VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 13406

Last change on this file since 13406 was 13375, checked in by vboxsync, 16 years ago

some (disabled) VMI bits

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 157.3 KB
Line 
1/* $Id: VBoxRecompiler.c 13375 2008-10-17 14:18:29Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "exec-all.h"
29
30#include <VBox/rem.h>
31#include <VBox/vmapi.h>
32#include <VBox/tm.h>
33#include <VBox/ssm.h>
34#include <VBox/em.h>
35#include <VBox/trpm.h>
36#include <VBox/iom.h>
37#include <VBox/mm.h>
38#include <VBox/pgm.h>
39#include <VBox/pdm.h>
40#include <VBox/dbgf.h>
41#include <VBox/dbg.h>
42#include <VBox/hwaccm.h>
43#include <VBox/patm.h>
44#include <VBox/csam.h>
45#include "REMInternal.h"
46#include <VBox/vm.h>
47#include <VBox/param.h>
48#include <VBox/err.h>
49
50#include <VBox/log.h>
51#include <iprt/semaphore.h>
52#include <iprt/asm.h>
53#include <iprt/assert.h>
54#include <iprt/thread.h>
55#include <iprt/string.h>
56
57/* Don't wanna include everything. */
58extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
59extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
60extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
61extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
62extern void tlb_flush(CPUState *env, int flush_global);
63extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
64extern void sync_ldtr(CPUX86State *env1, int selector);
65extern int sync_tr(CPUX86State *env1, int selector);
66
67#ifdef VBOX_STRICT
68unsigned long get_phys_page_offset(target_ulong addr);
69#endif
70
71
72/*******************************************************************************
73* Defined Constants And Macros *
74*******************************************************************************/
75
76/** Copy 80-bit fpu register at pSrc to pDst.
77 * This is probably faster than *calling* memcpy.
78 */
79#define REM_COPY_FPU_REG(pDst, pSrc) \
80 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
81
82
83/*******************************************************************************
84* Internal Functions *
85*******************************************************************************/
86static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
87static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
88static void remR3StateUpdate(PVM pVM);
89
90static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
91static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
92static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
93static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
94static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
95static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
96
97static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
98static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
99static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
100static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
101static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
102static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
103
104
105/*******************************************************************************
106* Global Variables *
107*******************************************************************************/
108
109/** @todo Move stats to REM::s some rainy day we have nothing do to. */
110#ifdef VBOX_WITH_STATISTICS
111static STAMPROFILEADV gStatExecuteSingleInstr;
112static STAMPROFILEADV gStatCompilationQEmu;
113static STAMPROFILEADV gStatRunCodeQEmu;
114static STAMPROFILEADV gStatTotalTimeQEmu;
115static STAMPROFILEADV gStatTimers;
116static STAMPROFILEADV gStatTBLookup;
117static STAMPROFILEADV gStatIRQ;
118static STAMPROFILEADV gStatRawCheck;
119static STAMPROFILEADV gStatMemRead;
120static STAMPROFILEADV gStatMemWrite;
121static STAMPROFILE gStatGCPhys2HCVirt;
122static STAMPROFILE gStatHCVirt2GCPhys;
123static STAMCOUNTER gStatCpuGetTSC;
124static STAMCOUNTER gStatRefuseTFInhibit;
125static STAMCOUNTER gStatRefuseVM86;
126static STAMCOUNTER gStatRefusePaging;
127static STAMCOUNTER gStatRefusePAE;
128static STAMCOUNTER gStatRefuseIOPLNot0;
129static STAMCOUNTER gStatRefuseIF0;
130static STAMCOUNTER gStatRefuseCode16;
131static STAMCOUNTER gStatRefuseWP0;
132static STAMCOUNTER gStatRefuseRing1or2;
133static STAMCOUNTER gStatRefuseCanExecute;
134static STAMCOUNTER gStatREMGDTChange;
135static STAMCOUNTER gStatREMIDTChange;
136static STAMCOUNTER gStatREMLDTRChange;
137static STAMCOUNTER gStatREMTRChange;
138static STAMCOUNTER gStatSelOutOfSync[6];
139static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
140static STAMCOUNTER gStatFlushTBs;
141/* in exec.c */
142extern uint32_t tlb_flush_count;
143extern uint32_t tb_flush_count;
144extern uint32_t tb_phys_invalidate_count;
145#endif
146
147/*
148 * Global stuff.
149 */
150
151/** MMIO read callbacks. */
152CPUReadMemoryFunc *g_apfnMMIORead[3] =
153{
154 remR3MMIOReadU8,
155 remR3MMIOReadU16,
156 remR3MMIOReadU32
157};
158
159/** MMIO write callbacks. */
160CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
161{
162 remR3MMIOWriteU8,
163 remR3MMIOWriteU16,
164 remR3MMIOWriteU32
165};
166
167/** Handler read callbacks. */
168CPUReadMemoryFunc *g_apfnHandlerRead[3] =
169{
170 remR3HandlerReadU8,
171 remR3HandlerReadU16,
172 remR3HandlerReadU32
173};
174
175/** Handler write callbacks. */
176CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
177{
178 remR3HandlerWriteU8,
179 remR3HandlerWriteU16,
180 remR3HandlerWriteU32
181};
182
183
184#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
185/*
186 * Debugger commands.
187 */
188static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
189
190/** '.remstep' arguments. */
191static const DBGCVARDESC g_aArgRemStep[] =
192{
193 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
194 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
195};
196
197/** Command descriptors. */
198static const DBGCCMD g_aCmds[] =
199{
200 {
201 .pszCmd ="remstep",
202 .cArgsMin = 0,
203 .cArgsMax = 1,
204 .paArgDescs = &g_aArgRemStep[0],
205 .cArgDescs = ELEMENTS(g_aArgRemStep),
206 .pResultDesc = NULL,
207 .fFlags = 0,
208 .pfnHandler = remR3CmdDisasEnableStepping,
209 .pszSyntax = "[on/off]",
210 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
211 "If no arguments show the current state."
212 }
213};
214#endif
215
216
217/* Instantiate the structure signatures. */
218#define REM_STRUCT_OP 0
219#include "Sun/structs.h"
220
221
222
223/*******************************************************************************
224* Internal Functions *
225*******************************************************************************/
226static void remAbort(int rc, const char *pszTip);
227extern int testmath(void);
228
229/* Put them here to avoid unused variable warning. */
230AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
231#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
232//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
233/* Why did this have to be identical?? */
234AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
235#else
236AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
237#endif
238
239
240/**
241 * Initializes the REM.
242 *
243 * @returns VBox status code.
244 * @param pVM The VM to operate on.
245 */
246REMR3DECL(int) REMR3Init(PVM pVM)
247{
248 uint32_t u32Dummy;
249 unsigned i;
250
251 /*
252 * Assert sanity.
253 */
254 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
255 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
256 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
257#if defined(DEBUG) && !defined(RT_OS_SOLARIS) /// @todo fix the solaris math stuff.
258 Assert(!testmath());
259#endif
260 ASSERT_STRUCT_TABLE(Misc);
261 ASSERT_STRUCT_TABLE(TLB);
262 ASSERT_STRUCT_TABLE(SegmentCache);
263 ASSERT_STRUCT_TABLE(XMMReg);
264 ASSERT_STRUCT_TABLE(MMXReg);
265 ASSERT_STRUCT_TABLE(float_status);
266 ASSERT_STRUCT_TABLE(float32u);
267 ASSERT_STRUCT_TABLE(float64u);
268 ASSERT_STRUCT_TABLE(floatx80u);
269 ASSERT_STRUCT_TABLE(CPUState);
270
271 /*
272 * Init some internal data members.
273 */
274 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
275 pVM->rem.s.Env.pVM = pVM;
276#ifdef CPU_RAW_MODE_INIT
277 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
278#endif
279
280 /* ctx. */
281 int rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
282 if (VBOX_FAILURE(rc))
283 {
284 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
285 return rc;
286 }
287 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
288
289 /* ignore all notifications */
290 pVM->rem.s.fIgnoreAll = true;
291
292 /*
293 * Init the recompiler.
294 */
295 if (!cpu_x86_init(&pVM->rem.s.Env))
296 {
297 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
298 return VERR_GENERAL_FAILURE;
299 }
300 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
301 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
302
303 /* allocate code buffer for single instruction emulation. */
304 pVM->rem.s.Env.cbCodeBuffer = 4096;
305 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
306 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
307
308 /* finally, set the cpu_single_env global. */
309 cpu_single_env = &pVM->rem.s.Env;
310
311 /* Nothing is pending by default */
312 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
313
314 /*
315 * Register ram types.
316 */
317 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
318 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
319 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
320 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
321 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
322
323 /* stop ignoring. */
324 pVM->rem.s.fIgnoreAll = false;
325
326 /*
327 * Register the saved state data unit.
328 */
329 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
330 NULL, remR3Save, NULL,
331 NULL, remR3Load, NULL);
332 if (VBOX_FAILURE(rc))
333 return rc;
334
335#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
336 /*
337 * Debugger commands.
338 */
339 static bool fRegisteredCmds = false;
340 if (!fRegisteredCmds)
341 {
342 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
343 if (VBOX_SUCCESS(rc))
344 fRegisteredCmds = true;
345 }
346#endif
347
348#ifdef VBOX_WITH_STATISTICS
349 /*
350 * Statistics.
351 */
352 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
353 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
354 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
355 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
356 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
357 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
358 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
359 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
360 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
361 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
362 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
363 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
364
365 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
366
367 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
368 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
369 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
370 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
371 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
372 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
373 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
374 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
375 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
376 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
377 STAM_REG(pVM, &gStatFlushTBs, STAMTYPE_COUNTER, "/REM/FlushTB", STAMUNIT_OCCURENCES, "Number of TB flushes");
378
379 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
380 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
381 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
382 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
383
384 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
385 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
386 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
387 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
388 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
389 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
390
391 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
392 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
393 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
394 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
395 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
396 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
397
398 STAM_REG(pVM, &tb_flush_count, STAMTYPE_U32_RESET, "/REM/TbFlushCount", STAMUNIT_OCCURENCES, "tb_flush() calls");
399 STAM_REG(pVM, &tb_phys_invalidate_count,STAMTYPE_U32_RESET, "/REM/TbPhysInvldCount", STAMUNIT_OCCURENCES, "tb_phys_invalidate() calls");
400 STAM_REG(pVM, &tlb_flush_count, STAMTYPE_U32_RESET, "/REM/TlbFlushCount", STAMUNIT_OCCURENCES, "tlb_flush() calls");
401
402
403#endif
404
405#ifdef DEBUG_ALL_LOGGING
406 loglevel = ~0;
407#endif
408
409 return rc;
410}
411
412
413/**
414 * Terminates the REM.
415 *
416 * Termination means cleaning up and freeing all resources,
417 * the VM it self is at this point powered off or suspended.
418 *
419 * @returns VBox status code.
420 * @param pVM The VM to operate on.
421 */
422REMR3DECL(int) REMR3Term(PVM pVM)
423{
424 return VINF_SUCCESS;
425}
426
427
428/**
429 * The VM is being reset.
430 *
431 * For the REM component this means to call the cpu_reset() and
432 * reinitialize some state variables.
433 *
434 * @param pVM VM handle.
435 */
436REMR3DECL(void) REMR3Reset(PVM pVM)
437{
438 /*
439 * Reset the REM cpu.
440 */
441 pVM->rem.s.fIgnoreAll = true;
442 cpu_reset(&pVM->rem.s.Env);
443 pVM->rem.s.cInvalidatedPages = 0;
444 pVM->rem.s.fIgnoreAll = false;
445
446 /* Clear raw ring 0 init state */
447 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
448}
449
450
451/**
452 * Execute state save operation.
453 *
454 * @returns VBox status code.
455 * @param pVM VM Handle.
456 * @param pSSM SSM operation handle.
457 */
458static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
459{
460 LogFlow(("remR3Save:\n"));
461
462 /*
463 * Save the required CPU Env bits.
464 * (Not much because we're never in REM when doing the save.)
465 */
466 PREM pRem = &pVM->rem.s;
467 Assert(!pRem->fInREM);
468 SSMR3PutU32(pSSM, pRem->Env.hflags);
469 SSMR3PutU32(pSSM, ~0); /* separator */
470
471 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
472 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
473 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
474
475 return SSMR3PutU32(pSSM, ~0); /* terminator */
476}
477
478
479/**
480 * Execute state load operation.
481 *
482 * @returns VBox status code.
483 * @param pVM VM Handle.
484 * @param pSSM SSM operation handle.
485 * @param u32Version Data layout version.
486 */
487static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
488{
489 uint32_t u32Dummy;
490 uint32_t fRawRing0 = false;
491 LogFlow(("remR3Load:\n"));
492
493 /*
494 * Validate version.
495 */
496 if ( u32Version != REM_SAVED_STATE_VERSION
497 && u32Version != REM_SAVED_STATE_VERSION_VER1_6)
498 {
499 AssertMsgFailed(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
500 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
501 }
502
503 /*
504 * Do a reset to be on the safe side...
505 */
506 REMR3Reset(pVM);
507
508 /*
509 * Ignore all ignorable notifications.
510 * (Not doing this will cause serious trouble.)
511 */
512 pVM->rem.s.fIgnoreAll = true;
513
514 /*
515 * Load the required CPU Env bits.
516 * (Not much because we're never in REM when doing the save.)
517 */
518 PREM pRem = &pVM->rem.s;
519 Assert(!pRem->fInREM);
520 SSMR3GetU32(pSSM, &pRem->Env.hflags);
521 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
522 {
523 /* Redundant REM CPU state has to be loaded, but can be ignored. */
524 CPUX86State_Ver16 temp;
525 SSMR3GetMem(pSSM, &temp, RT_OFFSETOF(CPUX86State_Ver16, jmp_env));
526 }
527
528 uint32_t u32Sep;
529 int rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
530 if (VBOX_FAILURE(rc))
531 return rc;
532 if (u32Sep != ~0U)
533 {
534 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
535 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
536 }
537
538 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
539 SSMR3GetUInt(pSSM, &fRawRing0);
540 if (fRawRing0)
541 pRem->Env.state |= CPU_RAW_RING0;
542
543 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
544 {
545 /*
546 * Load the REM stuff.
547 */
548 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
549 if (VBOX_FAILURE(rc))
550 return rc;
551 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
552 {
553 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
554 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
555 }
556 unsigned i;
557 for (i = 0; i < pRem->cInvalidatedPages; i++)
558 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
559 }
560
561 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
562 if (VBOX_FAILURE(rc))
563 return rc;
564
565 /* check the terminator. */
566 rc = SSMR3GetU32(pSSM, &u32Sep);
567 if (VBOX_FAILURE(rc))
568 return rc;
569 if (u32Sep != ~0U)
570 {
571 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
572 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
573 }
574
575 /*
576 * Get the CPUID features.
577 */
578 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
579 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
580
581 /*
582 * Sync the Load Flush the TLB
583 */
584 tlb_flush(&pRem->Env, 1);
585
586 /*
587 * Stop ignoring ignornable notifications.
588 */
589 pVM->rem.s.fIgnoreAll = false;
590
591 /*
592 * Sync the whole CPU state when executing code in the recompiler.
593 */
594 CPUMSetChangedFlags(pVM, CPUM_CHANGED_ALL);
595 return VINF_SUCCESS;
596}
597
598
599
600#undef LOG_GROUP
601#define LOG_GROUP LOG_GROUP_REM_RUN
602
603/**
604 * Single steps an instruction in recompiled mode.
605 *
606 * Before calling this function the REM state needs to be in sync with
607 * the VM. Call REMR3State() to perform the sync. It's only necessary
608 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
609 * and after calling REMR3StateBack().
610 *
611 * @returns VBox status code.
612 *
613 * @param pVM VM Handle.
614 */
615REMR3DECL(int) REMR3Step(PVM pVM)
616{
617 /*
618 * Lock the REM - we don't wanna have anyone interrupting us
619 * while stepping - and enabled single stepping. We also ignore
620 * pending interrupts and suchlike.
621 */
622 int interrupt_request = pVM->rem.s.Env.interrupt_request;
623 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
624 pVM->rem.s.Env.interrupt_request = 0;
625 cpu_single_step(&pVM->rem.s.Env, 1);
626
627 /*
628 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
629 */
630 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
631 bool fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
632
633 /*
634 * Execute and handle the return code.
635 * We execute without enabling the cpu tick, so on success we'll
636 * just flip it on and off to make sure it moves
637 */
638 int rc = cpu_exec(&pVM->rem.s.Env);
639 if (rc == EXCP_DEBUG)
640 {
641 TMCpuTickResume(pVM);
642 TMCpuTickPause(pVM);
643 TMVirtualResume(pVM);
644 TMVirtualPause(pVM);
645 rc = VINF_EM_DBG_STEPPED;
646 }
647 else
648 {
649 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
650 switch (rc)
651 {
652 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
653 case EXCP_HLT:
654 case EXCP_HALTED: rc = VINF_EM_HALT; break;
655 case EXCP_RC:
656 rc = pVM->rem.s.rc;
657 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
658 break;
659 default:
660 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
661 rc = VERR_INTERNAL_ERROR;
662 break;
663 }
664 }
665
666 /*
667 * Restore the stuff we changed to prevent interruption.
668 * Unlock the REM.
669 */
670 if (fBp)
671 {
672 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
673 Assert(rc2 == 0); NOREF(rc2);
674 }
675 cpu_single_step(&pVM->rem.s.Env, 0);
676 pVM->rem.s.Env.interrupt_request = interrupt_request;
677
678 return rc;
679}
680
681
682/**
683 * Set a breakpoint using the REM facilities.
684 *
685 * @returns VBox status code.
686 * @param pVM The VM handle.
687 * @param Address The breakpoint address.
688 * @thread The emulation thread.
689 */
690REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
691{
692 VM_ASSERT_EMT(pVM);
693 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
694 {
695 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
696 return VINF_SUCCESS;
697 }
698 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
699 return VERR_REM_NO_MORE_BP_SLOTS;
700}
701
702
703/**
704 * Clears a breakpoint set by REMR3BreakpointSet().
705 *
706 * @returns VBox status code.
707 * @param pVM The VM handle.
708 * @param Address The breakpoint address.
709 * @thread The emulation thread.
710 */
711REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
712{
713 VM_ASSERT_EMT(pVM);
714 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
715 {
716 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
717 return VINF_SUCCESS;
718 }
719 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
720 return VERR_REM_BP_NOT_FOUND;
721}
722
723
724/**
725 * Emulate an instruction.
726 *
727 * This function executes one instruction without letting anyone
728 * interrupt it. This is intended for being called while being in
729 * raw mode and thus will take care of all the state syncing between
730 * REM and the rest.
731 *
732 * @returns VBox status code.
733 * @param pVM VM handle.
734 */
735REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
736{
737 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
738
739 /* Make sure this flag is set; we might never execute remR3CanExecuteRaw in the AMD-V case.
740 * CPU_RAW_HWACC makes sure we never execute interrupt handlers in the recompiler.
741 */
742 if (HWACCMIsEnabled(pVM))
743 pVM->rem.s.Env.state |= CPU_RAW_HWACC;
744
745 /*
746 * Sync the state and enable single instruction / single stepping.
747 */
748 int rc = REMR3State(pVM, false /* no need to flush the TBs; we always compile. */);
749 if (VBOX_SUCCESS(rc))
750 {
751 int interrupt_request = pVM->rem.s.Env.interrupt_request;
752 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
753 Assert(!pVM->rem.s.Env.singlestep_enabled);
754#if 1
755
756 /*
757 * Now we set the execute single instruction flag and enter the cpu_exec loop.
758 */
759 TMNotifyStartOfExecution(pVM);
760 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
761 rc = cpu_exec(&pVM->rem.s.Env);
762 TMNotifyEndOfExecution(pVM);
763 switch (rc)
764 {
765 /*
766 * Executed without anything out of the way happening.
767 */
768 case EXCP_SINGLE_INSTR:
769 rc = VINF_EM_RESCHEDULE;
770 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
771 break;
772
773 /*
774 * If we take a trap or start servicing a pending interrupt, we might end up here.
775 * (Timer thread or some other thread wishing EMT's attention.)
776 */
777 case EXCP_INTERRUPT:
778 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
779 rc = VINF_EM_RESCHEDULE;
780 break;
781
782 /*
783 * Single step, we assume!
784 * If there was a breakpoint there we're fucked now.
785 */
786 case EXCP_DEBUG:
787 {
788 /* breakpoint or single step? */
789 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
790 int iBP;
791 rc = VINF_EM_DBG_STEPPED;
792 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
793 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
794 {
795 rc = VINF_EM_DBG_BREAKPOINT;
796 break;
797 }
798 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
799 break;
800 }
801
802 /*
803 * hlt instruction.
804 */
805 case EXCP_HLT:
806 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
807 rc = VINF_EM_HALT;
808 break;
809
810 /*
811 * The VM has halted.
812 */
813 case EXCP_HALTED:
814 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
815 rc = VINF_EM_HALT;
816 break;
817
818 /*
819 * Switch to RAW-mode.
820 */
821 case EXCP_EXECUTE_RAW:
822 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
823 rc = VINF_EM_RESCHEDULE_RAW;
824 break;
825
826 /*
827 * Switch to hardware accelerated RAW-mode.
828 */
829 case EXCP_EXECUTE_HWACC:
830 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
831 rc = VINF_EM_RESCHEDULE_HWACC;
832 break;
833
834 /*
835 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
836 */
837 case EXCP_RC:
838 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
839 rc = pVM->rem.s.rc;
840 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
841 break;
842
843 /*
844 * Figure out the rest when they arrive....
845 */
846 default:
847 AssertMsgFailed(("rc=%d\n", rc));
848 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
849 rc = VINF_EM_RESCHEDULE;
850 break;
851 }
852
853 /*
854 * Switch back the state.
855 */
856#else
857 pVM->rem.s.Env.interrupt_request = 0;
858 cpu_single_step(&pVM->rem.s.Env, 1);
859
860 /*
861 * Execute and handle the return code.
862 * We execute without enabling the cpu tick, so on success we'll
863 * just flip it on and off to make sure it moves.
864 *
865 * (We do not use emulate_single_instr() because that doesn't enter the
866 * right way in will cause serious trouble if a longjmp was attempted.)
867 */
868# ifdef DEBUG_bird
869 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
870# endif
871 TMNotifyStartOfExecution(pVM);
872 int cTimesMax = 16384;
873 uint32_t eip = pVM->rem.s.Env.eip;
874 do
875 {
876 rc = cpu_exec(&pVM->rem.s.Env);
877
878 } while ( eip == pVM->rem.s.Env.eip
879 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
880 && --cTimesMax > 0);
881 TMNotifyEndOfExecution(pVM);
882 switch (rc)
883 {
884 /*
885 * Single step, we assume!
886 * If there was a breakpoint there we're fucked now.
887 */
888 case EXCP_DEBUG:
889 {
890 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
891 rc = VINF_EM_RESCHEDULE;
892 break;
893 }
894
895 /*
896 * We cannot be interrupted!
897 */
898 case EXCP_INTERRUPT:
899 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
900 rc = VERR_INTERNAL_ERROR;
901 break;
902
903 /*
904 * hlt instruction.
905 */
906 case EXCP_HLT:
907 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
908 rc = VINF_EM_HALT;
909 break;
910
911 /*
912 * The VM has halted.
913 */
914 case EXCP_HALTED:
915 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
916 rc = VINF_EM_HALT;
917 break;
918
919 /*
920 * Switch to RAW-mode.
921 */
922 case EXCP_EXECUTE_RAW:
923 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
924 rc = VINF_EM_RESCHEDULE_RAW;
925 break;
926
927 /*
928 * Switch to hardware accelerated RAW-mode.
929 */
930 case EXCP_EXECUTE_HWACC:
931 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
932 rc = VINF_EM_RESCHEDULE_HWACC;
933 break;
934
935 /*
936 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
937 */
938 case EXCP_RC:
939 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
940 rc = pVM->rem.s.rc;
941 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
942 break;
943
944 /*
945 * Figure out the rest when they arrive....
946 */
947 default:
948 AssertMsgFailed(("rc=%d\n", rc));
949 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
950 rc = VINF_SUCCESS;
951 break;
952 }
953
954 /*
955 * Switch back the state.
956 */
957 cpu_single_step(&pVM->rem.s.Env, 0);
958#endif
959 pVM->rem.s.Env.interrupt_request = interrupt_request;
960 int rc2 = REMR3StateBack(pVM);
961 AssertRC(rc2);
962 }
963
964 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%VGv)\n",
965 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
966 return rc;
967}
968
969
970/**
971 * Runs code in recompiled mode.
972 *
973 * Before calling this function the REM state needs to be in sync with
974 * the VM. Call REMR3State() to perform the sync. It's only necessary
975 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
976 * and after calling REMR3StateBack().
977 *
978 * @returns VBox status code.
979 *
980 * @param pVM VM Handle.
981 */
982REMR3DECL(int) REMR3Run(PVM pVM)
983{
984 Log2(("REMR3Run: (cs:eip=%04x:%VGv)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
985 Assert(pVM->rem.s.fInREM);
986
987 TMNotifyStartOfExecution(pVM);
988 int rc = cpu_exec(&pVM->rem.s.Env);
989 TMNotifyEndOfExecution(pVM);
990 switch (rc)
991 {
992 /*
993 * This happens when the execution was interrupted
994 * by an external event, like pending timers.
995 */
996 case EXCP_INTERRUPT:
997 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
998 rc = VINF_SUCCESS;
999 break;
1000
1001 /*
1002 * hlt instruction.
1003 */
1004 case EXCP_HLT:
1005 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
1006 rc = VINF_EM_HALT;
1007 break;
1008
1009 /*
1010 * The VM has halted.
1011 */
1012 case EXCP_HALTED:
1013 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1014 rc = VINF_EM_HALT;
1015 break;
1016
1017 /*
1018 * Breakpoint/single step.
1019 */
1020 case EXCP_DEBUG:
1021 {
1022#if 0//def DEBUG_bird
1023 static int iBP = 0;
1024 printf("howdy, breakpoint! iBP=%d\n", iBP);
1025 switch (iBP)
1026 {
1027 case 0:
1028 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1029 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1030 //pVM->rem.s.Env.interrupt_request = 0;
1031 //pVM->rem.s.Env.exception_index = -1;
1032 //g_fInterruptDisabled = 1;
1033 rc = VINF_SUCCESS;
1034 asm("int3");
1035 break;
1036 default:
1037 asm("int3");
1038 break;
1039 }
1040 iBP++;
1041#else
1042 /* breakpoint or single step? */
1043 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1044 int iBP;
1045 rc = VINF_EM_DBG_STEPPED;
1046 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1047 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1048 {
1049 rc = VINF_EM_DBG_BREAKPOINT;
1050 break;
1051 }
1052 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1053#endif
1054 break;
1055 }
1056
1057 /*
1058 * Switch to RAW-mode.
1059 */
1060 case EXCP_EXECUTE_RAW:
1061 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1062 rc = VINF_EM_RESCHEDULE_RAW;
1063 break;
1064
1065 /*
1066 * Switch to hardware accelerated RAW-mode.
1067 */
1068 case EXCP_EXECUTE_HWACC:
1069 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1070 rc = VINF_EM_RESCHEDULE_HWACC;
1071 break;
1072
1073#ifdef VBOX_WITH_VMI
1074 /*
1075 *
1076 */
1077 case EXCP_PARAV_CALL:
1078 Log2(("REMR3Run: cpu_exec -> EXCP_PARAV_CALL\n"));
1079 rc = VINF_EM_RESCHEDULE_PARAV;
1080 break;
1081#endif
1082
1083 /*
1084 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1085 */
1086 case EXCP_RC:
1087 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1088 rc = pVM->rem.s.rc;
1089 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1090 break;
1091
1092 /*
1093 * Figure out the rest when they arrive....
1094 */
1095 default:
1096 AssertMsgFailed(("rc=%d\n", rc));
1097 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1098 rc = VINF_SUCCESS;
1099 break;
1100 }
1101
1102 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%VGv)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1103 return rc;
1104}
1105
1106
1107/**
1108 * Check if the cpu state is suitable for Raw execution.
1109 *
1110 * @returns boolean
1111 * @param env The CPU env struct.
1112 * @param eip The EIP to check this for (might differ from env->eip).
1113 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1114 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1115 *
1116 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1117 */
1118bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1119{
1120 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1121 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1122 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1123
1124 /* Update counter. */
1125 env->pVM->rem.s.cCanExecuteRaw++;
1126
1127 if (HWACCMIsEnabled(env->pVM))
1128 {
1129 env->state |= CPU_RAW_HWACC;
1130
1131 /*
1132 * Create partial context for HWACCMR3CanExecuteGuest
1133 */
1134 CPUMCTX Ctx;
1135 Ctx.cr0 = env->cr[0];
1136 Ctx.cr3 = env->cr[3];
1137 Ctx.cr4 = env->cr[4];
1138
1139 Ctx.tr = env->tr.selector;
1140 Ctx.trHid.u64Base = env->tr.base;
1141 Ctx.trHid.u32Limit = env->tr.limit;
1142 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1143
1144 Ctx.idtr.cbIdt = env->idt.limit;
1145 Ctx.idtr.pIdt = env->idt.base;
1146
1147 Ctx.eflags.u32 = env->eflags;
1148
1149 Ctx.cs = env->segs[R_CS].selector;
1150 Ctx.csHid.u64Base = env->segs[R_CS].base;
1151 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1152 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1153
1154 Ctx.ds = env->segs[R_DS].selector;
1155 Ctx.dsHid.u64Base = env->segs[R_DS].base;
1156 Ctx.dsHid.u32Limit = env->segs[R_DS].limit;
1157 Ctx.dsHid.Attr.u = (env->segs[R_DS].flags >> 8) & 0xF0FF;
1158
1159 Ctx.es = env->segs[R_ES].selector;
1160 Ctx.esHid.u64Base = env->segs[R_ES].base;
1161 Ctx.esHid.u32Limit = env->segs[R_ES].limit;
1162 Ctx.esHid.Attr.u = (env->segs[R_ES].flags >> 8) & 0xF0FF;
1163
1164 Ctx.fs = env->segs[R_FS].selector;
1165 Ctx.fsHid.u64Base = env->segs[R_FS].base;
1166 Ctx.fsHid.u32Limit = env->segs[R_FS].limit;
1167 Ctx.fsHid.Attr.u = (env->segs[R_FS].flags >> 8) & 0xF0FF;
1168
1169 Ctx.gs = env->segs[R_GS].selector;
1170 Ctx.gsHid.u64Base = env->segs[R_GS].base;
1171 Ctx.gsHid.u32Limit = env->segs[R_GS].limit;
1172 Ctx.gsHid.Attr.u = (env->segs[R_GS].flags >> 8) & 0xF0FF;
1173
1174 Ctx.ss = env->segs[R_SS].selector;
1175 Ctx.ssHid.u64Base = env->segs[R_SS].base;
1176 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1177 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1178
1179 Ctx.msrEFER = env->efer;
1180
1181 /* Hardware accelerated raw-mode:
1182 *
1183 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1184 */
1185 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1186 {
1187 *piException = EXCP_EXECUTE_HWACC;
1188 return true;
1189 }
1190 return false;
1191 }
1192
1193 /*
1194 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1195 * or 32 bits protected mode ring 0 code
1196 *
1197 * The tests are ordered by the likelyhood of being true during normal execution.
1198 */
1199 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1200 {
1201 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1202 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1203 return false;
1204 }
1205
1206#ifndef VBOX_RAW_V86
1207 if (fFlags & VM_MASK) {
1208 STAM_COUNTER_INC(&gStatRefuseVM86);
1209 Log2(("raw mode refused: VM_MASK\n"));
1210 return false;
1211 }
1212#endif
1213
1214 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1215 {
1216#ifndef DEBUG_bird
1217 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1218#endif
1219 return false;
1220 }
1221
1222 if (env->singlestep_enabled)
1223 {
1224 //Log2(("raw mode refused: Single step\n"));
1225 return false;
1226 }
1227
1228 if (env->nb_breakpoints > 0)
1229 {
1230 //Log2(("raw mode refused: Breakpoints\n"));
1231 return false;
1232 }
1233
1234 uint32_t u32CR0 = env->cr[0];
1235 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1236 {
1237 STAM_COUNTER_INC(&gStatRefusePaging);
1238 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1239 return false;
1240 }
1241
1242 if (env->cr[4] & CR4_PAE_MASK)
1243 {
1244 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1245 {
1246 STAM_COUNTER_INC(&gStatRefusePAE);
1247 return false;
1248 }
1249 }
1250
1251 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1252 {
1253 if (!EMIsRawRing3Enabled(env->pVM))
1254 return false;
1255
1256 if (!(env->eflags & IF_MASK))
1257 {
1258 STAM_COUNTER_INC(&gStatRefuseIF0);
1259 Log2(("raw mode refused: IF (RawR3)\n"));
1260 return false;
1261 }
1262
1263 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1264 {
1265 STAM_COUNTER_INC(&gStatRefuseWP0);
1266 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1267 return false;
1268 }
1269 }
1270 else
1271 {
1272 if (!EMIsRawRing0Enabled(env->pVM))
1273 return false;
1274
1275 // Let's start with pure 32 bits ring 0 code first
1276 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1277 {
1278 STAM_COUNTER_INC(&gStatRefuseCode16);
1279 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1280 return false;
1281 }
1282
1283 // Only R0
1284 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1285 {
1286 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1287 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1288 return false;
1289 }
1290
1291 if (!(u32CR0 & CR0_WP_MASK))
1292 {
1293 STAM_COUNTER_INC(&gStatRefuseWP0);
1294 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1295 return false;
1296 }
1297
1298 if (PATMIsPatchGCAddr(env->pVM, eip))
1299 {
1300 Log2(("raw r0 mode forced: patch code\n"));
1301 *piException = EXCP_EXECUTE_RAW;
1302 return true;
1303 }
1304
1305#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1306 if (!(env->eflags & IF_MASK))
1307 {
1308 STAM_COUNTER_INC(&gStatRefuseIF0);
1309 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1310 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1311 return false;
1312 }
1313#endif
1314
1315 env->state |= CPU_RAW_RING0;
1316 }
1317
1318 /*
1319 * Don't reschedule the first time we're called, because there might be
1320 * special reasons why we're here that is not covered by the above checks.
1321 */
1322 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1323 {
1324 Log2(("raw mode refused: first scheduling\n"));
1325 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1326 return false;
1327 }
1328
1329 Assert(PGMPhysIsA20Enabled(env->pVM));
1330 *piException = EXCP_EXECUTE_RAW;
1331 return true;
1332}
1333
1334
1335/**
1336 * Fetches a code byte.
1337 *
1338 * @returns Success indicator (bool) for ease of use.
1339 * @param env The CPU environment structure.
1340 * @param GCPtrInstr Where to fetch code.
1341 * @param pu8Byte Where to store the byte on success
1342 */
1343bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1344{
1345 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1346 if (VBOX_SUCCESS(rc))
1347 return true;
1348 return false;
1349}
1350
1351
1352/**
1353 * Flush (or invalidate if you like) page table/dir entry.
1354 *
1355 * (invlpg instruction; tlb_flush_page)
1356 *
1357 * @param env Pointer to cpu environment.
1358 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1359 */
1360void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1361{
1362 PVM pVM = env->pVM;
1363
1364 /*
1365 * When we're replaying invlpg instructions or restoring a saved
1366 * state we disable this path.
1367 */
1368 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1369 return;
1370 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1371 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1372
1373 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1374
1375 /*
1376 * Update the control registers before calling PGMFlushPage.
1377 */
1378 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1379 pCtx->cr0 = env->cr[0];
1380 pCtx->cr3 = env->cr[3];
1381 pCtx->cr4 = env->cr[4];
1382
1383 /*
1384 * Let PGM do the rest.
1385 */
1386 int rc = PGMInvalidatePage(pVM, GCPtr);
1387 if (VBOX_FAILURE(rc))
1388 {
1389 AssertMsgFailed(("remR3FlushPage %VGv failed with %d!!\n", GCPtr, rc));
1390 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1391 }
1392 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1393}
1394
1395
1396/**
1397 * Called from tlb_protect_code in order to write monitor a code page.
1398 *
1399 * @param env Pointer to the CPU environment.
1400 * @param GCPtr Code page to monitor
1401 */
1402void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1403{
1404#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1405 Assert(env->pVM->rem.s.fInREM);
1406 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1407 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1408 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1409 && !(env->eflags & VM_MASK) /* no V86 mode */
1410 && !HWACCMIsEnabled(env->pVM))
1411 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1412#endif
1413}
1414
1415/**
1416 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1417 *
1418 * @param env Pointer to the CPU environment.
1419 * @param GCPtr Code page to monitor
1420 */
1421void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
1422{
1423 Assert(env->pVM->rem.s.fInREM);
1424#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1425 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1426 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1427 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1428 && !(env->eflags & VM_MASK) /* no V86 mode */
1429 && !HWACCMIsEnabled(env->pVM))
1430 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1431#endif
1432}
1433
1434
1435/**
1436 * Called when the CPU is initialized, any of the CRx registers are changed or
1437 * when the A20 line is modified.
1438 *
1439 * @param env Pointer to the CPU environment.
1440 * @param fGlobal Set if the flush is global.
1441 */
1442void remR3FlushTLB(CPUState *env, bool fGlobal)
1443{
1444 PVM pVM = env->pVM;
1445
1446 /*
1447 * When we're replaying invlpg instructions or restoring a saved
1448 * state we disable this path.
1449 */
1450 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1451 return;
1452 Assert(pVM->rem.s.fInREM);
1453
1454 /*
1455 * The caller doesn't check cr4, so we have to do that for ourselves.
1456 */
1457 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1458 fGlobal = true;
1459 Log(("remR3FlushTLB: CR0=%RGr CR3=%RGr CR4=%RGr %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1460
1461 /*
1462 * Update the control registers before calling PGMR3FlushTLB.
1463 */
1464 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1465 pCtx->cr0 = env->cr[0];
1466 pCtx->cr3 = env->cr[3];
1467 pCtx->cr4 = env->cr[4];
1468
1469 /*
1470 * Let PGM do the rest.
1471 */
1472 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1473}
1474
1475
1476/**
1477 * Called when any of the cr0, cr4 or efer registers is updated.
1478 *
1479 * @param env Pointer to the CPU environment.
1480 */
1481void remR3ChangeCpuMode(CPUState *env)
1482{
1483 int rc;
1484 PVM pVM = env->pVM;
1485
1486 /*
1487 * When we're replaying loads or restoring a saved
1488 * state this path is disabled.
1489 */
1490 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1491 return;
1492 Assert(pVM->rem.s.fInREM);
1493
1494 /*
1495 * Update the control registers before calling PGMChangeMode()
1496 * as it may need to map whatever cr3 is pointing to.
1497 */
1498 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1499 pCtx->cr0 = env->cr[0];
1500 pCtx->cr3 = env->cr[3];
1501 pCtx->cr4 = env->cr[4];
1502
1503#ifdef TARGET_X86_64
1504 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1505 if (rc != VINF_SUCCESS)
1506 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1507#else
1508 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1509 if (rc != VINF_SUCCESS)
1510 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1511#endif
1512}
1513
1514
1515/**
1516 * Called from compiled code to run dma.
1517 *
1518 * @param env Pointer to the CPU environment.
1519 */
1520void remR3DmaRun(CPUState *env)
1521{
1522 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1523 PDMR3DmaRun(env->pVM);
1524 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1525}
1526
1527
1528/**
1529 * Called from compiled code to schedule pending timers in VMM
1530 *
1531 * @param env Pointer to the CPU environment.
1532 */
1533void remR3TimersRun(CPUState *env)
1534{
1535 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1536 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1537 TMR3TimerQueuesDo(env->pVM);
1538 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1539 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1540}
1541
1542
1543/**
1544 * Record trap occurance
1545 *
1546 * @returns VBox status code
1547 * @param env Pointer to the CPU environment.
1548 * @param uTrap Trap nr
1549 * @param uErrorCode Error code
1550 * @param pvNextEIP Next EIP
1551 */
1552int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1553{
1554 PVM pVM = env->pVM;
1555#ifdef VBOX_WITH_STATISTICS
1556 static STAMCOUNTER s_aStatTrap[255];
1557 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1558#endif
1559
1560#ifdef VBOX_WITH_STATISTICS
1561 if (uTrap < 255)
1562 {
1563 if (!s_aRegisters[uTrap])
1564 {
1565 s_aRegisters[uTrap] = true;
1566 char szStatName[64];
1567 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1568 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1569 }
1570 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1571 }
1572#endif
1573 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%VGv\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1574 if( uTrap < 0x20
1575 && (env->cr[0] & X86_CR0_PE)
1576 && !(env->eflags & X86_EFL_VM))
1577 {
1578#ifdef DEBUG
1579 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1580#endif
1581 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1582 {
1583 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%VGv\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1584 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1585 return VERR_REM_TOO_MANY_TRAPS;
1586 }
1587 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1588 pVM->rem.s.cPendingExceptions = 1;
1589 pVM->rem.s.uPendingException = uTrap;
1590 pVM->rem.s.uPendingExcptEIP = env->eip;
1591 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1592 }
1593 else
1594 {
1595 pVM->rem.s.cPendingExceptions = 0;
1596 pVM->rem.s.uPendingException = uTrap;
1597 pVM->rem.s.uPendingExcptEIP = env->eip;
1598 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1599 }
1600 return VINF_SUCCESS;
1601}
1602
1603
1604/*
1605 * Clear current active trap
1606 *
1607 * @param pVM VM Handle.
1608 */
1609void remR3TrapClear(PVM pVM)
1610{
1611 pVM->rem.s.cPendingExceptions = 0;
1612 pVM->rem.s.uPendingException = 0;
1613 pVM->rem.s.uPendingExcptEIP = 0;
1614 pVM->rem.s.uPendingExcptCR2 = 0;
1615}
1616
1617
1618/*
1619 * Record previous call instruction addresses
1620 *
1621 * @param env Pointer to the CPU environment.
1622 */
1623void remR3RecordCall(CPUState *env)
1624{
1625 CSAMR3RecordCallAddress(env->pVM, env->eip);
1626}
1627
1628
1629/**
1630 * Syncs the internal REM state with the VM.
1631 *
1632 * This must be called before REMR3Run() is invoked whenever when the REM
1633 * state is not up to date. Calling it several times in a row is not
1634 * permitted.
1635 *
1636 * @returns VBox status code.
1637 *
1638 * @param pVM VM Handle.
1639 * @param fFlushTBs Flush all translation blocks before executing code
1640 *
1641 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1642 * no do this since the majority of the callers don't want any unnecessary of events
1643 * pending that would immediatly interrupt execution.
1644 */
1645REMR3DECL(int) REMR3State(PVM pVM, bool fFlushTBs)
1646{
1647 Log2(("REMR3State:\n"));
1648 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1649 register const CPUMCTX *pCtx = pVM->rem.s.pCtx;
1650 register unsigned fFlags;
1651 bool fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1652 unsigned i;
1653
1654 Assert(!pVM->rem.s.fInREM);
1655 pVM->rem.s.fInStateSync = true;
1656
1657 if (fFlushTBs)
1658 {
1659 STAM_COUNTER_INC(&gStatFlushTBs);
1660 tb_flush(&pVM->rem.s.Env);
1661 }
1662
1663 /*
1664 * Copy the registers which require no special handling.
1665 */
1666#ifdef TARGET_X86_64
1667 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
1668 Assert(R_EAX == 0);
1669 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
1670 Assert(R_ECX == 1);
1671 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
1672 Assert(R_EDX == 2);
1673 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
1674 Assert(R_EBX == 3);
1675 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
1676 Assert(R_ESP == 4);
1677 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
1678 Assert(R_EBP == 5);
1679 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
1680 Assert(R_ESI == 6);
1681 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
1682 Assert(R_EDI == 7);
1683 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
1684 pVM->rem.s.Env.regs[8] = pCtx->r8;
1685 pVM->rem.s.Env.regs[9] = pCtx->r9;
1686 pVM->rem.s.Env.regs[10] = pCtx->r10;
1687 pVM->rem.s.Env.regs[11] = pCtx->r11;
1688 pVM->rem.s.Env.regs[12] = pCtx->r12;
1689 pVM->rem.s.Env.regs[13] = pCtx->r13;
1690 pVM->rem.s.Env.regs[14] = pCtx->r14;
1691 pVM->rem.s.Env.regs[15] = pCtx->r15;
1692
1693 pVM->rem.s.Env.eip = pCtx->rip;
1694
1695 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
1696#else
1697 Assert(R_EAX == 0);
1698 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1699 Assert(R_ECX == 1);
1700 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1701 Assert(R_EDX == 2);
1702 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1703 Assert(R_EBX == 3);
1704 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1705 Assert(R_ESP == 4);
1706 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1707 Assert(R_EBP == 5);
1708 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1709 Assert(R_ESI == 6);
1710 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1711 Assert(R_EDI == 7);
1712 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1713 pVM->rem.s.Env.eip = pCtx->eip;
1714
1715 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1716#endif
1717
1718 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1719
1720 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1721 for (i=0;i<8;i++)
1722 pVM->rem.s.Env.dr[i] = pCtx->dr[i];
1723
1724 /*
1725 * Clear the halted hidden flag (the interrupt waking up the CPU can
1726 * have been dispatched in raw mode).
1727 */
1728 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1729
1730 /*
1731 * Replay invlpg?
1732 */
1733 if (pVM->rem.s.cInvalidatedPages)
1734 {
1735 pVM->rem.s.fIgnoreInvlPg = true;
1736 RTUINT i;
1737 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1738 {
1739 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1740 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1741 }
1742 pVM->rem.s.fIgnoreInvlPg = false;
1743 pVM->rem.s.cInvalidatedPages = 0;
1744 }
1745
1746 /* Replay notification changes? */
1747 if (pVM->rem.s.cHandlerNotifications)
1748 REMR3ReplayHandlerNotifications(pVM);
1749
1750 /* Update MSRs; before CRx registers! */
1751 pVM->rem.s.Env.efer = pCtx->msrEFER;
1752 pVM->rem.s.Env.star = pCtx->msrSTAR;
1753 pVM->rem.s.Env.pat = pCtx->msrPAT;
1754#ifdef TARGET_X86_64
1755 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1756 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1757 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1758 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1759
1760 /* Update the internal long mode activate flag according to the new EFER value. */
1761 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1762 pVM->rem.s.Env.hflags |= HF_LMA_MASK;
1763 else
1764 pVM->rem.s.Env.hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
1765#endif
1766
1767
1768 /*
1769 * Registers which are rarely changed and require special handling / order when changed.
1770 */
1771 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1772 LogFlow(("CPUMGetAndClearChangedFlagsREM %x\n", fFlags));
1773 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1774 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1775 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
1776 {
1777 if (fFlags & CPUM_CHANGED_FPU_REM)
1778 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1779
1780 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1781 {
1782 pVM->rem.s.fIgnoreCR3Load = true;
1783 tlb_flush(&pVM->rem.s.Env, true);
1784 pVM->rem.s.fIgnoreCR3Load = false;
1785 }
1786
1787 /* CR4 before CR0! */
1788 if (fFlags & CPUM_CHANGED_CR4)
1789 {
1790 pVM->rem.s.fIgnoreCR3Load = true;
1791 pVM->rem.s.fIgnoreCpuMode = true;
1792 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1793 pVM->rem.s.fIgnoreCpuMode = false;
1794 pVM->rem.s.fIgnoreCR3Load = false;
1795 }
1796
1797 if (fFlags & CPUM_CHANGED_CR0)
1798 {
1799 pVM->rem.s.fIgnoreCR3Load = true;
1800 pVM->rem.s.fIgnoreCpuMode = true;
1801 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1802 pVM->rem.s.fIgnoreCpuMode = false;
1803 pVM->rem.s.fIgnoreCR3Load = false;
1804 }
1805
1806 if (fFlags & CPUM_CHANGED_CR3)
1807 {
1808 pVM->rem.s.fIgnoreCR3Load = true;
1809 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1810 pVM->rem.s.fIgnoreCR3Load = false;
1811 }
1812
1813 if (fFlags & CPUM_CHANGED_GDTR)
1814 {
1815 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1816 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1817 }
1818
1819 if (fFlags & CPUM_CHANGED_IDTR)
1820 {
1821 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1822 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1823 }
1824
1825 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1826 {
1827 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1828 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1829 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1830 }
1831
1832 if (fFlags & CPUM_CHANGED_LDTR)
1833 {
1834 if (fHiddenSelRegsValid)
1835 {
1836 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1837 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u64Base;
1838 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1839 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1840 }
1841 else
1842 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1843 }
1844
1845 if (fFlags & CPUM_CHANGED_TR)
1846 {
1847 if (fHiddenSelRegsValid)
1848 {
1849 pVM->rem.s.Env.tr.selector = pCtx->tr;
1850 pVM->rem.s.Env.tr.base = pCtx->trHid.u64Base;
1851 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1852 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1853 }
1854 else
1855 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1856
1857 /** @note do_interrupt will fault if the busy flag is still set.... */
1858 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1859 }
1860
1861 if (fFlags & CPUM_CHANGED_CPUID)
1862 {
1863 uint32_t u32Dummy;
1864
1865 /*
1866 * Get the CPUID features.
1867 */
1868 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
1869 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
1870 }
1871 }
1872
1873 /*
1874 * Update selector registers.
1875 * This must be done *after* we've synced gdt, ldt and crX registers
1876 * since we're reading the GDT/LDT om sync_seg. This will happen with
1877 * saved state which takes a quick dip into rawmode for instance.
1878 */
1879 /*
1880 * Stack; Note first check this one as the CPL might have changed. The
1881 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1882 */
1883
1884 if (fHiddenSelRegsValid)
1885 {
1886 /* The hidden selector registers are valid in the CPU context. */
1887 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1888
1889 /* Set current CPL */
1890 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1891
1892 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1893 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1894 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1895 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1896 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1897 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1898 }
1899 else
1900 {
1901 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1902 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1903 {
1904 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1905
1906 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1907 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1908#ifdef VBOX_WITH_STATISTICS
1909 if (pVM->rem.s.Env.segs[R_SS].newselector)
1910 {
1911 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1912 }
1913#endif
1914 }
1915 else
1916 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1917
1918 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1919 {
1920 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1921 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1922#ifdef VBOX_WITH_STATISTICS
1923 if (pVM->rem.s.Env.segs[R_ES].newselector)
1924 {
1925 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1926 }
1927#endif
1928 }
1929 else
1930 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1931
1932 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1933 {
1934 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1935 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1936#ifdef VBOX_WITH_STATISTICS
1937 if (pVM->rem.s.Env.segs[R_CS].newselector)
1938 {
1939 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1940 }
1941#endif
1942 }
1943 else
1944 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1945
1946 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1947 {
1948 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1949 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1950#ifdef VBOX_WITH_STATISTICS
1951 if (pVM->rem.s.Env.segs[R_DS].newselector)
1952 {
1953 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1954 }
1955#endif
1956 }
1957 else
1958 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1959
1960 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1961 * be the same but not the base/limit. */
1962 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1963 {
1964 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1965 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1966#ifdef VBOX_WITH_STATISTICS
1967 if (pVM->rem.s.Env.segs[R_FS].newselector)
1968 {
1969 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1970 }
1971#endif
1972 }
1973 else
1974 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1975
1976 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1977 {
1978 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1979 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1980#ifdef VBOX_WITH_STATISTICS
1981 if (pVM->rem.s.Env.segs[R_GS].newselector)
1982 {
1983 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1984 }
1985#endif
1986 }
1987 else
1988 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1989 }
1990
1991 /*
1992 * Check for traps.
1993 */
1994 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1995 TRPMEVENT enmType;
1996 uint8_t u8TrapNo;
1997 int rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
1998 if (VBOX_SUCCESS(rc))
1999 {
2000#ifdef DEBUG
2001 if (u8TrapNo == 0x80)
2002 {
2003 remR3DumpLnxSyscall(pVM);
2004 remR3DumpOBsdSyscall(pVM);
2005 }
2006#endif
2007
2008 pVM->rem.s.Env.exception_index = u8TrapNo;
2009 if (enmType != TRPM_SOFTWARE_INT)
2010 {
2011 pVM->rem.s.Env.exception_is_int = 0;
2012 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
2013 }
2014 else
2015 {
2016 /*
2017 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
2018 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
2019 * for int03 and into.
2020 */
2021 pVM->rem.s.Env.exception_is_int = 1;
2022 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 2;
2023 /* int 3 may be generated by one-byte 0xcc */
2024 if (u8TrapNo == 3)
2025 {
2026 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xcc)
2027 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2028 }
2029 /* int 4 may be generated by one-byte 0xce */
2030 else if (u8TrapNo == 4)
2031 {
2032 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xce)
2033 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2034 }
2035 }
2036
2037 /* get error code and cr2 if needed. */
2038 switch (u8TrapNo)
2039 {
2040 case 0x0e:
2041 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
2042 /* fallthru */
2043 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2044 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
2045 break;
2046
2047 case 0x11: case 0x08:
2048 default:
2049 pVM->rem.s.Env.error_code = 0;
2050 break;
2051 }
2052
2053 /*
2054 * We can now reset the active trap since the recompiler is gonna have a go at it.
2055 */
2056 rc = TRPMResetTrap(pVM);
2057 AssertRC(rc);
2058 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
2059 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
2060 }
2061
2062 /*
2063 * Clear old interrupt request flags; Check for pending hardware interrupts.
2064 * (See @remark for why we don't check for other FFs.)
2065 */
2066 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2067 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2068 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
2069 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2070
2071 /*
2072 * We're now in REM mode.
2073 */
2074 pVM->rem.s.fInREM = true;
2075 pVM->rem.s.fInStateSync = false;
2076 pVM->rem.s.cCanExecuteRaw = 0;
2077 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2078 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2079 return VINF_SUCCESS;
2080}
2081
2082
2083/**
2084 * Syncs back changes in the REM state to the the VM state.
2085 *
2086 * This must be called after invoking REMR3Run().
2087 * Calling it several times in a row is not permitted.
2088 *
2089 * @returns VBox status code.
2090 *
2091 * @param pVM VM Handle.
2092 */
2093REMR3DECL(int) REMR3StateBack(PVM pVM)
2094{
2095 Log2(("REMR3StateBack:\n"));
2096 Assert(pVM->rem.s.fInREM);
2097 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2098 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2099 unsigned i;
2100
2101 /*
2102 * Copy back the registers.
2103 * This is done in the order they are declared in the CPUMCTX structure.
2104 */
2105
2106 /** @todo FOP */
2107 /** @todo FPUIP */
2108 /** @todo CS */
2109 /** @todo FPUDP */
2110 /** @todo DS */
2111 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2112 pCtx->fpu.MXCSR = 0;
2113 pCtx->fpu.MXCSR_MASK = 0;
2114
2115 /** @todo check if FPU/XMM was actually used in the recompiler */
2116 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2117//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2118
2119#ifdef TARGET_X86_64
2120 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2121 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2122 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2123 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2124 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2125 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2126 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2127 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2128 pCtx->r8 = pVM->rem.s.Env.regs[8];
2129 pCtx->r9 = pVM->rem.s.Env.regs[9];
2130 pCtx->r10 = pVM->rem.s.Env.regs[10];
2131 pCtx->r11 = pVM->rem.s.Env.regs[11];
2132 pCtx->r12 = pVM->rem.s.Env.regs[12];
2133 pCtx->r13 = pVM->rem.s.Env.regs[13];
2134 pCtx->r14 = pVM->rem.s.Env.regs[14];
2135 pCtx->r15 = pVM->rem.s.Env.regs[15];
2136
2137 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2138
2139#else
2140 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2141 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2142 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2143 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2144 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2145 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2146 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2147
2148 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2149#endif
2150
2151 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2152
2153#ifdef VBOX_WITH_STATISTICS
2154 if (pVM->rem.s.Env.segs[R_SS].newselector)
2155 {
2156 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2157 }
2158 if (pVM->rem.s.Env.segs[R_GS].newselector)
2159 {
2160 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2161 }
2162 if (pVM->rem.s.Env.segs[R_FS].newselector)
2163 {
2164 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2165 }
2166 if (pVM->rem.s.Env.segs[R_ES].newselector)
2167 {
2168 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2169 }
2170 if (pVM->rem.s.Env.segs[R_DS].newselector)
2171 {
2172 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2173 }
2174 if (pVM->rem.s.Env.segs[R_CS].newselector)
2175 {
2176 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2177 }
2178#endif
2179 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2180 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2181 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2182 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2183 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2184
2185#ifdef TARGET_X86_64
2186 pCtx->rip = pVM->rem.s.Env.eip;
2187 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2188#else
2189 pCtx->eip = pVM->rem.s.Env.eip;
2190 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2191#endif
2192
2193 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2194 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2195 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2196 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2197
2198 for (i=0;i<8;i++)
2199 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2200
2201 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2202 if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
2203 {
2204 pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
2205 STAM_COUNTER_INC(&gStatREMGDTChange);
2206 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2207 }
2208
2209 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2210 if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
2211 {
2212 pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
2213 STAM_COUNTER_INC(&gStatREMIDTChange);
2214 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2215 }
2216
2217 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2218 {
2219 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2220 STAM_COUNTER_INC(&gStatREMLDTRChange);
2221 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2222 }
2223 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2224 {
2225 pCtx->tr = pVM->rem.s.Env.tr.selector;
2226 STAM_COUNTER_INC(&gStatREMTRChange);
2227 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2228 }
2229
2230 /** @todo These values could still be out of sync! */
2231 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2232 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2233 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2234 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2235
2236 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2237 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2238 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2239
2240 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2241 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2242 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2243
2244 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2245 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2246 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2247
2248 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2249 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2250 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2251
2252 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2253 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2254 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2255
2256 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2257 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2258 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2259
2260 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2261 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2262 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2263
2264 /* Sysenter MSR */
2265 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2266 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2267 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2268
2269 /* System MSRs. */
2270 pCtx->msrEFER = pVM->rem.s.Env.efer;
2271 pCtx->msrSTAR = pVM->rem.s.Env.star;
2272 pCtx->msrPAT = pVM->rem.s.Env.pat;
2273#ifdef TARGET_X86_64
2274 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2275 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2276 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2277 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2278#endif
2279
2280 remR3TrapClear(pVM);
2281
2282 /*
2283 * Check for traps.
2284 */
2285 if ( pVM->rem.s.Env.exception_index >= 0
2286 && pVM->rem.s.Env.exception_index < 256)
2287 {
2288 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2289 int rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2290 AssertRC(rc);
2291 switch (pVM->rem.s.Env.exception_index)
2292 {
2293 case 0x0e:
2294 TRPMSetFaultAddress(pVM, pCtx->cr2);
2295 /* fallthru */
2296 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2297 case 0x11: case 0x08: /* 0 */
2298 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2299 break;
2300 }
2301
2302 }
2303
2304 /*
2305 * We're not longer in REM mode.
2306 */
2307 pVM->rem.s.fInREM = false;
2308 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2309 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2310 return VINF_SUCCESS;
2311}
2312
2313
2314/**
2315 * This is called by the disassembler when it wants to update the cpu state
2316 * before for instance doing a register dump.
2317 */
2318static void remR3StateUpdate(PVM pVM)
2319{
2320 Assert(pVM->rem.s.fInREM);
2321 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2322 unsigned i;
2323
2324 /*
2325 * Copy back the registers.
2326 * This is done in the order they are declared in the CPUMCTX structure.
2327 */
2328
2329 /** @todo FOP */
2330 /** @todo FPUIP */
2331 /** @todo CS */
2332 /** @todo FPUDP */
2333 /** @todo DS */
2334 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2335 pCtx->fpu.MXCSR = 0;
2336 pCtx->fpu.MXCSR_MASK = 0;
2337
2338 /** @todo check if FPU/XMM was actually used in the recompiler */
2339 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2340//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2341
2342#ifdef TARGET_X86_64
2343 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2344 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2345 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2346 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2347 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2348 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2349 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2350 pCtx->r8 = pVM->rem.s.Env.regs[8];
2351 pCtx->r9 = pVM->rem.s.Env.regs[9];
2352 pCtx->r10 = pVM->rem.s.Env.regs[10];
2353 pCtx->r11 = pVM->rem.s.Env.regs[11];
2354 pCtx->r12 = pVM->rem.s.Env.regs[12];
2355 pCtx->r13 = pVM->rem.s.Env.regs[13];
2356 pCtx->r14 = pVM->rem.s.Env.regs[14];
2357 pCtx->r15 = pVM->rem.s.Env.regs[15];
2358
2359 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2360#else
2361 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2362 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2363 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2364 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2365 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2366 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2367 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2368
2369 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2370#endif
2371
2372 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2373
2374 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2375 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2376 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2377 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2378 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2379
2380#ifdef TARGET_X86_64
2381 pCtx->rip = pVM->rem.s.Env.eip;
2382 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2383#else
2384 pCtx->eip = pVM->rem.s.Env.eip;
2385 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2386#endif
2387
2388 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2389 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2390 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2391 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2392
2393 for (i=0;i<8;i++)
2394 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2395
2396 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2397 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2398 {
2399 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2400 STAM_COUNTER_INC(&gStatREMGDTChange);
2401 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2402 }
2403
2404 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2405 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2406 {
2407 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2408 STAM_COUNTER_INC(&gStatREMIDTChange);
2409 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2410 }
2411
2412 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2413 {
2414 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2415 STAM_COUNTER_INC(&gStatREMLDTRChange);
2416 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2417 }
2418 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2419 {
2420 pCtx->tr = pVM->rem.s.Env.tr.selector;
2421 STAM_COUNTER_INC(&gStatREMTRChange);
2422 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2423 }
2424
2425 /** @todo These values could still be out of sync! */
2426 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2427 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2428 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2429 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2430
2431 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2432 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2433 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2434
2435 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2436 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2437 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2438
2439 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2440 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2441 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2442
2443 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2444 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2445 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2446
2447 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2448 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2449 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2450
2451 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2452 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2453 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2454
2455 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2456 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2457 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2458
2459 /* Sysenter MSR */
2460 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2461 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2462 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2463
2464 /* System MSRs. */
2465 pCtx->msrEFER = pVM->rem.s.Env.efer;
2466 pCtx->msrSTAR = pVM->rem.s.Env.star;
2467 pCtx->msrPAT = pVM->rem.s.Env.pat;
2468#ifdef TARGET_X86_64
2469 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2470 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2471 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2472 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2473#endif
2474
2475}
2476
2477
2478/**
2479 * Update the VMM state information if we're currently in REM.
2480 *
2481 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2482 * we're currently executing in REM and the VMM state is invalid. This method will of
2483 * course check that we're executing in REM before syncing any data over to the VMM.
2484 *
2485 * @param pVM The VM handle.
2486 */
2487REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2488{
2489 if (pVM->rem.s.fInREM)
2490 remR3StateUpdate(pVM);
2491}
2492
2493
2494#undef LOG_GROUP
2495#define LOG_GROUP LOG_GROUP_REM
2496
2497
2498/**
2499 * Notify the recompiler about Address Gate 20 state change.
2500 *
2501 * This notification is required since A20 gate changes are
2502 * initialized from a device driver and the VM might just as
2503 * well be in REM mode as in RAW mode.
2504 *
2505 * @param pVM VM handle.
2506 * @param fEnable True if the gate should be enabled.
2507 * False if the gate should be disabled.
2508 */
2509REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2510{
2511 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2512 VM_ASSERT_EMT(pVM);
2513
2514 bool fSaved = pVM->rem.s.fIgnoreAll; /* just in case. */
2515 pVM->rem.s.fIgnoreAll = fSaved || !pVM->rem.s.fInREM;
2516
2517 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2518
2519 pVM->rem.s.fIgnoreAll = fSaved;
2520}
2521
2522
2523/**
2524 * Replays the invalidated recorded pages.
2525 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2526 *
2527 * @param pVM VM handle.
2528 */
2529REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2530{
2531 VM_ASSERT_EMT(pVM);
2532
2533 /*
2534 * Sync the required registers.
2535 */
2536 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2537 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2538 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2539 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2540
2541 /*
2542 * Replay the flushes.
2543 */
2544 pVM->rem.s.fIgnoreInvlPg = true;
2545 RTUINT i;
2546 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2547 {
2548 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2549 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2550 }
2551 pVM->rem.s.fIgnoreInvlPg = false;
2552 pVM->rem.s.cInvalidatedPages = 0;
2553}
2554
2555
2556/**
2557 * Replays the handler notification changes
2558 * Called in response to VM_FF_REM_HANDLER_NOTIFY from the RAW execution loop.
2559 *
2560 * @param pVM VM handle.
2561 */
2562REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2563{
2564 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2565 VM_ASSERT_EMT(pVM);
2566
2567 /*
2568 * Replay the flushes.
2569 */
2570 RTUINT i;
2571 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2572 pVM->rem.s.cHandlerNotifications = 0;
2573 for (i = 0; i < c; i++)
2574 {
2575 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2576 switch (pRec->enmKind)
2577 {
2578 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2579 REMR3NotifyHandlerPhysicalRegister(pVM,
2580 pRec->u.PhysicalRegister.enmType,
2581 pRec->u.PhysicalRegister.GCPhys,
2582 pRec->u.PhysicalRegister.cb,
2583 pRec->u.PhysicalRegister.fHasHCHandler);
2584 break;
2585
2586 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2587 REMR3NotifyHandlerPhysicalDeregister(pVM,
2588 pRec->u.PhysicalDeregister.enmType,
2589 pRec->u.PhysicalDeregister.GCPhys,
2590 pRec->u.PhysicalDeregister.cb,
2591 pRec->u.PhysicalDeregister.fHasHCHandler,
2592 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2593 break;
2594
2595 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2596 REMR3NotifyHandlerPhysicalModify(pVM,
2597 pRec->u.PhysicalModify.enmType,
2598 pRec->u.PhysicalModify.GCPhysOld,
2599 pRec->u.PhysicalModify.GCPhysNew,
2600 pRec->u.PhysicalModify.cb,
2601 pRec->u.PhysicalModify.fHasHCHandler,
2602 pRec->u.PhysicalModify.fRestoreAsRAM);
2603 break;
2604
2605 default:
2606 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2607 break;
2608 }
2609 }
2610 VM_FF_CLEAR(pVM, VM_FF_REM_HANDLER_NOTIFY);
2611}
2612
2613
2614/**
2615 * Notify REM about changed code page.
2616 *
2617 * @returns VBox status code.
2618 * @param pVM VM handle.
2619 * @param pvCodePage Code page address
2620 */
2621REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2622{
2623#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
2624 int rc;
2625 RTGCPHYS PhysGC;
2626 uint64_t flags;
2627
2628 VM_ASSERT_EMT(pVM);
2629
2630 /*
2631 * Get the physical page address.
2632 */
2633 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2634 if (rc == VINF_SUCCESS)
2635 {
2636 /*
2637 * Sync the required registers and flush the whole page.
2638 * (Easier to do the whole page than notifying it about each physical
2639 * byte that was changed.
2640 */
2641 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2642 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2643 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2644 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2645
2646 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2647 }
2648#endif
2649 return VINF_SUCCESS;
2650}
2651
2652
2653/**
2654 * Notification about a successful MMR3PhysRegister() call.
2655 *
2656 * @param pVM VM handle.
2657 * @param GCPhys The physical address the RAM.
2658 * @param cb Size of the memory.
2659 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2660 */
2661REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, unsigned fFlags)
2662{
2663 Log(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d fFlags=%d\n", GCPhys, cb, fFlags));
2664 VM_ASSERT_EMT(pVM);
2665
2666 /*
2667 * Validate input - we trust the caller.
2668 */
2669 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2670 Assert(cb);
2671 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2672
2673 /*
2674 * Base ram?
2675 */
2676 if (!GCPhys)
2677 {
2678 phys_ram_size = cb;
2679 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2680#ifndef VBOX_STRICT
2681 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2682 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2683#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2684 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2685 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2686 uint32_t cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2687 int rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2688 AssertRC(rc);
2689 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2690#endif
2691 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2692 }
2693
2694 /*
2695 * Register the ram.
2696 */
2697 Assert(!pVM->rem.s.fIgnoreAll);
2698 pVM->rem.s.fIgnoreAll = true;
2699
2700#ifdef VBOX_WITH_NEW_PHYS_CODE
2701 if (fFlags & MM_RAM_FLAGS_RESERVED)
2702 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2703 else
2704 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2705#else
2706 if (!GCPhys)
2707 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2708 else
2709 {
2710 if (fFlags & MM_RAM_FLAGS_RESERVED)
2711 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2712 else
2713 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2714 }
2715#endif
2716 Assert(pVM->rem.s.fIgnoreAll);
2717 pVM->rem.s.fIgnoreAll = false;
2718}
2719
2720#ifndef VBOX_WITH_NEW_PHYS_CODE
2721
2722/**
2723 * Notification about a successful PGMR3PhysRegisterChunk() call.
2724 *
2725 * @param pVM VM handle.
2726 * @param GCPhys The physical address the RAM.
2727 * @param cb Size of the memory.
2728 * @param pvRam The HC address of the RAM.
2729 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2730 */
2731REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2732{
2733 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2734 VM_ASSERT_EMT(pVM);
2735
2736 /*
2737 * Validate input - we trust the caller.
2738 */
2739 Assert(pvRam);
2740 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2741 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2742 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2743 Assert(fFlags == 0 /* normal RAM */);
2744 Assert(!pVM->rem.s.fIgnoreAll);
2745 pVM->rem.s.fIgnoreAll = true;
2746
2747 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2748
2749 Assert(pVM->rem.s.fIgnoreAll);
2750 pVM->rem.s.fIgnoreAll = false;
2751}
2752
2753
2754/**
2755 * Grows dynamically allocated guest RAM.
2756 * Will raise a fatal error if the operation fails.
2757 *
2758 * @param physaddr The physical address.
2759 */
2760void remR3GrowDynRange(unsigned long physaddr)
2761{
2762 int rc;
2763 PVM pVM = cpu_single_env->pVM;
2764
2765 LogFlow(("remR3GrowDynRange %VGp\n", physaddr));
2766 const RTGCPHYS GCPhys = physaddr;
2767 rc = PGM3PhysGrowRange(pVM, &GCPhys);
2768 if (VBOX_SUCCESS(rc))
2769 return;
2770
2771 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2772 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2773 AssertFatalFailed();
2774}
2775
2776#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2777
2778/**
2779 * Notification about a successful MMR3PhysRomRegister() call.
2780 *
2781 * @param pVM VM handle.
2782 * @param GCPhys The physical address of the ROM.
2783 * @param cb The size of the ROM.
2784 * @param pvCopy Pointer to the ROM copy.
2785 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2786 * This function will be called when ever the protection of the
2787 * shadow ROM changes (at reset and end of POST).
2788 */
2789REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2790{
2791 Log(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p fShadow=%RTbool\n", GCPhys, cb, pvCopy, fShadow));
2792 VM_ASSERT_EMT(pVM);
2793
2794 /*
2795 * Validate input - we trust the caller.
2796 */
2797 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2798 Assert(cb);
2799 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2800 Assert(pvCopy);
2801 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2802
2803 /*
2804 * Register the rom.
2805 */
2806 Assert(!pVM->rem.s.fIgnoreAll);
2807 pVM->rem.s.fIgnoreAll = true;
2808
2809 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2810
2811 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2812
2813 Assert(pVM->rem.s.fIgnoreAll);
2814 pVM->rem.s.fIgnoreAll = false;
2815}
2816
2817
2818/**
2819 * Notification about a successful memory deregistration or reservation.
2820 *
2821 * @param pVM VM Handle.
2822 * @param GCPhys Start physical address.
2823 * @param cb The size of the range.
2824 * @todo Rename to REMR3NotifyPhysRamDeregister (for MMIO2) as we won't
2825 * reserve any memory soon.
2826 */
2827REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2828{
2829 Log(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2830 VM_ASSERT_EMT(pVM);
2831
2832 /*
2833 * Validate input - we trust the caller.
2834 */
2835 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2836 Assert(cb);
2837 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2838
2839 /*
2840 * Unassigning the memory.
2841 */
2842 Assert(!pVM->rem.s.fIgnoreAll);
2843 pVM->rem.s.fIgnoreAll = true;
2844
2845 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2846
2847 Assert(pVM->rem.s.fIgnoreAll);
2848 pVM->rem.s.fIgnoreAll = false;
2849}
2850
2851
2852/**
2853 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2854 *
2855 * @param pVM VM Handle.
2856 * @param enmType Handler type.
2857 * @param GCPhys Handler range address.
2858 * @param cb Size of the handler range.
2859 * @param fHasHCHandler Set if the handler has a HC callback function.
2860 *
2861 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2862 * Handler memory type to memory which has no HC handler.
2863 */
2864REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2865{
2866 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%VGp fHasHCHandler=%d\n",
2867 enmType, GCPhys, cb, fHasHCHandler));
2868 VM_ASSERT_EMT(pVM);
2869 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2870 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2871
2872 if (pVM->rem.s.cHandlerNotifications)
2873 REMR3ReplayHandlerNotifications(pVM);
2874
2875 Assert(!pVM->rem.s.fIgnoreAll);
2876 pVM->rem.s.fIgnoreAll = true;
2877
2878 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2879 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2880 else if (fHasHCHandler)
2881 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2882
2883 Assert(pVM->rem.s.fIgnoreAll);
2884 pVM->rem.s.fIgnoreAll = false;
2885}
2886
2887
2888/**
2889 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2890 *
2891 * @param pVM VM Handle.
2892 * @param enmType Handler type.
2893 * @param GCPhys Handler range address.
2894 * @param cb Size of the handler range.
2895 * @param fHasHCHandler Set if the handler has a HC callback function.
2896 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2897 */
2898REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2899{
2900 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%VGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2901 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2902 VM_ASSERT_EMT(pVM);
2903
2904 if (pVM->rem.s.cHandlerNotifications)
2905 REMR3ReplayHandlerNotifications(pVM);
2906
2907 Assert(!pVM->rem.s.fIgnoreAll);
2908 pVM->rem.s.fIgnoreAll = true;
2909
2910/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
2911 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2912 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2913 else if (fHasHCHandler)
2914 {
2915 if (!fRestoreAsRAM)
2916 {
2917 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2918 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2919 }
2920 else
2921 {
2922 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2923 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2924 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2925 }
2926 }
2927
2928 Assert(pVM->rem.s.fIgnoreAll);
2929 pVM->rem.s.fIgnoreAll = false;
2930}
2931
2932
2933/**
2934 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2935 *
2936 * @param pVM VM Handle.
2937 * @param enmType Handler type.
2938 * @param GCPhysOld Old handler range address.
2939 * @param GCPhysNew New handler range address.
2940 * @param cb Size of the handler range.
2941 * @param fHasHCHandler Set if the handler has a HC callback function.
2942 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2943 */
2944REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2945{
2946 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%VGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
2947 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
2948 VM_ASSERT_EMT(pVM);
2949 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2950
2951 if (pVM->rem.s.cHandlerNotifications)
2952 REMR3ReplayHandlerNotifications(pVM);
2953
2954 if (fHasHCHandler)
2955 {
2956 Assert(!pVM->rem.s.fIgnoreAll);
2957 pVM->rem.s.fIgnoreAll = true;
2958
2959 /*
2960 * Reset the old page.
2961 */
2962 if (!fRestoreAsRAM)
2963 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2964 else
2965 {
2966 /* This is not perfect, but it'll do for PD monitoring... */
2967 Assert(cb == PAGE_SIZE);
2968 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2969 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2970 }
2971
2972 /*
2973 * Update the new page.
2974 */
2975 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2976 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2977 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2978
2979 Assert(pVM->rem.s.fIgnoreAll);
2980 pVM->rem.s.fIgnoreAll = false;
2981 }
2982}
2983
2984
2985/**
2986 * Checks if we're handling access to this page or not.
2987 *
2988 * @returns true if we're trapping access.
2989 * @returns false if we aren't.
2990 * @param pVM The VM handle.
2991 * @param GCPhys The physical address.
2992 *
2993 * @remark This function will only work correctly in VBOX_STRICT builds!
2994 */
2995REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
2996{
2997#ifdef VBOX_STRICT
2998 if (pVM->rem.s.cHandlerNotifications)
2999 REMR3ReplayHandlerNotifications(pVM);
3000
3001 unsigned long off = get_phys_page_offset(GCPhys);
3002 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
3003 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
3004 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
3005#else
3006 return false;
3007#endif
3008}
3009
3010
3011/**
3012 * Deals with a rare case in get_phys_addr_code where the code
3013 * is being monitored.
3014 *
3015 * It could also be an MMIO page, in which case we will raise a fatal error.
3016 *
3017 * @returns The physical address corresponding to addr.
3018 * @param env The cpu environment.
3019 * @param addr The virtual address.
3020 * @param pTLBEntry The TLB entry.
3021 */
3022target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
3023{
3024 PVM pVM = env->pVM;
3025 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
3026 {
3027 target_ulong ret = pTLBEntry->addend + addr;
3028 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv addr_code=%VGv addend=%VGp ret=%VGp\n",
3029 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
3030 return ret;
3031 }
3032 LogRel(("\nTrying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
3033 "*** handlers\n",
3034 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
3035 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
3036 LogRel(("*** mmio\n"));
3037 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
3038 LogRel(("*** phys\n"));
3039 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
3040 cpu_abort(env, "Trying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
3041 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
3042 AssertFatalFailed();
3043}
3044
3045
3046/** Validate the physical address passed to the read functions.
3047 * Useful for finding non-guest-ram reads/writes. */
3048#if 0 //1 /* disable if it becomes bothersome... */
3049# define VBOX_CHECK_ADDR(GCPhys) AssertMsg(PGMPhysIsGCPhysValid(cpu_single_env->pVM, (GCPhys)), ("%VGp\n", (GCPhys)))
3050#else
3051# define VBOX_CHECK_ADDR(GCPhys) do { } while (0)
3052#endif
3053
3054/**
3055 * Read guest RAM and ROM.
3056 *
3057 * @param SrcGCPhys The source address (guest physical).
3058 * @param pvDst The destination address.
3059 * @param cb Number of bytes
3060 */
3061void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3062{
3063 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3064 VBOX_CHECK_ADDR(SrcGCPhys);
3065 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3066 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3067}
3068
3069
3070/**
3071 * Read guest RAM and ROM, unsigned 8-bit.
3072 *
3073 * @param SrcGCPhys The source address (guest physical).
3074 */
3075uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3076{
3077 uint8_t val;
3078 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3079 VBOX_CHECK_ADDR(SrcGCPhys);
3080 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3081 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3082 return val;
3083}
3084
3085
3086/**
3087 * Read guest RAM and ROM, signed 8-bit.
3088 *
3089 * @param SrcGCPhys The source address (guest physical).
3090 */
3091int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3092{
3093 int8_t val;
3094 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3095 VBOX_CHECK_ADDR(SrcGCPhys);
3096 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3097 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3098 return val;
3099}
3100
3101
3102/**
3103 * Read guest RAM and ROM, unsigned 16-bit.
3104 *
3105 * @param SrcGCPhys The source address (guest physical).
3106 */
3107uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3108{
3109 uint16_t val;
3110 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3111 VBOX_CHECK_ADDR(SrcGCPhys);
3112 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3113 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3114 return val;
3115}
3116
3117
3118/**
3119 * Read guest RAM and ROM, signed 16-bit.
3120 *
3121 * @param SrcGCPhys The source address (guest physical).
3122 */
3123int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3124{
3125 uint16_t val;
3126 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3127 VBOX_CHECK_ADDR(SrcGCPhys);
3128 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3129 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3130 return val;
3131}
3132
3133
3134/**
3135 * Read guest RAM and ROM, unsigned 32-bit.
3136 *
3137 * @param SrcGCPhys The source address (guest physical).
3138 */
3139uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3140{
3141 uint32_t val;
3142 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3143 VBOX_CHECK_ADDR(SrcGCPhys);
3144 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3145 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3146 return val;
3147}
3148
3149
3150/**
3151 * Read guest RAM and ROM, signed 32-bit.
3152 *
3153 * @param SrcGCPhys The source address (guest physical).
3154 */
3155int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3156{
3157 int32_t val;
3158 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3159 VBOX_CHECK_ADDR(SrcGCPhys);
3160 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3161 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3162 return val;
3163}
3164
3165
3166/**
3167 * Read guest RAM and ROM, unsigned 64-bit.
3168 *
3169 * @param SrcGCPhys The source address (guest physical).
3170 */
3171uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3172{
3173 uint64_t val;
3174 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3175 VBOX_CHECK_ADDR(SrcGCPhys);
3176 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3177 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3178 return val;
3179}
3180
3181
3182/**
3183 * Write guest RAM.
3184 *
3185 * @param DstGCPhys The destination address (guest physical).
3186 * @param pvSrc The source address.
3187 * @param cb Number of bytes to write
3188 */
3189void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3190{
3191 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3192 VBOX_CHECK_ADDR(DstGCPhys);
3193 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3194 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3195}
3196
3197
3198/**
3199 * Write guest RAM, unsigned 8-bit.
3200 *
3201 * @param DstGCPhys The destination address (guest physical).
3202 * @param val Value
3203 */
3204void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3205{
3206 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3207 VBOX_CHECK_ADDR(DstGCPhys);
3208 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3209 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3210}
3211
3212
3213/**
3214 * Write guest RAM, unsigned 8-bit.
3215 *
3216 * @param DstGCPhys The destination address (guest physical).
3217 * @param val Value
3218 */
3219void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3220{
3221 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3222 VBOX_CHECK_ADDR(DstGCPhys);
3223 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3224 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3225}
3226
3227
3228/**
3229 * Write guest RAM, unsigned 32-bit.
3230 *
3231 * @param DstGCPhys The destination address (guest physical).
3232 * @param val Value
3233 */
3234void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3235{
3236 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3237 VBOX_CHECK_ADDR(DstGCPhys);
3238 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3239 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3240}
3241
3242
3243/**
3244 * Write guest RAM, unsigned 64-bit.
3245 *
3246 * @param DstGCPhys The destination address (guest physical).
3247 * @param val Value
3248 */
3249void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3250{
3251 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3252 VBOX_CHECK_ADDR(DstGCPhys);
3253 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3254 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3255}
3256
3257#undef LOG_GROUP
3258#define LOG_GROUP LOG_GROUP_REM_MMIO
3259
3260/** Read MMIO memory. */
3261static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3262{
3263 uint32_t u32 = 0;
3264 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3265 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3266 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3267 return u32;
3268}
3269
3270/** Read MMIO memory. */
3271static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3272{
3273 uint32_t u32 = 0;
3274 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3275 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3276 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3277 return u32;
3278}
3279
3280/** Read MMIO memory. */
3281static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3282{
3283 uint32_t u32 = 0;
3284 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3285 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3286 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3287 return u32;
3288}
3289
3290/** Write to MMIO memory. */
3291static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3292{
3293 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3294 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3295 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3296}
3297
3298/** Write to MMIO memory. */
3299static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3300{
3301 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3302 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3303 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3304}
3305
3306/** Write to MMIO memory. */
3307static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3308{
3309 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3310 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3311 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3312}
3313
3314
3315#undef LOG_GROUP
3316#define LOG_GROUP LOG_GROUP_REM_HANDLER
3317
3318/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3319
3320static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3321{
3322 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3323 uint8_t u8;
3324 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3325 return u8;
3326}
3327
3328static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3329{
3330 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3331 uint16_t u16;
3332 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3333 return u16;
3334}
3335
3336static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3337{
3338 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3339 uint32_t u32;
3340 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3341 return u32;
3342}
3343
3344static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3345{
3346 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3347 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3348}
3349
3350static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3351{
3352 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3353 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3354}
3355
3356static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3357{
3358 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3359 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3360}
3361
3362/* -+- disassembly -+- */
3363
3364#undef LOG_GROUP
3365#define LOG_GROUP LOG_GROUP_REM_DISAS
3366
3367
3368/**
3369 * Enables or disables singled stepped disassembly.
3370 *
3371 * @returns VBox status code.
3372 * @param pVM VM handle.
3373 * @param fEnable To enable set this flag, to disable clear it.
3374 */
3375static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3376{
3377 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3378 VM_ASSERT_EMT(pVM);
3379
3380 if (fEnable)
3381 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3382 else
3383 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3384 return VINF_SUCCESS;
3385}
3386
3387
3388/**
3389 * Enables or disables singled stepped disassembly.
3390 *
3391 * @returns VBox status code.
3392 * @param pVM VM handle.
3393 * @param fEnable To enable set this flag, to disable clear it.
3394 */
3395REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3396{
3397 PVMREQ pReq;
3398 int rc;
3399
3400 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3401 if (VM_IS_EMT(pVM))
3402 return remR3DisasEnableStepping(pVM, fEnable);
3403
3404 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3405 AssertRC(rc);
3406 if (VBOX_SUCCESS(rc))
3407 rc = pReq->iStatus;
3408 VMR3ReqFree(pReq);
3409 return rc;
3410}
3411
3412
3413#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3414/**
3415 * External Debugger Command: .remstep [on|off|1|0]
3416 */
3417static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3418{
3419 bool fEnable;
3420 int rc;
3421
3422 /* print status */
3423 if (cArgs == 0)
3424 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3425 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3426
3427 /* convert the argument and change the mode. */
3428 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3429 if (VBOX_FAILURE(rc))
3430 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3431 rc = REMR3DisasEnableStepping(pVM, fEnable);
3432 if (VBOX_FAILURE(rc))
3433 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3434 return rc;
3435}
3436#endif
3437
3438
3439/**
3440 * Disassembles n instructions and prints them to the log.
3441 *
3442 * @returns Success indicator.
3443 * @param env Pointer to the recompiler CPU structure.
3444 * @param f32BitCode Indicates that whether or not the code should
3445 * be disassembled as 16 or 32 bit. If -1 the CS
3446 * selector will be inspected.
3447 * @param nrInstructions Nr of instructions to disassemble
3448 * @param pszPrefix
3449 * @remark not currently used for anything but ad-hoc debugging.
3450 */
3451bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3452{
3453 int i;
3454
3455 /*
3456 * Determin 16/32 bit mode.
3457 */
3458 if (f32BitCode == -1)
3459 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3460
3461 /*
3462 * Convert cs:eip to host context address.
3463 * We don't care to much about cross page correctness presently.
3464 */
3465 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3466 void *pvPC;
3467 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3468 {
3469 Assert(PGMGetGuestMode(env->pVM) < PGMMODE_AMD64);
3470
3471 /* convert eip to physical address. */
3472 int rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3473 GCPtrPC,
3474 env->cr[3],
3475 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3476 &pvPC);
3477 if (VBOX_FAILURE(rc))
3478 {
3479 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3480 return false;
3481 pvPC = (char *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3482 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3483 }
3484 }
3485 else
3486 {
3487 /* physical address */
3488 int rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16, &pvPC);
3489 if (VBOX_FAILURE(rc))
3490 return false;
3491 }
3492
3493 /*
3494 * Disassemble.
3495 */
3496 RTINTPTR off = env->eip - (RTGCUINTPTR)pvPC;
3497 DISCPUSTATE Cpu;
3498 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3499 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3500 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3501 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3502 //Cpu.dwUserData[2] = GCPtrPC;
3503
3504 for (i=0;i<nrInstructions;i++)
3505 {
3506 char szOutput[256];
3507 uint32_t cbOp;
3508 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3509 return false;
3510 if (pszPrefix)
3511 Log(("%s: %s", pszPrefix, szOutput));
3512 else
3513 Log(("%s", szOutput));
3514
3515 pvPC += cbOp;
3516 }
3517 return true;
3518}
3519
3520
3521/** @todo need to test the new code, using the old code in the mean while. */
3522#define USE_OLD_DUMP_AND_DISASSEMBLY
3523
3524/**
3525 * Disassembles one instruction and prints it to the log.
3526 *
3527 * @returns Success indicator.
3528 * @param env Pointer to the recompiler CPU structure.
3529 * @param f32BitCode Indicates that whether or not the code should
3530 * be disassembled as 16 or 32 bit. If -1 the CS
3531 * selector will be inspected.
3532 * @param pszPrefix
3533 */
3534bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3535{
3536#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3537 PVM pVM = env->pVM;
3538
3539 /* Doesn't work in long mode. */
3540 if (env->hflags & HF_LMA_MASK)
3541 return false;
3542
3543 /*
3544 * Determin 16/32 bit mode.
3545 */
3546 if (f32BitCode == -1)
3547 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3548
3549 /*
3550 * Log registers
3551 */
3552 if (LogIs2Enabled())
3553 {
3554 remR3StateUpdate(pVM);
3555 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3556 }
3557
3558 /*
3559 * Convert cs:eip to host context address.
3560 * We don't care to much about cross page correctness presently.
3561 */
3562 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3563 void *pvPC;
3564 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3565 {
3566 /* convert eip to physical address. */
3567 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
3568 GCPtrPC,
3569 env->cr[3],
3570 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3571 &pvPC);
3572 if (VBOX_FAILURE(rc))
3573 {
3574 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3575 return false;
3576 pvPC = (char *)PATMR3QueryPatchMemHC(pVM, NULL)
3577 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3578 }
3579 }
3580 else
3581 {
3582
3583 /* physical address */
3584 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, &pvPC);
3585 if (VBOX_FAILURE(rc))
3586 return false;
3587 }
3588
3589 /*
3590 * Disassemble.
3591 */
3592 RTINTPTR off = env->eip - (RTGCUINTPTR)pvPC;
3593 DISCPUSTATE Cpu;
3594 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3595 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3596 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3597 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3598 //Cpu.dwUserData[2] = GCPtrPC;
3599 char szOutput[256];
3600 uint32_t cbOp;
3601 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3602 return false;
3603
3604 if (!f32BitCode)
3605 {
3606 if (pszPrefix)
3607 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3608 else
3609 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3610 }
3611 else
3612 {
3613 if (pszPrefix)
3614 Log(("%s: %s", pszPrefix, szOutput));
3615 else
3616 Log(("%s", szOutput));
3617 }
3618 return true;
3619
3620#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3621 PVM pVM = env->pVM;
3622 const bool fLog = LogIsEnabled();
3623 const bool fLog2 = LogIs2Enabled();
3624 int rc = VINF_SUCCESS;
3625
3626 /*
3627 * Don't bother if there ain't any log output to do.
3628 */
3629 if (!fLog && !fLog2)
3630 return true;
3631
3632 /*
3633 * Update the state so DBGF reads the correct register values.
3634 */
3635 remR3StateUpdate(pVM);
3636
3637 /*
3638 * Log registers if requested.
3639 */
3640 if (!fLog2)
3641 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3642
3643 /*
3644 * Disassemble to log.
3645 */
3646 if (fLog)
3647 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3648
3649 return VBOX_SUCCESS(rc);
3650#endif
3651}
3652
3653
3654/**
3655 * Disassemble recompiled code.
3656 *
3657 * @param phFileIgnored Ignored, logfile usually.
3658 * @param pvCode Pointer to the code block.
3659 * @param cb Size of the code block.
3660 */
3661void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3662{
3663 if (LogIs2Enabled())
3664 {
3665 unsigned off = 0;
3666 char szOutput[256];
3667 DISCPUSTATE Cpu;
3668
3669 memset(&Cpu, 0, sizeof(Cpu));
3670#ifdef RT_ARCH_X86
3671 Cpu.mode = CPUMODE_32BIT;
3672#else
3673 Cpu.mode = CPUMODE_64BIT;
3674#endif
3675
3676 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3677 while (off < cb)
3678 {
3679 uint32_t cbInstr;
3680 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3681 RTLogPrintf("%s", szOutput);
3682 else
3683 {
3684 RTLogPrintf("disas error\n");
3685 cbInstr = 1;
3686#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3687 break;
3688#endif
3689 }
3690 off += cbInstr;
3691 }
3692 }
3693 NOREF(phFileIgnored);
3694}
3695
3696
3697/**
3698 * Disassemble guest code.
3699 *
3700 * @param phFileIgnored Ignored, logfile usually.
3701 * @param uCode The guest address of the code to disassemble. (flat?)
3702 * @param cb Number of bytes to disassemble.
3703 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3704 */
3705void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3706{
3707 if (LogIs2Enabled())
3708 {
3709 PVM pVM = cpu_single_env->pVM;
3710
3711 /*
3712 * Update the state so DBGF reads the correct register values (flags).
3713 */
3714 remR3StateUpdate(pVM);
3715
3716 /*
3717 * Do the disassembling.
3718 */
3719 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
3720 RTSEL cs = cpu_single_env->segs[R_CS].selector;
3721 RTGCUINTPTR eip = uCode - cpu_single_env->segs[R_CS].base;
3722 for (;;)
3723 {
3724 char szBuf[256];
3725 uint32_t cbInstr;
3726 int rc = DBGFR3DisasInstrEx(pVM,
3727 cs,
3728 eip,
3729 0,
3730 szBuf, sizeof(szBuf),
3731 &cbInstr);
3732 if (VBOX_SUCCESS(rc))
3733 RTLogPrintf("%VGp %s\n", uCode, szBuf);
3734 else
3735 {
3736 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
3737 cbInstr = 1;
3738 }
3739
3740 /* next */
3741 if (cb <= cbInstr)
3742 break;
3743 cb -= cbInstr;
3744 uCode += cbInstr;
3745 eip += cbInstr;
3746 }
3747 }
3748 NOREF(phFileIgnored);
3749}
3750
3751
3752/**
3753 * Looks up a guest symbol.
3754 *
3755 * @returns Pointer to symbol name. This is a static buffer.
3756 * @param orig_addr The address in question.
3757 */
3758const char *lookup_symbol(target_ulong orig_addr)
3759{
3760 RTGCINTPTR off = 0;
3761 DBGFSYMBOL Sym;
3762 PVM pVM = cpu_single_env->pVM;
3763 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3764 if (VBOX_SUCCESS(rc))
3765 {
3766 static char szSym[sizeof(Sym.szName) + 48];
3767 if (!off)
3768 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3769 else if (off > 0)
3770 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3771 else
3772 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3773 return szSym;
3774 }
3775 return "<N/A>";
3776}
3777
3778
3779#undef LOG_GROUP
3780#define LOG_GROUP LOG_GROUP_REM
3781
3782
3783/* -+- FF notifications -+- */
3784
3785
3786/**
3787 * Notification about a pending interrupt.
3788 *
3789 * @param pVM VM Handle.
3790 * @param u8Interrupt Interrupt
3791 * @thread The emulation thread.
3792 */
3793REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3794{
3795 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3796 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3797}
3798
3799/**
3800 * Notification about a pending interrupt.
3801 *
3802 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3803 * @param pVM VM Handle.
3804 * @thread The emulation thread.
3805 */
3806REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3807{
3808 return pVM->rem.s.u32PendingInterrupt;
3809}
3810
3811/**
3812 * Notification about the interrupt FF being set.
3813 *
3814 * @param pVM VM Handle.
3815 * @thread The emulation thread.
3816 */
3817REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3818{
3819 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3820 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3821 if (pVM->rem.s.fInREM)
3822 {
3823 if (VM_IS_EMT(pVM))
3824 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3825 else
3826 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_HARD);
3827 }
3828}
3829
3830
3831/**
3832 * Notification about the interrupt FF being set.
3833 *
3834 * @param pVM VM Handle.
3835 * @thread Any.
3836 */
3837REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3838{
3839 LogFlow(("REMR3NotifyInterruptClear:\n"));
3840 if (pVM->rem.s.fInREM)
3841 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3842}
3843
3844
3845/**
3846 * Notification about pending timer(s).
3847 *
3848 * @param pVM VM Handle.
3849 * @thread Any.
3850 */
3851REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3852{
3853#ifndef DEBUG_bird
3854 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3855#endif
3856 if (pVM->rem.s.fInREM)
3857 {
3858 if (VM_IS_EMT(pVM))
3859 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3860 else
3861 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_TIMER);
3862 }
3863}
3864
3865
3866/**
3867 * Notification about pending DMA transfers.
3868 *
3869 * @param pVM VM Handle.
3870 * @thread Any.
3871 */
3872REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3873{
3874 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3875 if (pVM->rem.s.fInREM)
3876 {
3877 if (VM_IS_EMT(pVM))
3878 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3879 else
3880 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_DMA);
3881 }
3882}
3883
3884
3885/**
3886 * Notification about pending timer(s).
3887 *
3888 * @param pVM VM Handle.
3889 * @thread Any.
3890 */
3891REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3892{
3893 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3894 if (pVM->rem.s.fInREM)
3895 {
3896 if (VM_IS_EMT(pVM))
3897 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3898 else
3899 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3900 }
3901}
3902
3903
3904/**
3905 * Notification about pending FF set by an external thread.
3906 *
3907 * @param pVM VM handle.
3908 * @thread Any.
3909 */
3910REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3911{
3912 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3913 if (pVM->rem.s.fInREM)
3914 {
3915 if (VM_IS_EMT(pVM))
3916 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3917 else
3918 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3919 }
3920}
3921
3922
3923#ifdef VBOX_WITH_STATISTICS
3924void remR3ProfileStart(int statcode)
3925{
3926 STAMPROFILEADV *pStat;
3927 switch(statcode)
3928 {
3929 case STATS_EMULATE_SINGLE_INSTR:
3930 pStat = &gStatExecuteSingleInstr;
3931 break;
3932 case STATS_QEMU_COMPILATION:
3933 pStat = &gStatCompilationQEmu;
3934 break;
3935 case STATS_QEMU_RUN_EMULATED_CODE:
3936 pStat = &gStatRunCodeQEmu;
3937 break;
3938 case STATS_QEMU_TOTAL:
3939 pStat = &gStatTotalTimeQEmu;
3940 break;
3941 case STATS_QEMU_RUN_TIMERS:
3942 pStat = &gStatTimers;
3943 break;
3944 case STATS_TLB_LOOKUP:
3945 pStat= &gStatTBLookup;
3946 break;
3947 case STATS_IRQ_HANDLING:
3948 pStat= &gStatIRQ;
3949 break;
3950 case STATS_RAW_CHECK:
3951 pStat = &gStatRawCheck;
3952 break;
3953
3954 default:
3955 AssertMsgFailed(("unknown stat %d\n", statcode));
3956 return;
3957 }
3958 STAM_PROFILE_ADV_START(pStat, a);
3959}
3960
3961
3962void remR3ProfileStop(int statcode)
3963{
3964 STAMPROFILEADV *pStat;
3965 switch(statcode)
3966 {
3967 case STATS_EMULATE_SINGLE_INSTR:
3968 pStat = &gStatExecuteSingleInstr;
3969 break;
3970 case STATS_QEMU_COMPILATION:
3971 pStat = &gStatCompilationQEmu;
3972 break;
3973 case STATS_QEMU_RUN_EMULATED_CODE:
3974 pStat = &gStatRunCodeQEmu;
3975 break;
3976 case STATS_QEMU_TOTAL:
3977 pStat = &gStatTotalTimeQEmu;
3978 break;
3979 case STATS_QEMU_RUN_TIMERS:
3980 pStat = &gStatTimers;
3981 break;
3982 case STATS_TLB_LOOKUP:
3983 pStat= &gStatTBLookup;
3984 break;
3985 case STATS_IRQ_HANDLING:
3986 pStat= &gStatIRQ;
3987 break;
3988 case STATS_RAW_CHECK:
3989 pStat = &gStatRawCheck;
3990 break;
3991 default:
3992 AssertMsgFailed(("unknown stat %d\n", statcode));
3993 return;
3994 }
3995 STAM_PROFILE_ADV_STOP(pStat, a);
3996}
3997#endif
3998
3999/**
4000 * Raise an RC, force rem exit.
4001 *
4002 * @param pVM VM handle.
4003 * @param rc The rc.
4004 */
4005void remR3RaiseRC(PVM pVM, int rc)
4006{
4007 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
4008 Assert(pVM->rem.s.fInREM);
4009 VM_ASSERT_EMT(pVM);
4010 pVM->rem.s.rc = rc;
4011 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
4012}
4013
4014
4015/* -+- timers -+- */
4016
4017uint64_t cpu_get_tsc(CPUX86State *env)
4018{
4019 STAM_COUNTER_INC(&gStatCpuGetTSC);
4020 return TMCpuTickGet(env->pVM);
4021}
4022
4023
4024/* -+- interrupts -+- */
4025
4026void cpu_set_ferr(CPUX86State *env)
4027{
4028 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
4029 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4030}
4031
4032int cpu_get_pic_interrupt(CPUState *env)
4033{
4034 uint8_t u8Interrupt;
4035 int rc;
4036
4037 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4038 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4039 * with the (a)pic.
4040 */
4041 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4042 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4043 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4044 * remove this kludge. */
4045 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4046 {
4047 rc = VINF_SUCCESS;
4048 Assert(env->pVM->rem.s.u32PendingInterrupt >= 0 && env->pVM->rem.s.u32PendingInterrupt <= 255);
4049 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4050 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4051 }
4052 else
4053 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4054
4055 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
4056 if (VBOX_SUCCESS(rc))
4057 {
4058 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4059 env->interrupt_request |= CPU_INTERRUPT_HARD;
4060 return u8Interrupt;
4061 }
4062 return -1;
4063}
4064
4065
4066/* -+- local apic -+- */
4067
4068void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4069{
4070 int rc = PDMApicSetBase(env->pVM, val);
4071 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
4072}
4073
4074uint64_t cpu_get_apic_base(CPUX86State *env)
4075{
4076 uint64_t u64;
4077 int rc = PDMApicGetBase(env->pVM, &u64);
4078 if (VBOX_SUCCESS(rc))
4079 {
4080 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4081 return u64;
4082 }
4083 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
4084 return 0;
4085}
4086
4087void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4088{
4089 int rc = PDMApicSetTPR(env->pVM, val);
4090 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
4091}
4092
4093uint8_t cpu_get_apic_tpr(CPUX86State *env)
4094{
4095 uint8_t u8;
4096 int rc = PDMApicGetTPR(env->pVM, &u8, NULL);
4097 if (VBOX_SUCCESS(rc))
4098 {
4099 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4100 return u8;
4101 }
4102 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
4103 return 0;
4104}
4105
4106
4107uint64_t cpu_apic_rdmsr(CPUX86State *env, uint32_t reg)
4108{
4109 uint64_t value;
4110 int rc = PDMApicReadMSR(env->pVM, 0/* cpu */, reg, &value);
4111 if (VBOX_SUCCESS(rc))
4112 {
4113 LogFlow(("cpu_apic_rdms returns %#x\n", value));
4114 return value;
4115 }
4116 /** @todo: exception ? */
4117 LogFlow(("cpu_apic_rdms returns 0 (rc=%Vrc)\n", rc));
4118 return value;
4119}
4120
4121void cpu_apic_wrmsr(CPUX86State *env, uint32_t reg, uint64_t value)
4122{
4123 int rc = PDMApicWriteMSR(env->pVM, 0 /* cpu */, reg, value);
4124 /** @todo: exception if error ? */
4125 LogFlow(("cpu_apic_wrmsr: rc=%Vrc\n", rc)); NOREF(rc);
4126}
4127/* -+- I/O Ports -+- */
4128
4129#undef LOG_GROUP
4130#define LOG_GROUP LOG_GROUP_REM_IOPORT
4131
4132void cpu_outb(CPUState *env, int addr, int val)
4133{
4134 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4135 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4136
4137 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4138 if (RT_LIKELY(rc == VINF_SUCCESS))
4139 return;
4140 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4141 {
4142 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4143 remR3RaiseRC(env->pVM, rc);
4144 return;
4145 }
4146 remAbort(rc, __FUNCTION__);
4147}
4148
4149void cpu_outw(CPUState *env, int addr, int val)
4150{
4151 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4152 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4153 if (RT_LIKELY(rc == VINF_SUCCESS))
4154 return;
4155 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4156 {
4157 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4158 remR3RaiseRC(env->pVM, rc);
4159 return;
4160 }
4161 remAbort(rc, __FUNCTION__);
4162}
4163
4164void cpu_outl(CPUState *env, int addr, int val)
4165{
4166 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4167 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4168 if (RT_LIKELY(rc == VINF_SUCCESS))
4169 return;
4170 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4171 {
4172 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4173 remR3RaiseRC(env->pVM, rc);
4174 return;
4175 }
4176 remAbort(rc, __FUNCTION__);
4177}
4178
4179int cpu_inb(CPUState *env, int addr)
4180{
4181 uint32_t u32 = 0;
4182 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4183 if (RT_LIKELY(rc == VINF_SUCCESS))
4184 {
4185 if (/*addr != 0x61 && */addr != 0x71)
4186 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4187 return (int)u32;
4188 }
4189 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4190 {
4191 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4192 remR3RaiseRC(env->pVM, rc);
4193 return (int)u32;
4194 }
4195 remAbort(rc, __FUNCTION__);
4196 return 0xff;
4197}
4198
4199int cpu_inw(CPUState *env, int addr)
4200{
4201 uint32_t u32 = 0;
4202 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4203 if (RT_LIKELY(rc == VINF_SUCCESS))
4204 {
4205 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4206 return (int)u32;
4207 }
4208 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4209 {
4210 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4211 remR3RaiseRC(env->pVM, rc);
4212 return (int)u32;
4213 }
4214 remAbort(rc, __FUNCTION__);
4215 return 0xffff;
4216}
4217
4218int cpu_inl(CPUState *env, int addr)
4219{
4220 uint32_t u32 = 0;
4221 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4222 if (RT_LIKELY(rc == VINF_SUCCESS))
4223 {
4224//if (addr==0x01f0 && u32 == 0x6b6d)
4225// loglevel = ~0;
4226 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4227 return (int)u32;
4228 }
4229 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4230 {
4231 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4232 remR3RaiseRC(env->pVM, rc);
4233 return (int)u32;
4234 }
4235 remAbort(rc, __FUNCTION__);
4236 return 0xffffffff;
4237}
4238
4239#undef LOG_GROUP
4240#define LOG_GROUP LOG_GROUP_REM
4241
4242
4243/* -+- helpers and misc other interfaces -+- */
4244
4245/**
4246 * Perform the CPUID instruction.
4247 *
4248 * ASMCpuId cannot be invoked from some source files where this is used because of global
4249 * register allocations.
4250 *
4251 * @param env Pointer to the recompiler CPU structure.
4252 * @param uOperator CPUID operation (eax).
4253 * @param pvEAX Where to store eax.
4254 * @param pvEBX Where to store ebx.
4255 * @param pvECX Where to store ecx.
4256 * @param pvEDX Where to store edx.
4257 */
4258void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4259{
4260 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4261}
4262
4263
4264#if 0 /* not used */
4265/**
4266 * Interface for qemu hardware to report back fatal errors.
4267 */
4268void hw_error(const char *pszFormat, ...)
4269{
4270 /*
4271 * Bitch about it.
4272 */
4273 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4274 * this in my Odin32 tree at home! */
4275 va_list args;
4276 va_start(args, pszFormat);
4277 RTLogPrintf("fatal error in virtual hardware:");
4278 RTLogPrintfV(pszFormat, args);
4279 va_end(args);
4280 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4281
4282 /*
4283 * If we're in REM context we'll sync back the state before 'jumping' to
4284 * the EMs failure handling.
4285 */
4286 PVM pVM = cpu_single_env->pVM;
4287 if (pVM->rem.s.fInREM)
4288 REMR3StateBack(pVM);
4289 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4290 AssertMsgFailed(("EMR3FatalError returned!\n"));
4291}
4292#endif
4293
4294/**
4295 * Interface for the qemu cpu to report unhandled situation
4296 * raising a fatal VM error.
4297 */
4298void cpu_abort(CPUState *env, const char *pszFormat, ...)
4299{
4300 /*
4301 * Bitch about it.
4302 */
4303 RTLogFlags(NULL, "nodisabled nobuffered");
4304 va_list args;
4305 va_start(args, pszFormat);
4306 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4307 va_end(args);
4308 va_start(args, pszFormat);
4309 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4310 va_end(args);
4311
4312 /*
4313 * If we're in REM context we'll sync back the state before 'jumping' to
4314 * the EMs failure handling.
4315 */
4316 PVM pVM = cpu_single_env->pVM;
4317 if (pVM->rem.s.fInREM)
4318 REMR3StateBack(pVM);
4319 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4320 AssertMsgFailed(("EMR3FatalError returned!\n"));
4321}
4322
4323
4324/**
4325 * Aborts the VM.
4326 *
4327 * @param rc VBox error code.
4328 * @param pszTip Hint about why/when this happend.
4329 */
4330static void remAbort(int rc, const char *pszTip)
4331{
4332 /*
4333 * Bitch about it.
4334 */
4335 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4336 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4337
4338 /*
4339 * Jump back to where we entered the recompiler.
4340 */
4341 PVM pVM = cpu_single_env->pVM;
4342 if (pVM->rem.s.fInREM)
4343 REMR3StateBack(pVM);
4344 EMR3FatalError(pVM, rc);
4345 AssertMsgFailed(("EMR3FatalError returned!\n"));
4346}
4347
4348
4349/**
4350 * Dumps a linux system call.
4351 * @param pVM VM handle.
4352 */
4353void remR3DumpLnxSyscall(PVM pVM)
4354{
4355 static const char *apsz[] =
4356 {
4357 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4358 "sys_exit",
4359 "sys_fork",
4360 "sys_read",
4361 "sys_write",
4362 "sys_open", /* 5 */
4363 "sys_close",
4364 "sys_waitpid",
4365 "sys_creat",
4366 "sys_link",
4367 "sys_unlink", /* 10 */
4368 "sys_execve",
4369 "sys_chdir",
4370 "sys_time",
4371 "sys_mknod",
4372 "sys_chmod", /* 15 */
4373 "sys_lchown16",
4374 "sys_ni_syscall", /* old break syscall holder */
4375 "sys_stat",
4376 "sys_lseek",
4377 "sys_getpid", /* 20 */
4378 "sys_mount",
4379 "sys_oldumount",
4380 "sys_setuid16",
4381 "sys_getuid16",
4382 "sys_stime", /* 25 */
4383 "sys_ptrace",
4384 "sys_alarm",
4385 "sys_fstat",
4386 "sys_pause",
4387 "sys_utime", /* 30 */
4388 "sys_ni_syscall", /* old stty syscall holder */
4389 "sys_ni_syscall", /* old gtty syscall holder */
4390 "sys_access",
4391 "sys_nice",
4392 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4393 "sys_sync",
4394 "sys_kill",
4395 "sys_rename",
4396 "sys_mkdir",
4397 "sys_rmdir", /* 40 */
4398 "sys_dup",
4399 "sys_pipe",
4400 "sys_times",
4401 "sys_ni_syscall", /* old prof syscall holder */
4402 "sys_brk", /* 45 */
4403 "sys_setgid16",
4404 "sys_getgid16",
4405 "sys_signal",
4406 "sys_geteuid16",
4407 "sys_getegid16", /* 50 */
4408 "sys_acct",
4409 "sys_umount", /* recycled never used phys() */
4410 "sys_ni_syscall", /* old lock syscall holder */
4411 "sys_ioctl",
4412 "sys_fcntl", /* 55 */
4413 "sys_ni_syscall", /* old mpx syscall holder */
4414 "sys_setpgid",
4415 "sys_ni_syscall", /* old ulimit syscall holder */
4416 "sys_olduname",
4417 "sys_umask", /* 60 */
4418 "sys_chroot",
4419 "sys_ustat",
4420 "sys_dup2",
4421 "sys_getppid",
4422 "sys_getpgrp", /* 65 */
4423 "sys_setsid",
4424 "sys_sigaction",
4425 "sys_sgetmask",
4426 "sys_ssetmask",
4427 "sys_setreuid16", /* 70 */
4428 "sys_setregid16",
4429 "sys_sigsuspend",
4430 "sys_sigpending",
4431 "sys_sethostname",
4432 "sys_setrlimit", /* 75 */
4433 "sys_old_getrlimit",
4434 "sys_getrusage",
4435 "sys_gettimeofday",
4436 "sys_settimeofday",
4437 "sys_getgroups16", /* 80 */
4438 "sys_setgroups16",
4439 "old_select",
4440 "sys_symlink",
4441 "sys_lstat",
4442 "sys_readlink", /* 85 */
4443 "sys_uselib",
4444 "sys_swapon",
4445 "sys_reboot",
4446 "old_readdir",
4447 "old_mmap", /* 90 */
4448 "sys_munmap",
4449 "sys_truncate",
4450 "sys_ftruncate",
4451 "sys_fchmod",
4452 "sys_fchown16", /* 95 */
4453 "sys_getpriority",
4454 "sys_setpriority",
4455 "sys_ni_syscall", /* old profil syscall holder */
4456 "sys_statfs",
4457 "sys_fstatfs", /* 100 */
4458 "sys_ioperm",
4459 "sys_socketcall",
4460 "sys_syslog",
4461 "sys_setitimer",
4462 "sys_getitimer", /* 105 */
4463 "sys_newstat",
4464 "sys_newlstat",
4465 "sys_newfstat",
4466 "sys_uname",
4467 "sys_iopl", /* 110 */
4468 "sys_vhangup",
4469 "sys_ni_syscall", /* old "idle" system call */
4470 "sys_vm86old",
4471 "sys_wait4",
4472 "sys_swapoff", /* 115 */
4473 "sys_sysinfo",
4474 "sys_ipc",
4475 "sys_fsync",
4476 "sys_sigreturn",
4477 "sys_clone", /* 120 */
4478 "sys_setdomainname",
4479 "sys_newuname",
4480 "sys_modify_ldt",
4481 "sys_adjtimex",
4482 "sys_mprotect", /* 125 */
4483 "sys_sigprocmask",
4484 "sys_ni_syscall", /* old "create_module" */
4485 "sys_init_module",
4486 "sys_delete_module",
4487 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4488 "sys_quotactl",
4489 "sys_getpgid",
4490 "sys_fchdir",
4491 "sys_bdflush",
4492 "sys_sysfs", /* 135 */
4493 "sys_personality",
4494 "sys_ni_syscall", /* reserved for afs_syscall */
4495 "sys_setfsuid16",
4496 "sys_setfsgid16",
4497 "sys_llseek", /* 140 */
4498 "sys_getdents",
4499 "sys_select",
4500 "sys_flock",
4501 "sys_msync",
4502 "sys_readv", /* 145 */
4503 "sys_writev",
4504 "sys_getsid",
4505 "sys_fdatasync",
4506 "sys_sysctl",
4507 "sys_mlock", /* 150 */
4508 "sys_munlock",
4509 "sys_mlockall",
4510 "sys_munlockall",
4511 "sys_sched_setparam",
4512 "sys_sched_getparam", /* 155 */
4513 "sys_sched_setscheduler",
4514 "sys_sched_getscheduler",
4515 "sys_sched_yield",
4516 "sys_sched_get_priority_max",
4517 "sys_sched_get_priority_min", /* 160 */
4518 "sys_sched_rr_get_interval",
4519 "sys_nanosleep",
4520 "sys_mremap",
4521 "sys_setresuid16",
4522 "sys_getresuid16", /* 165 */
4523 "sys_vm86",
4524 "sys_ni_syscall", /* Old sys_query_module */
4525 "sys_poll",
4526 "sys_nfsservctl",
4527 "sys_setresgid16", /* 170 */
4528 "sys_getresgid16",
4529 "sys_prctl",
4530 "sys_rt_sigreturn",
4531 "sys_rt_sigaction",
4532 "sys_rt_sigprocmask", /* 175 */
4533 "sys_rt_sigpending",
4534 "sys_rt_sigtimedwait",
4535 "sys_rt_sigqueueinfo",
4536 "sys_rt_sigsuspend",
4537 "sys_pread64", /* 180 */
4538 "sys_pwrite64",
4539 "sys_chown16",
4540 "sys_getcwd",
4541 "sys_capget",
4542 "sys_capset", /* 185 */
4543 "sys_sigaltstack",
4544 "sys_sendfile",
4545 "sys_ni_syscall", /* reserved for streams1 */
4546 "sys_ni_syscall", /* reserved for streams2 */
4547 "sys_vfork", /* 190 */
4548 "sys_getrlimit",
4549 "sys_mmap2",
4550 "sys_truncate64",
4551 "sys_ftruncate64",
4552 "sys_stat64", /* 195 */
4553 "sys_lstat64",
4554 "sys_fstat64",
4555 "sys_lchown",
4556 "sys_getuid",
4557 "sys_getgid", /* 200 */
4558 "sys_geteuid",
4559 "sys_getegid",
4560 "sys_setreuid",
4561 "sys_setregid",
4562 "sys_getgroups", /* 205 */
4563 "sys_setgroups",
4564 "sys_fchown",
4565 "sys_setresuid",
4566 "sys_getresuid",
4567 "sys_setresgid", /* 210 */
4568 "sys_getresgid",
4569 "sys_chown",
4570 "sys_setuid",
4571 "sys_setgid",
4572 "sys_setfsuid", /* 215 */
4573 "sys_setfsgid",
4574 "sys_pivot_root",
4575 "sys_mincore",
4576 "sys_madvise",
4577 "sys_getdents64", /* 220 */
4578 "sys_fcntl64",
4579 "sys_ni_syscall", /* reserved for TUX */
4580 "sys_ni_syscall",
4581 "sys_gettid",
4582 "sys_readahead", /* 225 */
4583 "sys_setxattr",
4584 "sys_lsetxattr",
4585 "sys_fsetxattr",
4586 "sys_getxattr",
4587 "sys_lgetxattr", /* 230 */
4588 "sys_fgetxattr",
4589 "sys_listxattr",
4590 "sys_llistxattr",
4591 "sys_flistxattr",
4592 "sys_removexattr", /* 235 */
4593 "sys_lremovexattr",
4594 "sys_fremovexattr",
4595 "sys_tkill",
4596 "sys_sendfile64",
4597 "sys_futex", /* 240 */
4598 "sys_sched_setaffinity",
4599 "sys_sched_getaffinity",
4600 "sys_set_thread_area",
4601 "sys_get_thread_area",
4602 "sys_io_setup", /* 245 */
4603 "sys_io_destroy",
4604 "sys_io_getevents",
4605 "sys_io_submit",
4606 "sys_io_cancel",
4607 "sys_fadvise64", /* 250 */
4608 "sys_ni_syscall",
4609 "sys_exit_group",
4610 "sys_lookup_dcookie",
4611 "sys_epoll_create",
4612 "sys_epoll_ctl", /* 255 */
4613 "sys_epoll_wait",
4614 "sys_remap_file_pages",
4615 "sys_set_tid_address",
4616 "sys_timer_create",
4617 "sys_timer_settime", /* 260 */
4618 "sys_timer_gettime",
4619 "sys_timer_getoverrun",
4620 "sys_timer_delete",
4621 "sys_clock_settime",
4622 "sys_clock_gettime", /* 265 */
4623 "sys_clock_getres",
4624 "sys_clock_nanosleep",
4625 "sys_statfs64",
4626 "sys_fstatfs64",
4627 "sys_tgkill", /* 270 */
4628 "sys_utimes",
4629 "sys_fadvise64_64",
4630 "sys_ni_syscall" /* sys_vserver */
4631 };
4632
4633 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4634 switch (uEAX)
4635 {
4636 default:
4637 if (uEAX < ELEMENTS(apsz))
4638 Log(("REM: linux syscall %3d: %s (eip=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4639 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4640 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4641 else
4642 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4643 break;
4644
4645 }
4646}
4647
4648
4649/**
4650 * Dumps an OpenBSD system call.
4651 * @param pVM VM handle.
4652 */
4653void remR3DumpOBsdSyscall(PVM pVM)
4654{
4655 static const char *apsz[] =
4656 {
4657 "SYS_syscall", //0
4658 "SYS_exit", //1
4659 "SYS_fork", //2
4660 "SYS_read", //3
4661 "SYS_write", //4
4662 "SYS_open", //5
4663 "SYS_close", //6
4664 "SYS_wait4", //7
4665 "SYS_8",
4666 "SYS_link", //9
4667 "SYS_unlink", //10
4668 "SYS_11",
4669 "SYS_chdir", //12
4670 "SYS_fchdir", //13
4671 "SYS_mknod", //14
4672 "SYS_chmod", //15
4673 "SYS_chown", //16
4674 "SYS_break", //17
4675 "SYS_18",
4676 "SYS_19",
4677 "SYS_getpid", //20
4678 "SYS_mount", //21
4679 "SYS_unmount", //22
4680 "SYS_setuid", //23
4681 "SYS_getuid", //24
4682 "SYS_geteuid", //25
4683 "SYS_ptrace", //26
4684 "SYS_recvmsg", //27
4685 "SYS_sendmsg", //28
4686 "SYS_recvfrom", //29
4687 "SYS_accept", //30
4688 "SYS_getpeername", //31
4689 "SYS_getsockname", //32
4690 "SYS_access", //33
4691 "SYS_chflags", //34
4692 "SYS_fchflags", //35
4693 "SYS_sync", //36
4694 "SYS_kill", //37
4695 "SYS_38",
4696 "SYS_getppid", //39
4697 "SYS_40",
4698 "SYS_dup", //41
4699 "SYS_opipe", //42
4700 "SYS_getegid", //43
4701 "SYS_profil", //44
4702 "SYS_ktrace", //45
4703 "SYS_sigaction", //46
4704 "SYS_getgid", //47
4705 "SYS_sigprocmask", //48
4706 "SYS_getlogin", //49
4707 "SYS_setlogin", //50
4708 "SYS_acct", //51
4709 "SYS_sigpending", //52
4710 "SYS_osigaltstack", //53
4711 "SYS_ioctl", //54
4712 "SYS_reboot", //55
4713 "SYS_revoke", //56
4714 "SYS_symlink", //57
4715 "SYS_readlink", //58
4716 "SYS_execve", //59
4717 "SYS_umask", //60
4718 "SYS_chroot", //61
4719 "SYS_62",
4720 "SYS_63",
4721 "SYS_64",
4722 "SYS_65",
4723 "SYS_vfork", //66
4724 "SYS_67",
4725 "SYS_68",
4726 "SYS_sbrk", //69
4727 "SYS_sstk", //70
4728 "SYS_61",
4729 "SYS_vadvise", //72
4730 "SYS_munmap", //73
4731 "SYS_mprotect", //74
4732 "SYS_madvise", //75
4733 "SYS_76",
4734 "SYS_77",
4735 "SYS_mincore", //78
4736 "SYS_getgroups", //79
4737 "SYS_setgroups", //80
4738 "SYS_getpgrp", //81
4739 "SYS_setpgid", //82
4740 "SYS_setitimer", //83
4741 "SYS_84",
4742 "SYS_85",
4743 "SYS_getitimer", //86
4744 "SYS_87",
4745 "SYS_88",
4746 "SYS_89",
4747 "SYS_dup2", //90
4748 "SYS_91",
4749 "SYS_fcntl", //92
4750 "SYS_select", //93
4751 "SYS_94",
4752 "SYS_fsync", //95
4753 "SYS_setpriority", //96
4754 "SYS_socket", //97
4755 "SYS_connect", //98
4756 "SYS_99",
4757 "SYS_getpriority", //100
4758 "SYS_101",
4759 "SYS_102",
4760 "SYS_sigreturn", //103
4761 "SYS_bind", //104
4762 "SYS_setsockopt", //105
4763 "SYS_listen", //106
4764 "SYS_107",
4765 "SYS_108",
4766 "SYS_109",
4767 "SYS_110",
4768 "SYS_sigsuspend", //111
4769 "SYS_112",
4770 "SYS_113",
4771 "SYS_114",
4772 "SYS_115",
4773 "SYS_gettimeofday", //116
4774 "SYS_getrusage", //117
4775 "SYS_getsockopt", //118
4776 "SYS_119",
4777 "SYS_readv", //120
4778 "SYS_writev", //121
4779 "SYS_settimeofday", //122
4780 "SYS_fchown", //123
4781 "SYS_fchmod", //124
4782 "SYS_125",
4783 "SYS_setreuid", //126
4784 "SYS_setregid", //127
4785 "SYS_rename", //128
4786 "SYS_129",
4787 "SYS_130",
4788 "SYS_flock", //131
4789 "SYS_mkfifo", //132
4790 "SYS_sendto", //133
4791 "SYS_shutdown", //134
4792 "SYS_socketpair", //135
4793 "SYS_mkdir", //136
4794 "SYS_rmdir", //137
4795 "SYS_utimes", //138
4796 "SYS_139",
4797 "SYS_adjtime", //140
4798 "SYS_141",
4799 "SYS_142",
4800 "SYS_143",
4801 "SYS_144",
4802 "SYS_145",
4803 "SYS_146",
4804 "SYS_setsid", //147
4805 "SYS_quotactl", //148
4806 "SYS_149",
4807 "SYS_150",
4808 "SYS_151",
4809 "SYS_152",
4810 "SYS_153",
4811 "SYS_154",
4812 "SYS_nfssvc", //155
4813 "SYS_156",
4814 "SYS_157",
4815 "SYS_158",
4816 "SYS_159",
4817 "SYS_160",
4818 "SYS_getfh", //161
4819 "SYS_162",
4820 "SYS_163",
4821 "SYS_164",
4822 "SYS_sysarch", //165
4823 "SYS_166",
4824 "SYS_167",
4825 "SYS_168",
4826 "SYS_169",
4827 "SYS_170",
4828 "SYS_171",
4829 "SYS_172",
4830 "SYS_pread", //173
4831 "SYS_pwrite", //174
4832 "SYS_175",
4833 "SYS_176",
4834 "SYS_177",
4835 "SYS_178",
4836 "SYS_179",
4837 "SYS_180",
4838 "SYS_setgid", //181
4839 "SYS_setegid", //182
4840 "SYS_seteuid", //183
4841 "SYS_lfs_bmapv", //184
4842 "SYS_lfs_markv", //185
4843 "SYS_lfs_segclean", //186
4844 "SYS_lfs_segwait", //187
4845 "SYS_188",
4846 "SYS_189",
4847 "SYS_190",
4848 "SYS_pathconf", //191
4849 "SYS_fpathconf", //192
4850 "SYS_swapctl", //193
4851 "SYS_getrlimit", //194
4852 "SYS_setrlimit", //195
4853 "SYS_getdirentries", //196
4854 "SYS_mmap", //197
4855 "SYS___syscall", //198
4856 "SYS_lseek", //199
4857 "SYS_truncate", //200
4858 "SYS_ftruncate", //201
4859 "SYS___sysctl", //202
4860 "SYS_mlock", //203
4861 "SYS_munlock", //204
4862 "SYS_205",
4863 "SYS_futimes", //206
4864 "SYS_getpgid", //207
4865 "SYS_xfspioctl", //208
4866 "SYS_209",
4867 "SYS_210",
4868 "SYS_211",
4869 "SYS_212",
4870 "SYS_213",
4871 "SYS_214",
4872 "SYS_215",
4873 "SYS_216",
4874 "SYS_217",
4875 "SYS_218",
4876 "SYS_219",
4877 "SYS_220",
4878 "SYS_semget", //221
4879 "SYS_222",
4880 "SYS_223",
4881 "SYS_224",
4882 "SYS_msgget", //225
4883 "SYS_msgsnd", //226
4884 "SYS_msgrcv", //227
4885 "SYS_shmat", //228
4886 "SYS_229",
4887 "SYS_shmdt", //230
4888 "SYS_231",
4889 "SYS_clock_gettime", //232
4890 "SYS_clock_settime", //233
4891 "SYS_clock_getres", //234
4892 "SYS_235",
4893 "SYS_236",
4894 "SYS_237",
4895 "SYS_238",
4896 "SYS_239",
4897 "SYS_nanosleep", //240
4898 "SYS_241",
4899 "SYS_242",
4900 "SYS_243",
4901 "SYS_244",
4902 "SYS_245",
4903 "SYS_246",
4904 "SYS_247",
4905 "SYS_248",
4906 "SYS_249",
4907 "SYS_minherit", //250
4908 "SYS_rfork", //251
4909 "SYS_poll", //252
4910 "SYS_issetugid", //253
4911 "SYS_lchown", //254
4912 "SYS_getsid", //255
4913 "SYS_msync", //256
4914 "SYS_257",
4915 "SYS_258",
4916 "SYS_259",
4917 "SYS_getfsstat", //260
4918 "SYS_statfs", //261
4919 "SYS_fstatfs", //262
4920 "SYS_pipe", //263
4921 "SYS_fhopen", //264
4922 "SYS_265",
4923 "SYS_fhstatfs", //266
4924 "SYS_preadv", //267
4925 "SYS_pwritev", //268
4926 "SYS_kqueue", //269
4927 "SYS_kevent", //270
4928 "SYS_mlockall", //271
4929 "SYS_munlockall", //272
4930 "SYS_getpeereid", //273
4931 "SYS_274",
4932 "SYS_275",
4933 "SYS_276",
4934 "SYS_277",
4935 "SYS_278",
4936 "SYS_279",
4937 "SYS_280",
4938 "SYS_getresuid", //281
4939 "SYS_setresuid", //282
4940 "SYS_getresgid", //283
4941 "SYS_setresgid", //284
4942 "SYS_285",
4943 "SYS_mquery", //286
4944 "SYS_closefrom", //287
4945 "SYS_sigaltstack", //288
4946 "SYS_shmget", //289
4947 "SYS_semop", //290
4948 "SYS_stat", //291
4949 "SYS_fstat", //292
4950 "SYS_lstat", //293
4951 "SYS_fhstat", //294
4952 "SYS___semctl", //295
4953 "SYS_shmctl", //296
4954 "SYS_msgctl", //297
4955 "SYS_MAXSYSCALL", //298
4956 //299
4957 //300
4958 };
4959 uint32_t uEAX;
4960 if (!LogIsEnabled())
4961 return;
4962 uEAX = CPUMGetGuestEAX(pVM);
4963 switch (uEAX)
4964 {
4965 default:
4966 if (uEAX < ELEMENTS(apsz))
4967 {
4968 uint32_t au32Args[8] = {0};
4969 PGMPhysSimpleReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
4970 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
4971 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
4972 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
4973 }
4974 else
4975 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
4976 break;
4977 }
4978}
4979
4980
4981#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
4982/**
4983 * The Dll main entry point (stub).
4984 */
4985bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
4986{
4987 return true;
4988}
4989
4990void *memcpy(void *dst, const void *src, size_t size)
4991{
4992 uint8_t*pbDst = dst, *pbSrc = src;
4993 while (size-- > 0)
4994 *pbDst++ = *pbSrc++;
4995 return dst;
4996}
4997
4998#endif
4999
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette