VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 12549

Last change on this file since 12549 was 12549, checked in by vboxsync, 16 years ago

VMM: Implemented a TSC mode where it's tied to execution and halt (optionally). Fixes #3182.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 155.9 KB
Line 
1/* $Id: VBoxRecompiler.c 12549 2008-09-17 18:02:02Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "exec-all.h"
29
30#include <VBox/rem.h>
31#include <VBox/vmapi.h>
32#include <VBox/tm.h>
33#include <VBox/ssm.h>
34#include <VBox/em.h>
35#include <VBox/trpm.h>
36#include <VBox/iom.h>
37#include <VBox/mm.h>
38#include <VBox/pgm.h>
39#include <VBox/pdm.h>
40#include <VBox/dbgf.h>
41#include <VBox/dbg.h>
42#include <VBox/hwaccm.h>
43#include <VBox/patm.h>
44#include <VBox/csam.h>
45#include "REMInternal.h"
46#include <VBox/vm.h>
47#include <VBox/param.h>
48#include <VBox/err.h>
49
50#include <VBox/log.h>
51#include <iprt/semaphore.h>
52#include <iprt/asm.h>
53#include <iprt/assert.h>
54#include <iprt/thread.h>
55#include <iprt/string.h>
56
57/* Don't wanna include everything. */
58extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
59extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
60extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
61extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
62extern void tlb_flush(CPUState *env, int flush_global);
63extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
64extern void sync_ldtr(CPUX86State *env1, int selector);
65extern int sync_tr(CPUX86State *env1, int selector);
66
67#ifdef VBOX_STRICT
68unsigned long get_phys_page_offset(target_ulong addr);
69#endif
70
71
72/*******************************************************************************
73* Defined Constants And Macros *
74*******************************************************************************/
75
76/** Copy 80-bit fpu register at pSrc to pDst.
77 * This is probably faster than *calling* memcpy.
78 */
79#define REM_COPY_FPU_REG(pDst, pSrc) \
80 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
81
82
83/*******************************************************************************
84* Internal Functions *
85*******************************************************************************/
86static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
87static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
88static void remR3StateUpdate(PVM pVM);
89
90static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
91static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
92static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
93static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
94static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
95static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
96
97static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
98static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
99static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
100static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
101static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
102static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
103
104
105/*******************************************************************************
106* Global Variables *
107*******************************************************************************/
108
109/** @todo Move stats to REM::s some rainy day we have nothing do to. */
110#ifdef VBOX_WITH_STATISTICS
111static STAMPROFILEADV gStatExecuteSingleInstr;
112static STAMPROFILEADV gStatCompilationQEmu;
113static STAMPROFILEADV gStatRunCodeQEmu;
114static STAMPROFILEADV gStatTotalTimeQEmu;
115static STAMPROFILEADV gStatTimers;
116static STAMPROFILEADV gStatTBLookup;
117static STAMPROFILEADV gStatIRQ;
118static STAMPROFILEADV gStatRawCheck;
119static STAMPROFILEADV gStatMemRead;
120static STAMPROFILEADV gStatMemWrite;
121static STAMPROFILE gStatGCPhys2HCVirt;
122static STAMPROFILE gStatHCVirt2GCPhys;
123static STAMCOUNTER gStatCpuGetTSC;
124static STAMCOUNTER gStatRefuseTFInhibit;
125static STAMCOUNTER gStatRefuseVM86;
126static STAMCOUNTER gStatRefusePaging;
127static STAMCOUNTER gStatRefusePAE;
128static STAMCOUNTER gStatRefuseIOPLNot0;
129static STAMCOUNTER gStatRefuseIF0;
130static STAMCOUNTER gStatRefuseCode16;
131static STAMCOUNTER gStatRefuseWP0;
132static STAMCOUNTER gStatRefuseRing1or2;
133static STAMCOUNTER gStatRefuseCanExecute;
134static STAMCOUNTER gStatREMGDTChange;
135static STAMCOUNTER gStatREMIDTChange;
136static STAMCOUNTER gStatREMLDTRChange;
137static STAMCOUNTER gStatREMTRChange;
138static STAMCOUNTER gStatSelOutOfSync[6];
139static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
140static STAMCOUNTER gStatFlushTBs;
141#endif
142
143/*
144 * Global stuff.
145 */
146
147/** MMIO read callbacks. */
148CPUReadMemoryFunc *g_apfnMMIORead[3] =
149{
150 remR3MMIOReadU8,
151 remR3MMIOReadU16,
152 remR3MMIOReadU32
153};
154
155/** MMIO write callbacks. */
156CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
157{
158 remR3MMIOWriteU8,
159 remR3MMIOWriteU16,
160 remR3MMIOWriteU32
161};
162
163/** Handler read callbacks. */
164CPUReadMemoryFunc *g_apfnHandlerRead[3] =
165{
166 remR3HandlerReadU8,
167 remR3HandlerReadU16,
168 remR3HandlerReadU32
169};
170
171/** Handler write callbacks. */
172CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
173{
174 remR3HandlerWriteU8,
175 remR3HandlerWriteU16,
176 remR3HandlerWriteU32
177};
178
179
180#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
181/*
182 * Debugger commands.
183 */
184static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
185
186/** '.remstep' arguments. */
187static const DBGCVARDESC g_aArgRemStep[] =
188{
189 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
190 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
191};
192
193/** Command descriptors. */
194static const DBGCCMD g_aCmds[] =
195{
196 {
197 .pszCmd ="remstep",
198 .cArgsMin = 0,
199 .cArgsMax = 1,
200 .paArgDescs = &g_aArgRemStep[0],
201 .cArgDescs = ELEMENTS(g_aArgRemStep),
202 .pResultDesc = NULL,
203 .fFlags = 0,
204 .pfnHandler = remR3CmdDisasEnableStepping,
205 .pszSyntax = "[on/off]",
206 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
207 "If no arguments show the current state."
208 }
209};
210#endif
211
212
213/* Instantiate the structure signatures. */
214#define REM_STRUCT_OP 0
215#include "Sun/structs.h"
216
217
218
219/*******************************************************************************
220* Internal Functions *
221*******************************************************************************/
222static void remAbort(int rc, const char *pszTip);
223extern int testmath(void);
224
225/* Put them here to avoid unused variable warning. */
226AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
227#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
228//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
229/* Why did this have to be identical?? */
230AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
231#else
232AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
233#endif
234
235
236/**
237 * Initializes the REM.
238 *
239 * @returns VBox status code.
240 * @param pVM The VM to operate on.
241 */
242REMR3DECL(int) REMR3Init(PVM pVM)
243{
244 uint32_t u32Dummy;
245 unsigned i;
246
247 /*
248 * Assert sanity.
249 */
250 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
251 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
252 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
253#if defined(DEBUG) && !defined(RT_OS_SOLARIS) /// @todo fix the solaris math stuff.
254 Assert(!testmath());
255#endif
256 ASSERT_STRUCT_TABLE(Misc);
257 ASSERT_STRUCT_TABLE(TLB);
258 ASSERT_STRUCT_TABLE(SegmentCache);
259 ASSERT_STRUCT_TABLE(XMMReg);
260 ASSERT_STRUCT_TABLE(MMXReg);
261 ASSERT_STRUCT_TABLE(float_status);
262 ASSERT_STRUCT_TABLE(float32u);
263 ASSERT_STRUCT_TABLE(float64u);
264 ASSERT_STRUCT_TABLE(floatx80u);
265 ASSERT_STRUCT_TABLE(CPUState);
266
267 /*
268 * Init some internal data members.
269 */
270 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
271 pVM->rem.s.Env.pVM = pVM;
272#ifdef CPU_RAW_MODE_INIT
273 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
274#endif
275
276 /* ctx. */
277 int rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
278 if (VBOX_FAILURE(rc))
279 {
280 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
281 return rc;
282 }
283 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
284
285 /* ignore all notifications */
286 pVM->rem.s.fIgnoreAll = true;
287
288 /*
289 * Init the recompiler.
290 */
291 if (!cpu_x86_init(&pVM->rem.s.Env))
292 {
293 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
294 return VERR_GENERAL_FAILURE;
295 }
296 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
297 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
298
299 /* allocate code buffer for single instruction emulation. */
300 pVM->rem.s.Env.cbCodeBuffer = 4096;
301 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
302 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
303
304 /* finally, set the cpu_single_env global. */
305 cpu_single_env = &pVM->rem.s.Env;
306
307 /* Nothing is pending by default */
308 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
309
310 /*
311 * Register ram types.
312 */
313 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
314 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
315 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
316 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
317 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
318
319 /* stop ignoring. */
320 pVM->rem.s.fIgnoreAll = false;
321
322 /*
323 * Register the saved state data unit.
324 */
325 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
326 NULL, remR3Save, NULL,
327 NULL, remR3Load, NULL);
328 if (VBOX_FAILURE(rc))
329 return rc;
330
331#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
332 /*
333 * Debugger commands.
334 */
335 static bool fRegisteredCmds = false;
336 if (!fRegisteredCmds)
337 {
338 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
339 if (VBOX_SUCCESS(rc))
340 fRegisteredCmds = true;
341 }
342#endif
343
344#ifdef VBOX_WITH_STATISTICS
345 /*
346 * Statistics.
347 */
348 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
349 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
350 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
351 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
352 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
353 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
354 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
355 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
356 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
357 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
358 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
359 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
360
361 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
362
363 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
364 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
365 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
366 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
367 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
368 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
369 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
370 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
371 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
372 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
373 STAM_REG(pVM, &gStatFlushTBs, STAMTYPE_COUNTER, "/REM/FlushTB", STAMUNIT_OCCURENCES, "Number of TB flushes");
374
375 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
376 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
377 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
378 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
379
380 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
381 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
382 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
383 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
384 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
385 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
386
387 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
388 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
389 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
390 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
391 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
392 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
393
394
395#endif
396
397#ifdef DEBUG_ALL_LOGGING
398 loglevel = ~0;
399#endif
400
401 return rc;
402}
403
404
405/**
406 * Terminates the REM.
407 *
408 * Termination means cleaning up and freeing all resources,
409 * the VM it self is at this point powered off or suspended.
410 *
411 * @returns VBox status code.
412 * @param pVM The VM to operate on.
413 */
414REMR3DECL(int) REMR3Term(PVM pVM)
415{
416 return VINF_SUCCESS;
417}
418
419
420/**
421 * The VM is being reset.
422 *
423 * For the REM component this means to call the cpu_reset() and
424 * reinitialize some state variables.
425 *
426 * @param pVM VM handle.
427 */
428REMR3DECL(void) REMR3Reset(PVM pVM)
429{
430 /*
431 * Reset the REM cpu.
432 */
433 pVM->rem.s.fIgnoreAll = true;
434 cpu_reset(&pVM->rem.s.Env);
435 pVM->rem.s.cInvalidatedPages = 0;
436 pVM->rem.s.fIgnoreAll = false;
437
438 /* Clear raw ring 0 init state */
439 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
440}
441
442
443/**
444 * Execute state save operation.
445 *
446 * @returns VBox status code.
447 * @param pVM VM Handle.
448 * @param pSSM SSM operation handle.
449 */
450static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
451{
452 LogFlow(("remR3Save:\n"));
453
454 /*
455 * Save the required CPU Env bits.
456 * (Not much because we're never in REM when doing the save.)
457 */
458 PREM pRem = &pVM->rem.s;
459 Assert(!pRem->fInREM);
460 SSMR3PutU32(pSSM, pRem->Env.hflags);
461 SSMR3PutU32(pSSM, ~0); /* separator */
462
463 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
464 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
465 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
466
467 return SSMR3PutU32(pSSM, ~0); /* terminator */
468}
469
470
471/**
472 * Execute state load operation.
473 *
474 * @returns VBox status code.
475 * @param pVM VM Handle.
476 * @param pSSM SSM operation handle.
477 * @param u32Version Data layout version.
478 */
479static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
480{
481 uint32_t u32Dummy;
482 uint32_t fRawRing0 = false;
483 LogFlow(("remR3Load:\n"));
484
485 /*
486 * Validate version.
487 */
488 if ( u32Version != REM_SAVED_STATE_VERSION
489 && u32Version != REM_SAVED_STATE_VERSION_VER1_6)
490 {
491 AssertMsgFailed(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
492 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
493 }
494
495 /*
496 * Do a reset to be on the safe side...
497 */
498 REMR3Reset(pVM);
499
500 /*
501 * Ignore all ignorable notifications.
502 * (Not doing this will cause serious trouble.)
503 */
504 pVM->rem.s.fIgnoreAll = true;
505
506 /*
507 * Load the required CPU Env bits.
508 * (Not much because we're never in REM when doing the save.)
509 */
510 PREM pRem = &pVM->rem.s;
511 Assert(!pRem->fInREM);
512 SSMR3GetU32(pSSM, &pRem->Env.hflags);
513 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
514 {
515 /* Redundant REM CPU state has to be loaded, but can be ignored. */
516 CPUX86State_Ver16 temp;
517 SSMR3GetMem(pSSM, &temp, RT_OFFSETOF(CPUX86State_Ver16, jmp_env));
518 }
519
520 uint32_t u32Sep;
521 int rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
522 if (VBOX_FAILURE(rc))
523 return rc;
524 if (u32Sep != ~0)
525 {
526 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
527 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
528 }
529
530 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
531 SSMR3GetUInt(pSSM, &fRawRing0);
532 if (fRawRing0)
533 pRem->Env.state |= CPU_RAW_RING0;
534
535 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
536 {
537 /*
538 * Load the REM stuff.
539 */
540 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
541 if (VBOX_FAILURE(rc))
542 return rc;
543 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
544 {
545 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
546 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
547 }
548 unsigned i;
549 for (i = 0; i < pRem->cInvalidatedPages; i++)
550 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
551 }
552
553 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
554 if (VBOX_FAILURE(rc))
555 return rc;
556
557 /* check the terminator. */
558 rc = SSMR3GetU32(pSSM, &u32Sep);
559 if (VBOX_FAILURE(rc))
560 return rc;
561 if (u32Sep != ~0)
562 {
563 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
564 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
565 }
566
567 /*
568 * Get the CPUID features.
569 */
570 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
571 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
572
573 /*
574 * Sync the Load Flush the TLB
575 */
576 tlb_flush(&pRem->Env, 1);
577
578 /*
579 * Stop ignoring ignornable notifications.
580 */
581 pVM->rem.s.fIgnoreAll = false;
582
583 /*
584 * Sync the whole CPU state when executing code in the recompiler.
585 */
586 CPUMSetChangedFlags(pVM, CPUM_CHANGED_ALL);
587 return VINF_SUCCESS;
588}
589
590
591
592#undef LOG_GROUP
593#define LOG_GROUP LOG_GROUP_REM_RUN
594
595/**
596 * Single steps an instruction in recompiled mode.
597 *
598 * Before calling this function the REM state needs to be in sync with
599 * the VM. Call REMR3State() to perform the sync. It's only necessary
600 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
601 * and after calling REMR3StateBack().
602 *
603 * @returns VBox status code.
604 *
605 * @param pVM VM Handle.
606 */
607REMR3DECL(int) REMR3Step(PVM pVM)
608{
609 /*
610 * Lock the REM - we don't wanna have anyone interrupting us
611 * while stepping - and enabled single stepping. We also ignore
612 * pending interrupts and suchlike.
613 */
614 int interrupt_request = pVM->rem.s.Env.interrupt_request;
615 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
616 pVM->rem.s.Env.interrupt_request = 0;
617 cpu_single_step(&pVM->rem.s.Env, 1);
618
619 /*
620 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
621 */
622 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
623 bool fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
624
625 /*
626 * Execute and handle the return code.
627 * We execute without enabling the cpu tick, so on success we'll
628 * just flip it on and off to make sure it moves
629 */
630 int rc = cpu_exec(&pVM->rem.s.Env);
631 if (rc == EXCP_DEBUG)
632 {
633 TMCpuTickResume(pVM);
634 TMCpuTickPause(pVM);
635 TMVirtualResume(pVM);
636 TMVirtualPause(pVM);
637 rc = VINF_EM_DBG_STEPPED;
638 }
639 else
640 {
641 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
642 switch (rc)
643 {
644 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
645 case EXCP_HLT:
646 case EXCP_HALTED: rc = VINF_EM_HALT; break;
647 case EXCP_RC:
648 rc = pVM->rem.s.rc;
649 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
650 break;
651 default:
652 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
653 rc = VERR_INTERNAL_ERROR;
654 break;
655 }
656 }
657
658 /*
659 * Restore the stuff we changed to prevent interruption.
660 * Unlock the REM.
661 */
662 if (fBp)
663 {
664 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
665 Assert(rc2 == 0); NOREF(rc2);
666 }
667 cpu_single_step(&pVM->rem.s.Env, 0);
668 pVM->rem.s.Env.interrupt_request = interrupt_request;
669
670 return rc;
671}
672
673
674/**
675 * Set a breakpoint using the REM facilities.
676 *
677 * @returns VBox status code.
678 * @param pVM The VM handle.
679 * @param Address The breakpoint address.
680 * @thread The emulation thread.
681 */
682REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
683{
684 VM_ASSERT_EMT(pVM);
685 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
686 {
687 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
688 return VINF_SUCCESS;
689 }
690 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
691 return VERR_REM_NO_MORE_BP_SLOTS;
692}
693
694
695/**
696 * Clears a breakpoint set by REMR3BreakpointSet().
697 *
698 * @returns VBox status code.
699 * @param pVM The VM handle.
700 * @param Address The breakpoint address.
701 * @thread The emulation thread.
702 */
703REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
704{
705 VM_ASSERT_EMT(pVM);
706 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
707 {
708 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
709 return VINF_SUCCESS;
710 }
711 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
712 return VERR_REM_BP_NOT_FOUND;
713}
714
715
716/**
717 * Emulate an instruction.
718 *
719 * This function executes one instruction without letting anyone
720 * interrupt it. This is intended for being called while being in
721 * raw mode and thus will take care of all the state syncing between
722 * REM and the rest.
723 *
724 * @returns VBox status code.
725 * @param pVM VM handle.
726 */
727REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
728{
729 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
730
731 /* Make sure this flag is set; we might never execute remR3CanExecuteRaw in the AMD-V case.
732 * CPU_RAW_HWACC makes sure we never execute interrupt handlers in the recompiler.
733 */
734 if (HWACCMIsEnabled(pVM))
735 pVM->rem.s.Env.state |= CPU_RAW_HWACC;
736
737 /*
738 * Sync the state and enable single instruction / single stepping.
739 */
740 int rc = REMR3State(pVM, false /* no need to flush the TBs; we always compile. */);
741 if (VBOX_SUCCESS(rc))
742 {
743 int interrupt_request = pVM->rem.s.Env.interrupt_request;
744 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
745 Assert(!pVM->rem.s.Env.singlestep_enabled);
746#if 1
747
748 /*
749 * Now we set the execute single instruction flag and enter the cpu_exec loop.
750 */
751 TMNotifyStartOfExecution(pVM);
752 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
753 rc = cpu_exec(&pVM->rem.s.Env);
754 TMNotifyEndOfExecution(pVM);
755 switch (rc)
756 {
757 /*
758 * Executed without anything out of the way happening.
759 */
760 case EXCP_SINGLE_INSTR:
761 rc = VINF_EM_RESCHEDULE;
762 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
763 break;
764
765 /*
766 * If we take a trap or start servicing a pending interrupt, we might end up here.
767 * (Timer thread or some other thread wishing EMT's attention.)
768 */
769 case EXCP_INTERRUPT:
770 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
771 rc = VINF_EM_RESCHEDULE;
772 break;
773
774 /*
775 * Single step, we assume!
776 * If there was a breakpoint there we're fucked now.
777 */
778 case EXCP_DEBUG:
779 {
780 /* breakpoint or single step? */
781 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
782 int iBP;
783 rc = VINF_EM_DBG_STEPPED;
784 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
785 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
786 {
787 rc = VINF_EM_DBG_BREAKPOINT;
788 break;
789 }
790 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
791 break;
792 }
793
794 /*
795 * hlt instruction.
796 */
797 case EXCP_HLT:
798 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
799 rc = VINF_EM_HALT;
800 break;
801
802 /*
803 * The VM has halted.
804 */
805 case EXCP_HALTED:
806 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
807 rc = VINF_EM_HALT;
808 break;
809
810 /*
811 * Switch to RAW-mode.
812 */
813 case EXCP_EXECUTE_RAW:
814 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
815 rc = VINF_EM_RESCHEDULE_RAW;
816 break;
817
818 /*
819 * Switch to hardware accelerated RAW-mode.
820 */
821 case EXCP_EXECUTE_HWACC:
822 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
823 rc = VINF_EM_RESCHEDULE_HWACC;
824 break;
825
826 /*
827 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
828 */
829 case EXCP_RC:
830 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
831 rc = pVM->rem.s.rc;
832 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
833 break;
834
835 /*
836 * Figure out the rest when they arrive....
837 */
838 default:
839 AssertMsgFailed(("rc=%d\n", rc));
840 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
841 rc = VINF_EM_RESCHEDULE;
842 break;
843 }
844
845 /*
846 * Switch back the state.
847 */
848#else
849 pVM->rem.s.Env.interrupt_request = 0;
850 cpu_single_step(&pVM->rem.s.Env, 1);
851
852 /*
853 * Execute and handle the return code.
854 * We execute without enabling the cpu tick, so on success we'll
855 * just flip it on and off to make sure it moves.
856 *
857 * (We do not use emulate_single_instr() because that doesn't enter the
858 * right way in will cause serious trouble if a longjmp was attempted.)
859 */
860# ifdef DEBUG_bird
861 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
862# endif
863 TMNotifyStartOfExecution(pVM);
864 int cTimesMax = 16384;
865 uint32_t eip = pVM->rem.s.Env.eip;
866 do
867 {
868 rc = cpu_exec(&pVM->rem.s.Env);
869
870 } while ( eip == pVM->rem.s.Env.eip
871 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
872 && --cTimesMax > 0);
873 TMNotifyEndOfExecution(pVM);
874 switch (rc)
875 {
876 /*
877 * Single step, we assume!
878 * If there was a breakpoint there we're fucked now.
879 */
880 case EXCP_DEBUG:
881 {
882 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
883 rc = VINF_EM_RESCHEDULE;
884 break;
885 }
886
887 /*
888 * We cannot be interrupted!
889 */
890 case EXCP_INTERRUPT:
891 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
892 rc = VERR_INTERNAL_ERROR;
893 break;
894
895 /*
896 * hlt instruction.
897 */
898 case EXCP_HLT:
899 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
900 rc = VINF_EM_HALT;
901 break;
902
903 /*
904 * The VM has halted.
905 */
906 case EXCP_HALTED:
907 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
908 rc = VINF_EM_HALT;
909 break;
910
911 /*
912 * Switch to RAW-mode.
913 */
914 case EXCP_EXECUTE_RAW:
915 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
916 rc = VINF_EM_RESCHEDULE_RAW;
917 break;
918
919 /*
920 * Switch to hardware accelerated RAW-mode.
921 */
922 case EXCP_EXECUTE_HWACC:
923 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
924 rc = VINF_EM_RESCHEDULE_HWACC;
925 break;
926
927 /*
928 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
929 */
930 case EXCP_RC:
931 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
932 rc = pVM->rem.s.rc;
933 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
934 break;
935
936 /*
937 * Figure out the rest when they arrive....
938 */
939 default:
940 AssertMsgFailed(("rc=%d\n", rc));
941 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
942 rc = VINF_SUCCESS;
943 break;
944 }
945
946 /*
947 * Switch back the state.
948 */
949 cpu_single_step(&pVM->rem.s.Env, 0);
950#endif
951 pVM->rem.s.Env.interrupt_request = interrupt_request;
952 int rc2 = REMR3StateBack(pVM);
953 AssertRC(rc2);
954 }
955
956 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%08x)\n",
957 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
958 return rc;
959}
960
961
962/**
963 * Runs code in recompiled mode.
964 *
965 * Before calling this function the REM state needs to be in sync with
966 * the VM. Call REMR3State() to perform the sync. It's only necessary
967 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
968 * and after calling REMR3StateBack().
969 *
970 * @returns VBox status code.
971 *
972 * @param pVM VM Handle.
973 */
974REMR3DECL(int) REMR3Run(PVM pVM)
975{
976 Log2(("REMR3Run: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
977 Assert(pVM->rem.s.fInREM);
978
979 TMNotifyStartOfExecution(pVM);
980 int rc = cpu_exec(&pVM->rem.s.Env);
981 TMNotifyEndOfExecution(pVM);
982 switch (rc)
983 {
984 /*
985 * This happens when the execution was interrupted
986 * by an external event, like pending timers.
987 */
988 case EXCP_INTERRUPT:
989 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
990 rc = VINF_SUCCESS;
991 break;
992
993 /*
994 * hlt instruction.
995 */
996 case EXCP_HLT:
997 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
998 rc = VINF_EM_HALT;
999 break;
1000
1001 /*
1002 * The VM has halted.
1003 */
1004 case EXCP_HALTED:
1005 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1006 rc = VINF_EM_HALT;
1007 break;
1008
1009 /*
1010 * Breakpoint/single step.
1011 */
1012 case EXCP_DEBUG:
1013 {
1014#if 0//def DEBUG_bird
1015 static int iBP = 0;
1016 printf("howdy, breakpoint! iBP=%d\n", iBP);
1017 switch (iBP)
1018 {
1019 case 0:
1020 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1021 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1022 //pVM->rem.s.Env.interrupt_request = 0;
1023 //pVM->rem.s.Env.exception_index = -1;
1024 //g_fInterruptDisabled = 1;
1025 rc = VINF_SUCCESS;
1026 asm("int3");
1027 break;
1028 default:
1029 asm("int3");
1030 break;
1031 }
1032 iBP++;
1033#else
1034 /* breakpoint or single step? */
1035 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1036 int iBP;
1037 rc = VINF_EM_DBG_STEPPED;
1038 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1039 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1040 {
1041 rc = VINF_EM_DBG_BREAKPOINT;
1042 break;
1043 }
1044 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1045#endif
1046 break;
1047 }
1048
1049 /*
1050 * Switch to RAW-mode.
1051 */
1052 case EXCP_EXECUTE_RAW:
1053 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1054 rc = VINF_EM_RESCHEDULE_RAW;
1055 break;
1056
1057 /*
1058 * Switch to hardware accelerated RAW-mode.
1059 */
1060 case EXCP_EXECUTE_HWACC:
1061 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1062 rc = VINF_EM_RESCHEDULE_HWACC;
1063 break;
1064
1065 /*
1066 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1067 */
1068 case EXCP_RC:
1069 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1070 rc = pVM->rem.s.rc;
1071 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1072 break;
1073
1074 /*
1075 * Figure out the rest when they arrive....
1076 */
1077 default:
1078 AssertMsgFailed(("rc=%d\n", rc));
1079 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1080 rc = VINF_SUCCESS;
1081 break;
1082 }
1083
1084 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%08x)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1085 return rc;
1086}
1087
1088
1089/**
1090 * Check if the cpu state is suitable for Raw execution.
1091 *
1092 * @returns boolean
1093 * @param env The CPU env struct.
1094 * @param eip The EIP to check this for (might differ from env->eip).
1095 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1096 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1097 *
1098 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1099 */
1100bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1101{
1102 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1103 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1104 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1105
1106 /* Update counter. */
1107 env->pVM->rem.s.cCanExecuteRaw++;
1108
1109 if (HWACCMIsEnabled(env->pVM))
1110 {
1111 env->state |= CPU_RAW_HWACC;
1112
1113 /*
1114 * Create partial context for HWACCMR3CanExecuteGuest
1115 */
1116 CPUMCTX Ctx;
1117 Ctx.cr0 = env->cr[0];
1118 Ctx.cr3 = env->cr[3];
1119 Ctx.cr4 = env->cr[4];
1120
1121 Ctx.tr = env->tr.selector;
1122 Ctx.trHid.u64Base = env->tr.base;
1123 Ctx.trHid.u32Limit = env->tr.limit;
1124 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1125
1126 Ctx.idtr.cbIdt = env->idt.limit;
1127 Ctx.idtr.pIdt = env->idt.base;
1128
1129 Ctx.eflags.u32 = env->eflags;
1130
1131 Ctx.cs = env->segs[R_CS].selector;
1132 Ctx.csHid.u64Base = env->segs[R_CS].base;
1133 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1134 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1135
1136 Ctx.ss = env->segs[R_SS].selector;
1137 Ctx.ssHid.u64Base = env->segs[R_SS].base;
1138 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1139 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1140
1141 Ctx.msrEFER = env->efer;
1142
1143 /* Hardware accelerated raw-mode:
1144 *
1145 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1146 */
1147 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1148 {
1149 *piException = EXCP_EXECUTE_HWACC;
1150 return true;
1151 }
1152 return false;
1153 }
1154
1155 /*
1156 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1157 * or 32 bits protected mode ring 0 code
1158 *
1159 * The tests are ordered by the likelyhood of being true during normal execution.
1160 */
1161 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1162 {
1163 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1164 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1165 return false;
1166 }
1167
1168#ifndef VBOX_RAW_V86
1169 if (fFlags & VM_MASK) {
1170 STAM_COUNTER_INC(&gStatRefuseVM86);
1171 Log2(("raw mode refused: VM_MASK\n"));
1172 return false;
1173 }
1174#endif
1175
1176 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1177 {
1178#ifndef DEBUG_bird
1179 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1180#endif
1181 return false;
1182 }
1183
1184 if (env->singlestep_enabled)
1185 {
1186 //Log2(("raw mode refused: Single step\n"));
1187 return false;
1188 }
1189
1190 if (env->nb_breakpoints > 0)
1191 {
1192 //Log2(("raw mode refused: Breakpoints\n"));
1193 return false;
1194 }
1195
1196 uint32_t u32CR0 = env->cr[0];
1197 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1198 {
1199 STAM_COUNTER_INC(&gStatRefusePaging);
1200 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1201 return false;
1202 }
1203
1204 if (env->cr[4] & CR4_PAE_MASK)
1205 {
1206 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1207 {
1208 STAM_COUNTER_INC(&gStatRefusePAE);
1209 return false;
1210 }
1211 }
1212
1213 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1214 {
1215 if (!EMIsRawRing3Enabled(env->pVM))
1216 return false;
1217
1218 if (!(env->eflags & IF_MASK))
1219 {
1220 STAM_COUNTER_INC(&gStatRefuseIF0);
1221 Log2(("raw mode refused: IF (RawR3)\n"));
1222 return false;
1223 }
1224
1225 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1226 {
1227 STAM_COUNTER_INC(&gStatRefuseWP0);
1228 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1229 return false;
1230 }
1231 }
1232 else
1233 {
1234 if (!EMIsRawRing0Enabled(env->pVM))
1235 return false;
1236
1237 // Let's start with pure 32 bits ring 0 code first
1238 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1239 {
1240 STAM_COUNTER_INC(&gStatRefuseCode16);
1241 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1242 return false;
1243 }
1244
1245 // Only R0
1246 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1247 {
1248 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1249 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1250 return false;
1251 }
1252
1253 if (!(u32CR0 & CR0_WP_MASK))
1254 {
1255 STAM_COUNTER_INC(&gStatRefuseWP0);
1256 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1257 return false;
1258 }
1259
1260 if (PATMIsPatchGCAddr(env->pVM, eip))
1261 {
1262 Log2(("raw r0 mode forced: patch code\n"));
1263 *piException = EXCP_EXECUTE_RAW;
1264 return true;
1265 }
1266
1267#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1268 if (!(env->eflags & IF_MASK))
1269 {
1270 STAM_COUNTER_INC(&gStatRefuseIF0);
1271 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1272 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1273 return false;
1274 }
1275#endif
1276
1277 env->state |= CPU_RAW_RING0;
1278 }
1279
1280 /*
1281 * Don't reschedule the first time we're called, because there might be
1282 * special reasons why we're here that is not covered by the above checks.
1283 */
1284 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1285 {
1286 Log2(("raw mode refused: first scheduling\n"));
1287 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1288 return false;
1289 }
1290
1291 Assert(PGMPhysIsA20Enabled(env->pVM));
1292 *piException = EXCP_EXECUTE_RAW;
1293 return true;
1294}
1295
1296
1297/**
1298 * Fetches a code byte.
1299 *
1300 * @returns Success indicator (bool) for ease of use.
1301 * @param env The CPU environment structure.
1302 * @param GCPtrInstr Where to fetch code.
1303 * @param pu8Byte Where to store the byte on success
1304 */
1305bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1306{
1307 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1308 if (VBOX_SUCCESS(rc))
1309 return true;
1310 return false;
1311}
1312
1313
1314/**
1315 * Flush (or invalidate if you like) page table/dir entry.
1316 *
1317 * (invlpg instruction; tlb_flush_page)
1318 *
1319 * @param env Pointer to cpu environment.
1320 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1321 */
1322void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1323{
1324 PVM pVM = env->pVM;
1325
1326 /*
1327 * When we're replaying invlpg instructions or restoring a saved
1328 * state we disable this path.
1329 */
1330 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1331 return;
1332 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1333 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1334
1335 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1336
1337 /*
1338 * Update the control registers before calling PGMFlushPage.
1339 */
1340 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1341 pCtx->cr0 = env->cr[0];
1342 pCtx->cr3 = env->cr[3];
1343 pCtx->cr4 = env->cr[4];
1344
1345 /*
1346 * Let PGM do the rest.
1347 */
1348 int rc = PGMInvalidatePage(pVM, GCPtr);
1349 if (VBOX_FAILURE(rc))
1350 {
1351 AssertMsgFailed(("remR3FlushPage %VGv failed with %d!!\n", GCPtr, rc));
1352 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1353 }
1354 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1355}
1356
1357
1358/**
1359 * Called from tlb_protect_code in order to write monitor a code page.
1360 *
1361 * @param env Pointer to the CPU environment.
1362 * @param GCPtr Code page to monitor
1363 */
1364void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1365{
1366#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1367 Assert(env->pVM->rem.s.fInREM);
1368 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1369 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1370 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1371 && !(env->eflags & VM_MASK) /* no V86 mode */
1372 && !HWACCMIsEnabled(env->pVM))
1373 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1374#endif
1375}
1376
1377/**
1378 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1379 *
1380 * @param env Pointer to the CPU environment.
1381 * @param GCPtr Code page to monitor
1382 */
1383void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
1384{
1385 Assert(env->pVM->rem.s.fInREM);
1386#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1387 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1388 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1389 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1390 && !(env->eflags & VM_MASK) /* no V86 mode */
1391 && !HWACCMIsEnabled(env->pVM))
1392 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1393#endif
1394}
1395
1396
1397/**
1398 * Called when the CPU is initialized, any of the CRx registers are changed or
1399 * when the A20 line is modified.
1400 *
1401 * @param env Pointer to the CPU environment.
1402 * @param fGlobal Set if the flush is global.
1403 */
1404void remR3FlushTLB(CPUState *env, bool fGlobal)
1405{
1406 PVM pVM = env->pVM;
1407
1408 /*
1409 * When we're replaying invlpg instructions or restoring a saved
1410 * state we disable this path.
1411 */
1412 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1413 return;
1414 Assert(pVM->rem.s.fInREM);
1415
1416 /*
1417 * The caller doesn't check cr4, so we have to do that for ourselves.
1418 */
1419 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1420 fGlobal = true;
1421 Log(("remR3FlushTLB: CR0=%VGp CR3=%VGp CR4=%VGp %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1422
1423 /*
1424 * Update the control registers before calling PGMR3FlushTLB.
1425 */
1426 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1427 pCtx->cr0 = env->cr[0];
1428 pCtx->cr3 = env->cr[3];
1429 pCtx->cr4 = env->cr[4];
1430
1431 /*
1432 * Let PGM do the rest.
1433 */
1434 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1435}
1436
1437
1438/**
1439 * Called when any of the cr0, cr4 or efer registers is updated.
1440 *
1441 * @param env Pointer to the CPU environment.
1442 */
1443void remR3ChangeCpuMode(CPUState *env)
1444{
1445 int rc;
1446 PVM pVM = env->pVM;
1447
1448 /*
1449 * When we're replaying loads or restoring a saved
1450 * state this path is disabled.
1451 */
1452 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1453 return;
1454 Assert(pVM->rem.s.fInREM);
1455
1456 /*
1457 * Update the control registers before calling PGMChangeMode()
1458 * as it may need to map whatever cr3 is pointing to.
1459 */
1460 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1461 pCtx->cr0 = env->cr[0];
1462 pCtx->cr3 = env->cr[3];
1463 pCtx->cr4 = env->cr[4];
1464
1465#ifdef TARGET_X86_64
1466 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1467 if (rc != VINF_SUCCESS)
1468 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1469#else
1470 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1471 if (rc != VINF_SUCCESS)
1472 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1473#endif
1474}
1475
1476
1477/**
1478 * Called from compiled code to run dma.
1479 *
1480 * @param env Pointer to the CPU environment.
1481 */
1482void remR3DmaRun(CPUState *env)
1483{
1484 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1485 PDMR3DmaRun(env->pVM);
1486 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1487}
1488
1489
1490/**
1491 * Called from compiled code to schedule pending timers in VMM
1492 *
1493 * @param env Pointer to the CPU environment.
1494 */
1495void remR3TimersRun(CPUState *env)
1496{
1497 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1498 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1499 TMR3TimerQueuesDo(env->pVM);
1500 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1501 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1502}
1503
1504
1505/**
1506 * Record trap occurance
1507 *
1508 * @returns VBox status code
1509 * @param env Pointer to the CPU environment.
1510 * @param uTrap Trap nr
1511 * @param uErrorCode Error code
1512 * @param pvNextEIP Next EIP
1513 */
1514int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1515{
1516 PVM pVM = env->pVM;
1517#ifdef VBOX_WITH_STATISTICS
1518 static STAMCOUNTER s_aStatTrap[255];
1519 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1520#endif
1521
1522#ifdef VBOX_WITH_STATISTICS
1523 if (uTrap < 255)
1524 {
1525 if (!s_aRegisters[uTrap])
1526 {
1527 s_aRegisters[uTrap] = true;
1528 char szStatName[64];
1529 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1530 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1531 }
1532 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1533 }
1534#endif
1535 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%VGv\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1536 if( uTrap < 0x20
1537 && (env->cr[0] & X86_CR0_PE)
1538 && !(env->eflags & X86_EFL_VM))
1539 {
1540#ifdef DEBUG
1541 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1542#endif
1543 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1544 {
1545 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1546 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1547 return VERR_REM_TOO_MANY_TRAPS;
1548 }
1549 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1550 pVM->rem.s.cPendingExceptions = 1;
1551 pVM->rem.s.uPendingException = uTrap;
1552 pVM->rem.s.uPendingExcptEIP = env->eip;
1553 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1554 }
1555 else
1556 {
1557 pVM->rem.s.cPendingExceptions = 0;
1558 pVM->rem.s.uPendingException = uTrap;
1559 pVM->rem.s.uPendingExcptEIP = env->eip;
1560 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1561 }
1562 return VINF_SUCCESS;
1563}
1564
1565
1566/*
1567 * Clear current active trap
1568 *
1569 * @param pVM VM Handle.
1570 */
1571void remR3TrapClear(PVM pVM)
1572{
1573 pVM->rem.s.cPendingExceptions = 0;
1574 pVM->rem.s.uPendingException = 0;
1575 pVM->rem.s.uPendingExcptEIP = 0;
1576 pVM->rem.s.uPendingExcptCR2 = 0;
1577}
1578
1579
1580/*
1581 * Record previous call instruction addresses
1582 *
1583 * @param env Pointer to the CPU environment.
1584 */
1585void remR3RecordCall(CPUState *env)
1586{
1587 CSAMR3RecordCallAddress(env->pVM, env->eip);
1588}
1589
1590
1591/**
1592 * Syncs the internal REM state with the VM.
1593 *
1594 * This must be called before REMR3Run() is invoked whenever when the REM
1595 * state is not up to date. Calling it several times in a row is not
1596 * permitted.
1597 *
1598 * @returns VBox status code.
1599 *
1600 * @param pVM VM Handle.
1601 * @param fFlushTBs Flush all translation blocks before executing code
1602 *
1603 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1604 * no do this since the majority of the callers don't want any unnecessary of events
1605 * pending that would immediatly interrupt execution.
1606 */
1607REMR3DECL(int) REMR3State(PVM pVM, bool fFlushTBs)
1608{
1609 Log2(("REMR3State:\n"));
1610 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1611 register const CPUMCTX *pCtx = pVM->rem.s.pCtx;
1612 register unsigned fFlags;
1613 bool fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1614
1615 Assert(!pVM->rem.s.fInREM);
1616 pVM->rem.s.fInStateSync = true;
1617
1618 if (fFlushTBs)
1619 {
1620 STAM_COUNTER_INC(&gStatFlushTBs);
1621 tb_flush(&pVM->rem.s.Env);
1622 }
1623
1624 /*
1625 * Copy the registers which require no special handling.
1626 */
1627#ifdef TARGET_X86_64
1628 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
1629 Assert(R_EAX == 0);
1630 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
1631 Assert(R_ECX == 1);
1632 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
1633 Assert(R_EDX == 2);
1634 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
1635 Assert(R_EBX == 3);
1636 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
1637 Assert(R_ESP == 4);
1638 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
1639 Assert(R_EBP == 5);
1640 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
1641 Assert(R_ESI == 6);
1642 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
1643 Assert(R_EDI == 7);
1644 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
1645 pVM->rem.s.Env.regs[8] = pCtx->r8;
1646 pVM->rem.s.Env.regs[9] = pCtx->r9;
1647 pVM->rem.s.Env.regs[10] = pCtx->r10;
1648 pVM->rem.s.Env.regs[11] = pCtx->r11;
1649 pVM->rem.s.Env.regs[12] = pCtx->r12;
1650 pVM->rem.s.Env.regs[13] = pCtx->r13;
1651 pVM->rem.s.Env.regs[14] = pCtx->r14;
1652 pVM->rem.s.Env.regs[15] = pCtx->r15;
1653
1654 pVM->rem.s.Env.eip = pCtx->rip;
1655
1656 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
1657#else
1658 Assert(R_EAX == 0);
1659 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1660 Assert(R_ECX == 1);
1661 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1662 Assert(R_EDX == 2);
1663 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1664 Assert(R_EBX == 3);
1665 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1666 Assert(R_ESP == 4);
1667 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1668 Assert(R_EBP == 5);
1669 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1670 Assert(R_ESI == 6);
1671 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1672 Assert(R_EDI == 7);
1673 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1674 pVM->rem.s.Env.eip = pCtx->eip;
1675
1676 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1677#endif
1678
1679 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1680
1681 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1682 pVM->rem.s.Env.dr[0] = pCtx->dr0;
1683 pVM->rem.s.Env.dr[1] = pCtx->dr1;
1684 pVM->rem.s.Env.dr[2] = pCtx->dr2;
1685 pVM->rem.s.Env.dr[3] = pCtx->dr3;
1686 pVM->rem.s.Env.dr[4] = pCtx->dr4;
1687 pVM->rem.s.Env.dr[5] = pCtx->dr5;
1688 pVM->rem.s.Env.dr[6] = pCtx->dr6;
1689 pVM->rem.s.Env.dr[7] = pCtx->dr7;
1690
1691 /*
1692 * Clear the halted hidden flag (the interrupt waking up the CPU can
1693 * have been dispatched in raw mode).
1694 */
1695 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1696
1697 /*
1698 * Replay invlpg?
1699 */
1700 if (pVM->rem.s.cInvalidatedPages)
1701 {
1702 pVM->rem.s.fIgnoreInvlPg = true;
1703 RTUINT i;
1704 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1705 {
1706 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1707 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1708 }
1709 pVM->rem.s.fIgnoreInvlPg = false;
1710 pVM->rem.s.cInvalidatedPages = 0;
1711 }
1712
1713 /* Replay notification changes? */
1714 if (pVM->rem.s.cHandlerNotifications)
1715 REMR3ReplayHandlerNotifications(pVM);
1716
1717 /* Update MSRs; before CRx registers! */
1718 pVM->rem.s.Env.efer = pCtx->msrEFER;
1719 pVM->rem.s.Env.star = pCtx->msrSTAR;
1720 pVM->rem.s.Env.pat = pCtx->msrPAT;
1721#ifdef TARGET_X86_64
1722 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1723 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1724 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1725 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1726
1727 /* Update the internal long mode activate flag according to the new EFER value. */
1728 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1729 pVM->rem.s.Env.hflags |= HF_LMA_MASK;
1730 else
1731 pVM->rem.s.Env.hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
1732#endif
1733
1734
1735 /*
1736 * Registers which are rarely changed and require special handling / order when changed.
1737 */
1738 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1739 LogFlow(("CPUMGetAndClearChangedFlagsREM %x\n", fFlags));
1740 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1741 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1742 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
1743 {
1744 if (fFlags & CPUM_CHANGED_FPU_REM)
1745 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1746
1747 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1748 {
1749 pVM->rem.s.fIgnoreCR3Load = true;
1750 tlb_flush(&pVM->rem.s.Env, true);
1751 pVM->rem.s.fIgnoreCR3Load = false;
1752 }
1753
1754 /* CR4 before CR0! */
1755 if (fFlags & CPUM_CHANGED_CR4)
1756 {
1757 pVM->rem.s.fIgnoreCR3Load = true;
1758 pVM->rem.s.fIgnoreCpuMode = true;
1759 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1760 pVM->rem.s.fIgnoreCpuMode = false;
1761 pVM->rem.s.fIgnoreCR3Load = false;
1762 }
1763
1764 if (fFlags & CPUM_CHANGED_CR0)
1765 {
1766 pVM->rem.s.fIgnoreCR3Load = true;
1767 pVM->rem.s.fIgnoreCpuMode = true;
1768 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1769 pVM->rem.s.fIgnoreCpuMode = false;
1770 pVM->rem.s.fIgnoreCR3Load = false;
1771 }
1772
1773 if (fFlags & CPUM_CHANGED_CR3)
1774 {
1775 pVM->rem.s.fIgnoreCR3Load = true;
1776 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1777 pVM->rem.s.fIgnoreCR3Load = false;
1778 }
1779
1780 if (fFlags & CPUM_CHANGED_GDTR)
1781 {
1782 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1783 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1784 }
1785
1786 if (fFlags & CPUM_CHANGED_IDTR)
1787 {
1788 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1789 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1790 }
1791
1792 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1793 {
1794 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1795 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1796 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1797 }
1798
1799 if (fFlags & CPUM_CHANGED_LDTR)
1800 {
1801 if (fHiddenSelRegsValid)
1802 {
1803 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1804 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u64Base;
1805 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1806 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1807 }
1808 else
1809 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1810 }
1811
1812 if (fFlags & CPUM_CHANGED_TR)
1813 {
1814 if (fHiddenSelRegsValid)
1815 {
1816 pVM->rem.s.Env.tr.selector = pCtx->tr;
1817 pVM->rem.s.Env.tr.base = pCtx->trHid.u64Base;
1818 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1819 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1820 }
1821 else
1822 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1823
1824 /** @note do_interrupt will fault if the busy flag is still set.... */
1825 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1826 }
1827
1828 if (fFlags & CPUM_CHANGED_CPUID)
1829 {
1830 uint32_t u32Dummy;
1831
1832 /*
1833 * Get the CPUID features.
1834 */
1835 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
1836 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
1837 }
1838 }
1839
1840 /*
1841 * Update selector registers.
1842 * This must be done *after* we've synced gdt, ldt and crX registers
1843 * since we're reading the GDT/LDT om sync_seg. This will happen with
1844 * saved state which takes a quick dip into rawmode for instance.
1845 */
1846 /*
1847 * Stack; Note first check this one as the CPL might have changed. The
1848 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1849 */
1850
1851 if (fHiddenSelRegsValid)
1852 {
1853 /* The hidden selector registers are valid in the CPU context. */
1854 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1855
1856 /* Set current CPL */
1857 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1858
1859 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1860 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1861 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1862 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1863 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1864 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1865 }
1866 else
1867 {
1868 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1869 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1870 {
1871 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1872
1873 cpu_x86_set_cpl(&pVM->rem.s.Env, (pCtx->eflags.Bits.u1VM) ? 3 : (pCtx->ss & 3));
1874 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1875#ifdef VBOX_WITH_STATISTICS
1876 if (pVM->rem.s.Env.segs[R_SS].newselector)
1877 {
1878 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1879 }
1880#endif
1881 }
1882 else
1883 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1884
1885 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1886 {
1887 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1888 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1889#ifdef VBOX_WITH_STATISTICS
1890 if (pVM->rem.s.Env.segs[R_ES].newselector)
1891 {
1892 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1893 }
1894#endif
1895 }
1896 else
1897 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1898
1899 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1900 {
1901 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1902 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1903#ifdef VBOX_WITH_STATISTICS
1904 if (pVM->rem.s.Env.segs[R_CS].newselector)
1905 {
1906 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1907 }
1908#endif
1909 }
1910 else
1911 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1912
1913 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1914 {
1915 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1916 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1917#ifdef VBOX_WITH_STATISTICS
1918 if (pVM->rem.s.Env.segs[R_DS].newselector)
1919 {
1920 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1921 }
1922#endif
1923 }
1924 else
1925 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1926
1927 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1928 * be the same but not the base/limit. */
1929 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1930 {
1931 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1932 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1933#ifdef VBOX_WITH_STATISTICS
1934 if (pVM->rem.s.Env.segs[R_FS].newselector)
1935 {
1936 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1937 }
1938#endif
1939 }
1940 else
1941 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1942
1943 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1944 {
1945 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1946 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1947#ifdef VBOX_WITH_STATISTICS
1948 if (pVM->rem.s.Env.segs[R_GS].newselector)
1949 {
1950 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1951 }
1952#endif
1953 }
1954 else
1955 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1956 }
1957
1958 /*
1959 * Check for traps.
1960 */
1961 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1962 TRPMEVENT enmType;
1963 uint8_t u8TrapNo;
1964 int rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
1965 if (VBOX_SUCCESS(rc))
1966 {
1967#ifdef DEBUG
1968 if (u8TrapNo == 0x80)
1969 {
1970 remR3DumpLnxSyscall(pVM);
1971 remR3DumpOBsdSyscall(pVM);
1972 }
1973#endif
1974
1975 pVM->rem.s.Env.exception_index = u8TrapNo;
1976 if (enmType != TRPM_SOFTWARE_INT)
1977 {
1978 pVM->rem.s.Env.exception_is_int = 0;
1979 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
1980 }
1981 else
1982 {
1983 /*
1984 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
1985 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
1986 * for int03 and into.
1987 */
1988 pVM->rem.s.Env.exception_is_int = 1;
1989 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 2;
1990 /* int 3 may be generated by one-byte 0xcc */
1991 if (u8TrapNo == 3)
1992 {
1993 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xcc)
1994 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
1995 }
1996 /* int 4 may be generated by one-byte 0xce */
1997 else if (u8TrapNo == 4)
1998 {
1999 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xce)
2000 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2001 }
2002 }
2003
2004 /* get error code and cr2 if needed. */
2005 switch (u8TrapNo)
2006 {
2007 case 0x0e:
2008 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
2009 /* fallthru */
2010 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2011 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
2012 break;
2013
2014 case 0x11: case 0x08:
2015 default:
2016 pVM->rem.s.Env.error_code = 0;
2017 break;
2018 }
2019
2020 /*
2021 * We can now reset the active trap since the recompiler is gonna have a go at it.
2022 */
2023 rc = TRPMResetTrap(pVM);
2024 AssertRC(rc);
2025 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
2026 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
2027 }
2028
2029 /*
2030 * Clear old interrupt request flags; Check for pending hardware interrupts.
2031 * (See @remark for why we don't check for other FFs.)
2032 */
2033 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2034 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2035 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
2036 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2037
2038 /*
2039 * We're now in REM mode.
2040 */
2041 pVM->rem.s.fInREM = true;
2042 pVM->rem.s.fInStateSync = false;
2043 pVM->rem.s.cCanExecuteRaw = 0;
2044 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2045 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2046 return VINF_SUCCESS;
2047}
2048
2049
2050/**
2051 * Syncs back changes in the REM state to the the VM state.
2052 *
2053 * This must be called after invoking REMR3Run().
2054 * Calling it several times in a row is not permitted.
2055 *
2056 * @returns VBox status code.
2057 *
2058 * @param pVM VM Handle.
2059 */
2060REMR3DECL(int) REMR3StateBack(PVM pVM)
2061{
2062 Log2(("REMR3StateBack:\n"));
2063 Assert(pVM->rem.s.fInREM);
2064 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2065 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2066
2067 /*
2068 * Copy back the registers.
2069 * This is done in the order they are declared in the CPUMCTX structure.
2070 */
2071
2072 /** @todo FOP */
2073 /** @todo FPUIP */
2074 /** @todo CS */
2075 /** @todo FPUDP */
2076 /** @todo DS */
2077 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2078 pCtx->fpu.MXCSR = 0;
2079 pCtx->fpu.MXCSR_MASK = 0;
2080
2081 /** @todo check if FPU/XMM was actually used in the recompiler */
2082 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2083//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2084
2085#ifdef TARGET_X86_64
2086 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2087 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2088 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2089 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2090 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2091 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2092 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2093 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2094 pCtx->r8 = pVM->rem.s.Env.regs[8];
2095 pCtx->r9 = pVM->rem.s.Env.regs[9];
2096 pCtx->r10 = pVM->rem.s.Env.regs[10];
2097 pCtx->r11 = pVM->rem.s.Env.regs[11];
2098 pCtx->r12 = pVM->rem.s.Env.regs[12];
2099 pCtx->r13 = pVM->rem.s.Env.regs[13];
2100 pCtx->r14 = pVM->rem.s.Env.regs[14];
2101 pCtx->r15 = pVM->rem.s.Env.regs[15];
2102
2103 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2104
2105#else
2106 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2107 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2108 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2109 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2110 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2111 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2112 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2113
2114 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2115#endif
2116
2117 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2118
2119#ifdef VBOX_WITH_STATISTICS
2120 if (pVM->rem.s.Env.segs[R_SS].newselector)
2121 {
2122 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2123 }
2124 if (pVM->rem.s.Env.segs[R_GS].newselector)
2125 {
2126 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2127 }
2128 if (pVM->rem.s.Env.segs[R_FS].newselector)
2129 {
2130 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2131 }
2132 if (pVM->rem.s.Env.segs[R_ES].newselector)
2133 {
2134 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2135 }
2136 if (pVM->rem.s.Env.segs[R_DS].newselector)
2137 {
2138 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2139 }
2140 if (pVM->rem.s.Env.segs[R_CS].newselector)
2141 {
2142 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2143 }
2144#endif
2145 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2146 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2147 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2148 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2149 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2150
2151#ifdef TARGET_X86_64
2152 pCtx->rip = pVM->rem.s.Env.eip;
2153 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2154#else
2155 pCtx->eip = pVM->rem.s.Env.eip;
2156 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2157#endif
2158
2159 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2160 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2161 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2162 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2163
2164 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2165 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2166 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2167 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2168 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2169 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2170 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2171 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2172
2173 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2174 if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
2175 {
2176 pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
2177 STAM_COUNTER_INC(&gStatREMGDTChange);
2178 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2179 }
2180
2181 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2182 if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
2183 {
2184 pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
2185 STAM_COUNTER_INC(&gStatREMIDTChange);
2186 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2187 }
2188
2189 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2190 {
2191 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2192 STAM_COUNTER_INC(&gStatREMLDTRChange);
2193 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2194 }
2195 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2196 {
2197 pCtx->tr = pVM->rem.s.Env.tr.selector;
2198 STAM_COUNTER_INC(&gStatREMTRChange);
2199 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2200 }
2201
2202 /** @todo These values could still be out of sync! */
2203 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2204 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2205 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2206 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2207
2208 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2209 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2210 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2211
2212 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2213 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2214 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2215
2216 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2217 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2218 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2219
2220 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2221 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2222 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2223
2224 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2225 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2226 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2227
2228 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2229 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2230 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2231
2232 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2233 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2234 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2235
2236 /* Sysenter MSR */
2237 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2238 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2239 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2240
2241 /* System MSRs. */
2242 pCtx->msrEFER = pVM->rem.s.Env.efer;
2243 pCtx->msrSTAR = pVM->rem.s.Env.star;
2244 pCtx->msrPAT = pVM->rem.s.Env.pat;
2245#ifdef TARGET_X86_64
2246 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2247 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2248 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2249 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2250#endif
2251
2252 remR3TrapClear(pVM);
2253
2254 /*
2255 * Check for traps.
2256 */
2257 if ( pVM->rem.s.Env.exception_index >= 0
2258 && pVM->rem.s.Env.exception_index < 256)
2259 {
2260 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2261 int rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2262 AssertRC(rc);
2263 switch (pVM->rem.s.Env.exception_index)
2264 {
2265 case 0x0e:
2266 TRPMSetFaultAddress(pVM, pCtx->cr2);
2267 /* fallthru */
2268 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2269 case 0x11: case 0x08: /* 0 */
2270 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2271 break;
2272 }
2273
2274 }
2275
2276 /*
2277 * We're not longer in REM mode.
2278 */
2279 pVM->rem.s.fInREM = false;
2280 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2281 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2282 return VINF_SUCCESS;
2283}
2284
2285
2286/**
2287 * This is called by the disassembler when it wants to update the cpu state
2288 * before for instance doing a register dump.
2289 */
2290static void remR3StateUpdate(PVM pVM)
2291{
2292 Assert(pVM->rem.s.fInREM);
2293 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2294
2295 /*
2296 * Copy back the registers.
2297 * This is done in the order they are declared in the CPUMCTX structure.
2298 */
2299
2300 /** @todo FOP */
2301 /** @todo FPUIP */
2302 /** @todo CS */
2303 /** @todo FPUDP */
2304 /** @todo DS */
2305 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2306 pCtx->fpu.MXCSR = 0;
2307 pCtx->fpu.MXCSR_MASK = 0;
2308
2309 /** @todo check if FPU/XMM was actually used in the recompiler */
2310 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2311//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2312
2313#ifdef TARGET_X86_64
2314 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2315 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2316 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2317 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2318 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2319 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2320 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2321 pCtx->r8 = pVM->rem.s.Env.regs[8];
2322 pCtx->r9 = pVM->rem.s.Env.regs[9];
2323 pCtx->r10 = pVM->rem.s.Env.regs[10];
2324 pCtx->r11 = pVM->rem.s.Env.regs[11];
2325 pCtx->r12 = pVM->rem.s.Env.regs[12];
2326 pCtx->r13 = pVM->rem.s.Env.regs[13];
2327 pCtx->r14 = pVM->rem.s.Env.regs[14];
2328 pCtx->r15 = pVM->rem.s.Env.regs[15];
2329
2330 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2331#else
2332 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2333 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2334 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2335 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2336 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2337 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2338 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2339
2340 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2341#endif
2342
2343 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2344
2345 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2346 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2347 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2348 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2349 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2350
2351#ifdef TARGET_X86_64
2352 pCtx->rip = pVM->rem.s.Env.eip;
2353 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2354#else
2355 pCtx->eip = pVM->rem.s.Env.eip;
2356 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2357#endif
2358
2359 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2360 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2361 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2362 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2363
2364 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2365 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2366 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2367 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2368 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2369 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2370 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2371 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2372
2373 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2374 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2375 {
2376 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2377 STAM_COUNTER_INC(&gStatREMGDTChange);
2378 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2379 }
2380
2381 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2382 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2383 {
2384 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2385 STAM_COUNTER_INC(&gStatREMIDTChange);
2386 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2387 }
2388
2389 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2390 {
2391 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2392 STAM_COUNTER_INC(&gStatREMLDTRChange);
2393 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2394 }
2395 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2396 {
2397 pCtx->tr = pVM->rem.s.Env.tr.selector;
2398 STAM_COUNTER_INC(&gStatREMTRChange);
2399 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2400 }
2401
2402 /** @todo These values could still be out of sync! */
2403 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2404 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2405 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2406 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2407
2408 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2409 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2410 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2411
2412 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2413 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2414 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2415
2416 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2417 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2418 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2419
2420 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2421 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2422 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2423
2424 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2425 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2426 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2427
2428 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2429 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2430 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2431
2432 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2433 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2434 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2435
2436 /* Sysenter MSR */
2437 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2438 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2439 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2440
2441 /* System MSRs. */
2442 pCtx->msrEFER = pVM->rem.s.Env.efer;
2443 pCtx->msrSTAR = pVM->rem.s.Env.star;
2444 pCtx->msrPAT = pVM->rem.s.Env.pat;
2445#ifdef TARGET_X86_64
2446 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2447 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2448 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2449 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2450#endif
2451
2452}
2453
2454
2455/**
2456 * Update the VMM state information if we're currently in REM.
2457 *
2458 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2459 * we're currently executing in REM and the VMM state is invalid. This method will of
2460 * course check that we're executing in REM before syncing any data over to the VMM.
2461 *
2462 * @param pVM The VM handle.
2463 */
2464REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2465{
2466 if (pVM->rem.s.fInREM)
2467 remR3StateUpdate(pVM);
2468}
2469
2470
2471#undef LOG_GROUP
2472#define LOG_GROUP LOG_GROUP_REM
2473
2474
2475/**
2476 * Notify the recompiler about Address Gate 20 state change.
2477 *
2478 * This notification is required since A20 gate changes are
2479 * initialized from a device driver and the VM might just as
2480 * well be in REM mode as in RAW mode.
2481 *
2482 * @param pVM VM handle.
2483 * @param fEnable True if the gate should be enabled.
2484 * False if the gate should be disabled.
2485 */
2486REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2487{
2488 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2489 VM_ASSERT_EMT(pVM);
2490
2491 bool fSaved = pVM->rem.s.fIgnoreAll; /* just in case. */
2492 pVM->rem.s.fIgnoreAll = fSaved || !pVM->rem.s.fInREM;
2493
2494 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2495
2496 pVM->rem.s.fIgnoreAll = fSaved;
2497}
2498
2499
2500/**
2501 * Replays the invalidated recorded pages.
2502 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2503 *
2504 * @param pVM VM handle.
2505 */
2506REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2507{
2508 VM_ASSERT_EMT(pVM);
2509
2510 /*
2511 * Sync the required registers.
2512 */
2513 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2514 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2515 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2516 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2517
2518 /*
2519 * Replay the flushes.
2520 */
2521 pVM->rem.s.fIgnoreInvlPg = true;
2522 RTUINT i;
2523 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2524 {
2525 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2526 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2527 }
2528 pVM->rem.s.fIgnoreInvlPg = false;
2529 pVM->rem.s.cInvalidatedPages = 0;
2530}
2531
2532
2533/**
2534 * Replays the handler notification changes
2535 * Called in response to VM_FF_REM_HANDLER_NOTIFY from the RAW execution loop.
2536 *
2537 * @param pVM VM handle.
2538 */
2539REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2540{
2541 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2542 VM_ASSERT_EMT(pVM);
2543
2544 /*
2545 * Replay the flushes.
2546 */
2547 RTUINT i;
2548 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2549 pVM->rem.s.cHandlerNotifications = 0;
2550 for (i = 0; i < c; i++)
2551 {
2552 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2553 switch (pRec->enmKind)
2554 {
2555 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2556 REMR3NotifyHandlerPhysicalRegister(pVM,
2557 pRec->u.PhysicalRegister.enmType,
2558 pRec->u.PhysicalRegister.GCPhys,
2559 pRec->u.PhysicalRegister.cb,
2560 pRec->u.PhysicalRegister.fHasHCHandler);
2561 break;
2562
2563 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2564 REMR3NotifyHandlerPhysicalDeregister(pVM,
2565 pRec->u.PhysicalDeregister.enmType,
2566 pRec->u.PhysicalDeregister.GCPhys,
2567 pRec->u.PhysicalDeregister.cb,
2568 pRec->u.PhysicalDeregister.fHasHCHandler,
2569 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2570 break;
2571
2572 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2573 REMR3NotifyHandlerPhysicalModify(pVM,
2574 pRec->u.PhysicalModify.enmType,
2575 pRec->u.PhysicalModify.GCPhysOld,
2576 pRec->u.PhysicalModify.GCPhysNew,
2577 pRec->u.PhysicalModify.cb,
2578 pRec->u.PhysicalModify.fHasHCHandler,
2579 pRec->u.PhysicalModify.fRestoreAsRAM);
2580 break;
2581
2582 default:
2583 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2584 break;
2585 }
2586 }
2587 VM_FF_CLEAR(pVM, VM_FF_REM_HANDLER_NOTIFY);
2588}
2589
2590
2591/**
2592 * Notify REM about changed code page.
2593 *
2594 * @returns VBox status code.
2595 * @param pVM VM handle.
2596 * @param pvCodePage Code page address
2597 */
2598REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2599{
2600#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
2601 int rc;
2602 RTGCPHYS PhysGC;
2603 uint64_t flags;
2604
2605 VM_ASSERT_EMT(pVM);
2606
2607 /*
2608 * Get the physical page address.
2609 */
2610 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2611 if (rc == VINF_SUCCESS)
2612 {
2613 /*
2614 * Sync the required registers and flush the whole page.
2615 * (Easier to do the whole page than notifying it about each physical
2616 * byte that was changed.
2617 */
2618 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2619 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2620 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2621 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2622
2623 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2624 }
2625#endif
2626 return VINF_SUCCESS;
2627}
2628
2629
2630/**
2631 * Notification about a successful MMR3PhysRegister() call.
2632 *
2633 * @param pVM VM handle.
2634 * @param GCPhys The physical address the RAM.
2635 * @param cb Size of the memory.
2636 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2637 */
2638REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, unsigned fFlags)
2639{
2640 Log(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d fFlags=%d\n", GCPhys, cb, fFlags));
2641 VM_ASSERT_EMT(pVM);
2642
2643 /*
2644 * Validate input - we trust the caller.
2645 */
2646 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2647 Assert(cb);
2648 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2649
2650 /*
2651 * Base ram?
2652 */
2653 if (!GCPhys)
2654 {
2655 phys_ram_size = cb;
2656 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2657#ifndef VBOX_STRICT
2658 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2659 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2660#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2661 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2662 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2663 uint32_t cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2664 int rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2665 AssertRC(rc);
2666 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2667#endif
2668 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2669 }
2670
2671 /*
2672 * Register the ram.
2673 */
2674 Assert(!pVM->rem.s.fIgnoreAll);
2675 pVM->rem.s.fIgnoreAll = true;
2676
2677#ifdef VBOX_WITH_NEW_PHYS_CODE
2678 if (fFlags & MM_RAM_FLAGS_RESERVED)
2679 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2680 else
2681 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2682#else
2683 if (!GCPhys)
2684 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2685 else
2686 {
2687 if (fFlags & MM_RAM_FLAGS_RESERVED)
2688 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2689 else
2690 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2691 }
2692#endif
2693 Assert(pVM->rem.s.fIgnoreAll);
2694 pVM->rem.s.fIgnoreAll = false;
2695}
2696
2697#ifndef VBOX_WITH_NEW_PHYS_CODE
2698
2699/**
2700 * Notification about a successful PGMR3PhysRegisterChunk() call.
2701 *
2702 * @param pVM VM handle.
2703 * @param GCPhys The physical address the RAM.
2704 * @param cb Size of the memory.
2705 * @param pvRam The HC address of the RAM.
2706 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2707 */
2708REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2709{
2710 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2711 VM_ASSERT_EMT(pVM);
2712
2713 /*
2714 * Validate input - we trust the caller.
2715 */
2716 Assert(pvRam);
2717 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2718 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2719 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2720 Assert(fFlags == 0 /* normal RAM */);
2721 Assert(!pVM->rem.s.fIgnoreAll);
2722 pVM->rem.s.fIgnoreAll = true;
2723
2724 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2725
2726 Assert(pVM->rem.s.fIgnoreAll);
2727 pVM->rem.s.fIgnoreAll = false;
2728}
2729
2730
2731/**
2732 * Grows dynamically allocated guest RAM.
2733 * Will raise a fatal error if the operation fails.
2734 *
2735 * @param physaddr The physical address.
2736 */
2737void remR3GrowDynRange(unsigned long physaddr)
2738{
2739 int rc;
2740 PVM pVM = cpu_single_env->pVM;
2741
2742 LogFlow(("remR3GrowDynRange %VGp\n", physaddr));
2743 const RTGCPHYS GCPhys = physaddr;
2744 rc = PGM3PhysGrowRange(pVM, &GCPhys);
2745 if (VBOX_SUCCESS(rc))
2746 return;
2747
2748 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2749 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2750 AssertFatalFailed();
2751}
2752
2753#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2754
2755/**
2756 * Notification about a successful MMR3PhysRomRegister() call.
2757 *
2758 * @param pVM VM handle.
2759 * @param GCPhys The physical address of the ROM.
2760 * @param cb The size of the ROM.
2761 * @param pvCopy Pointer to the ROM copy.
2762 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2763 * This function will be called when ever the protection of the
2764 * shadow ROM changes (at reset and end of POST).
2765 */
2766REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2767{
2768 Log(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p fShadow=%RTbool\n", GCPhys, cb, pvCopy, fShadow));
2769 VM_ASSERT_EMT(pVM);
2770
2771 /*
2772 * Validate input - we trust the caller.
2773 */
2774 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2775 Assert(cb);
2776 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2777 Assert(pvCopy);
2778 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2779
2780 /*
2781 * Register the rom.
2782 */
2783 Assert(!pVM->rem.s.fIgnoreAll);
2784 pVM->rem.s.fIgnoreAll = true;
2785
2786 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2787
2788 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2789
2790 Assert(pVM->rem.s.fIgnoreAll);
2791 pVM->rem.s.fIgnoreAll = false;
2792}
2793
2794
2795/**
2796 * Notification about a successful memory deregistration or reservation.
2797 *
2798 * @param pVM VM Handle.
2799 * @param GCPhys Start physical address.
2800 * @param cb The size of the range.
2801 * @todo Rename to REMR3NotifyPhysRamDeregister (for MMIO2) as we won't
2802 * reserve any memory soon.
2803 */
2804REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2805{
2806 Log(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2807 VM_ASSERT_EMT(pVM);
2808
2809 /*
2810 * Validate input - we trust the caller.
2811 */
2812 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2813 Assert(cb);
2814 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2815
2816 /*
2817 * Unassigning the memory.
2818 */
2819 Assert(!pVM->rem.s.fIgnoreAll);
2820 pVM->rem.s.fIgnoreAll = true;
2821
2822 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2823
2824 Assert(pVM->rem.s.fIgnoreAll);
2825 pVM->rem.s.fIgnoreAll = false;
2826}
2827
2828
2829/**
2830 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2831 *
2832 * @param pVM VM Handle.
2833 * @param enmType Handler type.
2834 * @param GCPhys Handler range address.
2835 * @param cb Size of the handler range.
2836 * @param fHasHCHandler Set if the handler has a HC callback function.
2837 *
2838 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2839 * Handler memory type to memory which has no HC handler.
2840 */
2841REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2842{
2843 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d\n",
2844 enmType, GCPhys, cb, fHasHCHandler));
2845 VM_ASSERT_EMT(pVM);
2846 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2847 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2848
2849 if (pVM->rem.s.cHandlerNotifications)
2850 REMR3ReplayHandlerNotifications(pVM);
2851
2852 Assert(!pVM->rem.s.fIgnoreAll);
2853 pVM->rem.s.fIgnoreAll = true;
2854
2855 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2856 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2857 else if (fHasHCHandler)
2858 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2859
2860 Assert(pVM->rem.s.fIgnoreAll);
2861 pVM->rem.s.fIgnoreAll = false;
2862}
2863
2864
2865/**
2866 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2867 *
2868 * @param pVM VM Handle.
2869 * @param enmType Handler type.
2870 * @param GCPhys Handler range address.
2871 * @param cb Size of the handler range.
2872 * @param fHasHCHandler Set if the handler has a HC callback function.
2873 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2874 */
2875REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2876{
2877 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%VGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2878 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2879 VM_ASSERT_EMT(pVM);
2880
2881 if (pVM->rem.s.cHandlerNotifications)
2882 REMR3ReplayHandlerNotifications(pVM);
2883
2884 Assert(!pVM->rem.s.fIgnoreAll);
2885 pVM->rem.s.fIgnoreAll = true;
2886
2887/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
2888 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2889 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2890 else if (fHasHCHandler)
2891 {
2892 if (!fRestoreAsRAM)
2893 {
2894 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2895 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2896 }
2897 else
2898 {
2899 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2900 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2901 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2902 }
2903 }
2904
2905 Assert(pVM->rem.s.fIgnoreAll);
2906 pVM->rem.s.fIgnoreAll = false;
2907}
2908
2909
2910/**
2911 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2912 *
2913 * @param pVM VM Handle.
2914 * @param enmType Handler type.
2915 * @param GCPhysOld Old handler range address.
2916 * @param GCPhysNew New handler range address.
2917 * @param cb Size of the handler range.
2918 * @param fHasHCHandler Set if the handler has a HC callback function.
2919 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2920 */
2921REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2922{
2923 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%d fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
2924 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
2925 VM_ASSERT_EMT(pVM);
2926 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2927
2928 if (pVM->rem.s.cHandlerNotifications)
2929 REMR3ReplayHandlerNotifications(pVM);
2930
2931 if (fHasHCHandler)
2932 {
2933 Assert(!pVM->rem.s.fIgnoreAll);
2934 pVM->rem.s.fIgnoreAll = true;
2935
2936 /*
2937 * Reset the old page.
2938 */
2939 if (!fRestoreAsRAM)
2940 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2941 else
2942 {
2943 /* This is not perfect, but it'll do for PD monitoring... */
2944 Assert(cb == PAGE_SIZE);
2945 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2946 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2947 }
2948
2949 /*
2950 * Update the new page.
2951 */
2952 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2953 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2954 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2955
2956 Assert(pVM->rem.s.fIgnoreAll);
2957 pVM->rem.s.fIgnoreAll = false;
2958 }
2959}
2960
2961
2962/**
2963 * Checks if we're handling access to this page or not.
2964 *
2965 * @returns true if we're trapping access.
2966 * @returns false if we aren't.
2967 * @param pVM The VM handle.
2968 * @param GCPhys The physical address.
2969 *
2970 * @remark This function will only work correctly in VBOX_STRICT builds!
2971 */
2972REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
2973{
2974#ifdef VBOX_STRICT
2975 if (pVM->rem.s.cHandlerNotifications)
2976 REMR3ReplayHandlerNotifications(pVM);
2977
2978 unsigned long off = get_phys_page_offset(GCPhys);
2979 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
2980 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
2981 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
2982#else
2983 return false;
2984#endif
2985}
2986
2987
2988/**
2989 * Deals with a rare case in get_phys_addr_code where the code
2990 * is being monitored.
2991 *
2992 * It could also be an MMIO page, in which case we will raise a fatal error.
2993 *
2994 * @returns The physical address corresponding to addr.
2995 * @param env The cpu environment.
2996 * @param addr The virtual address.
2997 * @param pTLBEntry The TLB entry.
2998 */
2999target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
3000{
3001 PVM pVM = env->pVM;
3002 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
3003 {
3004 target_ulong ret = pTLBEntry->addend + addr;
3005 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv addr_code=%VGv addend=%VGp ret=%VGp\n",
3006 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
3007 return ret;
3008 }
3009 LogRel(("\nTrying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
3010 "*** handlers\n",
3011 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
3012 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
3013 LogRel(("*** mmio\n"));
3014 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
3015 LogRel(("*** phys\n"));
3016 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
3017 cpu_abort(env, "Trying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
3018 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
3019 AssertFatalFailed();
3020}
3021
3022
3023/** Validate the physical address passed to the read functions.
3024 * Useful for finding non-guest-ram reads/writes. */
3025#if 0 //1 /* disable if it becomes bothersome... */
3026# define VBOX_CHECK_ADDR(GCPhys) AssertMsg(PGMPhysIsGCPhysValid(cpu_single_env->pVM, (GCPhys)), ("%VGp\n", (GCPhys)))
3027#else
3028# define VBOX_CHECK_ADDR(GCPhys) do { } while (0)
3029#endif
3030
3031/**
3032 * Read guest RAM and ROM.
3033 *
3034 * @param SrcGCPhys The source address (guest physical).
3035 * @param pvDst The destination address.
3036 * @param cb Number of bytes
3037 */
3038void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3039{
3040 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3041 VBOX_CHECK_ADDR(SrcGCPhys);
3042 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3043 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3044}
3045
3046
3047/**
3048 * Read guest RAM and ROM, unsigned 8-bit.
3049 *
3050 * @param SrcGCPhys The source address (guest physical).
3051 */
3052uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3053{
3054 uint8_t val;
3055 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3056 VBOX_CHECK_ADDR(SrcGCPhys);
3057 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3058 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3059 return val;
3060}
3061
3062
3063/**
3064 * Read guest RAM and ROM, signed 8-bit.
3065 *
3066 * @param SrcGCPhys The source address (guest physical).
3067 */
3068int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3069{
3070 int8_t val;
3071 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3072 VBOX_CHECK_ADDR(SrcGCPhys);
3073 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3074 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3075 return val;
3076}
3077
3078
3079/**
3080 * Read guest RAM and ROM, unsigned 16-bit.
3081 *
3082 * @param SrcGCPhys The source address (guest physical).
3083 */
3084uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3085{
3086 uint16_t val;
3087 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3088 VBOX_CHECK_ADDR(SrcGCPhys);
3089 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3090 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3091 return val;
3092}
3093
3094
3095/**
3096 * Read guest RAM and ROM, signed 16-bit.
3097 *
3098 * @param SrcGCPhys The source address (guest physical).
3099 */
3100int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3101{
3102 uint16_t val;
3103 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3104 VBOX_CHECK_ADDR(SrcGCPhys);
3105 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3106 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3107 return val;
3108}
3109
3110
3111/**
3112 * Read guest RAM and ROM, unsigned 32-bit.
3113 *
3114 * @param SrcGCPhys The source address (guest physical).
3115 */
3116uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3117{
3118 uint32_t val;
3119 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3120 VBOX_CHECK_ADDR(SrcGCPhys);
3121 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3122 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3123 return val;
3124}
3125
3126
3127/**
3128 * Read guest RAM and ROM, signed 32-bit.
3129 *
3130 * @param SrcGCPhys The source address (guest physical).
3131 */
3132int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3133{
3134 int32_t val;
3135 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3136 VBOX_CHECK_ADDR(SrcGCPhys);
3137 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3138 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3139 return val;
3140}
3141
3142
3143/**
3144 * Read guest RAM and ROM, unsigned 64-bit.
3145 *
3146 * @param SrcGCPhys The source address (guest physical).
3147 */
3148uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3149{
3150 uint64_t val;
3151 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3152 VBOX_CHECK_ADDR(SrcGCPhys);
3153 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3154 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3155 return val;
3156}
3157
3158
3159/**
3160 * Write guest RAM.
3161 *
3162 * @param DstGCPhys The destination address (guest physical).
3163 * @param pvSrc The source address.
3164 * @param cb Number of bytes to write
3165 */
3166void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3167{
3168 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3169 VBOX_CHECK_ADDR(DstGCPhys);
3170 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3171 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3172}
3173
3174
3175/**
3176 * Write guest RAM, unsigned 8-bit.
3177 *
3178 * @param DstGCPhys The destination address (guest physical).
3179 * @param val Value
3180 */
3181void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3182{
3183 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3184 VBOX_CHECK_ADDR(DstGCPhys);
3185 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3186 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3187}
3188
3189
3190/**
3191 * Write guest RAM, unsigned 8-bit.
3192 *
3193 * @param DstGCPhys The destination address (guest physical).
3194 * @param val Value
3195 */
3196void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3197{
3198 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3199 VBOX_CHECK_ADDR(DstGCPhys);
3200 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3201 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3202}
3203
3204
3205/**
3206 * Write guest RAM, unsigned 32-bit.
3207 *
3208 * @param DstGCPhys The destination address (guest physical).
3209 * @param val Value
3210 */
3211void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3212{
3213 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3214 VBOX_CHECK_ADDR(DstGCPhys);
3215 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3216 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3217}
3218
3219
3220/**
3221 * Write guest RAM, unsigned 64-bit.
3222 *
3223 * @param DstGCPhys The destination address (guest physical).
3224 * @param val Value
3225 */
3226void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3227{
3228 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3229 VBOX_CHECK_ADDR(DstGCPhys);
3230 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3231 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3232}
3233
3234#undef LOG_GROUP
3235#define LOG_GROUP LOG_GROUP_REM_MMIO
3236
3237/** Read MMIO memory. */
3238static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3239{
3240 uint32_t u32 = 0;
3241 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3242 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3243 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3244 return u32;
3245}
3246
3247/** Read MMIO memory. */
3248static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3249{
3250 uint32_t u32 = 0;
3251 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3252 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3253 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3254 return u32;
3255}
3256
3257/** Read MMIO memory. */
3258static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3259{
3260 uint32_t u32 = 0;
3261 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3262 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3263 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3264 return u32;
3265}
3266
3267/** Write to MMIO memory. */
3268static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3269{
3270 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3271 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3272 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3273}
3274
3275/** Write to MMIO memory. */
3276static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3277{
3278 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3279 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3280 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3281}
3282
3283/** Write to MMIO memory. */
3284static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3285{
3286 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3287 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3288 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3289}
3290
3291
3292#undef LOG_GROUP
3293#define LOG_GROUP LOG_GROUP_REM_HANDLER
3294
3295/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3296
3297static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3298{
3299 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3300 uint8_t u8;
3301 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3302 return u8;
3303}
3304
3305static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3306{
3307 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3308 uint16_t u16;
3309 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3310 return u16;
3311}
3312
3313static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3314{
3315 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3316 uint32_t u32;
3317 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3318 return u32;
3319}
3320
3321static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3322{
3323 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3324 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3325}
3326
3327static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3328{
3329 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3330 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3331}
3332
3333static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3334{
3335 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3336 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3337}
3338
3339/* -+- disassembly -+- */
3340
3341#undef LOG_GROUP
3342#define LOG_GROUP LOG_GROUP_REM_DISAS
3343
3344
3345/**
3346 * Enables or disables singled stepped disassembly.
3347 *
3348 * @returns VBox status code.
3349 * @param pVM VM handle.
3350 * @param fEnable To enable set this flag, to disable clear it.
3351 */
3352static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3353{
3354 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3355 VM_ASSERT_EMT(pVM);
3356
3357 if (fEnable)
3358 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3359 else
3360 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3361 return VINF_SUCCESS;
3362}
3363
3364
3365/**
3366 * Enables or disables singled stepped disassembly.
3367 *
3368 * @returns VBox status code.
3369 * @param pVM VM handle.
3370 * @param fEnable To enable set this flag, to disable clear it.
3371 */
3372REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3373{
3374 PVMREQ pReq;
3375 int rc;
3376
3377 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3378 if (VM_IS_EMT(pVM))
3379 return remR3DisasEnableStepping(pVM, fEnable);
3380
3381 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3382 AssertRC(rc);
3383 if (VBOX_SUCCESS(rc))
3384 rc = pReq->iStatus;
3385 VMR3ReqFree(pReq);
3386 return rc;
3387}
3388
3389
3390#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3391/**
3392 * External Debugger Command: .remstep [on|off|1|0]
3393 */
3394static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3395{
3396 bool fEnable;
3397 int rc;
3398
3399 /* print status */
3400 if (cArgs == 0)
3401 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3402 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3403
3404 /* convert the argument and change the mode. */
3405 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3406 if (VBOX_FAILURE(rc))
3407 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3408 rc = REMR3DisasEnableStepping(pVM, fEnable);
3409 if (VBOX_FAILURE(rc))
3410 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3411 return rc;
3412}
3413#endif
3414
3415
3416/**
3417 * Disassembles n instructions and prints them to the log.
3418 *
3419 * @returns Success indicator.
3420 * @param env Pointer to the recompiler CPU structure.
3421 * @param f32BitCode Indicates that whether or not the code should
3422 * be disassembled as 16 or 32 bit. If -1 the CS
3423 * selector will be inspected.
3424 * @param nrInstructions Nr of instructions to disassemble
3425 * @param pszPrefix
3426 * @remark not currently used for anything but ad-hoc debugging.
3427 */
3428bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3429{
3430 int i;
3431
3432 /*
3433 * Determin 16/32 bit mode.
3434 */
3435 if (f32BitCode == -1)
3436 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3437
3438 /*
3439 * Convert cs:eip to host context address.
3440 * We don't care to much about cross page correctness presently.
3441 */
3442 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3443 void *pvPC;
3444 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3445 {
3446 Assert(PGMGetGuestMode(env->pVM) < PGMMODE_AMD64);
3447
3448 /* convert eip to physical address. */
3449 int rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3450 GCPtrPC,
3451 env->cr[3],
3452 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3453 &pvPC);
3454 if (VBOX_FAILURE(rc))
3455 {
3456 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3457 return false;
3458 pvPC = (char *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3459 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3460 }
3461 }
3462 else
3463 {
3464 /* physical address */
3465 int rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16, &pvPC);
3466 if (VBOX_FAILURE(rc))
3467 return false;
3468 }
3469
3470 /*
3471 * Disassemble.
3472 */
3473 RTINTPTR off = env->eip - (RTGCUINTPTR)pvPC;
3474 DISCPUSTATE Cpu;
3475 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3476 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3477 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3478 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3479 //Cpu.dwUserData[2] = GCPtrPC;
3480
3481 for (i=0;i<nrInstructions;i++)
3482 {
3483 char szOutput[256];
3484 uint32_t cbOp;
3485 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3486 return false;
3487 if (pszPrefix)
3488 Log(("%s: %s", pszPrefix, szOutput));
3489 else
3490 Log(("%s", szOutput));
3491
3492 pvPC += cbOp;
3493 }
3494 return true;
3495}
3496
3497
3498/** @todo need to test the new code, using the old code in the mean while. */
3499#define USE_OLD_DUMP_AND_DISASSEMBLY
3500
3501/**
3502 * Disassembles one instruction and prints it to the log.
3503 *
3504 * @returns Success indicator.
3505 * @param env Pointer to the recompiler CPU structure.
3506 * @param f32BitCode Indicates that whether or not the code should
3507 * be disassembled as 16 or 32 bit. If -1 the CS
3508 * selector will be inspected.
3509 * @param pszPrefix
3510 */
3511bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3512{
3513#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3514 PVM pVM = env->pVM;
3515
3516 /* Doesn't work in long mode. */
3517 if (env->hflags & HF_LMA_MASK)
3518 return false;
3519
3520 /*
3521 * Determin 16/32 bit mode.
3522 */
3523 if (f32BitCode == -1)
3524 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3525
3526 /*
3527 * Log registers
3528 */
3529 if (LogIs2Enabled())
3530 {
3531 remR3StateUpdate(pVM);
3532 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3533 }
3534
3535 /*
3536 * Convert cs:eip to host context address.
3537 * We don't care to much about cross page correctness presently.
3538 */
3539 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3540 void *pvPC;
3541 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3542 {
3543 /* convert eip to physical address. */
3544 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
3545 GCPtrPC,
3546 env->cr[3],
3547 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3548 &pvPC);
3549 if (VBOX_FAILURE(rc))
3550 {
3551 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3552 return false;
3553 pvPC = (char *)PATMR3QueryPatchMemHC(pVM, NULL)
3554 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3555 }
3556 }
3557 else
3558 {
3559
3560 /* physical address */
3561 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, &pvPC);
3562 if (VBOX_FAILURE(rc))
3563 return false;
3564 }
3565
3566 /*
3567 * Disassemble.
3568 */
3569 RTINTPTR off = env->eip - (RTGCUINTPTR)pvPC;
3570 DISCPUSTATE Cpu;
3571 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3572 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3573 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3574 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3575 //Cpu.dwUserData[2] = GCPtrPC;
3576 char szOutput[256];
3577 uint32_t cbOp;
3578 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3579 return false;
3580
3581 if (!f32BitCode)
3582 {
3583 if (pszPrefix)
3584 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3585 else
3586 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3587 }
3588 else
3589 {
3590 if (pszPrefix)
3591 Log(("%s: %s", pszPrefix, szOutput));
3592 else
3593 Log(("%s", szOutput));
3594 }
3595 return true;
3596
3597#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3598 PVM pVM = env->pVM;
3599 const bool fLog = LogIsEnabled();
3600 const bool fLog2 = LogIs2Enabled();
3601 int rc = VINF_SUCCESS;
3602
3603 /*
3604 * Don't bother if there ain't any log output to do.
3605 */
3606 if (!fLog && !fLog2)
3607 return true;
3608
3609 /*
3610 * Update the state so DBGF reads the correct register values.
3611 */
3612 remR3StateUpdate(pVM);
3613
3614 /*
3615 * Log registers if requested.
3616 */
3617 if (!fLog2)
3618 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3619
3620 /*
3621 * Disassemble to log.
3622 */
3623 if (fLog)
3624 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3625
3626 return VBOX_SUCCESS(rc);
3627#endif
3628}
3629
3630
3631/**
3632 * Disassemble recompiled code.
3633 *
3634 * @param phFileIgnored Ignored, logfile usually.
3635 * @param pvCode Pointer to the code block.
3636 * @param cb Size of the code block.
3637 */
3638void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3639{
3640 if (LogIs2Enabled())
3641 {
3642 unsigned off = 0;
3643 char szOutput[256];
3644 DISCPUSTATE Cpu;
3645
3646 memset(&Cpu, 0, sizeof(Cpu));
3647#ifdef RT_ARCH_X86
3648 Cpu.mode = CPUMODE_32BIT;
3649#else
3650 Cpu.mode = CPUMODE_64BIT;
3651#endif
3652
3653 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3654 while (off < cb)
3655 {
3656 uint32_t cbInstr;
3657 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3658 RTLogPrintf("%s", szOutput);
3659 else
3660 {
3661 RTLogPrintf("disas error\n");
3662 cbInstr = 1;
3663#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3664 break;
3665#endif
3666 }
3667 off += cbInstr;
3668 }
3669 }
3670 NOREF(phFileIgnored);
3671}
3672
3673
3674/**
3675 * Disassemble guest code.
3676 *
3677 * @param phFileIgnored Ignored, logfile usually.
3678 * @param uCode The guest address of the code to disassemble. (flat?)
3679 * @param cb Number of bytes to disassemble.
3680 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3681 */
3682void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3683{
3684 if (LogIs2Enabled())
3685 {
3686 PVM pVM = cpu_single_env->pVM;
3687
3688 /*
3689 * Update the state so DBGF reads the correct register values (flags).
3690 */
3691 remR3StateUpdate(pVM);
3692
3693 /*
3694 * Do the disassembling.
3695 */
3696 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
3697 RTSEL cs = cpu_single_env->segs[R_CS].selector;
3698 RTGCUINTPTR eip = uCode - cpu_single_env->segs[R_CS].base;
3699 for (;;)
3700 {
3701 char szBuf[256];
3702 uint32_t cbInstr;
3703 int rc = DBGFR3DisasInstrEx(pVM,
3704 cs,
3705 eip,
3706 0,
3707 szBuf, sizeof(szBuf),
3708 &cbInstr);
3709 if (VBOX_SUCCESS(rc))
3710 RTLogPrintf("%VGp %s\n", uCode, szBuf);
3711 else
3712 {
3713 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
3714 cbInstr = 1;
3715 }
3716
3717 /* next */
3718 if (cb <= cbInstr)
3719 break;
3720 cb -= cbInstr;
3721 uCode += cbInstr;
3722 eip += cbInstr;
3723 }
3724 }
3725 NOREF(phFileIgnored);
3726}
3727
3728
3729/**
3730 * Looks up a guest symbol.
3731 *
3732 * @returns Pointer to symbol name. This is a static buffer.
3733 * @param orig_addr The address in question.
3734 */
3735const char *lookup_symbol(target_ulong orig_addr)
3736{
3737 RTGCINTPTR off = 0;
3738 DBGFSYMBOL Sym;
3739 PVM pVM = cpu_single_env->pVM;
3740 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3741 if (VBOX_SUCCESS(rc))
3742 {
3743 static char szSym[sizeof(Sym.szName) + 48];
3744 if (!off)
3745 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3746 else if (off > 0)
3747 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3748 else
3749 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3750 return szSym;
3751 }
3752 return "<N/A>";
3753}
3754
3755
3756#undef LOG_GROUP
3757#define LOG_GROUP LOG_GROUP_REM
3758
3759
3760/* -+- FF notifications -+- */
3761
3762
3763/**
3764 * Notification about a pending interrupt.
3765 *
3766 * @param pVM VM Handle.
3767 * @param u8Interrupt Interrupt
3768 * @thread The emulation thread.
3769 */
3770REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3771{
3772 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3773 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3774}
3775
3776/**
3777 * Notification about a pending interrupt.
3778 *
3779 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3780 * @param pVM VM Handle.
3781 * @thread The emulation thread.
3782 */
3783REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3784{
3785 return pVM->rem.s.u32PendingInterrupt;
3786}
3787
3788/**
3789 * Notification about the interrupt FF being set.
3790 *
3791 * @param pVM VM Handle.
3792 * @thread The emulation thread.
3793 */
3794REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3795{
3796 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3797 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3798 if (pVM->rem.s.fInREM)
3799 {
3800 if (VM_IS_EMT(pVM))
3801 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3802 else
3803 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_HARD);
3804 }
3805}
3806
3807
3808/**
3809 * Notification about the interrupt FF being set.
3810 *
3811 * @param pVM VM Handle.
3812 * @thread Any.
3813 */
3814REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3815{
3816 LogFlow(("REMR3NotifyInterruptClear:\n"));
3817 if (pVM->rem.s.fInREM)
3818 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3819}
3820
3821
3822/**
3823 * Notification about pending timer(s).
3824 *
3825 * @param pVM VM Handle.
3826 * @thread Any.
3827 */
3828REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3829{
3830#ifndef DEBUG_bird
3831 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3832#endif
3833 if (pVM->rem.s.fInREM)
3834 {
3835 if (VM_IS_EMT(pVM))
3836 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3837 else
3838 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_TIMER);
3839 }
3840}
3841
3842
3843/**
3844 * Notification about pending DMA transfers.
3845 *
3846 * @param pVM VM Handle.
3847 * @thread Any.
3848 */
3849REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3850{
3851 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3852 if (pVM->rem.s.fInREM)
3853 {
3854 if (VM_IS_EMT(pVM))
3855 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3856 else
3857 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_DMA);
3858 }
3859}
3860
3861
3862/**
3863 * Notification about pending timer(s).
3864 *
3865 * @param pVM VM Handle.
3866 * @thread Any.
3867 */
3868REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3869{
3870 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3871 if (pVM->rem.s.fInREM)
3872 {
3873 if (VM_IS_EMT(pVM))
3874 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3875 else
3876 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3877 }
3878}
3879
3880
3881/**
3882 * Notification about pending FF set by an external thread.
3883 *
3884 * @param pVM VM handle.
3885 * @thread Any.
3886 */
3887REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3888{
3889 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3890 if (pVM->rem.s.fInREM)
3891 {
3892 if (VM_IS_EMT(pVM))
3893 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3894 else
3895 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3896 }
3897}
3898
3899
3900#ifdef VBOX_WITH_STATISTICS
3901void remR3ProfileStart(int statcode)
3902{
3903 STAMPROFILEADV *pStat;
3904 switch(statcode)
3905 {
3906 case STATS_EMULATE_SINGLE_INSTR:
3907 pStat = &gStatExecuteSingleInstr;
3908 break;
3909 case STATS_QEMU_COMPILATION:
3910 pStat = &gStatCompilationQEmu;
3911 break;
3912 case STATS_QEMU_RUN_EMULATED_CODE:
3913 pStat = &gStatRunCodeQEmu;
3914 break;
3915 case STATS_QEMU_TOTAL:
3916 pStat = &gStatTotalTimeQEmu;
3917 break;
3918 case STATS_QEMU_RUN_TIMERS:
3919 pStat = &gStatTimers;
3920 break;
3921 case STATS_TLB_LOOKUP:
3922 pStat= &gStatTBLookup;
3923 break;
3924 case STATS_IRQ_HANDLING:
3925 pStat= &gStatIRQ;
3926 break;
3927 case STATS_RAW_CHECK:
3928 pStat = &gStatRawCheck;
3929 break;
3930
3931 default:
3932 AssertMsgFailed(("unknown stat %d\n", statcode));
3933 return;
3934 }
3935 STAM_PROFILE_ADV_START(pStat, a);
3936}
3937
3938
3939void remR3ProfileStop(int statcode)
3940{
3941 STAMPROFILEADV *pStat;
3942 switch(statcode)
3943 {
3944 case STATS_EMULATE_SINGLE_INSTR:
3945 pStat = &gStatExecuteSingleInstr;
3946 break;
3947 case STATS_QEMU_COMPILATION:
3948 pStat = &gStatCompilationQEmu;
3949 break;
3950 case STATS_QEMU_RUN_EMULATED_CODE:
3951 pStat = &gStatRunCodeQEmu;
3952 break;
3953 case STATS_QEMU_TOTAL:
3954 pStat = &gStatTotalTimeQEmu;
3955 break;
3956 case STATS_QEMU_RUN_TIMERS:
3957 pStat = &gStatTimers;
3958 break;
3959 case STATS_TLB_LOOKUP:
3960 pStat= &gStatTBLookup;
3961 break;
3962 case STATS_IRQ_HANDLING:
3963 pStat= &gStatIRQ;
3964 break;
3965 case STATS_RAW_CHECK:
3966 pStat = &gStatRawCheck;
3967 break;
3968 default:
3969 AssertMsgFailed(("unknown stat %d\n", statcode));
3970 return;
3971 }
3972 STAM_PROFILE_ADV_STOP(pStat, a);
3973}
3974#endif
3975
3976/**
3977 * Raise an RC, force rem exit.
3978 *
3979 * @param pVM VM handle.
3980 * @param rc The rc.
3981 */
3982void remR3RaiseRC(PVM pVM, int rc)
3983{
3984 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
3985 Assert(pVM->rem.s.fInREM);
3986 VM_ASSERT_EMT(pVM);
3987 pVM->rem.s.rc = rc;
3988 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
3989}
3990
3991
3992/* -+- timers -+- */
3993
3994uint64_t cpu_get_tsc(CPUX86State *env)
3995{
3996 STAM_COUNTER_INC(&gStatCpuGetTSC);
3997 return TMCpuTickGet(env->pVM);
3998}
3999
4000
4001/* -+- interrupts -+- */
4002
4003void cpu_set_ferr(CPUX86State *env)
4004{
4005 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
4006 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4007}
4008
4009int cpu_get_pic_interrupt(CPUState *env)
4010{
4011 uint8_t u8Interrupt;
4012 int rc;
4013
4014 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4015 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4016 * with the (a)pic.
4017 */
4018 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4019 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4020 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4021 * remove this kludge. */
4022 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4023 {
4024 rc = VINF_SUCCESS;
4025 Assert(env->pVM->rem.s.u32PendingInterrupt >= 0 && env->pVM->rem.s.u32PendingInterrupt <= 255);
4026 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4027 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4028 }
4029 else
4030 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4031
4032 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
4033 if (VBOX_SUCCESS(rc))
4034 {
4035 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4036 env->interrupt_request |= CPU_INTERRUPT_HARD;
4037 return u8Interrupt;
4038 }
4039 return -1;
4040}
4041
4042
4043/* -+- local apic -+- */
4044
4045void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4046{
4047 int rc = PDMApicSetBase(env->pVM, val);
4048 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
4049}
4050
4051uint64_t cpu_get_apic_base(CPUX86State *env)
4052{
4053 uint64_t u64;
4054 int rc = PDMApicGetBase(env->pVM, &u64);
4055 if (VBOX_SUCCESS(rc))
4056 {
4057 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4058 return u64;
4059 }
4060 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
4061 return 0;
4062}
4063
4064void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4065{
4066 int rc = PDMApicSetTPR(env->pVM, val);
4067 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
4068}
4069
4070uint8_t cpu_get_apic_tpr(CPUX86State *env)
4071{
4072 uint8_t u8;
4073 int rc = PDMApicGetTPR(env->pVM, &u8, NULL);
4074 if (VBOX_SUCCESS(rc))
4075 {
4076 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4077 return u8;
4078 }
4079 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
4080 return 0;
4081}
4082
4083
4084/* -+- I/O Ports -+- */
4085
4086#undef LOG_GROUP
4087#define LOG_GROUP LOG_GROUP_REM_IOPORT
4088
4089void cpu_outb(CPUState *env, int addr, int val)
4090{
4091 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4092 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4093
4094 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4095 if (RT_LIKELY(rc == VINF_SUCCESS))
4096 return;
4097 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4098 {
4099 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4100 remR3RaiseRC(env->pVM, rc);
4101 return;
4102 }
4103 remAbort(rc, __FUNCTION__);
4104}
4105
4106void cpu_outw(CPUState *env, int addr, int val)
4107{
4108 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4109 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4110 if (RT_LIKELY(rc == VINF_SUCCESS))
4111 return;
4112 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4113 {
4114 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4115 remR3RaiseRC(env->pVM, rc);
4116 return;
4117 }
4118 remAbort(rc, __FUNCTION__);
4119}
4120
4121void cpu_outl(CPUState *env, int addr, int val)
4122{
4123 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4124 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4125 if (RT_LIKELY(rc == VINF_SUCCESS))
4126 return;
4127 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4128 {
4129 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4130 remR3RaiseRC(env->pVM, rc);
4131 return;
4132 }
4133 remAbort(rc, __FUNCTION__);
4134}
4135
4136int cpu_inb(CPUState *env, int addr)
4137{
4138 uint32_t u32 = 0;
4139 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4140 if (RT_LIKELY(rc == VINF_SUCCESS))
4141 {
4142 if (/*addr != 0x61 && */addr != 0x71)
4143 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4144 return (int)u32;
4145 }
4146 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4147 {
4148 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4149 remR3RaiseRC(env->pVM, rc);
4150 return (int)u32;
4151 }
4152 remAbort(rc, __FUNCTION__);
4153 return 0xff;
4154}
4155
4156int cpu_inw(CPUState *env, int addr)
4157{
4158 uint32_t u32 = 0;
4159 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4160 if (RT_LIKELY(rc == VINF_SUCCESS))
4161 {
4162 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4163 return (int)u32;
4164 }
4165 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4166 {
4167 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4168 remR3RaiseRC(env->pVM, rc);
4169 return (int)u32;
4170 }
4171 remAbort(rc, __FUNCTION__);
4172 return 0xffff;
4173}
4174
4175int cpu_inl(CPUState *env, int addr)
4176{
4177 uint32_t u32 = 0;
4178 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4179 if (RT_LIKELY(rc == VINF_SUCCESS))
4180 {
4181//if (addr==0x01f0 && u32 == 0x6b6d)
4182// loglevel = ~0;
4183 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4184 return (int)u32;
4185 }
4186 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4187 {
4188 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4189 remR3RaiseRC(env->pVM, rc);
4190 return (int)u32;
4191 }
4192 remAbort(rc, __FUNCTION__);
4193 return 0xffffffff;
4194}
4195
4196#undef LOG_GROUP
4197#define LOG_GROUP LOG_GROUP_REM
4198
4199
4200/* -+- helpers and misc other interfaces -+- */
4201
4202/**
4203 * Perform the CPUID instruction.
4204 *
4205 * ASMCpuId cannot be invoked from some source files where this is used because of global
4206 * register allocations.
4207 *
4208 * @param env Pointer to the recompiler CPU structure.
4209 * @param uOperator CPUID operation (eax).
4210 * @param pvEAX Where to store eax.
4211 * @param pvEBX Where to store ebx.
4212 * @param pvECX Where to store ecx.
4213 * @param pvEDX Where to store edx.
4214 */
4215void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4216{
4217 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4218}
4219
4220
4221#if 0 /* not used */
4222/**
4223 * Interface for qemu hardware to report back fatal errors.
4224 */
4225void hw_error(const char *pszFormat, ...)
4226{
4227 /*
4228 * Bitch about it.
4229 */
4230 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4231 * this in my Odin32 tree at home! */
4232 va_list args;
4233 va_start(args, pszFormat);
4234 RTLogPrintf("fatal error in virtual hardware:");
4235 RTLogPrintfV(pszFormat, args);
4236 va_end(args);
4237 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4238
4239 /*
4240 * If we're in REM context we'll sync back the state before 'jumping' to
4241 * the EMs failure handling.
4242 */
4243 PVM pVM = cpu_single_env->pVM;
4244 if (pVM->rem.s.fInREM)
4245 REMR3StateBack(pVM);
4246 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4247 AssertMsgFailed(("EMR3FatalError returned!\n"));
4248}
4249#endif
4250
4251/**
4252 * Interface for the qemu cpu to report unhandled situation
4253 * raising a fatal VM error.
4254 */
4255void cpu_abort(CPUState *env, const char *pszFormat, ...)
4256{
4257 /*
4258 * Bitch about it.
4259 */
4260 RTLogFlags(NULL, "nodisabled nobuffered");
4261 va_list args;
4262 va_start(args, pszFormat);
4263 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4264 va_end(args);
4265 va_start(args, pszFormat);
4266 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4267 va_end(args);
4268
4269 /*
4270 * If we're in REM context we'll sync back the state before 'jumping' to
4271 * the EMs failure handling.
4272 */
4273 PVM pVM = cpu_single_env->pVM;
4274 if (pVM->rem.s.fInREM)
4275 REMR3StateBack(pVM);
4276 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4277 AssertMsgFailed(("EMR3FatalError returned!\n"));
4278}
4279
4280
4281/**
4282 * Aborts the VM.
4283 *
4284 * @param rc VBox error code.
4285 * @param pszTip Hint about why/when this happend.
4286 */
4287static void remAbort(int rc, const char *pszTip)
4288{
4289 /*
4290 * Bitch about it.
4291 */
4292 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4293 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4294
4295 /*
4296 * Jump back to where we entered the recompiler.
4297 */
4298 PVM pVM = cpu_single_env->pVM;
4299 if (pVM->rem.s.fInREM)
4300 REMR3StateBack(pVM);
4301 EMR3FatalError(pVM, rc);
4302 AssertMsgFailed(("EMR3FatalError returned!\n"));
4303}
4304
4305
4306/**
4307 * Dumps a linux system call.
4308 * @param pVM VM handle.
4309 */
4310void remR3DumpLnxSyscall(PVM pVM)
4311{
4312 static const char *apsz[] =
4313 {
4314 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4315 "sys_exit",
4316 "sys_fork",
4317 "sys_read",
4318 "sys_write",
4319 "sys_open", /* 5 */
4320 "sys_close",
4321 "sys_waitpid",
4322 "sys_creat",
4323 "sys_link",
4324 "sys_unlink", /* 10 */
4325 "sys_execve",
4326 "sys_chdir",
4327 "sys_time",
4328 "sys_mknod",
4329 "sys_chmod", /* 15 */
4330 "sys_lchown16",
4331 "sys_ni_syscall", /* old break syscall holder */
4332 "sys_stat",
4333 "sys_lseek",
4334 "sys_getpid", /* 20 */
4335 "sys_mount",
4336 "sys_oldumount",
4337 "sys_setuid16",
4338 "sys_getuid16",
4339 "sys_stime", /* 25 */
4340 "sys_ptrace",
4341 "sys_alarm",
4342 "sys_fstat",
4343 "sys_pause",
4344 "sys_utime", /* 30 */
4345 "sys_ni_syscall", /* old stty syscall holder */
4346 "sys_ni_syscall", /* old gtty syscall holder */
4347 "sys_access",
4348 "sys_nice",
4349 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4350 "sys_sync",
4351 "sys_kill",
4352 "sys_rename",
4353 "sys_mkdir",
4354 "sys_rmdir", /* 40 */
4355 "sys_dup",
4356 "sys_pipe",
4357 "sys_times",
4358 "sys_ni_syscall", /* old prof syscall holder */
4359 "sys_brk", /* 45 */
4360 "sys_setgid16",
4361 "sys_getgid16",
4362 "sys_signal",
4363 "sys_geteuid16",
4364 "sys_getegid16", /* 50 */
4365 "sys_acct",
4366 "sys_umount", /* recycled never used phys() */
4367 "sys_ni_syscall", /* old lock syscall holder */
4368 "sys_ioctl",
4369 "sys_fcntl", /* 55 */
4370 "sys_ni_syscall", /* old mpx syscall holder */
4371 "sys_setpgid",
4372 "sys_ni_syscall", /* old ulimit syscall holder */
4373 "sys_olduname",
4374 "sys_umask", /* 60 */
4375 "sys_chroot",
4376 "sys_ustat",
4377 "sys_dup2",
4378 "sys_getppid",
4379 "sys_getpgrp", /* 65 */
4380 "sys_setsid",
4381 "sys_sigaction",
4382 "sys_sgetmask",
4383 "sys_ssetmask",
4384 "sys_setreuid16", /* 70 */
4385 "sys_setregid16",
4386 "sys_sigsuspend",
4387 "sys_sigpending",
4388 "sys_sethostname",
4389 "sys_setrlimit", /* 75 */
4390 "sys_old_getrlimit",
4391 "sys_getrusage",
4392 "sys_gettimeofday",
4393 "sys_settimeofday",
4394 "sys_getgroups16", /* 80 */
4395 "sys_setgroups16",
4396 "old_select",
4397 "sys_symlink",
4398 "sys_lstat",
4399 "sys_readlink", /* 85 */
4400 "sys_uselib",
4401 "sys_swapon",
4402 "sys_reboot",
4403 "old_readdir",
4404 "old_mmap", /* 90 */
4405 "sys_munmap",
4406 "sys_truncate",
4407 "sys_ftruncate",
4408 "sys_fchmod",
4409 "sys_fchown16", /* 95 */
4410 "sys_getpriority",
4411 "sys_setpriority",
4412 "sys_ni_syscall", /* old profil syscall holder */
4413 "sys_statfs",
4414 "sys_fstatfs", /* 100 */
4415 "sys_ioperm",
4416 "sys_socketcall",
4417 "sys_syslog",
4418 "sys_setitimer",
4419 "sys_getitimer", /* 105 */
4420 "sys_newstat",
4421 "sys_newlstat",
4422 "sys_newfstat",
4423 "sys_uname",
4424 "sys_iopl", /* 110 */
4425 "sys_vhangup",
4426 "sys_ni_syscall", /* old "idle" system call */
4427 "sys_vm86old",
4428 "sys_wait4",
4429 "sys_swapoff", /* 115 */
4430 "sys_sysinfo",
4431 "sys_ipc",
4432 "sys_fsync",
4433 "sys_sigreturn",
4434 "sys_clone", /* 120 */
4435 "sys_setdomainname",
4436 "sys_newuname",
4437 "sys_modify_ldt",
4438 "sys_adjtimex",
4439 "sys_mprotect", /* 125 */
4440 "sys_sigprocmask",
4441 "sys_ni_syscall", /* old "create_module" */
4442 "sys_init_module",
4443 "sys_delete_module",
4444 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4445 "sys_quotactl",
4446 "sys_getpgid",
4447 "sys_fchdir",
4448 "sys_bdflush",
4449 "sys_sysfs", /* 135 */
4450 "sys_personality",
4451 "sys_ni_syscall", /* reserved for afs_syscall */
4452 "sys_setfsuid16",
4453 "sys_setfsgid16",
4454 "sys_llseek", /* 140 */
4455 "sys_getdents",
4456 "sys_select",
4457 "sys_flock",
4458 "sys_msync",
4459 "sys_readv", /* 145 */
4460 "sys_writev",
4461 "sys_getsid",
4462 "sys_fdatasync",
4463 "sys_sysctl",
4464 "sys_mlock", /* 150 */
4465 "sys_munlock",
4466 "sys_mlockall",
4467 "sys_munlockall",
4468 "sys_sched_setparam",
4469 "sys_sched_getparam", /* 155 */
4470 "sys_sched_setscheduler",
4471 "sys_sched_getscheduler",
4472 "sys_sched_yield",
4473 "sys_sched_get_priority_max",
4474 "sys_sched_get_priority_min", /* 160 */
4475 "sys_sched_rr_get_interval",
4476 "sys_nanosleep",
4477 "sys_mremap",
4478 "sys_setresuid16",
4479 "sys_getresuid16", /* 165 */
4480 "sys_vm86",
4481 "sys_ni_syscall", /* Old sys_query_module */
4482 "sys_poll",
4483 "sys_nfsservctl",
4484 "sys_setresgid16", /* 170 */
4485 "sys_getresgid16",
4486 "sys_prctl",
4487 "sys_rt_sigreturn",
4488 "sys_rt_sigaction",
4489 "sys_rt_sigprocmask", /* 175 */
4490 "sys_rt_sigpending",
4491 "sys_rt_sigtimedwait",
4492 "sys_rt_sigqueueinfo",
4493 "sys_rt_sigsuspend",
4494 "sys_pread64", /* 180 */
4495 "sys_pwrite64",
4496 "sys_chown16",
4497 "sys_getcwd",
4498 "sys_capget",
4499 "sys_capset", /* 185 */
4500 "sys_sigaltstack",
4501 "sys_sendfile",
4502 "sys_ni_syscall", /* reserved for streams1 */
4503 "sys_ni_syscall", /* reserved for streams2 */
4504 "sys_vfork", /* 190 */
4505 "sys_getrlimit",
4506 "sys_mmap2",
4507 "sys_truncate64",
4508 "sys_ftruncate64",
4509 "sys_stat64", /* 195 */
4510 "sys_lstat64",
4511 "sys_fstat64",
4512 "sys_lchown",
4513 "sys_getuid",
4514 "sys_getgid", /* 200 */
4515 "sys_geteuid",
4516 "sys_getegid",
4517 "sys_setreuid",
4518 "sys_setregid",
4519 "sys_getgroups", /* 205 */
4520 "sys_setgroups",
4521 "sys_fchown",
4522 "sys_setresuid",
4523 "sys_getresuid",
4524 "sys_setresgid", /* 210 */
4525 "sys_getresgid",
4526 "sys_chown",
4527 "sys_setuid",
4528 "sys_setgid",
4529 "sys_setfsuid", /* 215 */
4530 "sys_setfsgid",
4531 "sys_pivot_root",
4532 "sys_mincore",
4533 "sys_madvise",
4534 "sys_getdents64", /* 220 */
4535 "sys_fcntl64",
4536 "sys_ni_syscall", /* reserved for TUX */
4537 "sys_ni_syscall",
4538 "sys_gettid",
4539 "sys_readahead", /* 225 */
4540 "sys_setxattr",
4541 "sys_lsetxattr",
4542 "sys_fsetxattr",
4543 "sys_getxattr",
4544 "sys_lgetxattr", /* 230 */
4545 "sys_fgetxattr",
4546 "sys_listxattr",
4547 "sys_llistxattr",
4548 "sys_flistxattr",
4549 "sys_removexattr", /* 235 */
4550 "sys_lremovexattr",
4551 "sys_fremovexattr",
4552 "sys_tkill",
4553 "sys_sendfile64",
4554 "sys_futex", /* 240 */
4555 "sys_sched_setaffinity",
4556 "sys_sched_getaffinity",
4557 "sys_set_thread_area",
4558 "sys_get_thread_area",
4559 "sys_io_setup", /* 245 */
4560 "sys_io_destroy",
4561 "sys_io_getevents",
4562 "sys_io_submit",
4563 "sys_io_cancel",
4564 "sys_fadvise64", /* 250 */
4565 "sys_ni_syscall",
4566 "sys_exit_group",
4567 "sys_lookup_dcookie",
4568 "sys_epoll_create",
4569 "sys_epoll_ctl", /* 255 */
4570 "sys_epoll_wait",
4571 "sys_remap_file_pages",
4572 "sys_set_tid_address",
4573 "sys_timer_create",
4574 "sys_timer_settime", /* 260 */
4575 "sys_timer_gettime",
4576 "sys_timer_getoverrun",
4577 "sys_timer_delete",
4578 "sys_clock_settime",
4579 "sys_clock_gettime", /* 265 */
4580 "sys_clock_getres",
4581 "sys_clock_nanosleep",
4582 "sys_statfs64",
4583 "sys_fstatfs64",
4584 "sys_tgkill", /* 270 */
4585 "sys_utimes",
4586 "sys_fadvise64_64",
4587 "sys_ni_syscall" /* sys_vserver */
4588 };
4589
4590 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4591 switch (uEAX)
4592 {
4593 default:
4594 if (uEAX < ELEMENTS(apsz))
4595 Log(("REM: linux syscall %3d: %s (eip=%VGv ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4596 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4597 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4598 else
4599 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4600 break;
4601
4602 }
4603}
4604
4605
4606/**
4607 * Dumps an OpenBSD system call.
4608 * @param pVM VM handle.
4609 */
4610void remR3DumpOBsdSyscall(PVM pVM)
4611{
4612 static const char *apsz[] =
4613 {
4614 "SYS_syscall", //0
4615 "SYS_exit", //1
4616 "SYS_fork", //2
4617 "SYS_read", //3
4618 "SYS_write", //4
4619 "SYS_open", //5
4620 "SYS_close", //6
4621 "SYS_wait4", //7
4622 "SYS_8",
4623 "SYS_link", //9
4624 "SYS_unlink", //10
4625 "SYS_11",
4626 "SYS_chdir", //12
4627 "SYS_fchdir", //13
4628 "SYS_mknod", //14
4629 "SYS_chmod", //15
4630 "SYS_chown", //16
4631 "SYS_break", //17
4632 "SYS_18",
4633 "SYS_19",
4634 "SYS_getpid", //20
4635 "SYS_mount", //21
4636 "SYS_unmount", //22
4637 "SYS_setuid", //23
4638 "SYS_getuid", //24
4639 "SYS_geteuid", //25
4640 "SYS_ptrace", //26
4641 "SYS_recvmsg", //27
4642 "SYS_sendmsg", //28
4643 "SYS_recvfrom", //29
4644 "SYS_accept", //30
4645 "SYS_getpeername", //31
4646 "SYS_getsockname", //32
4647 "SYS_access", //33
4648 "SYS_chflags", //34
4649 "SYS_fchflags", //35
4650 "SYS_sync", //36
4651 "SYS_kill", //37
4652 "SYS_38",
4653 "SYS_getppid", //39
4654 "SYS_40",
4655 "SYS_dup", //41
4656 "SYS_opipe", //42
4657 "SYS_getegid", //43
4658 "SYS_profil", //44
4659 "SYS_ktrace", //45
4660 "SYS_sigaction", //46
4661 "SYS_getgid", //47
4662 "SYS_sigprocmask", //48
4663 "SYS_getlogin", //49
4664 "SYS_setlogin", //50
4665 "SYS_acct", //51
4666 "SYS_sigpending", //52
4667 "SYS_osigaltstack", //53
4668 "SYS_ioctl", //54
4669 "SYS_reboot", //55
4670 "SYS_revoke", //56
4671 "SYS_symlink", //57
4672 "SYS_readlink", //58
4673 "SYS_execve", //59
4674 "SYS_umask", //60
4675 "SYS_chroot", //61
4676 "SYS_62",
4677 "SYS_63",
4678 "SYS_64",
4679 "SYS_65",
4680 "SYS_vfork", //66
4681 "SYS_67",
4682 "SYS_68",
4683 "SYS_sbrk", //69
4684 "SYS_sstk", //70
4685 "SYS_61",
4686 "SYS_vadvise", //72
4687 "SYS_munmap", //73
4688 "SYS_mprotect", //74
4689 "SYS_madvise", //75
4690 "SYS_76",
4691 "SYS_77",
4692 "SYS_mincore", //78
4693 "SYS_getgroups", //79
4694 "SYS_setgroups", //80
4695 "SYS_getpgrp", //81
4696 "SYS_setpgid", //82
4697 "SYS_setitimer", //83
4698 "SYS_84",
4699 "SYS_85",
4700 "SYS_getitimer", //86
4701 "SYS_87",
4702 "SYS_88",
4703 "SYS_89",
4704 "SYS_dup2", //90
4705 "SYS_91",
4706 "SYS_fcntl", //92
4707 "SYS_select", //93
4708 "SYS_94",
4709 "SYS_fsync", //95
4710 "SYS_setpriority", //96
4711 "SYS_socket", //97
4712 "SYS_connect", //98
4713 "SYS_99",
4714 "SYS_getpriority", //100
4715 "SYS_101",
4716 "SYS_102",
4717 "SYS_sigreturn", //103
4718 "SYS_bind", //104
4719 "SYS_setsockopt", //105
4720 "SYS_listen", //106
4721 "SYS_107",
4722 "SYS_108",
4723 "SYS_109",
4724 "SYS_110",
4725 "SYS_sigsuspend", //111
4726 "SYS_112",
4727 "SYS_113",
4728 "SYS_114",
4729 "SYS_115",
4730 "SYS_gettimeofday", //116
4731 "SYS_getrusage", //117
4732 "SYS_getsockopt", //118
4733 "SYS_119",
4734 "SYS_readv", //120
4735 "SYS_writev", //121
4736 "SYS_settimeofday", //122
4737 "SYS_fchown", //123
4738 "SYS_fchmod", //124
4739 "SYS_125",
4740 "SYS_setreuid", //126
4741 "SYS_setregid", //127
4742 "SYS_rename", //128
4743 "SYS_129",
4744 "SYS_130",
4745 "SYS_flock", //131
4746 "SYS_mkfifo", //132
4747 "SYS_sendto", //133
4748 "SYS_shutdown", //134
4749 "SYS_socketpair", //135
4750 "SYS_mkdir", //136
4751 "SYS_rmdir", //137
4752 "SYS_utimes", //138
4753 "SYS_139",
4754 "SYS_adjtime", //140
4755 "SYS_141",
4756 "SYS_142",
4757 "SYS_143",
4758 "SYS_144",
4759 "SYS_145",
4760 "SYS_146",
4761 "SYS_setsid", //147
4762 "SYS_quotactl", //148
4763 "SYS_149",
4764 "SYS_150",
4765 "SYS_151",
4766 "SYS_152",
4767 "SYS_153",
4768 "SYS_154",
4769 "SYS_nfssvc", //155
4770 "SYS_156",
4771 "SYS_157",
4772 "SYS_158",
4773 "SYS_159",
4774 "SYS_160",
4775 "SYS_getfh", //161
4776 "SYS_162",
4777 "SYS_163",
4778 "SYS_164",
4779 "SYS_sysarch", //165
4780 "SYS_166",
4781 "SYS_167",
4782 "SYS_168",
4783 "SYS_169",
4784 "SYS_170",
4785 "SYS_171",
4786 "SYS_172",
4787 "SYS_pread", //173
4788 "SYS_pwrite", //174
4789 "SYS_175",
4790 "SYS_176",
4791 "SYS_177",
4792 "SYS_178",
4793 "SYS_179",
4794 "SYS_180",
4795 "SYS_setgid", //181
4796 "SYS_setegid", //182
4797 "SYS_seteuid", //183
4798 "SYS_lfs_bmapv", //184
4799 "SYS_lfs_markv", //185
4800 "SYS_lfs_segclean", //186
4801 "SYS_lfs_segwait", //187
4802 "SYS_188",
4803 "SYS_189",
4804 "SYS_190",
4805 "SYS_pathconf", //191
4806 "SYS_fpathconf", //192
4807 "SYS_swapctl", //193
4808 "SYS_getrlimit", //194
4809 "SYS_setrlimit", //195
4810 "SYS_getdirentries", //196
4811 "SYS_mmap", //197
4812 "SYS___syscall", //198
4813 "SYS_lseek", //199
4814 "SYS_truncate", //200
4815 "SYS_ftruncate", //201
4816 "SYS___sysctl", //202
4817 "SYS_mlock", //203
4818 "SYS_munlock", //204
4819 "SYS_205",
4820 "SYS_futimes", //206
4821 "SYS_getpgid", //207
4822 "SYS_xfspioctl", //208
4823 "SYS_209",
4824 "SYS_210",
4825 "SYS_211",
4826 "SYS_212",
4827 "SYS_213",
4828 "SYS_214",
4829 "SYS_215",
4830 "SYS_216",
4831 "SYS_217",
4832 "SYS_218",
4833 "SYS_219",
4834 "SYS_220",
4835 "SYS_semget", //221
4836 "SYS_222",
4837 "SYS_223",
4838 "SYS_224",
4839 "SYS_msgget", //225
4840 "SYS_msgsnd", //226
4841 "SYS_msgrcv", //227
4842 "SYS_shmat", //228
4843 "SYS_229",
4844 "SYS_shmdt", //230
4845 "SYS_231",
4846 "SYS_clock_gettime", //232
4847 "SYS_clock_settime", //233
4848 "SYS_clock_getres", //234
4849 "SYS_235",
4850 "SYS_236",
4851 "SYS_237",
4852 "SYS_238",
4853 "SYS_239",
4854 "SYS_nanosleep", //240
4855 "SYS_241",
4856 "SYS_242",
4857 "SYS_243",
4858 "SYS_244",
4859 "SYS_245",
4860 "SYS_246",
4861 "SYS_247",
4862 "SYS_248",
4863 "SYS_249",
4864 "SYS_minherit", //250
4865 "SYS_rfork", //251
4866 "SYS_poll", //252
4867 "SYS_issetugid", //253
4868 "SYS_lchown", //254
4869 "SYS_getsid", //255
4870 "SYS_msync", //256
4871 "SYS_257",
4872 "SYS_258",
4873 "SYS_259",
4874 "SYS_getfsstat", //260
4875 "SYS_statfs", //261
4876 "SYS_fstatfs", //262
4877 "SYS_pipe", //263
4878 "SYS_fhopen", //264
4879 "SYS_265",
4880 "SYS_fhstatfs", //266
4881 "SYS_preadv", //267
4882 "SYS_pwritev", //268
4883 "SYS_kqueue", //269
4884 "SYS_kevent", //270
4885 "SYS_mlockall", //271
4886 "SYS_munlockall", //272
4887 "SYS_getpeereid", //273
4888 "SYS_274",
4889 "SYS_275",
4890 "SYS_276",
4891 "SYS_277",
4892 "SYS_278",
4893 "SYS_279",
4894 "SYS_280",
4895 "SYS_getresuid", //281
4896 "SYS_setresuid", //282
4897 "SYS_getresgid", //283
4898 "SYS_setresgid", //284
4899 "SYS_285",
4900 "SYS_mquery", //286
4901 "SYS_closefrom", //287
4902 "SYS_sigaltstack", //288
4903 "SYS_shmget", //289
4904 "SYS_semop", //290
4905 "SYS_stat", //291
4906 "SYS_fstat", //292
4907 "SYS_lstat", //293
4908 "SYS_fhstat", //294
4909 "SYS___semctl", //295
4910 "SYS_shmctl", //296
4911 "SYS_msgctl", //297
4912 "SYS_MAXSYSCALL", //298
4913 //299
4914 //300
4915 };
4916 uint32_t uEAX;
4917 if (!LogIsEnabled())
4918 return;
4919 uEAX = CPUMGetGuestEAX(pVM);
4920 switch (uEAX)
4921 {
4922 default:
4923 if (uEAX < ELEMENTS(apsz))
4924 {
4925 uint32_t au32Args[8] = {0};
4926 PGMPhysReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
4927 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
4928 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
4929 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
4930 }
4931 else
4932 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
4933 break;
4934 }
4935}
4936
4937
4938#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
4939/**
4940 * The Dll main entry point (stub).
4941 */
4942bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
4943{
4944 return true;
4945}
4946
4947void *memcpy(void *dst, const void *src, size_t size)
4948{
4949 uint8_t*pbDst = dst, *pbSrc = src;
4950 while (size-- > 0)
4951 *pbDst++ = *pbSrc++;
4952 return dst;
4953}
4954
4955#endif
4956
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette