VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 17389

Last change on this file since 17389 was 17366, checked in by vboxsync, 16 years ago

REM: Drop obsolete assertions on pvCopy in REMR3NotifyPhysRomRegister.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 160.1 KB
Line 
1/* $Id: VBoxRecompiler.c 17366 2009-03-05 00:49:16Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "exec-all.h"
29
30#include <VBox/rem.h>
31#include <VBox/vmapi.h>
32#include <VBox/tm.h>
33#include <VBox/ssm.h>
34#include <VBox/em.h>
35#include <VBox/trpm.h>
36#include <VBox/iom.h>
37#include <VBox/mm.h>
38#include <VBox/pgm.h>
39#include <VBox/pdm.h>
40#include <VBox/dbgf.h>
41#include <VBox/dbg.h>
42#include <VBox/hwaccm.h>
43#include <VBox/patm.h>
44#include <VBox/csam.h>
45#include "REMInternal.h"
46#include <VBox/vm.h>
47#include <VBox/param.h>
48#include <VBox/err.h>
49
50#include <VBox/log.h>
51#include <iprt/semaphore.h>
52#include <iprt/asm.h>
53#include <iprt/assert.h>
54#include <iprt/thread.h>
55#include <iprt/string.h>
56
57/* Don't wanna include everything. */
58extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
59extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
60extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
61extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
62extern void tlb_flush(CPUState *env, int flush_global);
63extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
64extern void sync_ldtr(CPUX86State *env1, int selector);
65
66#ifdef VBOX_STRICT
67unsigned long get_phys_page_offset(target_ulong addr);
68#endif
69
70
71/*******************************************************************************
72* Defined Constants And Macros *
73*******************************************************************************/
74
75/** Copy 80-bit fpu register at pSrc to pDst.
76 * This is probably faster than *calling* memcpy.
77 */
78#define REM_COPY_FPU_REG(pDst, pSrc) \
79 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
80
81
82/*******************************************************************************
83* Internal Functions *
84*******************************************************************************/
85static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
86static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
87static void remR3StateUpdate(PVM pVM);
88
89static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
90static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
91static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
92static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
93static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
94static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
95
96static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
97static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
98static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
99static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
100static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
101static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
102
103
104/*******************************************************************************
105* Global Variables *
106*******************************************************************************/
107
108/** @todo Move stats to REM::s some rainy day we have nothing do to. */
109#ifdef VBOX_WITH_STATISTICS
110static STAMPROFILEADV gStatExecuteSingleInstr;
111static STAMPROFILEADV gStatCompilationQEmu;
112static STAMPROFILEADV gStatRunCodeQEmu;
113static STAMPROFILEADV gStatTotalTimeQEmu;
114static STAMPROFILEADV gStatTimers;
115static STAMPROFILEADV gStatTBLookup;
116static STAMPROFILEADV gStatIRQ;
117static STAMPROFILEADV gStatRawCheck;
118static STAMPROFILEADV gStatMemRead;
119static STAMPROFILEADV gStatMemWrite;
120static STAMPROFILE gStatGCPhys2HCVirt;
121static STAMPROFILE gStatHCVirt2GCPhys;
122static STAMCOUNTER gStatCpuGetTSC;
123static STAMCOUNTER gStatRefuseTFInhibit;
124static STAMCOUNTER gStatRefuseVM86;
125static STAMCOUNTER gStatRefusePaging;
126static STAMCOUNTER gStatRefusePAE;
127static STAMCOUNTER gStatRefuseIOPLNot0;
128static STAMCOUNTER gStatRefuseIF0;
129static STAMCOUNTER gStatRefuseCode16;
130static STAMCOUNTER gStatRefuseWP0;
131static STAMCOUNTER gStatRefuseRing1or2;
132static STAMCOUNTER gStatRefuseCanExecute;
133static STAMCOUNTER gStatREMGDTChange;
134static STAMCOUNTER gStatREMIDTChange;
135static STAMCOUNTER gStatREMLDTRChange;
136static STAMCOUNTER gStatREMTRChange;
137static STAMCOUNTER gStatSelOutOfSync[6];
138static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
139static STAMCOUNTER gStatFlushTBs;
140/* in exec.c */
141extern uint32_t tlb_flush_count;
142extern uint32_t tb_flush_count;
143extern uint32_t tb_phys_invalidate_count;
144#endif
145
146/*
147 * Global stuff.
148 */
149
150/** MMIO read callbacks. */
151CPUReadMemoryFunc *g_apfnMMIORead[3] =
152{
153 remR3MMIOReadU8,
154 remR3MMIOReadU16,
155 remR3MMIOReadU32
156};
157
158/** MMIO write callbacks. */
159CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
160{
161 remR3MMIOWriteU8,
162 remR3MMIOWriteU16,
163 remR3MMIOWriteU32
164};
165
166/** Handler read callbacks. */
167CPUReadMemoryFunc *g_apfnHandlerRead[3] =
168{
169 remR3HandlerReadU8,
170 remR3HandlerReadU16,
171 remR3HandlerReadU32
172};
173
174/** Handler write callbacks. */
175CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
176{
177 remR3HandlerWriteU8,
178 remR3HandlerWriteU16,
179 remR3HandlerWriteU32
180};
181
182
183#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
184/*
185 * Debugger commands.
186 */
187static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
188
189/** '.remstep' arguments. */
190static const DBGCVARDESC g_aArgRemStep[] =
191{
192 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
193 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
194};
195
196/** Command descriptors. */
197static const DBGCCMD g_aCmds[] =
198{
199 {
200 .pszCmd ="remstep",
201 .cArgsMin = 0,
202 .cArgsMax = 1,
203 .paArgDescs = &g_aArgRemStep[0],
204 .cArgDescs = RT_ELEMENTS(g_aArgRemStep),
205 .pResultDesc = NULL,
206 .fFlags = 0,
207 .pfnHandler = remR3CmdDisasEnableStepping,
208 .pszSyntax = "[on/off]",
209 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
210 "If no arguments show the current state."
211 }
212};
213#endif
214
215
216/* Instantiate the structure signatures. */
217#define REM_STRUCT_OP 0
218#include "Sun/structs.h"
219
220
221
222/*******************************************************************************
223* Internal Functions *
224*******************************************************************************/
225static void remAbort(int rc, const char *pszTip);
226extern int testmath(void);
227
228/* Put them here to avoid unused variable warning. */
229AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
230#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
231//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
232/* Why did this have to be identical?? */
233AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
234#else
235AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
236#endif
237
238
239/**
240 * Initializes the REM.
241 *
242 * @returns VBox status code.
243 * @param pVM The VM to operate on.
244 */
245REMR3DECL(int) REMR3Init(PVM pVM)
246{
247 uint32_t u32Dummy;
248 unsigned i;
249
250 /*
251 * Assert sanity.
252 */
253 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
254 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
255 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
256#if defined(DEBUG) && !defined(RT_OS_SOLARIS) /// @todo fix the solaris math stuff.
257 Assert(!testmath());
258#endif
259 ASSERT_STRUCT_TABLE(Misc);
260 ASSERT_STRUCT_TABLE(TLB);
261 ASSERT_STRUCT_TABLE(SegmentCache);
262 ASSERT_STRUCT_TABLE(XMMReg);
263 ASSERT_STRUCT_TABLE(MMXReg);
264 ASSERT_STRUCT_TABLE(float_status);
265 ASSERT_STRUCT_TABLE(float32u);
266 ASSERT_STRUCT_TABLE(float64u);
267 ASSERT_STRUCT_TABLE(floatx80u);
268 ASSERT_STRUCT_TABLE(CPUState);
269
270 /*
271 * Init some internal data members.
272 */
273 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
274 pVM->rem.s.Env.pVM = pVM;
275#ifdef CPU_RAW_MODE_INIT
276 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
277#endif
278
279 /* ctx. */
280 pVM->rem.s.pCtx = CPUMQueryGuestCtxPtr(pVM);
281 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
282
283 /* ignore all notifications */
284 pVM->rem.s.fIgnoreAll = true;
285
286 /*
287 * Init the recompiler.
288 */
289 if (!cpu_x86_init(&pVM->rem.s.Env))
290 {
291 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
292 return VERR_GENERAL_FAILURE;
293 }
294 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
295 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
296
297 /* allocate code buffer for single instruction emulation. */
298 pVM->rem.s.Env.cbCodeBuffer = 4096;
299 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
300 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
301
302 /* finally, set the cpu_single_env global. */
303 cpu_single_env = &pVM->rem.s.Env;
304
305 /* Nothing is pending by default */
306 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
307
308 /*
309 * Register ram types.
310 */
311 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
312 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
313 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
314 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
315 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
316
317 /* stop ignoring. */
318 pVM->rem.s.fIgnoreAll = false;
319
320 /*
321 * Register the saved state data unit.
322 */
323 int rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
324 NULL, remR3Save, NULL,
325 NULL, remR3Load, NULL);
326 if (RT_FAILURE(rc))
327 return rc;
328
329#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
330 /*
331 * Debugger commands.
332 */
333 static bool fRegisteredCmds = false;
334 if (!fRegisteredCmds)
335 {
336 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
337 if (RT_SUCCESS(rc))
338 fRegisteredCmds = true;
339 }
340#endif
341
342#ifdef VBOX_WITH_STATISTICS
343 /*
344 * Statistics.
345 */
346 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
347 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
348 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
349 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
350 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
351 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
352 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
353 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
354 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
355 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
356 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
357 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
358
359 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
360
361 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
362 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
363 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
364 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
365 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
366 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
367 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
368 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
369 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
370 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
371 STAM_REG(pVM, &gStatFlushTBs, STAMTYPE_COUNTER, "/REM/FlushTB", STAMUNIT_OCCURENCES, "Number of TB flushes");
372
373 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
374 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
375 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
376 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
377
378 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
379 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
380 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
381 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
382 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
383 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
384
385 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
386 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
387 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
388 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
389 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
390 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
391
392 STAM_REG(pVM, &tb_flush_count, STAMTYPE_U32_RESET, "/REM/TbFlushCount", STAMUNIT_OCCURENCES, "tb_flush() calls");
393 STAM_REG(pVM, &tb_phys_invalidate_count,STAMTYPE_U32_RESET, "/REM/TbPhysInvldCount", STAMUNIT_OCCURENCES, "tb_phys_invalidate() calls");
394 STAM_REG(pVM, &tlb_flush_count, STAMTYPE_U32_RESET, "/REM/TlbFlushCount", STAMUNIT_OCCURENCES, "tlb_flush() calls");
395
396
397#endif
398
399#ifdef DEBUG_ALL_LOGGING
400 loglevel = ~0;
401#endif
402
403 return rc;
404}
405
406
407/**
408 * Terminates the REM.
409 *
410 * Termination means cleaning up and freeing all resources,
411 * the VM it self is at this point powered off or suspended.
412 *
413 * @returns VBox status code.
414 * @param pVM The VM to operate on.
415 */
416REMR3DECL(int) REMR3Term(PVM pVM)
417{
418 return VINF_SUCCESS;
419}
420
421
422/**
423 * The VM is being reset.
424 *
425 * For the REM component this means to call the cpu_reset() and
426 * reinitialize some state variables.
427 *
428 * @param pVM VM handle.
429 */
430REMR3DECL(void) REMR3Reset(PVM pVM)
431{
432 /*
433 * Reset the REM cpu.
434 */
435 pVM->rem.s.fIgnoreAll = true;
436 cpu_reset(&pVM->rem.s.Env);
437 pVM->rem.s.cInvalidatedPages = 0;
438 pVM->rem.s.fIgnoreAll = false;
439
440 /* Clear raw ring 0 init state */
441 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
442
443 /* Flush the TBs the next time we execute code here. */
444 pVM->rem.s.fFlushTBs = true;
445}
446
447
448/**
449 * Execute state save operation.
450 *
451 * @returns VBox status code.
452 * @param pVM VM Handle.
453 * @param pSSM SSM operation handle.
454 */
455static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
456{
457 LogFlow(("remR3Save:\n"));
458
459 /*
460 * Save the required CPU Env bits.
461 * (Not much because we're never in REM when doing the save.)
462 */
463 PREM pRem = &pVM->rem.s;
464 Assert(!pRem->fInREM);
465 SSMR3PutU32(pSSM, pRem->Env.hflags);
466 SSMR3PutU32(pSSM, ~0); /* separator */
467
468 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
469 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
470 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
471
472 return SSMR3PutU32(pSSM, ~0); /* terminator */
473}
474
475
476/**
477 * Execute state load operation.
478 *
479 * @returns VBox status code.
480 * @param pVM VM Handle.
481 * @param pSSM SSM operation handle.
482 * @param u32Version Data layout version.
483 */
484static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
485{
486 uint32_t u32Dummy;
487 uint32_t fRawRing0 = false;
488 LogFlow(("remR3Load:\n"));
489
490 /*
491 * Validate version.
492 */
493 if ( u32Version != REM_SAVED_STATE_VERSION
494 && u32Version != REM_SAVED_STATE_VERSION_VER1_6)
495 {
496 AssertMsgFailed(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
497 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
498 }
499
500 /*
501 * Do a reset to be on the safe side...
502 */
503 REMR3Reset(pVM);
504
505 /*
506 * Ignore all ignorable notifications.
507 * (Not doing this will cause serious trouble.)
508 */
509 pVM->rem.s.fIgnoreAll = true;
510
511 /*
512 * Load the required CPU Env bits.
513 * (Not much because we're never in REM when doing the save.)
514 */
515 PREM pRem = &pVM->rem.s;
516 Assert(!pRem->fInREM);
517 SSMR3GetU32(pSSM, &pRem->Env.hflags);
518 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
519 {
520 /* Redundant REM CPU state has to be loaded, but can be ignored. */
521 CPUX86State_Ver16 temp;
522 SSMR3GetMem(pSSM, &temp, RT_OFFSETOF(CPUX86State_Ver16, jmp_env));
523 }
524
525 uint32_t u32Sep;
526 int rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
527 if (RT_FAILURE(rc))
528 return rc;
529 if (u32Sep != ~0U)
530 {
531 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
532 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
533 }
534
535 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
536 SSMR3GetUInt(pSSM, &fRawRing0);
537 if (fRawRing0)
538 pRem->Env.state |= CPU_RAW_RING0;
539
540 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
541 {
542 /*
543 * Load the REM stuff.
544 */
545 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
546 if (RT_FAILURE(rc))
547 return rc;
548 if (pRem->cInvalidatedPages > RT_ELEMENTS(pRem->aGCPtrInvalidatedPages))
549 {
550 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
551 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
552 }
553 unsigned i;
554 for (i = 0; i < pRem->cInvalidatedPages; i++)
555 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
556 }
557
558 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
559 if (RT_FAILURE(rc))
560 return rc;
561
562 /* check the terminator. */
563 rc = SSMR3GetU32(pSSM, &u32Sep);
564 if (RT_FAILURE(rc))
565 return rc;
566 if (u32Sep != ~0U)
567 {
568 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
569 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
570 }
571
572 /*
573 * Get the CPUID features.
574 */
575 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
576 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
577
578 /*
579 * Sync the Load Flush the TLB
580 */
581 tlb_flush(&pRem->Env, 1);
582
583 /*
584 * Stop ignoring ignornable notifications.
585 */
586 pVM->rem.s.fIgnoreAll = false;
587
588 /*
589 * Sync the whole CPU state when executing code in the recompiler.
590 */
591 CPUMSetChangedFlags(pVM, CPUM_CHANGED_ALL);
592 return VINF_SUCCESS;
593}
594
595
596
597#undef LOG_GROUP
598#define LOG_GROUP LOG_GROUP_REM_RUN
599
600/**
601 * Single steps an instruction in recompiled mode.
602 *
603 * Before calling this function the REM state needs to be in sync with
604 * the VM. Call REMR3State() to perform the sync. It's only necessary
605 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
606 * and after calling REMR3StateBack().
607 *
608 * @returns VBox status code.
609 *
610 * @param pVM VM Handle.
611 */
612REMR3DECL(int) REMR3Step(PVM pVM)
613{
614 /*
615 * Lock the REM - we don't wanna have anyone interrupting us
616 * while stepping - and enabled single stepping. We also ignore
617 * pending interrupts and suchlike.
618 */
619 int interrupt_request = pVM->rem.s.Env.interrupt_request;
620 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
621 pVM->rem.s.Env.interrupt_request = 0;
622 cpu_single_step(&pVM->rem.s.Env, 1);
623
624 /*
625 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
626 */
627 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
628 bool fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
629
630 /*
631 * Execute and handle the return code.
632 * We execute without enabling the cpu tick, so on success we'll
633 * just flip it on and off to make sure it moves
634 */
635 int rc = cpu_exec(&pVM->rem.s.Env);
636 if (rc == EXCP_DEBUG)
637 {
638 TMCpuTickResume(pVM);
639 TMCpuTickPause(pVM);
640 TMVirtualResume(pVM);
641 TMVirtualPause(pVM);
642 rc = VINF_EM_DBG_STEPPED;
643 }
644 else
645 {
646 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
647 switch (rc)
648 {
649 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
650 case EXCP_HLT:
651 case EXCP_HALTED: rc = VINF_EM_HALT; break;
652 case EXCP_RC:
653 rc = pVM->rem.s.rc;
654 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
655 break;
656 default:
657 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
658 rc = VERR_INTERNAL_ERROR;
659 break;
660 }
661 }
662
663 /*
664 * Restore the stuff we changed to prevent interruption.
665 * Unlock the REM.
666 */
667 if (fBp)
668 {
669 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
670 Assert(rc2 == 0); NOREF(rc2);
671 }
672 cpu_single_step(&pVM->rem.s.Env, 0);
673 pVM->rem.s.Env.interrupt_request = interrupt_request;
674
675 return rc;
676}
677
678
679/**
680 * Set a breakpoint using the REM facilities.
681 *
682 * @returns VBox status code.
683 * @param pVM The VM handle.
684 * @param Address The breakpoint address.
685 * @thread The emulation thread.
686 */
687REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
688{
689 VM_ASSERT_EMT(pVM);
690 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
691 {
692 LogFlow(("REMR3BreakpointSet: Address=%RGv\n", Address));
693 return VINF_SUCCESS;
694 }
695 LogFlow(("REMR3BreakpointSet: Address=%RGv - failed!\n", Address));
696 return VERR_REM_NO_MORE_BP_SLOTS;
697}
698
699
700/**
701 * Clears a breakpoint set by REMR3BreakpointSet().
702 *
703 * @returns VBox status code.
704 * @param pVM The VM handle.
705 * @param Address The breakpoint address.
706 * @thread The emulation thread.
707 */
708REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
709{
710 VM_ASSERT_EMT(pVM);
711 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
712 {
713 LogFlow(("REMR3BreakpointClear: Address=%RGv\n", Address));
714 return VINF_SUCCESS;
715 }
716 LogFlow(("REMR3BreakpointClear: Address=%RGv - not found!\n", Address));
717 return VERR_REM_BP_NOT_FOUND;
718}
719
720
721/**
722 * Emulate an instruction.
723 *
724 * This function executes one instruction without letting anyone
725 * interrupt it. This is intended for being called while being in
726 * raw mode and thus will take care of all the state syncing between
727 * REM and the rest.
728 *
729 * @returns VBox status code.
730 * @param pVM VM handle.
731 */
732REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
733{
734 bool fFlushTBs;
735
736 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
737
738 /* Make sure this flag is set; we might never execute remR3CanExecuteRaw in the AMD-V case.
739 * CPU_RAW_HWACC makes sure we never execute interrupt handlers in the recompiler.
740 */
741 if (HWACCMIsEnabled(pVM))
742 pVM->rem.s.Env.state |= CPU_RAW_HWACC;
743
744 /* Skip the TB flush as that's rather expensive and not necessary for single instruction emulation. */
745 fFlushTBs = pVM->rem.s.fFlushTBs;
746 pVM->rem.s.fFlushTBs = false;
747
748 /*
749 * Sync the state and enable single instruction / single stepping.
750 */
751 int rc = REMR3State(pVM);
752 pVM->rem.s.fFlushTBs = fFlushTBs;
753 if (RT_SUCCESS(rc))
754 {
755 int interrupt_request = pVM->rem.s.Env.interrupt_request;
756 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
757 Assert(!pVM->rem.s.Env.singlestep_enabled);
758#if 1
759
760 /*
761 * Now we set the execute single instruction flag and enter the cpu_exec loop.
762 */
763 TMNotifyStartOfExecution(pVM);
764 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
765 rc = cpu_exec(&pVM->rem.s.Env);
766 TMNotifyEndOfExecution(pVM);
767 switch (rc)
768 {
769 /*
770 * Executed without anything out of the way happening.
771 */
772 case EXCP_SINGLE_INSTR:
773 rc = VINF_EM_RESCHEDULE;
774 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
775 break;
776
777 /*
778 * If we take a trap or start servicing a pending interrupt, we might end up here.
779 * (Timer thread or some other thread wishing EMT's attention.)
780 */
781 case EXCP_INTERRUPT:
782 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
783 rc = VINF_EM_RESCHEDULE;
784 break;
785
786 /*
787 * Single step, we assume!
788 * If there was a breakpoint there we're fucked now.
789 */
790 case EXCP_DEBUG:
791 {
792 /* breakpoint or single step? */
793 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
794 int iBP;
795 rc = VINF_EM_DBG_STEPPED;
796 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
797 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
798 {
799 rc = VINF_EM_DBG_BREAKPOINT;
800 break;
801 }
802 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Rrc iBP=%d GCPtrPC=%RGv\n", rc, iBP, GCPtrPC));
803 break;
804 }
805
806 /*
807 * hlt instruction.
808 */
809 case EXCP_HLT:
810 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
811 rc = VINF_EM_HALT;
812 break;
813
814 /*
815 * The VM has halted.
816 */
817 case EXCP_HALTED:
818 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
819 rc = VINF_EM_HALT;
820 break;
821
822 /*
823 * Switch to RAW-mode.
824 */
825 case EXCP_EXECUTE_RAW:
826 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
827 rc = VINF_EM_RESCHEDULE_RAW;
828 break;
829
830 /*
831 * Switch to hardware accelerated RAW-mode.
832 */
833 case EXCP_EXECUTE_HWACC:
834 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
835 rc = VINF_EM_RESCHEDULE_HWACC;
836 break;
837
838 /*
839 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
840 */
841 case EXCP_RC:
842 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
843 rc = pVM->rem.s.rc;
844 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
845 break;
846
847 /*
848 * Figure out the rest when they arrive....
849 */
850 default:
851 AssertMsgFailed(("rc=%d\n", rc));
852 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
853 rc = VINF_EM_RESCHEDULE;
854 break;
855 }
856
857 /*
858 * Switch back the state.
859 */
860#else
861 pVM->rem.s.Env.interrupt_request = 0;
862 cpu_single_step(&pVM->rem.s.Env, 1);
863
864 /*
865 * Execute and handle the return code.
866 * We execute without enabling the cpu tick, so on success we'll
867 * just flip it on and off to make sure it moves.
868 *
869 * (We do not use emulate_single_instr() because that doesn't enter the
870 * right way in will cause serious trouble if a longjmp was attempted.)
871 */
872# ifdef DEBUG_bird
873 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
874# endif
875 TMNotifyStartOfExecution(pVM);
876 int cTimesMax = 16384;
877 uint32_t eip = pVM->rem.s.Env.eip;
878 do
879 {
880 rc = cpu_exec(&pVM->rem.s.Env);
881
882 } while ( eip == pVM->rem.s.Env.eip
883 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
884 && --cTimesMax > 0);
885 TMNotifyEndOfExecution(pVM);
886 switch (rc)
887 {
888 /*
889 * Single step, we assume!
890 * If there was a breakpoint there we're fucked now.
891 */
892 case EXCP_DEBUG:
893 {
894 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
895 rc = VINF_EM_RESCHEDULE;
896 break;
897 }
898
899 /*
900 * We cannot be interrupted!
901 */
902 case EXCP_INTERRUPT:
903 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
904 rc = VERR_INTERNAL_ERROR;
905 break;
906
907 /*
908 * hlt instruction.
909 */
910 case EXCP_HLT:
911 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
912 rc = VINF_EM_HALT;
913 break;
914
915 /*
916 * The VM has halted.
917 */
918 case EXCP_HALTED:
919 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
920 rc = VINF_EM_HALT;
921 break;
922
923 /*
924 * Switch to RAW-mode.
925 */
926 case EXCP_EXECUTE_RAW:
927 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
928 rc = VINF_EM_RESCHEDULE_RAW;
929 break;
930
931 /*
932 * Switch to hardware accelerated RAW-mode.
933 */
934 case EXCP_EXECUTE_HWACC:
935 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
936 rc = VINF_EM_RESCHEDULE_HWACC;
937 break;
938
939 /*
940 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
941 */
942 case EXCP_RC:
943 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Rrc\n", pVM->rem.s.rc));
944 rc = pVM->rem.s.rc;
945 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
946 break;
947
948 /*
949 * Figure out the rest when they arrive....
950 */
951 default:
952 AssertMsgFailed(("rc=%d\n", rc));
953 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
954 rc = VINF_SUCCESS;
955 break;
956 }
957
958 /*
959 * Switch back the state.
960 */
961 cpu_single_step(&pVM->rem.s.Env, 0);
962#endif
963 pVM->rem.s.Env.interrupt_request = interrupt_request;
964 int rc2 = REMR3StateBack(pVM);
965 AssertRC(rc2);
966 }
967
968 Log2(("REMR3EmulateInstruction: returns %Rrc (cs:eip=%04x:%RGv)\n",
969 rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
970 return rc;
971}
972
973
974/**
975 * Runs code in recompiled mode.
976 *
977 * Before calling this function the REM state needs to be in sync with
978 * the VM. Call REMR3State() to perform the sync. It's only necessary
979 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
980 * and after calling REMR3StateBack().
981 *
982 * @returns VBox status code.
983 *
984 * @param pVM VM Handle.
985 */
986REMR3DECL(int) REMR3Run(PVM pVM)
987{
988 Log2(("REMR3Run: (cs:eip=%04x:%RGv)\n", pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
989 Assert(pVM->rem.s.fInREM);
990
991 TMNotifyStartOfExecution(pVM);
992 int rc = cpu_exec(&pVM->rem.s.Env);
993 TMNotifyEndOfExecution(pVM);
994 switch (rc)
995 {
996 /*
997 * This happens when the execution was interrupted
998 * by an external event, like pending timers.
999 */
1000 case EXCP_INTERRUPT:
1001 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
1002 rc = VINF_SUCCESS;
1003 break;
1004
1005 /*
1006 * hlt instruction.
1007 */
1008 case EXCP_HLT:
1009 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
1010 rc = VINF_EM_HALT;
1011 break;
1012
1013 /*
1014 * The VM has halted.
1015 */
1016 case EXCP_HALTED:
1017 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1018 rc = VINF_EM_HALT;
1019 break;
1020
1021 /*
1022 * Breakpoint/single step.
1023 */
1024 case EXCP_DEBUG:
1025 {
1026#if 0//def DEBUG_bird
1027 static int iBP = 0;
1028 printf("howdy, breakpoint! iBP=%d\n", iBP);
1029 switch (iBP)
1030 {
1031 case 0:
1032 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1033 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1034 //pVM->rem.s.Env.interrupt_request = 0;
1035 //pVM->rem.s.Env.exception_index = -1;
1036 //g_fInterruptDisabled = 1;
1037 rc = VINF_SUCCESS;
1038 asm("int3");
1039 break;
1040 default:
1041 asm("int3");
1042 break;
1043 }
1044 iBP++;
1045#else
1046 /* breakpoint or single step? */
1047 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1048 int iBP;
1049 rc = VINF_EM_DBG_STEPPED;
1050 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1051 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1052 {
1053 rc = VINF_EM_DBG_BREAKPOINT;
1054 break;
1055 }
1056 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Rrc iBP=%d GCPtrPC=%RGv\n", rc, iBP, GCPtrPC));
1057#endif
1058 break;
1059 }
1060
1061 /*
1062 * Switch to RAW-mode.
1063 */
1064 case EXCP_EXECUTE_RAW:
1065 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1066 rc = VINF_EM_RESCHEDULE_RAW;
1067 break;
1068
1069 /*
1070 * Switch to hardware accelerated RAW-mode.
1071 */
1072 case EXCP_EXECUTE_HWACC:
1073 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1074 rc = VINF_EM_RESCHEDULE_HWACC;
1075 break;
1076
1077#ifdef VBOX_WITH_VMI
1078 /*
1079 *
1080 */
1081 case EXCP_PARAV_CALL:
1082 Log2(("REMR3Run: cpu_exec -> EXCP_PARAV_CALL\n"));
1083 rc = VINF_EM_RESCHEDULE_PARAV;
1084 break;
1085#endif
1086
1087 /*
1088 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1089 */
1090 case EXCP_RC:
1091 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Rrc\n", pVM->rem.s.rc));
1092 rc = pVM->rem.s.rc;
1093 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1094 break;
1095
1096 /*
1097 * Figure out the rest when they arrive....
1098 */
1099 default:
1100 AssertMsgFailed(("rc=%d\n", rc));
1101 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1102 rc = VINF_SUCCESS;
1103 break;
1104 }
1105
1106 Log2(("REMR3Run: returns %Rrc (cs:eip=%04x:%RGv)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
1107 return rc;
1108}
1109
1110
1111/**
1112 * Check if the cpu state is suitable for Raw execution.
1113 *
1114 * @returns boolean
1115 * @param env The CPU env struct.
1116 * @param eip The EIP to check this for (might differ from env->eip).
1117 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1118 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1119 *
1120 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1121 */
1122bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1123{
1124 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1125 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1126 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1127
1128 /* Update counter. */
1129 env->pVM->rem.s.cCanExecuteRaw++;
1130
1131 if (HWACCMIsEnabled(env->pVM))
1132 {
1133 env->state |= CPU_RAW_HWACC;
1134
1135 /*
1136 * Create partial context for HWACCMR3CanExecuteGuest
1137 */
1138 CPUMCTX Ctx;
1139 Ctx.cr0 = env->cr[0];
1140 Ctx.cr3 = env->cr[3];
1141 Ctx.cr4 = env->cr[4];
1142
1143 Ctx.tr = env->tr.selector;
1144 Ctx.trHid.u64Base = env->tr.base;
1145 Ctx.trHid.u32Limit = env->tr.limit;
1146 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1147
1148 Ctx.idtr.cbIdt = env->idt.limit;
1149 Ctx.idtr.pIdt = env->idt.base;
1150
1151 Ctx.eflags.u32 = env->eflags;
1152
1153 Ctx.cs = env->segs[R_CS].selector;
1154 Ctx.csHid.u64Base = env->segs[R_CS].base;
1155 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1156 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1157
1158 Ctx.ds = env->segs[R_DS].selector;
1159 Ctx.dsHid.u64Base = env->segs[R_DS].base;
1160 Ctx.dsHid.u32Limit = env->segs[R_DS].limit;
1161 Ctx.dsHid.Attr.u = (env->segs[R_DS].flags >> 8) & 0xF0FF;
1162
1163 Ctx.es = env->segs[R_ES].selector;
1164 Ctx.esHid.u64Base = env->segs[R_ES].base;
1165 Ctx.esHid.u32Limit = env->segs[R_ES].limit;
1166 Ctx.esHid.Attr.u = (env->segs[R_ES].flags >> 8) & 0xF0FF;
1167
1168 Ctx.fs = env->segs[R_FS].selector;
1169 Ctx.fsHid.u64Base = env->segs[R_FS].base;
1170 Ctx.fsHid.u32Limit = env->segs[R_FS].limit;
1171 Ctx.fsHid.Attr.u = (env->segs[R_FS].flags >> 8) & 0xF0FF;
1172
1173 Ctx.gs = env->segs[R_GS].selector;
1174 Ctx.gsHid.u64Base = env->segs[R_GS].base;
1175 Ctx.gsHid.u32Limit = env->segs[R_GS].limit;
1176 Ctx.gsHid.Attr.u = (env->segs[R_GS].flags >> 8) & 0xF0FF;
1177
1178 Ctx.ss = env->segs[R_SS].selector;
1179 Ctx.ssHid.u64Base = env->segs[R_SS].base;
1180 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1181 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1182
1183 Ctx.msrEFER = env->efer;
1184
1185 /* Hardware accelerated raw-mode:
1186 *
1187 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1188 */
1189 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1190 {
1191 *piException = EXCP_EXECUTE_HWACC;
1192 return true;
1193 }
1194 return false;
1195 }
1196
1197 /*
1198 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1199 * or 32 bits protected mode ring 0 code
1200 *
1201 * The tests are ordered by the likelyhood of being true during normal execution.
1202 */
1203 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1204 {
1205 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1206 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1207 return false;
1208 }
1209
1210#ifndef VBOX_RAW_V86
1211 if (fFlags & VM_MASK) {
1212 STAM_COUNTER_INC(&gStatRefuseVM86);
1213 Log2(("raw mode refused: VM_MASK\n"));
1214 return false;
1215 }
1216#endif
1217
1218 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1219 {
1220#ifndef DEBUG_bird
1221 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1222#endif
1223 return false;
1224 }
1225
1226 if (env->singlestep_enabled)
1227 {
1228 //Log2(("raw mode refused: Single step\n"));
1229 return false;
1230 }
1231
1232 if (env->nb_breakpoints > 0)
1233 {
1234 //Log2(("raw mode refused: Breakpoints\n"));
1235 return false;
1236 }
1237
1238 uint32_t u32CR0 = env->cr[0];
1239 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1240 {
1241 STAM_COUNTER_INC(&gStatRefusePaging);
1242 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1243 return false;
1244 }
1245
1246 if (env->cr[4] & CR4_PAE_MASK)
1247 {
1248 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1249 {
1250 STAM_COUNTER_INC(&gStatRefusePAE);
1251 return false;
1252 }
1253 }
1254
1255 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1256 {
1257 if (!EMIsRawRing3Enabled(env->pVM))
1258 return false;
1259
1260 if (!(env->eflags & IF_MASK))
1261 {
1262 STAM_COUNTER_INC(&gStatRefuseIF0);
1263 Log2(("raw mode refused: IF (RawR3)\n"));
1264 return false;
1265 }
1266
1267 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1268 {
1269 STAM_COUNTER_INC(&gStatRefuseWP0);
1270 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1271 return false;
1272 }
1273 }
1274 else
1275 {
1276 if (!EMIsRawRing0Enabled(env->pVM))
1277 return false;
1278
1279 // Let's start with pure 32 bits ring 0 code first
1280 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1281 {
1282 STAM_COUNTER_INC(&gStatRefuseCode16);
1283 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1284 return false;
1285 }
1286
1287 // Only R0
1288 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1289 {
1290 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1291 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1292 return false;
1293 }
1294
1295 if (!(u32CR0 & CR0_WP_MASK))
1296 {
1297 STAM_COUNTER_INC(&gStatRefuseWP0);
1298 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1299 return false;
1300 }
1301
1302 if (PATMIsPatchGCAddr(env->pVM, eip))
1303 {
1304 Log2(("raw r0 mode forced: patch code\n"));
1305 *piException = EXCP_EXECUTE_RAW;
1306 return true;
1307 }
1308
1309#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1310 if (!(env->eflags & IF_MASK))
1311 {
1312 STAM_COUNTER_INC(&gStatRefuseIF0);
1313 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1314 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1315 return false;
1316 }
1317#endif
1318
1319 env->state |= CPU_RAW_RING0;
1320 }
1321
1322 /*
1323 * Don't reschedule the first time we're called, because there might be
1324 * special reasons why we're here that is not covered by the above checks.
1325 */
1326 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1327 {
1328 Log2(("raw mode refused: first scheduling\n"));
1329 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1330 return false;
1331 }
1332
1333 Assert(PGMPhysIsA20Enabled(env->pVM));
1334 *piException = EXCP_EXECUTE_RAW;
1335 return true;
1336}
1337
1338
1339/**
1340 * Fetches a code byte.
1341 *
1342 * @returns Success indicator (bool) for ease of use.
1343 * @param env The CPU environment structure.
1344 * @param GCPtrInstr Where to fetch code.
1345 * @param pu8Byte Where to store the byte on success
1346 */
1347bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1348{
1349 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1350 if (RT_SUCCESS(rc))
1351 return true;
1352 return false;
1353}
1354
1355
1356/**
1357 * Flush (or invalidate if you like) page table/dir entry.
1358 *
1359 * (invlpg instruction; tlb_flush_page)
1360 *
1361 * @param env Pointer to cpu environment.
1362 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1363 */
1364void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1365{
1366 PVM pVM = env->pVM;
1367
1368 /*
1369 * When we're replaying invlpg instructions or restoring a saved
1370 * state we disable this path.
1371 */
1372 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1373 return;
1374 Log(("remR3FlushPage: GCPtr=%RGv\n", GCPtr));
1375 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1376
1377 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1378
1379 /*
1380 * Update the control registers before calling PGMFlushPage.
1381 */
1382 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1383 pCtx->cr0 = env->cr[0];
1384 pCtx->cr3 = env->cr[3];
1385 if ((env->cr[4] ^ pCtx->cr4) & X86_CR4_VME)
1386 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
1387 pCtx->cr4 = env->cr[4];
1388
1389 /*
1390 * Let PGM do the rest.
1391 */
1392 int rc = PGMInvalidatePage(pVM, GCPtr);
1393 if (RT_FAILURE(rc))
1394 {
1395 AssertMsgFailed(("remR3FlushPage %RGv failed with %d!!\n", GCPtr, rc));
1396 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1397 }
1398 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1399}
1400
1401
1402/**
1403 * Called from tlb_protect_code in order to write monitor a code page.
1404 *
1405 * @param env Pointer to the CPU environment.
1406 * @param GCPtr Code page to monitor
1407 */
1408void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1409{
1410#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1411 Assert(env->pVM->rem.s.fInREM);
1412 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1413 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1414 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1415 && !(env->eflags & VM_MASK) /* no V86 mode */
1416 && !HWACCMIsEnabled(env->pVM))
1417 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1418#endif
1419}
1420
1421/**
1422 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1423 *
1424 * @param env Pointer to the CPU environment.
1425 * @param GCPtr Code page to monitor
1426 */
1427void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
1428{
1429 Assert(env->pVM->rem.s.fInREM);
1430#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1431 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1432 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1433 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1434 && !(env->eflags & VM_MASK) /* no V86 mode */
1435 && !HWACCMIsEnabled(env->pVM))
1436 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1437#endif
1438}
1439
1440
1441/**
1442 * Called when the CPU is initialized, any of the CRx registers are changed or
1443 * when the A20 line is modified.
1444 *
1445 * @param env Pointer to the CPU environment.
1446 * @param fGlobal Set if the flush is global.
1447 */
1448void remR3FlushTLB(CPUState *env, bool fGlobal)
1449{
1450 PVM pVM = env->pVM;
1451
1452 /*
1453 * When we're replaying invlpg instructions or restoring a saved
1454 * state we disable this path.
1455 */
1456 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1457 return;
1458 Assert(pVM->rem.s.fInREM);
1459
1460 /*
1461 * The caller doesn't check cr4, so we have to do that for ourselves.
1462 */
1463 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1464 fGlobal = true;
1465 Log(("remR3FlushTLB: CR0=%RGr CR3=%RGr CR4=%RGr %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1466
1467 /*
1468 * Update the control registers before calling PGMR3FlushTLB.
1469 */
1470 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1471 pCtx->cr0 = env->cr[0];
1472 pCtx->cr3 = env->cr[3];
1473 if ((env->cr[4] ^ pCtx->cr4) & X86_CR4_VME)
1474 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
1475 pCtx->cr4 = env->cr[4];
1476
1477 /*
1478 * Let PGM do the rest.
1479 */
1480 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1481}
1482
1483
1484/**
1485 * Called when any of the cr0, cr4 or efer registers is updated.
1486 *
1487 * @param env Pointer to the CPU environment.
1488 */
1489void remR3ChangeCpuMode(CPUState *env)
1490{
1491 int rc;
1492 PVM pVM = env->pVM;
1493
1494 /*
1495 * When we're replaying loads or restoring a saved
1496 * state this path is disabled.
1497 */
1498 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1499 return;
1500 Assert(pVM->rem.s.fInREM);
1501
1502 /*
1503 * Update the control registers before calling PGMChangeMode()
1504 * as it may need to map whatever cr3 is pointing to.
1505 */
1506 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1507 pCtx->cr0 = env->cr[0];
1508 pCtx->cr3 = env->cr[3];
1509 if ((env->cr[4] ^ pCtx->cr4) & X86_CR4_VME)
1510 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
1511 pCtx->cr4 = env->cr[4];
1512
1513#ifdef TARGET_X86_64
1514 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1515 if (rc != VINF_SUCCESS)
1516 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc\n", env->cr[0], env->cr[4], env->efer, rc);
1517#else
1518 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1519 if (rc != VINF_SUCCESS)
1520 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc\n", env->cr[0], env->cr[4], 0LL, rc);
1521#endif
1522}
1523
1524
1525/**
1526 * Called from compiled code to run dma.
1527 *
1528 * @param env Pointer to the CPU environment.
1529 */
1530void remR3DmaRun(CPUState *env)
1531{
1532 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1533 PDMR3DmaRun(env->pVM);
1534 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1535}
1536
1537
1538/**
1539 * Called from compiled code to schedule pending timers in VMM
1540 *
1541 * @param env Pointer to the CPU environment.
1542 */
1543void remR3TimersRun(CPUState *env)
1544{
1545 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1546 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1547 TMR3TimerQueuesDo(env->pVM);
1548 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1549 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1550}
1551
1552
1553/**
1554 * Record trap occurance
1555 *
1556 * @returns VBox status code
1557 * @param env Pointer to the CPU environment.
1558 * @param uTrap Trap nr
1559 * @param uErrorCode Error code
1560 * @param pvNextEIP Next EIP
1561 */
1562int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1563{
1564 PVM pVM = env->pVM;
1565#ifdef VBOX_WITH_STATISTICS
1566 static STAMCOUNTER s_aStatTrap[255];
1567 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1568#endif
1569
1570#ifdef VBOX_WITH_STATISTICS
1571 if (uTrap < 255)
1572 {
1573 if (!s_aRegisters[uTrap])
1574 {
1575 s_aRegisters[uTrap] = true;
1576 char szStatName[64];
1577 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1578 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1579 }
1580 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1581 }
1582#endif
1583 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, (RTGCPTR)pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
1584 if( uTrap < 0x20
1585 && (env->cr[0] & X86_CR0_PE)
1586 && !(env->eflags & X86_EFL_VM))
1587 {
1588#ifdef DEBUG
1589 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1590#endif
1591 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1592 {
1593 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, (RTGCPTR)pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
1594 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1595 return VERR_REM_TOO_MANY_TRAPS;
1596 }
1597 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1598 pVM->rem.s.cPendingExceptions = 1;
1599 pVM->rem.s.uPendingException = uTrap;
1600 pVM->rem.s.uPendingExcptEIP = env->eip;
1601 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1602 }
1603 else
1604 {
1605 pVM->rem.s.cPendingExceptions = 0;
1606 pVM->rem.s.uPendingException = uTrap;
1607 pVM->rem.s.uPendingExcptEIP = env->eip;
1608 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1609 }
1610 return VINF_SUCCESS;
1611}
1612
1613
1614/*
1615 * Clear current active trap
1616 *
1617 * @param pVM VM Handle.
1618 */
1619void remR3TrapClear(PVM pVM)
1620{
1621 pVM->rem.s.cPendingExceptions = 0;
1622 pVM->rem.s.uPendingException = 0;
1623 pVM->rem.s.uPendingExcptEIP = 0;
1624 pVM->rem.s.uPendingExcptCR2 = 0;
1625}
1626
1627
1628/*
1629 * Record previous call instruction addresses
1630 *
1631 * @param env Pointer to the CPU environment.
1632 */
1633void remR3RecordCall(CPUState *env)
1634{
1635 CSAMR3RecordCallAddress(env->pVM, env->eip);
1636}
1637
1638
1639/**
1640 * Syncs the internal REM state with the VM.
1641 *
1642 * This must be called before REMR3Run() is invoked whenever when the REM
1643 * state is not up to date. Calling it several times in a row is not
1644 * permitted.
1645 *
1646 * @returns VBox status code.
1647 *
1648 * @param pVM VM Handle.
1649 *
1650 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1651 * no do this since the majority of the callers don't want any unnecessary of events
1652 * pending that would immediatly interrupt execution.
1653 */
1654REMR3DECL(int) REMR3State(PVM pVM)
1655{
1656 Log2(("REMR3State:\n"));
1657 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1658 register const CPUMCTX *pCtx = pVM->rem.s.pCtx;
1659 register unsigned fFlags;
1660 bool fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1661 unsigned i;
1662
1663 Assert(!pVM->rem.s.fInREM);
1664 pVM->rem.s.fInStateSync = true;
1665
1666 /*
1667 * If we have to flush TBs, do that immediately.
1668 */
1669 if (pVM->rem.s.fFlushTBs)
1670 {
1671 STAM_COUNTER_INC(&gStatFlushTBs);
1672 tb_flush(&pVM->rem.s.Env);
1673 pVM->rem.s.fFlushTBs = false;
1674 }
1675
1676 /*
1677 * Copy the registers which require no special handling.
1678 */
1679#ifdef TARGET_X86_64
1680 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
1681 Assert(R_EAX == 0);
1682 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
1683 Assert(R_ECX == 1);
1684 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
1685 Assert(R_EDX == 2);
1686 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
1687 Assert(R_EBX == 3);
1688 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
1689 Assert(R_ESP == 4);
1690 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
1691 Assert(R_EBP == 5);
1692 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
1693 Assert(R_ESI == 6);
1694 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
1695 Assert(R_EDI == 7);
1696 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
1697 pVM->rem.s.Env.regs[8] = pCtx->r8;
1698 pVM->rem.s.Env.regs[9] = pCtx->r9;
1699 pVM->rem.s.Env.regs[10] = pCtx->r10;
1700 pVM->rem.s.Env.regs[11] = pCtx->r11;
1701 pVM->rem.s.Env.regs[12] = pCtx->r12;
1702 pVM->rem.s.Env.regs[13] = pCtx->r13;
1703 pVM->rem.s.Env.regs[14] = pCtx->r14;
1704 pVM->rem.s.Env.regs[15] = pCtx->r15;
1705
1706 pVM->rem.s.Env.eip = pCtx->rip;
1707
1708 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
1709#else
1710 Assert(R_EAX == 0);
1711 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1712 Assert(R_ECX == 1);
1713 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1714 Assert(R_EDX == 2);
1715 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1716 Assert(R_EBX == 3);
1717 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1718 Assert(R_ESP == 4);
1719 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1720 Assert(R_EBP == 5);
1721 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1722 Assert(R_ESI == 6);
1723 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1724 Assert(R_EDI == 7);
1725 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1726 pVM->rem.s.Env.eip = pCtx->eip;
1727
1728 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1729#endif
1730
1731 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1732
1733 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1734 for (i=0;i<8;i++)
1735 pVM->rem.s.Env.dr[i] = pCtx->dr[i];
1736
1737 /*
1738 * Clear the halted hidden flag (the interrupt waking up the CPU can
1739 * have been dispatched in raw mode).
1740 */
1741 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1742
1743 /*
1744 * Replay invlpg?
1745 */
1746 if (pVM->rem.s.cInvalidatedPages)
1747 {
1748 pVM->rem.s.fIgnoreInvlPg = true;
1749 RTUINT i;
1750 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1751 {
1752 Log2(("REMR3State: invlpg %RGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1753 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1754 }
1755 pVM->rem.s.fIgnoreInvlPg = false;
1756 pVM->rem.s.cInvalidatedPages = 0;
1757 }
1758
1759 /* Replay notification changes? */
1760 if (pVM->rem.s.cHandlerNotifications)
1761 REMR3ReplayHandlerNotifications(pVM);
1762
1763 /* Update MSRs; before CRx registers! */
1764 pVM->rem.s.Env.efer = pCtx->msrEFER;
1765 pVM->rem.s.Env.star = pCtx->msrSTAR;
1766 pVM->rem.s.Env.pat = pCtx->msrPAT;
1767#ifdef TARGET_X86_64
1768 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1769 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1770 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1771 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1772
1773 /* Update the internal long mode activate flag according to the new EFER value. */
1774 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1775 pVM->rem.s.Env.hflags |= HF_LMA_MASK;
1776 else
1777 pVM->rem.s.Env.hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
1778#endif
1779
1780 /*
1781 * Registers which are rarely changed and require special handling / order when changed.
1782 */
1783 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1784 LogFlow(("CPUMGetAndClearChangedFlagsREM %x\n", fFlags));
1785 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1786 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR
1787 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
1788 {
1789 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1790 {
1791 pVM->rem.s.fIgnoreCR3Load = true;
1792 tlb_flush(&pVM->rem.s.Env, true);
1793 pVM->rem.s.fIgnoreCR3Load = false;
1794 }
1795
1796 /* CR4 before CR0! */
1797 if (fFlags & CPUM_CHANGED_CR4)
1798 {
1799 pVM->rem.s.fIgnoreCR3Load = true;
1800 pVM->rem.s.fIgnoreCpuMode = true;
1801 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1802 pVM->rem.s.fIgnoreCpuMode = false;
1803 pVM->rem.s.fIgnoreCR3Load = false;
1804 }
1805
1806 if (fFlags & CPUM_CHANGED_CR0)
1807 {
1808 pVM->rem.s.fIgnoreCR3Load = true;
1809 pVM->rem.s.fIgnoreCpuMode = true;
1810 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1811 pVM->rem.s.fIgnoreCpuMode = false;
1812 pVM->rem.s.fIgnoreCR3Load = false;
1813 }
1814
1815 if (fFlags & CPUM_CHANGED_CR3)
1816 {
1817 pVM->rem.s.fIgnoreCR3Load = true;
1818 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1819 pVM->rem.s.fIgnoreCR3Load = false;
1820 }
1821
1822 if (fFlags & CPUM_CHANGED_GDTR)
1823 {
1824 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1825 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1826 }
1827
1828 if (fFlags & CPUM_CHANGED_IDTR)
1829 {
1830 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1831 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1832 }
1833
1834 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1835 {
1836 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1837 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1838 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1839 }
1840
1841 if (fFlags & CPUM_CHANGED_LDTR)
1842 {
1843 if (fHiddenSelRegsValid)
1844 {
1845 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1846 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u64Base;
1847 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1848 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;
1849 }
1850 else
1851 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1852 }
1853
1854 if (fFlags & CPUM_CHANGED_CPUID)
1855 {
1856 uint32_t u32Dummy;
1857
1858 /*
1859 * Get the CPUID features.
1860 */
1861 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
1862 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
1863 }
1864
1865 /* Sync FPU state after CR4 and CPUID. */
1866 if (fFlags & CPUM_CHANGED_FPU_REM)
1867 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1868 }
1869
1870 /*
1871 * Sync TR unconditionally to make life simpler.
1872 */
1873 pVM->rem.s.Env.tr.selector = pCtx->tr;
1874 pVM->rem.s.Env.tr.base = pCtx->trHid.u64Base;
1875 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1876 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;
1877 /* Note! do_interrupt will fault if the busy flag is still set... */
1878 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1879
1880 /*
1881 * Update selector registers.
1882 * This must be done *after* we've synced gdt, ldt and crX registers
1883 * since we're reading the GDT/LDT om sync_seg. This will happen with
1884 * saved state which takes a quick dip into rawmode for instance.
1885 */
1886 /*
1887 * Stack; Note first check this one as the CPL might have changed. The
1888 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1889 */
1890
1891 if (fHiddenSelRegsValid)
1892 {
1893 /* The hidden selector registers are valid in the CPU context. */
1894 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1895
1896 /* Set current CPL */
1897 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1898
1899 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1900 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1901 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1902 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1903 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1904 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1905 }
1906 else
1907 {
1908 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1909 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1910 {
1911 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1912
1913 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1914 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1915#ifdef VBOX_WITH_STATISTICS
1916 if (pVM->rem.s.Env.segs[R_SS].newselector)
1917 {
1918 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1919 }
1920#endif
1921 }
1922 else
1923 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1924
1925 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1926 {
1927 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1928 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1929#ifdef VBOX_WITH_STATISTICS
1930 if (pVM->rem.s.Env.segs[R_ES].newselector)
1931 {
1932 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1933 }
1934#endif
1935 }
1936 else
1937 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1938
1939 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1940 {
1941 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1942 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1943#ifdef VBOX_WITH_STATISTICS
1944 if (pVM->rem.s.Env.segs[R_CS].newselector)
1945 {
1946 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1947 }
1948#endif
1949 }
1950 else
1951 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1952
1953 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1954 {
1955 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1956 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1957#ifdef VBOX_WITH_STATISTICS
1958 if (pVM->rem.s.Env.segs[R_DS].newselector)
1959 {
1960 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1961 }
1962#endif
1963 }
1964 else
1965 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1966
1967 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1968 * be the same but not the base/limit. */
1969 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1970 {
1971 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1972 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1973#ifdef VBOX_WITH_STATISTICS
1974 if (pVM->rem.s.Env.segs[R_FS].newselector)
1975 {
1976 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1977 }
1978#endif
1979 }
1980 else
1981 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1982
1983 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1984 {
1985 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1986 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1987#ifdef VBOX_WITH_STATISTICS
1988 if (pVM->rem.s.Env.segs[R_GS].newselector)
1989 {
1990 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1991 }
1992#endif
1993 }
1994 else
1995 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1996 }
1997
1998 /*
1999 * Check for traps.
2000 */
2001 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
2002 TRPMEVENT enmType;
2003 uint8_t u8TrapNo;
2004 int rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
2005 if (RT_SUCCESS(rc))
2006 {
2007#ifdef DEBUG
2008 if (u8TrapNo == 0x80)
2009 {
2010 remR3DumpLnxSyscall(pVM);
2011 remR3DumpOBsdSyscall(pVM);
2012 }
2013#endif
2014
2015 pVM->rem.s.Env.exception_index = u8TrapNo;
2016 if (enmType != TRPM_SOFTWARE_INT)
2017 {
2018 pVM->rem.s.Env.exception_is_int = 0;
2019 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
2020 }
2021 else
2022 {
2023 /*
2024 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
2025 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
2026 * for int03 and into.
2027 */
2028 pVM->rem.s.Env.exception_is_int = 1;
2029 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 2;
2030 /* int 3 may be generated by one-byte 0xcc */
2031 if (u8TrapNo == 3)
2032 {
2033 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xcc)
2034 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2035 }
2036 /* int 4 may be generated by one-byte 0xce */
2037 else if (u8TrapNo == 4)
2038 {
2039 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xce)
2040 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2041 }
2042 }
2043
2044 /* get error code and cr2 if needed. */
2045 switch (u8TrapNo)
2046 {
2047 case 0x0e:
2048 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
2049 /* fallthru */
2050 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2051 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
2052 break;
2053
2054 case 0x11: case 0x08:
2055 default:
2056 pVM->rem.s.Env.error_code = 0;
2057 break;
2058 }
2059
2060 /*
2061 * We can now reset the active trap since the recompiler is gonna have a go at it.
2062 */
2063 rc = TRPMResetTrap(pVM);
2064 AssertRC(rc);
2065 Log2(("REMR3State: trap=%02x errcd=%RGv cr2=%RGv nexteip=%RGv%s\n", pVM->rem.s.Env.exception_index, (RTGCPTR)pVM->rem.s.Env.error_code,
2066 (RTGCPTR)pVM->rem.s.Env.cr[2], (RTGCPTR)pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
2067 }
2068
2069 /*
2070 * Clear old interrupt request flags; Check for pending hardware interrupts.
2071 * (See @remark for why we don't check for other FFs.)
2072 */
2073 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2074 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2075 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
2076 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2077
2078 /*
2079 * We're now in REM mode.
2080 */
2081 pVM->rem.s.fInREM = true;
2082 pVM->rem.s.fInStateSync = false;
2083 pVM->rem.s.cCanExecuteRaw = 0;
2084 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2085 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2086 return VINF_SUCCESS;
2087}
2088
2089
2090/**
2091 * Syncs back changes in the REM state to the the VM state.
2092 *
2093 * This must be called after invoking REMR3Run().
2094 * Calling it several times in a row is not permitted.
2095 *
2096 * @returns VBox status code.
2097 *
2098 * @param pVM VM Handle.
2099 */
2100REMR3DECL(int) REMR3StateBack(PVM pVM)
2101{
2102 Log2(("REMR3StateBack:\n"));
2103 Assert(pVM->rem.s.fInREM);
2104 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2105 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2106 unsigned i;
2107
2108 /*
2109 * Copy back the registers.
2110 * This is done in the order they are declared in the CPUMCTX structure.
2111 */
2112
2113 /** @todo FOP */
2114 /** @todo FPUIP */
2115 /** @todo CS */
2116 /** @todo FPUDP */
2117 /** @todo DS */
2118 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2119 pCtx->fpu.MXCSR = 0;
2120 pCtx->fpu.MXCSR_MASK = 0;
2121
2122 /** @todo check if FPU/XMM was actually used in the recompiler */
2123 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2124//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2125
2126#ifdef TARGET_X86_64
2127 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2128 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2129 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2130 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2131 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2132 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2133 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2134 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2135 pCtx->r8 = pVM->rem.s.Env.regs[8];
2136 pCtx->r9 = pVM->rem.s.Env.regs[9];
2137 pCtx->r10 = pVM->rem.s.Env.regs[10];
2138 pCtx->r11 = pVM->rem.s.Env.regs[11];
2139 pCtx->r12 = pVM->rem.s.Env.regs[12];
2140 pCtx->r13 = pVM->rem.s.Env.regs[13];
2141 pCtx->r14 = pVM->rem.s.Env.regs[14];
2142 pCtx->r15 = pVM->rem.s.Env.regs[15];
2143
2144 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2145
2146#else
2147 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2148 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2149 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2150 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2151 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2152 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2153 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2154
2155 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2156#endif
2157
2158 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2159
2160#ifdef VBOX_WITH_STATISTICS
2161 if (pVM->rem.s.Env.segs[R_SS].newselector)
2162 {
2163 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2164 }
2165 if (pVM->rem.s.Env.segs[R_GS].newselector)
2166 {
2167 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2168 }
2169 if (pVM->rem.s.Env.segs[R_FS].newselector)
2170 {
2171 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2172 }
2173 if (pVM->rem.s.Env.segs[R_ES].newselector)
2174 {
2175 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2176 }
2177 if (pVM->rem.s.Env.segs[R_DS].newselector)
2178 {
2179 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2180 }
2181 if (pVM->rem.s.Env.segs[R_CS].newselector)
2182 {
2183 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2184 }
2185#endif
2186 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2187 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2188 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2189 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2190 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2191
2192#ifdef TARGET_X86_64
2193 pCtx->rip = pVM->rem.s.Env.eip;
2194 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2195#else
2196 pCtx->eip = pVM->rem.s.Env.eip;
2197 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2198#endif
2199
2200 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2201 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2202 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2203 if ((pVM->rem.s.Env.cr[4] ^ pCtx->cr4) & X86_CR4_VME)
2204 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2205 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2206
2207 for (i=0;i<8;i++)
2208 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2209
2210 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2211 if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
2212 {
2213 pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
2214 STAM_COUNTER_INC(&gStatREMGDTChange);
2215 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2216 }
2217
2218 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2219 if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
2220 {
2221 pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
2222 STAM_COUNTER_INC(&gStatREMIDTChange);
2223 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2224 }
2225
2226 if ( pCtx->ldtr != pVM->rem.s.Env.ldt.selector
2227 || pCtx->ldtrHid.u64Base != pVM->rem.s.Env.ldt.base
2228 || pCtx->ldtrHid.u32Limit != pVM->rem.s.Env.ldt.limit
2229 || pCtx->ldtrHid.Attr.u != ((pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF))
2230 {
2231 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2232 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2233 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2234 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2235 STAM_COUNTER_INC(&gStatREMLDTRChange);
2236 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2237 }
2238
2239 if ( pCtx->tr != pVM->rem.s.Env.tr.selector
2240 || pCtx->trHid.u64Base != pVM->rem.s.Env.tr.base
2241 || pCtx->trHid.u32Limit != pVM->rem.s.Env.tr.limit
2242 /* Qemu and AMD/Intel have different ideas about the busy flag ... */
2243 || pCtx->trHid.Attr.u != ( (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF
2244 ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8
2245 : 0) )
2246 {
2247 Log(("REM: TR changed! %#x{%#llx,%#x,%#x} -> %#x{%llx,%#x,%#x}\n",
2248 pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
2249 pVM->rem.s.Env.tr.selector, (uint64_t)pVM->rem.s.Env.tr.base, pVM->rem.s.Env.tr.limit,
2250 (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8 : 0));
2251 pCtx->tr = pVM->rem.s.Env.tr.selector;
2252 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2253 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2254 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2255 if (pCtx->trHid.Attr.u)
2256 pCtx->trHid.Attr.u |= DESC_TSS_BUSY_MASK >> 8;
2257 STAM_COUNTER_INC(&gStatREMTRChange);
2258 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2259 }
2260
2261 /** @todo These values could still be out of sync! */
2262 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2263 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2264 /* Note! QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2265 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2266
2267 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2268 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2269 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2270
2271 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2272 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2273 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2274
2275 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2276 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2277 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2278
2279 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2280 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2281 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2282
2283 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2284 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2285 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2286
2287 /* Sysenter MSR */
2288 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2289 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2290 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2291
2292 /* System MSRs. */
2293 pCtx->msrEFER = pVM->rem.s.Env.efer;
2294 pCtx->msrSTAR = pVM->rem.s.Env.star;
2295 pCtx->msrPAT = pVM->rem.s.Env.pat;
2296#ifdef TARGET_X86_64
2297 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2298 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2299 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2300 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2301#endif
2302
2303 remR3TrapClear(pVM);
2304
2305 /*
2306 * Check for traps.
2307 */
2308 if ( pVM->rem.s.Env.exception_index >= 0
2309 && pVM->rem.s.Env.exception_index < 256)
2310 {
2311 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2312 int rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2313 AssertRC(rc);
2314 switch (pVM->rem.s.Env.exception_index)
2315 {
2316 case 0x0e:
2317 TRPMSetFaultAddress(pVM, pCtx->cr2);
2318 /* fallthru */
2319 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2320 case 0x11: case 0x08: /* 0 */
2321 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2322 break;
2323 }
2324
2325 }
2326
2327 /*
2328 * We're not longer in REM mode.
2329 */
2330 pVM->rem.s.fInREM = false;
2331 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2332 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2333 return VINF_SUCCESS;
2334}
2335
2336
2337/**
2338 * This is called by the disassembler when it wants to update the cpu state
2339 * before for instance doing a register dump.
2340 */
2341static void remR3StateUpdate(PVM pVM)
2342{
2343 Assert(pVM->rem.s.fInREM);
2344 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2345 unsigned i;
2346
2347 /*
2348 * Copy back the registers.
2349 * This is done in the order they are declared in the CPUMCTX structure.
2350 */
2351
2352 /** @todo FOP */
2353 /** @todo FPUIP */
2354 /** @todo CS */
2355 /** @todo FPUDP */
2356 /** @todo DS */
2357 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2358 pCtx->fpu.MXCSR = 0;
2359 pCtx->fpu.MXCSR_MASK = 0;
2360
2361 /** @todo check if FPU/XMM was actually used in the recompiler */
2362 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2363//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2364
2365#ifdef TARGET_X86_64
2366 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2367 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2368 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2369 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2370 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2371 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2372 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2373 pCtx->r8 = pVM->rem.s.Env.regs[8];
2374 pCtx->r9 = pVM->rem.s.Env.regs[9];
2375 pCtx->r10 = pVM->rem.s.Env.regs[10];
2376 pCtx->r11 = pVM->rem.s.Env.regs[11];
2377 pCtx->r12 = pVM->rem.s.Env.regs[12];
2378 pCtx->r13 = pVM->rem.s.Env.regs[13];
2379 pCtx->r14 = pVM->rem.s.Env.regs[14];
2380 pCtx->r15 = pVM->rem.s.Env.regs[15];
2381
2382 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2383#else
2384 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2385 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2386 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2387 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2388 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2389 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2390 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2391
2392 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2393#endif
2394
2395 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2396
2397 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2398 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2399 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2400 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2401 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2402
2403#ifdef TARGET_X86_64
2404 pCtx->rip = pVM->rem.s.Env.eip;
2405 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2406#else
2407 pCtx->eip = pVM->rem.s.Env.eip;
2408 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2409#endif
2410
2411 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2412 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2413 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2414 if ((pVM->rem.s.Env.cr[4] ^ pCtx->cr4) & X86_CR4_VME)
2415 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2416 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2417
2418 for (i=0;i<8;i++)
2419 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2420
2421 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2422 if (pCtx->gdtr.pGdt != (RTGCPTR)pVM->rem.s.Env.gdt.base)
2423 {
2424 pCtx->gdtr.pGdt = (RTGCPTR)pVM->rem.s.Env.gdt.base;
2425 STAM_COUNTER_INC(&gStatREMGDTChange);
2426 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2427 }
2428
2429 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2430 if (pCtx->idtr.pIdt != (RTGCPTR)pVM->rem.s.Env.idt.base)
2431 {
2432 pCtx->idtr.pIdt = (RTGCPTR)pVM->rem.s.Env.idt.base;
2433 STAM_COUNTER_INC(&gStatREMIDTChange);
2434 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2435 }
2436
2437 if ( pCtx->ldtr != pVM->rem.s.Env.ldt.selector
2438 || pCtx->ldtrHid.u64Base != pVM->rem.s.Env.ldt.base
2439 || pCtx->ldtrHid.u32Limit != pVM->rem.s.Env.ldt.limit
2440 || pCtx->ldtrHid.Attr.u != ((pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF))
2441 {
2442 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2443 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2444 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2445 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2446 STAM_COUNTER_INC(&gStatREMLDTRChange);
2447 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2448 }
2449
2450 if ( pCtx->tr != pVM->rem.s.Env.tr.selector
2451 || pCtx->trHid.u64Base != pVM->rem.s.Env.tr.base
2452 || pCtx->trHid.u32Limit != pVM->rem.s.Env.tr.limit
2453 /* Qemu and AMD/Intel have different ideas about the busy flag ... */
2454 || pCtx->trHid.Attr.u != ( (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF
2455 ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8
2456 : 0) )
2457 {
2458 Log(("REM: TR changed! %#x{%#llx,%#x,%#x} -> %#x{%llx,%#x,%#x}\n",
2459 pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
2460 pVM->rem.s.Env.tr.selector, (uint64_t)pVM->rem.s.Env.tr.base, pVM->rem.s.Env.tr.limit,
2461 (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8 : 0));
2462 pCtx->tr = pVM->rem.s.Env.tr.selector;
2463 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2464 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2465 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2466 if (pCtx->trHid.Attr.u)
2467 pCtx->trHid.Attr.u |= DESC_TSS_BUSY_MASK >> 8;
2468 STAM_COUNTER_INC(&gStatREMTRChange);
2469 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2470 }
2471
2472 /** @todo These values could still be out of sync! */
2473 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2474 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2475 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2476 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2477
2478 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2479 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2480 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2481
2482 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2483 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2484 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2485
2486 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2487 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2488 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2489
2490 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2491 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2492 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2493
2494 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2495 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2496 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2497
2498 /* Sysenter MSR */
2499 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2500 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2501 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2502
2503 /* System MSRs. */
2504 pCtx->msrEFER = pVM->rem.s.Env.efer;
2505 pCtx->msrSTAR = pVM->rem.s.Env.star;
2506 pCtx->msrPAT = pVM->rem.s.Env.pat;
2507#ifdef TARGET_X86_64
2508 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2509 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2510 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2511 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2512#endif
2513
2514}
2515
2516
2517/**
2518 * Update the VMM state information if we're currently in REM.
2519 *
2520 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2521 * we're currently executing in REM and the VMM state is invalid. This method will of
2522 * course check that we're executing in REM before syncing any data over to the VMM.
2523 *
2524 * @param pVM The VM handle.
2525 */
2526REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2527{
2528 if (pVM->rem.s.fInREM)
2529 remR3StateUpdate(pVM);
2530}
2531
2532
2533#undef LOG_GROUP
2534#define LOG_GROUP LOG_GROUP_REM
2535
2536
2537/**
2538 * Notify the recompiler about Address Gate 20 state change.
2539 *
2540 * This notification is required since A20 gate changes are
2541 * initialized from a device driver and the VM might just as
2542 * well be in REM mode as in RAW mode.
2543 *
2544 * @param pVM VM handle.
2545 * @param fEnable True if the gate should be enabled.
2546 * False if the gate should be disabled.
2547 */
2548REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2549{
2550 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2551 VM_ASSERT_EMT(pVM);
2552
2553 bool fSaved = pVM->rem.s.fIgnoreAll; /* just in case. */
2554 pVM->rem.s.fIgnoreAll = fSaved || !pVM->rem.s.fInREM;
2555
2556 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2557
2558 pVM->rem.s.fIgnoreAll = fSaved;
2559}
2560
2561
2562/**
2563 * Replays the invalidated recorded pages.
2564 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2565 *
2566 * @param pVM VM handle.
2567 */
2568REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2569{
2570 VM_ASSERT_EMT(pVM);
2571
2572 /*
2573 * Sync the required registers.
2574 */
2575 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2576 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2577 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2578 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2579
2580 /*
2581 * Replay the flushes.
2582 */
2583 pVM->rem.s.fIgnoreInvlPg = true;
2584 RTUINT i;
2585 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2586 {
2587 Log2(("REMR3ReplayInvalidatedPages: invlpg %RGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2588 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2589 }
2590 pVM->rem.s.fIgnoreInvlPg = false;
2591 pVM->rem.s.cInvalidatedPages = 0;
2592}
2593
2594
2595/**
2596 * Replays the handler notification changes
2597 * Called in response to VM_FF_REM_HANDLER_NOTIFY from the RAW execution loop.
2598 *
2599 * @param pVM VM handle.
2600 */
2601REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2602{
2603 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2604 VM_ASSERT_EMT(pVM);
2605
2606 /*
2607 * Replay the flushes.
2608 */
2609 RTUINT i;
2610 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2611 pVM->rem.s.cHandlerNotifications = 0;
2612 for (i = 0; i < c; i++)
2613 {
2614 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2615 switch (pRec->enmKind)
2616 {
2617 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2618 REMR3NotifyHandlerPhysicalRegister(pVM,
2619 pRec->u.PhysicalRegister.enmType,
2620 pRec->u.PhysicalRegister.GCPhys,
2621 pRec->u.PhysicalRegister.cb,
2622 pRec->u.PhysicalRegister.fHasHCHandler);
2623 break;
2624
2625 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2626 REMR3NotifyHandlerPhysicalDeregister(pVM,
2627 pRec->u.PhysicalDeregister.enmType,
2628 pRec->u.PhysicalDeregister.GCPhys,
2629 pRec->u.PhysicalDeregister.cb,
2630 pRec->u.PhysicalDeregister.fHasHCHandler,
2631 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2632 break;
2633
2634 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2635 REMR3NotifyHandlerPhysicalModify(pVM,
2636 pRec->u.PhysicalModify.enmType,
2637 pRec->u.PhysicalModify.GCPhysOld,
2638 pRec->u.PhysicalModify.GCPhysNew,
2639 pRec->u.PhysicalModify.cb,
2640 pRec->u.PhysicalModify.fHasHCHandler,
2641 pRec->u.PhysicalModify.fRestoreAsRAM);
2642 break;
2643
2644 default:
2645 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2646 break;
2647 }
2648 }
2649 VM_FF_CLEAR(pVM, VM_FF_REM_HANDLER_NOTIFY);
2650}
2651
2652
2653/**
2654 * Notify REM about changed code page.
2655 *
2656 * @returns VBox status code.
2657 * @param pVM VM handle.
2658 * @param pvCodePage Code page address
2659 */
2660REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2661{
2662#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
2663 int rc;
2664 RTGCPHYS PhysGC;
2665 uint64_t flags;
2666
2667 VM_ASSERT_EMT(pVM);
2668
2669 /*
2670 * Get the physical page address.
2671 */
2672 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2673 if (rc == VINF_SUCCESS)
2674 {
2675 /*
2676 * Sync the required registers and flush the whole page.
2677 * (Easier to do the whole page than notifying it about each physical
2678 * byte that was changed.
2679 */
2680 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2681 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2682 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2683 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2684
2685 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2686 }
2687#endif
2688 return VINF_SUCCESS;
2689}
2690
2691
2692/**
2693 * Notification about a successful MMR3PhysRegister() call.
2694 *
2695 * @param pVM VM handle.
2696 * @param GCPhys The physical address the RAM.
2697 * @param cb Size of the memory.
2698 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2699 */
2700REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, unsigned fFlags)
2701{
2702 Log(("REMR3NotifyPhysRamRegister: GCPhys=%RGp cb=%d fFlags=%d\n", GCPhys, cb, fFlags));
2703 VM_ASSERT_EMT(pVM);
2704
2705 /*
2706 * Validate input - we trust the caller.
2707 */
2708 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2709 Assert(cb);
2710 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2711
2712 /*
2713 * Base ram?
2714 */
2715 if (!GCPhys)
2716 {
2717 phys_ram_size = cb;
2718 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2719#ifndef VBOX_STRICT
2720 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2721 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2722#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2723 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2724 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2725 uint32_t cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2726 int rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2727 AssertRC(rc);
2728 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2729#endif
2730 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2731 }
2732
2733 /*
2734 * Register the ram.
2735 */
2736 Assert(!pVM->rem.s.fIgnoreAll);
2737 pVM->rem.s.fIgnoreAll = true;
2738
2739#ifdef VBOX_WITH_NEW_PHYS_CODE
2740 if (fFlags & MM_RAM_FLAGS_RESERVED)
2741 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2742 else
2743 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2744#else
2745 if (!GCPhys)
2746 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2747 else
2748 {
2749 if (fFlags & MM_RAM_FLAGS_RESERVED)
2750 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2751 else
2752 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2753 }
2754#endif
2755 Assert(pVM->rem.s.fIgnoreAll);
2756 pVM->rem.s.fIgnoreAll = false;
2757}
2758
2759#ifndef VBOX_WITH_NEW_PHYS_CODE
2760
2761/**
2762 * Notification about a successful PGMR3PhysRegisterChunk() call.
2763 *
2764 * @param pVM VM handle.
2765 * @param GCPhys The physical address the RAM.
2766 * @param cb Size of the memory.
2767 * @param pvRam The HC address of the RAM.
2768 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2769 */
2770REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2771{
2772 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%RGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2773 VM_ASSERT_EMT(pVM);
2774
2775 /*
2776 * Validate input - we trust the caller.
2777 */
2778 Assert(pvRam);
2779 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2780 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2781 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2782 Assert(fFlags == 0 /* normal RAM */);
2783 Assert(!pVM->rem.s.fIgnoreAll);
2784 pVM->rem.s.fIgnoreAll = true;
2785
2786 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2787
2788 Assert(pVM->rem.s.fIgnoreAll);
2789 pVM->rem.s.fIgnoreAll = false;
2790}
2791
2792
2793/**
2794 * Grows dynamically allocated guest RAM.
2795 * Will raise a fatal error if the operation fails.
2796 *
2797 * @param physaddr The physical address.
2798 */
2799void remR3GrowDynRange(unsigned long physaddr)
2800{
2801 int rc;
2802 PVM pVM = cpu_single_env->pVM;
2803
2804 LogFlow(("remR3GrowDynRange %RGp\n", (RTGCPHYS)physaddr));
2805 const RTGCPHYS GCPhys = physaddr;
2806 rc = PGM3PhysGrowRange(pVM, &GCPhys);
2807 if (RT_SUCCESS(rc))
2808 return;
2809
2810 LogRel(("\nUnable to allocate guest RAM chunk at %RGp\n", (RTGCPHYS)physaddr));
2811 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %RGp\n", (RTGCPHYS)physaddr);
2812 AssertFatalFailed();
2813}
2814
2815#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2816
2817/**
2818 * Notification about a successful MMR3PhysRomRegister() call.
2819 *
2820 * @param pVM VM handle.
2821 * @param GCPhys The physical address of the ROM.
2822 * @param cb The size of the ROM.
2823 * @param pvCopy Pointer to the ROM copy.
2824 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2825 * This function will be called when ever the protection of the
2826 * shadow ROM changes (at reset and end of POST).
2827 */
2828REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2829{
2830 Log(("REMR3NotifyPhysRomRegister: GCPhys=%RGp cb=%d fShadow=%RTbool\n", GCPhys, cb, fShadow));
2831 VM_ASSERT_EMT(pVM);
2832
2833 /*
2834 * Validate input - we trust the caller.
2835 */
2836 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2837 Assert(cb);
2838 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2839
2840 /*
2841 * Register the rom.
2842 */
2843 Assert(!pVM->rem.s.fIgnoreAll);
2844 pVM->rem.s.fIgnoreAll = true;
2845
2846 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2847
2848 Assert(pVM->rem.s.fIgnoreAll);
2849 pVM->rem.s.fIgnoreAll = false;
2850}
2851
2852
2853/**
2854 * Notification about a successful memory deregistration or reservation.
2855 *
2856 * @param pVM VM Handle.
2857 * @param GCPhys Start physical address.
2858 * @param cb The size of the range.
2859 */
2860REMR3DECL(void) REMR3NotifyPhysRamDeregister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2861{
2862 Log(("REMR3NotifyPhysRamDeregister: GCPhys=%RGp cb=%d\n", GCPhys, cb));
2863 VM_ASSERT_EMT(pVM);
2864
2865 /*
2866 * Validate input - we trust the caller.
2867 */
2868 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2869 Assert(cb);
2870 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2871
2872 /*
2873 * Unassigning the memory.
2874 */
2875 Assert(!pVM->rem.s.fIgnoreAll);
2876 pVM->rem.s.fIgnoreAll = true;
2877
2878 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2879
2880 Assert(pVM->rem.s.fIgnoreAll);
2881 pVM->rem.s.fIgnoreAll = false;
2882}
2883
2884
2885/**
2886 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2887 *
2888 * @param pVM VM Handle.
2889 * @param enmType Handler type.
2890 * @param GCPhys Handler range address.
2891 * @param cb Size of the handler range.
2892 * @param fHasHCHandler Set if the handler has a HC callback function.
2893 *
2894 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2895 * Handler memory type to memory which has no HC handler.
2896 */
2897REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2898{
2899 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%d\n",
2900 enmType, GCPhys, cb, fHasHCHandler));
2901 VM_ASSERT_EMT(pVM);
2902 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2903 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2904
2905 if (pVM->rem.s.cHandlerNotifications)
2906 REMR3ReplayHandlerNotifications(pVM);
2907
2908 Assert(!pVM->rem.s.fIgnoreAll);
2909 pVM->rem.s.fIgnoreAll = true;
2910
2911 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2912 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2913 else if (fHasHCHandler)
2914 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2915
2916 Assert(pVM->rem.s.fIgnoreAll);
2917 pVM->rem.s.fIgnoreAll = false;
2918}
2919
2920
2921/**
2922 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2923 *
2924 * @param pVM VM Handle.
2925 * @param enmType Handler type.
2926 * @param GCPhys Handler range address.
2927 * @param cb Size of the handler range.
2928 * @param fHasHCHandler Set if the handler has a HC callback function.
2929 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2930 */
2931REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2932{
2933 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2934 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2935 VM_ASSERT_EMT(pVM);
2936
2937 if (pVM->rem.s.cHandlerNotifications)
2938 REMR3ReplayHandlerNotifications(pVM);
2939
2940 Assert(!pVM->rem.s.fIgnoreAll);
2941 pVM->rem.s.fIgnoreAll = true;
2942
2943/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
2944 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2945 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2946 else if (fHasHCHandler)
2947 {
2948 if (!fRestoreAsRAM)
2949 {
2950 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2951 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2952 }
2953 else
2954 {
2955 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2956 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2957 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2958 }
2959 }
2960
2961 Assert(pVM->rem.s.fIgnoreAll);
2962 pVM->rem.s.fIgnoreAll = false;
2963}
2964
2965
2966/**
2967 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2968 *
2969 * @param pVM VM Handle.
2970 * @param enmType Handler type.
2971 * @param GCPhysOld Old handler range address.
2972 * @param GCPhysNew New handler range address.
2973 * @param cb Size of the handler range.
2974 * @param fHasHCHandler Set if the handler has a HC callback function.
2975 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2976 */
2977REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2978{
2979 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%RGp GCPhysNew=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
2980 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
2981 VM_ASSERT_EMT(pVM);
2982 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2983
2984 if (pVM->rem.s.cHandlerNotifications)
2985 REMR3ReplayHandlerNotifications(pVM);
2986
2987 if (fHasHCHandler)
2988 {
2989 Assert(!pVM->rem.s.fIgnoreAll);
2990 pVM->rem.s.fIgnoreAll = true;
2991
2992 /*
2993 * Reset the old page.
2994 */
2995 if (!fRestoreAsRAM)
2996 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2997 else
2998 {
2999 /* This is not perfect, but it'll do for PD monitoring... */
3000 Assert(cb == PAGE_SIZE);
3001 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
3002 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
3003 }
3004
3005 /*
3006 * Update the new page.
3007 */
3008 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
3009 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
3010 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
3011
3012 Assert(pVM->rem.s.fIgnoreAll);
3013 pVM->rem.s.fIgnoreAll = false;
3014 }
3015}
3016
3017
3018/**
3019 * Checks if we're handling access to this page or not.
3020 *
3021 * @returns true if we're trapping access.
3022 * @returns false if we aren't.
3023 * @param pVM The VM handle.
3024 * @param GCPhys The physical address.
3025 *
3026 * @remark This function will only work correctly in VBOX_STRICT builds!
3027 */
3028REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
3029{
3030#ifdef VBOX_STRICT
3031 if (pVM->rem.s.cHandlerNotifications)
3032 REMR3ReplayHandlerNotifications(pVM);
3033
3034 unsigned long off = get_phys_page_offset(GCPhys);
3035 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
3036 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
3037 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
3038#else
3039 return false;
3040#endif
3041}
3042
3043
3044/**
3045 * Deals with a rare case in get_phys_addr_code where the code
3046 * is being monitored.
3047 *
3048 * It could also be an MMIO page, in which case we will raise a fatal error.
3049 *
3050 * @returns The physical address corresponding to addr.
3051 * @param env The cpu environment.
3052 * @param addr The virtual address.
3053 * @param pTLBEntry The TLB entry.
3054 */
3055target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
3056{
3057 PVM pVM = env->pVM;
3058 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
3059 {
3060 target_ulong ret = pTLBEntry->addend + addr;
3061 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%RGv addr_code=%RGv addend=%RGp ret=%RGp\n",
3062 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPHYS)ret);
3063 return ret;
3064 }
3065 LogRel(("\nTrying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
3066 "*** handlers\n",
3067 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
3068 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
3069 LogRel(("*** mmio\n"));
3070 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
3071 LogRel(("*** phys\n"));
3072 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
3073 cpu_abort(env, "Trying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
3074 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
3075 AssertFatalFailed();
3076}
3077
3078
3079/** Validate the physical address passed to the read functions.
3080 * Useful for finding non-guest-ram reads/writes. */
3081#if 0 //1 /* disable if it becomes bothersome... */
3082# define VBOX_CHECK_ADDR(GCPhys) AssertMsg(PGMPhysIsGCPhysValid(cpu_single_env->pVM, (GCPhys)), ("%RGp\n", (GCPhys)))
3083#else
3084# define VBOX_CHECK_ADDR(GCPhys) do { } while (0)
3085#endif
3086
3087/**
3088 * Read guest RAM and ROM.
3089 *
3090 * @param SrcGCPhys The source address (guest physical).
3091 * @param pvDst The destination address.
3092 * @param cb Number of bytes
3093 */
3094void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3095{
3096 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3097 VBOX_CHECK_ADDR(SrcGCPhys);
3098 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3099 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3100}
3101
3102
3103/**
3104 * Read guest RAM and ROM, unsigned 8-bit.
3105 *
3106 * @param SrcGCPhys The source address (guest physical).
3107 */
3108uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3109{
3110 uint8_t val;
3111 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3112 VBOX_CHECK_ADDR(SrcGCPhys);
3113 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3114 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3115 return val;
3116}
3117
3118
3119/**
3120 * Read guest RAM and ROM, signed 8-bit.
3121 *
3122 * @param SrcGCPhys The source address (guest physical).
3123 */
3124int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3125{
3126 int8_t val;
3127 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3128 VBOX_CHECK_ADDR(SrcGCPhys);
3129 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3130 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3131 return val;
3132}
3133
3134
3135/**
3136 * Read guest RAM and ROM, unsigned 16-bit.
3137 *
3138 * @param SrcGCPhys The source address (guest physical).
3139 */
3140uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3141{
3142 uint16_t val;
3143 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3144 VBOX_CHECK_ADDR(SrcGCPhys);
3145 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3146 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3147 return val;
3148}
3149
3150
3151/**
3152 * Read guest RAM and ROM, signed 16-bit.
3153 *
3154 * @param SrcGCPhys The source address (guest physical).
3155 */
3156int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3157{
3158 uint16_t val;
3159 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3160 VBOX_CHECK_ADDR(SrcGCPhys);
3161 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3162 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3163 return val;
3164}
3165
3166
3167/**
3168 * Read guest RAM and ROM, unsigned 32-bit.
3169 *
3170 * @param SrcGCPhys The source address (guest physical).
3171 */
3172uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3173{
3174 uint32_t val;
3175 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3176 VBOX_CHECK_ADDR(SrcGCPhys);
3177 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3178 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3179 return val;
3180}
3181
3182
3183/**
3184 * Read guest RAM and ROM, signed 32-bit.
3185 *
3186 * @param SrcGCPhys The source address (guest physical).
3187 */
3188int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3189{
3190 int32_t val;
3191 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3192 VBOX_CHECK_ADDR(SrcGCPhys);
3193 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3194 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3195 return val;
3196}
3197
3198
3199/**
3200 * Read guest RAM and ROM, unsigned 64-bit.
3201 *
3202 * @param SrcGCPhys The source address (guest physical).
3203 */
3204uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3205{
3206 uint64_t val;
3207 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3208 VBOX_CHECK_ADDR(SrcGCPhys);
3209 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3210 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3211 return val;
3212}
3213
3214
3215/**
3216 * Write guest RAM.
3217 *
3218 * @param DstGCPhys The destination address (guest physical).
3219 * @param pvSrc The source address.
3220 * @param cb Number of bytes to write
3221 */
3222void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3223{
3224 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3225 VBOX_CHECK_ADDR(DstGCPhys);
3226 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3227 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3228}
3229
3230
3231/**
3232 * Write guest RAM, unsigned 8-bit.
3233 *
3234 * @param DstGCPhys The destination address (guest physical).
3235 * @param val Value
3236 */
3237void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3238{
3239 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3240 VBOX_CHECK_ADDR(DstGCPhys);
3241 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3242 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3243}
3244
3245
3246/**
3247 * Write guest RAM, unsigned 8-bit.
3248 *
3249 * @param DstGCPhys The destination address (guest physical).
3250 * @param val Value
3251 */
3252void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3253{
3254 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3255 VBOX_CHECK_ADDR(DstGCPhys);
3256 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3257 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3258}
3259
3260
3261/**
3262 * Write guest RAM, unsigned 32-bit.
3263 *
3264 * @param DstGCPhys The destination address (guest physical).
3265 * @param val Value
3266 */
3267void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3268{
3269 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3270 VBOX_CHECK_ADDR(DstGCPhys);
3271 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3272 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3273}
3274
3275
3276/**
3277 * Write guest RAM, unsigned 64-bit.
3278 *
3279 * @param DstGCPhys The destination address (guest physical).
3280 * @param val Value
3281 */
3282void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3283{
3284 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3285 VBOX_CHECK_ADDR(DstGCPhys);
3286 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3287 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3288}
3289
3290#undef LOG_GROUP
3291#define LOG_GROUP LOG_GROUP_REM_MMIO
3292
3293/** Read MMIO memory. */
3294static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3295{
3296 uint32_t u32 = 0;
3297 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3298 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3299 Log2(("remR3MMIOReadU8: GCPhys=%RGp -> %02x\n", GCPhys, u32));
3300 return u32;
3301}
3302
3303/** Read MMIO memory. */
3304static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3305{
3306 uint32_t u32 = 0;
3307 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3308 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3309 Log2(("remR3MMIOReadU16: GCPhys=%RGp -> %04x\n", GCPhys, u32));
3310 return u32;
3311}
3312
3313/** Read MMIO memory. */
3314static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3315{
3316 uint32_t u32 = 0;
3317 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3318 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3319 Log2(("remR3MMIOReadU32: GCPhys=%RGp -> %08x\n", GCPhys, u32));
3320 return u32;
3321}
3322
3323/** Write to MMIO memory. */
3324static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3325{
3326 Log2(("remR3MMIOWriteU8: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3327 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3328 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3329}
3330
3331/** Write to MMIO memory. */
3332static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3333{
3334 Log2(("remR3MMIOWriteU16: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3335 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3336 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3337}
3338
3339/** Write to MMIO memory. */
3340static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3341{
3342 Log2(("remR3MMIOWriteU32: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3343 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3344 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3345}
3346
3347
3348#undef LOG_GROUP
3349#define LOG_GROUP LOG_GROUP_REM_HANDLER
3350
3351/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3352
3353static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3354{
3355 Log2(("remR3HandlerReadU8: GCPhys=%RGp\n", GCPhys));
3356 uint8_t u8;
3357 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3358 return u8;
3359}
3360
3361static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3362{
3363 Log2(("remR3HandlerReadU16: GCPhys=%RGp\n", GCPhys));
3364 uint16_t u16;
3365 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3366 return u16;
3367}
3368
3369static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3370{
3371 Log2(("remR3HandlerReadU32: GCPhys=%RGp\n", GCPhys));
3372 uint32_t u32;
3373 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3374 return u32;
3375}
3376
3377static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3378{
3379 Log2(("remR3HandlerWriteU8: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3380 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3381}
3382
3383static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3384{
3385 Log2(("remR3HandlerWriteU16: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3386 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3387}
3388
3389static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3390{
3391 Log2(("remR3HandlerWriteU32: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3392 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3393}
3394
3395/* -+- disassembly -+- */
3396
3397#undef LOG_GROUP
3398#define LOG_GROUP LOG_GROUP_REM_DISAS
3399
3400
3401/**
3402 * Enables or disables singled stepped disassembly.
3403 *
3404 * @returns VBox status code.
3405 * @param pVM VM handle.
3406 * @param fEnable To enable set this flag, to disable clear it.
3407 */
3408static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3409{
3410 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3411 VM_ASSERT_EMT(pVM);
3412
3413 if (fEnable)
3414 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3415 else
3416 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3417 return VINF_SUCCESS;
3418}
3419
3420
3421/**
3422 * Enables or disables singled stepped disassembly.
3423 *
3424 * @returns VBox status code.
3425 * @param pVM VM handle.
3426 * @param fEnable To enable set this flag, to disable clear it.
3427 */
3428REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3429{
3430 PVMREQ pReq;
3431 int rc;
3432
3433 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3434 if (VM_IS_EMT(pVM))
3435 return remR3DisasEnableStepping(pVM, fEnable);
3436
3437 rc = VMR3ReqCall(pVM, VMREQDEST_ANY, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3438 AssertRC(rc);
3439 if (RT_SUCCESS(rc))
3440 rc = pReq->iStatus;
3441 VMR3ReqFree(pReq);
3442 return rc;
3443}
3444
3445
3446#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3447/**
3448 * External Debugger Command: .remstep [on|off|1|0]
3449 */
3450static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3451{
3452 bool fEnable;
3453 int rc;
3454
3455 /* print status */
3456 if (cArgs == 0)
3457 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3458 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3459
3460 /* convert the argument and change the mode. */
3461 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3462 if (RT_FAILURE(rc))
3463 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3464 rc = REMR3DisasEnableStepping(pVM, fEnable);
3465 if (RT_FAILURE(rc))
3466 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3467 return rc;
3468}
3469#endif
3470
3471
3472/**
3473 * Disassembles n instructions and prints them to the log.
3474 *
3475 * @returns Success indicator.
3476 * @param env Pointer to the recompiler CPU structure.
3477 * @param f32BitCode Indicates that whether or not the code should
3478 * be disassembled as 16 or 32 bit. If -1 the CS
3479 * selector will be inspected.
3480 * @param nrInstructions Nr of instructions to disassemble
3481 * @param pszPrefix
3482 * @remark not currently used for anything but ad-hoc debugging.
3483 */
3484bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3485{
3486 int i;
3487
3488 /*
3489 * Determin 16/32 bit mode.
3490 */
3491 if (f32BitCode == -1)
3492 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3493
3494 /*
3495 * Convert cs:eip to host context address.
3496 * We don't care to much about cross page correctness presently.
3497 */
3498 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3499 void *pvPC;
3500 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3501 {
3502 Assert(PGMGetGuestMode(env->pVM) < PGMMODE_AMD64);
3503
3504 /* convert eip to physical address. */
3505 int rc = PGMPhysGCPtr2R3PtrByGstCR3(env->pVM,
3506 GCPtrPC,
3507 env->cr[3],
3508 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3509 &pvPC);
3510 if (RT_FAILURE(rc))
3511 {
3512 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3513 return false;
3514 pvPC = (char *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3515 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3516 }
3517 }
3518 else
3519 {
3520 /* physical address */
3521 int rc = PGMPhysGCPhys2R3Ptr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16, &pvPC);
3522 if (RT_FAILURE(rc))
3523 return false;
3524 }
3525
3526 /*
3527 * Disassemble.
3528 */
3529 RTINTPTR off = env->eip - (RTGCUINTPTR)pvPC;
3530 DISCPUSTATE Cpu;
3531 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3532 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3533 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3534 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3535 //Cpu.dwUserData[2] = GCPtrPC;
3536
3537 for (i=0;i<nrInstructions;i++)
3538 {
3539 char szOutput[256];
3540 uint32_t cbOp;
3541 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3542 return false;
3543 if (pszPrefix)
3544 Log(("%s: %s", pszPrefix, szOutput));
3545 else
3546 Log(("%s", szOutput));
3547
3548 pvPC += cbOp;
3549 }
3550 return true;
3551}
3552
3553
3554/** @todo need to test the new code, using the old code in the mean while. */
3555#define USE_OLD_DUMP_AND_DISASSEMBLY
3556
3557/**
3558 * Disassembles one instruction and prints it to the log.
3559 *
3560 * @returns Success indicator.
3561 * @param env Pointer to the recompiler CPU structure.
3562 * @param f32BitCode Indicates that whether or not the code should
3563 * be disassembled as 16 or 32 bit. If -1 the CS
3564 * selector will be inspected.
3565 * @param pszPrefix
3566 */
3567bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3568{
3569#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3570 PVM pVM = env->pVM;
3571
3572 /* Doesn't work in long mode. */
3573 if (env->hflags & HF_LMA_MASK)
3574 return false;
3575
3576 /*
3577 * Determin 16/32 bit mode.
3578 */
3579 if (f32BitCode == -1)
3580 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3581
3582 /*
3583 * Log registers
3584 */
3585 if (LogIs2Enabled())
3586 {
3587 remR3StateUpdate(pVM);
3588 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3589 }
3590
3591 /*
3592 * Convert cs:eip to host context address.
3593 * We don't care to much about cross page correctness presently.
3594 */
3595 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3596 void *pvPC;
3597 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3598 {
3599 /* convert eip to physical address. */
3600 int rc = PGMPhysGCPtr2R3PtrByGstCR3(pVM,
3601 GCPtrPC,
3602 env->cr[3],
3603 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3604 &pvPC);
3605 if (RT_FAILURE(rc))
3606 {
3607 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3608 return false;
3609 pvPC = (char *)PATMR3QueryPatchMemHC(pVM, NULL)
3610 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3611 }
3612 }
3613 else
3614 {
3615
3616 /* physical address */
3617 int rc = PGMPhysGCPhys2R3Ptr(pVM, (RTGCPHYS)GCPtrPC, 16, &pvPC);
3618 if (RT_FAILURE(rc))
3619 return false;
3620 }
3621
3622 /*
3623 * Disassemble.
3624 */
3625 RTINTPTR off = env->eip - (RTGCUINTPTR)pvPC;
3626 DISCPUSTATE Cpu;
3627 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3628 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3629 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3630 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3631 //Cpu.dwUserData[2] = GCPtrPC;
3632 char szOutput[256];
3633 uint32_t cbOp;
3634 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3635 return false;
3636
3637 if (!f32BitCode)
3638 {
3639 if (pszPrefix)
3640 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3641 else
3642 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3643 }
3644 else
3645 {
3646 if (pszPrefix)
3647 Log(("%s: %s", pszPrefix, szOutput));
3648 else
3649 Log(("%s", szOutput));
3650 }
3651 return true;
3652
3653#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3654 PVM pVM = env->pVM;
3655 const bool fLog = LogIsEnabled();
3656 const bool fLog2 = LogIs2Enabled();
3657 int rc = VINF_SUCCESS;
3658
3659 /*
3660 * Don't bother if there ain't any log output to do.
3661 */
3662 if (!fLog && !fLog2)
3663 return true;
3664
3665 /*
3666 * Update the state so DBGF reads the correct register values.
3667 */
3668 remR3StateUpdate(pVM);
3669
3670 /*
3671 * Log registers if requested.
3672 */
3673 if (!fLog2)
3674 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3675
3676 /*
3677 * Disassemble to log.
3678 */
3679 if (fLog)
3680 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3681
3682 return RT_SUCCESS(rc);
3683#endif
3684}
3685
3686
3687/**
3688 * Disassemble recompiled code.
3689 *
3690 * @param phFileIgnored Ignored, logfile usually.
3691 * @param pvCode Pointer to the code block.
3692 * @param cb Size of the code block.
3693 */
3694void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3695{
3696 if (LogIs2Enabled())
3697 {
3698 unsigned off = 0;
3699 char szOutput[256];
3700 DISCPUSTATE Cpu;
3701
3702 memset(&Cpu, 0, sizeof(Cpu));
3703#ifdef RT_ARCH_X86
3704 Cpu.mode = CPUMODE_32BIT;
3705#else
3706 Cpu.mode = CPUMODE_64BIT;
3707#endif
3708
3709 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3710 while (off < cb)
3711 {
3712 uint32_t cbInstr;
3713 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3714 RTLogPrintf("%s", szOutput);
3715 else
3716 {
3717 RTLogPrintf("disas error\n");
3718 cbInstr = 1;
3719#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3720 break;
3721#endif
3722 }
3723 off += cbInstr;
3724 }
3725 }
3726 NOREF(phFileIgnored);
3727}
3728
3729
3730/**
3731 * Disassemble guest code.
3732 *
3733 * @param phFileIgnored Ignored, logfile usually.
3734 * @param uCode The guest address of the code to disassemble. (flat?)
3735 * @param cb Number of bytes to disassemble.
3736 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3737 */
3738void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3739{
3740 if (LogIs2Enabled())
3741 {
3742 PVM pVM = cpu_single_env->pVM;
3743
3744 /*
3745 * Update the state so DBGF reads the correct register values (flags).
3746 */
3747 remR3StateUpdate(pVM);
3748
3749 /*
3750 * Do the disassembling.
3751 */
3752 RTLogPrintf("Guest Code: PC=%RGp %#RGp (%RGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
3753 RTSEL cs = cpu_single_env->segs[R_CS].selector;
3754 RTGCUINTPTR eip = uCode - cpu_single_env->segs[R_CS].base;
3755 for (;;)
3756 {
3757 char szBuf[256];
3758 uint32_t cbInstr;
3759 int rc = DBGFR3DisasInstrEx(pVM,
3760 cs,
3761 eip,
3762 0,
3763 szBuf, sizeof(szBuf),
3764 &cbInstr);
3765 if (RT_SUCCESS(rc))
3766 RTLogPrintf("%RGp %s\n", uCode, szBuf);
3767 else
3768 {
3769 RTLogPrintf("%RGp %04x:%RGv: %s\n", uCode, cs, eip, szBuf);
3770 cbInstr = 1;
3771 }
3772
3773 /* next */
3774 if (cb <= cbInstr)
3775 break;
3776 cb -= cbInstr;
3777 uCode += cbInstr;
3778 eip += cbInstr;
3779 }
3780 }
3781 NOREF(phFileIgnored);
3782}
3783
3784
3785/**
3786 * Looks up a guest symbol.
3787 *
3788 * @returns Pointer to symbol name. This is a static buffer.
3789 * @param orig_addr The address in question.
3790 */
3791const char *lookup_symbol(target_ulong orig_addr)
3792{
3793 RTGCINTPTR off = 0;
3794 DBGFSYMBOL Sym;
3795 PVM pVM = cpu_single_env->pVM;
3796 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3797 if (RT_SUCCESS(rc))
3798 {
3799 static char szSym[sizeof(Sym.szName) + 48];
3800 if (!off)
3801 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3802 else if (off > 0)
3803 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3804 else
3805 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3806 return szSym;
3807 }
3808 return "<N/A>";
3809}
3810
3811
3812#undef LOG_GROUP
3813#define LOG_GROUP LOG_GROUP_REM
3814
3815
3816/* -+- FF notifications -+- */
3817
3818
3819/**
3820 * Notification about a pending interrupt.
3821 *
3822 * @param pVM VM Handle.
3823 * @param u8Interrupt Interrupt
3824 * @thread The emulation thread.
3825 */
3826REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3827{
3828 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3829 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3830}
3831
3832/**
3833 * Notification about a pending interrupt.
3834 *
3835 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3836 * @param pVM VM Handle.
3837 * @thread The emulation thread.
3838 */
3839REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3840{
3841 return pVM->rem.s.u32PendingInterrupt;
3842}
3843
3844/**
3845 * Notification about the interrupt FF being set.
3846 *
3847 * @param pVM VM Handle.
3848 * @thread The emulation thread.
3849 */
3850REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3851{
3852 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3853 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3854 if (pVM->rem.s.fInREM)
3855 {
3856 if (VM_IS_EMT(pVM))
3857 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3858 else
3859 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_HARD);
3860 }
3861}
3862
3863
3864/**
3865 * Notification about the interrupt FF being set.
3866 *
3867 * @param pVM VM Handle.
3868 * @thread Any.
3869 */
3870REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3871{
3872 LogFlow(("REMR3NotifyInterruptClear:\n"));
3873 if (pVM->rem.s.fInREM)
3874 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3875}
3876
3877
3878/**
3879 * Notification about pending timer(s).
3880 *
3881 * @param pVM VM Handle.
3882 * @thread Any.
3883 */
3884REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3885{
3886#ifndef DEBUG_bird
3887 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3888#endif
3889 if (pVM->rem.s.fInREM)
3890 {
3891 if (VM_IS_EMT(pVM))
3892 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3893 else
3894 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_TIMER);
3895 }
3896}
3897
3898
3899/**
3900 * Notification about pending DMA transfers.
3901 *
3902 * @param pVM VM Handle.
3903 * @thread Any.
3904 */
3905REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3906{
3907 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3908 if (pVM->rem.s.fInREM)
3909 {
3910 if (VM_IS_EMT(pVM))
3911 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3912 else
3913 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_DMA);
3914 }
3915}
3916
3917
3918/**
3919 * Notification about pending timer(s).
3920 *
3921 * @param pVM VM Handle.
3922 * @thread Any.
3923 */
3924REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3925{
3926 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3927 if (pVM->rem.s.fInREM)
3928 {
3929 if (VM_IS_EMT(pVM))
3930 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3931 else
3932 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3933 }
3934}
3935
3936
3937/**
3938 * Notification about pending FF set by an external thread.
3939 *
3940 * @param pVM VM handle.
3941 * @thread Any.
3942 */
3943REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3944{
3945 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3946 if (pVM->rem.s.fInREM)
3947 {
3948 if (VM_IS_EMT(pVM))
3949 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3950 else
3951 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3952 }
3953}
3954
3955
3956#ifdef VBOX_WITH_STATISTICS
3957void remR3ProfileStart(int statcode)
3958{
3959 STAMPROFILEADV *pStat;
3960 switch(statcode)
3961 {
3962 case STATS_EMULATE_SINGLE_INSTR:
3963 pStat = &gStatExecuteSingleInstr;
3964 break;
3965 case STATS_QEMU_COMPILATION:
3966 pStat = &gStatCompilationQEmu;
3967 break;
3968 case STATS_QEMU_RUN_EMULATED_CODE:
3969 pStat = &gStatRunCodeQEmu;
3970 break;
3971 case STATS_QEMU_TOTAL:
3972 pStat = &gStatTotalTimeQEmu;
3973 break;
3974 case STATS_QEMU_RUN_TIMERS:
3975 pStat = &gStatTimers;
3976 break;
3977 case STATS_TLB_LOOKUP:
3978 pStat= &gStatTBLookup;
3979 break;
3980 case STATS_IRQ_HANDLING:
3981 pStat= &gStatIRQ;
3982 break;
3983 case STATS_RAW_CHECK:
3984 pStat = &gStatRawCheck;
3985 break;
3986
3987 default:
3988 AssertMsgFailed(("unknown stat %d\n", statcode));
3989 return;
3990 }
3991 STAM_PROFILE_ADV_START(pStat, a);
3992}
3993
3994
3995void remR3ProfileStop(int statcode)
3996{
3997 STAMPROFILEADV *pStat;
3998 switch(statcode)
3999 {
4000 case STATS_EMULATE_SINGLE_INSTR:
4001 pStat = &gStatExecuteSingleInstr;
4002 break;
4003 case STATS_QEMU_COMPILATION:
4004 pStat = &gStatCompilationQEmu;
4005 break;
4006 case STATS_QEMU_RUN_EMULATED_CODE:
4007 pStat = &gStatRunCodeQEmu;
4008 break;
4009 case STATS_QEMU_TOTAL:
4010 pStat = &gStatTotalTimeQEmu;
4011 break;
4012 case STATS_QEMU_RUN_TIMERS:
4013 pStat = &gStatTimers;
4014 break;
4015 case STATS_TLB_LOOKUP:
4016 pStat= &gStatTBLookup;
4017 break;
4018 case STATS_IRQ_HANDLING:
4019 pStat= &gStatIRQ;
4020 break;
4021 case STATS_RAW_CHECK:
4022 pStat = &gStatRawCheck;
4023 break;
4024 default:
4025 AssertMsgFailed(("unknown stat %d\n", statcode));
4026 return;
4027 }
4028 STAM_PROFILE_ADV_STOP(pStat, a);
4029}
4030#endif
4031
4032/**
4033 * Raise an RC, force rem exit.
4034 *
4035 * @param pVM VM handle.
4036 * @param rc The rc.
4037 */
4038void remR3RaiseRC(PVM pVM, int rc)
4039{
4040 Log(("remR3RaiseRC: rc=%Rrc\n", rc));
4041 Assert(pVM->rem.s.fInREM);
4042 VM_ASSERT_EMT(pVM);
4043 pVM->rem.s.rc = rc;
4044 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
4045}
4046
4047
4048/* -+- timers -+- */
4049
4050uint64_t cpu_get_tsc(CPUX86State *env)
4051{
4052 STAM_COUNTER_INC(&gStatCpuGetTSC);
4053 return TMCpuTickGet(env->pVM);
4054}
4055
4056
4057/* -+- interrupts -+- */
4058
4059void cpu_set_ferr(CPUX86State *env)
4060{
4061 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
4062 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4063}
4064
4065int cpu_get_pic_interrupt(CPUState *env)
4066{
4067 uint8_t u8Interrupt;
4068 int rc;
4069
4070 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4071 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4072 * with the (a)pic.
4073 */
4074 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4075 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4076 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4077 * remove this kludge. */
4078 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4079 {
4080 rc = VINF_SUCCESS;
4081 Assert(env->pVM->rem.s.u32PendingInterrupt >= 0 && env->pVM->rem.s.u32PendingInterrupt <= 255);
4082 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4083 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4084 }
4085 else
4086 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4087
4088 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Rrc\n", u8Interrupt, rc));
4089 if (RT_SUCCESS(rc))
4090 {
4091 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4092 env->interrupt_request |= CPU_INTERRUPT_HARD;
4093 return u8Interrupt;
4094 }
4095 return -1;
4096}
4097
4098
4099/* -+- local apic -+- */
4100
4101void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4102{
4103 int rc = PDMApicSetBase(env->pVM, val);
4104 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Rrc\n", val, rc)); NOREF(rc);
4105}
4106
4107uint64_t cpu_get_apic_base(CPUX86State *env)
4108{
4109 uint64_t u64;
4110 int rc = PDMApicGetBase(env->pVM, &u64);
4111 if (RT_SUCCESS(rc))
4112 {
4113 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4114 return u64;
4115 }
4116 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Rrc)\n", rc));
4117 return 0;
4118}
4119
4120void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4121{
4122 int rc = PDMApicSetTPR(env->pVM, val);
4123 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Rrc\n", val, rc)); NOREF(rc);
4124}
4125
4126uint8_t cpu_get_apic_tpr(CPUX86State *env)
4127{
4128 uint8_t u8;
4129 int rc = PDMApicGetTPR(env->pVM, &u8, NULL);
4130 if (RT_SUCCESS(rc))
4131 {
4132 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4133 return u8;
4134 }
4135 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Rrc)\n", rc));
4136 return 0;
4137}
4138
4139
4140uint64_t cpu_apic_rdmsr(CPUX86State *env, uint32_t reg)
4141{
4142 uint64_t value;
4143 int rc = PDMApicReadMSR(env->pVM, 0/* cpu */, reg, &value);
4144 if (RT_SUCCESS(rc))
4145 {
4146 LogFlow(("cpu_apic_rdms returns %#x\n", value));
4147 return value;
4148 }
4149 /** @todo: exception ? */
4150 LogFlow(("cpu_apic_rdms returns 0 (rc=%Rrc)\n", rc));
4151 return value;
4152}
4153
4154void cpu_apic_wrmsr(CPUX86State *env, uint32_t reg, uint64_t value)
4155{
4156 int rc = PDMApicWriteMSR(env->pVM, 0 /* cpu */, reg, value);
4157 /** @todo: exception if error ? */
4158 LogFlow(("cpu_apic_wrmsr: rc=%Rrc\n", rc)); NOREF(rc);
4159}
4160
4161uint64_t cpu_rdmsr(CPUX86State *env, uint32_t msr)
4162{
4163 return CPUMGetGuestMsr(env->pVM, msr);
4164}
4165
4166void cpu_wrmsr(CPUX86State *env, uint32_t msr, uint64_t val)
4167{
4168 CPUMSetGuestMsr(env->pVM, msr, val);
4169}
4170
4171/* -+- I/O Ports -+- */
4172
4173#undef LOG_GROUP
4174#define LOG_GROUP LOG_GROUP_REM_IOPORT
4175
4176void cpu_outb(CPUState *env, int addr, int val)
4177{
4178 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4179 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4180
4181 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4182 if (RT_LIKELY(rc == VINF_SUCCESS))
4183 return;
4184 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4185 {
4186 Log(("cpu_outb: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4187 remR3RaiseRC(env->pVM, rc);
4188 return;
4189 }
4190 remAbort(rc, __FUNCTION__);
4191}
4192
4193void cpu_outw(CPUState *env, int addr, int val)
4194{
4195 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4196 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4197 if (RT_LIKELY(rc == VINF_SUCCESS))
4198 return;
4199 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4200 {
4201 Log(("cpu_outw: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4202 remR3RaiseRC(env->pVM, rc);
4203 return;
4204 }
4205 remAbort(rc, __FUNCTION__);
4206}
4207
4208void cpu_outl(CPUState *env, int addr, int val)
4209{
4210 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4211 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4212 if (RT_LIKELY(rc == VINF_SUCCESS))
4213 return;
4214 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4215 {
4216 Log(("cpu_outl: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4217 remR3RaiseRC(env->pVM, rc);
4218 return;
4219 }
4220 remAbort(rc, __FUNCTION__);
4221}
4222
4223int cpu_inb(CPUState *env, int addr)
4224{
4225 uint32_t u32 = 0;
4226 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4227 if (RT_LIKELY(rc == VINF_SUCCESS))
4228 {
4229 if (/*addr != 0x61 && */addr != 0x71)
4230 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4231 return (int)u32;
4232 }
4233 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4234 {
4235 Log(("cpu_inb: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4236 remR3RaiseRC(env->pVM, rc);
4237 return (int)u32;
4238 }
4239 remAbort(rc, __FUNCTION__);
4240 return 0xff;
4241}
4242
4243int cpu_inw(CPUState *env, int addr)
4244{
4245 uint32_t u32 = 0;
4246 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4247 if (RT_LIKELY(rc == VINF_SUCCESS))
4248 {
4249 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4250 return (int)u32;
4251 }
4252 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4253 {
4254 Log(("cpu_inw: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4255 remR3RaiseRC(env->pVM, rc);
4256 return (int)u32;
4257 }
4258 remAbort(rc, __FUNCTION__);
4259 return 0xffff;
4260}
4261
4262int cpu_inl(CPUState *env, int addr)
4263{
4264 uint32_t u32 = 0;
4265 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4266 if (RT_LIKELY(rc == VINF_SUCCESS))
4267 {
4268//if (addr==0x01f0 && u32 == 0x6b6d)
4269// loglevel = ~0;
4270 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4271 return (int)u32;
4272 }
4273 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4274 {
4275 Log(("cpu_inl: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4276 remR3RaiseRC(env->pVM, rc);
4277 return (int)u32;
4278 }
4279 remAbort(rc, __FUNCTION__);
4280 return 0xffffffff;
4281}
4282
4283#undef LOG_GROUP
4284#define LOG_GROUP LOG_GROUP_REM
4285
4286
4287/* -+- helpers and misc other interfaces -+- */
4288
4289/**
4290 * Perform the CPUID instruction.
4291 *
4292 * ASMCpuId cannot be invoked from some source files where this is used because of global
4293 * register allocations.
4294 *
4295 * @param env Pointer to the recompiler CPU structure.
4296 * @param uOperator CPUID operation (eax).
4297 * @param pvEAX Where to store eax.
4298 * @param pvEBX Where to store ebx.
4299 * @param pvECX Where to store ecx.
4300 * @param pvEDX Where to store edx.
4301 */
4302void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4303{
4304 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4305}
4306
4307
4308#if 0 /* not used */
4309/**
4310 * Interface for qemu hardware to report back fatal errors.
4311 */
4312void hw_error(const char *pszFormat, ...)
4313{
4314 /*
4315 * Bitch about it.
4316 */
4317 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4318 * this in my Odin32 tree at home! */
4319 va_list args;
4320 va_start(args, pszFormat);
4321 RTLogPrintf("fatal error in virtual hardware:");
4322 RTLogPrintfV(pszFormat, args);
4323 va_end(args);
4324 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4325
4326 /*
4327 * If we're in REM context we'll sync back the state before 'jumping' to
4328 * the EMs failure handling.
4329 */
4330 PVM pVM = cpu_single_env->pVM;
4331 if (pVM->rem.s.fInREM)
4332 REMR3StateBack(pVM);
4333 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4334 AssertMsgFailed(("EMR3FatalError returned!\n"));
4335}
4336#endif
4337
4338/**
4339 * Interface for the qemu cpu to report unhandled situation
4340 * raising a fatal VM error.
4341 */
4342void cpu_abort(CPUState *env, const char *pszFormat, ...)
4343{
4344 /*
4345 * Bitch about it.
4346 */
4347 RTLogFlags(NULL, "nodisabled nobuffered");
4348 va_list args;
4349 va_start(args, pszFormat);
4350 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4351 va_end(args);
4352 va_start(args, pszFormat);
4353 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4354 va_end(args);
4355
4356 /*
4357 * If we're in REM context we'll sync back the state before 'jumping' to
4358 * the EMs failure handling.
4359 */
4360 PVM pVM = cpu_single_env->pVM;
4361 if (pVM->rem.s.fInREM)
4362 REMR3StateBack(pVM);
4363 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4364 AssertMsgFailed(("EMR3FatalError returned!\n"));
4365}
4366
4367
4368/**
4369 * Aborts the VM.
4370 *
4371 * @param rc VBox error code.
4372 * @param pszTip Hint about why/when this happend.
4373 */
4374static void remAbort(int rc, const char *pszTip)
4375{
4376 /*
4377 * Bitch about it.
4378 */
4379 RTLogPrintf("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip);
4380 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip));
4381
4382 /*
4383 * Jump back to where we entered the recompiler.
4384 */
4385 PVM pVM = cpu_single_env->pVM;
4386 if (pVM->rem.s.fInREM)
4387 REMR3StateBack(pVM);
4388 EMR3FatalError(pVM, rc);
4389 AssertMsgFailed(("EMR3FatalError returned!\n"));
4390}
4391
4392
4393/**
4394 * Dumps a linux system call.
4395 * @param pVM VM handle.
4396 */
4397void remR3DumpLnxSyscall(PVM pVM)
4398{
4399 static const char *apsz[] =
4400 {
4401 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4402 "sys_exit",
4403 "sys_fork",
4404 "sys_read",
4405 "sys_write",
4406 "sys_open", /* 5 */
4407 "sys_close",
4408 "sys_waitpid",
4409 "sys_creat",
4410 "sys_link",
4411 "sys_unlink", /* 10 */
4412 "sys_execve",
4413 "sys_chdir",
4414 "sys_time",
4415 "sys_mknod",
4416 "sys_chmod", /* 15 */
4417 "sys_lchown16",
4418 "sys_ni_syscall", /* old break syscall holder */
4419 "sys_stat",
4420 "sys_lseek",
4421 "sys_getpid", /* 20 */
4422 "sys_mount",
4423 "sys_oldumount",
4424 "sys_setuid16",
4425 "sys_getuid16",
4426 "sys_stime", /* 25 */
4427 "sys_ptrace",
4428 "sys_alarm",
4429 "sys_fstat",
4430 "sys_pause",
4431 "sys_utime", /* 30 */
4432 "sys_ni_syscall", /* old stty syscall holder */
4433 "sys_ni_syscall", /* old gtty syscall holder */
4434 "sys_access",
4435 "sys_nice",
4436 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4437 "sys_sync",
4438 "sys_kill",
4439 "sys_rename",
4440 "sys_mkdir",
4441 "sys_rmdir", /* 40 */
4442 "sys_dup",
4443 "sys_pipe",
4444 "sys_times",
4445 "sys_ni_syscall", /* old prof syscall holder */
4446 "sys_brk", /* 45 */
4447 "sys_setgid16",
4448 "sys_getgid16",
4449 "sys_signal",
4450 "sys_geteuid16",
4451 "sys_getegid16", /* 50 */
4452 "sys_acct",
4453 "sys_umount", /* recycled never used phys() */
4454 "sys_ni_syscall", /* old lock syscall holder */
4455 "sys_ioctl",
4456 "sys_fcntl", /* 55 */
4457 "sys_ni_syscall", /* old mpx syscall holder */
4458 "sys_setpgid",
4459 "sys_ni_syscall", /* old ulimit syscall holder */
4460 "sys_olduname",
4461 "sys_umask", /* 60 */
4462 "sys_chroot",
4463 "sys_ustat",
4464 "sys_dup2",
4465 "sys_getppid",
4466 "sys_getpgrp", /* 65 */
4467 "sys_setsid",
4468 "sys_sigaction",
4469 "sys_sgetmask",
4470 "sys_ssetmask",
4471 "sys_setreuid16", /* 70 */
4472 "sys_setregid16",
4473 "sys_sigsuspend",
4474 "sys_sigpending",
4475 "sys_sethostname",
4476 "sys_setrlimit", /* 75 */
4477 "sys_old_getrlimit",
4478 "sys_getrusage",
4479 "sys_gettimeofday",
4480 "sys_settimeofday",
4481 "sys_getgroups16", /* 80 */
4482 "sys_setgroups16",
4483 "old_select",
4484 "sys_symlink",
4485 "sys_lstat",
4486 "sys_readlink", /* 85 */
4487 "sys_uselib",
4488 "sys_swapon",
4489 "sys_reboot",
4490 "old_readdir",
4491 "old_mmap", /* 90 */
4492 "sys_munmap",
4493 "sys_truncate",
4494 "sys_ftruncate",
4495 "sys_fchmod",
4496 "sys_fchown16", /* 95 */
4497 "sys_getpriority",
4498 "sys_setpriority",
4499 "sys_ni_syscall", /* old profil syscall holder */
4500 "sys_statfs",
4501 "sys_fstatfs", /* 100 */
4502 "sys_ioperm",
4503 "sys_socketcall",
4504 "sys_syslog",
4505 "sys_setitimer",
4506 "sys_getitimer", /* 105 */
4507 "sys_newstat",
4508 "sys_newlstat",
4509 "sys_newfstat",
4510 "sys_uname",
4511 "sys_iopl", /* 110 */
4512 "sys_vhangup",
4513 "sys_ni_syscall", /* old "idle" system call */
4514 "sys_vm86old",
4515 "sys_wait4",
4516 "sys_swapoff", /* 115 */
4517 "sys_sysinfo",
4518 "sys_ipc",
4519 "sys_fsync",
4520 "sys_sigreturn",
4521 "sys_clone", /* 120 */
4522 "sys_setdomainname",
4523 "sys_newuname",
4524 "sys_modify_ldt",
4525 "sys_adjtimex",
4526 "sys_mprotect", /* 125 */
4527 "sys_sigprocmask",
4528 "sys_ni_syscall", /* old "create_module" */
4529 "sys_init_module",
4530 "sys_delete_module",
4531 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4532 "sys_quotactl",
4533 "sys_getpgid",
4534 "sys_fchdir",
4535 "sys_bdflush",
4536 "sys_sysfs", /* 135 */
4537 "sys_personality",
4538 "sys_ni_syscall", /* reserved for afs_syscall */
4539 "sys_setfsuid16",
4540 "sys_setfsgid16",
4541 "sys_llseek", /* 140 */
4542 "sys_getdents",
4543 "sys_select",
4544 "sys_flock",
4545 "sys_msync",
4546 "sys_readv", /* 145 */
4547 "sys_writev",
4548 "sys_getsid",
4549 "sys_fdatasync",
4550 "sys_sysctl",
4551 "sys_mlock", /* 150 */
4552 "sys_munlock",
4553 "sys_mlockall",
4554 "sys_munlockall",
4555 "sys_sched_setparam",
4556 "sys_sched_getparam", /* 155 */
4557 "sys_sched_setscheduler",
4558 "sys_sched_getscheduler",
4559 "sys_sched_yield",
4560 "sys_sched_get_priority_max",
4561 "sys_sched_get_priority_min", /* 160 */
4562 "sys_sched_rr_get_interval",
4563 "sys_nanosleep",
4564 "sys_mremap",
4565 "sys_setresuid16",
4566 "sys_getresuid16", /* 165 */
4567 "sys_vm86",
4568 "sys_ni_syscall", /* Old sys_query_module */
4569 "sys_poll",
4570 "sys_nfsservctl",
4571 "sys_setresgid16", /* 170 */
4572 "sys_getresgid16",
4573 "sys_prctl",
4574 "sys_rt_sigreturn",
4575 "sys_rt_sigaction",
4576 "sys_rt_sigprocmask", /* 175 */
4577 "sys_rt_sigpending",
4578 "sys_rt_sigtimedwait",
4579 "sys_rt_sigqueueinfo",
4580 "sys_rt_sigsuspend",
4581 "sys_pread64", /* 180 */
4582 "sys_pwrite64",
4583 "sys_chown16",
4584 "sys_getcwd",
4585 "sys_capget",
4586 "sys_capset", /* 185 */
4587 "sys_sigaltstack",
4588 "sys_sendfile",
4589 "sys_ni_syscall", /* reserved for streams1 */
4590 "sys_ni_syscall", /* reserved for streams2 */
4591 "sys_vfork", /* 190 */
4592 "sys_getrlimit",
4593 "sys_mmap2",
4594 "sys_truncate64",
4595 "sys_ftruncate64",
4596 "sys_stat64", /* 195 */
4597 "sys_lstat64",
4598 "sys_fstat64",
4599 "sys_lchown",
4600 "sys_getuid",
4601 "sys_getgid", /* 200 */
4602 "sys_geteuid",
4603 "sys_getegid",
4604 "sys_setreuid",
4605 "sys_setregid",
4606 "sys_getgroups", /* 205 */
4607 "sys_setgroups",
4608 "sys_fchown",
4609 "sys_setresuid",
4610 "sys_getresuid",
4611 "sys_setresgid", /* 210 */
4612 "sys_getresgid",
4613 "sys_chown",
4614 "sys_setuid",
4615 "sys_setgid",
4616 "sys_setfsuid", /* 215 */
4617 "sys_setfsgid",
4618 "sys_pivot_root",
4619 "sys_mincore",
4620 "sys_madvise",
4621 "sys_getdents64", /* 220 */
4622 "sys_fcntl64",
4623 "sys_ni_syscall", /* reserved for TUX */
4624 "sys_ni_syscall",
4625 "sys_gettid",
4626 "sys_readahead", /* 225 */
4627 "sys_setxattr",
4628 "sys_lsetxattr",
4629 "sys_fsetxattr",
4630 "sys_getxattr",
4631 "sys_lgetxattr", /* 230 */
4632 "sys_fgetxattr",
4633 "sys_listxattr",
4634 "sys_llistxattr",
4635 "sys_flistxattr",
4636 "sys_removexattr", /* 235 */
4637 "sys_lremovexattr",
4638 "sys_fremovexattr",
4639 "sys_tkill",
4640 "sys_sendfile64",
4641 "sys_futex", /* 240 */
4642 "sys_sched_setaffinity",
4643 "sys_sched_getaffinity",
4644 "sys_set_thread_area",
4645 "sys_get_thread_area",
4646 "sys_io_setup", /* 245 */
4647 "sys_io_destroy",
4648 "sys_io_getevents",
4649 "sys_io_submit",
4650 "sys_io_cancel",
4651 "sys_fadvise64", /* 250 */
4652 "sys_ni_syscall",
4653 "sys_exit_group",
4654 "sys_lookup_dcookie",
4655 "sys_epoll_create",
4656 "sys_epoll_ctl", /* 255 */
4657 "sys_epoll_wait",
4658 "sys_remap_file_pages",
4659 "sys_set_tid_address",
4660 "sys_timer_create",
4661 "sys_timer_settime", /* 260 */
4662 "sys_timer_gettime",
4663 "sys_timer_getoverrun",
4664 "sys_timer_delete",
4665 "sys_clock_settime",
4666 "sys_clock_gettime", /* 265 */
4667 "sys_clock_getres",
4668 "sys_clock_nanosleep",
4669 "sys_statfs64",
4670 "sys_fstatfs64",
4671 "sys_tgkill", /* 270 */
4672 "sys_utimes",
4673 "sys_fadvise64_64",
4674 "sys_ni_syscall" /* sys_vserver */
4675 };
4676
4677 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4678 switch (uEAX)
4679 {
4680 default:
4681 if (uEAX < RT_ELEMENTS(apsz))
4682 Log(("REM: linux syscall %3d: %s (eip=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4683 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4684 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4685 else
4686 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4687 break;
4688
4689 }
4690}
4691
4692
4693/**
4694 * Dumps an OpenBSD system call.
4695 * @param pVM VM handle.
4696 */
4697void remR3DumpOBsdSyscall(PVM pVM)
4698{
4699 static const char *apsz[] =
4700 {
4701 "SYS_syscall", //0
4702 "SYS_exit", //1
4703 "SYS_fork", //2
4704 "SYS_read", //3
4705 "SYS_write", //4
4706 "SYS_open", //5
4707 "SYS_close", //6
4708 "SYS_wait4", //7
4709 "SYS_8",
4710 "SYS_link", //9
4711 "SYS_unlink", //10
4712 "SYS_11",
4713 "SYS_chdir", //12
4714 "SYS_fchdir", //13
4715 "SYS_mknod", //14
4716 "SYS_chmod", //15
4717 "SYS_chown", //16
4718 "SYS_break", //17
4719 "SYS_18",
4720 "SYS_19",
4721 "SYS_getpid", //20
4722 "SYS_mount", //21
4723 "SYS_unmount", //22
4724 "SYS_setuid", //23
4725 "SYS_getuid", //24
4726 "SYS_geteuid", //25
4727 "SYS_ptrace", //26
4728 "SYS_recvmsg", //27
4729 "SYS_sendmsg", //28
4730 "SYS_recvfrom", //29
4731 "SYS_accept", //30
4732 "SYS_getpeername", //31
4733 "SYS_getsockname", //32
4734 "SYS_access", //33
4735 "SYS_chflags", //34
4736 "SYS_fchflags", //35
4737 "SYS_sync", //36
4738 "SYS_kill", //37
4739 "SYS_38",
4740 "SYS_getppid", //39
4741 "SYS_40",
4742 "SYS_dup", //41
4743 "SYS_opipe", //42
4744 "SYS_getegid", //43
4745 "SYS_profil", //44
4746 "SYS_ktrace", //45
4747 "SYS_sigaction", //46
4748 "SYS_getgid", //47
4749 "SYS_sigprocmask", //48
4750 "SYS_getlogin", //49
4751 "SYS_setlogin", //50
4752 "SYS_acct", //51
4753 "SYS_sigpending", //52
4754 "SYS_osigaltstack", //53
4755 "SYS_ioctl", //54
4756 "SYS_reboot", //55
4757 "SYS_revoke", //56
4758 "SYS_symlink", //57
4759 "SYS_readlink", //58
4760 "SYS_execve", //59
4761 "SYS_umask", //60
4762 "SYS_chroot", //61
4763 "SYS_62",
4764 "SYS_63",
4765 "SYS_64",
4766 "SYS_65",
4767 "SYS_vfork", //66
4768 "SYS_67",
4769 "SYS_68",
4770 "SYS_sbrk", //69
4771 "SYS_sstk", //70
4772 "SYS_61",
4773 "SYS_vadvise", //72
4774 "SYS_munmap", //73
4775 "SYS_mprotect", //74
4776 "SYS_madvise", //75
4777 "SYS_76",
4778 "SYS_77",
4779 "SYS_mincore", //78
4780 "SYS_getgroups", //79
4781 "SYS_setgroups", //80
4782 "SYS_getpgrp", //81
4783 "SYS_setpgid", //82
4784 "SYS_setitimer", //83
4785 "SYS_84",
4786 "SYS_85",
4787 "SYS_getitimer", //86
4788 "SYS_87",
4789 "SYS_88",
4790 "SYS_89",
4791 "SYS_dup2", //90
4792 "SYS_91",
4793 "SYS_fcntl", //92
4794 "SYS_select", //93
4795 "SYS_94",
4796 "SYS_fsync", //95
4797 "SYS_setpriority", //96
4798 "SYS_socket", //97
4799 "SYS_connect", //98
4800 "SYS_99",
4801 "SYS_getpriority", //100
4802 "SYS_101",
4803 "SYS_102",
4804 "SYS_sigreturn", //103
4805 "SYS_bind", //104
4806 "SYS_setsockopt", //105
4807 "SYS_listen", //106
4808 "SYS_107",
4809 "SYS_108",
4810 "SYS_109",
4811 "SYS_110",
4812 "SYS_sigsuspend", //111
4813 "SYS_112",
4814 "SYS_113",
4815 "SYS_114",
4816 "SYS_115",
4817 "SYS_gettimeofday", //116
4818 "SYS_getrusage", //117
4819 "SYS_getsockopt", //118
4820 "SYS_119",
4821 "SYS_readv", //120
4822 "SYS_writev", //121
4823 "SYS_settimeofday", //122
4824 "SYS_fchown", //123
4825 "SYS_fchmod", //124
4826 "SYS_125",
4827 "SYS_setreuid", //126
4828 "SYS_setregid", //127
4829 "SYS_rename", //128
4830 "SYS_129",
4831 "SYS_130",
4832 "SYS_flock", //131
4833 "SYS_mkfifo", //132
4834 "SYS_sendto", //133
4835 "SYS_shutdown", //134
4836 "SYS_socketpair", //135
4837 "SYS_mkdir", //136
4838 "SYS_rmdir", //137
4839 "SYS_utimes", //138
4840 "SYS_139",
4841 "SYS_adjtime", //140
4842 "SYS_141",
4843 "SYS_142",
4844 "SYS_143",
4845 "SYS_144",
4846 "SYS_145",
4847 "SYS_146",
4848 "SYS_setsid", //147
4849 "SYS_quotactl", //148
4850 "SYS_149",
4851 "SYS_150",
4852 "SYS_151",
4853 "SYS_152",
4854 "SYS_153",
4855 "SYS_154",
4856 "SYS_nfssvc", //155
4857 "SYS_156",
4858 "SYS_157",
4859 "SYS_158",
4860 "SYS_159",
4861 "SYS_160",
4862 "SYS_getfh", //161
4863 "SYS_162",
4864 "SYS_163",
4865 "SYS_164",
4866 "SYS_sysarch", //165
4867 "SYS_166",
4868 "SYS_167",
4869 "SYS_168",
4870 "SYS_169",
4871 "SYS_170",
4872 "SYS_171",
4873 "SYS_172",
4874 "SYS_pread", //173
4875 "SYS_pwrite", //174
4876 "SYS_175",
4877 "SYS_176",
4878 "SYS_177",
4879 "SYS_178",
4880 "SYS_179",
4881 "SYS_180",
4882 "SYS_setgid", //181
4883 "SYS_setegid", //182
4884 "SYS_seteuid", //183
4885 "SYS_lfs_bmapv", //184
4886 "SYS_lfs_markv", //185
4887 "SYS_lfs_segclean", //186
4888 "SYS_lfs_segwait", //187
4889 "SYS_188",
4890 "SYS_189",
4891 "SYS_190",
4892 "SYS_pathconf", //191
4893 "SYS_fpathconf", //192
4894 "SYS_swapctl", //193
4895 "SYS_getrlimit", //194
4896 "SYS_setrlimit", //195
4897 "SYS_getdirentries", //196
4898 "SYS_mmap", //197
4899 "SYS___syscall", //198
4900 "SYS_lseek", //199
4901 "SYS_truncate", //200
4902 "SYS_ftruncate", //201
4903 "SYS___sysctl", //202
4904 "SYS_mlock", //203
4905 "SYS_munlock", //204
4906 "SYS_205",
4907 "SYS_futimes", //206
4908 "SYS_getpgid", //207
4909 "SYS_xfspioctl", //208
4910 "SYS_209",
4911 "SYS_210",
4912 "SYS_211",
4913 "SYS_212",
4914 "SYS_213",
4915 "SYS_214",
4916 "SYS_215",
4917 "SYS_216",
4918 "SYS_217",
4919 "SYS_218",
4920 "SYS_219",
4921 "SYS_220",
4922 "SYS_semget", //221
4923 "SYS_222",
4924 "SYS_223",
4925 "SYS_224",
4926 "SYS_msgget", //225
4927 "SYS_msgsnd", //226
4928 "SYS_msgrcv", //227
4929 "SYS_shmat", //228
4930 "SYS_229",
4931 "SYS_shmdt", //230
4932 "SYS_231",
4933 "SYS_clock_gettime", //232
4934 "SYS_clock_settime", //233
4935 "SYS_clock_getres", //234
4936 "SYS_235",
4937 "SYS_236",
4938 "SYS_237",
4939 "SYS_238",
4940 "SYS_239",
4941 "SYS_nanosleep", //240
4942 "SYS_241",
4943 "SYS_242",
4944 "SYS_243",
4945 "SYS_244",
4946 "SYS_245",
4947 "SYS_246",
4948 "SYS_247",
4949 "SYS_248",
4950 "SYS_249",
4951 "SYS_minherit", //250
4952 "SYS_rfork", //251
4953 "SYS_poll", //252
4954 "SYS_issetugid", //253
4955 "SYS_lchown", //254
4956 "SYS_getsid", //255
4957 "SYS_msync", //256
4958 "SYS_257",
4959 "SYS_258",
4960 "SYS_259",
4961 "SYS_getfsstat", //260
4962 "SYS_statfs", //261
4963 "SYS_fstatfs", //262
4964 "SYS_pipe", //263
4965 "SYS_fhopen", //264
4966 "SYS_265",
4967 "SYS_fhstatfs", //266
4968 "SYS_preadv", //267
4969 "SYS_pwritev", //268
4970 "SYS_kqueue", //269
4971 "SYS_kevent", //270
4972 "SYS_mlockall", //271
4973 "SYS_munlockall", //272
4974 "SYS_getpeereid", //273
4975 "SYS_274",
4976 "SYS_275",
4977 "SYS_276",
4978 "SYS_277",
4979 "SYS_278",
4980 "SYS_279",
4981 "SYS_280",
4982 "SYS_getresuid", //281
4983 "SYS_setresuid", //282
4984 "SYS_getresgid", //283
4985 "SYS_setresgid", //284
4986 "SYS_285",
4987 "SYS_mquery", //286
4988 "SYS_closefrom", //287
4989 "SYS_sigaltstack", //288
4990 "SYS_shmget", //289
4991 "SYS_semop", //290
4992 "SYS_stat", //291
4993 "SYS_fstat", //292
4994 "SYS_lstat", //293
4995 "SYS_fhstat", //294
4996 "SYS___semctl", //295
4997 "SYS_shmctl", //296
4998 "SYS_msgctl", //297
4999 "SYS_MAXSYSCALL", //298
5000 //299
5001 //300
5002 };
5003 uint32_t uEAX;
5004 if (!LogIsEnabled())
5005 return;
5006 uEAX = CPUMGetGuestEAX(pVM);
5007 switch (uEAX)
5008 {
5009 default:
5010 if (uEAX < RT_ELEMENTS(apsz))
5011 {
5012 uint32_t au32Args[8] = {0};
5013 PGMPhysSimpleReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
5014 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
5015 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
5016 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
5017 }
5018 else
5019 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
5020 break;
5021 }
5022}
5023
5024
5025#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
5026/**
5027 * The Dll main entry point (stub).
5028 */
5029bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
5030{
5031 return true;
5032}
5033
5034void *memcpy(void *dst, const void *src, size_t size)
5035{
5036 uint8_t*pbDst = dst, *pbSrc = src;
5037 while (size-- > 0)
5038 *pbDst++ = *pbSrc++;
5039 return dst;
5040}
5041
5042#endif
5043
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette