VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 12303

Last change on this file since 12303 was 12303, checked in by vboxsync, 16 years ago

Extra stat counter for TB flushes

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 155.7 KB
Line 
1/* $Id: VBoxRecompiler.c 12303 2008-09-09 15:32:47Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "exec-all.h"
29
30#include <VBox/rem.h>
31#include <VBox/vmapi.h>
32#include <VBox/tm.h>
33#include <VBox/ssm.h>
34#include <VBox/em.h>
35#include <VBox/trpm.h>
36#include <VBox/iom.h>
37#include <VBox/mm.h>
38#include <VBox/pgm.h>
39#include <VBox/pdm.h>
40#include <VBox/dbgf.h>
41#include <VBox/dbg.h>
42#include <VBox/hwaccm.h>
43#include <VBox/patm.h>
44#include <VBox/csam.h>
45#include "REMInternal.h"
46#include <VBox/vm.h>
47#include <VBox/param.h>
48#include <VBox/err.h>
49
50#include <VBox/log.h>
51#include <iprt/semaphore.h>
52#include <iprt/asm.h>
53#include <iprt/assert.h>
54#include <iprt/thread.h>
55#include <iprt/string.h>
56
57/* Don't wanna include everything. */
58extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
59extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
60extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
61extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
62extern void tlb_flush(CPUState *env, int flush_global);
63extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
64extern void sync_ldtr(CPUX86State *env1, int selector);
65extern int sync_tr(CPUX86State *env1, int selector);
66
67#ifdef VBOX_STRICT
68unsigned long get_phys_page_offset(target_ulong addr);
69#endif
70
71
72////#define VBOX_REM_FLUSH_ALL_TBS
73
74/*******************************************************************************
75* Defined Constants And Macros *
76*******************************************************************************/
77
78/** Copy 80-bit fpu register at pSrc to pDst.
79 * This is probably faster than *calling* memcpy.
80 */
81#define REM_COPY_FPU_REG(pDst, pSrc) \
82 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
83
84
85/*******************************************************************************
86* Internal Functions *
87*******************************************************************************/
88static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
89static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
90static void remR3StateUpdate(PVM pVM);
91
92static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
93static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
94static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
95static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
96static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
97static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
98
99static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
100static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
101static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
102static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
103static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
104static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
105
106
107/*******************************************************************************
108* Global Variables *
109*******************************************************************************/
110
111/** @todo Move stats to REM::s some rainy day we have nothing do to. */
112#ifdef VBOX_WITH_STATISTICS
113static STAMPROFILEADV gStatExecuteSingleInstr;
114static STAMPROFILEADV gStatCompilationQEmu;
115static STAMPROFILEADV gStatRunCodeQEmu;
116static STAMPROFILEADV gStatTotalTimeQEmu;
117static STAMPROFILEADV gStatTimers;
118static STAMPROFILEADV gStatTBLookup;
119static STAMPROFILEADV gStatIRQ;
120static STAMPROFILEADV gStatRawCheck;
121static STAMPROFILEADV gStatMemRead;
122static STAMPROFILEADV gStatMemWrite;
123static STAMPROFILE gStatGCPhys2HCVirt;
124static STAMPROFILE gStatHCVirt2GCPhys;
125static STAMCOUNTER gStatCpuGetTSC;
126static STAMCOUNTER gStatRefuseTFInhibit;
127static STAMCOUNTER gStatRefuseVM86;
128static STAMCOUNTER gStatRefusePaging;
129static STAMCOUNTER gStatRefusePAE;
130static STAMCOUNTER gStatRefuseIOPLNot0;
131static STAMCOUNTER gStatRefuseIF0;
132static STAMCOUNTER gStatRefuseCode16;
133static STAMCOUNTER gStatRefuseWP0;
134static STAMCOUNTER gStatRefuseRing1or2;
135static STAMCOUNTER gStatRefuseCanExecute;
136static STAMCOUNTER gStatREMGDTChange;
137static STAMCOUNTER gStatREMIDTChange;
138static STAMCOUNTER gStatREMLDTRChange;
139static STAMCOUNTER gStatREMTRChange;
140static STAMCOUNTER gStatSelOutOfSync[6];
141static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
142static STAMCOUNTER gStatFlushTBs;
143#endif
144
145/*
146 * Global stuff.
147 */
148
149/** MMIO read callbacks. */
150CPUReadMemoryFunc *g_apfnMMIORead[3] =
151{
152 remR3MMIOReadU8,
153 remR3MMIOReadU16,
154 remR3MMIOReadU32
155};
156
157/** MMIO write callbacks. */
158CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
159{
160 remR3MMIOWriteU8,
161 remR3MMIOWriteU16,
162 remR3MMIOWriteU32
163};
164
165/** Handler read callbacks. */
166CPUReadMemoryFunc *g_apfnHandlerRead[3] =
167{
168 remR3HandlerReadU8,
169 remR3HandlerReadU16,
170 remR3HandlerReadU32
171};
172
173/** Handler write callbacks. */
174CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
175{
176 remR3HandlerWriteU8,
177 remR3HandlerWriteU16,
178 remR3HandlerWriteU32
179};
180
181
182#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDWS) && defined(RT_ARCH_AMD64))
183/*
184 * Debugger commands.
185 */
186static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
187
188/** '.remstep' arguments. */
189static const DBGCVARDESC g_aArgRemStep[] =
190{
191 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
192 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
193};
194
195/** Command descriptors. */
196static const DBGCCMD g_aCmds[] =
197{
198 {
199 .pszCmd ="remstep",
200 .cArgsMin = 0,
201 .cArgsMax = 1,
202 .paArgDescs = &g_aArgRemStep[0],
203 .cArgDescs = ELEMENTS(g_aArgRemStep),
204 .pResultDesc = NULL,
205 .fFlags = 0,
206 .pfnHandler = remR3CmdDisasEnableStepping,
207 .pszSyntax = "[on/off]",
208 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
209 "If no arguments show the current state."
210 }
211};
212#endif
213
214
215/* Instantiate the structure signatures. */
216#define REM_STRUCT_OP 0
217#include "Sun/structs.h"
218
219
220
221/*******************************************************************************
222* Internal Functions *
223*******************************************************************************/
224static void remAbort(int rc, const char *pszTip);
225extern int testmath(void);
226
227/* Put them here to avoid unused variable warning. */
228AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
229#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
230//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
231/* Why did this have to be identical?? */
232AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
233#else
234AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
235#endif
236
237
238/**
239 * Initializes the REM.
240 *
241 * @returns VBox status code.
242 * @param pVM The VM to operate on.
243 */
244REMR3DECL(int) REMR3Init(PVM pVM)
245{
246 uint32_t u32Dummy;
247 unsigned i;
248
249 /*
250 * Assert sanity.
251 */
252 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
253 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
254 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
255#if defined(DEBUG) && !defined(RT_OS_SOLARIS) /// @todo fix the solaris math stuff.
256 Assert(!testmath());
257#endif
258 ASSERT_STRUCT_TABLE(Misc);
259 ASSERT_STRUCT_TABLE(TLB);
260 ASSERT_STRUCT_TABLE(SegmentCache);
261 ASSERT_STRUCT_TABLE(XMMReg);
262 ASSERT_STRUCT_TABLE(MMXReg);
263 ASSERT_STRUCT_TABLE(float_status);
264 ASSERT_STRUCT_TABLE(float32u);
265 ASSERT_STRUCT_TABLE(float64u);
266 ASSERT_STRUCT_TABLE(floatx80u);
267 ASSERT_STRUCT_TABLE(CPUState);
268
269 /*
270 * Init some internal data members.
271 */
272 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
273 pVM->rem.s.Env.pVM = pVM;
274#ifdef CPU_RAW_MODE_INIT
275 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
276#endif
277
278 /* ctx. */
279 int rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
280 if (VBOX_FAILURE(rc))
281 {
282 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
283 return rc;
284 }
285 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
286
287 /* ignore all notifications */
288 pVM->rem.s.fIgnoreAll = true;
289
290 /*
291 * Init the recompiler.
292 */
293 if (!cpu_x86_init(&pVM->rem.s.Env))
294 {
295 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
296 return VERR_GENERAL_FAILURE;
297 }
298 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
299 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
300
301 /* allocate code buffer for single instruction emulation. */
302 pVM->rem.s.Env.cbCodeBuffer = 4096;
303 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
304 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
305
306 /* finally, set the cpu_single_env global. */
307 cpu_single_env = &pVM->rem.s.Env;
308
309 /* Nothing is pending by default */
310 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
311
312 /*
313 * Register ram types.
314 */
315 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
316 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
317 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
318 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
319 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
320
321 /* stop ignoring. */
322 pVM->rem.s.fIgnoreAll = false;
323
324 /*
325 * Register the saved state data unit.
326 */
327 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
328 NULL, remR3Save, NULL,
329 NULL, remR3Load, NULL);
330 if (VBOX_FAILURE(rc))
331 return rc;
332
333#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
334 /*
335 * Debugger commands.
336 */
337 static bool fRegisteredCmds = false;
338 if (!fRegisteredCmds)
339 {
340 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
341 if (VBOX_SUCCESS(rc))
342 fRegisteredCmds = true;
343 }
344#endif
345
346#ifdef VBOX_WITH_STATISTICS
347 /*
348 * Statistics.
349 */
350 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
351 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
352 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
353 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
354 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
355 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
356 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
357 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
358 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
359 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
360 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
361 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
362
363 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
364
365 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
366 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
367 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
368 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
369 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
370 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
371 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
372 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
373 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
374 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
375 STAM_REG(pVM, &gStatFlushTBs, STAMTYPE_COUNTER, "/REM/FlushTB", STAMUNIT_OCCURENCES, "Number of TB flushes");
376
377 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
378 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
379 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
380 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
381
382 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
383 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
384 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
385 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
386 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
387 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
388
389 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
390 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
391 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
392 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
393 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
394 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
395
396
397#endif
398
399#ifdef DEBUG_ALL_LOGGING
400 loglevel = ~0;
401#endif
402
403 return rc;
404}
405
406
407/**
408 * Terminates the REM.
409 *
410 * Termination means cleaning up and freeing all resources,
411 * the VM it self is at this point powered off or suspended.
412 *
413 * @returns VBox status code.
414 * @param pVM The VM to operate on.
415 */
416REMR3DECL(int) REMR3Term(PVM pVM)
417{
418 return VINF_SUCCESS;
419}
420
421
422/**
423 * The VM is being reset.
424 *
425 * For the REM component this means to call the cpu_reset() and
426 * reinitialize some state variables.
427 *
428 * @param pVM VM handle.
429 */
430REMR3DECL(void) REMR3Reset(PVM pVM)
431{
432 /*
433 * Reset the REM cpu.
434 */
435 pVM->rem.s.fIgnoreAll = true;
436 cpu_reset(&pVM->rem.s.Env);
437 pVM->rem.s.cInvalidatedPages = 0;
438 pVM->rem.s.fIgnoreAll = false;
439
440 /* Clear raw ring 0 init state */
441 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
442}
443
444
445/**
446 * Execute state save operation.
447 *
448 * @returns VBox status code.
449 * @param pVM VM Handle.
450 * @param pSSM SSM operation handle.
451 */
452static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
453{
454 LogFlow(("remR3Save:\n"));
455
456 /*
457 * Save the required CPU Env bits.
458 * (Not much because we're never in REM when doing the save.)
459 */
460 PREM pRem = &pVM->rem.s;
461 Assert(!pRem->fInREM);
462 SSMR3PutU32(pSSM, pRem->Env.hflags);
463 SSMR3PutU32(pSSM, ~0); /* separator */
464
465 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
466 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
467 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
468
469 return SSMR3PutU32(pSSM, ~0); /* terminator */
470}
471
472
473/**
474 * Execute state load operation.
475 *
476 * @returns VBox status code.
477 * @param pVM VM Handle.
478 * @param pSSM SSM operation handle.
479 * @param u32Version Data layout version.
480 */
481static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
482{
483 uint32_t u32Dummy;
484 uint32_t fRawRing0 = false;
485 LogFlow(("remR3Load:\n"));
486
487 /*
488 * Validate version.
489 */
490 if ( u32Version != REM_SAVED_STATE_VERSION
491 && u32Version != REM_SAVED_STATE_VERSION_VER1_6)
492 {
493 AssertMsgFailed(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
494 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
495 }
496
497 /*
498 * Do a reset to be on the safe side...
499 */
500 REMR3Reset(pVM);
501
502 /*
503 * Ignore all ignorable notifications.
504 * (Not doing this will cause serious trouble.)
505 */
506 pVM->rem.s.fIgnoreAll = true;
507
508 /*
509 * Load the required CPU Env bits.
510 * (Not much because we're never in REM when doing the save.)
511 */
512 PREM pRem = &pVM->rem.s;
513 Assert(!pRem->fInREM);
514 SSMR3GetU32(pSSM, &pRem->Env.hflags);
515 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
516 {
517 /* Redundant REM CPU state has to be loaded, but can be ignored. */
518 CPUX86State_Ver16 temp;
519 SSMR3GetMem(pSSM, &temp, RT_OFFSETOF(CPUX86State_Ver16, jmp_env));
520 }
521
522 uint32_t u32Sep;
523 int rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
524 if (VBOX_FAILURE(rc))
525 return rc;
526 if (u32Sep != ~0)
527 {
528 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
529 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
530 }
531
532 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
533 SSMR3GetUInt(pSSM, &fRawRing0);
534 if (fRawRing0)
535 pRem->Env.state |= CPU_RAW_RING0;
536
537 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
538 {
539 /*
540 * Load the REM stuff.
541 */
542 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
543 if (VBOX_FAILURE(rc))
544 return rc;
545 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
546 {
547 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
548 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
549 }
550 unsigned i;
551 for (i = 0; i < pRem->cInvalidatedPages; i++)
552 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
553 }
554
555 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
556 if (VBOX_FAILURE(rc))
557 return rc;
558
559 /* check the terminator. */
560 rc = SSMR3GetU32(pSSM, &u32Sep);
561 if (VBOX_FAILURE(rc))
562 return rc;
563 if (u32Sep != ~0)
564 {
565 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
566 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
567 }
568
569 /*
570 * Get the CPUID features.
571 */
572 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
573 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
574
575 /*
576 * Sync the Load Flush the TLB
577 */
578 tlb_flush(&pRem->Env, 1);
579
580 /*
581 * Stop ignoring ignornable notifications.
582 */
583 pVM->rem.s.fIgnoreAll = false;
584
585 /*
586 * Sync the whole CPU state when executing code in the recompiler.
587 */
588 CPUMSetChangedFlags(pVM, CPUM_CHANGED_ALL);
589 return VINF_SUCCESS;
590}
591
592
593
594#undef LOG_GROUP
595#define LOG_GROUP LOG_GROUP_REM_RUN
596
597/**
598 * Single steps an instruction in recompiled mode.
599 *
600 * Before calling this function the REM state needs to be in sync with
601 * the VM. Call REMR3State() to perform the sync. It's only necessary
602 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
603 * and after calling REMR3StateBack().
604 *
605 * @returns VBox status code.
606 *
607 * @param pVM VM Handle.
608 */
609REMR3DECL(int) REMR3Step(PVM pVM)
610{
611 /*
612 * Lock the REM - we don't wanna have anyone interrupting us
613 * while stepping - and enabled single stepping. We also ignore
614 * pending interrupts and suchlike.
615 */
616 int interrupt_request = pVM->rem.s.Env.interrupt_request;
617 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
618 pVM->rem.s.Env.interrupt_request = 0;
619 cpu_single_step(&pVM->rem.s.Env, 1);
620
621 /*
622 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
623 */
624 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
625 bool fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
626
627 /*
628 * Execute and handle the return code.
629 * We execute without enabling the cpu tick, so on success we'll
630 * just flip it on and off to make sure it moves
631 */
632 int rc = cpu_exec(&pVM->rem.s.Env);
633 if (rc == EXCP_DEBUG)
634 {
635 TMCpuTickResume(pVM);
636 TMCpuTickPause(pVM);
637 TMVirtualResume(pVM);
638 TMVirtualPause(pVM);
639 rc = VINF_EM_DBG_STEPPED;
640 }
641 else
642 {
643 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
644 switch (rc)
645 {
646 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
647 case EXCP_HLT:
648 case EXCP_HALTED: rc = VINF_EM_HALT; break;
649 case EXCP_RC:
650 rc = pVM->rem.s.rc;
651 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
652 break;
653 default:
654 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
655 rc = VERR_INTERNAL_ERROR;
656 break;
657 }
658 }
659
660 /*
661 * Restore the stuff we changed to prevent interruption.
662 * Unlock the REM.
663 */
664 if (fBp)
665 {
666 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
667 Assert(rc2 == 0); NOREF(rc2);
668 }
669 cpu_single_step(&pVM->rem.s.Env, 0);
670 pVM->rem.s.Env.interrupt_request = interrupt_request;
671
672 return rc;
673}
674
675
676/**
677 * Set a breakpoint using the REM facilities.
678 *
679 * @returns VBox status code.
680 * @param pVM The VM handle.
681 * @param Address The breakpoint address.
682 * @thread The emulation thread.
683 */
684REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
685{
686 VM_ASSERT_EMT(pVM);
687 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
688 {
689 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
690 return VINF_SUCCESS;
691 }
692 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
693 return VERR_REM_NO_MORE_BP_SLOTS;
694}
695
696
697/**
698 * Clears a breakpoint set by REMR3BreakpointSet().
699 *
700 * @returns VBox status code.
701 * @param pVM The VM handle.
702 * @param Address The breakpoint address.
703 * @thread The emulation thread.
704 */
705REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
706{
707 VM_ASSERT_EMT(pVM);
708 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
709 {
710 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
711 return VINF_SUCCESS;
712 }
713 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
714 return VERR_REM_BP_NOT_FOUND;
715}
716
717
718/**
719 * Emulate an instruction.
720 *
721 * This function executes one instruction without letting anyone
722 * interrupt it. This is intended for being called while being in
723 * raw mode and thus will take care of all the state syncing between
724 * REM and the rest.
725 *
726 * @returns VBox status code.
727 * @param pVM VM handle.
728 */
729REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
730{
731 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
732
733 /* Make sure this flag is set; we might never execute remR3CanExecuteRaw in the AMD-V case.
734 * CPU_RAW_HWACC makes sure we never execute interrupt handlers in the recompiler.
735 */
736 if (HWACCMIsEnabled(pVM))
737 pVM->rem.s.Env.state |= CPU_RAW_HWACC;
738
739 /*
740 * Sync the state and enable single instruction / single stepping.
741 */
742 int rc = REMR3State(pVM, false /* no need to flush the TBs; we always compile. */);
743 if (VBOX_SUCCESS(rc))
744 {
745 int interrupt_request = pVM->rem.s.Env.interrupt_request;
746 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
747 Assert(!pVM->rem.s.Env.singlestep_enabled);
748#if 1
749
750 /*
751 * Now we set the execute single instruction flag and enter the cpu_exec loop.
752 */
753 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
754 rc = cpu_exec(&pVM->rem.s.Env);
755 switch (rc)
756 {
757 /*
758 * Executed without anything out of the way happening.
759 */
760 case EXCP_SINGLE_INSTR:
761 rc = VINF_EM_RESCHEDULE;
762 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
763 break;
764
765 /*
766 * If we take a trap or start servicing a pending interrupt, we might end up here.
767 * (Timer thread or some other thread wishing EMT's attention.)
768 */
769 case EXCP_INTERRUPT:
770 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
771 rc = VINF_EM_RESCHEDULE;
772 break;
773
774 /*
775 * Single step, we assume!
776 * If there was a breakpoint there we're fucked now.
777 */
778 case EXCP_DEBUG:
779 {
780 /* breakpoint or single step? */
781 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
782 int iBP;
783 rc = VINF_EM_DBG_STEPPED;
784 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
785 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
786 {
787 rc = VINF_EM_DBG_BREAKPOINT;
788 break;
789 }
790 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
791 break;
792 }
793
794 /*
795 * hlt instruction.
796 */
797 case EXCP_HLT:
798 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
799 rc = VINF_EM_HALT;
800 break;
801
802 /*
803 * The VM has halted.
804 */
805 case EXCP_HALTED:
806 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
807 rc = VINF_EM_HALT;
808 break;
809
810 /*
811 * Switch to RAW-mode.
812 */
813 case EXCP_EXECUTE_RAW:
814 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
815 rc = VINF_EM_RESCHEDULE_RAW;
816 break;
817
818 /*
819 * Switch to hardware accelerated RAW-mode.
820 */
821 case EXCP_EXECUTE_HWACC:
822 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
823 rc = VINF_EM_RESCHEDULE_HWACC;
824 break;
825
826 /*
827 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
828 */
829 case EXCP_RC:
830 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
831 rc = pVM->rem.s.rc;
832 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
833 break;
834
835 /*
836 * Figure out the rest when they arrive....
837 */
838 default:
839 AssertMsgFailed(("rc=%d\n", rc));
840 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
841 rc = VINF_EM_RESCHEDULE;
842 break;
843 }
844
845 /*
846 * Switch back the state.
847 */
848#else
849 pVM->rem.s.Env.interrupt_request = 0;
850 cpu_single_step(&pVM->rem.s.Env, 1);
851
852 /*
853 * Execute and handle the return code.
854 * We execute without enabling the cpu tick, so on success we'll
855 * just flip it on and off to make sure it moves.
856 *
857 * (We do not use emulate_single_instr() because that doesn't enter the
858 * right way in will cause serious trouble if a longjmp was attempted.)
859 */
860# ifdef DEBUG_bird
861 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
862# endif
863 int cTimesMax = 16384;
864 uint32_t eip = pVM->rem.s.Env.eip;
865 do
866 {
867 rc = cpu_exec(&pVM->rem.s.Env);
868
869 } while ( eip == pVM->rem.s.Env.eip
870 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
871 && --cTimesMax > 0);
872 switch (rc)
873 {
874 /*
875 * Single step, we assume!
876 * If there was a breakpoint there we're fucked now.
877 */
878 case EXCP_DEBUG:
879 {
880 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
881 rc = VINF_EM_RESCHEDULE;
882 break;
883 }
884
885 /*
886 * We cannot be interrupted!
887 */
888 case EXCP_INTERRUPT:
889 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
890 rc = VERR_INTERNAL_ERROR;
891 break;
892
893 /*
894 * hlt instruction.
895 */
896 case EXCP_HLT:
897 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
898 rc = VINF_EM_HALT;
899 break;
900
901 /*
902 * The VM has halted.
903 */
904 case EXCP_HALTED:
905 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
906 rc = VINF_EM_HALT;
907 break;
908
909 /*
910 * Switch to RAW-mode.
911 */
912 case EXCP_EXECUTE_RAW:
913 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
914 rc = VINF_EM_RESCHEDULE_RAW;
915 break;
916
917 /*
918 * Switch to hardware accelerated RAW-mode.
919 */
920 case EXCP_EXECUTE_HWACC:
921 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
922 rc = VINF_EM_RESCHEDULE_HWACC;
923 break;
924
925 /*
926 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
927 */
928 case EXCP_RC:
929 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
930 rc = pVM->rem.s.rc;
931 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
932 break;
933
934 /*
935 * Figure out the rest when they arrive....
936 */
937 default:
938 AssertMsgFailed(("rc=%d\n", rc));
939 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
940 rc = VINF_SUCCESS;
941 break;
942 }
943
944 /*
945 * Switch back the state.
946 */
947 cpu_single_step(&pVM->rem.s.Env, 0);
948#endif
949 pVM->rem.s.Env.interrupt_request = interrupt_request;
950 int rc2 = REMR3StateBack(pVM);
951 AssertRC(rc2);
952 }
953
954 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%08x)\n",
955 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
956 return rc;
957}
958
959
960/**
961 * Runs code in recompiled mode.
962 *
963 * Before calling this function the REM state needs to be in sync with
964 * the VM. Call REMR3State() to perform the sync. It's only necessary
965 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
966 * and after calling REMR3StateBack().
967 *
968 * @returns VBox status code.
969 *
970 * @param pVM VM Handle.
971 */
972REMR3DECL(int) REMR3Run(PVM pVM)
973{
974 Log2(("REMR3Run: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
975 Assert(pVM->rem.s.fInREM);
976
977 int rc = cpu_exec(&pVM->rem.s.Env);
978 switch (rc)
979 {
980 /*
981 * This happens when the execution was interrupted
982 * by an external event, like pending timers.
983 */
984 case EXCP_INTERRUPT:
985 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
986 rc = VINF_SUCCESS;
987 break;
988
989 /*
990 * hlt instruction.
991 */
992 case EXCP_HLT:
993 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
994 rc = VINF_EM_HALT;
995 break;
996
997 /*
998 * The VM has halted.
999 */
1000 case EXCP_HALTED:
1001 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1002 rc = VINF_EM_HALT;
1003 break;
1004
1005 /*
1006 * Breakpoint/single step.
1007 */
1008 case EXCP_DEBUG:
1009 {
1010#if 0//def DEBUG_bird
1011 static int iBP = 0;
1012 printf("howdy, breakpoint! iBP=%d\n", iBP);
1013 switch (iBP)
1014 {
1015 case 0:
1016 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1017 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1018 //pVM->rem.s.Env.interrupt_request = 0;
1019 //pVM->rem.s.Env.exception_index = -1;
1020 //g_fInterruptDisabled = 1;
1021 rc = VINF_SUCCESS;
1022 asm("int3");
1023 break;
1024 default:
1025 asm("int3");
1026 break;
1027 }
1028 iBP++;
1029#else
1030 /* breakpoint or single step? */
1031 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1032 int iBP;
1033 rc = VINF_EM_DBG_STEPPED;
1034 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1035 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1036 {
1037 rc = VINF_EM_DBG_BREAKPOINT;
1038 break;
1039 }
1040 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1041#endif
1042 break;
1043 }
1044
1045 /*
1046 * Switch to RAW-mode.
1047 */
1048 case EXCP_EXECUTE_RAW:
1049 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1050 rc = VINF_EM_RESCHEDULE_RAW;
1051 break;
1052
1053 /*
1054 * Switch to hardware accelerated RAW-mode.
1055 */
1056 case EXCP_EXECUTE_HWACC:
1057 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1058 rc = VINF_EM_RESCHEDULE_HWACC;
1059 break;
1060
1061 /*
1062 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1063 */
1064 case EXCP_RC:
1065 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1066 rc = pVM->rem.s.rc;
1067 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1068 break;
1069
1070 /*
1071 * Figure out the rest when they arrive....
1072 */
1073 default:
1074 AssertMsgFailed(("rc=%d\n", rc));
1075 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1076 rc = VINF_SUCCESS;
1077 break;
1078 }
1079
1080 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%08x)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1081 return rc;
1082}
1083
1084
1085/**
1086 * Check if the cpu state is suitable for Raw execution.
1087 *
1088 * @returns boolean
1089 * @param env The CPU env struct.
1090 * @param eip The EIP to check this for (might differ from env->eip).
1091 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1092 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1093 *
1094 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1095 */
1096bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1097{
1098 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1099 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1100 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1101
1102 /* Update counter. */
1103 env->pVM->rem.s.cCanExecuteRaw++;
1104
1105 if (HWACCMIsEnabled(env->pVM))
1106 {
1107 env->state |= CPU_RAW_HWACC;
1108
1109 /*
1110 * Create partial context for HWACCMR3CanExecuteGuest
1111 */
1112 CPUMCTX Ctx;
1113 Ctx.cr0 = env->cr[0];
1114 Ctx.cr3 = env->cr[3];
1115 Ctx.cr4 = env->cr[4];
1116
1117 Ctx.tr = env->tr.selector;
1118 Ctx.trHid.u64Base = env->tr.base;
1119 Ctx.trHid.u32Limit = env->tr.limit;
1120 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1121
1122 Ctx.idtr.cbIdt = env->idt.limit;
1123 Ctx.idtr.pIdt = env->idt.base;
1124
1125 Ctx.eflags.u32 = env->eflags;
1126
1127 Ctx.cs = env->segs[R_CS].selector;
1128 Ctx.csHid.u64Base = env->segs[R_CS].base;
1129 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1130 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1131
1132 Ctx.ss = env->segs[R_SS].selector;
1133 Ctx.ssHid.u64Base = env->segs[R_SS].base;
1134 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1135 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1136
1137 Ctx.msrEFER = env->efer;
1138
1139 /* Hardware accelerated raw-mode:
1140 *
1141 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1142 */
1143 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1144 {
1145 *piException = EXCP_EXECUTE_HWACC;
1146 return true;
1147 }
1148 return false;
1149 }
1150
1151 /*
1152 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1153 * or 32 bits protected mode ring 0 code
1154 *
1155 * The tests are ordered by the likelyhood of being true during normal execution.
1156 */
1157 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1158 {
1159 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1160 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1161 return false;
1162 }
1163
1164#ifndef VBOX_RAW_V86
1165 if (fFlags & VM_MASK) {
1166 STAM_COUNTER_INC(&gStatRefuseVM86);
1167 Log2(("raw mode refused: VM_MASK\n"));
1168 return false;
1169 }
1170#endif
1171
1172 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1173 {
1174#ifndef DEBUG_bird
1175 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1176#endif
1177 return false;
1178 }
1179
1180 if (env->singlestep_enabled)
1181 {
1182 //Log2(("raw mode refused: Single step\n"));
1183 return false;
1184 }
1185
1186 if (env->nb_breakpoints > 0)
1187 {
1188 //Log2(("raw mode refused: Breakpoints\n"));
1189 return false;
1190 }
1191
1192 uint32_t u32CR0 = env->cr[0];
1193 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1194 {
1195 STAM_COUNTER_INC(&gStatRefusePaging);
1196 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1197 return false;
1198 }
1199
1200 if (env->cr[4] & CR4_PAE_MASK)
1201 {
1202 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1203 {
1204 STAM_COUNTER_INC(&gStatRefusePAE);
1205 return false;
1206 }
1207 }
1208
1209 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1210 {
1211 if (!EMIsRawRing3Enabled(env->pVM))
1212 return false;
1213
1214 if (!(env->eflags & IF_MASK))
1215 {
1216 STAM_COUNTER_INC(&gStatRefuseIF0);
1217 Log2(("raw mode refused: IF (RawR3)\n"));
1218 return false;
1219 }
1220
1221 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1222 {
1223 STAM_COUNTER_INC(&gStatRefuseWP0);
1224 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1225 return false;
1226 }
1227 }
1228 else
1229 {
1230 if (!EMIsRawRing0Enabled(env->pVM))
1231 return false;
1232
1233 // Let's start with pure 32 bits ring 0 code first
1234 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1235 {
1236 STAM_COUNTER_INC(&gStatRefuseCode16);
1237 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1238 return false;
1239 }
1240
1241 // Only R0
1242 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1243 {
1244 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1245 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1246 return false;
1247 }
1248
1249 if (!(u32CR0 & CR0_WP_MASK))
1250 {
1251 STAM_COUNTER_INC(&gStatRefuseWP0);
1252 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1253 return false;
1254 }
1255
1256 if (PATMIsPatchGCAddr(env->pVM, eip))
1257 {
1258 Log2(("raw r0 mode forced: patch code\n"));
1259 *piException = EXCP_EXECUTE_RAW;
1260 return true;
1261 }
1262
1263#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1264 if (!(env->eflags & IF_MASK))
1265 {
1266 STAM_COUNTER_INC(&gStatRefuseIF0);
1267 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1268 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1269 return false;
1270 }
1271#endif
1272
1273 env->state |= CPU_RAW_RING0;
1274 }
1275
1276 /*
1277 * Don't reschedule the first time we're called, because there might be
1278 * special reasons why we're here that is not covered by the above checks.
1279 */
1280 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1281 {
1282 Log2(("raw mode refused: first scheduling\n"));
1283 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1284 return false;
1285 }
1286
1287 Assert(PGMPhysIsA20Enabled(env->pVM));
1288 *piException = EXCP_EXECUTE_RAW;
1289 return true;
1290}
1291
1292
1293/**
1294 * Fetches a code byte.
1295 *
1296 * @returns Success indicator (bool) for ease of use.
1297 * @param env The CPU environment structure.
1298 * @param GCPtrInstr Where to fetch code.
1299 * @param pu8Byte Where to store the byte on success
1300 */
1301bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1302{
1303 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1304 if (VBOX_SUCCESS(rc))
1305 return true;
1306 return false;
1307}
1308
1309
1310/**
1311 * Flush (or invalidate if you like) page table/dir entry.
1312 *
1313 * (invlpg instruction; tlb_flush_page)
1314 *
1315 * @param env Pointer to cpu environment.
1316 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1317 */
1318void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1319{
1320 PVM pVM = env->pVM;
1321
1322 /*
1323 * When we're replaying invlpg instructions or restoring a saved
1324 * state we disable this path.
1325 */
1326 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1327 return;
1328 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1329 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1330
1331 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1332
1333 /*
1334 * Update the control registers before calling PGMFlushPage.
1335 */
1336 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1337 pCtx->cr0 = env->cr[0];
1338 pCtx->cr3 = env->cr[3];
1339 pCtx->cr4 = env->cr[4];
1340
1341 /*
1342 * Let PGM do the rest.
1343 */
1344 int rc = PGMInvalidatePage(pVM, GCPtr);
1345 if (VBOX_FAILURE(rc))
1346 {
1347 AssertMsgFailed(("remR3FlushPage %VGv failed with %d!!\n", GCPtr, rc));
1348 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1349 }
1350 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1351}
1352
1353
1354/**
1355 * Called from tlb_protect_code in order to write monitor a code page.
1356 *
1357 * @param env Pointer to the CPU environment.
1358 * @param GCPtr Code page to monitor
1359 */
1360void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1361{
1362#ifndef VBOX_REM_FLUSH_ALL_TBS
1363 Assert(env->pVM->rem.s.fInREM);
1364 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1365 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1366 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1367 && !(env->eflags & VM_MASK) /* no V86 mode */
1368 && !HWACCMIsEnabled(env->pVM))
1369 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1370#endif
1371}
1372
1373/**
1374 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1375 *
1376 * @param env Pointer to the CPU environment.
1377 * @param GCPtr Code page to monitor
1378 */
1379void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
1380{
1381 Assert(env->pVM->rem.s.fInREM);
1382#ifndef VBOX_REM_FLUSH_ALL_TBS
1383 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1384 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1385 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1386 && !(env->eflags & VM_MASK) /* no V86 mode */
1387 && !HWACCMIsEnabled(env->pVM))
1388 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1389#endif
1390}
1391
1392
1393/**
1394 * Called when the CPU is initialized, any of the CRx registers are changed or
1395 * when the A20 line is modified.
1396 *
1397 * @param env Pointer to the CPU environment.
1398 * @param fGlobal Set if the flush is global.
1399 */
1400void remR3FlushTLB(CPUState *env, bool fGlobal)
1401{
1402 PVM pVM = env->pVM;
1403
1404 /*
1405 * When we're replaying invlpg instructions or restoring a saved
1406 * state we disable this path.
1407 */
1408 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1409 return;
1410 Assert(pVM->rem.s.fInREM);
1411
1412 /*
1413 * The caller doesn't check cr4, so we have to do that for ourselves.
1414 */
1415 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1416 fGlobal = true;
1417 Log(("remR3FlushTLB: CR0=%VGp CR3=%VGp CR4=%VGp %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1418
1419 /*
1420 * Update the control registers before calling PGMR3FlushTLB.
1421 */
1422 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1423 pCtx->cr0 = env->cr[0];
1424 pCtx->cr3 = env->cr[3];
1425 pCtx->cr4 = env->cr[4];
1426
1427 /*
1428 * Let PGM do the rest.
1429 */
1430 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1431}
1432
1433
1434/**
1435 * Called when any of the cr0, cr4 or efer registers is updated.
1436 *
1437 * @param env Pointer to the CPU environment.
1438 */
1439void remR3ChangeCpuMode(CPUState *env)
1440{
1441 int rc;
1442 PVM pVM = env->pVM;
1443
1444 /*
1445 * When we're replaying loads or restoring a saved
1446 * state this path is disabled.
1447 */
1448 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1449 return;
1450 Assert(pVM->rem.s.fInREM);
1451
1452 /*
1453 * Update the control registers before calling PGMChangeMode()
1454 * as it may need to map whatever cr3 is pointing to.
1455 */
1456 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1457 pCtx->cr0 = env->cr[0];
1458 pCtx->cr3 = env->cr[3];
1459 pCtx->cr4 = env->cr[4];
1460
1461#ifdef TARGET_X86_64
1462 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1463 if (rc != VINF_SUCCESS)
1464 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1465#else
1466 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1467 if (rc != VINF_SUCCESS)
1468 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1469#endif
1470}
1471
1472
1473/**
1474 * Called from compiled code to run dma.
1475 *
1476 * @param env Pointer to the CPU environment.
1477 */
1478void remR3DmaRun(CPUState *env)
1479{
1480 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1481 PDMR3DmaRun(env->pVM);
1482 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1483}
1484
1485
1486/**
1487 * Called from compiled code to schedule pending timers in VMM
1488 *
1489 * @param env Pointer to the CPU environment.
1490 */
1491void remR3TimersRun(CPUState *env)
1492{
1493 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1494 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1495 TMR3TimerQueuesDo(env->pVM);
1496 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1497 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1498}
1499
1500
1501/**
1502 * Record trap occurance
1503 *
1504 * @returns VBox status code
1505 * @param env Pointer to the CPU environment.
1506 * @param uTrap Trap nr
1507 * @param uErrorCode Error code
1508 * @param pvNextEIP Next EIP
1509 */
1510int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1511{
1512 PVM pVM = env->pVM;
1513#ifdef VBOX_WITH_STATISTICS
1514 static STAMCOUNTER s_aStatTrap[255];
1515 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1516#endif
1517
1518#ifdef VBOX_WITH_STATISTICS
1519 if (uTrap < 255)
1520 {
1521 if (!s_aRegisters[uTrap])
1522 {
1523 s_aRegisters[uTrap] = true;
1524 char szStatName[64];
1525 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1526 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1527 }
1528 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1529 }
1530#endif
1531 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%VGv\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1532 if( uTrap < 0x20
1533 && (env->cr[0] & X86_CR0_PE)
1534 && !(env->eflags & X86_EFL_VM))
1535 {
1536#ifdef DEBUG
1537 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1538#endif
1539 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1540 {
1541 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1542 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1543 return VERR_REM_TOO_MANY_TRAPS;
1544 }
1545 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1546 pVM->rem.s.cPendingExceptions = 1;
1547 pVM->rem.s.uPendingException = uTrap;
1548 pVM->rem.s.uPendingExcptEIP = env->eip;
1549 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1550 }
1551 else
1552 {
1553 pVM->rem.s.cPendingExceptions = 0;
1554 pVM->rem.s.uPendingException = uTrap;
1555 pVM->rem.s.uPendingExcptEIP = env->eip;
1556 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1557 }
1558 return VINF_SUCCESS;
1559}
1560
1561
1562/*
1563 * Clear current active trap
1564 *
1565 * @param pVM VM Handle.
1566 */
1567void remR3TrapClear(PVM pVM)
1568{
1569 pVM->rem.s.cPendingExceptions = 0;
1570 pVM->rem.s.uPendingException = 0;
1571 pVM->rem.s.uPendingExcptEIP = 0;
1572 pVM->rem.s.uPendingExcptCR2 = 0;
1573}
1574
1575
1576/*
1577 * Record previous call instruction addresses
1578 *
1579 * @param env Pointer to the CPU environment.
1580 */
1581void remR3RecordCall(CPUState *env)
1582{
1583 CSAMR3RecordCallAddress(env->pVM, env->eip);
1584}
1585
1586
1587/**
1588 * Syncs the internal REM state with the VM.
1589 *
1590 * This must be called before REMR3Run() is invoked whenever when the REM
1591 * state is not up to date. Calling it several times in a row is not
1592 * permitted.
1593 *
1594 * @returns VBox status code.
1595 *
1596 * @param pVM VM Handle.
1597 * @param fFlushTBs Flush all translation blocks before executing code
1598 *
1599 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1600 * no do this since the majority of the callers don't want any unnecessary of events
1601 * pending that would immediatly interrupt execution.
1602 */
1603REMR3DECL(int) REMR3State(PVM pVM, bool fFlushTBs)
1604{
1605 Log2(("REMR3State:\n"));
1606 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1607 register const CPUMCTX *pCtx = pVM->rem.s.pCtx;
1608 register unsigned fFlags;
1609 bool fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1610
1611 Assert(!pVM->rem.s.fInREM);
1612 pVM->rem.s.fInStateSync = true;
1613
1614#ifdef VBOX_REM_FLUSH_ALL_TBS
1615 if (fFlushTBs)
1616 {
1617 STAM_COUNTER_INC(&gStatFlushTBs);
1618 tb_flush(&pVM->rem.s.Env);
1619 }
1620#endif
1621
1622 /*
1623 * Copy the registers which require no special handling.
1624 */
1625#ifdef TARGET_X86_64
1626 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
1627 Assert(R_EAX == 0);
1628 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
1629 Assert(R_ECX == 1);
1630 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
1631 Assert(R_EDX == 2);
1632 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
1633 Assert(R_EBX == 3);
1634 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
1635 Assert(R_ESP == 4);
1636 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
1637 Assert(R_EBP == 5);
1638 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
1639 Assert(R_ESI == 6);
1640 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
1641 Assert(R_EDI == 7);
1642 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
1643 pVM->rem.s.Env.regs[8] = pCtx->r8;
1644 pVM->rem.s.Env.regs[9] = pCtx->r9;
1645 pVM->rem.s.Env.regs[10] = pCtx->r10;
1646 pVM->rem.s.Env.regs[11] = pCtx->r11;
1647 pVM->rem.s.Env.regs[12] = pCtx->r12;
1648 pVM->rem.s.Env.regs[13] = pCtx->r13;
1649 pVM->rem.s.Env.regs[14] = pCtx->r14;
1650 pVM->rem.s.Env.regs[15] = pCtx->r15;
1651
1652 pVM->rem.s.Env.eip = pCtx->rip;
1653
1654 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
1655#else
1656 Assert(R_EAX == 0);
1657 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1658 Assert(R_ECX == 1);
1659 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1660 Assert(R_EDX == 2);
1661 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1662 Assert(R_EBX == 3);
1663 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1664 Assert(R_ESP == 4);
1665 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1666 Assert(R_EBP == 5);
1667 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1668 Assert(R_ESI == 6);
1669 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1670 Assert(R_EDI == 7);
1671 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1672 pVM->rem.s.Env.eip = pCtx->eip;
1673
1674 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1675#endif
1676
1677 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1678
1679 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1680 pVM->rem.s.Env.dr[0] = pCtx->dr0;
1681 pVM->rem.s.Env.dr[1] = pCtx->dr1;
1682 pVM->rem.s.Env.dr[2] = pCtx->dr2;
1683 pVM->rem.s.Env.dr[3] = pCtx->dr3;
1684 pVM->rem.s.Env.dr[4] = pCtx->dr4;
1685 pVM->rem.s.Env.dr[5] = pCtx->dr5;
1686 pVM->rem.s.Env.dr[6] = pCtx->dr6;
1687 pVM->rem.s.Env.dr[7] = pCtx->dr7;
1688
1689 /*
1690 * Clear the halted hidden flag (the interrupt waking up the CPU can
1691 * have been dispatched in raw mode).
1692 */
1693 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1694
1695 /*
1696 * Replay invlpg?
1697 */
1698 if (pVM->rem.s.cInvalidatedPages)
1699 {
1700 pVM->rem.s.fIgnoreInvlPg = true;
1701 RTUINT i;
1702 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1703 {
1704 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1705 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1706 }
1707 pVM->rem.s.fIgnoreInvlPg = false;
1708 pVM->rem.s.cInvalidatedPages = 0;
1709 }
1710
1711 /* Replay notification changes? */
1712 if (pVM->rem.s.cHandlerNotifications)
1713 REMR3ReplayHandlerNotifications(pVM);
1714
1715 /* Update MSRs; before CRx registers! */
1716 pVM->rem.s.Env.efer = pCtx->msrEFER;
1717 pVM->rem.s.Env.star = pCtx->msrSTAR;
1718 pVM->rem.s.Env.pat = pCtx->msrPAT;
1719#ifdef TARGET_X86_64
1720 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1721 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1722 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1723 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1724
1725 /* Update the internal long mode activate flag according to the new EFER value. */
1726 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1727 pVM->rem.s.Env.hflags |= HF_LMA_MASK;
1728 else
1729 pVM->rem.s.Env.hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
1730#endif
1731
1732
1733 /*
1734 * Registers which are rarely changed and require special handling / order when changed.
1735 */
1736 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1737 LogFlow(("CPUMGetAndClearChangedFlagsREM %x\n", fFlags));
1738 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1739 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1740 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
1741 {
1742 if (fFlags & CPUM_CHANGED_FPU_REM)
1743 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1744
1745 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1746 {
1747 pVM->rem.s.fIgnoreCR3Load = true;
1748 tlb_flush(&pVM->rem.s.Env, true);
1749 pVM->rem.s.fIgnoreCR3Load = false;
1750 }
1751
1752 /* CR4 before CR0! */
1753 if (fFlags & CPUM_CHANGED_CR4)
1754 {
1755 pVM->rem.s.fIgnoreCR3Load = true;
1756 pVM->rem.s.fIgnoreCpuMode = true;
1757 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1758 pVM->rem.s.fIgnoreCpuMode = false;
1759 pVM->rem.s.fIgnoreCR3Load = false;
1760 }
1761
1762 if (fFlags & CPUM_CHANGED_CR0)
1763 {
1764 pVM->rem.s.fIgnoreCR3Load = true;
1765 pVM->rem.s.fIgnoreCpuMode = true;
1766 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1767 pVM->rem.s.fIgnoreCpuMode = false;
1768 pVM->rem.s.fIgnoreCR3Load = false;
1769 }
1770
1771 if (fFlags & CPUM_CHANGED_CR3)
1772 {
1773 pVM->rem.s.fIgnoreCR3Load = true;
1774 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1775 pVM->rem.s.fIgnoreCR3Load = false;
1776 }
1777
1778 if (fFlags & CPUM_CHANGED_GDTR)
1779 {
1780 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1781 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1782 }
1783
1784 if (fFlags & CPUM_CHANGED_IDTR)
1785 {
1786 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1787 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1788 }
1789
1790 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1791 {
1792 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1793 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1794 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1795 }
1796
1797 if (fFlags & CPUM_CHANGED_LDTR)
1798 {
1799 if (fHiddenSelRegsValid)
1800 {
1801 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1802 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u64Base;
1803 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1804 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1805 }
1806 else
1807 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1808 }
1809
1810 if (fFlags & CPUM_CHANGED_TR)
1811 {
1812 if (fHiddenSelRegsValid)
1813 {
1814 pVM->rem.s.Env.tr.selector = pCtx->tr;
1815 pVM->rem.s.Env.tr.base = pCtx->trHid.u64Base;
1816 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1817 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1818 }
1819 else
1820 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1821
1822 /** @note do_interrupt will fault if the busy flag is still set.... */
1823 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1824 }
1825
1826 if (fFlags & CPUM_CHANGED_CPUID)
1827 {
1828 uint32_t u32Dummy;
1829
1830 /*
1831 * Get the CPUID features.
1832 */
1833 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
1834 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
1835 }
1836 }
1837
1838 /*
1839 * Update selector registers.
1840 * This must be done *after* we've synced gdt, ldt and crX registers
1841 * since we're reading the GDT/LDT om sync_seg. This will happen with
1842 * saved state which takes a quick dip into rawmode for instance.
1843 */
1844 /*
1845 * Stack; Note first check this one as the CPL might have changed. The
1846 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1847 */
1848
1849 if (fHiddenSelRegsValid)
1850 {
1851 /* The hidden selector registers are valid in the CPU context. */
1852 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1853
1854 /* Set current CPL */
1855 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1856
1857 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1858 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1859 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1860 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1861 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1862 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1863 }
1864 else
1865 {
1866 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1867 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1868 {
1869 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1870
1871 cpu_x86_set_cpl(&pVM->rem.s.Env, (pCtx->eflags.Bits.u1VM) ? 3 : (pCtx->ss & 3));
1872 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1873#ifdef VBOX_WITH_STATISTICS
1874 if (pVM->rem.s.Env.segs[R_SS].newselector)
1875 {
1876 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1877 }
1878#endif
1879 }
1880 else
1881 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1882
1883 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1884 {
1885 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1886 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1887#ifdef VBOX_WITH_STATISTICS
1888 if (pVM->rem.s.Env.segs[R_ES].newselector)
1889 {
1890 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1891 }
1892#endif
1893 }
1894 else
1895 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1896
1897 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1898 {
1899 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1900 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1901#ifdef VBOX_WITH_STATISTICS
1902 if (pVM->rem.s.Env.segs[R_CS].newselector)
1903 {
1904 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1905 }
1906#endif
1907 }
1908 else
1909 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1910
1911 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1912 {
1913 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1914 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1915#ifdef VBOX_WITH_STATISTICS
1916 if (pVM->rem.s.Env.segs[R_DS].newselector)
1917 {
1918 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1919 }
1920#endif
1921 }
1922 else
1923 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1924
1925 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1926 * be the same but not the base/limit. */
1927 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1928 {
1929 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1930 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1931#ifdef VBOX_WITH_STATISTICS
1932 if (pVM->rem.s.Env.segs[R_FS].newselector)
1933 {
1934 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1935 }
1936#endif
1937 }
1938 else
1939 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1940
1941 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1942 {
1943 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1944 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1945#ifdef VBOX_WITH_STATISTICS
1946 if (pVM->rem.s.Env.segs[R_GS].newselector)
1947 {
1948 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1949 }
1950#endif
1951 }
1952 else
1953 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1954 }
1955
1956 /*
1957 * Check for traps.
1958 */
1959 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1960 TRPMEVENT enmType;
1961 uint8_t u8TrapNo;
1962 int rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
1963 if (VBOX_SUCCESS(rc))
1964 {
1965#ifdef DEBUG
1966 if (u8TrapNo == 0x80)
1967 {
1968 remR3DumpLnxSyscall(pVM);
1969 remR3DumpOBsdSyscall(pVM);
1970 }
1971#endif
1972
1973 pVM->rem.s.Env.exception_index = u8TrapNo;
1974 if (enmType != TRPM_SOFTWARE_INT)
1975 {
1976 pVM->rem.s.Env.exception_is_int = 0;
1977 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
1978 }
1979 else
1980 {
1981 /*
1982 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
1983 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
1984 * for int03 and into.
1985 */
1986 pVM->rem.s.Env.exception_is_int = 1;
1987 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 2;
1988 /* int 3 may be generated by one-byte 0xcc */
1989 if (u8TrapNo == 3)
1990 {
1991 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xcc)
1992 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1993 }
1994 /* int 4 may be generated by one-byte 0xce */
1995 else if (u8TrapNo == 4)
1996 {
1997 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xce)
1998 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1999 }
2000 }
2001
2002 /* get error code and cr2 if needed. */
2003 switch (u8TrapNo)
2004 {
2005 case 0x0e:
2006 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
2007 /* fallthru */
2008 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2009 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
2010 break;
2011
2012 case 0x11: case 0x08:
2013 default:
2014 pVM->rem.s.Env.error_code = 0;
2015 break;
2016 }
2017
2018 /*
2019 * We can now reset the active trap since the recompiler is gonna have a go at it.
2020 */
2021 rc = TRPMResetTrap(pVM);
2022 AssertRC(rc);
2023 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
2024 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
2025 }
2026
2027 /*
2028 * Clear old interrupt request flags; Check for pending hardware interrupts.
2029 * (See @remark for why we don't check for other FFs.)
2030 */
2031 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2032 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2033 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
2034 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2035
2036 /*
2037 * We're now in REM mode.
2038 */
2039 pVM->rem.s.fInREM = true;
2040 pVM->rem.s.fInStateSync = false;
2041 pVM->rem.s.cCanExecuteRaw = 0;
2042 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2043 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2044 return VINF_SUCCESS;
2045}
2046
2047
2048/**
2049 * Syncs back changes in the REM state to the the VM state.
2050 *
2051 * This must be called after invoking REMR3Run().
2052 * Calling it several times in a row is not permitted.
2053 *
2054 * @returns VBox status code.
2055 *
2056 * @param pVM VM Handle.
2057 */
2058REMR3DECL(int) REMR3StateBack(PVM pVM)
2059{
2060 Log2(("REMR3StateBack:\n"));
2061 Assert(pVM->rem.s.fInREM);
2062 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2063 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2064
2065 /*
2066 * Copy back the registers.
2067 * This is done in the order they are declared in the CPUMCTX structure.
2068 */
2069
2070 /** @todo FOP */
2071 /** @todo FPUIP */
2072 /** @todo CS */
2073 /** @todo FPUDP */
2074 /** @todo DS */
2075 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2076 pCtx->fpu.MXCSR = 0;
2077 pCtx->fpu.MXCSR_MASK = 0;
2078
2079 /** @todo check if FPU/XMM was actually used in the recompiler */
2080 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2081//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2082
2083#ifdef TARGET_X86_64
2084 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2085 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2086 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2087 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2088 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2089 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2090 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2091 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2092 pCtx->r8 = pVM->rem.s.Env.regs[8];
2093 pCtx->r9 = pVM->rem.s.Env.regs[9];
2094 pCtx->r10 = pVM->rem.s.Env.regs[10];
2095 pCtx->r11 = pVM->rem.s.Env.regs[11];
2096 pCtx->r12 = pVM->rem.s.Env.regs[12];
2097 pCtx->r13 = pVM->rem.s.Env.regs[13];
2098 pCtx->r14 = pVM->rem.s.Env.regs[14];
2099 pCtx->r15 = pVM->rem.s.Env.regs[15];
2100
2101 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2102
2103#else
2104 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2105 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2106 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2107 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2108 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2109 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2110 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2111
2112 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2113#endif
2114
2115 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2116
2117#ifdef VBOX_WITH_STATISTICS
2118 if (pVM->rem.s.Env.segs[R_SS].newselector)
2119 {
2120 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2121 }
2122 if (pVM->rem.s.Env.segs[R_GS].newselector)
2123 {
2124 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2125 }
2126 if (pVM->rem.s.Env.segs[R_FS].newselector)
2127 {
2128 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2129 }
2130 if (pVM->rem.s.Env.segs[R_ES].newselector)
2131 {
2132 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2133 }
2134 if (pVM->rem.s.Env.segs[R_DS].newselector)
2135 {
2136 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2137 }
2138 if (pVM->rem.s.Env.segs[R_CS].newselector)
2139 {
2140 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2141 }
2142#endif
2143 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2144 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2145 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2146 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2147 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2148
2149#ifdef TARGET_X86_64
2150 pCtx->rip = pVM->rem.s.Env.eip;
2151 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2152#else
2153 pCtx->eip = pVM->rem.s.Env.eip;
2154 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2155#endif
2156
2157 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2158 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2159 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2160 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2161
2162 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2163 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2164 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2165 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2166 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2167 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2168 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2169 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2170
2171 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2172 if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
2173 {
2174 pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
2175 STAM_COUNTER_INC(&gStatREMGDTChange);
2176 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2177 }
2178
2179 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2180 if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
2181 {
2182 pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
2183 STAM_COUNTER_INC(&gStatREMIDTChange);
2184 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2185 }
2186
2187 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2188 {
2189 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2190 STAM_COUNTER_INC(&gStatREMLDTRChange);
2191 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2192 }
2193 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2194 {
2195 pCtx->tr = pVM->rem.s.Env.tr.selector;
2196 STAM_COUNTER_INC(&gStatREMTRChange);
2197 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2198 }
2199
2200 /** @todo These values could still be out of sync! */
2201 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2202 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2203 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2204 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2205
2206 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2207 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2208 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2209
2210 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2211 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2212 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2213
2214 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2215 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2216 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2217
2218 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2219 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2220 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2221
2222 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2223 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2224 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2225
2226 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2227 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2228 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2229
2230 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2231 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2232 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2233
2234 /* Sysenter MSR */
2235 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2236 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2237 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2238
2239 /* System MSRs. */
2240 pCtx->msrEFER = pVM->rem.s.Env.efer;
2241 pCtx->msrSTAR = pVM->rem.s.Env.star;
2242 pCtx->msrPAT = pVM->rem.s.Env.pat;
2243#ifdef TARGET_X86_64
2244 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2245 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2246 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2247 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2248#endif
2249
2250 remR3TrapClear(pVM);
2251
2252 /*
2253 * Check for traps.
2254 */
2255 if ( pVM->rem.s.Env.exception_index >= 0
2256 && pVM->rem.s.Env.exception_index < 256)
2257 {
2258 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2259 int rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2260 AssertRC(rc);
2261 switch (pVM->rem.s.Env.exception_index)
2262 {
2263 case 0x0e:
2264 TRPMSetFaultAddress(pVM, pCtx->cr2);
2265 /* fallthru */
2266 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2267 case 0x11: case 0x08: /* 0 */
2268 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2269 break;
2270 }
2271
2272 }
2273
2274 /*
2275 * We're not longer in REM mode.
2276 */
2277 pVM->rem.s.fInREM = false;
2278 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2279 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2280 return VINF_SUCCESS;
2281}
2282
2283
2284/**
2285 * This is called by the disassembler when it wants to update the cpu state
2286 * before for instance doing a register dump.
2287 */
2288static void remR3StateUpdate(PVM pVM)
2289{
2290 Assert(pVM->rem.s.fInREM);
2291 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2292
2293 /*
2294 * Copy back the registers.
2295 * This is done in the order they are declared in the CPUMCTX structure.
2296 */
2297
2298 /** @todo FOP */
2299 /** @todo FPUIP */
2300 /** @todo CS */
2301 /** @todo FPUDP */
2302 /** @todo DS */
2303 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2304 pCtx->fpu.MXCSR = 0;
2305 pCtx->fpu.MXCSR_MASK = 0;
2306
2307 /** @todo check if FPU/XMM was actually used in the recompiler */
2308 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2309//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2310
2311#ifdef TARGET_X86_64
2312 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2313 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2314 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2315 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2316 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2317 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2318 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2319 pCtx->r8 = pVM->rem.s.Env.regs[8];
2320 pCtx->r9 = pVM->rem.s.Env.regs[9];
2321 pCtx->r10 = pVM->rem.s.Env.regs[10];
2322 pCtx->r11 = pVM->rem.s.Env.regs[11];
2323 pCtx->r12 = pVM->rem.s.Env.regs[12];
2324 pCtx->r13 = pVM->rem.s.Env.regs[13];
2325 pCtx->r14 = pVM->rem.s.Env.regs[14];
2326 pCtx->r15 = pVM->rem.s.Env.regs[15];
2327
2328 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2329#else
2330 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2331 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2332 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2333 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2334 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2335 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2336 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2337
2338 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2339#endif
2340
2341 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2342
2343 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2344 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2345 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2346 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2347 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2348
2349#ifdef TARGET_X86_64
2350 pCtx->rip = pVM->rem.s.Env.eip;
2351 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2352#else
2353 pCtx->eip = pVM->rem.s.Env.eip;
2354 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2355#endif
2356
2357 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2358 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2359 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2360 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2361
2362 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2363 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2364 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2365 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2366 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2367 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2368 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2369 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2370
2371 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2372 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2373 {
2374 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2375 STAM_COUNTER_INC(&gStatREMGDTChange);
2376 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2377 }
2378
2379 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2380 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2381 {
2382 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2383 STAM_COUNTER_INC(&gStatREMIDTChange);
2384 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2385 }
2386
2387 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2388 {
2389 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2390 STAM_COUNTER_INC(&gStatREMLDTRChange);
2391 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2392 }
2393 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2394 {
2395 pCtx->tr = pVM->rem.s.Env.tr.selector;
2396 STAM_COUNTER_INC(&gStatREMTRChange);
2397 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2398 }
2399
2400 /** @todo These values could still be out of sync! */
2401 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2402 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2403 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2404 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2405
2406 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2407 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2408 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2409
2410 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2411 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2412 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2413
2414 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2415 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2416 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2417
2418 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2419 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2420 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2421
2422 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2423 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2424 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2425
2426 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2427 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2428 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2429
2430 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2431 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2432 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2433
2434 /* Sysenter MSR */
2435 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2436 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2437 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2438
2439 /* System MSRs. */
2440 pCtx->msrEFER = pVM->rem.s.Env.efer;
2441 pCtx->msrSTAR = pVM->rem.s.Env.star;
2442 pCtx->msrPAT = pVM->rem.s.Env.pat;
2443#ifdef TARGET_X86_64
2444 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2445 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2446 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2447 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2448#endif
2449
2450}
2451
2452
2453/**
2454 * Update the VMM state information if we're currently in REM.
2455 *
2456 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2457 * we're currently executing in REM and the VMM state is invalid. This method will of
2458 * course check that we're executing in REM before syncing any data over to the VMM.
2459 *
2460 * @param pVM The VM handle.
2461 */
2462REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2463{
2464 if (pVM->rem.s.fInREM)
2465 remR3StateUpdate(pVM);
2466}
2467
2468
2469#undef LOG_GROUP
2470#define LOG_GROUP LOG_GROUP_REM
2471
2472
2473/**
2474 * Notify the recompiler about Address Gate 20 state change.
2475 *
2476 * This notification is required since A20 gate changes are
2477 * initialized from a device driver and the VM might just as
2478 * well be in REM mode as in RAW mode.
2479 *
2480 * @param pVM VM handle.
2481 * @param fEnable True if the gate should be enabled.
2482 * False if the gate should be disabled.
2483 */
2484REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2485{
2486 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2487 VM_ASSERT_EMT(pVM);
2488
2489 bool fSaved = pVM->rem.s.fIgnoreAll; /* just in case. */
2490 pVM->rem.s.fIgnoreAll = fSaved || !pVM->rem.s.fInREM;
2491
2492 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2493
2494 pVM->rem.s.fIgnoreAll = fSaved;
2495}
2496
2497
2498/**
2499 * Replays the invalidated recorded pages.
2500 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2501 *
2502 * @param pVM VM handle.
2503 */
2504REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2505{
2506 VM_ASSERT_EMT(pVM);
2507
2508 /*
2509 * Sync the required registers.
2510 */
2511 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2512 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2513 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2514 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2515
2516 /*
2517 * Replay the flushes.
2518 */
2519 pVM->rem.s.fIgnoreInvlPg = true;
2520 RTUINT i;
2521 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2522 {
2523 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2524 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2525 }
2526 pVM->rem.s.fIgnoreInvlPg = false;
2527 pVM->rem.s.cInvalidatedPages = 0;
2528}
2529
2530
2531/**
2532 * Replays the handler notification changes
2533 * Called in response to VM_FF_REM_HANDLER_NOTIFY from the RAW execution loop.
2534 *
2535 * @param pVM VM handle.
2536 */
2537REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2538{
2539 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2540 VM_ASSERT_EMT(pVM);
2541
2542 /*
2543 * Replay the flushes.
2544 */
2545 RTUINT i;
2546 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2547 pVM->rem.s.cHandlerNotifications = 0;
2548 for (i = 0; i < c; i++)
2549 {
2550 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2551 switch (pRec->enmKind)
2552 {
2553 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2554 REMR3NotifyHandlerPhysicalRegister(pVM,
2555 pRec->u.PhysicalRegister.enmType,
2556 pRec->u.PhysicalRegister.GCPhys,
2557 pRec->u.PhysicalRegister.cb,
2558 pRec->u.PhysicalRegister.fHasHCHandler);
2559 break;
2560
2561 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2562 REMR3NotifyHandlerPhysicalDeregister(pVM,
2563 pRec->u.PhysicalDeregister.enmType,
2564 pRec->u.PhysicalDeregister.GCPhys,
2565 pRec->u.PhysicalDeregister.cb,
2566 pRec->u.PhysicalDeregister.fHasHCHandler,
2567 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2568 break;
2569
2570 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2571 REMR3NotifyHandlerPhysicalModify(pVM,
2572 pRec->u.PhysicalModify.enmType,
2573 pRec->u.PhysicalModify.GCPhysOld,
2574 pRec->u.PhysicalModify.GCPhysNew,
2575 pRec->u.PhysicalModify.cb,
2576 pRec->u.PhysicalModify.fHasHCHandler,
2577 pRec->u.PhysicalModify.fRestoreAsRAM);
2578 break;
2579
2580 default:
2581 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2582 break;
2583 }
2584 }
2585 VM_FF_CLEAR(pVM, VM_FF_REM_HANDLER_NOTIFY);
2586}
2587
2588
2589/**
2590 * Notify REM about changed code page.
2591 *
2592 * @returns VBox status code.
2593 * @param pVM VM handle.
2594 * @param pvCodePage Code page address
2595 */
2596REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2597{
2598 int rc;
2599 RTGCPHYS PhysGC;
2600 uint64_t flags;
2601
2602 VM_ASSERT_EMT(pVM);
2603
2604#ifndef VBOX_REM_FLUSH_ALL_TBS
2605 /*
2606 * Get the physical page address.
2607 */
2608 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2609 if (rc == VINF_SUCCESS)
2610 {
2611 /*
2612 * Sync the required registers and flush the whole page.
2613 * (Easier to do the whole page than notifying it about each physical
2614 * byte that was changed.
2615 */
2616 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2617 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2618 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2619 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2620
2621 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2622 }
2623#endif
2624 return VINF_SUCCESS;
2625}
2626
2627
2628/**
2629 * Notification about a successful MMR3PhysRegister() call.
2630 *
2631 * @param pVM VM handle.
2632 * @param GCPhys The physical address the RAM.
2633 * @param cb Size of the memory.
2634 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2635 */
2636REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, unsigned fFlags)
2637{
2638 Log(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d fFlags=%d\n", GCPhys, cb, fFlags));
2639 VM_ASSERT_EMT(pVM);
2640
2641 /*
2642 * Validate input - we trust the caller.
2643 */
2644 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2645 Assert(cb);
2646 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2647
2648 /*
2649 * Base ram?
2650 */
2651 if (!GCPhys)
2652 {
2653 phys_ram_size = cb;
2654 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2655#ifndef VBOX_STRICT
2656 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2657 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2658#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2659 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2660 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2661 uint32_t cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2662 int rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2663 AssertRC(rc);
2664 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2665#endif
2666 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2667 }
2668
2669 /*
2670 * Register the ram.
2671 */
2672 Assert(!pVM->rem.s.fIgnoreAll);
2673 pVM->rem.s.fIgnoreAll = true;
2674
2675#ifdef VBOX_WITH_NEW_PHYS_CODE
2676 if (fFlags & MM_RAM_FLAGS_RESERVED)
2677 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2678 else
2679 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2680#else
2681 if (!GCPhys)
2682 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2683 else
2684 {
2685 if (fFlags & MM_RAM_FLAGS_RESERVED)
2686 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2687 else
2688 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2689 }
2690#endif
2691 Assert(pVM->rem.s.fIgnoreAll);
2692 pVM->rem.s.fIgnoreAll = false;
2693}
2694
2695#ifndef VBOX_WITH_NEW_PHYS_CODE
2696
2697/**
2698 * Notification about a successful PGMR3PhysRegisterChunk() call.
2699 *
2700 * @param pVM VM handle.
2701 * @param GCPhys The physical address the RAM.
2702 * @param cb Size of the memory.
2703 * @param pvRam The HC address of the RAM.
2704 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2705 */
2706REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2707{
2708 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2709 VM_ASSERT_EMT(pVM);
2710
2711 /*
2712 * Validate input - we trust the caller.
2713 */
2714 Assert(pvRam);
2715 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2716 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2717 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2718 Assert(fFlags == 0 /* normal RAM */);
2719 Assert(!pVM->rem.s.fIgnoreAll);
2720 pVM->rem.s.fIgnoreAll = true;
2721
2722 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2723
2724 Assert(pVM->rem.s.fIgnoreAll);
2725 pVM->rem.s.fIgnoreAll = false;
2726}
2727
2728
2729/**
2730 * Grows dynamically allocated guest RAM.
2731 * Will raise a fatal error if the operation fails.
2732 *
2733 * @param physaddr The physical address.
2734 */
2735void remR3GrowDynRange(unsigned long physaddr)
2736{
2737 int rc;
2738 PVM pVM = cpu_single_env->pVM;
2739
2740 LogFlow(("remR3GrowDynRange %VGp\n", physaddr));
2741 const RTGCPHYS GCPhys = physaddr;
2742 rc = PGM3PhysGrowRange(pVM, &GCPhys);
2743 if (VBOX_SUCCESS(rc))
2744 return;
2745
2746 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2747 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2748 AssertFatalFailed();
2749}
2750
2751#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2752
2753/**
2754 * Notification about a successful MMR3PhysRomRegister() call.
2755 *
2756 * @param pVM VM handle.
2757 * @param GCPhys The physical address of the ROM.
2758 * @param cb The size of the ROM.
2759 * @param pvCopy Pointer to the ROM copy.
2760 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2761 * This function will be called when ever the protection of the
2762 * shadow ROM changes (at reset and end of POST).
2763 */
2764REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2765{
2766 Log(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p fShadow=%RTbool\n", GCPhys, cb, pvCopy, fShadow));
2767 VM_ASSERT_EMT(pVM);
2768
2769 /*
2770 * Validate input - we trust the caller.
2771 */
2772 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2773 Assert(cb);
2774 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2775 Assert(pvCopy);
2776 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2777
2778 /*
2779 * Register the rom.
2780 */
2781 Assert(!pVM->rem.s.fIgnoreAll);
2782 pVM->rem.s.fIgnoreAll = true;
2783
2784 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2785
2786 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2787
2788 Assert(pVM->rem.s.fIgnoreAll);
2789 pVM->rem.s.fIgnoreAll = false;
2790}
2791
2792
2793/**
2794 * Notification about a successful memory deregistration or reservation.
2795 *
2796 * @param pVM VM Handle.
2797 * @param GCPhys Start physical address.
2798 * @param cb The size of the range.
2799 * @todo Rename to REMR3NotifyPhysRamDeregister (for MMIO2) as we won't
2800 * reserve any memory soon.
2801 */
2802REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2803{
2804 Log(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2805 VM_ASSERT_EMT(pVM);
2806
2807 /*
2808 * Validate input - we trust the caller.
2809 */
2810 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2811 Assert(cb);
2812 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2813
2814 /*
2815 * Unassigning the memory.
2816 */
2817 Assert(!pVM->rem.s.fIgnoreAll);
2818 pVM->rem.s.fIgnoreAll = true;
2819
2820 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2821
2822 Assert(pVM->rem.s.fIgnoreAll);
2823 pVM->rem.s.fIgnoreAll = false;
2824}
2825
2826
2827/**
2828 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2829 *
2830 * @param pVM VM Handle.
2831 * @param enmType Handler type.
2832 * @param GCPhys Handler range address.
2833 * @param cb Size of the handler range.
2834 * @param fHasHCHandler Set if the handler has a HC callback function.
2835 *
2836 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2837 * Handler memory type to memory which has no HC handler.
2838 */
2839REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2840{
2841 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d\n",
2842 enmType, GCPhys, cb, fHasHCHandler));
2843 VM_ASSERT_EMT(pVM);
2844 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2845 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2846
2847 if (pVM->rem.s.cHandlerNotifications)
2848 REMR3ReplayHandlerNotifications(pVM);
2849
2850 Assert(!pVM->rem.s.fIgnoreAll);
2851 pVM->rem.s.fIgnoreAll = true;
2852
2853 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2854 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2855 else if (fHasHCHandler)
2856 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2857
2858 Assert(pVM->rem.s.fIgnoreAll);
2859 pVM->rem.s.fIgnoreAll = false;
2860}
2861
2862
2863/**
2864 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2865 *
2866 * @param pVM VM Handle.
2867 * @param enmType Handler type.
2868 * @param GCPhys Handler range address.
2869 * @param cb Size of the handler range.
2870 * @param fHasHCHandler Set if the handler has a HC callback function.
2871 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2872 */
2873REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2874{
2875 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%VGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2876 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2877 VM_ASSERT_EMT(pVM);
2878
2879 if (pVM->rem.s.cHandlerNotifications)
2880 REMR3ReplayHandlerNotifications(pVM);
2881
2882 Assert(!pVM->rem.s.fIgnoreAll);
2883 pVM->rem.s.fIgnoreAll = true;
2884
2885/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
2886 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2887 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2888 else if (fHasHCHandler)
2889 {
2890 if (!fRestoreAsRAM)
2891 {
2892 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2893 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2894 }
2895 else
2896 {
2897 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2898 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2899 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2900 }
2901 }
2902
2903 Assert(pVM->rem.s.fIgnoreAll);
2904 pVM->rem.s.fIgnoreAll = false;
2905}
2906
2907
2908/**
2909 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2910 *
2911 * @param pVM VM Handle.
2912 * @param enmType Handler type.
2913 * @param GCPhysOld Old handler range address.
2914 * @param GCPhysNew New handler range address.
2915 * @param cb Size of the handler range.
2916 * @param fHasHCHandler Set if the handler has a HC callback function.
2917 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2918 */
2919REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2920{
2921 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%d fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
2922 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
2923 VM_ASSERT_EMT(pVM);
2924 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2925
2926 if (pVM->rem.s.cHandlerNotifications)
2927 REMR3ReplayHandlerNotifications(pVM);
2928
2929 if (fHasHCHandler)
2930 {
2931 Assert(!pVM->rem.s.fIgnoreAll);
2932 pVM->rem.s.fIgnoreAll = true;
2933
2934 /*
2935 * Reset the old page.
2936 */
2937 if (!fRestoreAsRAM)
2938 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2939 else
2940 {
2941 /* This is not perfect, but it'll do for PD monitoring... */
2942 Assert(cb == PAGE_SIZE);
2943 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2944 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2945 }
2946
2947 /*
2948 * Update the new page.
2949 */
2950 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2951 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2952 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2953
2954 Assert(pVM->rem.s.fIgnoreAll);
2955 pVM->rem.s.fIgnoreAll = false;
2956 }
2957}
2958
2959
2960/**
2961 * Checks if we're handling access to this page or not.
2962 *
2963 * @returns true if we're trapping access.
2964 * @returns false if we aren't.
2965 * @param pVM The VM handle.
2966 * @param GCPhys The physical address.
2967 *
2968 * @remark This function will only work correctly in VBOX_STRICT builds!
2969 */
2970REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
2971{
2972#ifdef VBOX_STRICT
2973 if (pVM->rem.s.cHandlerNotifications)
2974 REMR3ReplayHandlerNotifications(pVM);
2975
2976 unsigned long off = get_phys_page_offset(GCPhys);
2977 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
2978 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
2979 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
2980#else
2981 return false;
2982#endif
2983}
2984
2985
2986/**
2987 * Deals with a rare case in get_phys_addr_code where the code
2988 * is being monitored.
2989 *
2990 * It could also be an MMIO page, in which case we will raise a fatal error.
2991 *
2992 * @returns The physical address corresponding to addr.
2993 * @param env The cpu environment.
2994 * @param addr The virtual address.
2995 * @param pTLBEntry The TLB entry.
2996 */
2997target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
2998{
2999 PVM pVM = env->pVM;
3000 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
3001 {
3002 target_ulong ret = pTLBEntry->addend + addr;
3003 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv addr_code=%VGv addend=%VGp ret=%VGp\n",
3004 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
3005 return ret;
3006 }
3007 LogRel(("\nTrying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
3008 "*** handlers\n",
3009 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
3010 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
3011 LogRel(("*** mmio\n"));
3012 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
3013 LogRel(("*** phys\n"));
3014 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
3015 cpu_abort(env, "Trying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
3016 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
3017 AssertFatalFailed();
3018}
3019
3020
3021/** Validate the physical address passed to the read functions.
3022 * Useful for finding non-guest-ram reads/writes. */
3023#if 0 //1 /* disable if it becomes bothersome... */
3024# define VBOX_CHECK_ADDR(GCPhys) AssertMsg(PGMPhysIsGCPhysValid(cpu_single_env->pVM, (GCPhys)), ("%VGp\n", (GCPhys)))
3025#else
3026# define VBOX_CHECK_ADDR(GCPhys) do { } while (0)
3027#endif
3028
3029/**
3030 * Read guest RAM and ROM.
3031 *
3032 * @param SrcGCPhys The source address (guest physical).
3033 * @param pvDst The destination address.
3034 * @param cb Number of bytes
3035 */
3036void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3037{
3038 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3039 VBOX_CHECK_ADDR(SrcGCPhys);
3040 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3041 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3042}
3043
3044
3045/**
3046 * Read guest RAM and ROM, unsigned 8-bit.
3047 *
3048 * @param SrcGCPhys The source address (guest physical).
3049 */
3050uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3051{
3052 uint8_t val;
3053 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3054 VBOX_CHECK_ADDR(SrcGCPhys);
3055 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3056 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3057 return val;
3058}
3059
3060
3061/**
3062 * Read guest RAM and ROM, signed 8-bit.
3063 *
3064 * @param SrcGCPhys The source address (guest physical).
3065 */
3066int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3067{
3068 int8_t val;
3069 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3070 VBOX_CHECK_ADDR(SrcGCPhys);
3071 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3072 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3073 return val;
3074}
3075
3076
3077/**
3078 * Read guest RAM and ROM, unsigned 16-bit.
3079 *
3080 * @param SrcGCPhys The source address (guest physical).
3081 */
3082uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3083{
3084 uint16_t val;
3085 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3086 VBOX_CHECK_ADDR(SrcGCPhys);
3087 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3088 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3089 return val;
3090}
3091
3092
3093/**
3094 * Read guest RAM and ROM, signed 16-bit.
3095 *
3096 * @param SrcGCPhys The source address (guest physical).
3097 */
3098int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3099{
3100 uint16_t val;
3101 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3102 VBOX_CHECK_ADDR(SrcGCPhys);
3103 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3104 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3105 return val;
3106}
3107
3108
3109/**
3110 * Read guest RAM and ROM, unsigned 32-bit.
3111 *
3112 * @param SrcGCPhys The source address (guest physical).
3113 */
3114uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3115{
3116 uint32_t val;
3117 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3118 VBOX_CHECK_ADDR(SrcGCPhys);
3119 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3120 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3121 return val;
3122}
3123
3124
3125/**
3126 * Read guest RAM and ROM, signed 32-bit.
3127 *
3128 * @param SrcGCPhys The source address (guest physical).
3129 */
3130int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3131{
3132 int32_t val;
3133 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3134 VBOX_CHECK_ADDR(SrcGCPhys);
3135 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3136 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3137 return val;
3138}
3139
3140
3141/**
3142 * Read guest RAM and ROM, unsigned 64-bit.
3143 *
3144 * @param SrcGCPhys The source address (guest physical).
3145 */
3146uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3147{
3148 uint64_t val;
3149 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3150 VBOX_CHECK_ADDR(SrcGCPhys);
3151 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3152 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3153 return val;
3154}
3155
3156
3157/**
3158 * Write guest RAM.
3159 *
3160 * @param DstGCPhys The destination address (guest physical).
3161 * @param pvSrc The source address.
3162 * @param cb Number of bytes to write
3163 */
3164void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3165{
3166 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3167 VBOX_CHECK_ADDR(DstGCPhys);
3168 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3169 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3170}
3171
3172
3173/**
3174 * Write guest RAM, unsigned 8-bit.
3175 *
3176 * @param DstGCPhys The destination address (guest physical).
3177 * @param val Value
3178 */
3179void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3180{
3181 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3182 VBOX_CHECK_ADDR(DstGCPhys);
3183 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3184 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3185}
3186
3187
3188/**
3189 * Write guest RAM, unsigned 8-bit.
3190 *
3191 * @param DstGCPhys The destination address (guest physical).
3192 * @param val Value
3193 */
3194void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3195{
3196 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3197 VBOX_CHECK_ADDR(DstGCPhys);
3198 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3199 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3200}
3201
3202
3203/**
3204 * Write guest RAM, unsigned 32-bit.
3205 *
3206 * @param DstGCPhys The destination address (guest physical).
3207 * @param val Value
3208 */
3209void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3210{
3211 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3212 VBOX_CHECK_ADDR(DstGCPhys);
3213 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3214 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3215}
3216
3217
3218/**
3219 * Write guest RAM, unsigned 64-bit.
3220 *
3221 * @param DstGCPhys The destination address (guest physical).
3222 * @param val Value
3223 */
3224void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3225{
3226 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3227 VBOX_CHECK_ADDR(DstGCPhys);
3228 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3229 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3230}
3231
3232#undef LOG_GROUP
3233#define LOG_GROUP LOG_GROUP_REM_MMIO
3234
3235/** Read MMIO memory. */
3236static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3237{
3238 uint32_t u32 = 0;
3239 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3240 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3241 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3242 return u32;
3243}
3244
3245/** Read MMIO memory. */
3246static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3247{
3248 uint32_t u32 = 0;
3249 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3250 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3251 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3252 return u32;
3253}
3254
3255/** Read MMIO memory. */
3256static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3257{
3258 uint32_t u32 = 0;
3259 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3260 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3261 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3262 return u32;
3263}
3264
3265/** Write to MMIO memory. */
3266static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3267{
3268 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3269 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3270 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3271}
3272
3273/** Write to MMIO memory. */
3274static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3275{
3276 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3277 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3278 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3279}
3280
3281/** Write to MMIO memory. */
3282static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3283{
3284 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3285 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3286 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3287}
3288
3289
3290#undef LOG_GROUP
3291#define LOG_GROUP LOG_GROUP_REM_HANDLER
3292
3293/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3294
3295static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3296{
3297 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3298 uint8_t u8;
3299 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3300 return u8;
3301}
3302
3303static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3304{
3305 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3306 uint16_t u16;
3307 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3308 return u16;
3309}
3310
3311static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3312{
3313 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3314 uint32_t u32;
3315 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3316 return u32;
3317}
3318
3319static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3320{
3321 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3322 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3323}
3324
3325static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3326{
3327 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3328 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3329}
3330
3331static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3332{
3333 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3334 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3335}
3336
3337/* -+- disassembly -+- */
3338
3339#undef LOG_GROUP
3340#define LOG_GROUP LOG_GROUP_REM_DISAS
3341
3342
3343/**
3344 * Enables or disables singled stepped disassembly.
3345 *
3346 * @returns VBox status code.
3347 * @param pVM VM handle.
3348 * @param fEnable To enable set this flag, to disable clear it.
3349 */
3350static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3351{
3352 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3353 VM_ASSERT_EMT(pVM);
3354
3355 if (fEnable)
3356 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3357 else
3358 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3359 return VINF_SUCCESS;
3360}
3361
3362
3363/**
3364 * Enables or disables singled stepped disassembly.
3365 *
3366 * @returns VBox status code.
3367 * @param pVM VM handle.
3368 * @param fEnable To enable set this flag, to disable clear it.
3369 */
3370REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3371{
3372 PVMREQ pReq;
3373 int rc;
3374
3375 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3376 if (VM_IS_EMT(pVM))
3377 return remR3DisasEnableStepping(pVM, fEnable);
3378
3379 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3380 AssertRC(rc);
3381 if (VBOX_SUCCESS(rc))
3382 rc = pReq->iStatus;
3383 VMR3ReqFree(pReq);
3384 return rc;
3385}
3386
3387
3388#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3389/**
3390 * External Debugger Command: .remstep [on|off|1|0]
3391 */
3392static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3393{
3394 bool fEnable;
3395 int rc;
3396
3397 /* print status */
3398 if (cArgs == 0)
3399 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3400 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3401
3402 /* convert the argument and change the mode. */
3403 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3404 if (VBOX_FAILURE(rc))
3405 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3406 rc = REMR3DisasEnableStepping(pVM, fEnable);
3407 if (VBOX_FAILURE(rc))
3408 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3409 return rc;
3410}
3411#endif
3412
3413
3414/**
3415 * Disassembles n instructions and prints them to the log.
3416 *
3417 * @returns Success indicator.
3418 * @param env Pointer to the recompiler CPU structure.
3419 * @param f32BitCode Indicates that whether or not the code should
3420 * be disassembled as 16 or 32 bit. If -1 the CS
3421 * selector will be inspected.
3422 * @param nrInstructions Nr of instructions to disassemble
3423 * @param pszPrefix
3424 * @remark not currently used for anything but ad-hoc debugging.
3425 */
3426bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3427{
3428 int i;
3429
3430 /*
3431 * Determin 16/32 bit mode.
3432 */
3433 if (f32BitCode == -1)
3434 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3435
3436 /*
3437 * Convert cs:eip to host context address.
3438 * We don't care to much about cross page correctness presently.
3439 */
3440 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3441 void *pvPC;
3442 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3443 {
3444 Assert(PGMGetGuestMode(env->pVM) < PGMMODE_AMD64);
3445
3446 /* convert eip to physical address. */
3447 int rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3448 GCPtrPC,
3449 env->cr[3],
3450 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3451 &pvPC);
3452 if (VBOX_FAILURE(rc))
3453 {
3454 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3455 return false;
3456 pvPC = (char *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3457 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3458 }
3459 }
3460 else
3461 {
3462 /* physical address */
3463 int rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16, &pvPC);
3464 if (VBOX_FAILURE(rc))
3465 return false;
3466 }
3467
3468 /*
3469 * Disassemble.
3470 */
3471 RTINTPTR off = env->eip - (RTGCUINTPTR)pvPC;
3472 DISCPUSTATE Cpu;
3473 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3474 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3475 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3476 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3477 //Cpu.dwUserData[2] = GCPtrPC;
3478
3479 for (i=0;i<nrInstructions;i++)
3480 {
3481 char szOutput[256];
3482 uint32_t cbOp;
3483 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3484 return false;
3485 if (pszPrefix)
3486 Log(("%s: %s", pszPrefix, szOutput));
3487 else
3488 Log(("%s", szOutput));
3489
3490 pvPC += cbOp;
3491 }
3492 return true;
3493}
3494
3495
3496/** @todo need to test the new code, using the old code in the mean while. */
3497#define USE_OLD_DUMP_AND_DISASSEMBLY
3498
3499/**
3500 * Disassembles one instruction and prints it to the log.
3501 *
3502 * @returns Success indicator.
3503 * @param env Pointer to the recompiler CPU structure.
3504 * @param f32BitCode Indicates that whether or not the code should
3505 * be disassembled as 16 or 32 bit. If -1 the CS
3506 * selector will be inspected.
3507 * @param pszPrefix
3508 */
3509bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3510{
3511#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3512 PVM pVM = env->pVM;
3513
3514 /* Doesn't work in long mode. */
3515 if (env->hflags & HF_LMA_MASK)
3516 return false;
3517
3518 /*
3519 * Determin 16/32 bit mode.
3520 */
3521 if (f32BitCode == -1)
3522 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3523
3524 /*
3525 * Log registers
3526 */
3527 if (LogIs2Enabled())
3528 {
3529 remR3StateUpdate(pVM);
3530 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3531 }
3532
3533 /*
3534 * Convert cs:eip to host context address.
3535 * We don't care to much about cross page correctness presently.
3536 */
3537 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3538 void *pvPC;
3539 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3540 {
3541 /* convert eip to physical address. */
3542 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
3543 GCPtrPC,
3544 env->cr[3],
3545 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3546 &pvPC);
3547 if (VBOX_FAILURE(rc))
3548 {
3549 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3550 return false;
3551 pvPC = (char *)PATMR3QueryPatchMemHC(pVM, NULL)
3552 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3553 }
3554 }
3555 else
3556 {
3557
3558 /* physical address */
3559 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, &pvPC);
3560 if (VBOX_FAILURE(rc))
3561 return false;
3562 }
3563
3564 /*
3565 * Disassemble.
3566 */
3567 RTINTPTR off = env->eip - (RTGCUINTPTR)pvPC;
3568 DISCPUSTATE Cpu;
3569 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3570 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3571 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3572 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3573 //Cpu.dwUserData[2] = GCPtrPC;
3574 char szOutput[256];
3575 uint32_t cbOp;
3576 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3577 return false;
3578
3579 if (!f32BitCode)
3580 {
3581 if (pszPrefix)
3582 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3583 else
3584 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3585 }
3586 else
3587 {
3588 if (pszPrefix)
3589 Log(("%s: %s", pszPrefix, szOutput));
3590 else
3591 Log(("%s", szOutput));
3592 }
3593 return true;
3594
3595#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3596 PVM pVM = env->pVM;
3597 const bool fLog = LogIsEnabled();
3598 const bool fLog2 = LogIs2Enabled();
3599 int rc = VINF_SUCCESS;
3600
3601 /*
3602 * Don't bother if there ain't any log output to do.
3603 */
3604 if (!fLog && !fLog2)
3605 return true;
3606
3607 /*
3608 * Update the state so DBGF reads the correct register values.
3609 */
3610 remR3StateUpdate(pVM);
3611
3612 /*
3613 * Log registers if requested.
3614 */
3615 if (!fLog2)
3616 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3617
3618 /*
3619 * Disassemble to log.
3620 */
3621 if (fLog)
3622 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3623
3624 return VBOX_SUCCESS(rc);
3625#endif
3626}
3627
3628
3629/**
3630 * Disassemble recompiled code.
3631 *
3632 * @param phFileIgnored Ignored, logfile usually.
3633 * @param pvCode Pointer to the code block.
3634 * @param cb Size of the code block.
3635 */
3636void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3637{
3638 if (LogIs2Enabled())
3639 {
3640 unsigned off = 0;
3641 char szOutput[256];
3642 DISCPUSTATE Cpu;
3643
3644 memset(&Cpu, 0, sizeof(Cpu));
3645#ifdef RT_ARCH_X86
3646 Cpu.mode = CPUMODE_32BIT;
3647#else
3648 Cpu.mode = CPUMODE_64BIT;
3649#endif
3650
3651 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3652 while (off < cb)
3653 {
3654 uint32_t cbInstr;
3655 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3656 RTLogPrintf("%s", szOutput);
3657 else
3658 {
3659 RTLogPrintf("disas error\n");
3660 cbInstr = 1;
3661#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3662 break;
3663#endif
3664 }
3665 off += cbInstr;
3666 }
3667 }
3668 NOREF(phFileIgnored);
3669}
3670
3671
3672/**
3673 * Disassemble guest code.
3674 *
3675 * @param phFileIgnored Ignored, logfile usually.
3676 * @param uCode The guest address of the code to disassemble. (flat?)
3677 * @param cb Number of bytes to disassemble.
3678 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3679 */
3680void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3681{
3682 if (LogIs2Enabled())
3683 {
3684 PVM pVM = cpu_single_env->pVM;
3685
3686 /*
3687 * Update the state so DBGF reads the correct register values (flags).
3688 */
3689 remR3StateUpdate(pVM);
3690
3691 /*
3692 * Do the disassembling.
3693 */
3694 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
3695 RTSEL cs = cpu_single_env->segs[R_CS].selector;
3696 RTGCUINTPTR eip = uCode - cpu_single_env->segs[R_CS].base;
3697 for (;;)
3698 {
3699 char szBuf[256];
3700 uint32_t cbInstr;
3701 int rc = DBGFR3DisasInstrEx(pVM,
3702 cs,
3703 eip,
3704 0,
3705 szBuf, sizeof(szBuf),
3706 &cbInstr);
3707 if (VBOX_SUCCESS(rc))
3708 RTLogPrintf("%VGp %s\n", uCode, szBuf);
3709 else
3710 {
3711 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
3712 cbInstr = 1;
3713 }
3714
3715 /* next */
3716 if (cb <= cbInstr)
3717 break;
3718 cb -= cbInstr;
3719 uCode += cbInstr;
3720 eip += cbInstr;
3721 }
3722 }
3723 NOREF(phFileIgnored);
3724}
3725
3726
3727/**
3728 * Looks up a guest symbol.
3729 *
3730 * @returns Pointer to symbol name. This is a static buffer.
3731 * @param orig_addr The address in question.
3732 */
3733const char *lookup_symbol(target_ulong orig_addr)
3734{
3735 RTGCINTPTR off = 0;
3736 DBGFSYMBOL Sym;
3737 PVM pVM = cpu_single_env->pVM;
3738 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3739 if (VBOX_SUCCESS(rc))
3740 {
3741 static char szSym[sizeof(Sym.szName) + 48];
3742 if (!off)
3743 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3744 else if (off > 0)
3745 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3746 else
3747 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3748 return szSym;
3749 }
3750 return "<N/A>";
3751}
3752
3753
3754#undef LOG_GROUP
3755#define LOG_GROUP LOG_GROUP_REM
3756
3757
3758/* -+- FF notifications -+- */
3759
3760
3761/**
3762 * Notification about a pending interrupt.
3763 *
3764 * @param pVM VM Handle.
3765 * @param u8Interrupt Interrupt
3766 * @thread The emulation thread.
3767 */
3768REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3769{
3770 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3771 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3772}
3773
3774/**
3775 * Notification about a pending interrupt.
3776 *
3777 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3778 * @param pVM VM Handle.
3779 * @thread The emulation thread.
3780 */
3781REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3782{
3783 return pVM->rem.s.u32PendingInterrupt;
3784}
3785
3786/**
3787 * Notification about the interrupt FF being set.
3788 *
3789 * @param pVM VM Handle.
3790 * @thread The emulation thread.
3791 */
3792REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3793{
3794 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3795 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3796 if (pVM->rem.s.fInREM)
3797 {
3798 if (VM_IS_EMT(pVM))
3799 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3800 else
3801 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_HARD);
3802 }
3803}
3804
3805
3806/**
3807 * Notification about the interrupt FF being set.
3808 *
3809 * @param pVM VM Handle.
3810 * @thread Any.
3811 */
3812REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3813{
3814 LogFlow(("REMR3NotifyInterruptClear:\n"));
3815 if (pVM->rem.s.fInREM)
3816 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3817}
3818
3819
3820/**
3821 * Notification about pending timer(s).
3822 *
3823 * @param pVM VM Handle.
3824 * @thread Any.
3825 */
3826REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3827{
3828#ifndef DEBUG_bird
3829 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3830#endif
3831 if (pVM->rem.s.fInREM)
3832 {
3833 if (VM_IS_EMT(pVM))
3834 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3835 else
3836 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_TIMER);
3837 }
3838}
3839
3840
3841/**
3842 * Notification about pending DMA transfers.
3843 *
3844 * @param pVM VM Handle.
3845 * @thread Any.
3846 */
3847REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3848{
3849 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3850 if (pVM->rem.s.fInREM)
3851 {
3852 if (VM_IS_EMT(pVM))
3853 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3854 else
3855 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_DMA);
3856 }
3857}
3858
3859
3860/**
3861 * Notification about pending timer(s).
3862 *
3863 * @param pVM VM Handle.
3864 * @thread Any.
3865 */
3866REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3867{
3868 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3869 if (pVM->rem.s.fInREM)
3870 {
3871 if (VM_IS_EMT(pVM))
3872 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3873 else
3874 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3875 }
3876}
3877
3878
3879/**
3880 * Notification about pending FF set by an external thread.
3881 *
3882 * @param pVM VM handle.
3883 * @thread Any.
3884 */
3885REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3886{
3887 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3888 if (pVM->rem.s.fInREM)
3889 {
3890 if (VM_IS_EMT(pVM))
3891 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3892 else
3893 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3894 }
3895}
3896
3897
3898#ifdef VBOX_WITH_STATISTICS
3899void remR3ProfileStart(int statcode)
3900{
3901 STAMPROFILEADV *pStat;
3902 switch(statcode)
3903 {
3904 case STATS_EMULATE_SINGLE_INSTR:
3905 pStat = &gStatExecuteSingleInstr;
3906 break;
3907 case STATS_QEMU_COMPILATION:
3908 pStat = &gStatCompilationQEmu;
3909 break;
3910 case STATS_QEMU_RUN_EMULATED_CODE:
3911 pStat = &gStatRunCodeQEmu;
3912 break;
3913 case STATS_QEMU_TOTAL:
3914 pStat = &gStatTotalTimeQEmu;
3915 break;
3916 case STATS_QEMU_RUN_TIMERS:
3917 pStat = &gStatTimers;
3918 break;
3919 case STATS_TLB_LOOKUP:
3920 pStat= &gStatTBLookup;
3921 break;
3922 case STATS_IRQ_HANDLING:
3923 pStat= &gStatIRQ;
3924 break;
3925 case STATS_RAW_CHECK:
3926 pStat = &gStatRawCheck;
3927 break;
3928
3929 default:
3930 AssertMsgFailed(("unknown stat %d\n", statcode));
3931 return;
3932 }
3933 STAM_PROFILE_ADV_START(pStat, a);
3934}
3935
3936
3937void remR3ProfileStop(int statcode)
3938{
3939 STAMPROFILEADV *pStat;
3940 switch(statcode)
3941 {
3942 case STATS_EMULATE_SINGLE_INSTR:
3943 pStat = &gStatExecuteSingleInstr;
3944 break;
3945 case STATS_QEMU_COMPILATION:
3946 pStat = &gStatCompilationQEmu;
3947 break;
3948 case STATS_QEMU_RUN_EMULATED_CODE:
3949 pStat = &gStatRunCodeQEmu;
3950 break;
3951 case STATS_QEMU_TOTAL:
3952 pStat = &gStatTotalTimeQEmu;
3953 break;
3954 case STATS_QEMU_RUN_TIMERS:
3955 pStat = &gStatTimers;
3956 break;
3957 case STATS_TLB_LOOKUP:
3958 pStat= &gStatTBLookup;
3959 break;
3960 case STATS_IRQ_HANDLING:
3961 pStat= &gStatIRQ;
3962 break;
3963 case STATS_RAW_CHECK:
3964 pStat = &gStatRawCheck;
3965 break;
3966 default:
3967 AssertMsgFailed(("unknown stat %d\n", statcode));
3968 return;
3969 }
3970 STAM_PROFILE_ADV_STOP(pStat, a);
3971}
3972#endif
3973
3974/**
3975 * Raise an RC, force rem exit.
3976 *
3977 * @param pVM VM handle.
3978 * @param rc The rc.
3979 */
3980void remR3RaiseRC(PVM pVM, int rc)
3981{
3982 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
3983 Assert(pVM->rem.s.fInREM);
3984 VM_ASSERT_EMT(pVM);
3985 pVM->rem.s.rc = rc;
3986 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
3987}
3988
3989
3990/* -+- timers -+- */
3991
3992uint64_t cpu_get_tsc(CPUX86State *env)
3993{
3994 STAM_COUNTER_INC(&gStatCpuGetTSC);
3995 return TMCpuTickGet(env->pVM);
3996}
3997
3998
3999/* -+- interrupts -+- */
4000
4001void cpu_set_ferr(CPUX86State *env)
4002{
4003 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
4004 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4005}
4006
4007int cpu_get_pic_interrupt(CPUState *env)
4008{
4009 uint8_t u8Interrupt;
4010 int rc;
4011
4012 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4013 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4014 * with the (a)pic.
4015 */
4016 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4017 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4018 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4019 * remove this kludge. */
4020 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4021 {
4022 rc = VINF_SUCCESS;
4023 Assert(env->pVM->rem.s.u32PendingInterrupt >= 0 && env->pVM->rem.s.u32PendingInterrupt <= 255);
4024 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4025 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4026 }
4027 else
4028 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4029
4030 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
4031 if (VBOX_SUCCESS(rc))
4032 {
4033 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4034 env->interrupt_request |= CPU_INTERRUPT_HARD;
4035 return u8Interrupt;
4036 }
4037 return -1;
4038}
4039
4040
4041/* -+- local apic -+- */
4042
4043void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4044{
4045 int rc = PDMApicSetBase(env->pVM, val);
4046 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
4047}
4048
4049uint64_t cpu_get_apic_base(CPUX86State *env)
4050{
4051 uint64_t u64;
4052 int rc = PDMApicGetBase(env->pVM, &u64);
4053 if (VBOX_SUCCESS(rc))
4054 {
4055 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4056 return u64;
4057 }
4058 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
4059 return 0;
4060}
4061
4062void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4063{
4064 int rc = PDMApicSetTPR(env->pVM, val);
4065 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
4066}
4067
4068uint8_t cpu_get_apic_tpr(CPUX86State *env)
4069{
4070 uint8_t u8;
4071 int rc = PDMApicGetTPR(env->pVM, &u8, NULL);
4072 if (VBOX_SUCCESS(rc))
4073 {
4074 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4075 return u8;
4076 }
4077 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
4078 return 0;
4079}
4080
4081
4082/* -+- I/O Ports -+- */
4083
4084#undef LOG_GROUP
4085#define LOG_GROUP LOG_GROUP_REM_IOPORT
4086
4087void cpu_outb(CPUState *env, int addr, int val)
4088{
4089 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4090 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4091
4092 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4093 if (RT_LIKELY(rc == VINF_SUCCESS))
4094 return;
4095 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4096 {
4097 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4098 remR3RaiseRC(env->pVM, rc);
4099 return;
4100 }
4101 remAbort(rc, __FUNCTION__);
4102}
4103
4104void cpu_outw(CPUState *env, int addr, int val)
4105{
4106 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4107 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4108 if (RT_LIKELY(rc == VINF_SUCCESS))
4109 return;
4110 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4111 {
4112 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4113 remR3RaiseRC(env->pVM, rc);
4114 return;
4115 }
4116 remAbort(rc, __FUNCTION__);
4117}
4118
4119void cpu_outl(CPUState *env, int addr, int val)
4120{
4121 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4122 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4123 if (RT_LIKELY(rc == VINF_SUCCESS))
4124 return;
4125 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4126 {
4127 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4128 remR3RaiseRC(env->pVM, rc);
4129 return;
4130 }
4131 remAbort(rc, __FUNCTION__);
4132}
4133
4134int cpu_inb(CPUState *env, int addr)
4135{
4136 uint32_t u32 = 0;
4137 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4138 if (RT_LIKELY(rc == VINF_SUCCESS))
4139 {
4140 if (/*addr != 0x61 && */addr != 0x71)
4141 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4142 return (int)u32;
4143 }
4144 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4145 {
4146 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4147 remR3RaiseRC(env->pVM, rc);
4148 return (int)u32;
4149 }
4150 remAbort(rc, __FUNCTION__);
4151 return 0xff;
4152}
4153
4154int cpu_inw(CPUState *env, int addr)
4155{
4156 uint32_t u32 = 0;
4157 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4158 if (RT_LIKELY(rc == VINF_SUCCESS))
4159 {
4160 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4161 return (int)u32;
4162 }
4163 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4164 {
4165 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4166 remR3RaiseRC(env->pVM, rc);
4167 return (int)u32;
4168 }
4169 remAbort(rc, __FUNCTION__);
4170 return 0xffff;
4171}
4172
4173int cpu_inl(CPUState *env, int addr)
4174{
4175 uint32_t u32 = 0;
4176 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4177 if (RT_LIKELY(rc == VINF_SUCCESS))
4178 {
4179//if (addr==0x01f0 && u32 == 0x6b6d)
4180// loglevel = ~0;
4181 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4182 return (int)u32;
4183 }
4184 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4185 {
4186 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4187 remR3RaiseRC(env->pVM, rc);
4188 return (int)u32;
4189 }
4190 remAbort(rc, __FUNCTION__);
4191 return 0xffffffff;
4192}
4193
4194#undef LOG_GROUP
4195#define LOG_GROUP LOG_GROUP_REM
4196
4197
4198/* -+- helpers and misc other interfaces -+- */
4199
4200/**
4201 * Perform the CPUID instruction.
4202 *
4203 * ASMCpuId cannot be invoked from some source files where this is used because of global
4204 * register allocations.
4205 *
4206 * @param env Pointer to the recompiler CPU structure.
4207 * @param uOperator CPUID operation (eax).
4208 * @param pvEAX Where to store eax.
4209 * @param pvEBX Where to store ebx.
4210 * @param pvECX Where to store ecx.
4211 * @param pvEDX Where to store edx.
4212 */
4213void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4214{
4215 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4216}
4217
4218
4219#if 0 /* not used */
4220/**
4221 * Interface for qemu hardware to report back fatal errors.
4222 */
4223void hw_error(const char *pszFormat, ...)
4224{
4225 /*
4226 * Bitch about it.
4227 */
4228 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4229 * this in my Odin32 tree at home! */
4230 va_list args;
4231 va_start(args, pszFormat);
4232 RTLogPrintf("fatal error in virtual hardware:");
4233 RTLogPrintfV(pszFormat, args);
4234 va_end(args);
4235 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4236
4237 /*
4238 * If we're in REM context we'll sync back the state before 'jumping' to
4239 * the EMs failure handling.
4240 */
4241 PVM pVM = cpu_single_env->pVM;
4242 if (pVM->rem.s.fInREM)
4243 REMR3StateBack(pVM);
4244 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4245 AssertMsgFailed(("EMR3FatalError returned!\n"));
4246}
4247#endif
4248
4249/**
4250 * Interface for the qemu cpu to report unhandled situation
4251 * raising a fatal VM error.
4252 */
4253void cpu_abort(CPUState *env, const char *pszFormat, ...)
4254{
4255 /*
4256 * Bitch about it.
4257 */
4258 RTLogFlags(NULL, "nodisabled nobuffered");
4259 va_list args;
4260 va_start(args, pszFormat);
4261 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4262 va_end(args);
4263 va_start(args, pszFormat);
4264 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4265 va_end(args);
4266
4267 /*
4268 * If we're in REM context we'll sync back the state before 'jumping' to
4269 * the EMs failure handling.
4270 */
4271 PVM pVM = cpu_single_env->pVM;
4272 if (pVM->rem.s.fInREM)
4273 REMR3StateBack(pVM);
4274 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4275 AssertMsgFailed(("EMR3FatalError returned!\n"));
4276}
4277
4278
4279/**
4280 * Aborts the VM.
4281 *
4282 * @param rc VBox error code.
4283 * @param pszTip Hint about why/when this happend.
4284 */
4285static void remAbort(int rc, const char *pszTip)
4286{
4287 /*
4288 * Bitch about it.
4289 */
4290 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4291 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4292
4293 /*
4294 * Jump back to where we entered the recompiler.
4295 */
4296 PVM pVM = cpu_single_env->pVM;
4297 if (pVM->rem.s.fInREM)
4298 REMR3StateBack(pVM);
4299 EMR3FatalError(pVM, rc);
4300 AssertMsgFailed(("EMR3FatalError returned!\n"));
4301}
4302
4303
4304/**
4305 * Dumps a linux system call.
4306 * @param pVM VM handle.
4307 */
4308void remR3DumpLnxSyscall(PVM pVM)
4309{
4310 static const char *apsz[] =
4311 {
4312 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4313 "sys_exit",
4314 "sys_fork",
4315 "sys_read",
4316 "sys_write",
4317 "sys_open", /* 5 */
4318 "sys_close",
4319 "sys_waitpid",
4320 "sys_creat",
4321 "sys_link",
4322 "sys_unlink", /* 10 */
4323 "sys_execve",
4324 "sys_chdir",
4325 "sys_time",
4326 "sys_mknod",
4327 "sys_chmod", /* 15 */
4328 "sys_lchown16",
4329 "sys_ni_syscall", /* old break syscall holder */
4330 "sys_stat",
4331 "sys_lseek",
4332 "sys_getpid", /* 20 */
4333 "sys_mount",
4334 "sys_oldumount",
4335 "sys_setuid16",
4336 "sys_getuid16",
4337 "sys_stime", /* 25 */
4338 "sys_ptrace",
4339 "sys_alarm",
4340 "sys_fstat",
4341 "sys_pause",
4342 "sys_utime", /* 30 */
4343 "sys_ni_syscall", /* old stty syscall holder */
4344 "sys_ni_syscall", /* old gtty syscall holder */
4345 "sys_access",
4346 "sys_nice",
4347 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4348 "sys_sync",
4349 "sys_kill",
4350 "sys_rename",
4351 "sys_mkdir",
4352 "sys_rmdir", /* 40 */
4353 "sys_dup",
4354 "sys_pipe",
4355 "sys_times",
4356 "sys_ni_syscall", /* old prof syscall holder */
4357 "sys_brk", /* 45 */
4358 "sys_setgid16",
4359 "sys_getgid16",
4360 "sys_signal",
4361 "sys_geteuid16",
4362 "sys_getegid16", /* 50 */
4363 "sys_acct",
4364 "sys_umount", /* recycled never used phys() */
4365 "sys_ni_syscall", /* old lock syscall holder */
4366 "sys_ioctl",
4367 "sys_fcntl", /* 55 */
4368 "sys_ni_syscall", /* old mpx syscall holder */
4369 "sys_setpgid",
4370 "sys_ni_syscall", /* old ulimit syscall holder */
4371 "sys_olduname",
4372 "sys_umask", /* 60 */
4373 "sys_chroot",
4374 "sys_ustat",
4375 "sys_dup2",
4376 "sys_getppid",
4377 "sys_getpgrp", /* 65 */
4378 "sys_setsid",
4379 "sys_sigaction",
4380 "sys_sgetmask",
4381 "sys_ssetmask",
4382 "sys_setreuid16", /* 70 */
4383 "sys_setregid16",
4384 "sys_sigsuspend",
4385 "sys_sigpending",
4386 "sys_sethostname",
4387 "sys_setrlimit", /* 75 */
4388 "sys_old_getrlimit",
4389 "sys_getrusage",
4390 "sys_gettimeofday",
4391 "sys_settimeofday",
4392 "sys_getgroups16", /* 80 */
4393 "sys_setgroups16",
4394 "old_select",
4395 "sys_symlink",
4396 "sys_lstat",
4397 "sys_readlink", /* 85 */
4398 "sys_uselib",
4399 "sys_swapon",
4400 "sys_reboot",
4401 "old_readdir",
4402 "old_mmap", /* 90 */
4403 "sys_munmap",
4404 "sys_truncate",
4405 "sys_ftruncate",
4406 "sys_fchmod",
4407 "sys_fchown16", /* 95 */
4408 "sys_getpriority",
4409 "sys_setpriority",
4410 "sys_ni_syscall", /* old profil syscall holder */
4411 "sys_statfs",
4412 "sys_fstatfs", /* 100 */
4413 "sys_ioperm",
4414 "sys_socketcall",
4415 "sys_syslog",
4416 "sys_setitimer",
4417 "sys_getitimer", /* 105 */
4418 "sys_newstat",
4419 "sys_newlstat",
4420 "sys_newfstat",
4421 "sys_uname",
4422 "sys_iopl", /* 110 */
4423 "sys_vhangup",
4424 "sys_ni_syscall", /* old "idle" system call */
4425 "sys_vm86old",
4426 "sys_wait4",
4427 "sys_swapoff", /* 115 */
4428 "sys_sysinfo",
4429 "sys_ipc",
4430 "sys_fsync",
4431 "sys_sigreturn",
4432 "sys_clone", /* 120 */
4433 "sys_setdomainname",
4434 "sys_newuname",
4435 "sys_modify_ldt",
4436 "sys_adjtimex",
4437 "sys_mprotect", /* 125 */
4438 "sys_sigprocmask",
4439 "sys_ni_syscall", /* old "create_module" */
4440 "sys_init_module",
4441 "sys_delete_module",
4442 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4443 "sys_quotactl",
4444 "sys_getpgid",
4445 "sys_fchdir",
4446 "sys_bdflush",
4447 "sys_sysfs", /* 135 */
4448 "sys_personality",
4449 "sys_ni_syscall", /* reserved for afs_syscall */
4450 "sys_setfsuid16",
4451 "sys_setfsgid16",
4452 "sys_llseek", /* 140 */
4453 "sys_getdents",
4454 "sys_select",
4455 "sys_flock",
4456 "sys_msync",
4457 "sys_readv", /* 145 */
4458 "sys_writev",
4459 "sys_getsid",
4460 "sys_fdatasync",
4461 "sys_sysctl",
4462 "sys_mlock", /* 150 */
4463 "sys_munlock",
4464 "sys_mlockall",
4465 "sys_munlockall",
4466 "sys_sched_setparam",
4467 "sys_sched_getparam", /* 155 */
4468 "sys_sched_setscheduler",
4469 "sys_sched_getscheduler",
4470 "sys_sched_yield",
4471 "sys_sched_get_priority_max",
4472 "sys_sched_get_priority_min", /* 160 */
4473 "sys_sched_rr_get_interval",
4474 "sys_nanosleep",
4475 "sys_mremap",
4476 "sys_setresuid16",
4477 "sys_getresuid16", /* 165 */
4478 "sys_vm86",
4479 "sys_ni_syscall", /* Old sys_query_module */
4480 "sys_poll",
4481 "sys_nfsservctl",
4482 "sys_setresgid16", /* 170 */
4483 "sys_getresgid16",
4484 "sys_prctl",
4485 "sys_rt_sigreturn",
4486 "sys_rt_sigaction",
4487 "sys_rt_sigprocmask", /* 175 */
4488 "sys_rt_sigpending",
4489 "sys_rt_sigtimedwait",
4490 "sys_rt_sigqueueinfo",
4491 "sys_rt_sigsuspend",
4492 "sys_pread64", /* 180 */
4493 "sys_pwrite64",
4494 "sys_chown16",
4495 "sys_getcwd",
4496 "sys_capget",
4497 "sys_capset", /* 185 */
4498 "sys_sigaltstack",
4499 "sys_sendfile",
4500 "sys_ni_syscall", /* reserved for streams1 */
4501 "sys_ni_syscall", /* reserved for streams2 */
4502 "sys_vfork", /* 190 */
4503 "sys_getrlimit",
4504 "sys_mmap2",
4505 "sys_truncate64",
4506 "sys_ftruncate64",
4507 "sys_stat64", /* 195 */
4508 "sys_lstat64",
4509 "sys_fstat64",
4510 "sys_lchown",
4511 "sys_getuid",
4512 "sys_getgid", /* 200 */
4513 "sys_geteuid",
4514 "sys_getegid",
4515 "sys_setreuid",
4516 "sys_setregid",
4517 "sys_getgroups", /* 205 */
4518 "sys_setgroups",
4519 "sys_fchown",
4520 "sys_setresuid",
4521 "sys_getresuid",
4522 "sys_setresgid", /* 210 */
4523 "sys_getresgid",
4524 "sys_chown",
4525 "sys_setuid",
4526 "sys_setgid",
4527 "sys_setfsuid", /* 215 */
4528 "sys_setfsgid",
4529 "sys_pivot_root",
4530 "sys_mincore",
4531 "sys_madvise",
4532 "sys_getdents64", /* 220 */
4533 "sys_fcntl64",
4534 "sys_ni_syscall", /* reserved for TUX */
4535 "sys_ni_syscall",
4536 "sys_gettid",
4537 "sys_readahead", /* 225 */
4538 "sys_setxattr",
4539 "sys_lsetxattr",
4540 "sys_fsetxattr",
4541 "sys_getxattr",
4542 "sys_lgetxattr", /* 230 */
4543 "sys_fgetxattr",
4544 "sys_listxattr",
4545 "sys_llistxattr",
4546 "sys_flistxattr",
4547 "sys_removexattr", /* 235 */
4548 "sys_lremovexattr",
4549 "sys_fremovexattr",
4550 "sys_tkill",
4551 "sys_sendfile64",
4552 "sys_futex", /* 240 */
4553 "sys_sched_setaffinity",
4554 "sys_sched_getaffinity",
4555 "sys_set_thread_area",
4556 "sys_get_thread_area",
4557 "sys_io_setup", /* 245 */
4558 "sys_io_destroy",
4559 "sys_io_getevents",
4560 "sys_io_submit",
4561 "sys_io_cancel",
4562 "sys_fadvise64", /* 250 */
4563 "sys_ni_syscall",
4564 "sys_exit_group",
4565 "sys_lookup_dcookie",
4566 "sys_epoll_create",
4567 "sys_epoll_ctl", /* 255 */
4568 "sys_epoll_wait",
4569 "sys_remap_file_pages",
4570 "sys_set_tid_address",
4571 "sys_timer_create",
4572 "sys_timer_settime", /* 260 */
4573 "sys_timer_gettime",
4574 "sys_timer_getoverrun",
4575 "sys_timer_delete",
4576 "sys_clock_settime",
4577 "sys_clock_gettime", /* 265 */
4578 "sys_clock_getres",
4579 "sys_clock_nanosleep",
4580 "sys_statfs64",
4581 "sys_fstatfs64",
4582 "sys_tgkill", /* 270 */
4583 "sys_utimes",
4584 "sys_fadvise64_64",
4585 "sys_ni_syscall" /* sys_vserver */
4586 };
4587
4588 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4589 switch (uEAX)
4590 {
4591 default:
4592 if (uEAX < ELEMENTS(apsz))
4593 Log(("REM: linux syscall %3d: %s (eip=%VGv ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4594 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4595 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4596 else
4597 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4598 break;
4599
4600 }
4601}
4602
4603
4604/**
4605 * Dumps an OpenBSD system call.
4606 * @param pVM VM handle.
4607 */
4608void remR3DumpOBsdSyscall(PVM pVM)
4609{
4610 static const char *apsz[] =
4611 {
4612 "SYS_syscall", //0
4613 "SYS_exit", //1
4614 "SYS_fork", //2
4615 "SYS_read", //3
4616 "SYS_write", //4
4617 "SYS_open", //5
4618 "SYS_close", //6
4619 "SYS_wait4", //7
4620 "SYS_8",
4621 "SYS_link", //9
4622 "SYS_unlink", //10
4623 "SYS_11",
4624 "SYS_chdir", //12
4625 "SYS_fchdir", //13
4626 "SYS_mknod", //14
4627 "SYS_chmod", //15
4628 "SYS_chown", //16
4629 "SYS_break", //17
4630 "SYS_18",
4631 "SYS_19",
4632 "SYS_getpid", //20
4633 "SYS_mount", //21
4634 "SYS_unmount", //22
4635 "SYS_setuid", //23
4636 "SYS_getuid", //24
4637 "SYS_geteuid", //25
4638 "SYS_ptrace", //26
4639 "SYS_recvmsg", //27
4640 "SYS_sendmsg", //28
4641 "SYS_recvfrom", //29
4642 "SYS_accept", //30
4643 "SYS_getpeername", //31
4644 "SYS_getsockname", //32
4645 "SYS_access", //33
4646 "SYS_chflags", //34
4647 "SYS_fchflags", //35
4648 "SYS_sync", //36
4649 "SYS_kill", //37
4650 "SYS_38",
4651 "SYS_getppid", //39
4652 "SYS_40",
4653 "SYS_dup", //41
4654 "SYS_opipe", //42
4655 "SYS_getegid", //43
4656 "SYS_profil", //44
4657 "SYS_ktrace", //45
4658 "SYS_sigaction", //46
4659 "SYS_getgid", //47
4660 "SYS_sigprocmask", //48
4661 "SYS_getlogin", //49
4662 "SYS_setlogin", //50
4663 "SYS_acct", //51
4664 "SYS_sigpending", //52
4665 "SYS_osigaltstack", //53
4666 "SYS_ioctl", //54
4667 "SYS_reboot", //55
4668 "SYS_revoke", //56
4669 "SYS_symlink", //57
4670 "SYS_readlink", //58
4671 "SYS_execve", //59
4672 "SYS_umask", //60
4673 "SYS_chroot", //61
4674 "SYS_62",
4675 "SYS_63",
4676 "SYS_64",
4677 "SYS_65",
4678 "SYS_vfork", //66
4679 "SYS_67",
4680 "SYS_68",
4681 "SYS_sbrk", //69
4682 "SYS_sstk", //70
4683 "SYS_61",
4684 "SYS_vadvise", //72
4685 "SYS_munmap", //73
4686 "SYS_mprotect", //74
4687 "SYS_madvise", //75
4688 "SYS_76",
4689 "SYS_77",
4690 "SYS_mincore", //78
4691 "SYS_getgroups", //79
4692 "SYS_setgroups", //80
4693 "SYS_getpgrp", //81
4694 "SYS_setpgid", //82
4695 "SYS_setitimer", //83
4696 "SYS_84",
4697 "SYS_85",
4698 "SYS_getitimer", //86
4699 "SYS_87",
4700 "SYS_88",
4701 "SYS_89",
4702 "SYS_dup2", //90
4703 "SYS_91",
4704 "SYS_fcntl", //92
4705 "SYS_select", //93
4706 "SYS_94",
4707 "SYS_fsync", //95
4708 "SYS_setpriority", //96
4709 "SYS_socket", //97
4710 "SYS_connect", //98
4711 "SYS_99",
4712 "SYS_getpriority", //100
4713 "SYS_101",
4714 "SYS_102",
4715 "SYS_sigreturn", //103
4716 "SYS_bind", //104
4717 "SYS_setsockopt", //105
4718 "SYS_listen", //106
4719 "SYS_107",
4720 "SYS_108",
4721 "SYS_109",
4722 "SYS_110",
4723 "SYS_sigsuspend", //111
4724 "SYS_112",
4725 "SYS_113",
4726 "SYS_114",
4727 "SYS_115",
4728 "SYS_gettimeofday", //116
4729 "SYS_getrusage", //117
4730 "SYS_getsockopt", //118
4731 "SYS_119",
4732 "SYS_readv", //120
4733 "SYS_writev", //121
4734 "SYS_settimeofday", //122
4735 "SYS_fchown", //123
4736 "SYS_fchmod", //124
4737 "SYS_125",
4738 "SYS_setreuid", //126
4739 "SYS_setregid", //127
4740 "SYS_rename", //128
4741 "SYS_129",
4742 "SYS_130",
4743 "SYS_flock", //131
4744 "SYS_mkfifo", //132
4745 "SYS_sendto", //133
4746 "SYS_shutdown", //134
4747 "SYS_socketpair", //135
4748 "SYS_mkdir", //136
4749 "SYS_rmdir", //137
4750 "SYS_utimes", //138
4751 "SYS_139",
4752 "SYS_adjtime", //140
4753 "SYS_141",
4754 "SYS_142",
4755 "SYS_143",
4756 "SYS_144",
4757 "SYS_145",
4758 "SYS_146",
4759 "SYS_setsid", //147
4760 "SYS_quotactl", //148
4761 "SYS_149",
4762 "SYS_150",
4763 "SYS_151",
4764 "SYS_152",
4765 "SYS_153",
4766 "SYS_154",
4767 "SYS_nfssvc", //155
4768 "SYS_156",
4769 "SYS_157",
4770 "SYS_158",
4771 "SYS_159",
4772 "SYS_160",
4773 "SYS_getfh", //161
4774 "SYS_162",
4775 "SYS_163",
4776 "SYS_164",
4777 "SYS_sysarch", //165
4778 "SYS_166",
4779 "SYS_167",
4780 "SYS_168",
4781 "SYS_169",
4782 "SYS_170",
4783 "SYS_171",
4784 "SYS_172",
4785 "SYS_pread", //173
4786 "SYS_pwrite", //174
4787 "SYS_175",
4788 "SYS_176",
4789 "SYS_177",
4790 "SYS_178",
4791 "SYS_179",
4792 "SYS_180",
4793 "SYS_setgid", //181
4794 "SYS_setegid", //182
4795 "SYS_seteuid", //183
4796 "SYS_lfs_bmapv", //184
4797 "SYS_lfs_markv", //185
4798 "SYS_lfs_segclean", //186
4799 "SYS_lfs_segwait", //187
4800 "SYS_188",
4801 "SYS_189",
4802 "SYS_190",
4803 "SYS_pathconf", //191
4804 "SYS_fpathconf", //192
4805 "SYS_swapctl", //193
4806 "SYS_getrlimit", //194
4807 "SYS_setrlimit", //195
4808 "SYS_getdirentries", //196
4809 "SYS_mmap", //197
4810 "SYS___syscall", //198
4811 "SYS_lseek", //199
4812 "SYS_truncate", //200
4813 "SYS_ftruncate", //201
4814 "SYS___sysctl", //202
4815 "SYS_mlock", //203
4816 "SYS_munlock", //204
4817 "SYS_205",
4818 "SYS_futimes", //206
4819 "SYS_getpgid", //207
4820 "SYS_xfspioctl", //208
4821 "SYS_209",
4822 "SYS_210",
4823 "SYS_211",
4824 "SYS_212",
4825 "SYS_213",
4826 "SYS_214",
4827 "SYS_215",
4828 "SYS_216",
4829 "SYS_217",
4830 "SYS_218",
4831 "SYS_219",
4832 "SYS_220",
4833 "SYS_semget", //221
4834 "SYS_222",
4835 "SYS_223",
4836 "SYS_224",
4837 "SYS_msgget", //225
4838 "SYS_msgsnd", //226
4839 "SYS_msgrcv", //227
4840 "SYS_shmat", //228
4841 "SYS_229",
4842 "SYS_shmdt", //230
4843 "SYS_231",
4844 "SYS_clock_gettime", //232
4845 "SYS_clock_settime", //233
4846 "SYS_clock_getres", //234
4847 "SYS_235",
4848 "SYS_236",
4849 "SYS_237",
4850 "SYS_238",
4851 "SYS_239",
4852 "SYS_nanosleep", //240
4853 "SYS_241",
4854 "SYS_242",
4855 "SYS_243",
4856 "SYS_244",
4857 "SYS_245",
4858 "SYS_246",
4859 "SYS_247",
4860 "SYS_248",
4861 "SYS_249",
4862 "SYS_minherit", //250
4863 "SYS_rfork", //251
4864 "SYS_poll", //252
4865 "SYS_issetugid", //253
4866 "SYS_lchown", //254
4867 "SYS_getsid", //255
4868 "SYS_msync", //256
4869 "SYS_257",
4870 "SYS_258",
4871 "SYS_259",
4872 "SYS_getfsstat", //260
4873 "SYS_statfs", //261
4874 "SYS_fstatfs", //262
4875 "SYS_pipe", //263
4876 "SYS_fhopen", //264
4877 "SYS_265",
4878 "SYS_fhstatfs", //266
4879 "SYS_preadv", //267
4880 "SYS_pwritev", //268
4881 "SYS_kqueue", //269
4882 "SYS_kevent", //270
4883 "SYS_mlockall", //271
4884 "SYS_munlockall", //272
4885 "SYS_getpeereid", //273
4886 "SYS_274",
4887 "SYS_275",
4888 "SYS_276",
4889 "SYS_277",
4890 "SYS_278",
4891 "SYS_279",
4892 "SYS_280",
4893 "SYS_getresuid", //281
4894 "SYS_setresuid", //282
4895 "SYS_getresgid", //283
4896 "SYS_setresgid", //284
4897 "SYS_285",
4898 "SYS_mquery", //286
4899 "SYS_closefrom", //287
4900 "SYS_sigaltstack", //288
4901 "SYS_shmget", //289
4902 "SYS_semop", //290
4903 "SYS_stat", //291
4904 "SYS_fstat", //292
4905 "SYS_lstat", //293
4906 "SYS_fhstat", //294
4907 "SYS___semctl", //295
4908 "SYS_shmctl", //296
4909 "SYS_msgctl", //297
4910 "SYS_MAXSYSCALL", //298
4911 //299
4912 //300
4913 };
4914 uint32_t uEAX;
4915 if (!LogIsEnabled())
4916 return;
4917 uEAX = CPUMGetGuestEAX(pVM);
4918 switch (uEAX)
4919 {
4920 default:
4921 if (uEAX < ELEMENTS(apsz))
4922 {
4923 uint32_t au32Args[8] = {0};
4924 PGMPhysReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
4925 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
4926 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
4927 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
4928 }
4929 else
4930 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
4931 break;
4932 }
4933}
4934
4935
4936#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
4937/**
4938 * The Dll main entry point (stub).
4939 */
4940bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
4941{
4942 return true;
4943}
4944
4945void *memcpy(void *dst, const void *src, size_t size)
4946{
4947 uint8_t*pbDst = dst, *pbSrc = src;
4948 while (size-- > 0)
4949 *pbDst++ = *pbSrc++;
4950 return dst;
4951}
4952
4953#endif
4954
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette