VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 20073

Last change on this file since 20073 was 20073, checked in by vboxsync, 16 years ago

Dropped annoying assertion

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 160.0 KB
Line 
1/* $Id: VBoxRecompiler.c 20073 2009-05-27 12:14:57Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "osdep.h"
29#include "exec-all.h"
30#include "config.h"
31#include "cpu-all.h"
32
33#include <VBox/rem.h>
34#include <VBox/vmapi.h>
35#include <VBox/tm.h>
36#include <VBox/ssm.h>
37#include <VBox/em.h>
38#include <VBox/trpm.h>
39#include <VBox/iom.h>
40#include <VBox/mm.h>
41#include <VBox/pgm.h>
42#include <VBox/pdm.h>
43#include <VBox/dbgf.h>
44#include <VBox/dbg.h>
45#include <VBox/hwaccm.h>
46#include <VBox/patm.h>
47#include <VBox/csam.h>
48#include "REMInternal.h"
49#include <VBox/vm.h>
50#include <VBox/param.h>
51#include <VBox/err.h>
52
53#include <VBox/log.h>
54#include <iprt/semaphore.h>
55#include <iprt/asm.h>
56#include <iprt/assert.h>
57#include <iprt/thread.h>
58#include <iprt/string.h>
59
60/* Don't wanna include everything. */
61extern void cpu_exec_init_all(unsigned long tb_size);
62extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
63extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
64extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
65extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
66extern void tlb_flush(CPUState *env, int flush_global);
67extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
68extern void sync_ldtr(CPUX86State *env1, int selector);
69
70#ifdef VBOX_STRICT
71unsigned long get_phys_page_offset(target_ulong addr);
72#endif
73
74
75/*******************************************************************************
76* Defined Constants And Macros *
77*******************************************************************************/
78
79/** Copy 80-bit fpu register at pSrc to pDst.
80 * This is probably faster than *calling* memcpy.
81 */
82#define REM_COPY_FPU_REG(pDst, pSrc) \
83 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
84
85
86/*******************************************************************************
87* Internal Functions *
88*******************************************************************************/
89static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
90static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
91static void remR3StateUpdate(PVM pVM, PVMCPU pVCpu);
92static int remR3InitPhysRamSizeAndDirtyMap(PVM pVM, bool fGuarded);
93
94static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
95static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
96static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
97static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
98static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
99static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
100
101static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
102static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
103static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
104static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
105static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
106static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
107
108
109/*******************************************************************************
110* Global Variables *
111*******************************************************************************/
112
113/** @todo Move stats to REM::s some rainy day we have nothing do to. */
114#ifdef VBOX_WITH_STATISTICS
115static STAMPROFILEADV gStatExecuteSingleInstr;
116static STAMPROFILEADV gStatCompilationQEmu;
117static STAMPROFILEADV gStatRunCodeQEmu;
118static STAMPROFILEADV gStatTotalTimeQEmu;
119static STAMPROFILEADV gStatTimers;
120static STAMPROFILEADV gStatTBLookup;
121static STAMPROFILEADV gStatIRQ;
122static STAMPROFILEADV gStatRawCheck;
123static STAMPROFILEADV gStatMemRead;
124static STAMPROFILEADV gStatMemWrite;
125static STAMPROFILE gStatGCPhys2HCVirt;
126static STAMPROFILE gStatHCVirt2GCPhys;
127static STAMCOUNTER gStatCpuGetTSC;
128static STAMCOUNTER gStatRefuseTFInhibit;
129static STAMCOUNTER gStatRefuseVM86;
130static STAMCOUNTER gStatRefusePaging;
131static STAMCOUNTER gStatRefusePAE;
132static STAMCOUNTER gStatRefuseIOPLNot0;
133static STAMCOUNTER gStatRefuseIF0;
134static STAMCOUNTER gStatRefuseCode16;
135static STAMCOUNTER gStatRefuseWP0;
136static STAMCOUNTER gStatRefuseRing1or2;
137static STAMCOUNTER gStatRefuseCanExecute;
138static STAMCOUNTER gStatREMGDTChange;
139static STAMCOUNTER gStatREMIDTChange;
140static STAMCOUNTER gStatREMLDTRChange;
141static STAMCOUNTER gStatREMTRChange;
142static STAMCOUNTER gStatSelOutOfSync[6];
143static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
144static STAMCOUNTER gStatFlushTBs;
145#endif
146/* in exec.c */
147extern uint32_t tlb_flush_count;
148extern uint32_t tb_flush_count;
149extern uint32_t tb_phys_invalidate_count;
150
151/*
152 * Global stuff.
153 */
154
155/** MMIO read callbacks. */
156CPUReadMemoryFunc *g_apfnMMIORead[3] =
157{
158 remR3MMIOReadU8,
159 remR3MMIOReadU16,
160 remR3MMIOReadU32
161};
162
163/** MMIO write callbacks. */
164CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
165{
166 remR3MMIOWriteU8,
167 remR3MMIOWriteU16,
168 remR3MMIOWriteU32
169};
170
171/** Handler read callbacks. */
172CPUReadMemoryFunc *g_apfnHandlerRead[3] =
173{
174 remR3HandlerReadU8,
175 remR3HandlerReadU16,
176 remR3HandlerReadU32
177};
178
179/** Handler write callbacks. */
180CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
181{
182 remR3HandlerWriteU8,
183 remR3HandlerWriteU16,
184 remR3HandlerWriteU32
185};
186
187
188#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
189/*
190 * Debugger commands.
191 */
192static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
193
194/** '.remstep' arguments. */
195static const DBGCVARDESC g_aArgRemStep[] =
196{
197 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
198 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
199};
200
201/** Command descriptors. */
202static const DBGCCMD g_aCmds[] =
203{
204 {
205 .pszCmd ="remstep",
206 .cArgsMin = 0,
207 .cArgsMax = 1,
208 .paArgDescs = &g_aArgRemStep[0],
209 .cArgDescs = RT_ELEMENTS(g_aArgRemStep),
210 .pResultDesc = NULL,
211 .fFlags = 0,
212 .pfnHandler = remR3CmdDisasEnableStepping,
213 .pszSyntax = "[on/off]",
214 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
215 "If no arguments show the current state."
216 }
217};
218#endif
219
220/** Prologue code, must be in lower 4G to simplify jumps to/from generated code. */
221uint8_t *code_gen_prologue;
222
223
224/*******************************************************************************
225* Internal Functions *
226*******************************************************************************/
227void remAbort(int rc, const char *pszTip);
228extern int testmath(void);
229
230/* Put them here to avoid unused variable warning. */
231AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
232#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
233//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
234/* Why did this have to be identical?? */
235AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
236#else
237AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
238#endif
239
240
241/**
242 * Initializes the REM.
243 *
244 * @returns VBox status code.
245 * @param pVM The VM to operate on.
246 */
247REMR3DECL(int) REMR3Init(PVM pVM)
248{
249 uint32_t u32Dummy;
250 int rc;
251
252#ifdef VBOX_ENABLE_VBOXREM64
253 LogRel(("Using 64-bit aware REM\n"));
254#endif
255
256 /*
257 * Assert sanity.
258 */
259 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
260 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
261 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
262#if defined(DEBUG) && !defined(RT_OS_SOLARIS) && !defined(RT_OS_FREEBSD) /// @todo fix the solaris and freebsd math stuff.
263 Assert(!testmath());
264#endif
265
266 /*
267 * Init some internal data members.
268 */
269 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
270 pVM->rem.s.Env.pVM = pVM;
271#ifdef CPU_RAW_MODE_INIT
272 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
273#endif
274
275 /* ctx. */
276 pVM->rem.s.pCtx = NULL; /* set when executing code. */
277 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order has changed! REM depends on notification about ALL physical memory registrations\n"));
278
279 /* ignore all notifications */
280 pVM->rem.s.fIgnoreAll = true;
281
282 code_gen_prologue = RTMemExecAlloc(_1K);
283 AssertLogRelReturn(code_gen_prologue, VERR_NO_MEMORY);
284
285 cpu_exec_init_all(0);
286
287 /*
288 * Init the recompiler.
289 */
290 if (!cpu_x86_init(&pVM->rem.s.Env, "vbox"))
291 {
292 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
293 return VERR_GENERAL_FAILURE;
294 }
295 PVMCPU pVCpu = VMMGetCpu(pVM);
296 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
297 CPUMGetGuestCpuId(pVCpu, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
298
299 /* allocate code buffer for single instruction emulation. */
300 pVM->rem.s.Env.cbCodeBuffer = 4096;
301 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
302 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
303
304 /* finally, set the cpu_single_env global. */
305 cpu_single_env = &pVM->rem.s.Env;
306
307 /* Nothing is pending by default */
308 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
309
310 /*
311 * Register ram types.
312 */
313 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
314 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
315 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
316 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
317 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
318
319 /* stop ignoring. */
320 pVM->rem.s.fIgnoreAll = false;
321
322 /*
323 * Register the saved state data unit.
324 */
325 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
326 NULL, remR3Save, NULL,
327 NULL, remR3Load, NULL);
328 if (RT_FAILURE(rc))
329 return rc;
330
331#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
332 /*
333 * Debugger commands.
334 */
335 static bool fRegisteredCmds = false;
336 if (!fRegisteredCmds)
337 {
338 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
339 if (RT_SUCCESS(rc))
340 fRegisteredCmds = true;
341 }
342#endif
343
344#ifdef VBOX_WITH_STATISTICS
345 /*
346 * Statistics.
347 */
348 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
349 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
350 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
351 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
352 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
353 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
354 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
355 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
356 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
357 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
358 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
359 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
360
361 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
362
363 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
364 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
365 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
366 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
367 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
368 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
369 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
370 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
371 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
372 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
373 STAM_REG(pVM, &gStatFlushTBs, STAMTYPE_COUNTER, "/REM/FlushTB", STAMUNIT_OCCURENCES, "Number of TB flushes");
374
375 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
376 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
377 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
378 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
379
380 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
381 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
382 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
383 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
384 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
385 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
386
387 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
388 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
389 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
390 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
391 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
392 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
393
394 STAM_REG(pVM, &pVM->rem.s.Env.StatTbFlush, STAMTYPE_PROFILE, "/REM/TbFlush", STAMUNIT_TICKS_PER_CALL, "profiling tb_flush().");
395#endif /* VBOX_WITH_STATISTICS */
396
397 STAM_REL_REG(pVM, &tb_flush_count, STAMTYPE_U32_RESET, "/REM/TbFlushCount", STAMUNIT_OCCURENCES, "tb_flush() calls");
398 STAM_REL_REG(pVM, &tb_phys_invalidate_count, STAMTYPE_U32_RESET, "/REM/TbPhysInvldCount", STAMUNIT_OCCURENCES, "tb_phys_invalidate() calls");
399 STAM_REL_REG(pVM, &tlb_flush_count, STAMTYPE_U32_RESET, "/REM/TlbFlushCount", STAMUNIT_OCCURENCES, "tlb_flush() calls");
400
401
402#ifdef DEBUG_ALL_LOGGING
403 loglevel = ~0;
404# ifdef DEBUG_TMP_LOGGING
405 logfile = fopen("/tmp/vbox-qemu.log", "w");
406# endif
407#endif
408
409 return rc;
410}
411
412
413/**
414 * Finalizes the REM initialization.
415 *
416 * This is called after all components, devices and drivers has
417 * been initialized. Its main purpose it to finish the RAM related
418 * initialization.
419 *
420 * @returns VBox status code.
421 *
422 * @param pVM The VM handle.
423 */
424REMR3DECL(int) REMR3InitFinalize(PVM pVM)
425{
426 int rc;
427
428 /*
429 * Ram size & dirty bit map.
430 */
431 Assert(!pVM->rem.s.fGCPhysLastRamFixed);
432 pVM->rem.s.fGCPhysLastRamFixed = true;
433#ifdef RT_STRICT
434 rc = remR3InitPhysRamSizeAndDirtyMap(pVM, true /* fGuarded */);
435#else
436 rc = remR3InitPhysRamSizeAndDirtyMap(pVM, false /* fGuarded */);
437#endif
438 return rc;
439}
440
441
442/**
443 * Initializes phys_ram_size, phys_ram_dirty and phys_ram_dirty_size.
444 *
445 * @returns VBox status code.
446 * @param pVM The VM handle.
447 * @param fGuarded Whether to guard the map.
448 */
449static int remR3InitPhysRamSizeAndDirtyMap(PVM pVM, bool fGuarded)
450{
451 int rc = VINF_SUCCESS;
452 RTGCPHYS cb;
453
454 cb = pVM->rem.s.GCPhysLastRam + 1;
455 AssertLogRelMsgReturn(cb > pVM->rem.s.GCPhysLastRam,
456 ("GCPhysLastRam=%RGp - out of range\n", pVM->rem.s.GCPhysLastRam),
457 VERR_OUT_OF_RANGE);
458 phys_ram_size = cb;
459 phys_ram_dirty_size = cb >> PAGE_SHIFT;
460 AssertMsg(((RTGCPHYS)phys_ram_dirty_size << PAGE_SHIFT) == cb, ("%RGp\n", cb));
461
462 if (!fGuarded)
463 {
464 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
465 AssertLogRelMsgReturn(phys_ram_dirty, ("Failed to allocate %u bytes of dirty page map bytes\n", phys_ram_dirty_size), VERR_NO_MEMORY);
466 }
467 else
468 {
469 /*
470 * Fill it up the nearest 4GB RAM and leave at least _64KB of guard after it.
471 */
472 uint32_t cbBitmapAligned = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
473 uint32_t cbBitmapFull = RT_ALIGN_32(phys_ram_dirty_size, (_4G >> PAGE_SHIFT));
474 if (cbBitmapFull == cbBitmapAligned)
475 cbBitmapFull += _4G >> PAGE_SHIFT;
476 else if (cbBitmapFull - cbBitmapAligned < _64K)
477 cbBitmapFull += _64K;
478
479 phys_ram_dirty = RTMemPageAlloc(cbBitmapFull);
480 AssertLogRelMsgReturn(phys_ram_dirty, ("Failed to allocate %u bytes of dirty page map bytes\n", cbBitmapFull), VERR_NO_MEMORY);
481
482 rc = RTMemProtect(phys_ram_dirty + cbBitmapAligned, cbBitmapFull - cbBitmapAligned, RTMEM_PROT_NONE);
483 if (RT_FAILURE(rc))
484 {
485 RTMemPageFree(phys_ram_dirty);
486 AssertLogRelRCReturn(rc, rc);
487 }
488
489 phys_ram_dirty += cbBitmapAligned - phys_ram_dirty_size;
490 }
491
492 /* initialize it. */
493 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
494 return rc;
495}
496
497
498/**
499 * Terminates the REM.
500 *
501 * Termination means cleaning up and freeing all resources,
502 * the VM it self is at this point powered off or suspended.
503 *
504 * @returns VBox status code.
505 * @param pVM The VM to operate on.
506 */
507REMR3DECL(int) REMR3Term(PVM pVM)
508{
509#ifdef VBOX_WITH_STATISTICS
510 /*
511 * Statistics.
512 */
513 STAM_DEREG(pVM, &gStatExecuteSingleInstr);
514 STAM_DEREG(pVM, &gStatCompilationQEmu);
515 STAM_DEREG(pVM, &gStatRunCodeQEmu);
516 STAM_DEREG(pVM, &gStatTotalTimeQEmu);
517 STAM_DEREG(pVM, &gStatTimers);
518 STAM_DEREG(pVM, &gStatTBLookup);
519 STAM_DEREG(pVM, &gStatIRQ);
520 STAM_DEREG(pVM, &gStatRawCheck);
521 STAM_DEREG(pVM, &gStatMemRead);
522 STAM_DEREG(pVM, &gStatMemWrite);
523 STAM_DEREG(pVM, &gStatHCVirt2GCPhys);
524 STAM_DEREG(pVM, &gStatGCPhys2HCVirt);
525
526 STAM_DEREG(pVM, &gStatCpuGetTSC);
527
528 STAM_DEREG(pVM, &gStatRefuseTFInhibit);
529 STAM_DEREG(pVM, &gStatRefuseVM86);
530 STAM_DEREG(pVM, &gStatRefusePaging);
531 STAM_DEREG(pVM, &gStatRefusePAE);
532 STAM_DEREG(pVM, &gStatRefuseIOPLNot0);
533 STAM_DEREG(pVM, &gStatRefuseIF0);
534 STAM_DEREG(pVM, &gStatRefuseCode16);
535 STAM_DEREG(pVM, &gStatRefuseWP0);
536 STAM_DEREG(pVM, &gStatRefuseRing1or2);
537 STAM_DEREG(pVM, &gStatRefuseCanExecute);
538 STAM_DEREG(pVM, &gStatFlushTBs);
539
540 STAM_DEREG(pVM, &gStatREMGDTChange);
541 STAM_DEREG(pVM, &gStatREMLDTRChange);
542 STAM_DEREG(pVM, &gStatREMIDTChange);
543 STAM_DEREG(pVM, &gStatREMTRChange);
544
545 STAM_DEREG(pVM, &gStatSelOutOfSync[0]);
546 STAM_DEREG(pVM, &gStatSelOutOfSync[1]);
547 STAM_DEREG(pVM, &gStatSelOutOfSync[2]);
548 STAM_DEREG(pVM, &gStatSelOutOfSync[3]);
549 STAM_DEREG(pVM, &gStatSelOutOfSync[4]);
550 STAM_DEREG(pVM, &gStatSelOutOfSync[5]);
551
552 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[0]);
553 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[1]);
554 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[2]);
555 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[3]);
556 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[4]);
557 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[5]);
558
559 STAM_DEREG(pVM, &pVM->rem.s.Env.StatTbFlush);
560#endif /* VBOX_WITH_STATISTICS */
561
562 STAM_REL_DEREG(pVM, &tb_flush_count);
563 STAM_REL_DEREG(pVM, &tb_phys_invalidate_count);
564 STAM_REL_DEREG(pVM, &tlb_flush_count);
565
566 return VINF_SUCCESS;
567}
568
569
570/**
571 * The VM is being reset.
572 *
573 * For the REM component this means to call the cpu_reset() and
574 * reinitialize some state variables.
575 *
576 * @param pVM VM handle.
577 */
578REMR3DECL(void) REMR3Reset(PVM pVM)
579{
580 /*
581 * Reset the REM cpu.
582 */
583 pVM->rem.s.fIgnoreAll = true;
584 cpu_reset(&pVM->rem.s.Env);
585 pVM->rem.s.cInvalidatedPages = 0;
586 pVM->rem.s.fIgnoreAll = false;
587
588 /* Clear raw ring 0 init state */
589 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
590
591 /* Flush the TBs the next time we execute code here. */
592 pVM->rem.s.fFlushTBs = true;
593}
594
595
596/**
597 * Execute state save operation.
598 *
599 * @returns VBox status code.
600 * @param pVM VM Handle.
601 * @param pSSM SSM operation handle.
602 */
603static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
604{
605 PREM pRem = &pVM->rem.s;
606
607 /*
608 * Save the required CPU Env bits.
609 * (Not much because we're never in REM when doing the save.)
610 */
611 LogFlow(("remR3Save:\n"));
612 Assert(!pRem->fInREM);
613 SSMR3PutU32(pSSM, pRem->Env.hflags);
614 SSMR3PutU32(pSSM, ~0); /* separator */
615
616 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
617 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
618 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
619
620 return SSMR3PutU32(pSSM, ~0); /* terminator */
621}
622
623
624/**
625 * Execute state load operation.
626 *
627 * @returns VBox status code.
628 * @param pVM VM Handle.
629 * @param pSSM SSM operation handle.
630 * @param u32Version Data layout version.
631 */
632static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
633{
634 uint32_t u32Dummy;
635 uint32_t fRawRing0 = false;
636 uint32_t u32Sep;
637 unsigned i;
638 int rc;
639 PREM pRem;
640 LogFlow(("remR3Load:\n"));
641
642 /*
643 * Validate version.
644 */
645 if ( u32Version != REM_SAVED_STATE_VERSION
646 && u32Version != REM_SAVED_STATE_VERSION_VER1_6)
647 {
648 AssertMsgFailed(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
649 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
650 }
651
652 /*
653 * Do a reset to be on the safe side...
654 */
655 REMR3Reset(pVM);
656
657 /*
658 * Ignore all ignorable notifications.
659 * (Not doing this will cause serious trouble.)
660 */
661 pVM->rem.s.fIgnoreAll = true;
662
663 /*
664 * Load the required CPU Env bits.
665 * (Not much because we're never in REM when doing the save.)
666 */
667 pRem = &pVM->rem.s;
668 Assert(!pRem->fInREM);
669 SSMR3GetU32(pSSM, &pRem->Env.hflags);
670 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
671 {
672 /* Redundant REM CPU state has to be loaded, but can be ignored. */
673 CPUX86State_Ver16 temp;
674 SSMR3GetMem(pSSM, &temp, RT_OFFSETOF(CPUX86State_Ver16, jmp_env));
675 }
676
677 rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
678 if (RT_FAILURE(rc))
679 return rc;
680 if (u32Sep != ~0U)
681 {
682 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
683 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
684 }
685
686 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
687 SSMR3GetUInt(pSSM, &fRawRing0);
688 if (fRawRing0)
689 pRem->Env.state |= CPU_RAW_RING0;
690
691 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
692 {
693 /*
694 * Load the REM stuff.
695 */
696 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
697 if (RT_FAILURE(rc))
698 return rc;
699 if (pRem->cInvalidatedPages > RT_ELEMENTS(pRem->aGCPtrInvalidatedPages))
700 {
701 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
702 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
703 }
704 for (i = 0; i < pRem->cInvalidatedPages; i++)
705 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
706 }
707
708 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
709 if (RT_FAILURE(rc))
710 return rc;
711
712 /* check the terminator. */
713 rc = SSMR3GetU32(pSSM, &u32Sep);
714 if (RT_FAILURE(rc))
715 return rc;
716 if (u32Sep != ~0U)
717 {
718 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
719 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
720 }
721
722 /*
723 * Get the CPUID features.
724 */
725 PVMCPU pVCpu = VMMGetCpu(pVM);
726 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
727 CPUMGetGuestCpuId(pVCpu, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
728
729 /*
730 * Sync the Load Flush the TLB
731 */
732 tlb_flush(&pRem->Env, 1);
733
734 /*
735 * Stop ignoring ignornable notifications.
736 */
737 pVM->rem.s.fIgnoreAll = false;
738
739 /*
740 * Sync the whole CPU state when executing code in the recompiler.
741 */
742 for (i=0;i<pVM->cCPUs;i++)
743 {
744 PVMCPU pVCpu = &pVM->aCpus[i];
745
746 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
747 }
748 return VINF_SUCCESS;
749}
750
751
752
753#undef LOG_GROUP
754#define LOG_GROUP LOG_GROUP_REM_RUN
755
756/**
757 * Single steps an instruction in recompiled mode.
758 *
759 * Before calling this function the REM state needs to be in sync with
760 * the VM. Call REMR3State() to perform the sync. It's only necessary
761 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
762 * and after calling REMR3StateBack().
763 *
764 * @returns VBox status code.
765 *
766 * @param pVM VM Handle.
767 * @param pVCpu VMCPU Handle.
768 */
769REMR3DECL(int) REMR3Step(PVM pVM, PVMCPU pVCpu)
770{
771 int rc, interrupt_request;
772 RTGCPTR GCPtrPC;
773 bool fBp;
774
775 /*
776 * Lock the REM - we don't wanna have anyone interrupting us
777 * while stepping - and enabled single stepping. We also ignore
778 * pending interrupts and suchlike.
779 */
780 interrupt_request = pVM->rem.s.Env.interrupt_request;
781 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
782 pVM->rem.s.Env.interrupt_request = 0;
783 cpu_single_step(&pVM->rem.s.Env, 1);
784
785 /*
786 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
787 */
788 GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
789 fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
790
791 /*
792 * Execute and handle the return code.
793 * We execute without enabling the cpu tick, so on success we'll
794 * just flip it on and off to make sure it moves
795 */
796 rc = cpu_exec(&pVM->rem.s.Env);
797 if (rc == EXCP_DEBUG)
798 {
799 TMR3NotifyResume(pVM, pVCpu);
800 TMR3NotifySuspend(pVM, pVCpu);
801 rc = VINF_EM_DBG_STEPPED;
802 }
803 else
804 {
805 switch (rc)
806 {
807 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
808 case EXCP_HLT:
809 case EXCP_HALTED: rc = VINF_EM_HALT; break;
810 case EXCP_RC:
811 rc = pVM->rem.s.rc;
812 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
813 break;
814 case EXCP_EXECUTE_RAW:
815 case EXCP_EXECUTE_HWACC:
816 /** @todo: is it correct? No! */
817 rc = VINF_SUCCESS;
818 break;
819 default:
820 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
821 rc = VERR_INTERNAL_ERROR;
822 break;
823 }
824 }
825
826 /*
827 * Restore the stuff we changed to prevent interruption.
828 * Unlock the REM.
829 */
830 if (fBp)
831 {
832 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
833 Assert(rc2 == 0); NOREF(rc2);
834 }
835 cpu_single_step(&pVM->rem.s.Env, 0);
836 pVM->rem.s.Env.interrupt_request = interrupt_request;
837
838 return rc;
839}
840
841
842/**
843 * Set a breakpoint using the REM facilities.
844 *
845 * @returns VBox status code.
846 * @param pVM The VM handle.
847 * @param Address The breakpoint address.
848 * @thread The emulation thread.
849 */
850REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
851{
852 VM_ASSERT_EMT(pVM);
853 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
854 {
855 LogFlow(("REMR3BreakpointSet: Address=%RGv\n", Address));
856 return VINF_SUCCESS;
857 }
858 LogFlow(("REMR3BreakpointSet: Address=%RGv - failed!\n", Address));
859 return VERR_REM_NO_MORE_BP_SLOTS;
860}
861
862
863/**
864 * Clears a breakpoint set by REMR3BreakpointSet().
865 *
866 * @returns VBox status code.
867 * @param pVM The VM handle.
868 * @param Address The breakpoint address.
869 * @thread The emulation thread.
870 */
871REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
872{
873 VM_ASSERT_EMT(pVM);
874 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
875 {
876 LogFlow(("REMR3BreakpointClear: Address=%RGv\n", Address));
877 return VINF_SUCCESS;
878 }
879 LogFlow(("REMR3BreakpointClear: Address=%RGv - not found!\n", Address));
880 return VERR_REM_BP_NOT_FOUND;
881}
882
883
884/**
885 * Emulate an instruction.
886 *
887 * This function executes one instruction without letting anyone
888 * interrupt it. This is intended for being called while being in
889 * raw mode and thus will take care of all the state syncing between
890 * REM and the rest.
891 *
892 * @returns VBox status code.
893 * @param pVM VM handle.
894 * @param pVCpu VMCPU Handle.
895 */
896REMR3DECL(int) REMR3EmulateInstruction(PVM pVM, PVMCPU pVCpu)
897{
898 bool fFlushTBs;
899
900 int rc, rc2;
901 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
902
903 /* Make sure this flag is set; we might never execute remR3CanExecuteRaw in the AMD-V case.
904 * CPU_RAW_HWACC makes sure we never execute interrupt handlers in the recompiler.
905 */
906 if (HWACCMIsEnabled(pVM))
907 pVM->rem.s.Env.state |= CPU_RAW_HWACC;
908
909 /* Skip the TB flush as that's rather expensive and not necessary for single instruction emulation. */
910 fFlushTBs = pVM->rem.s.fFlushTBs;
911 pVM->rem.s.fFlushTBs = false;
912
913 /*
914 * Sync the state and enable single instruction / single stepping.
915 */
916 rc = REMR3State(pVM, pVCpu);
917 pVM->rem.s.fFlushTBs = fFlushTBs;
918 if (RT_SUCCESS(rc))
919 {
920 int interrupt_request = pVM->rem.s.Env.interrupt_request;
921 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
922 Assert(!pVM->rem.s.Env.singlestep_enabled);
923 /*
924 * Now we set the execute single instruction flag and enter the cpu_exec loop.
925 */
926 TMNotifyStartOfExecution(pVCpu);
927 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
928 rc = cpu_exec(&pVM->rem.s.Env);
929 TMNotifyEndOfExecution(pVCpu);
930 switch (rc)
931 {
932 /*
933 * Executed without anything out of the way happening.
934 */
935 case EXCP_SINGLE_INSTR:
936 rc = VINF_EM_RESCHEDULE;
937 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
938 break;
939
940 /*
941 * If we take a trap or start servicing a pending interrupt, we might end up here.
942 * (Timer thread or some other thread wishing EMT's attention.)
943 */
944 case EXCP_INTERRUPT:
945 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
946 rc = VINF_EM_RESCHEDULE;
947 break;
948
949 /*
950 * Single step, we assume!
951 * If there was a breakpoint there we're fucked now.
952 */
953 case EXCP_DEBUG:
954 {
955 /* breakpoint or single step? */
956 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
957 int iBP;
958 rc = VINF_EM_DBG_STEPPED;
959 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
960 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
961 {
962 rc = VINF_EM_DBG_BREAKPOINT;
963 break;
964 }
965 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Rrc iBP=%d GCPtrPC=%RGv\n", rc, iBP, GCPtrPC));
966 break;
967 }
968
969 /*
970 * hlt instruction.
971 */
972 case EXCP_HLT:
973 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
974 rc = VINF_EM_HALT;
975 break;
976
977 /*
978 * The VM has halted.
979 */
980 case EXCP_HALTED:
981 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
982 rc = VINF_EM_HALT;
983 break;
984
985 /*
986 * Switch to RAW-mode.
987 */
988 case EXCP_EXECUTE_RAW:
989 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
990 rc = VINF_EM_RESCHEDULE_RAW;
991 break;
992
993 /*
994 * Switch to hardware accelerated RAW-mode.
995 */
996 case EXCP_EXECUTE_HWACC:
997 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
998 rc = VINF_EM_RESCHEDULE_HWACC;
999 break;
1000
1001 /*
1002 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1003 */
1004 case EXCP_RC:
1005 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
1006 rc = pVM->rem.s.rc;
1007 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1008 break;
1009
1010 /*
1011 * Figure out the rest when they arrive....
1012 */
1013 default:
1014 AssertMsgFailed(("rc=%d\n", rc));
1015 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
1016 rc = VINF_EM_RESCHEDULE;
1017 break;
1018 }
1019
1020 /*
1021 * Switch back the state.
1022 */
1023 pVM->rem.s.Env.interrupt_request = interrupt_request;
1024 rc2 = REMR3StateBack(pVM, pVCpu);
1025 AssertRC(rc2);
1026 }
1027
1028 Log2(("REMR3EmulateInstruction: returns %Rrc (cs:eip=%04x:%RGv)\n",
1029 rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
1030 return rc;
1031}
1032
1033
1034/**
1035 * Runs code in recompiled mode.
1036 *
1037 * Before calling this function the REM state needs to be in sync with
1038 * the VM. Call REMR3State() to perform the sync. It's only necessary
1039 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
1040 * and after calling REMR3StateBack().
1041 *
1042 * @returns VBox status code.
1043 *
1044 * @param pVM VM Handle.
1045 * @param pVCpu VMCPU Handle.
1046 */
1047REMR3DECL(int) REMR3Run(PVM pVM, PVMCPU pVCpu)
1048{
1049 int rc;
1050 Log2(("REMR3Run: (cs:eip=%04x:%RGv)\n", pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
1051 Assert(pVM->rem.s.fInREM);
1052
1053 TMNotifyStartOfExecution(pVCpu);
1054 rc = cpu_exec(&pVM->rem.s.Env);
1055 TMNotifyEndOfExecution(pVCpu);
1056 switch (rc)
1057 {
1058 /*
1059 * This happens when the execution was interrupted
1060 * by an external event, like pending timers.
1061 */
1062 case EXCP_INTERRUPT:
1063 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
1064 rc = VINF_SUCCESS;
1065 break;
1066
1067 /*
1068 * hlt instruction.
1069 */
1070 case EXCP_HLT:
1071 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
1072 rc = VINF_EM_HALT;
1073 break;
1074
1075 /*
1076 * The VM has halted.
1077 */
1078 case EXCP_HALTED:
1079 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1080 rc = VINF_EM_HALT;
1081 break;
1082
1083 /*
1084 * Breakpoint/single step.
1085 */
1086 case EXCP_DEBUG:
1087 {
1088#if 0//def DEBUG_bird
1089 static int iBP = 0;
1090 printf("howdy, breakpoint! iBP=%d\n", iBP);
1091 switch (iBP)
1092 {
1093 case 0:
1094 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1095 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1096 //pVM->rem.s.Env.interrupt_request = 0;
1097 //pVM->rem.s.Env.exception_index = -1;
1098 //g_fInterruptDisabled = 1;
1099 rc = VINF_SUCCESS;
1100 asm("int3");
1101 break;
1102 default:
1103 asm("int3");
1104 break;
1105 }
1106 iBP++;
1107#else
1108 /* breakpoint or single step? */
1109 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1110 int iBP;
1111 rc = VINF_EM_DBG_STEPPED;
1112 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1113 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1114 {
1115 rc = VINF_EM_DBG_BREAKPOINT;
1116 break;
1117 }
1118 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Rrc iBP=%d GCPtrPC=%RGv\n", rc, iBP, GCPtrPC));
1119#endif
1120 break;
1121 }
1122
1123 /*
1124 * Switch to RAW-mode.
1125 */
1126 case EXCP_EXECUTE_RAW:
1127 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1128 rc = VINF_EM_RESCHEDULE_RAW;
1129 break;
1130
1131 /*
1132 * Switch to hardware accelerated RAW-mode.
1133 */
1134 case EXCP_EXECUTE_HWACC:
1135 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1136 rc = VINF_EM_RESCHEDULE_HWACC;
1137 break;
1138
1139 /** @todo missing VBOX_WITH_VMI/EXECP_PARAV_CALL */
1140 /*
1141 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1142 */
1143 case EXCP_RC:
1144 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Rrc\n", pVM->rem.s.rc));
1145 rc = pVM->rem.s.rc;
1146 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1147 break;
1148
1149 /*
1150 * Figure out the rest when they arrive....
1151 */
1152 default:
1153 AssertMsgFailed(("rc=%d\n", rc));
1154 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1155 rc = VINF_SUCCESS;
1156 break;
1157 }
1158
1159 Log2(("REMR3Run: returns %Rrc (cs:eip=%04x:%RGv)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
1160 return rc;
1161}
1162
1163
1164/**
1165 * Check if the cpu state is suitable for Raw execution.
1166 *
1167 * @returns boolean
1168 * @param env The CPU env struct.
1169 * @param eip The EIP to check this for (might differ from env->eip).
1170 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1171 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1172 *
1173 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1174 */
1175bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1176{
1177 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1178 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1179 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1180 uint32_t u32CR0;
1181
1182 /* Update counter. */
1183 env->pVM->rem.s.cCanExecuteRaw++;
1184
1185 if (HWACCMIsEnabled(env->pVM))
1186 {
1187 CPUMCTX Ctx;
1188
1189 env->state |= CPU_RAW_HWACC;
1190
1191 /*
1192 * Create partial context for HWACCMR3CanExecuteGuest
1193 */
1194 Ctx.cr0 = env->cr[0];
1195 Ctx.cr3 = env->cr[3];
1196 Ctx.cr4 = env->cr[4];
1197
1198 Ctx.tr = env->tr.selector;
1199 Ctx.trHid.u64Base = env->tr.base;
1200 Ctx.trHid.u32Limit = env->tr.limit;
1201 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1202
1203 Ctx.idtr.cbIdt = env->idt.limit;
1204 Ctx.idtr.pIdt = env->idt.base;
1205
1206 Ctx.gdtr.cbGdt = env->gdt.limit;
1207 Ctx.gdtr.pGdt = env->gdt.base;
1208
1209 Ctx.rsp = env->regs[R_ESP];
1210 Ctx.rip = env->eip;
1211
1212 Ctx.eflags.u32 = env->eflags;
1213
1214 Ctx.cs = env->segs[R_CS].selector;
1215 Ctx.csHid.u64Base = env->segs[R_CS].base;
1216 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1217 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1218
1219 Ctx.ds = env->segs[R_DS].selector;
1220 Ctx.dsHid.u64Base = env->segs[R_DS].base;
1221 Ctx.dsHid.u32Limit = env->segs[R_DS].limit;
1222 Ctx.dsHid.Attr.u = (env->segs[R_DS].flags >> 8) & 0xF0FF;
1223
1224 Ctx.es = env->segs[R_ES].selector;
1225 Ctx.esHid.u64Base = env->segs[R_ES].base;
1226 Ctx.esHid.u32Limit = env->segs[R_ES].limit;
1227 Ctx.esHid.Attr.u = (env->segs[R_ES].flags >> 8) & 0xF0FF;
1228
1229 Ctx.fs = env->segs[R_FS].selector;
1230 Ctx.fsHid.u64Base = env->segs[R_FS].base;
1231 Ctx.fsHid.u32Limit = env->segs[R_FS].limit;
1232 Ctx.fsHid.Attr.u = (env->segs[R_FS].flags >> 8) & 0xF0FF;
1233
1234 Ctx.gs = env->segs[R_GS].selector;
1235 Ctx.gsHid.u64Base = env->segs[R_GS].base;
1236 Ctx.gsHid.u32Limit = env->segs[R_GS].limit;
1237 Ctx.gsHid.Attr.u = (env->segs[R_GS].flags >> 8) & 0xF0FF;
1238
1239 Ctx.ss = env->segs[R_SS].selector;
1240 Ctx.ssHid.u64Base = env->segs[R_SS].base;
1241 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1242 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1243
1244 Ctx.msrEFER = env->efer;
1245
1246 /* Hardware accelerated raw-mode:
1247 *
1248 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1249 */
1250 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1251 {
1252 *piException = EXCP_EXECUTE_HWACC;
1253 return true;
1254 }
1255 return false;
1256 }
1257
1258 /*
1259 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1260 * or 32 bits protected mode ring 0 code
1261 *
1262 * The tests are ordered by the likelyhood of being true during normal execution.
1263 */
1264 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1265 {
1266 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1267 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1268 return false;
1269 }
1270
1271#ifndef VBOX_RAW_V86
1272 if (fFlags & VM_MASK) {
1273 STAM_COUNTER_INC(&gStatRefuseVM86);
1274 Log2(("raw mode refused: VM_MASK\n"));
1275 return false;
1276 }
1277#endif
1278
1279 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1280 {
1281#ifndef DEBUG_bird
1282 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1283#endif
1284 return false;
1285 }
1286
1287 if (env->singlestep_enabled)
1288 {
1289 //Log2(("raw mode refused: Single step\n"));
1290 return false;
1291 }
1292
1293 if (env->nb_breakpoints > 0)
1294 {
1295 //Log2(("raw mode refused: Breakpoints\n"));
1296 return false;
1297 }
1298
1299 u32CR0 = env->cr[0];
1300 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1301 {
1302 STAM_COUNTER_INC(&gStatRefusePaging);
1303 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1304 return false;
1305 }
1306
1307 if (env->cr[4] & CR4_PAE_MASK)
1308 {
1309 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1310 {
1311 STAM_COUNTER_INC(&gStatRefusePAE);
1312 return false;
1313 }
1314 }
1315
1316 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1317 {
1318 if (!EMIsRawRing3Enabled(env->pVM))
1319 return false;
1320
1321 if (!(env->eflags & IF_MASK))
1322 {
1323 STAM_COUNTER_INC(&gStatRefuseIF0);
1324 Log2(("raw mode refused: IF (RawR3)\n"));
1325 return false;
1326 }
1327
1328 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1329 {
1330 STAM_COUNTER_INC(&gStatRefuseWP0);
1331 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1332 return false;
1333 }
1334 }
1335 else
1336 {
1337 if (!EMIsRawRing0Enabled(env->pVM))
1338 return false;
1339
1340 // Let's start with pure 32 bits ring 0 code first
1341 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1342 {
1343 STAM_COUNTER_INC(&gStatRefuseCode16);
1344 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1345 return false;
1346 }
1347
1348 // Only R0
1349 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1350 {
1351 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1352 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1353 return false;
1354 }
1355
1356 if (!(u32CR0 & CR0_WP_MASK))
1357 {
1358 STAM_COUNTER_INC(&gStatRefuseWP0);
1359 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1360 return false;
1361 }
1362
1363 if (PATMIsPatchGCAddr(env->pVM, eip))
1364 {
1365 Log2(("raw r0 mode forced: patch code\n"));
1366 *piException = EXCP_EXECUTE_RAW;
1367 return true;
1368 }
1369
1370#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1371 if (!(env->eflags & IF_MASK))
1372 {
1373 STAM_COUNTER_INC(&gStatRefuseIF0);
1374 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1375 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1376 return false;
1377 }
1378#endif
1379
1380 env->state |= CPU_RAW_RING0;
1381 }
1382
1383 /*
1384 * Don't reschedule the first time we're called, because there might be
1385 * special reasons why we're here that is not covered by the above checks.
1386 */
1387 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1388 {
1389 Log2(("raw mode refused: first scheduling\n"));
1390 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1391 return false;
1392 }
1393
1394 Assert(env->pVCpu && PGMPhysIsA20Enabled(env->pVCpu));
1395 *piException = EXCP_EXECUTE_RAW;
1396 return true;
1397}
1398
1399
1400/**
1401 * Fetches a code byte.
1402 *
1403 * @returns Success indicator (bool) for ease of use.
1404 * @param env The CPU environment structure.
1405 * @param GCPtrInstr Where to fetch code.
1406 * @param pu8Byte Where to store the byte on success
1407 */
1408bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1409{
1410 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1411 if (RT_SUCCESS(rc))
1412 return true;
1413 return false;
1414}
1415
1416
1417/**
1418 * Flush (or invalidate if you like) page table/dir entry.
1419 *
1420 * (invlpg instruction; tlb_flush_page)
1421 *
1422 * @param env Pointer to cpu environment.
1423 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1424 */
1425void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1426{
1427 PVM pVM = env->pVM;
1428 PCPUMCTX pCtx;
1429 int rc;
1430
1431 /*
1432 * When we're replaying invlpg instructions or restoring a saved
1433 * state we disable this path.
1434 */
1435 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1436 return;
1437 Log(("remR3FlushPage: GCPtr=%RGv\n", GCPtr));
1438 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1439
1440 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1441
1442 /*
1443 * Update the control registers before calling PGMFlushPage.
1444 */
1445 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1446 Assert(pCtx);
1447 pCtx->cr0 = env->cr[0];
1448 pCtx->cr3 = env->cr[3];
1449 if ((env->cr[4] ^ pCtx->cr4) & X86_CR4_VME)
1450 VMCPU_FF_SET(env->pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1451 pCtx->cr4 = env->cr[4];
1452
1453 /*
1454 * Let PGM do the rest.
1455 */
1456 Assert(env->pVCpu);
1457 rc = PGMInvalidatePage(env->pVCpu, GCPtr);
1458 if (RT_FAILURE(rc))
1459 {
1460 AssertMsgFailed(("remR3FlushPage %RGv failed with %d!!\n", GCPtr, rc));
1461 VMCPU_FF_SET(env->pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1462 }
1463 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1464}
1465
1466
1467#ifndef REM_PHYS_ADDR_IN_TLB
1468/** Wrapper for PGMR3PhysTlbGCPhys2Ptr. */
1469void *remR3TlbGCPhys2Ptr(CPUState *env1, target_ulong physAddr, int fWritable)
1470{
1471 void *pv;
1472 int rc;
1473
1474 /* Address must be aligned enough to fiddle with lower bits */
1475 Assert((physAddr & 0x3) == 0);
1476
1477 rc = PGMR3PhysTlbGCPhys2Ptr(env1->pVM, physAddr, true /*fWritable*/, &pv);
1478 Assert( rc == VINF_SUCCESS
1479 || rc == VINF_PGM_PHYS_TLB_CATCH_WRITE
1480 || rc == VERR_PGM_PHYS_TLB_CATCH_ALL
1481 || rc == VERR_PGM_PHYS_TLB_UNASSIGNED);
1482 if (RT_FAILURE(rc))
1483 return (void *)1;
1484 if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE)
1485 return (void *)((uintptr_t)pv | 2);
1486 return pv;
1487}
1488#endif /* REM_PHYS_ADDR_IN_TLB */
1489
1490
1491/**
1492 * Called from tlb_protect_code in order to write monitor a code page.
1493 *
1494 * @param env Pointer to the CPU environment.
1495 * @param GCPtr Code page to monitor
1496 */
1497void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1498{
1499#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1500 Assert(env->pVM->rem.s.fInREM);
1501 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1502 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1503 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1504 && !(env->eflags & VM_MASK) /* no V86 mode */
1505 && !HWACCMIsEnabled(env->pVM))
1506 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1507#endif
1508}
1509
1510
1511/**
1512 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1513 *
1514 * @param env Pointer to the CPU environment.
1515 * @param GCPtr Code page to monitor
1516 */
1517void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
1518{
1519 Assert(env->pVM->rem.s.fInREM);
1520#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1521 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1522 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1523 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1524 && !(env->eflags & VM_MASK) /* no V86 mode */
1525 && !HWACCMIsEnabled(env->pVM))
1526 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1527#endif
1528}
1529
1530
1531/**
1532 * Called when the CPU is initialized, any of the CRx registers are changed or
1533 * when the A20 line is modified.
1534 *
1535 * @param env Pointer to the CPU environment.
1536 * @param fGlobal Set if the flush is global.
1537 */
1538void remR3FlushTLB(CPUState *env, bool fGlobal)
1539{
1540 PVM pVM = env->pVM;
1541 PCPUMCTX pCtx;
1542
1543 /*
1544 * When we're replaying invlpg instructions or restoring a saved
1545 * state we disable this path.
1546 */
1547 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1548 return;
1549 Assert(pVM->rem.s.fInREM);
1550
1551 /*
1552 * The caller doesn't check cr4, so we have to do that for ourselves.
1553 */
1554 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1555 fGlobal = true;
1556 Log(("remR3FlushTLB: CR0=%08RX64 CR3=%08RX64 CR4=%08RX64 %s\n", (uint64_t)env->cr[0], (uint64_t)env->cr[3], (uint64_t)env->cr[4], fGlobal ? " global" : ""));
1557
1558 /*
1559 * Update the control registers before calling PGMR3FlushTLB.
1560 */
1561 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1562 Assert(pCtx);
1563 pCtx->cr0 = env->cr[0];
1564 pCtx->cr3 = env->cr[3];
1565 if ((env->cr[4] ^ pCtx->cr4) & X86_CR4_VME)
1566 VMCPU_FF_SET(env->pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1567 pCtx->cr4 = env->cr[4];
1568
1569 /*
1570 * Let PGM do the rest.
1571 */
1572 Assert(env->pVCpu);
1573 PGMFlushTLB(env->pVCpu, env->cr[3], fGlobal);
1574}
1575
1576
1577/**
1578 * Called when any of the cr0, cr4 or efer registers is updated.
1579 *
1580 * @param env Pointer to the CPU environment.
1581 */
1582void remR3ChangeCpuMode(CPUState *env)
1583{
1584 PVM pVM = env->pVM;
1585 uint64_t efer;
1586 PCPUMCTX pCtx;
1587 int rc;
1588
1589 /*
1590 * When we're replaying loads or restoring a saved
1591 * state this path is disabled.
1592 */
1593 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1594 return;
1595 Assert(pVM->rem.s.fInREM);
1596
1597 /*
1598 * Update the control registers before calling PGMChangeMode()
1599 * as it may need to map whatever cr3 is pointing to.
1600 */
1601 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1602 Assert(pCtx);
1603 pCtx->cr0 = env->cr[0];
1604 pCtx->cr3 = env->cr[3];
1605 if ((env->cr[4] ^ pCtx->cr4) & X86_CR4_VME)
1606 VMCPU_FF_SET(env->pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1607 pCtx->cr4 = env->cr[4];
1608
1609#ifdef TARGET_X86_64
1610 efer = env->efer;
1611#else
1612 efer = 0;
1613#endif
1614 Assert(env->pVCpu);
1615 rc = PGMChangeMode(env->pVCpu, env->cr[0], env->cr[4], efer);
1616 if (rc != VINF_SUCCESS)
1617 {
1618 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
1619 {
1620 Log(("PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc -> remR3RaiseRC\n", env->cr[0], env->cr[4], efer, rc));
1621 remR3RaiseRC(env->pVM, rc);
1622 }
1623 else
1624 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc\n", env->cr[0], env->cr[4], efer, rc);
1625 }
1626}
1627
1628
1629/**
1630 * Called from compiled code to run dma.
1631 *
1632 * @param env Pointer to the CPU environment.
1633 */
1634void remR3DmaRun(CPUState *env)
1635{
1636 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1637 PDMR3DmaRun(env->pVM);
1638 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1639}
1640
1641
1642/**
1643 * Called from compiled code to schedule pending timers in VMM
1644 *
1645 * @param env Pointer to the CPU environment.
1646 */
1647void remR3TimersRun(CPUState *env)
1648{
1649 LogFlow(("remR3TimersRun:\n"));
1650 LogIt(LOG_INSTANCE, RTLOGGRPFLAGS_LEVEL_5, LOG_GROUP_TM, ("remR3TimersRun\n"));
1651 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1652 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1653 TMR3TimerQueuesDo(env->pVM);
1654 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1655 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1656}
1657
1658
1659/**
1660 * Record trap occurance
1661 *
1662 * @returns VBox status code
1663 * @param env Pointer to the CPU environment.
1664 * @param uTrap Trap nr
1665 * @param uErrorCode Error code
1666 * @param pvNextEIP Next EIP
1667 */
1668int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, RTGCPTR pvNextEIP)
1669{
1670 PVM pVM = env->pVM;
1671#ifdef VBOX_WITH_STATISTICS
1672 static STAMCOUNTER s_aStatTrap[255];
1673 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1674#endif
1675
1676#ifdef VBOX_WITH_STATISTICS
1677 if (uTrap < 255)
1678 {
1679 if (!s_aRegisters[uTrap])
1680 {
1681 char szStatName[64];
1682 s_aRegisters[uTrap] = true;
1683 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1684 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1685 }
1686 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1687 }
1688#endif
1689 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
1690 if( uTrap < 0x20
1691 && (env->cr[0] & X86_CR0_PE)
1692 && !(env->eflags & X86_EFL_VM))
1693 {
1694#ifdef DEBUG
1695 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1696#endif
1697 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1698 {
1699 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
1700 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1701 return VERR_REM_TOO_MANY_TRAPS;
1702 }
1703 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1704 pVM->rem.s.cPendingExceptions = 1;
1705 pVM->rem.s.uPendingException = uTrap;
1706 pVM->rem.s.uPendingExcptEIP = env->eip;
1707 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1708 }
1709 else
1710 {
1711 pVM->rem.s.cPendingExceptions = 0;
1712 pVM->rem.s.uPendingException = uTrap;
1713 pVM->rem.s.uPendingExcptEIP = env->eip;
1714 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1715 }
1716 return VINF_SUCCESS;
1717}
1718
1719
1720/*
1721 * Clear current active trap
1722 *
1723 * @param pVM VM Handle.
1724 */
1725void remR3TrapClear(PVM pVM)
1726{
1727 pVM->rem.s.cPendingExceptions = 0;
1728 pVM->rem.s.uPendingException = 0;
1729 pVM->rem.s.uPendingExcptEIP = 0;
1730 pVM->rem.s.uPendingExcptCR2 = 0;
1731}
1732
1733
1734/*
1735 * Record previous call instruction addresses
1736 *
1737 * @param env Pointer to the CPU environment.
1738 */
1739void remR3RecordCall(CPUState *env)
1740{
1741 CSAMR3RecordCallAddress(env->pVM, env->eip);
1742}
1743
1744
1745/**
1746 * Syncs the internal REM state with the VM.
1747 *
1748 * This must be called before REMR3Run() is invoked whenever when the REM
1749 * state is not up to date. Calling it several times in a row is not
1750 * permitted.
1751 *
1752 * @returns VBox status code.
1753 *
1754 * @param pVM VM Handle.
1755 * @param pVCpu VMCPU Handle.
1756 *
1757 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1758 * no do this since the majority of the callers don't want any unnecessary of events
1759 * pending that would immediatly interrupt execution.
1760 */
1761REMR3DECL(int) REMR3State(PVM pVM, PVMCPU pVCpu)
1762{
1763 register const CPUMCTX *pCtx;
1764 register unsigned fFlags;
1765 bool fHiddenSelRegsValid;
1766 unsigned i;
1767 TRPMEVENT enmType;
1768 uint8_t u8TrapNo;
1769 int rc;
1770
1771 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1772 Log2(("REMR3State:\n"));
1773
1774 pVM->rem.s.Env.pVCpu = pVCpu;
1775 pCtx = pVM->rem.s.pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1776 fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1777
1778 Assert(!pVM->rem.s.fInREM);
1779 pVM->rem.s.fInStateSync = true;
1780
1781 /*
1782 * If we have to flush TBs, do that immediately.
1783 */
1784 if (pVM->rem.s.fFlushTBs)
1785 {
1786 STAM_COUNTER_INC(&gStatFlushTBs);
1787 tb_flush(&pVM->rem.s.Env);
1788 pVM->rem.s.fFlushTBs = false;
1789 }
1790
1791 /*
1792 * Copy the registers which require no special handling.
1793 */
1794#ifdef TARGET_X86_64
1795 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
1796 Assert(R_EAX == 0);
1797 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
1798 Assert(R_ECX == 1);
1799 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
1800 Assert(R_EDX == 2);
1801 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
1802 Assert(R_EBX == 3);
1803 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
1804 Assert(R_ESP == 4);
1805 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
1806 Assert(R_EBP == 5);
1807 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
1808 Assert(R_ESI == 6);
1809 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
1810 Assert(R_EDI == 7);
1811 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
1812 pVM->rem.s.Env.regs[8] = pCtx->r8;
1813 pVM->rem.s.Env.regs[9] = pCtx->r9;
1814 pVM->rem.s.Env.regs[10] = pCtx->r10;
1815 pVM->rem.s.Env.regs[11] = pCtx->r11;
1816 pVM->rem.s.Env.regs[12] = pCtx->r12;
1817 pVM->rem.s.Env.regs[13] = pCtx->r13;
1818 pVM->rem.s.Env.regs[14] = pCtx->r14;
1819 pVM->rem.s.Env.regs[15] = pCtx->r15;
1820
1821 pVM->rem.s.Env.eip = pCtx->rip;
1822
1823 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
1824#else
1825 Assert(R_EAX == 0);
1826 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1827 Assert(R_ECX == 1);
1828 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1829 Assert(R_EDX == 2);
1830 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1831 Assert(R_EBX == 3);
1832 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1833 Assert(R_ESP == 4);
1834 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1835 Assert(R_EBP == 5);
1836 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1837 Assert(R_ESI == 6);
1838 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1839 Assert(R_EDI == 7);
1840 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1841 pVM->rem.s.Env.eip = pCtx->eip;
1842
1843 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1844#endif
1845
1846 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1847
1848 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1849 for (i=0;i<8;i++)
1850 pVM->rem.s.Env.dr[i] = pCtx->dr[i];
1851
1852 /*
1853 * Clear the halted hidden flag (the interrupt waking up the CPU can
1854 * have been dispatched in raw mode).
1855 */
1856 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1857
1858 /*
1859 * Replay invlpg?
1860 */
1861 if (pVM->rem.s.cInvalidatedPages)
1862 {
1863 RTUINT i;
1864
1865 pVM->rem.s.fIgnoreInvlPg = true;
1866 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1867 {
1868 Log2(("REMR3State: invlpg %RGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1869 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1870 }
1871 pVM->rem.s.fIgnoreInvlPg = false;
1872 pVM->rem.s.cInvalidatedPages = 0;
1873 }
1874
1875 /* Replay notification changes? */
1876 if (pVM->rem.s.cHandlerNotifications)
1877 REMR3ReplayHandlerNotifications(pVM);
1878
1879 /* Update MSRs; before CRx registers! */
1880 pVM->rem.s.Env.efer = pCtx->msrEFER;
1881 pVM->rem.s.Env.star = pCtx->msrSTAR;
1882 pVM->rem.s.Env.pat = pCtx->msrPAT;
1883#ifdef TARGET_X86_64
1884 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1885 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1886 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1887 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1888
1889 /* Update the internal long mode activate flag according to the new EFER value. */
1890 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1891 pVM->rem.s.Env.hflags |= HF_LMA_MASK;
1892 else
1893 pVM->rem.s.Env.hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
1894#endif
1895
1896 /*
1897 * Registers which are rarely changed and require special handling / order when changed.
1898 */
1899 fFlags = CPUMGetAndClearChangedFlagsREM(pVCpu);
1900 LogFlow(("CPUMGetAndClearChangedFlagsREM %x\n", fFlags));
1901 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1902 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR
1903 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
1904 {
1905 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1906 {
1907 pVM->rem.s.fIgnoreCR3Load = true;
1908 tlb_flush(&pVM->rem.s.Env, true);
1909 pVM->rem.s.fIgnoreCR3Load = false;
1910 }
1911
1912 /* CR4 before CR0! */
1913 if (fFlags & CPUM_CHANGED_CR4)
1914 {
1915 pVM->rem.s.fIgnoreCR3Load = true;
1916 pVM->rem.s.fIgnoreCpuMode = true;
1917 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1918 pVM->rem.s.fIgnoreCpuMode = false;
1919 pVM->rem.s.fIgnoreCR3Load = false;
1920 }
1921
1922 if (fFlags & CPUM_CHANGED_CR0)
1923 {
1924 pVM->rem.s.fIgnoreCR3Load = true;
1925 pVM->rem.s.fIgnoreCpuMode = true;
1926 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1927 pVM->rem.s.fIgnoreCpuMode = false;
1928 pVM->rem.s.fIgnoreCR3Load = false;
1929 }
1930
1931 if (fFlags & CPUM_CHANGED_CR3)
1932 {
1933 pVM->rem.s.fIgnoreCR3Load = true;
1934 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1935 pVM->rem.s.fIgnoreCR3Load = false;
1936 }
1937
1938 if (fFlags & CPUM_CHANGED_GDTR)
1939 {
1940 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1941 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1942 }
1943
1944 if (fFlags & CPUM_CHANGED_IDTR)
1945 {
1946 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1947 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1948 }
1949
1950 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1951 {
1952 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1953 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1954 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1955 }
1956
1957 if (fFlags & CPUM_CHANGED_LDTR)
1958 {
1959 if (fHiddenSelRegsValid)
1960 {
1961 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1962 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u64Base;
1963 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1964 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;
1965 }
1966 else
1967 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1968 }
1969
1970 if (fFlags & CPUM_CHANGED_CPUID)
1971 {
1972 uint32_t u32Dummy;
1973
1974 /*
1975 * Get the CPUID features.
1976 */
1977 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
1978 CPUMGetGuestCpuId(pVCpu, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
1979 }
1980
1981 /* Sync FPU state after CR4, CPUID and EFER (!). */
1982 if (fFlags & CPUM_CHANGED_FPU_REM)
1983 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1984 }
1985
1986 /*
1987 * Sync TR unconditionally to make life simpler.
1988 */
1989 pVM->rem.s.Env.tr.selector = pCtx->tr;
1990 pVM->rem.s.Env.tr.base = pCtx->trHid.u64Base;
1991 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1992 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;
1993 /* Note! do_interrupt will fault if the busy flag is still set... */
1994 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1995
1996 /*
1997 * Update selector registers.
1998 * This must be done *after* we've synced gdt, ldt and crX registers
1999 * since we're reading the GDT/LDT om sync_seg. This will happen with
2000 * saved state which takes a quick dip into rawmode for instance.
2001 */
2002 /*
2003 * Stack; Note first check this one as the CPL might have changed. The
2004 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
2005 */
2006
2007 if (fHiddenSelRegsValid)
2008 {
2009 /* The hidden selector registers are valid in the CPU context. */
2010 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
2011
2012 /* Set current CPL */
2013 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVCpu, CPUMCTX2CORE(pCtx)));
2014
2015 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
2016 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
2017 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
2018 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
2019 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
2020 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
2021 }
2022 else
2023 {
2024 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
2025 if (pVM->rem.s.Env.segs[R_SS].selector != pCtx->ss)
2026 {
2027 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
2028
2029 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVCpu, CPUMCTX2CORE(pCtx)));
2030 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
2031#ifdef VBOX_WITH_STATISTICS
2032 if (pVM->rem.s.Env.segs[R_SS].newselector)
2033 {
2034 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
2035 }
2036#endif
2037 }
2038 else
2039 pVM->rem.s.Env.segs[R_SS].newselector = 0;
2040
2041 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
2042 {
2043 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
2044 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
2045#ifdef VBOX_WITH_STATISTICS
2046 if (pVM->rem.s.Env.segs[R_ES].newselector)
2047 {
2048 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
2049 }
2050#endif
2051 }
2052 else
2053 pVM->rem.s.Env.segs[R_ES].newselector = 0;
2054
2055 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
2056 {
2057 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
2058 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
2059#ifdef VBOX_WITH_STATISTICS
2060 if (pVM->rem.s.Env.segs[R_CS].newselector)
2061 {
2062 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
2063 }
2064#endif
2065 }
2066 else
2067 pVM->rem.s.Env.segs[R_CS].newselector = 0;
2068
2069 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
2070 {
2071 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
2072 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
2073#ifdef VBOX_WITH_STATISTICS
2074 if (pVM->rem.s.Env.segs[R_DS].newselector)
2075 {
2076 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
2077 }
2078#endif
2079 }
2080 else
2081 pVM->rem.s.Env.segs[R_DS].newselector = 0;
2082
2083 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
2084 * be the same but not the base/limit. */
2085 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
2086 {
2087 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
2088 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
2089#ifdef VBOX_WITH_STATISTICS
2090 if (pVM->rem.s.Env.segs[R_FS].newselector)
2091 {
2092 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
2093 }
2094#endif
2095 }
2096 else
2097 pVM->rem.s.Env.segs[R_FS].newselector = 0;
2098
2099 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
2100 {
2101 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
2102 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
2103#ifdef VBOX_WITH_STATISTICS
2104 if (pVM->rem.s.Env.segs[R_GS].newselector)
2105 {
2106 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
2107 }
2108#endif
2109 }
2110 else
2111 pVM->rem.s.Env.segs[R_GS].newselector = 0;
2112 }
2113
2114 /*
2115 * Check for traps.
2116 */
2117 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
2118 rc = TRPMQueryTrap(pVCpu, &u8TrapNo, &enmType);
2119 if (RT_SUCCESS(rc))
2120 {
2121#ifdef DEBUG
2122 if (u8TrapNo == 0x80)
2123 {
2124 remR3DumpLnxSyscall(pVCpu);
2125 remR3DumpOBsdSyscall(pVCpu);
2126 }
2127#endif
2128
2129 pVM->rem.s.Env.exception_index = u8TrapNo;
2130 if (enmType != TRPM_SOFTWARE_INT)
2131 {
2132 pVM->rem.s.Env.exception_is_int = 0;
2133 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
2134 }
2135 else
2136 {
2137 /*
2138 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
2139 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
2140 * for int03 and into.
2141 */
2142 pVM->rem.s.Env.exception_is_int = 1;
2143 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 2;
2144 /* int 3 may be generated by one-byte 0xcc */
2145 if (u8TrapNo == 3)
2146 {
2147 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xcc)
2148 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2149 }
2150 /* int 4 may be generated by one-byte 0xce */
2151 else if (u8TrapNo == 4)
2152 {
2153 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xce)
2154 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2155 }
2156 }
2157
2158 /* get error code and cr2 if needed. */
2159 switch (u8TrapNo)
2160 {
2161 case 0x0e:
2162 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVCpu);
2163 /* fallthru */
2164 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2165 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVCpu);
2166 break;
2167
2168 case 0x11: case 0x08:
2169 default:
2170 pVM->rem.s.Env.error_code = 0;
2171 break;
2172 }
2173
2174 /*
2175 * We can now reset the active trap since the recompiler is gonna have a go at it.
2176 */
2177 rc = TRPMResetTrap(pVCpu);
2178 AssertRC(rc);
2179 Log2(("REMR3State: trap=%02x errcd=%RGv cr2=%RGv nexteip=%RGv%s\n", pVM->rem.s.Env.exception_index, (RTGCPTR)pVM->rem.s.Env.error_code,
2180 (RTGCPTR)pVM->rem.s.Env.cr[2], (RTGCPTR)pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
2181 }
2182
2183 /*
2184 * Clear old interrupt request flags; Check for pending hardware interrupts.
2185 * (See @remark for why we don't check for other FFs.)
2186 */
2187 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2188 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2189 || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
2190 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2191
2192 /*
2193 * We're now in REM mode.
2194 */
2195 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_REM);
2196 pVM->rem.s.fInREM = true;
2197 pVM->rem.s.fInStateSync = false;
2198 pVM->rem.s.cCanExecuteRaw = 0;
2199 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2200 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2201 return VINF_SUCCESS;
2202}
2203
2204
2205/**
2206 * Syncs back changes in the REM state to the the VM state.
2207 *
2208 * This must be called after invoking REMR3Run().
2209 * Calling it several times in a row is not permitted.
2210 *
2211 * @returns VBox status code.
2212 *
2213 * @param pVM VM Handle.
2214 * @param pVCpu VMCPU Handle.
2215 */
2216REMR3DECL(int) REMR3StateBack(PVM pVM, PVMCPU pVCpu)
2217{
2218 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2219 Assert(pCtx);
2220 unsigned i;
2221
2222 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2223 Log2(("REMR3StateBack:\n"));
2224 Assert(pVM->rem.s.fInREM);
2225
2226 /*
2227 * Copy back the registers.
2228 * This is done in the order they are declared in the CPUMCTX structure.
2229 */
2230
2231 /** @todo FOP */
2232 /** @todo FPUIP */
2233 /** @todo CS */
2234 /** @todo FPUDP */
2235 /** @todo DS */
2236
2237 /** @todo check if FPU/XMM was actually used in the recompiler */
2238 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2239//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2240
2241#ifdef TARGET_X86_64
2242 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2243 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2244 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2245 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2246 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2247 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2248 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2249 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2250 pCtx->r8 = pVM->rem.s.Env.regs[8];
2251 pCtx->r9 = pVM->rem.s.Env.regs[9];
2252 pCtx->r10 = pVM->rem.s.Env.regs[10];
2253 pCtx->r11 = pVM->rem.s.Env.regs[11];
2254 pCtx->r12 = pVM->rem.s.Env.regs[12];
2255 pCtx->r13 = pVM->rem.s.Env.regs[13];
2256 pCtx->r14 = pVM->rem.s.Env.regs[14];
2257 pCtx->r15 = pVM->rem.s.Env.regs[15];
2258
2259 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2260
2261#else
2262 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2263 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2264 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2265 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2266 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2267 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2268 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2269
2270 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2271#endif
2272
2273 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2274
2275#ifdef VBOX_WITH_STATISTICS
2276 if (pVM->rem.s.Env.segs[R_SS].newselector)
2277 {
2278 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2279 }
2280 if (pVM->rem.s.Env.segs[R_GS].newselector)
2281 {
2282 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2283 }
2284 if (pVM->rem.s.Env.segs[R_FS].newselector)
2285 {
2286 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2287 }
2288 if (pVM->rem.s.Env.segs[R_ES].newselector)
2289 {
2290 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2291 }
2292 if (pVM->rem.s.Env.segs[R_DS].newselector)
2293 {
2294 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2295 }
2296 if (pVM->rem.s.Env.segs[R_CS].newselector)
2297 {
2298 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2299 }
2300#endif
2301 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2302 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2303 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2304 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2305 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2306
2307#ifdef TARGET_X86_64
2308 pCtx->rip = pVM->rem.s.Env.eip;
2309 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2310#else
2311 pCtx->eip = pVM->rem.s.Env.eip;
2312 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2313#endif
2314
2315 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2316 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2317 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2318 if ((pVM->rem.s.Env.cr[4] ^ pCtx->cr4) & X86_CR4_VME)
2319 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2320 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2321
2322 for (i = 0; i < 8; i++)
2323 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2324
2325 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2326 if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
2327 {
2328 pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
2329 STAM_COUNTER_INC(&gStatREMGDTChange);
2330 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
2331 }
2332
2333 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2334 if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
2335 {
2336 pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
2337 STAM_COUNTER_INC(&gStatREMIDTChange);
2338 VMCPU_FF_SET(pVCpu, VMCPU_FF_TRPM_SYNC_IDT);
2339 }
2340
2341 if ( pCtx->ldtr != pVM->rem.s.Env.ldt.selector
2342 || pCtx->ldtrHid.u64Base != pVM->rem.s.Env.ldt.base
2343 || pCtx->ldtrHid.u32Limit != pVM->rem.s.Env.ldt.limit
2344 || pCtx->ldtrHid.Attr.u != ((pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF))
2345 {
2346 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2347 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2348 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2349 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2350 STAM_COUNTER_INC(&gStatREMLDTRChange);
2351 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
2352 }
2353
2354 if ( pCtx->tr != pVM->rem.s.Env.tr.selector
2355 || pCtx->trHid.u64Base != pVM->rem.s.Env.tr.base
2356 || pCtx->trHid.u32Limit != pVM->rem.s.Env.tr.limit
2357 /* Qemu and AMD/Intel have different ideas about the busy flag ... */
2358 || pCtx->trHid.Attr.u != ( (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF
2359 ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8
2360 : 0) )
2361 {
2362 Log(("REM: TR changed! %#x{%#llx,%#x,%#x} -> %#x{%llx,%#x,%#x}\n",
2363 pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
2364 pVM->rem.s.Env.tr.selector, (uint64_t)pVM->rem.s.Env.tr.base, pVM->rem.s.Env.tr.limit,
2365 (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8 : 0));
2366 pCtx->tr = pVM->rem.s.Env.tr.selector;
2367 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2368 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2369 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2370 if (pCtx->trHid.Attr.u)
2371 pCtx->trHid.Attr.u |= DESC_TSS_BUSY_MASK >> 8;
2372 STAM_COUNTER_INC(&gStatREMTRChange);
2373 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2374 }
2375
2376 /** @todo These values could still be out of sync! */
2377 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2378 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2379 /* Note! QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2380 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2381
2382 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2383 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2384 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2385
2386 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2387 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2388 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2389
2390 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2391 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2392 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2393
2394 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2395 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2396 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2397
2398 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2399 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2400 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2401
2402 /* Sysenter MSR */
2403 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2404 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2405 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2406
2407 /* System MSRs. */
2408 pCtx->msrEFER = pVM->rem.s.Env.efer;
2409 pCtx->msrSTAR = pVM->rem.s.Env.star;
2410 pCtx->msrPAT = pVM->rem.s.Env.pat;
2411#ifdef TARGET_X86_64
2412 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2413 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2414 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2415 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2416#endif
2417
2418 remR3TrapClear(pVM);
2419
2420 /*
2421 * Check for traps.
2422 */
2423 if ( pVM->rem.s.Env.exception_index >= 0
2424 && pVM->rem.s.Env.exception_index < 256)
2425 {
2426 int rc;
2427
2428 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2429 rc = TRPMAssertTrap(pVCpu, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2430 AssertRC(rc);
2431 switch (pVM->rem.s.Env.exception_index)
2432 {
2433 case 0x0e:
2434 TRPMSetFaultAddress(pVCpu, pCtx->cr2);
2435 /* fallthru */
2436 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2437 case 0x11: case 0x08: /* 0 */
2438 TRPMSetErrorCode(pVCpu, pVM->rem.s.Env.error_code);
2439 break;
2440 }
2441
2442 }
2443
2444 /*
2445 * We're not longer in REM mode.
2446 */
2447 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_REM);
2448 pVM->rem.s.fInREM = false;
2449 pVM->rem.s.pCtx = NULL;
2450 pVM->rem.s.Env.pVCpu = NULL;
2451 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2452 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2453 return VINF_SUCCESS;
2454}
2455
2456
2457/**
2458 * This is called by the disassembler when it wants to update the cpu state
2459 * before for instance doing a register dump.
2460 */
2461static void remR3StateUpdate(PVM pVM, PVMCPU pVCpu)
2462{
2463 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2464 unsigned i;
2465
2466 Assert(pVM->rem.s.fInREM);
2467
2468 /*
2469 * Copy back the registers.
2470 * This is done in the order they are declared in the CPUMCTX structure.
2471 */
2472
2473 /** @todo FOP */
2474 /** @todo FPUIP */
2475 /** @todo CS */
2476 /** @todo FPUDP */
2477 /** @todo DS */
2478 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2479 pCtx->fpu.MXCSR = 0;
2480 pCtx->fpu.MXCSR_MASK = 0;
2481
2482 /** @todo check if FPU/XMM was actually used in the recompiler */
2483 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2484//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2485
2486#ifdef TARGET_X86_64
2487 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2488 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2489 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2490 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2491 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2492 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2493 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2494 pCtx->r8 = pVM->rem.s.Env.regs[8];
2495 pCtx->r9 = pVM->rem.s.Env.regs[9];
2496 pCtx->r10 = pVM->rem.s.Env.regs[10];
2497 pCtx->r11 = pVM->rem.s.Env.regs[11];
2498 pCtx->r12 = pVM->rem.s.Env.regs[12];
2499 pCtx->r13 = pVM->rem.s.Env.regs[13];
2500 pCtx->r14 = pVM->rem.s.Env.regs[14];
2501 pCtx->r15 = pVM->rem.s.Env.regs[15];
2502
2503 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2504#else
2505 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2506 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2507 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2508 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2509 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2510 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2511 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2512
2513 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2514#endif
2515
2516 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2517
2518 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2519 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2520 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2521 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2522 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2523
2524#ifdef TARGET_X86_64
2525 pCtx->rip = pVM->rem.s.Env.eip;
2526 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2527#else
2528 pCtx->eip = pVM->rem.s.Env.eip;
2529 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2530#endif
2531
2532 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2533 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2534 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2535 if ((pVM->rem.s.Env.cr[4] ^ pCtx->cr4) & X86_CR4_VME)
2536 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2537 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2538
2539 for (i = 0; i < 8; i++)
2540 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2541
2542 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2543 if (pCtx->gdtr.pGdt != (RTGCPTR)pVM->rem.s.Env.gdt.base)
2544 {
2545 pCtx->gdtr.pGdt = (RTGCPTR)pVM->rem.s.Env.gdt.base;
2546 STAM_COUNTER_INC(&gStatREMGDTChange);
2547 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
2548 }
2549
2550 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2551 if (pCtx->idtr.pIdt != (RTGCPTR)pVM->rem.s.Env.idt.base)
2552 {
2553 pCtx->idtr.pIdt = (RTGCPTR)pVM->rem.s.Env.idt.base;
2554 STAM_COUNTER_INC(&gStatREMIDTChange);
2555 VMCPU_FF_SET(pVCpu, VMCPU_FF_TRPM_SYNC_IDT);
2556 }
2557
2558 if ( pCtx->ldtr != pVM->rem.s.Env.ldt.selector
2559 || pCtx->ldtrHid.u64Base != pVM->rem.s.Env.ldt.base
2560 || pCtx->ldtrHid.u32Limit != pVM->rem.s.Env.ldt.limit
2561 || pCtx->ldtrHid.Attr.u != ((pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF))
2562 {
2563 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2564 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2565 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2566 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2567 STAM_COUNTER_INC(&gStatREMLDTRChange);
2568 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
2569 }
2570
2571 if ( pCtx->tr != pVM->rem.s.Env.tr.selector
2572 || pCtx->trHid.u64Base != pVM->rem.s.Env.tr.base
2573 || pCtx->trHid.u32Limit != pVM->rem.s.Env.tr.limit
2574 /* Qemu and AMD/Intel have different ideas about the busy flag ... */
2575 || pCtx->trHid.Attr.u != ( (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF
2576 ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8
2577 : 0) )
2578 {
2579 Log(("REM: TR changed! %#x{%#llx,%#x,%#x} -> %#x{%llx,%#x,%#x}\n",
2580 pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
2581 pVM->rem.s.Env.tr.selector, (uint64_t)pVM->rem.s.Env.tr.base, pVM->rem.s.Env.tr.limit,
2582 (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8 : 0));
2583 pCtx->tr = pVM->rem.s.Env.tr.selector;
2584 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2585 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2586 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2587 if (pCtx->trHid.Attr.u)
2588 pCtx->trHid.Attr.u |= DESC_TSS_BUSY_MASK >> 8;
2589 STAM_COUNTER_INC(&gStatREMTRChange);
2590 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2591 }
2592
2593 /** @todo These values could still be out of sync! */
2594 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2595 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2596 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2597 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2598
2599 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2600 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2601 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2602
2603 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2604 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2605 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2606
2607 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2608 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2609 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2610
2611 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2612 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2613 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2614
2615 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2616 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2617 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2618
2619 /* Sysenter MSR */
2620 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2621 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2622 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2623
2624 /* System MSRs. */
2625 pCtx->msrEFER = pVM->rem.s.Env.efer;
2626 pCtx->msrSTAR = pVM->rem.s.Env.star;
2627 pCtx->msrPAT = pVM->rem.s.Env.pat;
2628#ifdef TARGET_X86_64
2629 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2630 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2631 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2632 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2633#endif
2634
2635}
2636
2637
2638/**
2639 * Update the VMM state information if we're currently in REM.
2640 *
2641 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2642 * we're currently executing in REM and the VMM state is invalid. This method will of
2643 * course check that we're executing in REM before syncing any data over to the VMM.
2644 *
2645 * @param pVM The VM handle.
2646 * @param pVCpu The VMCPU handle.
2647 */
2648REMR3DECL(void) REMR3StateUpdate(PVM pVM, PVMCPU pVCpu)
2649{
2650 if (pVM->rem.s.fInREM)
2651 remR3StateUpdate(pVM, pVCpu);
2652}
2653
2654
2655#undef LOG_GROUP
2656#define LOG_GROUP LOG_GROUP_REM
2657
2658
2659/**
2660 * Notify the recompiler about Address Gate 20 state change.
2661 *
2662 * This notification is required since A20 gate changes are
2663 * initialized from a device driver and the VM might just as
2664 * well be in REM mode as in RAW mode.
2665 *
2666 * @param pVM VM handle.
2667 * @param pVCpu VMCPU handle.
2668 * @param fEnable True if the gate should be enabled.
2669 * False if the gate should be disabled.
2670 */
2671REMR3DECL(void) REMR3A20Set(PVM pVM, PVMCPU pVCpu, bool fEnable)
2672{
2673 bool fSaved;
2674
2675 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2676 VM_ASSERT_EMT(pVM);
2677
2678 fSaved = pVM->rem.s.fIgnoreAll; /* just in case. */
2679 pVM->rem.s.fIgnoreAll = fSaved || !pVM->rem.s.fInREM;
2680
2681 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2682
2683 pVM->rem.s.fIgnoreAll = fSaved;
2684}
2685
2686
2687/**
2688 * Replays the invalidated recorded pages.
2689 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2690 *
2691 * @param pVM VM handle.
2692 * @param pVCpu VMCPU handle.
2693 */
2694REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM, PVMCPU pVCpu)
2695{
2696 RTUINT i;
2697
2698 VM_ASSERT_EMT(pVM);
2699
2700 /*
2701 * Sync the required registers.
2702 */
2703 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2704 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2705 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2706 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2707
2708 /*
2709 * Replay the flushes.
2710 */
2711 pVM->rem.s.fIgnoreInvlPg = true;
2712 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2713 {
2714 Log2(("REMR3ReplayInvalidatedPages: invlpg %RGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2715 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2716 }
2717 pVM->rem.s.fIgnoreInvlPg = false;
2718 pVM->rem.s.cInvalidatedPages = 0;
2719}
2720
2721
2722/**
2723 * Replays the handler notification changes
2724 * Called in response to VM_FF_REM_HANDLER_NOTIFY from the RAW execution loop.
2725 *
2726 * @param pVM VM handle.
2727 */
2728REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2729{
2730 /*
2731 * Replay the flushes.
2732 */
2733 RTUINT i;
2734 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2735
2736 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2737 VM_ASSERT_EMT(pVM);
2738
2739 pVM->rem.s.cHandlerNotifications = 0;
2740 for (i = 0; i < c; i++)
2741 {
2742 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2743 switch (pRec->enmKind)
2744 {
2745 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2746 REMR3NotifyHandlerPhysicalRegister(pVM,
2747 pRec->u.PhysicalRegister.enmType,
2748 pRec->u.PhysicalRegister.GCPhys,
2749 pRec->u.PhysicalRegister.cb,
2750 pRec->u.PhysicalRegister.fHasHCHandler);
2751 break;
2752
2753 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2754 REMR3NotifyHandlerPhysicalDeregister(pVM,
2755 pRec->u.PhysicalDeregister.enmType,
2756 pRec->u.PhysicalDeregister.GCPhys,
2757 pRec->u.PhysicalDeregister.cb,
2758 pRec->u.PhysicalDeregister.fHasHCHandler,
2759 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2760 break;
2761
2762 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2763 REMR3NotifyHandlerPhysicalModify(pVM,
2764 pRec->u.PhysicalModify.enmType,
2765 pRec->u.PhysicalModify.GCPhysOld,
2766 pRec->u.PhysicalModify.GCPhysNew,
2767 pRec->u.PhysicalModify.cb,
2768 pRec->u.PhysicalModify.fHasHCHandler,
2769 pRec->u.PhysicalModify.fRestoreAsRAM);
2770 break;
2771
2772 default:
2773 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2774 break;
2775 }
2776 }
2777 VM_FF_CLEAR(pVM, VM_FF_REM_HANDLER_NOTIFY);
2778}
2779
2780
2781/**
2782 * Notify REM about changed code page.
2783 *
2784 * @returns VBox status code.
2785 * @param pVM VM handle.
2786 * @param pVCpu VMCPU handle.
2787 * @param pvCodePage Code page address
2788 */
2789REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, PVMCPU pVCpu, RTGCPTR pvCodePage)
2790{
2791#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
2792 int rc;
2793 RTGCPHYS PhysGC;
2794 uint64_t flags;
2795
2796 VM_ASSERT_EMT(pVM);
2797
2798 /*
2799 * Get the physical page address.
2800 */
2801 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2802 if (rc == VINF_SUCCESS)
2803 {
2804 /*
2805 * Sync the required registers and flush the whole page.
2806 * (Easier to do the whole page than notifying it about each physical
2807 * byte that was changed.
2808 */
2809 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2810 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2811 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2812 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2813
2814 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2815 }
2816#endif
2817 return VINF_SUCCESS;
2818}
2819
2820
2821/**
2822 * Notification about a successful MMR3PhysRegister() call.
2823 *
2824 * @param pVM VM handle.
2825 * @param GCPhys The physical address the RAM.
2826 * @param cb Size of the memory.
2827 * @param fFlags Flags of the REM_NOTIFY_PHYS_RAM_FLAGS_* defines.
2828 */
2829REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, unsigned fFlags)
2830{
2831 Log(("REMR3NotifyPhysRamRegister: GCPhys=%RGp cb=%RGp fFlags=%#x\n", GCPhys, cb, fFlags));
2832 VM_ASSERT_EMT(pVM);
2833
2834 /*
2835 * Validate input - we trust the caller.
2836 */
2837 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2838 Assert(cb);
2839 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2840 AssertMsg(fFlags == REM_NOTIFY_PHYS_RAM_FLAGS_RAM || fFlags == REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2, ("#x\n", fFlags));
2841 Assert(!PGMIsLockOwner(pVM));
2842
2843 EMR3RemLock(pVM);
2844
2845 /*
2846 * Base ram? Update GCPhysLastRam.
2847 */
2848 if (fFlags & REM_NOTIFY_PHYS_RAM_FLAGS_RAM)
2849 {
2850 if (GCPhys + (cb - 1) > pVM->rem.s.GCPhysLastRam)
2851 {
2852 AssertReleaseMsg(!pVM->rem.s.fGCPhysLastRamFixed, ("GCPhys=%RGp cb=%RGp\n", GCPhys, cb));
2853 pVM->rem.s.GCPhysLastRam = GCPhys + (cb - 1);
2854 }
2855 }
2856
2857 /*
2858 * Register the ram.
2859 */
2860 Assert(!pVM->rem.s.fIgnoreAll);
2861 pVM->rem.s.fIgnoreAll = true;
2862
2863 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2864 Assert(pVM->rem.s.fIgnoreAll);
2865 pVM->rem.s.fIgnoreAll = false;
2866 EMR3RemUnlock(pVM);
2867}
2868
2869
2870/**
2871 * Notification about a successful MMR3PhysRomRegister() call.
2872 *
2873 * @param pVM VM handle.
2874 * @param GCPhys The physical address of the ROM.
2875 * @param cb The size of the ROM.
2876 * @param pvCopy Pointer to the ROM copy.
2877 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2878 * This function will be called when ever the protection of the
2879 * shadow ROM changes (at reset and end of POST).
2880 */
2881REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2882{
2883 Log(("REMR3NotifyPhysRomRegister: GCPhys=%RGp cb=%d fShadow=%RTbool\n", GCPhys, cb, fShadow));
2884 VM_ASSERT_EMT(pVM);
2885
2886 /*
2887 * Validate input - we trust the caller.
2888 */
2889 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2890 Assert(cb);
2891 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2892 Assert(!PGMIsLockOwner(pVM));
2893
2894 EMR3RemLock(pVM);
2895 /*
2896 * Register the rom.
2897 */
2898 Assert(!pVM->rem.s.fIgnoreAll);
2899 pVM->rem.s.fIgnoreAll = true;
2900
2901 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2902
2903 Assert(pVM->rem.s.fIgnoreAll);
2904 pVM->rem.s.fIgnoreAll = false;
2905 EMR3RemUnlock(pVM);
2906}
2907
2908
2909/**
2910 * Notification about a successful memory deregistration or reservation.
2911 *
2912 * @param pVM VM Handle.
2913 * @param GCPhys Start physical address.
2914 * @param cb The size of the range.
2915 */
2916REMR3DECL(void) REMR3NotifyPhysRamDeregister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2917{
2918 Log(("REMR3NotifyPhysRamDeregister: GCPhys=%RGp cb=%d\n", GCPhys, cb));
2919 VM_ASSERT_EMT(pVM);
2920
2921 /*
2922 * Validate input - we trust the caller.
2923 */
2924 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2925 Assert(cb);
2926 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2927 Assert(!PGMIsLockOwner(pVM));
2928
2929 EMR3RemLock(pVM);
2930
2931 /*
2932 * Unassigning the memory.
2933 */
2934 Assert(!pVM->rem.s.fIgnoreAll);
2935 pVM->rem.s.fIgnoreAll = true;
2936
2937 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2938
2939 Assert(pVM->rem.s.fIgnoreAll);
2940 pVM->rem.s.fIgnoreAll = false;
2941 EMR3RemUnlock(pVM);
2942}
2943
2944
2945/**
2946 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2947 *
2948 * @param pVM VM Handle.
2949 * @param enmType Handler type.
2950 * @param GCPhys Handler range address.
2951 * @param cb Size of the handler range.
2952 * @param fHasHCHandler Set if the handler has a HC callback function.
2953 *
2954 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2955 * Handler memory type to memory which has no HC handler.
2956 */
2957REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2958{
2959 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%d\n",
2960 enmType, GCPhys, cb, fHasHCHandler));
2961 VM_ASSERT_EMT(pVM);
2962 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2963 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2964 Assert(!PGMIsLockOwner(pVM));
2965
2966 EMR3RemLock(pVM);
2967 if (pVM->rem.s.cHandlerNotifications)
2968 REMR3ReplayHandlerNotifications(pVM);
2969
2970 Assert(!pVM->rem.s.fIgnoreAll);
2971 pVM->rem.s.fIgnoreAll = true;
2972
2973 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2974 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2975 else if (fHasHCHandler)
2976 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2977
2978 Assert(pVM->rem.s.fIgnoreAll);
2979 pVM->rem.s.fIgnoreAll = false;
2980 EMR3RemUnlock(pVM);
2981}
2982
2983
2984/**
2985 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2986 *
2987 * @param pVM VM Handle.
2988 * @param enmType Handler type.
2989 * @param GCPhys Handler range address.
2990 * @param cb Size of the handler range.
2991 * @param fHasHCHandler Set if the handler has a HC callback function.
2992 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2993 */
2994REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2995{
2996 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2997 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2998 VM_ASSERT_EMT(pVM);
2999/* Locked during termination */
3000// Assert(!PGMIsLockOwner(pVM));
3001
3002 EMR3RemLock(pVM);
3003
3004 if (pVM->rem.s.cHandlerNotifications)
3005 REMR3ReplayHandlerNotifications(pVM);
3006
3007 Assert(!pVM->rem.s.fIgnoreAll);
3008 pVM->rem.s.fIgnoreAll = true;
3009
3010/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
3011 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
3012 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
3013 else if (fHasHCHandler)
3014 {
3015 if (!fRestoreAsRAM)
3016 {
3017 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
3018 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
3019 }
3020 else
3021 {
3022 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
3023 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
3024 cpu_register_physical_memory(GCPhys, cb, GCPhys);
3025 }
3026 }
3027
3028 Assert(pVM->rem.s.fIgnoreAll);
3029 pVM->rem.s.fIgnoreAll = false;
3030 EMR3RemUnlock(pVM);
3031}
3032
3033
3034/**
3035 * Notification about a successful PGMR3HandlerPhysicalModify() call.
3036 *
3037 * @param pVM VM Handle.
3038 * @param enmType Handler type.
3039 * @param GCPhysOld Old handler range address.
3040 * @param GCPhysNew New handler range address.
3041 * @param cb Size of the handler range.
3042 * @param fHasHCHandler Set if the handler has a HC callback function.
3043 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
3044 */
3045REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
3046{
3047 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%RGp GCPhysNew=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
3048 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
3049 VM_ASSERT_EMT(pVM);
3050 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
3051 Assert(!PGMIsLockOwner(pVM));
3052
3053 EMR3RemLock(pVM);
3054
3055 if (pVM->rem.s.cHandlerNotifications)
3056 REMR3ReplayHandlerNotifications(pVM);
3057
3058 if (fHasHCHandler)
3059 {
3060 Assert(!pVM->rem.s.fIgnoreAll);
3061 pVM->rem.s.fIgnoreAll = true;
3062
3063 /*
3064 * Reset the old page.
3065 */
3066 if (!fRestoreAsRAM)
3067 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
3068 else
3069 {
3070 /* This is not perfect, but it'll do for PD monitoring... */
3071 Assert(cb == PAGE_SIZE);
3072 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
3073 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
3074 }
3075
3076 /*
3077 * Update the new page.
3078 */
3079 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
3080 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
3081 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
3082
3083 Assert(pVM->rem.s.fIgnoreAll);
3084 pVM->rem.s.fIgnoreAll = false;
3085 }
3086 EMR3RemUnlock(pVM);
3087}
3088
3089
3090/**
3091 * Checks if we're handling access to this page or not.
3092 *
3093 * @returns true if we're trapping access.
3094 * @returns false if we aren't.
3095 * @param pVM The VM handle.
3096 * @param GCPhys The physical address.
3097 *
3098 * @remark This function will only work correctly in VBOX_STRICT builds!
3099 */
3100REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
3101{
3102#ifdef VBOX_STRICT
3103 unsigned long off;
3104 if (pVM->rem.s.cHandlerNotifications)
3105 REMR3ReplayHandlerNotifications(pVM);
3106
3107 off = get_phys_page_offset(GCPhys);
3108 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
3109 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
3110 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
3111#else
3112 return false;
3113#endif
3114}
3115
3116
3117/**
3118 * Deals with a rare case in get_phys_addr_code where the code
3119 * is being monitored.
3120 *
3121 * It could also be an MMIO page, in which case we will raise a fatal error.
3122 *
3123 * @returns The physical address corresponding to addr.
3124 * @param env The cpu environment.
3125 * @param addr The virtual address.
3126 * @param pTLBEntry The TLB entry.
3127 */
3128target_ulong remR3PhysGetPhysicalAddressCode(CPUState* env,
3129 target_ulong addr,
3130 CPUTLBEntry* pTLBEntry,
3131 target_phys_addr_t ioTLBEntry)
3132{
3133 PVM pVM = env->pVM;
3134
3135 if ((ioTLBEntry & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
3136 {
3137 /* If code memory is being monitored, appropriate IOTLB entry will have
3138 handler IO type, and addend will provide real physical address, no
3139 matter if we store VA in TLB or not, as handlers are always passed PA */
3140 target_ulong ret = (ioTLBEntry & TARGET_PAGE_MASK) + addr;
3141 return ret;
3142 }
3143 LogRel(("\nTrying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv! (iHandlerMemType=%#x iMMIOMemType=%#x IOTLB=%RGp)\n"
3144 "*** handlers\n",
3145 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType, (RTGCPHYS)ioTLBEntry));
3146 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
3147 LogRel(("*** mmio\n"));
3148 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
3149 LogRel(("*** phys\n"));
3150 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
3151 cpu_abort(env, "Trying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
3152 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
3153 AssertFatalFailed();
3154}
3155
3156/**
3157 * Read guest RAM and ROM.
3158 *
3159 * @param SrcGCPhys The source address (guest physical).
3160 * @param pvDst The destination address.
3161 * @param cb Number of bytes
3162 */
3163void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3164{
3165 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3166 VBOX_CHECK_ADDR(SrcGCPhys);
3167 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3168#ifdef VBOX_DEBUG_PHYS
3169 LogRel(("read(%d): %08x\n", cb, (uint32_t)SrcGCPhys));
3170#endif
3171 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3172}
3173
3174
3175/**
3176 * Read guest RAM and ROM, unsigned 8-bit.
3177 *
3178 * @param SrcGCPhys The source address (guest physical).
3179 */
3180RTCCUINTREG remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3181{
3182 uint8_t val;
3183 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3184 VBOX_CHECK_ADDR(SrcGCPhys);
3185 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3186 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3187#ifdef VBOX_DEBUG_PHYS
3188 LogRel(("readu8: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3189#endif
3190 return val;
3191}
3192
3193
3194/**
3195 * Read guest RAM and ROM, signed 8-bit.
3196 *
3197 * @param SrcGCPhys The source address (guest physical).
3198 */
3199RTCCINTREG remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3200{
3201 int8_t val;
3202 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3203 VBOX_CHECK_ADDR(SrcGCPhys);
3204 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3205 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3206#ifdef VBOX_DEBUG_PHYS
3207 LogRel(("reads8: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3208#endif
3209 return val;
3210}
3211
3212
3213/**
3214 * Read guest RAM and ROM, unsigned 16-bit.
3215 *
3216 * @param SrcGCPhys The source address (guest physical).
3217 */
3218RTCCUINTREG remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3219{
3220 uint16_t val;
3221 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3222 VBOX_CHECK_ADDR(SrcGCPhys);
3223 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3224 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3225#ifdef VBOX_DEBUG_PHYS
3226 LogRel(("readu16: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3227#endif
3228 return val;
3229}
3230
3231
3232/**
3233 * Read guest RAM and ROM, signed 16-bit.
3234 *
3235 * @param SrcGCPhys The source address (guest physical).
3236 */
3237RTCCINTREG remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3238{
3239 int16_t val;
3240 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3241 VBOX_CHECK_ADDR(SrcGCPhys);
3242 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3243 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3244#ifdef VBOX_DEBUG_PHYS
3245 LogRel(("reads16: %x <- %08x\n", (uint16_t)val, (uint32_t)SrcGCPhys));
3246#endif
3247 return val;
3248}
3249
3250
3251/**
3252 * Read guest RAM and ROM, unsigned 32-bit.
3253 *
3254 * @param SrcGCPhys The source address (guest physical).
3255 */
3256RTCCUINTREG remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3257{
3258 uint32_t val;
3259 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3260 VBOX_CHECK_ADDR(SrcGCPhys);
3261 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3262 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3263#ifdef VBOX_DEBUG_PHYS
3264 LogRel(("readu32: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3265#endif
3266 return val;
3267}
3268
3269
3270/**
3271 * Read guest RAM and ROM, signed 32-bit.
3272 *
3273 * @param SrcGCPhys The source address (guest physical).
3274 */
3275RTCCINTREG remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3276{
3277 int32_t val;
3278 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3279 VBOX_CHECK_ADDR(SrcGCPhys);
3280 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3281 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3282#ifdef VBOX_DEBUG_PHYS
3283 LogRel(("reads32: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3284#endif
3285 return val;
3286}
3287
3288
3289/**
3290 * Read guest RAM and ROM, unsigned 64-bit.
3291 *
3292 * @param SrcGCPhys The source address (guest physical).
3293 */
3294uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3295{
3296 uint64_t val;
3297 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3298 VBOX_CHECK_ADDR(SrcGCPhys);
3299 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3300 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3301#ifdef VBOX_DEBUG_PHYS
3302 LogRel(("readu64: %llx <- %08x\n", val, (uint32_t)SrcGCPhys));
3303#endif
3304 return val;
3305}
3306
3307
3308/**
3309 * Read guest RAM and ROM, signed 64-bit.
3310 *
3311 * @param SrcGCPhys The source address (guest physical).
3312 */
3313int64_t remR3PhysReadS64(RTGCPHYS SrcGCPhys)
3314{
3315 int64_t val;
3316 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3317 VBOX_CHECK_ADDR(SrcGCPhys);
3318 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3319 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3320#ifdef VBOX_DEBUG_PHYS
3321 LogRel(("reads64: %llx <- %08x\n", val, (uint32_t)SrcGCPhys));
3322#endif
3323 return val;
3324}
3325
3326
3327/**
3328 * Write guest RAM.
3329 *
3330 * @param DstGCPhys The destination address (guest physical).
3331 * @param pvSrc The source address.
3332 * @param cb Number of bytes to write
3333 */
3334void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3335{
3336 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3337 VBOX_CHECK_ADDR(DstGCPhys);
3338 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3339 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3340#ifdef VBOX_DEBUG_PHYS
3341 LogRel(("write(%d): %08x\n", cb, (uint32_t)DstGCPhys));
3342#endif
3343}
3344
3345
3346/**
3347 * Write guest RAM, unsigned 8-bit.
3348 *
3349 * @param DstGCPhys The destination address (guest physical).
3350 * @param val Value
3351 */
3352void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3353{
3354 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3355 VBOX_CHECK_ADDR(DstGCPhys);
3356 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3357 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3358#ifdef VBOX_DEBUG_PHYS
3359 LogRel(("writeu8: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3360#endif
3361}
3362
3363
3364/**
3365 * Write guest RAM, unsigned 8-bit.
3366 *
3367 * @param DstGCPhys The destination address (guest physical).
3368 * @param val Value
3369 */
3370void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3371{
3372 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3373 VBOX_CHECK_ADDR(DstGCPhys);
3374 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3375 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3376#ifdef VBOX_DEBUG_PHYS
3377 LogRel(("writeu16: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3378#endif
3379}
3380
3381
3382/**
3383 * Write guest RAM, unsigned 32-bit.
3384 *
3385 * @param DstGCPhys The destination address (guest physical).
3386 * @param val Value
3387 */
3388void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3389{
3390 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3391 VBOX_CHECK_ADDR(DstGCPhys);
3392 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3393 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3394#ifdef VBOX_DEBUG_PHYS
3395 LogRel(("writeu32: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3396#endif
3397}
3398
3399
3400/**
3401 * Write guest RAM, unsigned 64-bit.
3402 *
3403 * @param DstGCPhys The destination address (guest physical).
3404 * @param val Value
3405 */
3406void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3407{
3408 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3409 VBOX_CHECK_ADDR(DstGCPhys);
3410 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3411 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3412#ifdef VBOX_DEBUG_PHYS
3413 LogRel(("writeu64: %llx -> %08x\n", val, (uint32_t)SrcGCPhys));
3414#endif
3415}
3416
3417#undef LOG_GROUP
3418#define LOG_GROUP LOG_GROUP_REM_MMIO
3419
3420/** Read MMIO memory. */
3421static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3422{
3423 uint32_t u32 = 0;
3424 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3425 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3426 Log2(("remR3MMIOReadU8: GCPhys=%RGp -> %02x\n", GCPhys, u32));
3427 return u32;
3428}
3429
3430/** Read MMIO memory. */
3431static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3432{
3433 uint32_t u32 = 0;
3434 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3435 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3436 Log2(("remR3MMIOReadU16: GCPhys=%RGp -> %04x\n", GCPhys, u32));
3437 return u32;
3438}
3439
3440/** Read MMIO memory. */
3441static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3442{
3443 uint32_t u32 = 0;
3444 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3445 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3446 Log2(("remR3MMIOReadU32: GCPhys=%RGp -> %08x\n", GCPhys, u32));
3447 return u32;
3448}
3449
3450/** Write to MMIO memory. */
3451static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3452{
3453 int rc;
3454 Log2(("remR3MMIOWriteU8: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3455 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3456 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3457}
3458
3459/** Write to MMIO memory. */
3460static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3461{
3462 int rc;
3463 Log2(("remR3MMIOWriteU16: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3464 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3465 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3466}
3467
3468/** Write to MMIO memory. */
3469static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3470{
3471 int rc;
3472 Log2(("remR3MMIOWriteU32: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3473 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3474 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3475}
3476
3477
3478#undef LOG_GROUP
3479#define LOG_GROUP LOG_GROUP_REM_HANDLER
3480
3481/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3482
3483static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3484{
3485 uint8_t u8;
3486 Log2(("remR3HandlerReadU8: GCPhys=%RGp\n", GCPhys));
3487 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3488 return u8;
3489}
3490
3491static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3492{
3493 uint16_t u16;
3494 Log2(("remR3HandlerReadU16: GCPhys=%RGp\n", GCPhys));
3495 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3496 return u16;
3497}
3498
3499static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3500{
3501 uint32_t u32;
3502 Log2(("remR3HandlerReadU32: GCPhys=%RGp\n", GCPhys));
3503 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3504 return u32;
3505}
3506
3507static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3508{
3509 Log2(("remR3HandlerWriteU8: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3510 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3511}
3512
3513static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3514{
3515 Log2(("remR3HandlerWriteU16: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3516 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3517}
3518
3519static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3520{
3521 Log2(("remR3HandlerWriteU32: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3522 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3523}
3524
3525/* -+- disassembly -+- */
3526
3527#undef LOG_GROUP
3528#define LOG_GROUP LOG_GROUP_REM_DISAS
3529
3530
3531/**
3532 * Enables or disables singled stepped disassembly.
3533 *
3534 * @returns VBox status code.
3535 * @param pVM VM handle.
3536 * @param fEnable To enable set this flag, to disable clear it.
3537 */
3538static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3539{
3540 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3541 VM_ASSERT_EMT(pVM);
3542
3543 if (fEnable)
3544 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3545 else
3546 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3547 return VINF_SUCCESS;
3548}
3549
3550
3551/**
3552 * Enables or disables singled stepped disassembly.
3553 *
3554 * @returns VBox status code.
3555 * @param pVM VM handle.
3556 * @param fEnable To enable set this flag, to disable clear it.
3557 */
3558REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3559{
3560 PVMREQ pReq;
3561 int rc;
3562
3563 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3564 if (VM_IS_EMT(pVM))
3565 return remR3DisasEnableStepping(pVM, fEnable);
3566
3567 rc = VMR3ReqCall(pVM, VMCPUID_ANY, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3568 AssertRC(rc);
3569 if (RT_SUCCESS(rc))
3570 rc = pReq->iStatus;
3571 VMR3ReqFree(pReq);
3572 return rc;
3573}
3574
3575
3576#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3577/**
3578 * External Debugger Command: .remstep [on|off|1|0]
3579 */
3580static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3581{
3582 bool fEnable;
3583 int rc;
3584
3585 /* print status */
3586 if (cArgs == 0)
3587 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3588 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3589
3590 /* convert the argument and change the mode. */
3591 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3592 if (RT_FAILURE(rc))
3593 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3594 rc = REMR3DisasEnableStepping(pVM, fEnable);
3595 if (RT_FAILURE(rc))
3596 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3597 return rc;
3598}
3599#endif
3600
3601
3602/**
3603 * Disassembles one instruction and prints it to the log.
3604 *
3605 * @returns Success indicator.
3606 * @param env Pointer to the recompiler CPU structure.
3607 * @param f32BitCode Indicates that whether or not the code should
3608 * be disassembled as 16 or 32 bit. If -1 the CS
3609 * selector will be inspected.
3610 * @param pszPrefix
3611 */
3612bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3613{
3614 PVM pVM = env->pVM;
3615 const bool fLog = LogIsEnabled();
3616 const bool fLog2 = LogIs2Enabled();
3617 int rc = VINF_SUCCESS;
3618
3619 /*
3620 * Don't bother if there ain't any log output to do.
3621 */
3622 if (!fLog && !fLog2)
3623 return true;
3624
3625 /*
3626 * Update the state so DBGF reads the correct register values.
3627 */
3628 remR3StateUpdate(pVM, env->pVCpu);
3629
3630 /*
3631 * Log registers if requested.
3632 */
3633 if (!fLog2)
3634 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3635
3636 /*
3637 * Disassemble to log.
3638 */
3639 if (fLog)
3640 rc = DBGFR3DisasInstrCurrentLogInternal(env->pVCpu, pszPrefix);
3641
3642 return RT_SUCCESS(rc);
3643}
3644
3645
3646/**
3647 * Disassemble recompiled code.
3648 *
3649 * @param phFileIgnored Ignored, logfile usually.
3650 * @param pvCode Pointer to the code block.
3651 * @param cb Size of the code block.
3652 */
3653void disas(FILE *phFile, void *pvCode, unsigned long cb)
3654{
3655#ifdef DEBUG_TMP_LOGGING
3656# define DISAS_PRINTF(x...) fprintf(phFile, x)
3657#else
3658# define DISAS_PRINTF(x...) RTLogPrintf(x)
3659 if (LogIs2Enabled())
3660#endif
3661 {
3662 unsigned off = 0;
3663 char szOutput[256];
3664 DISCPUSTATE Cpu;
3665
3666 memset(&Cpu, 0, sizeof(Cpu));
3667#ifdef RT_ARCH_X86
3668 Cpu.mode = CPUMODE_32BIT;
3669#else
3670 Cpu.mode = CPUMODE_64BIT;
3671#endif
3672
3673 DISAS_PRINTF("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3674 while (off < cb)
3675 {
3676 uint32_t cbInstr;
3677 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3678 DISAS_PRINTF("%s", szOutput);
3679 else
3680 {
3681 DISAS_PRINTF("disas error\n");
3682 cbInstr = 1;
3683#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3684 break;
3685#endif
3686 }
3687 off += cbInstr;
3688 }
3689 }
3690
3691#undef DISAS_PRINTF
3692}
3693
3694
3695/**
3696 * Disassemble guest code.
3697 *
3698 * @param phFileIgnored Ignored, logfile usually.
3699 * @param uCode The guest address of the code to disassemble. (flat?)
3700 * @param cb Number of bytes to disassemble.
3701 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3702 */
3703void target_disas(FILE *phFile, target_ulong uCode, target_ulong cb, int fFlags)
3704{
3705#ifdef DEBUG_TMP_LOGGING
3706# define DISAS_PRINTF(x...) fprintf(phFile, x)
3707#else
3708# define DISAS_PRINTF(x...) RTLogPrintf(x)
3709 if (LogIs2Enabled())
3710#endif
3711 {
3712 PVM pVM = cpu_single_env->pVM;
3713 PVMCPU pVCpu = cpu_single_env->pVCpu;
3714 RTSEL cs;
3715 RTGCUINTPTR eip;
3716
3717 Assert(pVCpu);
3718
3719 /*
3720 * Update the state so DBGF reads the correct register values (flags).
3721 */
3722 remR3StateUpdate(pVM, pVCpu);
3723
3724 /*
3725 * Do the disassembling.
3726 */
3727 DISAS_PRINTF("Guest Code: PC=%llx %llx bytes fFlags=%d\n", (uint64_t)uCode, (uint64_t)cb, fFlags);
3728 cs = cpu_single_env->segs[R_CS].selector;
3729 eip = uCode - cpu_single_env->segs[R_CS].base;
3730 for (;;)
3731 {
3732 char szBuf[256];
3733 uint32_t cbInstr;
3734 int rc = DBGFR3DisasInstrEx(pVM,
3735 pVCpu->idCpu,
3736 cs,
3737 eip,
3738 0,
3739 szBuf, sizeof(szBuf),
3740 &cbInstr);
3741 if (RT_SUCCESS(rc))
3742 DISAS_PRINTF("%llx %s\n", (uint64_t)uCode, szBuf);
3743 else
3744 {
3745 DISAS_PRINTF("%llx %04x:%llx: %s\n", (uint64_t)uCode, cs, (uint64_t)eip, szBuf);
3746 cbInstr = 1;
3747 }
3748
3749 /* next */
3750 if (cb <= cbInstr)
3751 break;
3752 cb -= cbInstr;
3753 uCode += cbInstr;
3754 eip += cbInstr;
3755 }
3756 }
3757#undef DISAS_PRINTF
3758}
3759
3760
3761/**
3762 * Looks up a guest symbol.
3763 *
3764 * @returns Pointer to symbol name. This is a static buffer.
3765 * @param orig_addr The address in question.
3766 */
3767const char *lookup_symbol(target_ulong orig_addr)
3768{
3769 RTGCINTPTR off = 0;
3770 DBGFSYMBOL Sym;
3771 PVM pVM = cpu_single_env->pVM;
3772 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3773 if (RT_SUCCESS(rc))
3774 {
3775 static char szSym[sizeof(Sym.szName) + 48];
3776 if (!off)
3777 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3778 else if (off > 0)
3779 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3780 else
3781 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3782 return szSym;
3783 }
3784 return "<N/A>";
3785}
3786
3787
3788#undef LOG_GROUP
3789#define LOG_GROUP LOG_GROUP_REM
3790
3791
3792/* -+- FF notifications -+- */
3793
3794
3795/**
3796 * Notification about a pending interrupt.
3797 *
3798 * @param pVM VM Handle.
3799 * @param pVCpu VMCPU Handle.
3800 * @param u8Interrupt Interrupt
3801 * @thread The emulation thread.
3802 */
3803REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, PVMCPU pVCpu, uint8_t u8Interrupt)
3804{
3805 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3806 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3807}
3808
3809/**
3810 * Notification about a pending interrupt.
3811 *
3812 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3813 * @param pVM VM Handle.
3814 * @param pVCpu VMCPU Handle.
3815 * @thread The emulation thread.
3816 */
3817REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM, PVMCPU pVCpu)
3818{
3819 return pVM->rem.s.u32PendingInterrupt;
3820}
3821
3822/**
3823 * Notification about the interrupt FF being set.
3824 *
3825 * @param pVM VM Handle.
3826 * @param pVCpu VMCPU Handle.
3827 * @thread The emulation thread.
3828 */
3829REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM, PVMCPU pVCpu)
3830{
3831 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3832 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3833 if (pVM->rem.s.fInREM)
3834 {
3835 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3836 CPU_INTERRUPT_EXTERNAL_HARD);
3837 }
3838}
3839
3840
3841/**
3842 * Notification about the interrupt FF being set.
3843 *
3844 * @param pVM VM Handle.
3845 * @param pVCpu VMCPU Handle.
3846 * @thread Any.
3847 */
3848REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM, PVMCPU pVCpu)
3849{
3850 LogFlow(("REMR3NotifyInterruptClear:\n"));
3851 if (pVM->rem.s.fInREM)
3852 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3853}
3854
3855
3856/**
3857 * Notification about pending timer(s).
3858 *
3859 * @param pVM VM Handle.
3860 * @param pVCpuDst The target cpu for this notification.
3861 * TM will not broadcast pending timer events, but use
3862 * a decidated EMT for them. So, only interrupt REM
3863 * execution if the given CPU is executing in REM.
3864 * @thread Any.
3865 */
3866REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM, PVMCPU pVCpuDst)
3867{
3868#ifndef DEBUG_bird
3869 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3870#endif
3871 if (pVM->rem.s.fInREM)
3872 {
3873 if (pVM->rem.s.Env.pVCpu == pVCpuDst)
3874 {
3875 LogIt(LOG_INSTANCE, RTLOGGRPFLAGS_LEVEL_5, LOG_GROUP_TM, ("REMR3NotifyTimerPending: setting\n"));
3876 ASMAtomicOrS32((int32_t volatile *)&pVM->rem.s.Env.interrupt_request,
3877 CPU_INTERRUPT_EXTERNAL_TIMER);
3878 }
3879 else
3880 LogIt(LOG_INSTANCE, RTLOGGRPFLAGS_LEVEL_5, LOG_GROUP_TM, ("REMR3NotifyTimerPending: pVCpu:%p != pVCpuDst:%p\n", pVM->rem.s.Env.pVCpu, pVCpuDst));
3881 }
3882 else
3883 LogIt(LOG_INSTANCE, RTLOGGRPFLAGS_LEVEL_5, LOG_GROUP_TM, ("REMR3NotifyTimerPending: !fInREM; cpu state=%d\n", VMCPU_GET_STATE(pVCpuDst)));
3884}
3885
3886
3887/**
3888 * Notification about pending DMA transfers.
3889 *
3890 * @param pVM VM Handle.
3891 * @thread Any.
3892 */
3893REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3894{
3895 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3896 if (pVM->rem.s.fInREM)
3897 {
3898 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3899 CPU_INTERRUPT_EXTERNAL_DMA);
3900 }
3901}
3902
3903
3904/**
3905 * Notification about pending timer(s).
3906 *
3907 * @param pVM VM Handle.
3908 * @thread Any.
3909 */
3910REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3911{
3912 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3913 if (pVM->rem.s.fInREM)
3914 {
3915 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3916 CPU_INTERRUPT_EXTERNAL_EXIT);
3917 }
3918}
3919
3920
3921/**
3922 * Notification about pending FF set by an external thread.
3923 *
3924 * @param pVM VM handle.
3925 * @thread Any.
3926 */
3927REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3928{
3929 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3930 if (pVM->rem.s.fInREM)
3931 {
3932 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3933 CPU_INTERRUPT_EXTERNAL_EXIT);
3934 }
3935}
3936
3937
3938#ifdef VBOX_WITH_STATISTICS
3939void remR3ProfileStart(int statcode)
3940{
3941 STAMPROFILEADV *pStat;
3942 switch(statcode)
3943 {
3944 case STATS_EMULATE_SINGLE_INSTR:
3945 pStat = &gStatExecuteSingleInstr;
3946 break;
3947 case STATS_QEMU_COMPILATION:
3948 pStat = &gStatCompilationQEmu;
3949 break;
3950 case STATS_QEMU_RUN_EMULATED_CODE:
3951 pStat = &gStatRunCodeQEmu;
3952 break;
3953 case STATS_QEMU_TOTAL:
3954 pStat = &gStatTotalTimeQEmu;
3955 break;
3956 case STATS_QEMU_RUN_TIMERS:
3957 pStat = &gStatTimers;
3958 break;
3959 case STATS_TLB_LOOKUP:
3960 pStat= &gStatTBLookup;
3961 break;
3962 case STATS_IRQ_HANDLING:
3963 pStat= &gStatIRQ;
3964 break;
3965 case STATS_RAW_CHECK:
3966 pStat = &gStatRawCheck;
3967 break;
3968
3969 default:
3970 AssertMsgFailed(("unknown stat %d\n", statcode));
3971 return;
3972 }
3973 STAM_PROFILE_ADV_START(pStat, a);
3974}
3975
3976
3977void remR3ProfileStop(int statcode)
3978{
3979 STAMPROFILEADV *pStat;
3980 switch(statcode)
3981 {
3982 case STATS_EMULATE_SINGLE_INSTR:
3983 pStat = &gStatExecuteSingleInstr;
3984 break;
3985 case STATS_QEMU_COMPILATION:
3986 pStat = &gStatCompilationQEmu;
3987 break;
3988 case STATS_QEMU_RUN_EMULATED_CODE:
3989 pStat = &gStatRunCodeQEmu;
3990 break;
3991 case STATS_QEMU_TOTAL:
3992 pStat = &gStatTotalTimeQEmu;
3993 break;
3994 case STATS_QEMU_RUN_TIMERS:
3995 pStat = &gStatTimers;
3996 break;
3997 case STATS_TLB_LOOKUP:
3998 pStat= &gStatTBLookup;
3999 break;
4000 case STATS_IRQ_HANDLING:
4001 pStat= &gStatIRQ;
4002 break;
4003 case STATS_RAW_CHECK:
4004 pStat = &gStatRawCheck;
4005 break;
4006 default:
4007 AssertMsgFailed(("unknown stat %d\n", statcode));
4008 return;
4009 }
4010 STAM_PROFILE_ADV_STOP(pStat, a);
4011}
4012#endif
4013
4014/**
4015 * Raise an RC, force rem exit.
4016 *
4017 * @param pVM VM handle.
4018 * @param rc The rc.
4019 */
4020void remR3RaiseRC(PVM pVM, int rc)
4021{
4022 Log(("remR3RaiseRC: rc=%Rrc\n", rc));
4023 Assert(pVM->rem.s.fInREM);
4024 VM_ASSERT_EMT(pVM);
4025 pVM->rem.s.rc = rc;
4026 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
4027}
4028
4029
4030/* -+- timers -+- */
4031
4032uint64_t cpu_get_tsc(CPUX86State *env)
4033{
4034 STAM_COUNTER_INC(&gStatCpuGetTSC);
4035 return TMCpuTickGet(env->pVCpu);
4036}
4037
4038
4039/* -+- interrupts -+- */
4040
4041void cpu_set_ferr(CPUX86State *env)
4042{
4043 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
4044 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4045}
4046
4047int cpu_get_pic_interrupt(CPUState *env)
4048{
4049 uint8_t u8Interrupt;
4050 int rc;
4051
4052 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4053 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4054 * with the (a)pic.
4055 */
4056 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4057 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4058 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4059 * remove this kludge. */
4060 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4061 {
4062 rc = VINF_SUCCESS;
4063 Assert(env->pVM->rem.s.u32PendingInterrupt <= 255);
4064 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4065 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4066 }
4067 else
4068 rc = PDMGetInterrupt(env->pVCpu, &u8Interrupt);
4069
4070 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Rrc\n", u8Interrupt, rc));
4071 if (RT_SUCCESS(rc))
4072 {
4073 if (VMCPU_FF_ISPENDING(env->pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
4074 env->interrupt_request |= CPU_INTERRUPT_HARD;
4075 return u8Interrupt;
4076 }
4077 return -1;
4078}
4079
4080
4081/* -+- local apic -+- */
4082
4083void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4084{
4085 int rc = PDMApicSetBase(env->pVM, val);
4086 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Rrc\n", val, rc)); NOREF(rc);
4087}
4088
4089uint64_t cpu_get_apic_base(CPUX86State *env)
4090{
4091 uint64_t u64;
4092 int rc = PDMApicGetBase(env->pVM, &u64);
4093 if (RT_SUCCESS(rc))
4094 {
4095 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4096 return u64;
4097 }
4098 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Rrc)\n", rc));
4099 return 0;
4100}
4101
4102void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4103{
4104 int rc = PDMApicSetTPR(env->pVCpu, val);
4105 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Rrc\n", val, rc)); NOREF(rc);
4106}
4107
4108uint8_t cpu_get_apic_tpr(CPUX86State *env)
4109{
4110 uint8_t u8;
4111 int rc = PDMApicGetTPR(env->pVCpu, &u8, NULL);
4112 if (RT_SUCCESS(rc))
4113 {
4114 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4115 return u8;
4116 }
4117 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Rrc)\n", rc));
4118 return 0;
4119}
4120
4121
4122uint64_t cpu_apic_rdmsr(CPUX86State *env, uint32_t reg)
4123{
4124 uint64_t value;
4125 int rc = PDMApicReadMSR(env->pVM, 0/* cpu */, reg, &value);
4126 if (RT_SUCCESS(rc))
4127 {
4128 LogFlow(("cpu_apic_rdms returns %#x\n", value));
4129 return value;
4130 }
4131 /** @todo: exception ? */
4132 LogFlow(("cpu_apic_rdms returns 0 (rc=%Rrc)\n", rc));
4133 return value;
4134}
4135
4136void cpu_apic_wrmsr(CPUX86State *env, uint32_t reg, uint64_t value)
4137{
4138 int rc = PDMApicWriteMSR(env->pVM, 0 /* cpu */, reg, value);
4139 /** @todo: exception if error ? */
4140 LogFlow(("cpu_apic_wrmsr: rc=%Rrc\n", rc)); NOREF(rc);
4141}
4142
4143uint64_t cpu_rdmsr(CPUX86State *env, uint32_t msr)
4144{
4145 Assert(env->pVCpu);
4146 return CPUMGetGuestMsr(env->pVCpu, msr);
4147}
4148
4149void cpu_wrmsr(CPUX86State *env, uint32_t msr, uint64_t val)
4150{
4151 Assert(env->pVCpu);
4152 CPUMSetGuestMsr(env->pVCpu, msr, val);
4153}
4154
4155/* -+- I/O Ports -+- */
4156
4157#undef LOG_GROUP
4158#define LOG_GROUP LOG_GROUP_REM_IOPORT
4159
4160void cpu_outb(CPUState *env, int addr, int val)
4161{
4162 int rc;
4163
4164 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4165 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4166
4167 rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4168 if (RT_LIKELY(rc == VINF_SUCCESS))
4169 return;
4170 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4171 {
4172 Log(("cpu_outb: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4173 remR3RaiseRC(env->pVM, rc);
4174 return;
4175 }
4176 remAbort(rc, __FUNCTION__);
4177}
4178
4179void cpu_outw(CPUState *env, int addr, int val)
4180{
4181 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4182 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4183 if (RT_LIKELY(rc == VINF_SUCCESS))
4184 return;
4185 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4186 {
4187 Log(("cpu_outw: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4188 remR3RaiseRC(env->pVM, rc);
4189 return;
4190 }
4191 remAbort(rc, __FUNCTION__);
4192}
4193
4194void cpu_outl(CPUState *env, int addr, int val)
4195{
4196 int rc;
4197 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4198 rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4199 if (RT_LIKELY(rc == VINF_SUCCESS))
4200 return;
4201 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4202 {
4203 Log(("cpu_outl: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4204 remR3RaiseRC(env->pVM, rc);
4205 return;
4206 }
4207 remAbort(rc, __FUNCTION__);
4208}
4209
4210int cpu_inb(CPUState *env, int addr)
4211{
4212 uint32_t u32 = 0;
4213 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4214 if (RT_LIKELY(rc == VINF_SUCCESS))
4215 {
4216 if (/*addr != 0x61 && */addr != 0x71)
4217 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4218 return (int)u32;
4219 }
4220 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4221 {
4222 Log(("cpu_inb: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4223 remR3RaiseRC(env->pVM, rc);
4224 return (int)u32;
4225 }
4226 remAbort(rc, __FUNCTION__);
4227 return 0xff;
4228}
4229
4230int cpu_inw(CPUState *env, int addr)
4231{
4232 uint32_t u32 = 0;
4233 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4234 if (RT_LIKELY(rc == VINF_SUCCESS))
4235 {
4236 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4237 return (int)u32;
4238 }
4239 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4240 {
4241 Log(("cpu_inw: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4242 remR3RaiseRC(env->pVM, rc);
4243 return (int)u32;
4244 }
4245 remAbort(rc, __FUNCTION__);
4246 return 0xffff;
4247}
4248
4249int cpu_inl(CPUState *env, int addr)
4250{
4251 uint32_t u32 = 0;
4252 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4253 if (RT_LIKELY(rc == VINF_SUCCESS))
4254 {
4255//if (addr==0x01f0 && u32 == 0x6b6d)
4256// loglevel = ~0;
4257 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4258 return (int)u32;
4259 }
4260 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4261 {
4262 Log(("cpu_inl: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4263 remR3RaiseRC(env->pVM, rc);
4264 return (int)u32;
4265 }
4266 remAbort(rc, __FUNCTION__);
4267 return 0xffffffff;
4268}
4269
4270#undef LOG_GROUP
4271#define LOG_GROUP LOG_GROUP_REM
4272
4273
4274/* -+- helpers and misc other interfaces -+- */
4275
4276/**
4277 * Perform the CPUID instruction.
4278 *
4279 * ASMCpuId cannot be invoked from some source files where this is used because of global
4280 * register allocations.
4281 *
4282 * @param env Pointer to the recompiler CPU structure.
4283 * @param uOperator CPUID operation (eax).
4284 * @param pvEAX Where to store eax.
4285 * @param pvEBX Where to store ebx.
4286 * @param pvECX Where to store ecx.
4287 * @param pvEDX Where to store edx.
4288 */
4289void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4290{
4291 CPUMGetGuestCpuId(env->pVCpu, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4292}
4293
4294
4295#if 0 /* not used */
4296/**
4297 * Interface for qemu hardware to report back fatal errors.
4298 */
4299void hw_error(const char *pszFormat, ...)
4300{
4301 /*
4302 * Bitch about it.
4303 */
4304 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4305 * this in my Odin32 tree at home! */
4306 va_list args;
4307 va_start(args, pszFormat);
4308 RTLogPrintf("fatal error in virtual hardware:");
4309 RTLogPrintfV(pszFormat, args);
4310 va_end(args);
4311 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4312
4313 /*
4314 * If we're in REM context we'll sync back the state before 'jumping' to
4315 * the EMs failure handling.
4316 */
4317 PVM pVM = cpu_single_env->pVM;
4318 if (pVM->rem.s.fInREM)
4319 REMR3StateBack(pVM);
4320 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4321 AssertMsgFailed(("EMR3FatalError returned!\n"));
4322}
4323#endif
4324
4325/**
4326 * Interface for the qemu cpu to report unhandled situation
4327 * raising a fatal VM error.
4328 */
4329void cpu_abort(CPUState *env, const char *pszFormat, ...)
4330{
4331 va_list va;
4332 PVM pVM;
4333 PVMCPU pVCpu;
4334 char szMsg[256];
4335
4336 /*
4337 * Bitch about it.
4338 */
4339 RTLogFlags(NULL, "nodisabled nobuffered");
4340 RTLogFlush(NULL);
4341
4342 va_start(va, pszFormat);
4343#if defined(RT_OS_WINDOWS) && ARCH_BITS == 64
4344 /* It's a bit complicated when mixing MSC and GCC on AMD64. This is a bit ugly, but it works. */
4345 unsigned cArgs = 0;
4346 uintptr_t auArgs[6] = {0,0,0,0,0,0};
4347 const char *psz = strchr(pszFormat, '%');
4348 while (psz && cArgs < 6)
4349 {
4350 auArgs[cArgs++] = va_arg(va, uintptr_t);
4351 psz = strchr(psz + 1, '%');
4352 }
4353 switch (cArgs)
4354 {
4355 case 1: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0]); break;
4356 case 2: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0], auArgs[1]); break;
4357 case 3: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0], auArgs[1], auArgs[2]); break;
4358 case 4: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0], auArgs[1], auArgs[2], auArgs[3]); break;
4359 case 5: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0], auArgs[1], auArgs[2], auArgs[3], auArgs[4]); break;
4360 case 6: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0], auArgs[1], auArgs[2], auArgs[3], auArgs[4], auArgs[5]); break;
4361 default:
4362 case 0: RTStrPrintf(szMsg, sizeof(szMsg), "%s", pszFormat); break;
4363 }
4364#else
4365 RTStrPrintfV(szMsg, sizeof(szMsg), pszFormat, va);
4366#endif
4367 va_end(va);
4368
4369 RTLogPrintf("fatal error in recompiler cpu: %s\n", szMsg);
4370 RTLogRelPrintf("fatal error in recompiler cpu: %s\n", szMsg);
4371
4372 /*
4373 * If we're in REM context we'll sync back the state before 'jumping' to
4374 * the EMs failure handling.
4375 */
4376 pVM = cpu_single_env->pVM;
4377 pVCpu = cpu_single_env->pVCpu;
4378 Assert(pVCpu);
4379
4380 if (pVM->rem.s.fInREM)
4381 REMR3StateBack(pVM, pVCpu);
4382 EMR3FatalError(pVCpu, VERR_REM_VIRTUAL_CPU_ERROR);
4383 AssertMsgFailed(("EMR3FatalError returned!\n"));
4384}
4385
4386
4387/**
4388 * Aborts the VM.
4389 *
4390 * @param rc VBox error code.
4391 * @param pszTip Hint about why/when this happend.
4392 */
4393void remAbort(int rc, const char *pszTip)
4394{
4395 PVM pVM;
4396 PVMCPU pVCpu;
4397
4398 /*
4399 * Bitch about it.
4400 */
4401 RTLogPrintf("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip);
4402 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip));
4403
4404 /*
4405 * Jump back to where we entered the recompiler.
4406 */
4407 pVM = cpu_single_env->pVM;
4408 pVCpu = cpu_single_env->pVCpu;
4409 Assert(pVCpu);
4410
4411 if (pVM->rem.s.fInREM)
4412 REMR3StateBack(pVM, pVCpu);
4413
4414 EMR3FatalError(pVCpu, rc);
4415 AssertMsgFailed(("EMR3FatalError returned!\n"));
4416}
4417
4418
4419/**
4420 * Dumps a linux system call.
4421 * @param pVCpu VMCPU handle.
4422 */
4423void remR3DumpLnxSyscall(PVMCPU pVCpu)
4424{
4425 static const char *apsz[] =
4426 {
4427 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4428 "sys_exit",
4429 "sys_fork",
4430 "sys_read",
4431 "sys_write",
4432 "sys_open", /* 5 */
4433 "sys_close",
4434 "sys_waitpid",
4435 "sys_creat",
4436 "sys_link",
4437 "sys_unlink", /* 10 */
4438 "sys_execve",
4439 "sys_chdir",
4440 "sys_time",
4441 "sys_mknod",
4442 "sys_chmod", /* 15 */
4443 "sys_lchown16",
4444 "sys_ni_syscall", /* old break syscall holder */
4445 "sys_stat",
4446 "sys_lseek",
4447 "sys_getpid", /* 20 */
4448 "sys_mount",
4449 "sys_oldumount",
4450 "sys_setuid16",
4451 "sys_getuid16",
4452 "sys_stime", /* 25 */
4453 "sys_ptrace",
4454 "sys_alarm",
4455 "sys_fstat",
4456 "sys_pause",
4457 "sys_utime", /* 30 */
4458 "sys_ni_syscall", /* old stty syscall holder */
4459 "sys_ni_syscall", /* old gtty syscall holder */
4460 "sys_access",
4461 "sys_nice",
4462 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4463 "sys_sync",
4464 "sys_kill",
4465 "sys_rename",
4466 "sys_mkdir",
4467 "sys_rmdir", /* 40 */
4468 "sys_dup",
4469 "sys_pipe",
4470 "sys_times",
4471 "sys_ni_syscall", /* old prof syscall holder */
4472 "sys_brk", /* 45 */
4473 "sys_setgid16",
4474 "sys_getgid16",
4475 "sys_signal",
4476 "sys_geteuid16",
4477 "sys_getegid16", /* 50 */
4478 "sys_acct",
4479 "sys_umount", /* recycled never used phys() */
4480 "sys_ni_syscall", /* old lock syscall holder */
4481 "sys_ioctl",
4482 "sys_fcntl", /* 55 */
4483 "sys_ni_syscall", /* old mpx syscall holder */
4484 "sys_setpgid",
4485 "sys_ni_syscall", /* old ulimit syscall holder */
4486 "sys_olduname",
4487 "sys_umask", /* 60 */
4488 "sys_chroot",
4489 "sys_ustat",
4490 "sys_dup2",
4491 "sys_getppid",
4492 "sys_getpgrp", /* 65 */
4493 "sys_setsid",
4494 "sys_sigaction",
4495 "sys_sgetmask",
4496 "sys_ssetmask",
4497 "sys_setreuid16", /* 70 */
4498 "sys_setregid16",
4499 "sys_sigsuspend",
4500 "sys_sigpending",
4501 "sys_sethostname",
4502 "sys_setrlimit", /* 75 */
4503 "sys_old_getrlimit",
4504 "sys_getrusage",
4505 "sys_gettimeofday",
4506 "sys_settimeofday",
4507 "sys_getgroups16", /* 80 */
4508 "sys_setgroups16",
4509 "old_select",
4510 "sys_symlink",
4511 "sys_lstat",
4512 "sys_readlink", /* 85 */
4513 "sys_uselib",
4514 "sys_swapon",
4515 "sys_reboot",
4516 "old_readdir",
4517 "old_mmap", /* 90 */
4518 "sys_munmap",
4519 "sys_truncate",
4520 "sys_ftruncate",
4521 "sys_fchmod",
4522 "sys_fchown16", /* 95 */
4523 "sys_getpriority",
4524 "sys_setpriority",
4525 "sys_ni_syscall", /* old profil syscall holder */
4526 "sys_statfs",
4527 "sys_fstatfs", /* 100 */
4528 "sys_ioperm",
4529 "sys_socketcall",
4530 "sys_syslog",
4531 "sys_setitimer",
4532 "sys_getitimer", /* 105 */
4533 "sys_newstat",
4534 "sys_newlstat",
4535 "sys_newfstat",
4536 "sys_uname",
4537 "sys_iopl", /* 110 */
4538 "sys_vhangup",
4539 "sys_ni_syscall", /* old "idle" system call */
4540 "sys_vm86old",
4541 "sys_wait4",
4542 "sys_swapoff", /* 115 */
4543 "sys_sysinfo",
4544 "sys_ipc",
4545 "sys_fsync",
4546 "sys_sigreturn",
4547 "sys_clone", /* 120 */
4548 "sys_setdomainname",
4549 "sys_newuname",
4550 "sys_modify_ldt",
4551 "sys_adjtimex",
4552 "sys_mprotect", /* 125 */
4553 "sys_sigprocmask",
4554 "sys_ni_syscall", /* old "create_module" */
4555 "sys_init_module",
4556 "sys_delete_module",
4557 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4558 "sys_quotactl",
4559 "sys_getpgid",
4560 "sys_fchdir",
4561 "sys_bdflush",
4562 "sys_sysfs", /* 135 */
4563 "sys_personality",
4564 "sys_ni_syscall", /* reserved for afs_syscall */
4565 "sys_setfsuid16",
4566 "sys_setfsgid16",
4567 "sys_llseek", /* 140 */
4568 "sys_getdents",
4569 "sys_select",
4570 "sys_flock",
4571 "sys_msync",
4572 "sys_readv", /* 145 */
4573 "sys_writev",
4574 "sys_getsid",
4575 "sys_fdatasync",
4576 "sys_sysctl",
4577 "sys_mlock", /* 150 */
4578 "sys_munlock",
4579 "sys_mlockall",
4580 "sys_munlockall",
4581 "sys_sched_setparam",
4582 "sys_sched_getparam", /* 155 */
4583 "sys_sched_setscheduler",
4584 "sys_sched_getscheduler",
4585 "sys_sched_yield",
4586 "sys_sched_get_priority_max",
4587 "sys_sched_get_priority_min", /* 160 */
4588 "sys_sched_rr_get_interval",
4589 "sys_nanosleep",
4590 "sys_mremap",
4591 "sys_setresuid16",
4592 "sys_getresuid16", /* 165 */
4593 "sys_vm86",
4594 "sys_ni_syscall", /* Old sys_query_module */
4595 "sys_poll",
4596 "sys_nfsservctl",
4597 "sys_setresgid16", /* 170 */
4598 "sys_getresgid16",
4599 "sys_prctl",
4600 "sys_rt_sigreturn",
4601 "sys_rt_sigaction",
4602 "sys_rt_sigprocmask", /* 175 */
4603 "sys_rt_sigpending",
4604 "sys_rt_sigtimedwait",
4605 "sys_rt_sigqueueinfo",
4606 "sys_rt_sigsuspend",
4607 "sys_pread64", /* 180 */
4608 "sys_pwrite64",
4609 "sys_chown16",
4610 "sys_getcwd",
4611 "sys_capget",
4612 "sys_capset", /* 185 */
4613 "sys_sigaltstack",
4614 "sys_sendfile",
4615 "sys_ni_syscall", /* reserved for streams1 */
4616 "sys_ni_syscall", /* reserved for streams2 */
4617 "sys_vfork", /* 190 */
4618 "sys_getrlimit",
4619 "sys_mmap2",
4620 "sys_truncate64",
4621 "sys_ftruncate64",
4622 "sys_stat64", /* 195 */
4623 "sys_lstat64",
4624 "sys_fstat64",
4625 "sys_lchown",
4626 "sys_getuid",
4627 "sys_getgid", /* 200 */
4628 "sys_geteuid",
4629 "sys_getegid",
4630 "sys_setreuid",
4631 "sys_setregid",
4632 "sys_getgroups", /* 205 */
4633 "sys_setgroups",
4634 "sys_fchown",
4635 "sys_setresuid",
4636 "sys_getresuid",
4637 "sys_setresgid", /* 210 */
4638 "sys_getresgid",
4639 "sys_chown",
4640 "sys_setuid",
4641 "sys_setgid",
4642 "sys_setfsuid", /* 215 */
4643 "sys_setfsgid",
4644 "sys_pivot_root",
4645 "sys_mincore",
4646 "sys_madvise",
4647 "sys_getdents64", /* 220 */
4648 "sys_fcntl64",
4649 "sys_ni_syscall", /* reserved for TUX */
4650 "sys_ni_syscall",
4651 "sys_gettid",
4652 "sys_readahead", /* 225 */
4653 "sys_setxattr",
4654 "sys_lsetxattr",
4655 "sys_fsetxattr",
4656 "sys_getxattr",
4657 "sys_lgetxattr", /* 230 */
4658 "sys_fgetxattr",
4659 "sys_listxattr",
4660 "sys_llistxattr",
4661 "sys_flistxattr",
4662 "sys_removexattr", /* 235 */
4663 "sys_lremovexattr",
4664 "sys_fremovexattr",
4665 "sys_tkill",
4666 "sys_sendfile64",
4667 "sys_futex", /* 240 */
4668 "sys_sched_setaffinity",
4669 "sys_sched_getaffinity",
4670 "sys_set_thread_area",
4671 "sys_get_thread_area",
4672 "sys_io_setup", /* 245 */
4673 "sys_io_destroy",
4674 "sys_io_getevents",
4675 "sys_io_submit",
4676 "sys_io_cancel",
4677 "sys_fadvise64", /* 250 */
4678 "sys_ni_syscall",
4679 "sys_exit_group",
4680 "sys_lookup_dcookie",
4681 "sys_epoll_create",
4682 "sys_epoll_ctl", /* 255 */
4683 "sys_epoll_wait",
4684 "sys_remap_file_pages",
4685 "sys_set_tid_address",
4686 "sys_timer_create",
4687 "sys_timer_settime", /* 260 */
4688 "sys_timer_gettime",
4689 "sys_timer_getoverrun",
4690 "sys_timer_delete",
4691 "sys_clock_settime",
4692 "sys_clock_gettime", /* 265 */
4693 "sys_clock_getres",
4694 "sys_clock_nanosleep",
4695 "sys_statfs64",
4696 "sys_fstatfs64",
4697 "sys_tgkill", /* 270 */
4698 "sys_utimes",
4699 "sys_fadvise64_64",
4700 "sys_ni_syscall" /* sys_vserver */
4701 };
4702
4703 uint32_t uEAX = CPUMGetGuestEAX(pVCpu);
4704 switch (uEAX)
4705 {
4706 default:
4707 if (uEAX < RT_ELEMENTS(apsz))
4708 Log(("REM: linux syscall %3d: %s (eip=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4709 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVCpu), CPUMGetGuestEBX(pVCpu), CPUMGetGuestECX(pVCpu),
4710 CPUMGetGuestEDX(pVCpu), CPUMGetGuestESI(pVCpu), CPUMGetGuestEDI(pVCpu), CPUMGetGuestEBP(pVCpu)));
4711 else
4712 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVCpu), uEAX, uEAX));
4713 break;
4714
4715 }
4716}
4717
4718
4719/**
4720 * Dumps an OpenBSD system call.
4721 * @param pVCpu VMCPU handle.
4722 */
4723void remR3DumpOBsdSyscall(PVMCPU pVCpu)
4724{
4725 static const char *apsz[] =
4726 {
4727 "SYS_syscall", //0
4728 "SYS_exit", //1
4729 "SYS_fork", //2
4730 "SYS_read", //3
4731 "SYS_write", //4
4732 "SYS_open", //5
4733 "SYS_close", //6
4734 "SYS_wait4", //7
4735 "SYS_8",
4736 "SYS_link", //9
4737 "SYS_unlink", //10
4738 "SYS_11",
4739 "SYS_chdir", //12
4740 "SYS_fchdir", //13
4741 "SYS_mknod", //14
4742 "SYS_chmod", //15
4743 "SYS_chown", //16
4744 "SYS_break", //17
4745 "SYS_18",
4746 "SYS_19",
4747 "SYS_getpid", //20
4748 "SYS_mount", //21
4749 "SYS_unmount", //22
4750 "SYS_setuid", //23
4751 "SYS_getuid", //24
4752 "SYS_geteuid", //25
4753 "SYS_ptrace", //26
4754 "SYS_recvmsg", //27
4755 "SYS_sendmsg", //28
4756 "SYS_recvfrom", //29
4757 "SYS_accept", //30
4758 "SYS_getpeername", //31
4759 "SYS_getsockname", //32
4760 "SYS_access", //33
4761 "SYS_chflags", //34
4762 "SYS_fchflags", //35
4763 "SYS_sync", //36
4764 "SYS_kill", //37
4765 "SYS_38",
4766 "SYS_getppid", //39
4767 "SYS_40",
4768 "SYS_dup", //41
4769 "SYS_opipe", //42
4770 "SYS_getegid", //43
4771 "SYS_profil", //44
4772 "SYS_ktrace", //45
4773 "SYS_sigaction", //46
4774 "SYS_getgid", //47
4775 "SYS_sigprocmask", //48
4776 "SYS_getlogin", //49
4777 "SYS_setlogin", //50
4778 "SYS_acct", //51
4779 "SYS_sigpending", //52
4780 "SYS_osigaltstack", //53
4781 "SYS_ioctl", //54
4782 "SYS_reboot", //55
4783 "SYS_revoke", //56
4784 "SYS_symlink", //57
4785 "SYS_readlink", //58
4786 "SYS_execve", //59
4787 "SYS_umask", //60
4788 "SYS_chroot", //61
4789 "SYS_62",
4790 "SYS_63",
4791 "SYS_64",
4792 "SYS_65",
4793 "SYS_vfork", //66
4794 "SYS_67",
4795 "SYS_68",
4796 "SYS_sbrk", //69
4797 "SYS_sstk", //70
4798 "SYS_61",
4799 "SYS_vadvise", //72
4800 "SYS_munmap", //73
4801 "SYS_mprotect", //74
4802 "SYS_madvise", //75
4803 "SYS_76",
4804 "SYS_77",
4805 "SYS_mincore", //78
4806 "SYS_getgroups", //79
4807 "SYS_setgroups", //80
4808 "SYS_getpgrp", //81
4809 "SYS_setpgid", //82
4810 "SYS_setitimer", //83
4811 "SYS_84",
4812 "SYS_85",
4813 "SYS_getitimer", //86
4814 "SYS_87",
4815 "SYS_88",
4816 "SYS_89",
4817 "SYS_dup2", //90
4818 "SYS_91",
4819 "SYS_fcntl", //92
4820 "SYS_select", //93
4821 "SYS_94",
4822 "SYS_fsync", //95
4823 "SYS_setpriority", //96
4824 "SYS_socket", //97
4825 "SYS_connect", //98
4826 "SYS_99",
4827 "SYS_getpriority", //100
4828 "SYS_101",
4829 "SYS_102",
4830 "SYS_sigreturn", //103
4831 "SYS_bind", //104
4832 "SYS_setsockopt", //105
4833 "SYS_listen", //106
4834 "SYS_107",
4835 "SYS_108",
4836 "SYS_109",
4837 "SYS_110",
4838 "SYS_sigsuspend", //111
4839 "SYS_112",
4840 "SYS_113",
4841 "SYS_114",
4842 "SYS_115",
4843 "SYS_gettimeofday", //116
4844 "SYS_getrusage", //117
4845 "SYS_getsockopt", //118
4846 "SYS_119",
4847 "SYS_readv", //120
4848 "SYS_writev", //121
4849 "SYS_settimeofday", //122
4850 "SYS_fchown", //123
4851 "SYS_fchmod", //124
4852 "SYS_125",
4853 "SYS_setreuid", //126
4854 "SYS_setregid", //127
4855 "SYS_rename", //128
4856 "SYS_129",
4857 "SYS_130",
4858 "SYS_flock", //131
4859 "SYS_mkfifo", //132
4860 "SYS_sendto", //133
4861 "SYS_shutdown", //134
4862 "SYS_socketpair", //135
4863 "SYS_mkdir", //136
4864 "SYS_rmdir", //137
4865 "SYS_utimes", //138
4866 "SYS_139",
4867 "SYS_adjtime", //140
4868 "SYS_141",
4869 "SYS_142",
4870 "SYS_143",
4871 "SYS_144",
4872 "SYS_145",
4873 "SYS_146",
4874 "SYS_setsid", //147
4875 "SYS_quotactl", //148
4876 "SYS_149",
4877 "SYS_150",
4878 "SYS_151",
4879 "SYS_152",
4880 "SYS_153",
4881 "SYS_154",
4882 "SYS_nfssvc", //155
4883 "SYS_156",
4884 "SYS_157",
4885 "SYS_158",
4886 "SYS_159",
4887 "SYS_160",
4888 "SYS_getfh", //161
4889 "SYS_162",
4890 "SYS_163",
4891 "SYS_164",
4892 "SYS_sysarch", //165
4893 "SYS_166",
4894 "SYS_167",
4895 "SYS_168",
4896 "SYS_169",
4897 "SYS_170",
4898 "SYS_171",
4899 "SYS_172",
4900 "SYS_pread", //173
4901 "SYS_pwrite", //174
4902 "SYS_175",
4903 "SYS_176",
4904 "SYS_177",
4905 "SYS_178",
4906 "SYS_179",
4907 "SYS_180",
4908 "SYS_setgid", //181
4909 "SYS_setegid", //182
4910 "SYS_seteuid", //183
4911 "SYS_lfs_bmapv", //184
4912 "SYS_lfs_markv", //185
4913 "SYS_lfs_segclean", //186
4914 "SYS_lfs_segwait", //187
4915 "SYS_188",
4916 "SYS_189",
4917 "SYS_190",
4918 "SYS_pathconf", //191
4919 "SYS_fpathconf", //192
4920 "SYS_swapctl", //193
4921 "SYS_getrlimit", //194
4922 "SYS_setrlimit", //195
4923 "SYS_getdirentries", //196
4924 "SYS_mmap", //197
4925 "SYS___syscall", //198
4926 "SYS_lseek", //199
4927 "SYS_truncate", //200
4928 "SYS_ftruncate", //201
4929 "SYS___sysctl", //202
4930 "SYS_mlock", //203
4931 "SYS_munlock", //204
4932 "SYS_205",
4933 "SYS_futimes", //206
4934 "SYS_getpgid", //207
4935 "SYS_xfspioctl", //208
4936 "SYS_209",
4937 "SYS_210",
4938 "SYS_211",
4939 "SYS_212",
4940 "SYS_213",
4941 "SYS_214",
4942 "SYS_215",
4943 "SYS_216",
4944 "SYS_217",
4945 "SYS_218",
4946 "SYS_219",
4947 "SYS_220",
4948 "SYS_semget", //221
4949 "SYS_222",
4950 "SYS_223",
4951 "SYS_224",
4952 "SYS_msgget", //225
4953 "SYS_msgsnd", //226
4954 "SYS_msgrcv", //227
4955 "SYS_shmat", //228
4956 "SYS_229",
4957 "SYS_shmdt", //230
4958 "SYS_231",
4959 "SYS_clock_gettime", //232
4960 "SYS_clock_settime", //233
4961 "SYS_clock_getres", //234
4962 "SYS_235",
4963 "SYS_236",
4964 "SYS_237",
4965 "SYS_238",
4966 "SYS_239",
4967 "SYS_nanosleep", //240
4968 "SYS_241",
4969 "SYS_242",
4970 "SYS_243",
4971 "SYS_244",
4972 "SYS_245",
4973 "SYS_246",
4974 "SYS_247",
4975 "SYS_248",
4976 "SYS_249",
4977 "SYS_minherit", //250
4978 "SYS_rfork", //251
4979 "SYS_poll", //252
4980 "SYS_issetugid", //253
4981 "SYS_lchown", //254
4982 "SYS_getsid", //255
4983 "SYS_msync", //256
4984 "SYS_257",
4985 "SYS_258",
4986 "SYS_259",
4987 "SYS_getfsstat", //260
4988 "SYS_statfs", //261
4989 "SYS_fstatfs", //262
4990 "SYS_pipe", //263
4991 "SYS_fhopen", //264
4992 "SYS_265",
4993 "SYS_fhstatfs", //266
4994 "SYS_preadv", //267
4995 "SYS_pwritev", //268
4996 "SYS_kqueue", //269
4997 "SYS_kevent", //270
4998 "SYS_mlockall", //271
4999 "SYS_munlockall", //272
5000 "SYS_getpeereid", //273
5001 "SYS_274",
5002 "SYS_275",
5003 "SYS_276",
5004 "SYS_277",
5005 "SYS_278",
5006 "SYS_279",
5007 "SYS_280",
5008 "SYS_getresuid", //281
5009 "SYS_setresuid", //282
5010 "SYS_getresgid", //283
5011 "SYS_setresgid", //284
5012 "SYS_285",
5013 "SYS_mquery", //286
5014 "SYS_closefrom", //287
5015 "SYS_sigaltstack", //288
5016 "SYS_shmget", //289
5017 "SYS_semop", //290
5018 "SYS_stat", //291
5019 "SYS_fstat", //292
5020 "SYS_lstat", //293
5021 "SYS_fhstat", //294
5022 "SYS___semctl", //295
5023 "SYS_shmctl", //296
5024 "SYS_msgctl", //297
5025 "SYS_MAXSYSCALL", //298
5026 //299
5027 //300
5028 };
5029 uint32_t uEAX;
5030 if (!LogIsEnabled())
5031 return;
5032 uEAX = CPUMGetGuestEAX(pVCpu);
5033 switch (uEAX)
5034 {
5035 default:
5036 if (uEAX < RT_ELEMENTS(apsz))
5037 {
5038 uint32_t au32Args[8] = {0};
5039 PGMPhysSimpleReadGCPtr(pVCpu, au32Args, CPUMGetGuestESP(pVCpu), sizeof(au32Args));
5040 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
5041 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVCpu), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
5042 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
5043 }
5044 else
5045 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVCpu), uEAX, uEAX);
5046 break;
5047 }
5048}
5049
5050
5051#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
5052/**
5053 * The Dll main entry point (stub).
5054 */
5055bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
5056{
5057 return true;
5058}
5059
5060void *memcpy(void *dst, const void *src, size_t size)
5061{
5062 uint8_t*pbDst = dst, *pbSrc = src;
5063 while (size-- > 0)
5064 *pbDst++ = *pbSrc++;
5065 return dst;
5066}
5067
5068#endif
5069
5070void cpu_smm_update(CPUState *env)
5071{
5072}
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette