it several times in a row is not permitted.
2036 *
2037 * @returns VBox status code.
2038 *
2039 * @param pVM VM Handle.
2040 */
2041REMR3DECL(int) REMR3StateBack(PVM pVM)
2042{
2043 Log2(("REMR3StateBack:\n"));
2044 Assert(pVM->rem.s.fInREM);
2045 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2046 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2047
2048 /*
2049 * Copy back the registers.
2050 * This is done in the order they are declared in the CPUMCTX structure.
2051 */
2052
2053 /** @todo FOP */
2054 /** @todo FPUIP */
2055 /** @todo CS */
2056 /** @todo FPUDP */
2057 /** @todo DS */
2058 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2059 pCtx->fpu.MXCSR = 0;
2060 pCtx->fpu.MXCSR_MASK = 0;
2061
2062 /** @todo check if FPU/XMM was actually used in the recompiler */
2063 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2064//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2065
2066#ifdef TARGET_X86_64
2067 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2068 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2069 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2070 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2071 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2072 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2073 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2074 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2075 pCtx->r8 = pVM->rem.s.Env.regs[8];
2076 pCtx->r9 = pVM->rem.s.Env.regs[9];
2077 pCtx->r10 = pVM->rem.s.Env.regs[10];
2078 pCtx->r11 = pVM->rem.s.Env.regs[11];
2079 pCtx->r12 = pVM->rem.s.Env.regs[12];
2080 pCtx->r13 = pVM->rem.s.Env.regs[13];
2081 pCtx->r14 = pVM->rem.s.Env.regs[14];
2082 pCtx->r15 = pVM->rem.s.Env.regs[15];
2083
2084 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2085
2086#else
2087 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2088 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2089 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2090 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2091 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2092 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2093 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2094
2095 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2096#endif
2097
2098 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2099
2100#ifdef VBOX_WITH_STATISTICS
2101 if (pVM->rem.s.Env.segs[R_SS].newselector)
2102 {
2103 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2104 }
2105 if (pVM->rem.s.Env.segs[R_GS].newselector)
2106 {
2107 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2108 }
2109 if (pVM->rem.s.Env.segs[R_FS].newselector)
2110 {
2111 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2112 }
2113 if (pVM->rem.s.Env.segs[R_ES].newselector)
2114 {
2115 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2116 }
2117 if (pVM->rem.s.Env.segs[R_DS].newselector)
2118 {
2119 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2120 }
2121 if (pVM->rem.s.Env.segs[R_CS].newselector)
2122 {
2123 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2124 }
2125#endif
2126 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2127 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2128 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2129 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2130 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2131
2132#ifdef TARGET_X86_64
2133 pCtx->rip = pVM->rem.s.Env.eip;
2134 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2135#else
2136 pCtx->eip = pVM->rem.s.Env.eip;
2137 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2138#endif
2139
2140 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2141 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2142 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2143 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2144
2145 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2146 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2147 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2148 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2149 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2150 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2151 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2152 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2153
2154 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2155 if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
2156 {
2157 pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
2158 STAM_COUNTER_INC(&gStatREMGDTChange);
2159 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2160 }
2161
2162 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2163 if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
2164 {
2165 pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
2166 STAM_COUNTER_INC(&gStatREMIDTChange);
2167 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2168 }
2169
2170 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2171 {
2172 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2173 STAM_COUNTER_INC(&gStatREMLDTRChange);
2174 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2175 }
2176 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2177 {
2178 pCtx->tr = pVM->rem.s.Env.tr.selector;
2179 STAM_COUNTER_INC(&gStatREMTRChange);
2180 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2181 }
2182
2183 /** @todo These values could still be out of sync! */
2184 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2185 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2186 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2187 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2188
2189 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2190 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2191 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2192
2193 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2194 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2195 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2196
2197 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2198 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2199 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2200
2201 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2202 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2203 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2204
2205 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2206 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2207 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2208
2209 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2210 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2211 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2212
2213 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2214 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2215 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2216
2217 /* Sysenter MSR */
2218 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2219 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2220 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2221
2222 /* System MSRs. */
2223 pCtx->msrEFER = pVM->rem.s.Env.efer;
2224 pCtx->msrSTAR = pVM->rem.s.Env.star;
2225 pCtx->msrPAT = pVM->rem.s.Env.pat;
2226#ifdef TARGET_X86_64
2227 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2228 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2229 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2230 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2231#endif
2232
2233 remR3TrapClear(pVM);
2234
2235 /*
2236 * Check for traps.
2237 */
2238 if ( pVM->rem.s.Env.exception_index >= 0
2239 && pVM->rem.s.Env.exception_index < 256)
2240 {
2241 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2242 int rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2243 AssertRC(rc);
2244 switch (pVM->rem.s.Env.exception_index)
2245 {
2246 case 0x0e:
2247 TRPMSetFaultAddress(pVM, pCtx->cr2);
2248 /* fallthru */
2249 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2250 case 0x11: case 0x08: /* 0 */
2251 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2252 break;
2253 }
2254
2255 }
2256
2257 /*
2258 * We're not longer in REM mode.
2259 */
2260 pVM->rem.s.fInREM = false;
2261 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2262 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2263 return VINF_SUCCESS;
2264}
2265
2266
2267/**
2268 * This is called by the disassembler when it wants to update the cpu state
2269 * before for instance doing a register dump.
2270 */
2271static void remR3StateUpdate(PVM pVM)
2272{
2273 Assert(pVM->rem.s.fInREM);
2274 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2275
2276 /*
2277 * Copy back the registers.
2278 * This is done in the order they are declared in the CPUMCTX structure.
2279 */
2280
2281 /** @todo FOP */
2282 /** @todo FPUIP */
2283 /** @todo CS */
2284 /** @todo FPUDP */
2285 /** @todo DS */
2286 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2287 pCtx->fpu.MXCSR = 0;
2288 pCtx->fpu.MXCSR_MASK = 0;
2289
2290 /** @todo check if FPU/XMM was actually used in the recompiler */
2291 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2292//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2293
2294#ifdef TARGET_X86_64
2295 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2296 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2297 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2298 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2299 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2300 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2301 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2302 pCtx->r8 = pVM->rem.s.Env.regs[8];
2303 pCtx->r9 = pVM->rem.s.Env.regs[9];
2304 pCtx->r10 = pVM->rem.s.Env.regs[10];
2305 pCtx->r11 = pVM->rem.s.Env.regs[11];
2306 pCtx->r12 = pVM->rem.s.Env.regs[12];
2307 pCtx->r13 = pVM->rem.s.Env.regs[13];
2308 pCtx->r14 = pVM->rem.s.Env.regs[14];
2309 pCtx->r15 = pVM->rem.s.Env.regs[15];
2310
2311 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2312#else
2313 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2314 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2315 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2316 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2317 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2318 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2319 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2320
2321 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2322#endif
2323
2324 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2325
2326 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2327 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2328 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2329 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2330 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2331
2332#ifdef TARGET_X86_64
2333 pCtx->rip = pVM->rem.s.Env.eip;
2334 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2335#else
2336 pCtx->eip = pVM->rem.s.Env.eip;
2337 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2338#endif
2339
2340 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2341 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2342 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2343 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2344
2345 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2346 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2347 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2348 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2349 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2350 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2351 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2352 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2353
2354 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2355 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2356 {
2357 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2358 STAM_COUNTER_INC(&gStatREMGDTChange);
2359 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2360 }
2361
2362 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2363 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2364 {
2365 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2366 STAM_COUNTER_INC(&gStatREMIDTChange);
2367 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2368 }
2369
2370 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2371 {
2372 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2373 STAM_COUNTER_INC(&gStatREMLDTRChange);
2374 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2375 }
2376 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2377 {
2378 pCtx->tr = pVM->rem.s.Env.tr.selector;
2379 STAM_COUNTER_INC(&gStatREMTRChange);
2380 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2381 }
2382
2383 /** @todo These values could still be out of sync! */
2384 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2385 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2386 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2387 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2388
2389 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2390 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2391 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2392
2393 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2394 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2395 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2396
2397 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2398 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2399 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2400
2401 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2402 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2403 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2404
2405 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2406 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2407 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2408
2409 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2410 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2411 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2412
2413 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2414 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2415 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2416
2417 /* Sysenter MSR */
2418 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2419 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2420 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2421
2422 /* System MSRs. */
2423 pCtx->msrEFER = pVM->rem.s.Env.efer;
2424 pCtx->msrSTAR = pVM->rem.s.Env.star;
2425 pCtx->msrPAT = pVM->rem.s.Env.pat;
2426#ifdef TARGET_X86_64
2427 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2428 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2429 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2430 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2431#endif
2432
2433}
2434
2435
2436/**
2437 * Update the VMM state information if we're currently in REM.
2438 *
2439 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2440 * we're currently executing in REM and the VMM state is invalid. This method will of
2441 * course check that we're executing in REM before syncing any data over to the VMM.
2442 *
2443 * @param pVM The VM handle.
2444 */
2445REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2446{
2447 if (pVM->rem.s.fInREM)
2448 remR3StateUpdate(pVM);
2449}
2450
2451
2452#undef LOG_GROUP
2453#define LOG_GROUP LOG_GROUP_REM
2454
2455
2456/**
2457 * Notify the recompiler about Address Gate 20 state change.
2458 *
2459 * This notification is required since A20 gate changes are
2460 * initialized from a device driver and the VM might just as
2461 * well be in REM mode as in RAW mode.
2462 *
2463 * @param pVM VM handle.
2464 * @param fEnable True if the gate should be enabled.
2465 * False if the gate should be disabled.
2466 */
2467REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2468{
2469 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2470 VM_ASSERT_EMT(pVM);
2471
2472 bool fSaved = pVM->rem.s.fIgnoreAll; /* just in case. */
2473 pVM->rem.s.fIgnoreAll = fSaved || !pVM->rem.s.fInREM;
2474
2475 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2476
2477 pVM->rem.s.fIgnoreAll = fSaved;
2478}
2479
2480
2481/**
2482 * Replays the invalidated recorded pages.
2483 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2484 *
2485 * @param pVM VM handle.
2486 */
2487REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2488{
2489 VM_ASSERT_EMT(pVM);
2490
2491 /*
2492 * Sync the required registers.
2493 */
2494 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2495 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2496 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2497 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2498
2499 /*
2500 * Replay the flushes.
2501 */
2502 pVM->rem.s.fIgnoreInvlPg = true;
2503 RTUINT i;
2504 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2505 {
2506 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2507 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2508 }
2509 pVM->rem.s.fIgnoreInvlPg = false;
2510 pVM->rem.s.cInvalidatedPages = 0;
2511}
2512
2513
2514/**
2515 * Replays the handler notification changes
2516 * Called in response to VM_FF_REM_HANDLER_NOTIFY from the RAW execution loop.
2517 *
2518 * @param pVM VM handle.
2519 */
2520REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2521{
2522 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2523 VM_ASSERT_EMT(pVM);
2524
2525 /*
2526 * Replay the flushes.
2527 */
2528 RTUINT i;
2529 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2530 pVM->rem.s.cHandlerNotifications = 0;
2531 for (i = 0; i < c; i++)
2532 {
2533 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2534 switch (pRec->enmKind)
2535 {
2536 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2537 REMR3NotifyHandlerPhysicalRegister(pVM,
2538 pRec->u.PhysicalRegister.enmType,
2539 pRec->u.PhysicalRegister.GCPhys,
2540 pRec->u.PhysicalRegister.cb,
2541 pRec->u.PhysicalRegister.fHasHCHandler);
2542 break;
2543
2544 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2545 REMR3NotifyHandlerPhysicalDeregister(pVM,
2546 pRec->u.PhysicalDeregister.enmType,
2547 pRec->u.PhysicalDeregister.GCPhys,
2548 pRec->u.PhysicalDeregister.cb,
2549 pRec->u.PhysicalDeregister.fHasHCHandler,
2550 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2551 break;
2552
2553 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2554 REMR3NotifyHandlerPhysicalModify(pVM,
2555 pRec->u.PhysicalModify.enmType,
2556 pRec->u.PhysicalModify.GCPhysOld,
2557 pRec->u.PhysicalModify.GCPhysNew,
2558 pRec->u.PhysicalModify.cb,
2559 pRec->u.PhysicalModify.fHasHCHandler,
2560 pRec->u.PhysicalModify.fRestoreAsRAM);
2561 break;
2562
2563 default:
2564 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2565 break;
2566 }
2567 }
2568 VM_FF_CLEAR(pVM, VM_FF_REM_HANDLER_NOTIFY);
2569}
2570
2571
2572/**
2573 * Notify REM about changed code page.
2574 *
2575 * @returns VBox status code.
2576 * @param pVM VM handle.
2577 * @param pvCodePage Code page address
2578 */
2579REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2580{
2581 int rc;
2582 RTGCPHYS PhysGC;
2583 uint64_t flags;
2584
2585 VM_ASSERT_EMT(pVM);
2586
2587 /*
2588 * Get the physical page address.
2589 */
2590 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2591 if (rc == VINF_SUCCESS)
2592 {
2593 /*
2594 * Sync the required registers and flush the whole page.
2595 * (Easier to do the whole page than notifying it about each physical
2596 * byte that was changed.
2597 */
2598 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2599 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2600 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2601 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2602
2603 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2604 }
2605 return VINF_SUCCESS;
2606}
2607
2608
2609/**
2610 * Notification about a successful MMR3PhysRegister() call.
2611 *
2612 * @param pVM VM handle.
2613 * @param GCPhys The physical address the RAM.
2614 * @param cb Size of the memory.
2615 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2616 */
2617REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, unsigned fFlags)
2618{
2619 Log(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d fFlags=%d\n", GCPhys, cb, fFlags));
2620 VM_ASSERT_EMT(pVM);
2621
2622 /*
2623 * Validate input - we trust the caller.
2624 */
2625 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2626 Assert(cb);
2627 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2628
2629 /*
2630 * Base ram?
2631 */
2632 if (!GCPhys)
2633 {
2634 phys_ram_size = cb;
2635 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2636#ifndef VBOX_STRICT
2637 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2638 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2639#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2640 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2641 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2642 uint32_t cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2643 int rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2644 AssertRC(rc);
2645 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2646#endif
2647 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2648 }
2649
2650 /*
2651 * Register the ram.
2652 */
2653 Assert(!pVM->rem.s.fIgnoreAll);
2654 pVM->rem.s.fIgnoreAll = true;
2655
2656#ifdef VBOX_WITH_NEW_PHYS_CODE
2657 if (fFlags & MM_RAM_FLAGS_RESERVED)
2658 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2659 else
2660 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2661#else
2662 if (!GCPhys)
2663 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2664 else
2665 {
2666 if (fFlags & MM_RAM_FLAGS_RESERVED)
2667 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2668 else
2669 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2670 }
2671#endif
2672 Assert(pVM->rem.s.fIgnoreAll);
2673 pVM->rem.s.fIgnoreAll = false;
2674}
2675
2676#ifndef VBOX_WITH_NEW_PHYS_CODE
2677
2678/**
2679 * Notification about a successful PGMR3PhysRegisterChunk() call.
2680 *
2681 * @param pVM VM handle.
2682 * @param GCPhys The physical address the RAM.
2683 * @param cb Size of the memory.
2684 * @param pvRam The HC address of the RAM.
2685 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2686 */
2687REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2688{
2689 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2690 VM_ASSERT_EMT(pVM);
2691
2692 /*
2693 * Validate input - we trust the caller.
2694 */
2695 Assert(pvRam);
2696 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2697 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2698 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2699 Assert(fFlags == 0 /* normal RAM */);
2700 Assert(!pVM->rem.s.fIgnoreAll);
2701 pVM->rem.s.fIgnoreAll = true;
2702
2703 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2704
2705 Assert(pVM->rem.s.fIgnoreAll);
2706 pVM->rem.s.fIgnoreAll = false;
2707}
2708
2709
2710/**
2711 * Grows dynamically allocated guest RAM.
2712 * Will raise a fatal error if the operation fails.
2713 *
2714 * @param physaddr The physical address.
2715 */
2716void remR3GrowDynRange(unsigned long physaddr)
2717{
2718 int rc;
2719 PVM pVM = cpu_single_env->pVM;
2720
2721 LogFlow(("remR3GrowDynRange %VGp\n", physaddr));
2722 const RTGCPHYS GCPhys = physaddr;
2723 rc = PGM3PhysGrowRange(pVM, &GCPhys);
2724 if (VBOX_SUCCESS(rc))
2725 return;
2726
2727 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2728 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2729 AssertFatalFailed();
2730}
2731
2732#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2733
2734/**
2735 * Notification about a successful MMR3PhysRomRegister() call.
2736 *
2737 * @param pVM VM handle.
2738 * @param GCPhys The physical address of the ROM.
2739 * @param cb The size of the ROM.
2740 * @param pvCopy Pointer to the ROM copy.
2741 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2742 * This function will be called when ever the protection of the
2743 * shadow ROM changes (at reset and end of POST).
2744 */
2745REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2746{
2747 Log(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p fShadow=%RTbool\n", GCPhys, cb, pvCopy, fShadow));
2748 VM_ASSERT_EMT(pVM);
2749
2750 /*
2751 * Validate input - we trust the caller.
2752 */
2753 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2754 Assert(cb);
2755 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2756 Assert(pvCopy);
2757 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2758
2759 /*
2760 * Register the rom.
2761 */
2762 Assert(!pVM->rem.s.fIgnoreAll);
2763 pVM->rem.s.fIgnoreAll = true;
2764
2765 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2766
2767 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2768
2769 Assert(pVM->rem.s.fIgnoreAll);
2770 pVM->rem.s.fIgnoreAll = false;
2771}
2772
2773
2774/**
2775 * Notification about a successful memory deregistration or reservation.
2776 *
2777 * @param pVM VM Handle.
2778 * @param GCPhys Start physical address.
2779 * @param cb The size of the range.
2780 * @todo Rename to REMR3NotifyPhysRamDeregister (for MMIO2) as we won't
2781 * reserve any memory soon.
2782 */
2783REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2784{
2785 Log(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2786 VM_ASSERT_EMT(pVM);
2787
2788 /*
2789 * Validate input - we trust the caller.
2790 */
2791 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2792 Assert(cb);
2793 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2794
2795 /*
2796 * Unassigning the memory.
2797 */
2798 Assert(!pVM->rem.s.fIgnoreAll);
2799 pVM->rem.s.fIgnoreAll = true;
2800
2801 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2802
2803 Assert(pVM->rem.s.fIgnoreAll);
2804 pVM->rem.s.fIgnoreAll = false;
2805}
2806
2807
2808/**
2809 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2810 *
2811 * @param pVM VM Handle.
2812 * @param enmType Handler type.
2813 * @param GCPhys Handler range address.
2814 * @param cb Size of the handler range.
2815 * @param fHasHCHandler Set if the handler has a HC callback function.
2816 *
2817 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2818 * Handler memory type to memory which has no HC handler.
2819 */
2820REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2821{
2822 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d\n",
2823 enmType, GCPhys, cb, fHasHCHandler));
2824 VM_ASSERT_EMT(pVM);
2825 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2826 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2827
2828 if (pVM->rem.s.cHandlerNotifications)
2829 REMR3ReplayHandlerNotifications(pVM);
2830
2831 Assert(!pVM->rem.s.fIgnoreAll);
2832 pVM->rem.s.fIgnoreAll = true;
2833
2834 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2835 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2836 else if (fHasHCHandler)
2837 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2838
2839 Assert(pVM->rem.s.fIgnoreAll);
2840 pVM->rem.s.fIgnoreAll = false;
2841}
2842
2843
2844/**
2845 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2846 *
2847 * @param pVM VM Handle.
2848 * @param enmType Handler type.
2849 * @param GCPhys Handler range address.
2850 * @param cb Size of the handler range.
2851 * @param fHasHCHandler Set if the handler has a HC callback function.
2852 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2853 */
2854REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2855{
2856 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%VGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2857 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2858 VM_ASSERT_EMT(pVM);
2859
2860 if (pVM->rem.s.cHandlerNotifications)
2861 REMR3ReplayHandlerNotifications(pVM);
2862
2863 Assert(!pVM->rem.s.fIgnoreAll);
2864 pVM->rem.s.fIgnoreAll = true;
2865
2866/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
2867 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2868 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2869 else if (fHasHCHandler)
2870 {
2871 if (!fRestoreAsRAM)
2872 {
2873 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2874 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2875 }
2876 else
2877 {
2878 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2879 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2880 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2881 }
2882 }
2883
2884 Assert(pVM->rem.s.fIgnoreAll);
2885 pVM->rem.s.fIgnoreAll = false;
2886}
2887
2888
2889/**
2890 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2891 *
2892 * @param pVM VM Handle.
2893 * @param enmType Handler type.
2894 * @param GCPhysOld Old handler range address.
2895 * @param GCPhysNew New handler range address.
2896 * @param cb Size of the handler range.
2897 * @param fHasHCHandler Set if the handler has a HC callback function.
2898 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2899 */
2900REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2901{
2902 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%d fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
2903 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
2904 VM_ASSERT_EMT(pVM);
2905 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2906
2907 if (pVM->rem.s.cHandlerNotifications)
2908 REMR3ReplayHandlerNotifications(pVM);
2909
2910 if (fHasHCHandler)
2911 {
2912 Assert(!pVM->rem.s.fIgnoreAll);
2913 pVM->rem.s.fIgnoreAll = true;
2914
2915 /*
2916 * Reset the old page.
2917 */
2918 if (!fRestoreAsRAM)
2919 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2920 else
2921 {
2922 /* This is not perfect, but it'll do for PD monitoring... */
2923 Assert(cb == PAGE_SIZE);
2924 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2925 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2926 }
2927
2928 /*
2929 * Update the new page.
2930 */
2931 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2932 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2933 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2934
2935 Assert(pVM->rem.s.fIgnoreAll);
2936 pVM->rem.s.fIgnoreAll = false;
2937 }
2938}
2939
2940
2941/**
2942 * Checks if we're handling access to this page or not.
2943 *
2944 * @returns true if we're trapping access.
2945 * @returns false if we aren't.
2946 * @param pVM The VM handle.
2947 * @param GCPhys The physical address.
2948 *
2949 * @remark This function will only work correctly in VBOX_STRICT builds!
2950 */
2951REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
2952{
2953#ifdef VBOX_STRICT
2954 if (pVM->rem.s.cHandlerNotifications)
2955 REMR3ReplayHandlerNotifications(pVM);
2956
2957 unsigned long off = get_phys_page_offset(GCPhys);
2958 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
2959 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
2960 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
2961#else
2962 return false;
2963#endif
2964}
2965
2966
2967/**
2968 * Deals with a rare case in get_phys_addr_code where the code
2969 * is being monitored.
2970 *
2971 * It could also be an MMIO page, in which case we will raise a fatal error.
2972 *
2973 * @returns The physical address corresponding to addr.
2974 * @param env The cpu environment.
2975 * @param addr The virtual address.
2976 * @param pTLBEntry The TLB entry.
2977 */
2978target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
2979{
2980 PVM pVM = env->pVM;
2981 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
2982 {
2983 target_ulong ret = pTLBEntry->addend + addr;
2984 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv addr_code=%VGv addend=%VGp ret=%VGp\n",
2985 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
2986 return ret;
2987 }
2988 LogRel(("\nTrying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
2989 "*** handlers\n",
2990 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
2991 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
2992 LogRel(("*** mmio\n"));
2993 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
2994 LogRel(("*** phys\n"));
2995 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
2996 cpu_abort(env, "Trying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
2997 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
2998 AssertFatalFailed();
2999}
3000
3001
3002/** Validate the physical address passed to the read functions.
3003 * Useful for finding non-guest-ram reads/writes. */
3004#if 0 //1 /* disable if it becomes bothersome... */
3005# define VBOX_CHECK_ADDR(GCPhys) AssertMsg(PGMPhysIsGCPhysValid(cpu_single_env->pVM, (GCPhys)), ("%VGp\n", (GCPhys)))
3006#else
3007# define VBOX_CHECK_ADDR(GCPhys) do { } while (0)
3008#endif
3009
3010/**
3011 * Read guest RAM and ROM.
3012 *
3013 * @param SrcGCPhys The source address (guest physical).
3014 * @param pvDst The destination address.
3015 * @param cb Number of bytes
3016 */
3017void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3018{
3019 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3020 VBOX_CHECK_ADDR(SrcGCPhys);
3021 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3022 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3023}
3024
3025
3026/**
3027 * Read guest RAM and ROM, unsigned 8-bit.
3028 *
3029 * @param SrcGCPhys The source address (guest physical).
3030 */
3031uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3032{
3033 uint8_t val;
3034 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3035 VBOX_CHECK_ADDR(SrcGCPhys);
3036 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3037 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3038 return val;
3039}
3040
3041
3042/**
3043 * Read guest RAM and ROM, signed 8-bit.
3044 *
3045 * @param SrcGCPhys The source address (guest physical).
3046 */
3047int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3048{
3049 int8_t val;
3050 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3051 VBOX_CHECK_ADDR(SrcGCPhys);
3052 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3053 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3054 return val;
3055}
3056
3057
3058/**
3059 * Read guest RAM and ROM, unsigned 16-bit.
3060 *
3061 * @param SrcGCPhys The source address (guest physical).
3062 */
3063uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3064{
3065 uint16_t val;
3066 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3067 VBOX_CHECK_ADDR(SrcGCPhys);
3068 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3069 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3070 return val;
3071}
3072
3073
3074/**
3075 * Read guest RAM and ROM, signed 16-bit.
3076 *
3077 * @param SrcGCPhys The source address (guest physical).
3078 */
3079int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3080{
3081 uint16_t val;
3082 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3083 VBOX_CHECK_ADDR(SrcGCPhys);
3084 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3085 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3086 return val;
3087}
3088
3089
3090/**
3091 * Read guest RAM and ROM, unsigned 32-bit.
3092 *
3093 * @param SrcGCPhys The source address (guest physical).
3094 */
3095uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3096{
3097 uint32_t val;
3098 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3099 VBOX_CHECK_ADDR(SrcGCPhys);
3100 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3101 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3102 return val;
3103}
3104
3105
3106/**
3107 * Read guest RAM and ROM, signed 32-bit.
3108 *
3109 * @param SrcGCPhys The source address (guest physical).
3110 */
3111int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3112{
3113 int32_t val;
3114 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3115 VBOX_CHECK_ADDR(SrcGCPhys);
3116 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3117 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3118 return val;
3119}
3120
3121
3122/**
3123 * Read guest RAM and ROM, unsigned 64-bit.
3124 *
3125 * @param SrcGCPhys The source address (guest physical).
3126 */
3127uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3128{
3129 uint64_t val;
3130 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3131 VBOX_CHECK_ADDR(SrcGCPhys);
3132 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3133 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3134 return val;
3135}
3136
3137
3138/**
3139 * Write guest RAM.
3140 *
3141 * @param DstGCPhys The destination address (guest physical).
3142 * @param pvSrc The source address.
3143 * @param cb Number of bytes to write
3144 */
3145void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3146{
3147 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3148 VBOX_CHECK_ADDR(DstGCPhys);
3149 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3150 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3151}
3152
3153
3154/**
3155 * Write guest RAM, unsigned 8-bit.
3156 *
3157 * @param DstGCPhys The destination address (guest physical).
3158 * @param val Value
3159 */
3160void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3161{
3162 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3163 VBOX_CHECK_ADDR(DstGCPhys);
3164 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3165 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3166}
3167
3168
3169/**
3170 * Write guest RAM, unsigned 8-bit.
3171 *
3172 * @param DstGCPhys The destination address (guest physical).
3173 * @param val Value
3174 */
3175void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3176{
3177 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3178 VBOX_CHECK_ADDR(DstGCPhys);
3179 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3180 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3181}
3182
3183
3184/**
3185 * Write guest RAM, unsigned 32-bit.
3186 *
3187 * @param DstGCPhys The destination address (guest physical).
3188 * @param val Value
3189 */
3190void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3191{
3192 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3193 VBOX_CHECK_ADDR(DstGCPhys);
3194 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3195 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3196}
3197
3198
3199/**
3200 * Write guest RAM, unsigned 64-bit.
3201 *
3202 * @param DstGCPhys The destination address (guest physical).
3203 * @param val Value
3204 */
3205void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3206{
3207 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3208 VBOX_CHECK_ADDR(DstGCPhys);
3209 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3210 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3211}
3212
3213#undef LOG_GROUP
3214#define LOG_GROUP LOG_GROUP_REM_MMIO
3215
3216/** Read MMIO memory. */
3217static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3218{
3219 uint32_t u32 = 0;
3220 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3221 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3222 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3223 return u32;
3224}
3225
3226/** Read MMIO memory. */
3227static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3228{
3229 uint32_t u32 = 0;
3230 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3231 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3232 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3233 return u32;
3234}
3235
3236/** Read MMIO memory. */
3237static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3238{
3239 uint32_t u32 = 0;
3240 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3241 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3242 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3243 return u32;
3244}
3245
3246/** Write to MMIO memory. */
3247static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3248{
3249 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3250 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3251 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3252}
3253
3254/** Write to MMIO memory. */
3255static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3256{
3257 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3258 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3259 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3260}
3261
3262/** Write to MMIO memory. */
3263static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3264{
3265 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3266 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3267 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3268}
3269
3270
3271#undef LOG_GROUP
3272#define LOG_GROUP LOG_GROUP_REM_HANDLER
3273
3274/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3275
3276static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3277{
3278 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3279 uint8_t u8;
3280 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3281 return u8;
3282}
3283
3284static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3285{
3286 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3287 uint16_t u16;
3288 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3289 return u16;
3290}
3291
3292static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3293{
3294 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3295 uint32_t u32;
3296 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3297 return u32;
3298}
3299
3300static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3301{
3302 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3303 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3304}
3305
3306static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3307{
3308 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3309 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3310}
3311
3312static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3313{
3314 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3315 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3316}
3317
3318/* -+- disassembly -+- */
3319
3320#undef LOG_GROUP
3321#define LOG_GROUP LOG_GROUP_REM_DISAS
3322
3323
3324/**
3325 * Enables or disables singled stepped disassembly.
3326 *
3327 * @returns VBox status code.
3328 * @param pVM VM handle.
3329 * @param fEnable To enable set this flag, to disable clear it.
3330 */
3331static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3332{
3333 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3334 VM_ASSERT_EMT(pVM);
3335
3336 if (fEnable)
3337 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3338 else
3339 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3340 return VINF_SUCCESS;
3341}
3342
3343
3344/**
3345 * Enables or disables singled stepped disassembly.
3346 *
3347 * @returns VBox status code.
3348 * @param pVM VM handle.
3349 * @param fEnable To enable set this flag, to disable clear it.
3350 */
3351REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3352{
3353 PVMREQ pReq;
3354 int rc;
3355
3356 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3357 if (VM_IS_EMT(pVM))
3358 return remR3DisasEnableStepping(pVM, fEnable);
3359
3360 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3361 AssertRC(rc);
3362 if (VBOX_SUCCESS(rc))
3363 rc = pReq->iStatus;
3364 VMR3ReqFree(pReq);
3365 return rc;
3366}
3367
3368
3369#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3370/**
3371 * External Debugger Command: .remstep [on|off|1|0]
3372 */
3373static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3374{
3375 bool fEnable;
3376 int rc;
3377
3378 /* print status */
3379 if (cArgs == 0)
3380 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3381 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3382
3383 /* convert the argument and change the mode. */
3384 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3385 if (VBOX_FAILURE(rc))
3386 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3387 rc = REMR3DisasEnableStepping(pVM, fEnable);
3388 if (VBOX_FAILURE(rc))
3389 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3390 return rc;
3391}
3392#endif
3393
3394
3395/**
3396 * Disassembles n instructions and prints them to the log.
3397 *
3398 * @returns Success indicator.
3399 * @param env Pointer to the recompiler CPU structure.
3400 * @param f32BitCode Indicates that whether or not the code should
3401 * be disassembled as 16 or 32 bit. If -1 the CS
3402 * selector will be inspected.
3403 * @param nrInstructions Nr of instructions to disassemble
3404 * @param pszPrefix
3405 * @remark not currently used for anything but ad-hoc debugging.
3406 */
3407bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3408{
3409 int i;
3410
3411 /*
3412 * Determin 16/32 bit mode.
3413 */
3414 if (f32BitCode == -1)
3415 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3416
3417 /*
3418 * Convert cs:eip to host context address.
3419 * We don't care to much about cross page correctness presently.
3420 */
3421 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3422 void *pvPC;
3423 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3424 {
3425 Assert(PGMGetGuestMode(env->pVM) < PGMMODE_AMD64);
3426
3427 /* convert eip to physical address. */
3428 int rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3429 GCPtrPC,
3430 env->cr[3],
3431 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3432 &pvPC);
3433 if (VBOX_FAILURE(rc))
3434 {
3435 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3436 return false;
3437 pvPC = (char *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3438 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3439 }
3440 }
3441 else
3442 {
3443 /* physical address */
3444 int rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16, &pvPC);
3445 if (VBOX_FAILURE(rc))
3446 return false;
3447 }
3448
3449 /*
3450 * Disassemble.
3451 */
3452 RTINTPTR off = env->eip - (RTGCUINTPTR)pvPC;
3453 DISCPUSTATE Cpu;
3454 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3455 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3456 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3457 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3458 //Cpu.dwUserData[2] = GCPtrPC;
3459
3460 for (i=0;i<nrInstructions;i++)
3461 {
3462 char szOutput[256];
3463 uint32_t cbOp;
3464 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3465 return false;
3466 if (pszPrefix)
3467 Log(("%s: %s", pszPrefix, szOutput));
3468 else
3469 Log(("%s", szOutput));
3470
3471 pvPC += cbOp;
3472 }
3473 return true;
3474}
3475
3476
3477/** @todo need to test the new code, using the old code in the mean while. */
3478#define USE_OLD_DUMP_AND_DISASSEMBLY
3479
3480/**
3481 * Disassembles one instruction and prints it to the log.
3482 *
3483 * @returns Success indicator.
3484 * @param env Pointer to the recompiler CPU structure.
3485 * @param f32BitCode Indicates that whether or not the code should
3486 * be disassembled as 16 or 32 bit. If -1 the CS
3487 * selector will be inspected.
3488 * @param pszPrefix
3489 */
3490bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3491{
3492#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3493 PVM pVM = env->pVM;
3494
3495 /* Doesn't work in long mode. */
3496 if (env->hflags & HF_LMA_MASK)
3497 return false;
3498
3499 /*
3500 * Determin 16/32 bit mode.
3501 */
3502 if (f32BitCode == -1)
3503 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3504
3505 /*
3506 * Log registers
3507 */
3508 if (LogIs2Enabled())
3509 {
3510 remR3StateUpdate(pVM);
3511 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3512 }
3513
3514 /*
3515 * Convert cs:eip to host context address.
3516 * We don't care to much about cross page correctness presently.
3517 */
3518 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3519 void *pvPC;
3520 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3521 {
3522 /* convert eip to physical address. */
3523 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
3524 GCPtrPC,
3525 env->cr[3],
3526 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3527 &pvPC);
3528 if (VBOX_FAILURE(rc))
3529 {
3530 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3531 return false;
3532 pvPC = (char *)PATMR3QueryPatchMemHC(pVM, NULL)
3533 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3534 }
3535 }
3536 else
3537 {
3538
3539 /* physical address */
3540 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, &pvPC);
3541 if (VBOX_FAILURE(rc))
3542 return false;
3543 }
3544
3545 /*
3546 * Disassemble.
3547 */
3548 RTINTPTR off = env->eip - (RTGCUINTPTR)pvPC;
3549 DISCPUSTATE Cpu;
3550 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3551 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3552 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3553 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3554 //Cpu.dwUserData[2] = GCPtrPC;
3555 char szOutput[256];
3556 uint32_t cbOp;
3557 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3558 return false;
3559
3560 if (!f32BitCode)
3561 {
3562 if (pszPrefix)
3563 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3564 else
3565 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3566 }
3567 else
3568 {
3569 if (pszPrefix)
3570 Log(("%s: %s", pszPrefix, szOutput));
3571 else
3572 Log(("%s", szOutput));
3573 }
3574 return true;
3575
3576#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3577 PVM pVM = env->pVM;
3578 const bool fLog = LogIsEnabled();
3579 const bool fLog2 = LogIs2Enabled();
3580 int rc = VINF_SUCCESS;
3581
3582 /*
3583 * Don't bother if there ain't any log output to do.
3584 */
3585 if (!fLog && !fLog2)
3586 return true;
3587
3588 /*
3589 * Update the state so DBGF reads the correct register values.
3590 */
3591 remR3StateUpdate(pVM);
3592
3593 /*
3594 * Log registers if requested.
3595 */
3596 if (!fLog2)
3597 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3598
3599 /*
3600 * Disassemble to log.
3601 */
3602 if (fLog)
3603 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3604
3605 return VBOX_SUCCESS(rc);
3606#endif
3607}
3608
3609
3610/**
3611 * Disassemble recompiled code.
3612 *
3613 * @param phFileIgnored Ignored, logfile usually.
3614 * @param pvCode Pointer to the code block.
3615 * @param cb Size of the code block.
3616 */
3617void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3618{
3619 if (LogIs2Enabled())
3620 {
3621 unsigned off = 0;
3622 char szOutput[256];
3623 DISCPUSTATE Cpu;
3624
3625 memset(&Cpu, 0, sizeof(Cpu));
3626#ifdef RT_ARCH_X86
3627 Cpu.mode = CPUMODE_32BIT;
3628#else
3629 Cpu.mode = CPUMODE_64BIT;
3630#endif
3631
3632 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3633 while (off < cb)
3634 {
3635 uint32_t cbInstr;
3636 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3637 RTLogPrintf("%s", szOutput);
3638 else
3639 {
3640 RTLogPrintf("disas error\n");
3641 cbInstr = 1;
3642#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3643 break;
3644#endif
3645 }
3646 off += cbInstr;
3647 }
3648 }
3649 NOREF(phFileIgnored);
3650}
3651
3652
3653/**
3654 * Disassemble guest code.
3655 *
3656 * @param phFileIgnored Ignored, logfile usually.
3657 * @param uCode The guest address of the code to disassemble. (flat?)
3658 * @param cb Number of bytes to disassemble.
3659 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3660 */
3661void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3662{
3663 if (LogIs2Enabled())
3664 {
3665 PVM pVM = cpu_single_env->pVM;
3666
3667 /*
3668 * Update the state so DBGF reads the correct register values (flags).
3669 */
3670 remR3StateUpdate(pVM);
3671
3672 /*
3673 * Do the disassembling.
3674 */
3675 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
3676 RTSEL cs = cpu_single_env->segs[R_CS].selector;
3677 RTGCUINTPTR eip = uCode - cpu_single_env->segs[R_CS].base;
3678 for (;;)
3679 {
3680 char szBuf[256];
3681 uint32_t cbInstr;
3682 int rc = DBGFR3DisasInstrEx(pVM,
3683 cs,
3684 eip,
3685 0,
3686 szBuf, sizeof(szBuf),
3687 &cbInstr);
3688 if (VBOX_SUCCESS(rc))
3689 RTLogPrintf("%VGp %s\n", uCode, szBuf);
3690 else
3691 {
3692 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
3693 cbInstr = 1;
3694 }
3695
3696 /* next */
3697 if (cb <= cbInstr)
3698 break;
3699 cb -= cbInstr;
3700 uCode += cbInstr;
3701 eip += cbInstr;
3702 }
3703 }
3704 NOREF(phFileIgnored);
3705}
3706
3707
3708/**
3709 * Looks up a guest symbol.
3710 *
3711 * @returns Pointer to symbol name. This is a static buffer.
3712 * @param orig_addr The address in question.
3713 */
3714const char *lookup_symbol(target_ulong orig_addr)
3715{
3716 RTGCINTPTR off = 0;
3717 DBGFSYMBOL Sym;
3718 PVM pVM = cpu_single_env->pVM;
3719 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3720 if (VBOX_SUCCESS(rc))
3721 {
3722 static char szSym[sizeof(Sym.szName) + 48];
3723 if (!off)
3724 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3725 else if (off > 0)
3726 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3727 else
3728 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3729 return szSym;
3730 }
3731 return "<N/A>";
3732}
3733
3734
3735#undef LOG_GROUP
3736#define LOG_GROUP LOG_GROUP_REM
3737
3738
3739/* -+- FF notifications -+- */
3740
3741
3742/**
3743 * Notification about a pending interrupt.
3744 *
3745 * @param pVM VM Handle.
3746 * @param u8Interrupt Interrupt
3747 * @thread The emulation thread.
3748 */
3749REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3750{
3751 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3752 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3753}
3754
3755/**
3756 * Notification about a pending interrupt.
3757 *
3758 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3759 * @param pVM VM Handle.
3760 * @thread The emulation thread.
3761 */
3762REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3763{
3764 return pVM->rem.s.u32PendingInterrupt;
3765}
3766
3767/**
3768 * Notification about the interrupt FF being set.
3769 *
3770 * @param pVM VM Handle.
3771 * @thread The emulation thread.
3772 */
3773REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3774{
3775 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3776 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3777 if (pVM->rem.s.fInREM)
3778 {
3779 if (VM_IS_EMT(pVM))
3780 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3781 else
3782 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_HARD);
3783 }
3784}
3785
3786
3787/**
3788 * Notification about the interrupt FF being set.
3789 *
3790 * @param pVM VM Handle.
3791 * @thread Any.
3792 */
3793REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3794{
3795 LogFlow(("REMR3NotifyInterruptClear:\n"));
3796 if (pVM->rem.s.fInREM)
3797 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3798}
3799
3800
3801/**
3802 * Notification about pending timer(s).
3803 *
3804 * @param pVM VM Handle.
3805 * @thread Any.
3806 */
3807REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3808{
3809#ifndef DEBUG_bird
3810 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3811#endif
3812 if (pVM->rem.s.fInREM)
3813 {
3814 if (VM_IS_EMT(pVM))
3815 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3816 else
3817 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_TIMER);
3818 }
3819}
3820
3821
3822/**
3823 * Notification about pending DMA transfers.
3824 *
3825 * @param pVM VM Handle.
3826 * @thread Any.
3827 */
3828REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3829{
3830 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3831 if (pVM->rem.s.fInREM)
3832 {
3833 if (VM_IS_EMT(pVM))
3834 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3835 else
3836 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_DMA);
3837 }
3838}
3839
3840
3841/**
3842 * Notification about pending timer(s).
3843 *
3844 * @param pVM VM Handle.
3845 * @thread Any.
3846 */
3847REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3848{
3849 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3850 if (pVM->rem.s.fInREM)
3851 {
3852 if (VM_IS_EMT(pVM))
3853 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3854 else
3855 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3856 }
3857}
3858
3859
3860/**
3861 * Notification about pending FF set by an external thread.
3862 *
3863 * @param pVM VM handle.
3864 * @thread Any.
3865 */
3866REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3867{
3868 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3869 if (pVM->rem.s.fInREM)
3870 {
3871 if (VM_IS_EMT(pVM))
3872 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3873 else
3874 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3875 }
3876}
3877
3878
3879#ifdef VBOX_WITH_STATISTICS
3880void remR3ProfileStart(int statcode)
3881{
3882 STAMPROFILEADV *pStat;
3883 switch(statcode)
3884 {
3885 case STATS_EMULATE_SINGLE_INSTR:
3886 pStat = &gStatExecuteSingleInstr;
3887 break;
3888 case STATS_QEMU_COMPILATION:
3889 pStat = &gStatCompilationQEmu;
3890 break;
3891 case STATS_QEMU_RUN_EMULATED_CODE:
3892 pStat = &gStatRunCodeQEmu;
3893 break;
3894 case STATS_QEMU_TOTAL:
3895 pStat = &gStatTotalTimeQEmu;
3896 break;
3897 case STATS_QEMU_RUN_TIMERS:
3898 pStat = &gStatTimers;
3899 break;
3900 case STATS_TLB_LOOKUP:
3901 pStat= &gStatTBLookup;
3902 break;
3903 case STATS_IRQ_HANDLING:
3904 pStat= &gStatIRQ;
3905 break;
3906 case STATS_RAW_CHECK:
3907 pStat = &gStatRawCheck;
3908 break;
3909
3910 default:
3911 AssertMsgFailed(("unknown stat %d\n", statcode));
3912 return;
3913 }
3914 STAM_PROFILE_ADV_START(pStat, a);
3915}
3916
3917
3918void remR3ProfileStop(int statcode)
3919{
3920 STAMPROFILEADV *pStat;
3921 switch(statcode)
3922 {
3923 case STATS_EMULATE_SINGLE_INSTR:
3924 pStat = &gStatExecuteSingleInstr;
3925 break;
3926 case STATS_QEMU_COMPILATION:
3927 pStat = &gStatCompilationQEmu;
3928 break;
3929 case STATS_QEMU_RUN_EMULATED_CODE:
3930 pStat = &gStatRunCodeQEmu;
3931 break;
3932 case STATS_QEMU_TOTAL:
3933 pStat = &gStatTotalTimeQEmu;
3934 break;
3935 case STATS_QEMU_RUN_TIMERS:
3936 pStat = &gStatTimers;
3937 break;
3938 case STATS_TLB_LOOKUP:
3939 pStat= &gStatTBLookup;
3940 break;
3941 case STATS_IRQ_HANDLING:
3942 pStat= &gStatIRQ;
3943 break;
3944 case STATS_RAW_CHECK:
3945 pStat = &gStatRawCheck;
3946 break;
3947 default:
3948 AssertMsgFailed(("unknown stat %d\n", statcode));
3949 return;
3950 }
3951 STAM_PROFILE_ADV_STOP(pStat, a);
3952}
3953#endif
3954
3955/**
3956 * Raise an RC, force rem exit.
3957 *
3958 * @param pVM VM handle.
3959 * @param rc The rc.
3960 */
3961void remR3RaiseRC(PVM pVM, int rc)
3962{
3963 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
3964 Assert(pVM->rem.s.fInREM);
3965 VM_ASSERT_EMT(pVM);
3966 pVM->rem.s.rc = rc;
3967 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
3968}
3969
3970
3971/* -+- timers -+- */
3972
3973uint64_t cpu_get_tsc(CPUX86State *env)
3974{
3975 STAM_COUNTER_INC(&gStatCpuGetTSC);
3976 return TMCpuTickGet(env->pVM);
3977}
3978
3979
3980/* -+- interrupts -+- */
3981
3982void cpu_set_ferr(CPUX86State *env)
3983{
3984 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
3985 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
3986}
3987
3988int cpu_get_pic_interrupt(CPUState *env)
3989{
3990 uint8_t u8Interrupt;
3991 int rc;
3992
3993 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
3994 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
3995 * with the (a)pic.
3996 */
3997 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
3998 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
3999 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4000 * remove this kludge. */
4001 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4002 {
4003 rc = VINF_SUCCESS;
4004 Assert(env->pVM->rem.s.u32PendingInterrupt >= 0 && env->pVM->rem.s.u32PendingInterrupt <= 255);
4005 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4006 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4007 }
4008 else
4009 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4010
4011 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
4012 if (VBOX_SUCCESS(rc))
4013 {
4014 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4015 env->interrupt_request |= CPU_INTERRUPT_HARD;
4016 return u8Interrupt;
4017 }
4018 return -1;
4019}
4020
4021
4022/* -+- local apic -+- */
4023
4024void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4025{
4026 int rc = PDMApicSetBase(env->pVM, val);
4027 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
4028}
4029
4030uint64_t cpu_get_apic_base(CPUX86State *env)
4031{
4032 uint64_t u64;
4033 int rc = PDMApicGetBase(env->pVM, &u64);
4034 if (VBOX_SUCCESS(rc))
4035 {
4036 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4037 return u64;
4038 }
4039 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
4040 return 0;
4041}
4042
4043void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4044{
4045 int rc = PDMApicSetTPR(env->pVM, val);
4046 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
4047}
4048
4049uint8_t cpu_get_apic_tpr(CPUX86State *env)
4050{
4051 uint8_t u8;
4052 int rc = PDMApicGetTPR(env->pVM, &u8, NULL);
4053 if (VBOX_SUCCESS(rc))
4054 {
4055 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4056 return u8;
4057 }
4058 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
4059 return 0;
4060}
4061
4062
4063/* -+- I/O Ports -+- */
4064
4065#undef LOG_GROUP
4066#define LOG_GROUP LOG_GROUP_REM_IOPORT
4067
4068void cpu_outb(CPUState *env, int addr, int val)
4069{
4070 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4071 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4072
4073 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4074 if (RT_LIKELY(rc == VINF_SUCCESS))
4075 return;
4076 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4077 {
4078 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4079 remR3RaiseRC(env->pVM, rc);
4080 return;
4081 }
4082 remAbort(rc, __FUNCTION__);
4083}
4084
4085void cpu_outw(CPUState *env, int addr, int val)
4086{
4087 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4088 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4089 if (RT_LIKELY(rc == VINF_SUCCESS))
4090 return;
4091 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4092 {
4093 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4094 remR3RaiseRC(env->pVM, rc);
4095 return;
4096 }
4097 remAbort(rc, __FUNCTION__);
4098}
4099
4100void cpu_outl(CPUState *env, int addr, int val)
4101{
4102 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4103 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4104 if (RT_LIKELY(rc == VINF_SUCCESS))
4105 return;
4106 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4107 {
4108 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4109 remR3RaiseRC(env->pVM, rc);
4110 return;
4111 }
4112 remAbort(rc, __FUNCTION__);
4113}
4114
4115int cpu_inb(CPUState *env, int addr)
4116{
4117 uint32_t u32 = 0;
4118 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4119 if (RT_LIKELY(rc == VINF_SUCCESS))
4120 {
4121 if (/*addr != 0x61 && */addr != 0x71)
4122 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4123 return (int)u32;
4124 }
4125 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4126 {
4127 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4128 remR3RaiseRC(env->pVM, rc);
4129 return (int)u32;
4130 }
4131 remAbort(rc, __FUNCTION__);
4132 return 0xff;
4133}
4134
4135int cpu_inw(CPUState *env, int addr)
4136{
4137 uint32_t u32 = 0;
4138 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4139 if (RT_LIKELY(rc == VINF_SUCCESS))
4140 {
4141 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4142 return (int)u32;
4143 }
4144 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4145 {
4146 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4147 remR3RaiseRC(env->pVM, rc);
4148 return (int)u32;
4149 }
4150 remAbort(rc, __FUNCTION__);
4151 return 0xffff;
4152}
4153
4154int cpu_inl(CPUState *env, int addr)
4155{
4156 uint32_t u32 = 0;
4157 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4158 if (RT_LIKELY(rc == VINF_SUCCESS))
4159 {
4160//if (addr==0x01f0 && u32 == 0x6b6d)
4161// loglevel = ~0;
4162 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4163 return (int)u32;
4164 }
4165 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4166 {
4167 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4168 remR3RaiseRC(env->pVM, rc);
4169 return (int)u32;
4170 }
4171 remAbort(rc, __FUNCTION__);
4172 return 0xffffffff;
4173}
4174
4175#undef LOG_GROUP
4176#define LOG_GROUP LOG_GROUP_REM
4177
4178
4179/* -+- helpers and misc other interfaces -+- */
4180
4181/**
4182 * Perform the CPUID instruction.
4183 *
4184 * ASMCpuId cannot be invoked from some source files where this is used because of global
4185 * register allocations.
4186 *
4187 * @param env Pointer to the recompiler CPU structure.
4188 * @param uOperator CPUID operation (eax).
4189 * @param pvEAX Where to store eax.
4190 * @param pvEBX Where to store ebx.
4191 * @param pvECX Where to store ecx.
4192 * @param pvEDX Where to store edx.
4193 */
4194void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4195{
4196 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4197}
4198
4199
4200#if 0 /* not used */
4201/**
4202 * Interface for qemu hardware to report back fatal errors.
4203 */
4204void hw_error(const char *pszFormat, ...)
4205{
4206 /*
4207 * Bitch about it.
4208 */
4209 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4210 * this in my Odin32 tree at home! */
4211 va_list args;
4212 va_start(args, pszFormat);
4213 RTLogPrintf("fatal error in virtual hardware:");
4214 RTLogPrintfV(pszFormat, args);
4215 va_end(args);
4216 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4217
4218 /*
4219 * If we're in REM context we'll sync back the state before 'jumping' to
4220 * the EMs failure handling.
4221 */
4222 PVM pVM = cpu_single_env->pVM;
4223 if (pVM->rem.s.fInREM)
4224 REMR3StateBack(pVM);
4225 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4226 AssertMsgFailed(("EMR3FatalError returned!\n"));
4227}
4228#endif
4229
4230/**
4231 * Interface for the qemu cpu to report unhandled situation
4232 * raising a fatal VM error.
4233 */
4234void cpu_abort(CPUState *env, const char *pszFormat, ...)
4235{
4236 /*
4237 * Bitch about it.
4238 */
4239 RTLogFlags(NULL, "nodisabled nobuffered");
4240 va_list args;
4241 va_start(args, pszFormat);
4242 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4243 va_end(args);
4244 va_start(args, pszFormat);
4245 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4246 va_end(args);
4247
4248 /*
4249 * If we're in REM context we'll sync back the state before 'jumping' to
4250 * the EMs failure handling.
4251 */
4252 PVM pVM = cpu_single_env->pVM;
4253 if (pVM->rem.s.fInREM)
4254 REMR3StateBack(pVM);
4255 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4256 AssertMsgFailed(("EMR3FatalError returned!\n"));
4257}
4258
4259
4260/**
4261 * Aborts the VM.
4262 *
4263 * @param rc VBox error code.
4264 * @param pszTip Hint about why/when this happend.
4265 */
4266static void remAbort(int rc, const char *pszTip)
4267{
4268 /*
4269 * Bitch about it.
4270 */
4271 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4272 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4273
4274 /*
4275 * Jump back to where we entered the recompiler.
4276 */
4277 PVM pVM = cpu_single_env->pVM;
4278 if (pVM->rem.s.fInREM)
4279 REMR3StateBack(pVM);
4280 EMR3FatalError(pVM, rc);
4281 AssertMsgFailed(("EMR3FatalError returned!\n"));
4282}
4283
4284
4285/**
4286 * Dumps a linux system call.
4287 * @param pVM VM handle.
4288 */
4289void remR3DumpLnxSyscall(PVM pVM)
4290{
4291 static const char *apsz[] =
4292 {
4293 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4294 "sys_exit",
4295 "sys_fork",
4296 "sys_read",
4297 "sys_write",
4298 "sys_open", /* 5 */
4299 "sys_close",
4300 "sys_waitpid",
4301 "sys_creat",
4302 "sys_link",
4303 "sys_unlink", /* 10 */
4304 "sys_execve",
4305 "sys_chdir",
4306 "sys_time",
4307 "sys_mknod",
4308 "sys_chmod", /* 15 */
4309 "sys_lchown16",
4310 "sys_ni_syscall", /* old break syscall holder */
4311 "sys_stat",
4312 "sys_lseek",
4313 "sys_getpid", /* 20 */
4314 "sys_mount",
4315 "sys_oldumount",
4316 "sys_setuid16",
4317 "sys_getuid16",
4318 "sys_stime", /* 25 */
4319 "sys_ptrace",
4320 "sys_alarm",
4321 "sys_fstat",
4322 "sys_pause",
4323 "sys_utime", /* 30 */
4324 "sys_ni_syscall", /* old stty syscall holder */
4325 "sys_ni_syscall", /* old gtty syscall holder */
4326 "sys_access",
4327 "sys_nice",
4328 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4329 "sys_sync",
4330 "sys_kill",
4331 "sys_rename",
4332 "sys_mkdir",
4333 "sys_rmdir", /* 40 */
4334 "sys_dup",
4335 "sys_pipe",
4336 "sys_times",
4337 "sys_ni_syscall", /* old prof syscall holder */
4338 "sys_brk", /* 45 */
4339 "sys_setgid16",
4340 "sys_getgid16",
4341 "sys_signal",
4342 "sys_geteuid16",
4343 "sys_getegid16", /* 50 */
4344 "sys_acct",
4345 "sys_umount", /* recycled never used phys() */
4346 "sys_ni_syscall", /* old lock syscall holder */
4347 "sys_ioctl",
4348 "sys_fcntl", /* 55 */
4349 "sys_ni_syscall", /* old mpx syscall holder */
4350 "sys_setpgid",
4351 "sys_ni_syscall", /* old ulimit syscall holder */
4352 "sys_olduname",
4353 "sys_umask", /* 60 */
4354 "sys_chroot",
4355 "sys_ustat",
4356 "sys_dup2",
4357 "sys_getppid",
4358 "sys_getpgrp", /* 65 */
4359 "sys_setsid",
4360 "sys_sigaction",
4361 "sys_sgetmask",
4362 "sys_ssetmask",
4363 "sys_setreuid16", /* 70 */
4364 "sys_setregid16",
4365 "sys_sigsuspend",
4366 "sys_sigpending",
4367 "sys_sethostname",
4368 "sys_setrlimit", /* 75 */
4369 "sys_old_getrlimit",
4370 "sys_getrusage",
4371 "sys_gettimeofday",
4372 "sys_settimeofday",
4373 "sys_getgroups16", /* 80 */
4374 "sys_setgroups16",
4375 "old_select",
4376 "sys_symlink",
4377 "sys_lstat",
4378 "sys_readlink", /* 85 */
4379 "sys_uselib",
4380 "sys_swapon",
4381 "sys_reboot",
4382 "old_readdir",
4383 "old_mmap", /* 90 */
4384 "sys_munmap",
4385 "sys_truncate",
4386 "sys_ftruncate",
4387 "sys_fchmod",
4388 "sys_fchown16", /* 95 */
4389 "sys_getpriority",
4390 "sys_setpriority",
4391 "sys_ni_syscall", /* old profil syscall holder */
4392 "sys_statfs",
4393 "sys_fstatfs", /* 100 */
4394 "sys_ioperm",
4395 "sys_socketcall",
4396 "sys_syslog",
4397 "sys_setitimer",
4398 "sys_getitimer", /* 105 */
4399 "sys_newstat",
4400 "sys_newlstat",
4401 "sys_newfstat",
4402 "sys_uname",
4403 "sys_iopl", /* 110 */
4404 "sys_vhangup",
4405 "sys_ni_syscall", /* old "idle" system call */
4406 "sys_vm86old",
4407 "sys_wait4",
4408 "sys_swapoff", /* 115 */
4409 "sys_sysinfo",
4410 "sys_ipc",
4411 "sys_fsync",
4412 "sys_sigreturn",
4413 "sys_clone", /* 120 */
4414 "sys_setdomainname",
4415 "sys_newuname",
4416 "sys_modify_ldt",
4417 "sys_adjtimex",
4418 "sys_mprotect", /* 125 */
4419 "sys_sigprocmask",
4420 "sys_ni_syscall", /* old "create_module" */
4421 "sys_init_module",
4422 "sys_delete_module",
4423 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4424 "sys_quotactl",
4425 "sys_getpgid",
4426 "sys_fchdir",
4427 "sys_bdflush",
4428 "sys_sysfs", /* 135 */
4429 "sys_personality",
4430 "sys_ni_syscall", /* reserved for afs_syscall */
4431 "sys_setfsuid16",
4432 "sys_setfsgid16",
4433 "sys_llseek", /* 140 */
4434 "sys_getdents",
4435 "sys_select",
4436 "sys_flock",
4437 "sys_msync",
4438 "sys_readv", /* 145 */
4439 "sys_writev",
4440 "sys_getsid",
4441 "sys_fdatasync",
4442 "sys_sysctl",
4443 "sys_mlock", /* 150 */
4444 "sys_munlock",
4445 "sys_mlockall",
4446 "sys_munlockall",
4447 "sys_sched_setparam",
4448 "sys_sched_getparam", /* 155 */
4449 "sys_sched_setscheduler",
4450 "sys_sched_getscheduler",
4451 "sys_sched_yield",
4452 "sys_sched_get_priority_max",
4453 "sys_sched_get_priority_min", /* 160 */
4454 "sys_sched_rr_get_interval",
4455 "sys_nanosleep",
4456 "sys_mremap",
4457 "sys_setresuid16",
4458 "sys_getresuid16", /* 165 */
4459 "sys_vm86",
4460 "sys_ni_syscall", /* Old sys_query_module */
4461 "sys_poll",
4462 "sys_nfsservctl",
4463 "sys_setresgid16", /* 170 */
4464 "sys_getresgid16",
4465 "sys_prctl",
4466 "sys_rt_sigreturn",
4467 "sys_rt_sigaction",
4468 "sys_rt_sigprocmask", /* 175 */
4469 "sys_rt_sigpending",
4470 "sys_rt_sigtimedwait",
4471 "sys_rt_sigqueueinfo",
4472 "sys_rt_sigsuspend",
4473 "sys_pread64", /* 180 */
4474 "sys_pwrite64",
4475 "sys_chown16",
4476 "sys_getcwd",
4477 "sys_capget",
4478 "sys_capset", /* 185 */
4479 "sys_sigaltstack",
4480 "sys_sendfile",
4481 "sys_ni_syscall", /* reserved for streams1 */
4482 "sys_ni_syscall", /* reserved for streams2 */
4483 "sys_vfork", /* 190 */
4484 "sys_getrlimit",
4485 "sys_mmap2",
4486 "sys_truncate64",
4487 "sys_ftruncate64",
4488 "sys_stat64", /* 195 */
4489 "sys_lstat64",
4490 "sys_fstat64",
4491 "sys_lchown",
4492 "sys_getuid",
4493 "sys_getgid", /* 200 */
4494 "sys_geteuid",
4495 "sys_getegid",
4496 "sys_setreuid",
4497 "sys_setregid",
4498 "sys_getgroups", /* 205 */
4499 "sys_setgroups",
4500 "sys_fchown",
4501 "sys_setresuid",
4502 "sys_getresuid",
4503 "sys_setresgid", /* 210 */
4504 "sys_getresgid",
4505 "sys_chown",
4506 "sys_setuid",
4507 "sys_setgid",
4508 "sys_setfsuid", /* 215 */
4509 "sys_setfsgid",
4510 "sys_pivot_root",
4511 "sys_mincore",
4512 "sys_madvise",
4513 "sys_getdents64", /* 220 */
4514 "sys_fcntl64",
4515 "sys_ni_syscall", /* reserved for TUX */
4516 "sys_ni_syscall",
4517 "sys_gettid",
4518 "sys_readahead", /* 225 */
4519 "sys_setxattr",
4520 "sys_lsetxattr",
4521 "sys_fsetxattr",
4522 "sys_getxattr",
4523 "sys_lgetxattr", /* 230 */
4524 "sys_fgetxattr",
4525 "sys_listxattr",
4526 "sys_llistxattr",
4527 "sys_flistxattr",
4528 "sys_removexattr", /* 235 */
4529 "sys_lremovexattr",
4530 "sys_fremovexattr",
4531 "sys_tkill",
4532 "sys_sendfile64",
4533 "sys_futex", /* 240 */
4534 "sys_sched_setaffinity",
4535 "sys_sched_getaffinity",
4536 "sys_set_thread_area",
4537 "sys_get_thread_area",
4538 "sys_io_setup", /* 245 */
4539 "sys_io_destroy",
4540 "sys_io_getevents",
4541 "sys_io_submit",
4542 "sys_io_cancel",
4543 "sys_fadvise64", /* 250 */
4544 "sys_ni_syscall",
4545 "sys_exit_group",
4546 "sys_lookup_dcookie",
4547 "sys_epoll_create",
4548 "sys_epoll_ctl", /* 255 */
4549 "sys_epoll_wait",
4550 "sys_remap_file_pages",
4551 "sys_set_tid_address",
4552 "sys_timer_create",
4553 "sys_timer_settime", /* 260 */
4554 "sys_timer_gettime",
4555 "sys_timer_getoverrun",
4556 "sys_timer_delete",
4557 "sys_clock_settime",
4558 "sys_clock_gettime", /* 265 */
4559 "sys_clock_getres",
4560 "sys_clock_nanosleep",
4561 "sys_statfs64",
4562 "sys_fstatfs64",
4563 "sys_tgkill", /* 270 */
4564 "sys_utimes",
4565 "sys_fadvise64_64",
4566 "sys_ni_syscall" /* sys_vserver */
4567 };
4568
4569 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4570 switch (uEAX)
4571 {
4572 default:
4573 if (uEAX < ELEMENTS(apsz))
4574 Log(("REM: linux syscall %3d: %s (eip=%VGv ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4575 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4576 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4577 else
4578 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4579 break;
4580
4581 }
4582}
4583
4584
4585/**
4586 * Dumps an OpenBSD system call.
4587 * @param pVM VM handle.
4588 */
4589void remR3DumpOBsdSyscall(PVM pVM)
4590{
4591 static const char *apsz[] =
4592 {
4593 "SYS_syscall", //0
4594 "SYS_exit", //1
4595 "SYS_fork", //2
4596 "SYS_read", //3
4597 "SYS_write", //4
4598 "SYS_open", //5
4599 "SYS_close", //6
4600 "SYS_wait4", //7
4601 "SYS_8",
4602 "SYS_link", //9
4603 "SYS_unlink", //10
4604 "SYS_11",
4605 "SYS_chdir", //12
4606 "SYS_fchdir", //13
4607 "SYS_mknod", //14
4608 "SYS_chmod", //15
4609 "SYS_chown", //16
4610 "SYS_break", //17
4611 "SYS_18",
4612 "SYS_19",
4613 "SYS_getpid", //20
4614 "SYS_mount", //21
4615 "SYS_unmount", //22
4616 "SYS_setuid", //23
4617 "SYS_getuid", //24
4618 "SYS_geteuid", //25
4619 "SYS_ptrace", //26
4620 "SYS_recvmsg", //27
4621 "SYS_sendmsg", //28
4622 "SYS_recvfrom", //29
4623 "SYS_accept", //30
4624 "SYS_getpeername", //31
4625 "SYS_getsockname", //32
4626 "SYS_access", //33
4627 "SYS_chflags", //34
4628 "SYS_fchflags", //35
4629 "SYS_sync", //36
4630 "SYS_kill", //37
4631 "SYS_38",
4632 "SYS_getppid", //39
4633 "SYS_40",
4634 "SYS_dup", //41
4635 "SYS_opipe", //42
4636 "SYS_getegid", //43
4637 "SYS_profil", //44
4638 "SYS_ktrace", //45
4639 "SYS_sigaction", //46
4640 "SYS_getgid", //47
4641 "SYS_sigprocmask", //48
4642 "SYS_getlogin", //49
4643 "SYS_setlogin", //50
4644 "SYS_acct", //51
4645 "SYS_sigpending", //52
4646 "SYS_osigaltstack", //53
4647 "SYS_ioctl", //54
4648 "SYS_reboot", //55
4649 "SYS_revoke", //56
4650 "SYS_symlink", //57
4651 "SYS_readlink", //58
4652 "SYS_execve", //59
4653 "SYS_umask", //60
4654 "SYS_chroot", //61
4655 "SYS_62",
4656 "SYS_63",
4657 "SYS_64",
4658 "SYS_65",
4659 "SYS_vfork", //66
4660 "SYS_67",
4661 "SYS_68",
4662 "SYS_sbrk", //69
4663 "SYS_sstk", //70
4664 "SYS_61",
4665 "SYS_vadvise", //72
4666 "SYS_munmap", //73
4667 "SYS_mprotect", //74
4668 "SYS_madvise", //75
4669 "SYS_76",
4670 "SYS_77",
4671 "SYS_mincore", //78
4672 "SYS_getgroups", //79
4673 "SYS_setgroups", //80
4674 "SYS_getpgrp", //81
4675 "SYS_setpgid", //82
4676 "SYS_setitimer", //83
4677 "SYS_84",
4678 "SYS_85",
4679 "SYS_getitimer", //86
4680 "SYS_87",
4681 "SYS_88",
4682 "SYS_89",
4683 "SYS_dup2", //90
4684 "SYS_91",
4685 "SYS_fcntl", //92
4686 "SYS_select", //93
4687 "SYS_94",
4688 "SYS_fsync", //95
4689 "SYS_setpriority", //96
4690 "SYS_socket", //97
4691 "SYS_connect", //98
4692 "SYS_99",
4693 "SYS_getpriority", //100
4694 "SYS_101",
4695 "SYS_102",
4696 "SYS_sigreturn", //103
4697 "SYS_bind", //104
4698 "SYS_setsockopt", //105
4699 "SYS_listen", //106
4700 "SYS_107",
4701 "SYS_108",
4702 "SYS_109",
4703 "SYS_110",
4704 "SYS_sigsuspend", //111
4705 "SYS_112",
4706 "SYS_113",
4707 "SYS_114",
4708 "SYS_115",
4709 "SYS_gettimeofday", //116
4710 "SYS_getrusage", //117
4711 "SYS_getsockopt", //118
4712 "SYS_119",
4713 "SYS_readv", //120
4714 "SYS_writev", //121
4715 "SYS_settimeofday", //122
4716 "SYS_fchown", //123
4717 "SYS_fchmod", //124
4718 "SYS_125",
4719 "SYS_setreuid", //126
4720 "SYS_setregid", //127
4721 "SYS_rename", //128
4722 "SYS_129",
4723 "SYS_130",
4724 "SYS_flock", //131
4725 "SYS_mkfifo", //132
4726 "SYS_sendto", //133
4727 "SYS_shutdown", //134
4728 "SYS_socketpair", //135
4729 "SYS_mkdir", //136
4730 "SYS_rmdir", //137
4731 "SYS_utimes", //138
4732 "SYS_139",
4733 "SYS_adjtime", //140
4734 "SYS_141",
4735 "SYS_142",
4736 "SYS_143",
4737 "SYS_144",
4738 "SYS_145",
4739 "SYS_146",
4740 "SYS_setsid", //147
4741 "SYS_quotactl", //148
4742 "SYS_149",
4743 "SYS_150",
4744 "SYS_151",
4745 "SYS_152",
4746 "SYS_153",
4747 "SYS_154",
4748 "SYS_nfssvc", //155
4749 "SYS_156",
4750 "SYS_157",
4751 "SYS_158",
4752 "SYS_159",
4753 "SYS_160",
4754 "SYS_getfh", //161
4755 "SYS_162",
4756 "SYS_163",
4757 "SYS_164",
4758 "SYS_sysarch", //165
4759 "SYS_166",
4760 "SYS_167",
4761 "SYS_168",
4762 "SYS_169",
4763 "SYS_170",
4764 "SYS_171",
4765 "SYS_172",
4766 "SYS_pread", //173
4767 "SYS_pwrite", //174
4768 "SYS_175",
4769 "SYS_176",
4770 "SYS_177",
4771 "SYS_178",
4772 "SYS_179",
4773 "SYS_180",
4774 "SYS_setgid", //181
4775 "SYS_setegid", //182
4776 "SYS_seteuid", //183
4777 "SYS_lfs_bmapv", //184
4778 "SYS_lfs_markv", //185
4779 "SYS_lfs_segclean", //186
4780 "SYS_lfs_segwait", //187
4781 "SYS_188",
4782 "SYS_189",
4783 "SYS_190",
4784 "SYS_pathconf", //191
4785 "SYS_fpathconf", //192
4786 "SYS_swapctl", //193
4787 "SYS_getrlimit", //194
4788 "SYS_setrlimit", //195
4789 "SYS_getdirentries", //196
4790 "SYS_mmap", //197
4791 "SYS___syscall", //198
4792 "SYS_lseek", //199
4793 "SYS_truncate", //200
4794 "SYS_ftruncate", //201
4795 "SYS___sysctl", //202
4796 "SYS_mlock", //203
4797 "SYS_munlock", //204
4798 "SYS_205",
4799 "SYS_futimes", //206
4800 "SYS_getpgid", //207
4801 "SYS_xfspioctl", //208
4802 "SYS_209",
4803 "SYS_210",
4804 "SYS_211",
4805 "SYS_212",
4806 "SYS_213",
4807 "SYS_214",
4808 "SYS_215",
4809 "SYS_216",
4810 "SYS_217",
4811 "SYS_218",
4812 "SYS_219",
4813 "SYS_220",
4814 "SYS_semget", //221
4815 "SYS_222",
4816 "SYS_223",
4817 "SYS_224",
4818 "SYS_msgget", //225
4819 "SYS_msgsnd", //226
4820 "SYS_msgrcv", //227
4821 "SYS_shmat", //228
4822 "SYS_229",
4823 "SYS_shmdt", //230
4824 "SYS_231",
4825 "SYS_clock_gettime", //232
4826 "SYS_clock_settime", //233
4827 "SYS_clock_getres", //234
4828 "SYS_235",
4829 "SYS_236",
4830 "SYS_237",
4831 "SYS_238",
4832 "SYS_239",
4833 "SYS_nanosleep", //240
4834 "SYS_241",
4835 "SYS_242",
4836 "SYS_243",
4837 "SYS_244",
4838 "SYS_245",
4839 "SYS_246",
4840 "SYS_247",
4841 "SYS_248",
4842 "SYS_249",
4843 "SYS_minherit", //250
4844 "SYS_rfork", //251
4845 "SYS_poll", //252
4846 "SYS_issetugid", //253
4847 "SYS_lchown", //254
4848 "SYS_getsid", //255
4849 "SYS_msync", //256
4850 "SYS_257",
4851 "SYS_258",
4852 "SYS_259",
4853 "SYS_getfsstat", //260
4854 "SYS_statfs", //261
4855 "SYS_fstatfs", //262
4856 "SYS_pipe", //263
4857 "SYS_fhopen", //264
4858 "SYS_265",
4859 "SYS_fhstatfs", //266
4860 "SYS_preadv", //267
4861 "SYS_pwritev", //268
4862 "SYS_kqueue", //269
4863 "SYS_kevent", //270
4864 "SYS_mlockall", //271
4865 "SYS_munlockall", //272
4866 "SYS_getpeereid", //273
4867 "SYS_274",
4868 "SYS_275",
4869 "SYS_276",
4870 "SYS_277",
4871 "SYS_278",
4872 "SYS_279",
4873 "SYS_280",
4874 "SYS_getresuid", //281
4875 "SYS_setresuid", //282
4876 "SYS_getresgid", //283
4877 "SYS_setresgid", //284
4878 "SYS_285",
4879 "SYS_mquery", //286
4880 "SYS_closefrom", //287
4881 "SYS_sigaltstack", //288
4882 "SYS_shmget", //289
4883 "SYS_semop", //290
4884 "SYS_stat", //291
4885 "SYS_fstat", //292
4886 "SYS_lstat", //293
4887 "SYS_fhstat", //294
4888 "SYS___semctl", //295
4889 "SYS_shmctl", //296
4890 "SYS_msgctl", //297
4891 "SYS_MAXSYSCALL", //298
4892 //299
4893 //300
4894 };
4895 uint32_t uEAX;
4896 if (!LogIsEnabled())
4897 return;
4898 uEAX = CPUMGetGuestEAX(pVM);
4899 switch (uEAX)
4900 {
4901 default:
4902 if (uEAX < ELEMENTS(apsz))
4903 {
4904 uint32_t au32Args[8] = {0};
4905 PGMPhysReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
4906 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
4907 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
4908 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
4909 }
4910 else
4911 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
4912 break;
4913 }
4914}
4915
4916
4917#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
4918/**
4919 * The Dll main entry point (stub).
4920 */
4921bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
4922{
4923 return true;
4924}
4925
4926void *memcpy(void *dst, const void *src, size_t size)
4927{
4928 uint8_t*pbDst = dst, *pbSrc = src;
4929 while (size-- > 0)
4930 *pbDst++ = *pbSrc++;
4931 return dst;
4932}
4933
4934#endif
4935
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette