VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 20417

Last change on this file since 20417 was 20408, checked in by vboxsync, 16 years ago

Moved REM locking to VMMAll

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 159.5 KB
Line 
1/* $Id: VBoxRecompiler.c 20408 2009-06-08 13:50:06Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "osdep.h"
29#include "exec-all.h"
30#include "config.h"
31#include "cpu-all.h"
32
33#include <VBox/rem.h>
34#include <VBox/vmapi.h>
35#include <VBox/tm.h>
36#include <VBox/ssm.h>
37#include <VBox/em.h>
38#include <VBox/trpm.h>
39#include <VBox/iom.h>
40#include <VBox/mm.h>
41#include <VBox/pgm.h>
42#include <VBox/pdm.h>
43#include <VBox/dbgf.h>
44#include <VBox/dbg.h>
45#include <VBox/hwaccm.h>
46#include <VBox/patm.h>
47#include <VBox/csam.h>
48#include "REMInternal.h"
49#include <VBox/vm.h>
50#include <VBox/param.h>
51#include <VBox/err.h>
52
53#include <VBox/log.h>
54#include <iprt/semaphore.h>
55#include <iprt/asm.h>
56#include <iprt/assert.h>
57#include <iprt/thread.h>
58#include <iprt/string.h>
59
60/* Don't wanna include everything. */
61extern void cpu_exec_init_all(unsigned long tb_size);
62extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
63extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
64extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
65extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
66extern void tlb_flush(CPUState *env, int flush_global);
67extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
68extern void sync_ldtr(CPUX86State *env1, int selector);
69
70#ifdef VBOX_STRICT
71unsigned long get_phys_page_offset(target_ulong addr);
72#endif
73
74
75/*******************************************************************************
76* Defined Constants And Macros *
77*******************************************************************************/
78
79/** Copy 80-bit fpu register at pSrc to pDst.
80 * This is probably faster than *calling* memcpy.
81 */
82#define REM_COPY_FPU_REG(pDst, pSrc) \
83 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
84
85
86/*******************************************************************************
87* Internal Functions *
88*******************************************************************************/
89static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
90static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
91static void remR3StateUpdate(PVM pVM, PVMCPU pVCpu);
92static int remR3InitPhysRamSizeAndDirtyMap(PVM pVM, bool fGuarded);
93
94static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
95static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
96static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
97static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
98static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
99static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
100
101static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
102static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
103static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
104static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
105static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
106static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
107
108
109/*******************************************************************************
110* Global Variables *
111*******************************************************************************/
112
113/** @todo Move stats to REM::s some rainy day we have nothing do to. */
114#ifdef VBOX_WITH_STATISTICS
115static STAMPROFILEADV gStatExecuteSingleInstr;
116static STAMPROFILEADV gStatCompilationQEmu;
117static STAMPROFILEADV gStatRunCodeQEmu;
118static STAMPROFILEADV gStatTotalTimeQEmu;
119static STAMPROFILEADV gStatTimers;
120static STAMPROFILEADV gStatTBLookup;
121static STAMPROFILEADV gStatIRQ;
122static STAMPROFILEADV gStatRawCheck;
123static STAMPROFILEADV gStatMemRead;
124static STAMPROFILEADV gStatMemWrite;
125static STAMPROFILE gStatGCPhys2HCVirt;
126static STAMPROFILE gStatHCVirt2GCPhys;
127static STAMCOUNTER gStatCpuGetTSC;
128static STAMCOUNTER gStatRefuseTFInhibit;
129static STAMCOUNTER gStatRefuseVM86;
130static STAMCOUNTER gStatRefusePaging;
131static STAMCOUNTER gStatRefusePAE;
132static STAMCOUNTER gStatRefuseIOPLNot0;
133static STAMCOUNTER gStatRefuseIF0;
134static STAMCOUNTER gStatRefuseCode16;
135static STAMCOUNTER gStatRefuseWP0;
136static STAMCOUNTER gStatRefuseRing1or2;
137static STAMCOUNTER gStatRefuseCanExecute;
138static STAMCOUNTER gStatREMGDTChange;
139static STAMCOUNTER gStatREMIDTChange;
140static STAMCOUNTER gStatREMLDTRChange;
141static STAMCOUNTER gStatREMTRChange;
142static STAMCOUNTER gStatSelOutOfSync[6];
143static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
144static STAMCOUNTER gStatFlushTBs;
145#endif
146/* in exec.c */
147extern uint32_t tlb_flush_count;
148extern uint32_t tb_flush_count;
149extern uint32_t tb_phys_invalidate_count;
150
151/*
152 * Global stuff.
153 */
154
155/** MMIO read callbacks. */
156CPUReadMemoryFunc *g_apfnMMIORead[3] =
157{
158 remR3MMIOReadU8,
159 remR3MMIOReadU16,
160 remR3MMIOReadU32
161};
162
163/** MMIO write callbacks. */
164CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
165{
166 remR3MMIOWriteU8,
167 remR3MMIOWriteU16,
168 remR3MMIOWriteU32
169};
170
171/** Handler read callbacks. */
172CPUReadMemoryFunc *g_apfnHandlerRead[3] =
173{
174 remR3HandlerReadU8,
175 remR3HandlerReadU16,
176 remR3HandlerReadU32
177};
178
179/** Handler write callbacks. */
180CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
181{
182 remR3HandlerWriteU8,
183 remR3HandlerWriteU16,
184 remR3HandlerWriteU32
185};
186
187
188#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
189/*
190 * Debugger commands.
191 */
192static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
193
194/** '.remstep' arguments. */
195static const DBGCVARDESC g_aArgRemStep[] =
196{
197 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
198 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
199};
200
201/** Command descriptors. */
202static const DBGCCMD g_aCmds[] =
203{
204 {
205 .pszCmd ="remstep",
206 .cArgsMin = 0,
207 .cArgsMax = 1,
208 .paArgDescs = &g_aArgRemStep[0],
209 .cArgDescs = RT_ELEMENTS(g_aArgRemStep),
210 .pResultDesc = NULL,
211 .fFlags = 0,
212 .pfnHandler = remR3CmdDisasEnableStepping,
213 .pszSyntax = "[on/off]",
214 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
215 "If no arguments show the current state."
216 }
217};
218#endif
219
220/** Prologue code, must be in lower 4G to simplify jumps to/from generated code. */
221uint8_t *code_gen_prologue;
222
223
224/*******************************************************************************
225* Internal Functions *
226*******************************************************************************/
227void remAbort(int rc, const char *pszTip);
228extern int testmath(void);
229
230/* Put them here to avoid unused variable warning. */
231AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
232#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
233//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
234/* Why did this have to be identical?? */
235AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
236#else
237AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
238#endif
239
240
241/**
242 * Initializes the REM.
243 *
244 * @returns VBox status code.
245 * @param pVM The VM to operate on.
246 */
247REMR3DECL(int) REMR3Init(PVM pVM)
248{
249 uint32_t u32Dummy;
250 int rc;
251
252#ifdef VBOX_ENABLE_VBOXREM64
253 LogRel(("Using 64-bit aware REM\n"));
254#endif
255
256 /*
257 * Assert sanity.
258 */
259 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
260 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
261 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
262#if defined(DEBUG) && !defined(RT_OS_SOLARIS) && !defined(RT_OS_FREEBSD) /// @todo fix the solaris and freebsd math stuff.
263 Assert(!testmath());
264#endif
265
266 /*
267 * Init some internal data members.
268 */
269 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
270 pVM->rem.s.Env.pVM = pVM;
271#ifdef CPU_RAW_MODE_INIT
272 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
273#endif
274
275 /* ctx. */
276 pVM->rem.s.pCtx = NULL; /* set when executing code. */
277 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order has changed! REM depends on notification about ALL physical memory registrations\n"));
278
279 /* ignore all notifications */
280 pVM->rem.s.fIgnoreAll = true;
281
282 code_gen_prologue = RTMemExecAlloc(_1K);
283 AssertLogRelReturn(code_gen_prologue, VERR_NO_MEMORY);
284
285 cpu_exec_init_all(0);
286
287 /*
288 * Init the recompiler.
289 */
290 if (!cpu_x86_init(&pVM->rem.s.Env, "vbox"))
291 {
292 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
293 return VERR_GENERAL_FAILURE;
294 }
295 PVMCPU pVCpu = VMMGetCpu(pVM);
296 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
297 CPUMGetGuestCpuId(pVCpu, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
298
299 /* allocate code buffer for single instruction emulation. */
300 pVM->rem.s.Env.cbCodeBuffer = 4096;
301 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
302 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
303
304 /* finally, set the cpu_single_env global. */
305 cpu_single_env = &pVM->rem.s.Env;
306
307 /* Nothing is pending by default */
308 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
309
310 /*
311 * Register ram types.
312 */
313 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
314 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
315 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
316 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
317 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
318
319 /* stop ignoring. */
320 pVM->rem.s.fIgnoreAll = false;
321
322 /*
323 * Register the saved state data unit.
324 */
325 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
326 NULL, remR3Save, NULL,
327 NULL, remR3Load, NULL);
328 if (RT_FAILURE(rc))
329 return rc;
330
331#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
332 /*
333 * Debugger commands.
334 */
335 static bool fRegisteredCmds = false;
336 if (!fRegisteredCmds)
337 {
338 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
339 if (RT_SUCCESS(rc))
340 fRegisteredCmds = true;
341 }
342#endif
343
344#ifdef VBOX_WITH_STATISTICS
345 /*
346 * Statistics.
347 */
348 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
349 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
350 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
351 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
352 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
353 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
354 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
355 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
356 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
357 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
358 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
359 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
360
361 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
362
363 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
364 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
365 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
366 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
367 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
368 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
369 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
370 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
371 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
372 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
373 STAM_REG(pVM, &gStatFlushTBs, STAMTYPE_COUNTER, "/REM/FlushTB", STAMUNIT_OCCURENCES, "Number of TB flushes");
374
375 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
376 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
377 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
378 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
379
380 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
381 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
382 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
383 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
384 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
385 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
386
387 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
388 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
389 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
390 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
391 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
392 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
393
394 STAM_REG(pVM, &pVM->rem.s.Env.StatTbFlush, STAMTYPE_PROFILE, "/REM/TbFlush", STAMUNIT_TICKS_PER_CALL, "profiling tb_flush().");
395#endif /* VBOX_WITH_STATISTICS */
396
397 STAM_REL_REG(pVM, &tb_flush_count, STAMTYPE_U32_RESET, "/REM/TbFlushCount", STAMUNIT_OCCURENCES, "tb_flush() calls");
398 STAM_REL_REG(pVM, &tb_phys_invalidate_count, STAMTYPE_U32_RESET, "/REM/TbPhysInvldCount", STAMUNIT_OCCURENCES, "tb_phys_invalidate() calls");
399 STAM_REL_REG(pVM, &tlb_flush_count, STAMTYPE_U32_RESET, "/REM/TlbFlushCount", STAMUNIT_OCCURENCES, "tlb_flush() calls");
400
401
402#ifdef DEBUG_ALL_LOGGING
403 loglevel = ~0;
404# ifdef DEBUG_TMP_LOGGING
405 logfile = fopen("/tmp/vbox-qemu.log", "w");
406# endif
407#endif
408
409 return rc;
410}
411
412
413/**
414 * Finalizes the REM initialization.
415 *
416 * This is called after all components, devices and drivers has
417 * been initialized. Its main purpose it to finish the RAM related
418 * initialization.
419 *
420 * @returns VBox status code.
421 *
422 * @param pVM The VM handle.
423 */
424REMR3DECL(int) REMR3InitFinalize(PVM pVM)
425{
426 int rc;
427
428 /*
429 * Ram size & dirty bit map.
430 */
431 Assert(!pVM->rem.s.fGCPhysLastRamFixed);
432 pVM->rem.s.fGCPhysLastRamFixed = true;
433#ifdef RT_STRICT
434 rc = remR3InitPhysRamSizeAndDirtyMap(pVM, true /* fGuarded */);
435#else
436 rc = remR3InitPhysRamSizeAndDirtyMap(pVM, false /* fGuarded */);
437#endif
438 return rc;
439}
440
441
442/**
443 * Initializes phys_ram_size, phys_ram_dirty and phys_ram_dirty_size.
444 *
445 * @returns VBox status code.
446 * @param pVM The VM handle.
447 * @param fGuarded Whether to guard the map.
448 */
449static int remR3InitPhysRamSizeAndDirtyMap(PVM pVM, bool fGuarded)
450{
451 int rc = VINF_SUCCESS;
452 RTGCPHYS cb;
453
454 cb = pVM->rem.s.GCPhysLastRam + 1;
455 AssertLogRelMsgReturn(cb > pVM->rem.s.GCPhysLastRam,
456 ("GCPhysLastRam=%RGp - out of range\n", pVM->rem.s.GCPhysLastRam),
457 VERR_OUT_OF_RANGE);
458 phys_ram_size = cb;
459 phys_ram_dirty_size = cb >> PAGE_SHIFT;
460 AssertMsg(((RTGCPHYS)phys_ram_dirty_size << PAGE_SHIFT) == cb, ("%RGp\n", cb));
461
462 if (!fGuarded)
463 {
464 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
465 AssertLogRelMsgReturn(phys_ram_dirty, ("Failed to allocate %u bytes of dirty page map bytes\n", phys_ram_dirty_size), VERR_NO_MEMORY);
466 }
467 else
468 {
469 /*
470 * Fill it up the nearest 4GB RAM and leave at least _64KB of guard after it.
471 */
472 uint32_t cbBitmapAligned = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
473 uint32_t cbBitmapFull = RT_ALIGN_32(phys_ram_dirty_size, (_4G >> PAGE_SHIFT));
474 if (cbBitmapFull == cbBitmapAligned)
475 cbBitmapFull += _4G >> PAGE_SHIFT;
476 else if (cbBitmapFull - cbBitmapAligned < _64K)
477 cbBitmapFull += _64K;
478
479 phys_ram_dirty = RTMemPageAlloc(cbBitmapFull);
480 AssertLogRelMsgReturn(phys_ram_dirty, ("Failed to allocate %u bytes of dirty page map bytes\n", cbBitmapFull), VERR_NO_MEMORY);
481
482 rc = RTMemProtect(phys_ram_dirty + cbBitmapAligned, cbBitmapFull - cbBitmapAligned, RTMEM_PROT_NONE);
483 if (RT_FAILURE(rc))
484 {
485 RTMemPageFree(phys_ram_dirty);
486 AssertLogRelRCReturn(rc, rc);
487 }
488
489 phys_ram_dirty += cbBitmapAligned - phys_ram_dirty_size;
490 }
491
492 /* initialize it. */
493 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
494 return rc;
495}
496
497
498/**
499 * Terminates the REM.
500 *
501 * Termination means cleaning up and freeing all resources,
502 * the VM it self is at this point powered off or suspended.
503 *
504 * @returns VBox status code.
505 * @param pVM The VM to operate on.
506 */
507REMR3DECL(int) REMR3Term(PVM pVM)
508{
509#ifdef VBOX_WITH_STATISTICS
510 /*
511 * Statistics.
512 */
513 STAM_DEREG(pVM, &gStatExecuteSingleInstr);
514 STAM_DEREG(pVM, &gStatCompilationQEmu);
515 STAM_DEREG(pVM, &gStatRunCodeQEmu);
516 STAM_DEREG(pVM, &gStatTotalTimeQEmu);
517 STAM_DEREG(pVM, &gStatTimers);
518 STAM_DEREG(pVM, &gStatTBLookup);
519 STAM_DEREG(pVM, &gStatIRQ);
520 STAM_DEREG(pVM, &gStatRawCheck);
521 STAM_DEREG(pVM, &gStatMemRead);
522 STAM_DEREG(pVM, &gStatMemWrite);
523 STAM_DEREG(pVM, &gStatHCVirt2GCPhys);
524 STAM_DEREG(pVM, &gStatGCPhys2HCVirt);
525
526 STAM_DEREG(pVM, &gStatCpuGetTSC);
527
528 STAM_DEREG(pVM, &gStatRefuseTFInhibit);
529 STAM_DEREG(pVM, &gStatRefuseVM86);
530 STAM_DEREG(pVM, &gStatRefusePaging);
531 STAM_DEREG(pVM, &gStatRefusePAE);
532 STAM_DEREG(pVM, &gStatRefuseIOPLNot0);
533 STAM_DEREG(pVM, &gStatRefuseIF0);
534 STAM_DEREG(pVM, &gStatRefuseCode16);
535 STAM_DEREG(pVM, &gStatRefuseWP0);
536 STAM_DEREG(pVM, &gStatRefuseRing1or2);
537 STAM_DEREG(pVM, &gStatRefuseCanExecute);
538 STAM_DEREG(pVM, &gStatFlushTBs);
539
540 STAM_DEREG(pVM, &gStatREMGDTChange);
541 STAM_DEREG(pVM, &gStatREMLDTRChange);
542 STAM_DEREG(pVM, &gStatREMIDTChange);
543 STAM_DEREG(pVM, &gStatREMTRChange);
544
545 STAM_DEREG(pVM, &gStatSelOutOfSync[0]);
546 STAM_DEREG(pVM, &gStatSelOutOfSync[1]);
547 STAM_DEREG(pVM, &gStatSelOutOfSync[2]);
548 STAM_DEREG(pVM, &gStatSelOutOfSync[3]);
549 STAM_DEREG(pVM, &gStatSelOutOfSync[4]);
550 STAM_DEREG(pVM, &gStatSelOutOfSync[5]);
551
552 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[0]);
553 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[1]);
554 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[2]);
555 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[3]);
556 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[4]);
557 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[5]);
558
559 STAM_DEREG(pVM, &pVM->rem.s.Env.StatTbFlush);
560#endif /* VBOX_WITH_STATISTICS */
561
562 STAM_REL_DEREG(pVM, &tb_flush_count);
563 STAM_REL_DEREG(pVM, &tb_phys_invalidate_count);
564 STAM_REL_DEREG(pVM, &tlb_flush_count);
565
566 return VINF_SUCCESS;
567}
568
569
570/**
571 * The VM is being reset.
572 *
573 * For the REM component this means to call the cpu_reset() and
574 * reinitialize some state variables.
575 *
576 * @param pVM VM handle.
577 */
578REMR3DECL(void) REMR3Reset(PVM pVM)
579{
580 /*
581 * Reset the REM cpu.
582 */
583 pVM->rem.s.fIgnoreAll = true;
584 cpu_reset(&pVM->rem.s.Env);
585 pVM->rem.s.cInvalidatedPages = 0;
586 pVM->rem.s.fIgnoreAll = false;
587
588 /* Clear raw ring 0 init state */
589 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
590
591 /* Flush the TBs the next time we execute code here. */
592 pVM->rem.s.fFlushTBs = true;
593}
594
595
596/**
597 * Execute state save operation.
598 *
599 * @returns VBox status code.
600 * @param pVM VM Handle.
601 * @param pSSM SSM operation handle.
602 */
603static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
604{
605 PREM pRem = &pVM->rem.s;
606
607 /*
608 * Save the required CPU Env bits.
609 * (Not much because we're never in REM when doing the save.)
610 */
611 LogFlow(("remR3Save:\n"));
612 Assert(!pRem->fInREM);
613 SSMR3PutU32(pSSM, pRem->Env.hflags);
614 SSMR3PutU32(pSSM, ~0); /* separator */
615
616 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
617 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
618 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
619
620 return SSMR3PutU32(pSSM, ~0); /* terminator */
621}
622
623
624/**
625 * Execute state load operation.
626 *
627 * @returns VBox status code.
628 * @param pVM VM Handle.
629 * @param pSSM SSM operation handle.
630 * @param u32Version Data layout version.
631 */
632static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
633{
634 uint32_t u32Dummy;
635 uint32_t fRawRing0 = false;
636 uint32_t u32Sep;
637 unsigned i;
638 int rc;
639 PREM pRem;
640 LogFlow(("remR3Load:\n"));
641
642 /*
643 * Validate version.
644 */
645 if ( u32Version != REM_SAVED_STATE_VERSION
646 && u32Version != REM_SAVED_STATE_VERSION_VER1_6)
647 {
648 AssertMsgFailed(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
649 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
650 }
651
652 /*
653 * Do a reset to be on the safe side...
654 */
655 REMR3Reset(pVM);
656
657 /*
658 * Ignore all ignorable notifications.
659 * (Not doing this will cause serious trouble.)
660 */
661 pVM->rem.s.fIgnoreAll = true;
662
663 /*
664 * Load the required CPU Env bits.
665 * (Not much because we're never in REM when doing the save.)
666 */
667 pRem = &pVM->rem.s;
668 Assert(!pRem->fInREM);
669 SSMR3GetU32(pSSM, &pRem->Env.hflags);
670 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
671 {
672 /* Redundant REM CPU state has to be loaded, but can be ignored. */
673 CPUX86State_Ver16 temp;
674 SSMR3GetMem(pSSM, &temp, RT_OFFSETOF(CPUX86State_Ver16, jmp_env));
675 }
676
677 rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
678 if (RT_FAILURE(rc))
679 return rc;
680 if (u32Sep != ~0U)
681 {
682 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
683 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
684 }
685
686 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
687 SSMR3GetUInt(pSSM, &fRawRing0);
688 if (fRawRing0)
689 pRem->Env.state |= CPU_RAW_RING0;
690
691 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
692 {
693 /*
694 * Load the REM stuff.
695 */
696 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
697 if (RT_FAILURE(rc))
698 return rc;
699 if (pRem->cInvalidatedPages > RT_ELEMENTS(pRem->aGCPtrInvalidatedPages))
700 {
701 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
702 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
703 }
704 for (i = 0; i < pRem->cInvalidatedPages; i++)
705 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
706 }
707
708 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
709 if (RT_FAILURE(rc))
710 return rc;
711
712 /* check the terminator. */
713 rc = SSMR3GetU32(pSSM, &u32Sep);
714 if (RT_FAILURE(rc))
715 return rc;
716 if (u32Sep != ~0U)
717 {
718 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
719 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
720 }
721
722 /*
723 * Get the CPUID features.
724 */
725 PVMCPU pVCpu = VMMGetCpu(pVM);
726 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
727 CPUMGetGuestCpuId(pVCpu, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
728
729 /*
730 * Sync the Load Flush the TLB
731 */
732 tlb_flush(&pRem->Env, 1);
733
734 /*
735 * Stop ignoring ignornable notifications.
736 */
737 pVM->rem.s.fIgnoreAll = false;
738
739 /*
740 * Sync the whole CPU state when executing code in the recompiler.
741 */
742 for (i=0;i<pVM->cCPUs;i++)
743 {
744 PVMCPU pVCpu = &pVM->aCpus[i];
745
746 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
747 }
748 return VINF_SUCCESS;
749}
750
751
752
753#undef LOG_GROUP
754#define LOG_GROUP LOG_GROUP_REM_RUN
755
756/**
757 * Single steps an instruction in recompiled mode.
758 *
759 * Before calling this function the REM state needs to be in sync with
760 * the VM. Call REMR3State() to perform the sync. It's only necessary
761 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
762 * and after calling REMR3StateBack().
763 *
764 * @returns VBox status code.
765 *
766 * @param pVM VM Handle.
767 * @param pVCpu VMCPU Handle.
768 */
769REMR3DECL(int) REMR3Step(PVM pVM, PVMCPU pVCpu)
770{
771 int rc, interrupt_request;
772 RTGCPTR GCPtrPC;
773 bool fBp;
774
775 /*
776 * Lock the REM - we don't wanna have anyone interrupting us
777 * while stepping - and enabled single stepping. We also ignore
778 * pending interrupts and suchlike.
779 */
780 interrupt_request = pVM->rem.s.Env.interrupt_request;
781 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
782 pVM->rem.s.Env.interrupt_request = 0;
783 cpu_single_step(&pVM->rem.s.Env, 1);
784
785 /*
786 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
787 */
788 GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
789 fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
790
791 /*
792 * Execute and handle the return code.
793 * We execute without enabling the cpu tick, so on success we'll
794 * just flip it on and off to make sure it moves
795 */
796 rc = cpu_exec(&pVM->rem.s.Env);
797 if (rc == EXCP_DEBUG)
798 {
799 TMR3NotifyResume(pVM, pVCpu);
800 TMR3NotifySuspend(pVM, pVCpu);
801 rc = VINF_EM_DBG_STEPPED;
802 }
803 else
804 {
805 switch (rc)
806 {
807 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
808 case EXCP_HLT:
809 case EXCP_HALTED: rc = VINF_EM_HALT; break;
810 case EXCP_RC:
811 rc = pVM->rem.s.rc;
812 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
813 break;
814 case EXCP_EXECUTE_RAW:
815 case EXCP_EXECUTE_HWACC:
816 /** @todo: is it correct? No! */
817 rc = VINF_SUCCESS;
818 break;
819 default:
820 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
821 rc = VERR_INTERNAL_ERROR;
822 break;
823 }
824 }
825
826 /*
827 * Restore the stuff we changed to prevent interruption.
828 * Unlock the REM.
829 */
830 if (fBp)
831 {
832 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
833 Assert(rc2 == 0); NOREF(rc2);
834 }
835 cpu_single_step(&pVM->rem.s.Env, 0);
836 pVM->rem.s.Env.interrupt_request = interrupt_request;
837
838 return rc;
839}
840
841
842/**
843 * Set a breakpoint using the REM facilities.
844 *
845 * @returns VBox status code.
846 * @param pVM The VM handle.
847 * @param Address The breakpoint address.
848 * @thread The emulation thread.
849 */
850REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
851{
852 VM_ASSERT_EMT(pVM);
853 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
854 {
855 LogFlow(("REMR3BreakpointSet: Address=%RGv\n", Address));
856 return VINF_SUCCESS;
857 }
858 LogFlow(("REMR3BreakpointSet: Address=%RGv - failed!\n", Address));
859 return VERR_REM_NO_MORE_BP_SLOTS;
860}
861
862
863/**
864 * Clears a breakpoint set by REMR3BreakpointSet().
865 *
866 * @returns VBox status code.
867 * @param pVM The VM handle.
868 * @param Address The breakpoint address.
869 * @thread The emulation thread.
870 */
871REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
872{
873 VM_ASSERT_EMT(pVM);
874 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
875 {
876 LogFlow(("REMR3BreakpointClear: Address=%RGv\n", Address));
877 return VINF_SUCCESS;
878 }
879 LogFlow(("REMR3BreakpointClear: Address=%RGv - not found!\n", Address));
880 return VERR_REM_BP_NOT_FOUND;
881}
882
883
884/**
885 * Emulate an instruction.
886 *
887 * This function executes one instruction without letting anyone
888 * interrupt it. This is intended for being called while being in
889 * raw mode and thus will take care of all the state syncing between
890 * REM and the rest.
891 *
892 * @returns VBox status code.
893 * @param pVM VM handle.
894 * @param pVCpu VMCPU Handle.
895 */
896REMR3DECL(int) REMR3EmulateInstruction(PVM pVM, PVMCPU pVCpu)
897{
898 bool fFlushTBs;
899
900 int rc, rc2;
901 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
902
903 /* Make sure this flag is set; we might never execute remR3CanExecuteRaw in the AMD-V case.
904 * CPU_RAW_HWACC makes sure we never execute interrupt handlers in the recompiler.
905 */
906 if (HWACCMIsEnabled(pVM))
907 pVM->rem.s.Env.state |= CPU_RAW_HWACC;
908
909 /* Skip the TB flush as that's rather expensive and not necessary for single instruction emulation. */
910 fFlushTBs = pVM->rem.s.fFlushTBs;
911 pVM->rem.s.fFlushTBs = false;
912
913 /*
914 * Sync the state and enable single instruction / single stepping.
915 */
916 rc = REMR3State(pVM, pVCpu);
917 pVM->rem.s.fFlushTBs = fFlushTBs;
918 if (RT_SUCCESS(rc))
919 {
920 int interrupt_request = pVM->rem.s.Env.interrupt_request;
921 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
922 Assert(!pVM->rem.s.Env.singlestep_enabled);
923 /*
924 * Now we set the execute single instruction flag and enter the cpu_exec loop.
925 */
926 TMNotifyStartOfExecution(pVCpu);
927 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
928 rc = cpu_exec(&pVM->rem.s.Env);
929 TMNotifyEndOfExecution(pVCpu);
930 switch (rc)
931 {
932 /*
933 * Executed without anything out of the way happening.
934 */
935 case EXCP_SINGLE_INSTR:
936 rc = VINF_EM_RESCHEDULE;
937 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
938 break;
939
940 /*
941 * If we take a trap or start servicing a pending interrupt, we might end up here.
942 * (Timer thread or some other thread wishing EMT's attention.)
943 */
944 case EXCP_INTERRUPT:
945 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
946 rc = VINF_EM_RESCHEDULE;
947 break;
948
949 /*
950 * Single step, we assume!
951 * If there was a breakpoint there we're fucked now.
952 */
953 case EXCP_DEBUG:
954 {
955 /* breakpoint or single step? */
956 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
957 int iBP;
958 rc = VINF_EM_DBG_STEPPED;
959 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
960 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
961 {
962 rc = VINF_EM_DBG_BREAKPOINT;
963 break;
964 }
965 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Rrc iBP=%d GCPtrPC=%RGv\n", rc, iBP, GCPtrPC));
966 break;
967 }
968
969 /*
970 * hlt instruction.
971 */
972 case EXCP_HLT:
973 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
974 rc = VINF_EM_HALT;
975 break;
976
977 /*
978 * The VM has halted.
979 */
980 case EXCP_HALTED:
981 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
982 rc = VINF_EM_HALT;
983 break;
984
985 /*
986 * Switch to RAW-mode.
987 */
988 case EXCP_EXECUTE_RAW:
989 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
990 rc = VINF_EM_RESCHEDULE_RAW;
991 break;
992
993 /*
994 * Switch to hardware accelerated RAW-mode.
995 */
996 case EXCP_EXECUTE_HWACC:
997 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
998 rc = VINF_EM_RESCHEDULE_HWACC;
999 break;
1000
1001 /*
1002 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1003 */
1004 case EXCP_RC:
1005 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
1006 rc = pVM->rem.s.rc;
1007 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1008 break;
1009
1010 /*
1011 * Figure out the rest when they arrive....
1012 */
1013 default:
1014 AssertMsgFailed(("rc=%d\n", rc));
1015 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
1016 rc = VINF_EM_RESCHEDULE;
1017 break;
1018 }
1019
1020 /*
1021 * Switch back the state.
1022 */
1023 pVM->rem.s.Env.interrupt_request = interrupt_request;
1024 rc2 = REMR3StateBack(pVM, pVCpu);
1025 AssertRC(rc2);
1026 }
1027
1028 Log2(("REMR3EmulateInstruction: returns %Rrc (cs:eip=%04x:%RGv)\n",
1029 rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
1030 return rc;
1031}
1032
1033
1034/**
1035 * Runs code in recompiled mode.
1036 *
1037 * Before calling this function the REM state needs to be in sync with
1038 * the VM. Call REMR3State() to perform the sync. It's only necessary
1039 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
1040 * and after calling REMR3StateBack().
1041 *
1042 * @returns VBox status code.
1043 *
1044 * @param pVM VM Handle.
1045 * @param pVCpu VMCPU Handle.
1046 */
1047REMR3DECL(int) REMR3Run(PVM pVM, PVMCPU pVCpu)
1048{
1049 int rc;
1050 Log2(("REMR3Run: (cs:eip=%04x:%RGv)\n", pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
1051 Assert(pVM->rem.s.fInREM);
1052
1053 TMNotifyStartOfExecution(pVCpu);
1054 rc = cpu_exec(&pVM->rem.s.Env);
1055 TMNotifyEndOfExecution(pVCpu);
1056 switch (rc)
1057 {
1058 /*
1059 * This happens when the execution was interrupted
1060 * by an external event, like pending timers.
1061 */
1062 case EXCP_INTERRUPT:
1063 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
1064 rc = VINF_SUCCESS;
1065 break;
1066
1067 /*
1068 * hlt instruction.
1069 */
1070 case EXCP_HLT:
1071 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
1072 rc = VINF_EM_HALT;
1073 break;
1074
1075 /*
1076 * The VM has halted.
1077 */
1078 case EXCP_HALTED:
1079 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1080 rc = VINF_EM_HALT;
1081 break;
1082
1083 /*
1084 * Breakpoint/single step.
1085 */
1086 case EXCP_DEBUG:
1087 {
1088#if 0//def DEBUG_bird
1089 static int iBP = 0;
1090 printf("howdy, breakpoint! iBP=%d\n", iBP);
1091 switch (iBP)
1092 {
1093 case 0:
1094 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1095 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1096 //pVM->rem.s.Env.interrupt_request = 0;
1097 //pVM->rem.s.Env.exception_index = -1;
1098 //g_fInterruptDisabled = 1;
1099 rc = VINF_SUCCESS;
1100 asm("int3");
1101 break;
1102 default:
1103 asm("int3");
1104 break;
1105 }
1106 iBP++;
1107#else
1108 /* breakpoint or single step? */
1109 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1110 int iBP;
1111 rc = VINF_EM_DBG_STEPPED;
1112 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1113 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1114 {
1115 rc = VINF_EM_DBG_BREAKPOINT;
1116 break;
1117 }
1118 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Rrc iBP=%d GCPtrPC=%RGv\n", rc, iBP, GCPtrPC));
1119#endif
1120 break;
1121 }
1122
1123 /*
1124 * Switch to RAW-mode.
1125 */
1126 case EXCP_EXECUTE_RAW:
1127 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1128 rc = VINF_EM_RESCHEDULE_RAW;
1129 break;
1130
1131 /*
1132 * Switch to hardware accelerated RAW-mode.
1133 */
1134 case EXCP_EXECUTE_HWACC:
1135 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1136 rc = VINF_EM_RESCHEDULE_HWACC;
1137 break;
1138
1139 /** @todo missing VBOX_WITH_VMI/EXECP_PARAV_CALL */
1140 /*
1141 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1142 */
1143 case EXCP_RC:
1144 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Rrc\n", pVM->rem.s.rc));
1145 rc = pVM->rem.s.rc;
1146 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1147 break;
1148
1149 /*
1150 * Figure out the rest when they arrive....
1151 */
1152 default:
1153 AssertMsgFailed(("rc=%d\n", rc));
1154 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1155 rc = VINF_SUCCESS;
1156 break;
1157 }
1158
1159 Log2(("REMR3Run: returns %Rrc (cs:eip=%04x:%RGv)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
1160 return rc;
1161}
1162
1163
1164/**
1165 * Check if the cpu state is suitable for Raw execution.
1166 *
1167 * @returns boolean
1168 * @param env The CPU env struct.
1169 * @param eip The EIP to check this for (might differ from env->eip).
1170 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1171 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1172 *
1173 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1174 */
1175bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1176{
1177 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1178 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1179 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1180 uint32_t u32CR0;
1181
1182 /* Update counter. */
1183 env->pVM->rem.s.cCanExecuteRaw++;
1184
1185 if (HWACCMIsEnabled(env->pVM))
1186 {
1187 CPUMCTX Ctx;
1188
1189 env->state |= CPU_RAW_HWACC;
1190
1191 /*
1192 * Create partial context for HWACCMR3CanExecuteGuest
1193 */
1194 Ctx.cr0 = env->cr[0];
1195 Ctx.cr3 = env->cr[3];
1196 Ctx.cr4 = env->cr[4];
1197
1198 Ctx.tr = env->tr.selector;
1199 Ctx.trHid.u64Base = env->tr.base;
1200 Ctx.trHid.u32Limit = env->tr.limit;
1201 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1202
1203 Ctx.idtr.cbIdt = env->idt.limit;
1204 Ctx.idtr.pIdt = env->idt.base;
1205
1206 Ctx.gdtr.cbGdt = env->gdt.limit;
1207 Ctx.gdtr.pGdt = env->gdt.base;
1208
1209 Ctx.rsp = env->regs[R_ESP];
1210 Ctx.rip = env->eip;
1211
1212 Ctx.eflags.u32 = env->eflags;
1213
1214 Ctx.cs = env->segs[R_CS].selector;
1215 Ctx.csHid.u64Base = env->segs[R_CS].base;
1216 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1217 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1218
1219 Ctx.ds = env->segs[R_DS].selector;
1220 Ctx.dsHid.u64Base = env->segs[R_DS].base;
1221 Ctx.dsHid.u32Limit = env->segs[R_DS].limit;
1222 Ctx.dsHid.Attr.u = (env->segs[R_DS].flags >> 8) & 0xF0FF;
1223
1224 Ctx.es = env->segs[R_ES].selector;
1225 Ctx.esHid.u64Base = env->segs[R_ES].base;
1226 Ctx.esHid.u32Limit = env->segs[R_ES].limit;
1227 Ctx.esHid.Attr.u = (env->segs[R_ES].flags >> 8) & 0xF0FF;
1228
1229 Ctx.fs = env->segs[R_FS].selector;
1230 Ctx.fsHid.u64Base = env->segs[R_FS].base;
1231 Ctx.fsHid.u32Limit = env->segs[R_FS].limit;
1232 Ctx.fsHid.Attr.u = (env->segs[R_FS].flags >> 8) & 0xF0FF;
1233
1234 Ctx.gs = env->segs[R_GS].selector;
1235 Ctx.gsHid.u64Base = env->segs[R_GS].base;
1236 Ctx.gsHid.u32Limit = env->segs[R_GS].limit;
1237 Ctx.gsHid.Attr.u = (env->segs[R_GS].flags >> 8) & 0xF0FF;
1238
1239 Ctx.ss = env->segs[R_SS].selector;
1240 Ctx.ssHid.u64Base = env->segs[R_SS].base;
1241 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1242 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1243
1244 Ctx.msrEFER = env->efer;
1245
1246 /* Hardware accelerated raw-mode:
1247 *
1248 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1249 */
1250 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1251 {
1252 *piException = EXCP_EXECUTE_HWACC;
1253 return true;
1254 }
1255 return false;
1256 }
1257
1258 /*
1259 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1260 * or 32 bits protected mode ring 0 code
1261 *
1262 * The tests are ordered by the likelyhood of being true during normal execution.
1263 */
1264 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1265 {
1266 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1267 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1268 return false;
1269 }
1270
1271#ifndef VBOX_RAW_V86
1272 if (fFlags & VM_MASK) {
1273 STAM_COUNTER_INC(&gStatRefuseVM86);
1274 Log2(("raw mode refused: VM_MASK\n"));
1275 return false;
1276 }
1277#endif
1278
1279 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1280 {
1281#ifndef DEBUG_bird
1282 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1283#endif
1284 return false;
1285 }
1286
1287 if (env->singlestep_enabled)
1288 {
1289 //Log2(("raw mode refused: Single step\n"));
1290 return false;
1291 }
1292
1293 if (env->nb_breakpoints > 0)
1294 {
1295 //Log2(("raw mode refused: Breakpoints\n"));
1296 return false;
1297 }
1298
1299 u32CR0 = env->cr[0];
1300 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1301 {
1302 STAM_COUNTER_INC(&gStatRefusePaging);
1303 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1304 return false;
1305 }
1306
1307 if (env->cr[4] & CR4_PAE_MASK)
1308 {
1309 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1310 {
1311 STAM_COUNTER_INC(&gStatRefusePAE);
1312 return false;
1313 }
1314 }
1315
1316 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1317 {
1318 if (!EMIsRawRing3Enabled(env->pVM))
1319 return false;
1320
1321 if (!(env->eflags & IF_MASK))
1322 {
1323 STAM_COUNTER_INC(&gStatRefuseIF0);
1324 Log2(("raw mode refused: IF (RawR3)\n"));
1325 return false;
1326 }
1327
1328 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1329 {
1330 STAM_COUNTER_INC(&gStatRefuseWP0);
1331 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1332 return false;
1333 }
1334 }
1335 else
1336 {
1337 if (!EMIsRawRing0Enabled(env->pVM))
1338 return false;
1339
1340 // Let's start with pure 32 bits ring 0 code first
1341 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1342 {
1343 STAM_COUNTER_INC(&gStatRefuseCode16);
1344 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1345 return false;
1346 }
1347
1348 // Only R0
1349 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1350 {
1351 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1352 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1353 return false;
1354 }
1355
1356 if (!(u32CR0 & CR0_WP_MASK))
1357 {
1358 STAM_COUNTER_INC(&gStatRefuseWP0);
1359 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1360 return false;
1361 }
1362
1363 if (PATMIsPatchGCAddr(env->pVM, eip))
1364 {
1365 Log2(("raw r0 mode forced: patch code\n"));
1366 *piException = EXCP_EXECUTE_RAW;
1367 return true;
1368 }
1369
1370#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1371 if (!(env->eflags & IF_MASK))
1372 {
1373 STAM_COUNTER_INC(&gStatRefuseIF0);
1374 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1375 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1376 return false;
1377 }
1378#endif
1379
1380 env->state |= CPU_RAW_RING0;
1381 }
1382
1383 /*
1384 * Don't reschedule the first time we're called, because there might be
1385 * special reasons why we're here that is not covered by the above checks.
1386 */
1387 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1388 {
1389 Log2(("raw mode refused: first scheduling\n"));
1390 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1391 return false;
1392 }
1393
1394 Assert(env->pVCpu && PGMPhysIsA20Enabled(env->pVCpu));
1395 *piException = EXCP_EXECUTE_RAW;
1396 return true;
1397}
1398
1399
1400/**
1401 * Fetches a code byte.
1402 *
1403 * @returns Success indicator (bool) for ease of use.
1404 * @param env The CPU environment structure.
1405 * @param GCPtrInstr Where to fetch code.
1406 * @param pu8Byte Where to store the byte on success
1407 */
1408bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1409{
1410 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1411 if (RT_SUCCESS(rc))
1412 return true;
1413 return false;
1414}
1415
1416
1417/**
1418 * Flush (or invalidate if you like) page table/dir entry.
1419 *
1420 * (invlpg instruction; tlb_flush_page)
1421 *
1422 * @param env Pointer to cpu environment.
1423 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1424 */
1425void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1426{
1427 PVM pVM = env->pVM;
1428 PCPUMCTX pCtx;
1429 int rc;
1430
1431 /*
1432 * When we're replaying invlpg instructions or restoring a saved
1433 * state we disable this path.
1434 */
1435 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1436 return;
1437 Log(("remR3FlushPage: GCPtr=%RGv\n", GCPtr));
1438 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1439
1440 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1441
1442 /*
1443 * Update the control registers before calling PGMFlushPage.
1444 */
1445 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1446 Assert(pCtx);
1447 pCtx->cr0 = env->cr[0];
1448 pCtx->cr3 = env->cr[3];
1449 if ((env->cr[4] ^ pCtx->cr4) & X86_CR4_VME)
1450 VMCPU_FF_SET(env->pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1451 pCtx->cr4 = env->cr[4];
1452
1453 /*
1454 * Let PGM do the rest.
1455 */
1456 Assert(env->pVCpu);
1457 rc = PGMInvalidatePage(env->pVCpu, GCPtr);
1458 if (RT_FAILURE(rc))
1459 {
1460 AssertMsgFailed(("remR3FlushPage %RGv failed with %d!!\n", GCPtr, rc));
1461 VMCPU_FF_SET(env->pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1462 }
1463 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1464}
1465
1466
1467#ifndef REM_PHYS_ADDR_IN_TLB
1468/** Wrapper for PGMR3PhysTlbGCPhys2Ptr. */
1469void *remR3TlbGCPhys2Ptr(CPUState *env1, target_ulong physAddr, int fWritable)
1470{
1471 void *pv;
1472 int rc;
1473
1474 /* Address must be aligned enough to fiddle with lower bits */
1475 Assert((physAddr & 0x3) == 0);
1476
1477 rc = PGMR3PhysTlbGCPhys2Ptr(env1->pVM, physAddr, true /*fWritable*/, &pv);
1478 Assert( rc == VINF_SUCCESS
1479 || rc == VINF_PGM_PHYS_TLB_CATCH_WRITE
1480 || rc == VERR_PGM_PHYS_TLB_CATCH_ALL
1481 || rc == VERR_PGM_PHYS_TLB_UNASSIGNED);
1482 if (RT_FAILURE(rc))
1483 return (void *)1;
1484 if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE)
1485 return (void *)((uintptr_t)pv | 2);
1486 return pv;
1487}
1488#endif /* REM_PHYS_ADDR_IN_TLB */
1489
1490
1491/**
1492 * Called from tlb_protect_code in order to write monitor a code page.
1493 *
1494 * @param env Pointer to the CPU environment.
1495 * @param GCPtr Code page to monitor
1496 */
1497void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1498{
1499#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1500 Assert(env->pVM->rem.s.fInREM);
1501 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1502 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1503 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1504 && !(env->eflags & VM_MASK) /* no V86 mode */
1505 && !HWACCMIsEnabled(env->pVM))
1506 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1507#endif
1508}
1509
1510
1511/**
1512 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1513 *
1514 * @param env Pointer to the CPU environment.
1515 * @param GCPtr Code page to monitor
1516 */
1517void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
1518{
1519 Assert(env->pVM->rem.s.fInREM);
1520#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1521 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1522 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1523 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1524 && !(env->eflags & VM_MASK) /* no V86 mode */
1525 && !HWACCMIsEnabled(env->pVM))
1526 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1527#endif
1528}
1529
1530
1531/**
1532 * Called when the CPU is initialized, any of the CRx registers are changed or
1533 * when the A20 line is modified.
1534 *
1535 * @param env Pointer to the CPU environment.
1536 * @param fGlobal Set if the flush is global.
1537 */
1538void remR3FlushTLB(CPUState *env, bool fGlobal)
1539{
1540 PVM pVM = env->pVM;
1541 PCPUMCTX pCtx;
1542
1543 /*
1544 * When we're replaying invlpg instructions or restoring a saved
1545 * state we disable this path.
1546 */
1547 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1548 return;
1549 Assert(pVM->rem.s.fInREM);
1550
1551 /*
1552 * The caller doesn't check cr4, so we have to do that for ourselves.
1553 */
1554 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1555 fGlobal = true;
1556 Log(("remR3FlushTLB: CR0=%08RX64 CR3=%08RX64 CR4=%08RX64 %s\n", (uint64_t)env->cr[0], (uint64_t)env->cr[3], (uint64_t)env->cr[4], fGlobal ? " global" : ""));
1557
1558 /*
1559 * Update the control registers before calling PGMR3FlushTLB.
1560 */
1561 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1562 Assert(pCtx);
1563 pCtx->cr0 = env->cr[0];
1564 pCtx->cr3 = env->cr[3];
1565 if ((env->cr[4] ^ pCtx->cr4) & X86_CR4_VME)
1566 VMCPU_FF_SET(env->pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1567 pCtx->cr4 = env->cr[4];
1568
1569 /*
1570 * Let PGM do the rest.
1571 */
1572 Assert(env->pVCpu);
1573 PGMFlushTLB(env->pVCpu, env->cr[3], fGlobal);
1574}
1575
1576
1577/**
1578 * Called when any of the cr0, cr4 or efer registers is updated.
1579 *
1580 * @param env Pointer to the CPU environment.
1581 */
1582void remR3ChangeCpuMode(CPUState *env)
1583{
1584 PVM pVM = env->pVM;
1585 uint64_t efer;
1586 PCPUMCTX pCtx;
1587 int rc;
1588
1589 /*
1590 * When we're replaying loads or restoring a saved
1591 * state this path is disabled.
1592 */
1593 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1594 return;
1595 Assert(pVM->rem.s.fInREM);
1596
1597 /*
1598 * Update the control registers before calling PGMChangeMode()
1599 * as it may need to map whatever cr3 is pointing to.
1600 */
1601 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1602 Assert(pCtx);
1603 pCtx->cr0 = env->cr[0];
1604 pCtx->cr3 = env->cr[3];
1605 if ((env->cr[4] ^ pCtx->cr4) & X86_CR4_VME)
1606 VMCPU_FF_SET(env->pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1607 pCtx->cr4 = env->cr[4];
1608
1609#ifdef TARGET_X86_64
1610 efer = env->efer;
1611#else
1612 efer = 0;
1613#endif
1614 Assert(env->pVCpu);
1615 rc = PGMChangeMode(env->pVCpu, env->cr[0], env->cr[4], efer);
1616 if (rc != VINF_SUCCESS)
1617 {
1618 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
1619 {
1620 Log(("PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc -> remR3RaiseRC\n", env->cr[0], env->cr[4], efer, rc));
1621 remR3RaiseRC(env->pVM, rc);
1622 }
1623 else
1624 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc\n", env->cr[0], env->cr[4], efer, rc);
1625 }
1626}
1627
1628
1629/**
1630 * Called from compiled code to run dma.
1631 *
1632 * @param env Pointer to the CPU environment.
1633 */
1634void remR3DmaRun(CPUState *env)
1635{
1636 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1637 PDMR3DmaRun(env->pVM);
1638 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1639}
1640
1641
1642/**
1643 * Called from compiled code to schedule pending timers in VMM
1644 *
1645 * @param env Pointer to the CPU environment.
1646 */
1647void remR3TimersRun(CPUState *env)
1648{
1649 LogFlow(("remR3TimersRun:\n"));
1650 LogIt(LOG_INSTANCE, RTLOGGRPFLAGS_LEVEL_5, LOG_GROUP_TM, ("remR3TimersRun\n"));
1651 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1652 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1653 TMR3TimerQueuesDo(env->pVM);
1654 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1655 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1656}
1657
1658
1659/**
1660 * Record trap occurance
1661 *
1662 * @returns VBox status code
1663 * @param env Pointer to the CPU environment.
1664 * @param uTrap Trap nr
1665 * @param uErrorCode Error code
1666 * @param pvNextEIP Next EIP
1667 */
1668int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, RTGCPTR pvNextEIP)
1669{
1670 PVM pVM = env->pVM;
1671#ifdef VBOX_WITH_STATISTICS
1672 static STAMCOUNTER s_aStatTrap[255];
1673 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1674#endif
1675
1676#ifdef VBOX_WITH_STATISTICS
1677 if (uTrap < 255)
1678 {
1679 if (!s_aRegisters[uTrap])
1680 {
1681 char szStatName[64];
1682 s_aRegisters[uTrap] = true;
1683 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1684 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1685 }
1686 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1687 }
1688#endif
1689 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
1690 if( uTrap < 0x20
1691 && (env->cr[0] & X86_CR0_PE)
1692 && !(env->eflags & X86_EFL_VM))
1693 {
1694#ifdef DEBUG
1695 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1696#endif
1697 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1698 {
1699 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
1700 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1701 return VERR_REM_TOO_MANY_TRAPS;
1702 }
1703 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1704 pVM->rem.s.cPendingExceptions = 1;
1705 pVM->rem.s.uPendingException = uTrap;
1706 pVM->rem.s.uPendingExcptEIP = env->eip;
1707 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1708 }
1709 else
1710 {
1711 pVM->rem.s.cPendingExceptions = 0;
1712 pVM->rem.s.uPendingException = uTrap;
1713 pVM->rem.s.uPendingExcptEIP = env->eip;
1714 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1715 }
1716 return VINF_SUCCESS;
1717}
1718
1719
1720/*
1721 * Clear current active trap
1722 *
1723 * @param pVM VM Handle.
1724 */
1725void remR3TrapClear(PVM pVM)
1726{
1727 pVM->rem.s.cPendingExceptions = 0;
1728 pVM->rem.s.uPendingException = 0;
1729 pVM->rem.s.uPendingExcptEIP = 0;
1730 pVM->rem.s.uPendingExcptCR2 = 0;
1731}
1732
1733
1734/*
1735 * Record previous call instruction addresses
1736 *
1737 * @param env Pointer to the CPU environment.
1738 */
1739void remR3RecordCall(CPUState *env)
1740{
1741 CSAMR3RecordCallAddress(env->pVM, env->eip);
1742}
1743
1744
1745/**
1746 * Syncs the internal REM state with the VM.
1747 *
1748 * This must be called before REMR3Run() is invoked whenever when the REM
1749 * state is not up to date. Calling it several times in a row is not
1750 * permitted.
1751 *
1752 * @returns VBox status code.
1753 *
1754 * @param pVM VM Handle.
1755 * @param pVCpu VMCPU Handle.
1756 *
1757 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1758 * no do this since the majority of the callers don't want any unnecessary of events
1759 * pending that would immediatly interrupt execution.
1760 */
1761REMR3DECL(int) REMR3State(PVM pVM, PVMCPU pVCpu)
1762{
1763 register const CPUMCTX *pCtx;
1764 register unsigned fFlags;
1765 bool fHiddenSelRegsValid;
1766 unsigned i;
1767 TRPMEVENT enmType;
1768 uint8_t u8TrapNo;
1769 int rc;
1770
1771 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1772 Log2(("REMR3State:\n"));
1773
1774 pVM->rem.s.Env.pVCpu = pVCpu;
1775 pCtx = pVM->rem.s.pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1776 fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1777
1778 Assert(!pVM->rem.s.fInREM);
1779 pVM->rem.s.fInStateSync = true;
1780
1781 /*
1782 * If we have to flush TBs, do that immediately.
1783 */
1784 if (pVM->rem.s.fFlushTBs)
1785 {
1786 STAM_COUNTER_INC(&gStatFlushTBs);
1787 tb_flush(&pVM->rem.s.Env);
1788 pVM->rem.s.fFlushTBs = false;
1789 }
1790
1791 /*
1792 * Copy the registers which require no special handling.
1793 */
1794#ifdef TARGET_X86_64
1795 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
1796 Assert(R_EAX == 0);
1797 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
1798 Assert(R_ECX == 1);
1799 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
1800 Assert(R_EDX == 2);
1801 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
1802 Assert(R_EBX == 3);
1803 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
1804 Assert(R_ESP == 4);
1805 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
1806 Assert(R_EBP == 5);
1807 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
1808 Assert(R_ESI == 6);
1809 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
1810 Assert(R_EDI == 7);
1811 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
1812 pVM->rem.s.Env.regs[8] = pCtx->r8;
1813 pVM->rem.s.Env.regs[9] = pCtx->r9;
1814 pVM->rem.s.Env.regs[10] = pCtx->r10;
1815 pVM->rem.s.Env.regs[11] = pCtx->r11;
1816 pVM->rem.s.Env.regs[12] = pCtx->r12;
1817 pVM->rem.s.Env.regs[13] = pCtx->r13;
1818 pVM->rem.s.Env.regs[14] = pCtx->r14;
1819 pVM->rem.s.Env.regs[15] = pCtx->r15;
1820
1821 pVM->rem.s.Env.eip = pCtx->rip;
1822
1823 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
1824#else
1825 Assert(R_EAX == 0);
1826 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1827 Assert(R_ECX == 1);
1828 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1829 Assert(R_EDX == 2);
1830 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1831 Assert(R_EBX == 3);
1832 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1833 Assert(R_ESP == 4);
1834 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1835 Assert(R_EBP == 5);
1836 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1837 Assert(R_ESI == 6);
1838 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1839 Assert(R_EDI == 7);
1840 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1841 pVM->rem.s.Env.eip = pCtx->eip;
1842
1843 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1844#endif
1845
1846 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1847
1848 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1849 for (i=0;i<8;i++)
1850 pVM->rem.s.Env.dr[i] = pCtx->dr[i];
1851
1852 /*
1853 * Clear the halted hidden flag (the interrupt waking up the CPU can
1854 * have been dispatched in raw mode).
1855 */
1856 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1857
1858 /*
1859 * Replay invlpg?
1860 */
1861 if (pVM->rem.s.cInvalidatedPages)
1862 {
1863 RTUINT i;
1864
1865 pVM->rem.s.fIgnoreInvlPg = true;
1866 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1867 {
1868 Log2(("REMR3State: invlpg %RGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1869 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1870 }
1871 pVM->rem.s.fIgnoreInvlPg = false;
1872 pVM->rem.s.cInvalidatedPages = 0;
1873 }
1874
1875 /* Replay notification changes? */
1876 if (pVM->rem.s.cHandlerNotifications)
1877 REMR3ReplayHandlerNotifications(pVM);
1878
1879 /* Update MSRs; before CRx registers! */
1880 pVM->rem.s.Env.efer = pCtx->msrEFER;
1881 pVM->rem.s.Env.star = pCtx->msrSTAR;
1882 pVM->rem.s.Env.pat = pCtx->msrPAT;
1883#ifdef TARGET_X86_64
1884 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1885 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1886 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1887 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1888
1889 /* Update the internal long mode activate flag according to the new EFER value. */
1890 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1891 pVM->rem.s.Env.hflags |= HF_LMA_MASK;
1892 else
1893 pVM->rem.s.Env.hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
1894#endif
1895
1896 /*
1897 * Registers which are rarely changed and require special handling / order when changed.
1898 */
1899 fFlags = CPUMGetAndClearChangedFlagsREM(pVCpu);
1900 LogFlow(("CPUMGetAndClearChangedFlagsREM %x\n", fFlags));
1901 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1902 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR
1903 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
1904 {
1905 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1906 {
1907 pVM->rem.s.fIgnoreCR3Load = true;
1908 tlb_flush(&pVM->rem.s.Env, true);
1909 pVM->rem.s.fIgnoreCR3Load = false;
1910 }
1911
1912 /* CR4 before CR0! */
1913 if (fFlags & CPUM_CHANGED_CR4)
1914 {
1915 pVM->rem.s.fIgnoreCR3Load = true;
1916 pVM->rem.s.fIgnoreCpuMode = true;
1917 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1918 pVM->rem.s.fIgnoreCpuMode = false;
1919 pVM->rem.s.fIgnoreCR3Load = false;
1920 }
1921
1922 if (fFlags & CPUM_CHANGED_CR0)
1923 {
1924 pVM->rem.s.fIgnoreCR3Load = true;
1925 pVM->rem.s.fIgnoreCpuMode = true;
1926 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1927 pVM->rem.s.fIgnoreCpuMode = false;
1928 pVM->rem.s.fIgnoreCR3Load = false;
1929 }
1930
1931 if (fFlags & CPUM_CHANGED_CR3)
1932 {
1933 pVM->rem.s.fIgnoreCR3Load = true;
1934 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1935 pVM->rem.s.fIgnoreCR3Load = false;
1936 }
1937
1938 if (fFlags & CPUM_CHANGED_GDTR)
1939 {
1940 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1941 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1942 }
1943
1944 if (fFlags & CPUM_CHANGED_IDTR)
1945 {
1946 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1947 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1948 }
1949
1950 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1951 {
1952 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1953 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1954 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1955 }
1956
1957 if (fFlags & CPUM_CHANGED_LDTR)
1958 {
1959 if (fHiddenSelRegsValid)
1960 {
1961 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1962 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u64Base;
1963 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1964 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;
1965 }
1966 else
1967 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1968 }
1969
1970 if (fFlags & CPUM_CHANGED_CPUID)
1971 {
1972 uint32_t u32Dummy;
1973
1974 /*
1975 * Get the CPUID features.
1976 */
1977 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
1978 CPUMGetGuestCpuId(pVCpu, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
1979 }
1980
1981 /* Sync FPU state after CR4, CPUID and EFER (!). */
1982 if (fFlags & CPUM_CHANGED_FPU_REM)
1983 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1984 }
1985
1986 /*
1987 * Sync TR unconditionally to make life simpler.
1988 */
1989 pVM->rem.s.Env.tr.selector = pCtx->tr;
1990 pVM->rem.s.Env.tr.base = pCtx->trHid.u64Base;
1991 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1992 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;
1993 /* Note! do_interrupt will fault if the busy flag is still set... */
1994 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1995
1996 /*
1997 * Update selector registers.
1998 * This must be done *after* we've synced gdt, ldt and crX registers
1999 * since we're reading the GDT/LDT om sync_seg. This will happen with
2000 * saved state which takes a quick dip into rawmode for instance.
2001 */
2002 /*
2003 * Stack; Note first check this one as the CPL might have changed. The
2004 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
2005 */
2006
2007 if (fHiddenSelRegsValid)
2008 {
2009 /* The hidden selector registers are valid in the CPU context. */
2010 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
2011
2012 /* Set current CPL */
2013 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVCpu, CPUMCTX2CORE(pCtx)));
2014
2015 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
2016 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
2017 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
2018 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
2019 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
2020 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
2021 }
2022 else
2023 {
2024 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
2025 if (pVM->rem.s.Env.segs[R_SS].selector != pCtx->ss)
2026 {
2027 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
2028
2029 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVCpu, CPUMCTX2CORE(pCtx)));
2030 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
2031#ifdef VBOX_WITH_STATISTICS
2032 if (pVM->rem.s.Env.segs[R_SS].newselector)
2033 {
2034 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
2035 }
2036#endif
2037 }
2038 else
2039 pVM->rem.s.Env.segs[R_SS].newselector = 0;
2040
2041 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
2042 {
2043 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
2044 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
2045#ifdef VBOX_WITH_STATISTICS
2046 if (pVM->rem.s.Env.segs[R_ES].newselector)
2047 {
2048 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
2049 }
2050#endif
2051 }
2052 else
2053 pVM->rem.s.Env.segs[R_ES].newselector = 0;
2054
2055 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
2056 {
2057 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
2058 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
2059#ifdef VBOX_WITH_STATISTICS
2060 if (pVM->rem.s.Env.segs[R_CS].newselector)
2061 {
2062 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
2063 }
2064#endif
2065 }
2066 else
2067 pVM->rem.s.Env.segs[R_CS].newselector = 0;
2068
2069 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
2070 {
2071 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
2072 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
2073#ifdef VBOX_WITH_STATISTICS
2074 if (pVM->rem.s.Env.segs[R_DS].newselector)
2075 {
2076 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
2077 }
2078#endif
2079 }
2080 else
2081 pVM->rem.s.Env.segs[R_DS].newselector = 0;
2082
2083 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
2084 * be the same but not the base/limit. */
2085 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
2086 {
2087 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
2088 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
2089#ifdef VBOX_WITH_STATISTICS
2090 if (pVM->rem.s.Env.segs[R_FS].newselector)
2091 {
2092 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
2093 }
2094#endif
2095 }
2096 else
2097 pVM->rem.s.Env.segs[R_FS].newselector = 0;
2098
2099 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
2100 {
2101 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
2102 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
2103#ifdef VBOX_WITH_STATISTICS
2104 if (pVM->rem.s.Env.segs[R_GS].newselector)
2105 {
2106 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
2107 }
2108#endif
2109 }
2110 else
2111 pVM->rem.s.Env.segs[R_GS].newselector = 0;
2112 }
2113
2114 /*
2115 * Check for traps.
2116 */
2117 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
2118 rc = TRPMQueryTrap(pVCpu, &u8TrapNo, &enmType);
2119 if (RT_SUCCESS(rc))
2120 {
2121#ifdef DEBUG
2122 if (u8TrapNo == 0x80)
2123 {
2124 remR3DumpLnxSyscall(pVCpu);
2125 remR3DumpOBsdSyscall(pVCpu);
2126 }
2127#endif
2128
2129 pVM->rem.s.Env.exception_index = u8TrapNo;
2130 if (enmType != TRPM_SOFTWARE_INT)
2131 {
2132 pVM->rem.s.Env.exception_is_int = 0;
2133 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
2134 }
2135 else
2136 {
2137 /*
2138 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
2139 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
2140 * for int03 and into.
2141 */
2142 pVM->rem.s.Env.exception_is_int = 1;
2143 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 2;
2144 /* int 3 may be generated by one-byte 0xcc */
2145 if (u8TrapNo == 3)
2146 {
2147 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xcc)
2148 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2149 }
2150 /* int 4 may be generated by one-byte 0xce */
2151 else if (u8TrapNo == 4)
2152 {
2153 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xce)
2154 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2155 }
2156 }
2157
2158 /* get error code and cr2 if needed. */
2159 switch (u8TrapNo)
2160 {
2161 case 0x0e:
2162 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVCpu);
2163 /* fallthru */
2164 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2165 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVCpu);
2166 break;
2167
2168 case 0x11: case 0x08:
2169 default:
2170 pVM->rem.s.Env.error_code = 0;
2171 break;
2172 }
2173
2174 /*
2175 * We can now reset the active trap since the recompiler is gonna have a go at it.
2176 */
2177 rc = TRPMResetTrap(pVCpu);
2178 AssertRC(rc);
2179 Log2(("REMR3State: trap=%02x errcd=%RGv cr2=%RGv nexteip=%RGv%s\n", pVM->rem.s.Env.exception_index, (RTGCPTR)pVM->rem.s.Env.error_code,
2180 (RTGCPTR)pVM->rem.s.Env.cr[2], (RTGCPTR)pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
2181 }
2182
2183 /*
2184 * Clear old interrupt request flags; Check for pending hardware interrupts.
2185 * (See @remark for why we don't check for other FFs.)
2186 */
2187 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2188 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2189 || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
2190 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2191
2192 /*
2193 * We're now in REM mode.
2194 */
2195 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_REM);
2196 pVM->rem.s.fInREM = true;
2197 pVM->rem.s.fInStateSync = false;
2198 pVM->rem.s.cCanExecuteRaw = 0;
2199 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2200 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2201 return VINF_SUCCESS;
2202}
2203
2204
2205/**
2206 * Syncs back changes in the REM state to the the VM state.
2207 *
2208 * This must be called after invoking REMR3Run().
2209 * Calling it several times in a row is not permitted.
2210 *
2211 * @returns VBox status code.
2212 *
2213 * @param pVM VM Handle.
2214 * @param pVCpu VMCPU Handle.
2215 */
2216REMR3DECL(int) REMR3StateBack(PVM pVM, PVMCPU pVCpu)
2217{
2218 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2219 Assert(pCtx);
2220 unsigned i;
2221
2222 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2223 Log2(("REMR3StateBack:\n"));
2224 Assert(pVM->rem.s.fInREM);
2225
2226 /*
2227 * Copy back the registers.
2228 * This is done in the order they are declared in the CPUMCTX structure.
2229 */
2230
2231 /** @todo FOP */
2232 /** @todo FPUIP */
2233 /** @todo CS */
2234 /** @todo FPUDP */
2235 /** @todo DS */
2236
2237 /** @todo check if FPU/XMM was actually used in the recompiler */
2238 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2239//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2240
2241#ifdef TARGET_X86_64
2242 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2243 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2244 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2245 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2246 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2247 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2248 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2249 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2250 pCtx->r8 = pVM->rem.s.Env.regs[8];
2251 pCtx->r9 = pVM->rem.s.Env.regs[9];
2252 pCtx->r10 = pVM->rem.s.Env.regs[10];
2253 pCtx->r11 = pVM->rem.s.Env.regs[11];
2254 pCtx->r12 = pVM->rem.s.Env.regs[12];
2255 pCtx->r13 = pVM->rem.s.Env.regs[13];
2256 pCtx->r14 = pVM->rem.s.Env.regs[14];
2257 pCtx->r15 = pVM->rem.s.Env.regs[15];
2258
2259 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2260
2261#else
2262 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2263 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2264 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2265 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2266 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2267 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2268 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2269
2270 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2271#endif
2272
2273 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2274
2275#ifdef VBOX_WITH_STATISTICS
2276 if (pVM->rem.s.Env.segs[R_SS].newselector)
2277 {
2278 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2279 }
2280 if (pVM->rem.s.Env.segs[R_GS].newselector)
2281 {
2282 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2283 }
2284 if (pVM->rem.s.Env.segs[R_FS].newselector)
2285 {
2286 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2287 }
2288 if (pVM->rem.s.Env.segs[R_ES].newselector)
2289 {
2290 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2291 }
2292 if (pVM->rem.s.Env.segs[R_DS].newselector)
2293 {
2294 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2295 }
2296 if (pVM->rem.s.Env.segs[R_CS].newselector)
2297 {
2298 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2299 }
2300#endif
2301 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2302 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2303 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2304 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2305 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2306
2307#ifdef TARGET_X86_64
2308 pCtx->rip = pVM->rem.s.Env.eip;
2309 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2310#else
2311 pCtx->eip = pVM->rem.s.Env.eip;
2312 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2313#endif
2314
2315 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2316 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2317 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2318 if ((pVM->rem.s.Env.cr[4] ^ pCtx->cr4) & X86_CR4_VME)
2319 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2320 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2321
2322 for (i = 0; i < 8; i++)
2323 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2324
2325 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2326 if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
2327 {
2328 pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
2329 STAM_COUNTER_INC(&gStatREMGDTChange);
2330 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
2331 }
2332
2333 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2334 if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
2335 {
2336 pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
2337 STAM_COUNTER_INC(&gStatREMIDTChange);
2338 VMCPU_FF_SET(pVCpu, VMCPU_FF_TRPM_SYNC_IDT);
2339 }
2340
2341 if ( pCtx->ldtr != pVM->rem.s.Env.ldt.selector
2342 || pCtx->ldtrHid.u64Base != pVM->rem.s.Env.ldt.base
2343 || pCtx->ldtrHid.u32Limit != pVM->rem.s.Env.ldt.limit
2344 || pCtx->ldtrHid.Attr.u != ((pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF))
2345 {
2346 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2347 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2348 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2349 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2350 STAM_COUNTER_INC(&gStatREMLDTRChange);
2351 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
2352 }
2353
2354 if ( pCtx->tr != pVM->rem.s.Env.tr.selector
2355 || pCtx->trHid.u64Base != pVM->rem.s.Env.tr.base
2356 || pCtx->trHid.u32Limit != pVM->rem.s.Env.tr.limit
2357 /* Qemu and AMD/Intel have different ideas about the busy flag ... */
2358 || pCtx->trHid.Attr.u != ( (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF
2359 ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8
2360 : 0) )
2361 {
2362 Log(("REM: TR changed! %#x{%#llx,%#x,%#x} -> %#x{%llx,%#x,%#x}\n",
2363 pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
2364 pVM->rem.s.Env.tr.selector, (uint64_t)pVM->rem.s.Env.tr.base, pVM->rem.s.Env.tr.limit,
2365 (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8 : 0));
2366 pCtx->tr = pVM->rem.s.Env.tr.selector;
2367 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2368 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2369 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2370 if (pCtx->trHid.Attr.u)
2371 pCtx->trHid.Attr.u |= DESC_TSS_BUSY_MASK >> 8;
2372 STAM_COUNTER_INC(&gStatREMTRChange);
2373 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2374 }
2375
2376 /** @todo These values could still be out of sync! */
2377 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2378 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2379 /* Note! QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2380 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2381
2382 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2383 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2384 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2385
2386 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2387 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2388 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2389
2390 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2391 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2392 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2393
2394 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2395 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2396 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2397
2398 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2399 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2400 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2401
2402 /* Sysenter MSR */
2403 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2404 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2405 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2406
2407 /* System MSRs. */
2408 pCtx->msrEFER = pVM->rem.s.Env.efer;
2409 pCtx->msrSTAR = pVM->rem.s.Env.star;
2410 pCtx->msrPAT = pVM->rem.s.Env.pat;
2411#ifdef TARGET_X86_64
2412 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2413 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2414 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2415 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2416#endif
2417
2418 remR3TrapClear(pVM);
2419
2420 /*
2421 * Check for traps.
2422 */
2423 if ( pVM->rem.s.Env.exception_index >= 0
2424 && pVM->rem.s.Env.exception_index < 256)
2425 {
2426 int rc;
2427
2428 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2429 rc = TRPMAssertTrap(pVCpu, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2430 AssertRC(rc);
2431 switch (pVM->rem.s.Env.exception_index)
2432 {
2433 case 0x0e:
2434 TRPMSetFaultAddress(pVCpu, pCtx->cr2);
2435 /* fallthru */
2436 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2437 case 0x11: case 0x08: /* 0 */
2438 TRPMSetErrorCode(pVCpu, pVM->rem.s.Env.error_code);
2439 break;
2440 }
2441
2442 }
2443
2444 /*
2445 * We're not longer in REM mode.
2446 */
2447 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_REM);
2448 pVM->rem.s.fInREM = false;
2449 pVM->rem.s.pCtx = NULL;
2450 pVM->rem.s.Env.pVCpu = NULL;
2451 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2452 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2453 return VINF_SUCCESS;
2454}
2455
2456
2457/**
2458 * This is called by the disassembler when it wants to update the cpu state
2459 * before for instance doing a register dump.
2460 */
2461static void remR3StateUpdate(PVM pVM, PVMCPU pVCpu)
2462{
2463 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2464 unsigned i;
2465
2466 Assert(pVM->rem.s.fInREM);
2467
2468 /*
2469 * Copy back the registers.
2470 * This is done in the order they are declared in the CPUMCTX structure.
2471 */
2472
2473 /** @todo FOP */
2474 /** @todo FPUIP */
2475 /** @todo CS */
2476 /** @todo FPUDP */
2477 /** @todo DS */
2478 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2479 pCtx->fpu.MXCSR = 0;
2480 pCtx->fpu.MXCSR_MASK = 0;
2481
2482 /** @todo check if FPU/XMM was actually used in the recompiler */
2483 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2484//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2485
2486#ifdef TARGET_X86_64
2487 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2488 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2489 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2490 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2491 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2492 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2493 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2494 pCtx->r8 = pVM->rem.s.Env.regs[8];
2495 pCtx->r9 = pVM->rem.s.Env.regs[9];
2496 pCtx->r10 = pVM->rem.s.Env.regs[10];
2497 pCtx->r11 = pVM->rem.s.Env.regs[11];
2498 pCtx->r12 = pVM->rem.s.Env.regs[12];
2499 pCtx->r13 = pVM->rem.s.Env.regs[13];
2500 pCtx->r14 = pVM->rem.s.Env.regs[14];
2501 pCtx->r15 = pVM->rem.s.Env.regs[15];
2502
2503 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2504#else
2505 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2506 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2507 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2508 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2509 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2510 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2511 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2512
2513 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2514#endif
2515
2516 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2517
2518 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2519 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2520 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2521 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2522 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2523
2524#ifdef TARGET_X86_64
2525 pCtx->rip = pVM->rem.s.Env.eip;
2526 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2527#else
2528 pCtx->eip = pVM->rem.s.Env.eip;
2529 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2530#endif
2531
2532 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2533 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2534 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2535 if ((pVM->rem.s.Env.cr[4] ^ pCtx->cr4) & X86_CR4_VME)
2536 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2537 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2538
2539 for (i = 0; i < 8; i++)
2540 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2541
2542 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2543 if (pCtx->gdtr.pGdt != (RTGCPTR)pVM->rem.s.Env.gdt.base)
2544 {
2545 pCtx->gdtr.pGdt = (RTGCPTR)pVM->rem.s.Env.gdt.base;
2546 STAM_COUNTER_INC(&gStatREMGDTChange);
2547 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
2548 }
2549
2550 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2551 if (pCtx->idtr.pIdt != (RTGCPTR)pVM->rem.s.Env.idt.base)
2552 {
2553 pCtx->idtr.pIdt = (RTGCPTR)pVM->rem.s.Env.idt.base;
2554 STAM_COUNTER_INC(&gStatREMIDTChange);
2555 VMCPU_FF_SET(pVCpu, VMCPU_FF_TRPM_SYNC_IDT);
2556 }
2557
2558 if ( pCtx->ldtr != pVM->rem.s.Env.ldt.selector
2559 || pCtx->ldtrHid.u64Base != pVM->rem.s.Env.ldt.base
2560 || pCtx->ldtrHid.u32Limit != pVM->rem.s.Env.ldt.limit
2561 || pCtx->ldtrHid.Attr.u != ((pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF))
2562 {
2563 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2564 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2565 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2566 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2567 STAM_COUNTER_INC(&gStatREMLDTRChange);
2568 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
2569 }
2570
2571 if ( pCtx->tr != pVM->rem.s.Env.tr.selector
2572 || pCtx->trHid.u64Base != pVM->rem.s.Env.tr.base
2573 || pCtx->trHid.u32Limit != pVM->rem.s.Env.tr.limit
2574 /* Qemu and AMD/Intel have different ideas about the busy flag ... */
2575 || pCtx->trHid.Attr.u != ( (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF
2576 ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8
2577 : 0) )
2578 {
2579 Log(("REM: TR changed! %#x{%#llx,%#x,%#x} -> %#x{%llx,%#x,%#x}\n",
2580 pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
2581 pVM->rem.s.Env.tr.selector, (uint64_t)pVM->rem.s.Env.tr.base, pVM->rem.s.Env.tr.limit,
2582 (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8 : 0));
2583 pCtx->tr = pVM->rem.s.Env.tr.selector;
2584 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2585 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2586 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2587 if (pCtx->trHid.Attr.u)
2588 pCtx->trHid.Attr.u |= DESC_TSS_BUSY_MASK >> 8;
2589 STAM_COUNTER_INC(&gStatREMTRChange);
2590 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2591 }
2592
2593 /** @todo These values could still be out of sync! */
2594 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2595 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2596 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2597 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2598
2599 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2600 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2601 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2602
2603 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2604 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2605 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2606
2607 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2608 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2609 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2610
2611 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2612 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2613 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2614
2615 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2616 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2617 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2618
2619 /* Sysenter MSR */
2620 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2621 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2622 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2623
2624 /* System MSRs. */
2625 pCtx->msrEFER = pVM->rem.s.Env.efer;
2626 pCtx->msrSTAR = pVM->rem.s.Env.star;
2627 pCtx->msrPAT = pVM->rem.s.Env.pat;
2628#ifdef TARGET_X86_64
2629 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2630 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2631 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2632 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2633#endif
2634
2635}
2636
2637
2638/**
2639 * Update the VMM state information if we're currently in REM.
2640 *
2641 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2642 * we're currently executing in REM and the VMM state is invalid. This method will of
2643 * course check that we're executing in REM before syncing any data over to the VMM.
2644 *
2645 * @param pVM The VM handle.
2646 * @param pVCpu The VMCPU handle.
2647 */
2648REMR3DECL(void) REMR3StateUpdate(PVM pVM, PVMCPU pVCpu)
2649{
2650 if (pVM->rem.s.fInREM)
2651 remR3StateUpdate(pVM, pVCpu);
2652}
2653
2654
2655#undef LOG_GROUP
2656#define LOG_GROUP LOG_GROUP_REM
2657
2658
2659/**
2660 * Notify the recompiler about Address Gate 20 state change.
2661 *
2662 * This notification is required since A20 gate changes are
2663 * initialized from a device driver and the VM might just as
2664 * well be in REM mode as in RAW mode.
2665 *
2666 * @param pVM VM handle.
2667 * @param pVCpu VMCPU handle.
2668 * @param fEnable True if the gate should be enabled.
2669 * False if the gate should be disabled.
2670 */
2671REMR3DECL(void) REMR3A20Set(PVM pVM, PVMCPU pVCpu, bool fEnable)
2672{
2673 bool fSaved;
2674
2675 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2676 VM_ASSERT_EMT(pVM);
2677
2678 fSaved = pVM->rem.s.fIgnoreAll; /* just in case. */
2679 pVM->rem.s.fIgnoreAll = fSaved || !pVM->rem.s.fInREM;
2680
2681 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2682
2683 pVM->rem.s.fIgnoreAll = fSaved;
2684}
2685
2686
2687/**
2688 * Replays the handler notification changes
2689 * Called in response to VM_FF_REM_HANDLER_NOTIFY from the RAW execution loop.
2690 *
2691 * @param pVM VM handle.
2692 */
2693REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2694{
2695 Assert(EMRemIsLockOwner(pVM));
2696
2697 /*
2698 * Replay the flushes.
2699 */
2700 LogFlow(("REMR3ReplayHandlerNotifications:\n"));
2701 VM_ASSERT_EMT(pVM);
2702
2703 if (VM_FF_TESTANDCLEAR(pVM, VM_FF_REM_HANDLER_NOTIFY_BIT))
2704 {
2705 RTUINT i;
2706 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2707
2708 pVM->rem.s.cHandlerNotifications = 0;
2709 for (i = 0; i < c; i++)
2710 {
2711 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2712 switch (pRec->enmKind)
2713 {
2714 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2715 REMR3NotifyHandlerPhysicalRegister(pVM,
2716 pRec->u.PhysicalRegister.enmType,
2717 pRec->u.PhysicalRegister.GCPhys,
2718 pRec->u.PhysicalRegister.cb,
2719 pRec->u.PhysicalRegister.fHasHCHandler);
2720 break;
2721
2722 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2723 REMR3NotifyHandlerPhysicalDeregister(pVM,
2724 pRec->u.PhysicalDeregister.enmType,
2725 pRec->u.PhysicalDeregister.GCPhys,
2726 pRec->u.PhysicalDeregister.cb,
2727 pRec->u.PhysicalDeregister.fHasHCHandler,
2728 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2729 break;
2730
2731 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2732 REMR3NotifyHandlerPhysicalModify(pVM,
2733 pRec->u.PhysicalModify.enmType,
2734 pRec->u.PhysicalModify.GCPhysOld,
2735 pRec->u.PhysicalModify.GCPhysNew,
2736 pRec->u.PhysicalModify.cb,
2737 pRec->u.PhysicalModify.fHasHCHandler,
2738 pRec->u.PhysicalModify.fRestoreAsRAM);
2739 break;
2740
2741 default:
2742 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2743 break;
2744 }
2745 }
2746 }
2747}
2748
2749
2750/**
2751 * Notify REM about changed code page.
2752 *
2753 * @returns VBox status code.
2754 * @param pVM VM handle.
2755 * @param pVCpu VMCPU handle.
2756 * @param pvCodePage Code page address
2757 */
2758REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, PVMCPU pVCpu, RTGCPTR pvCodePage)
2759{
2760#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
2761 int rc;
2762 RTGCPHYS PhysGC;
2763 uint64_t flags;
2764
2765 VM_ASSERT_EMT(pVM);
2766
2767 /*
2768 * Get the physical page address.
2769 */
2770 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2771 if (rc == VINF_SUCCESS)
2772 {
2773 /*
2774 * Sync the required registers and flush the whole page.
2775 * (Easier to do the whole page than notifying it about each physical
2776 * byte that was changed.
2777 */
2778 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2779 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2780 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2781 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2782
2783 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2784 }
2785#endif
2786 return VINF_SUCCESS;
2787}
2788
2789
2790/**
2791 * Notification about a successful MMR3PhysRegister() call.
2792 *
2793 * @param pVM VM handle.
2794 * @param GCPhys The physical address the RAM.
2795 * @param cb Size of the memory.
2796 * @param fFlags Flags of the REM_NOTIFY_PHYS_RAM_FLAGS_* defines.
2797 */
2798REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, unsigned fFlags)
2799{
2800 Log(("REMR3NotifyPhysRamRegister: GCPhys=%RGp cb=%RGp fFlags=%#x\n", GCPhys, cb, fFlags));
2801 VM_ASSERT_EMT(pVM);
2802
2803 /*
2804 * Validate input - we trust the caller.
2805 */
2806 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2807 Assert(cb);
2808 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2809 AssertMsg(fFlags == REM_NOTIFY_PHYS_RAM_FLAGS_RAM || fFlags == REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2, ("#x\n", fFlags));
2810#ifdef VBOX_WITH_REM_LOCKING
2811 Assert(!PGMIsLockOwner(pVM));
2812 EMRemLock(pVM);
2813#endif
2814 /*
2815 * Base ram? Update GCPhysLastRam.
2816 */
2817 if (fFlags & REM_NOTIFY_PHYS_RAM_FLAGS_RAM)
2818 {
2819 if (GCPhys + (cb - 1) > pVM->rem.s.GCPhysLastRam)
2820 {
2821 AssertReleaseMsg(!pVM->rem.s.fGCPhysLastRamFixed, ("GCPhys=%RGp cb=%RGp\n", GCPhys, cb));
2822 pVM->rem.s.GCPhysLastRam = GCPhys + (cb - 1);
2823 }
2824 }
2825
2826 /*
2827 * Register the ram.
2828 */
2829 Assert(!pVM->rem.s.fIgnoreAll);
2830 pVM->rem.s.fIgnoreAll = true;
2831
2832 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2833 Assert(pVM->rem.s.fIgnoreAll);
2834 pVM->rem.s.fIgnoreAll = false;
2835#ifdef VBOX_WITH_REM_LOCKING
2836 EMRemUnlock(pVM);
2837#endif
2838}
2839
2840
2841/**
2842 * Notification about a successful MMR3PhysRomRegister() call.
2843 *
2844 * @param pVM VM handle.
2845 * @param GCPhys The physical address of the ROM.
2846 * @param cb The size of the ROM.
2847 * @param pvCopy Pointer to the ROM copy.
2848 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2849 * This function will be called when ever the protection of the
2850 * shadow ROM changes (at reset and end of POST).
2851 */
2852REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2853{
2854 Log(("REMR3NotifyPhysRomRegister: GCPhys=%RGp cb=%d fShadow=%RTbool\n", GCPhys, cb, fShadow));
2855 VM_ASSERT_EMT(pVM);
2856
2857 /*
2858 * Validate input - we trust the caller.
2859 */
2860 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2861 Assert(cb);
2862 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2863
2864#ifdef VBOX_WITH_REM_LOCKING
2865 EMRemLock(pVM);
2866#endif
2867 /*
2868 * Register the rom.
2869 */
2870 Assert(!pVM->rem.s.fIgnoreAll);
2871 pVM->rem.s.fIgnoreAll = true;
2872
2873 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2874
2875 Assert(pVM->rem.s.fIgnoreAll);
2876 pVM->rem.s.fIgnoreAll = false;
2877#ifdef VBOX_WITH_REM_LOCKING
2878 EMRemUnlock(pVM);
2879#endif
2880}
2881
2882
2883/**
2884 * Notification about a successful memory deregistration or reservation.
2885 *
2886 * @param pVM VM Handle.
2887 * @param GCPhys Start physical address.
2888 * @param cb The size of the range.
2889 */
2890REMR3DECL(void) REMR3NotifyPhysRamDeregister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2891{
2892 Log(("REMR3NotifyPhysRamDeregister: GCPhys=%RGp cb=%d\n", GCPhys, cb));
2893 VM_ASSERT_EMT(pVM);
2894
2895 /*
2896 * Validate input - we trust the caller.
2897 */
2898 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2899 Assert(cb);
2900 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2901
2902#ifdef VBOX_WITH_REM_LOCKING
2903 EMRemLock(pVM);
2904#endif
2905 /*
2906 * Unassigning the memory.
2907 */
2908 Assert(!pVM->rem.s.fIgnoreAll);
2909 pVM->rem.s.fIgnoreAll = true;
2910
2911 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2912
2913 Assert(pVM->rem.s.fIgnoreAll);
2914 pVM->rem.s.fIgnoreAll = false;
2915#ifdef VBOX_WITH_REM_LOCKING
2916 EMRemUnlock(pVM);
2917#endif
2918}
2919
2920
2921/**
2922 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2923 *
2924 * @param pVM VM Handle.
2925 * @param enmType Handler type.
2926 * @param GCPhys Handler range address.
2927 * @param cb Size of the handler range.
2928 * @param fHasHCHandler Set if the handler has a HC callback function.
2929 *
2930 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2931 * Handler memory type to memory which has no HC handler.
2932 */
2933REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2934{
2935 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%d\n",
2936 enmType, GCPhys, cb, fHasHCHandler));
2937 VM_ASSERT_EMT(pVM);
2938 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2939 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2940
2941#ifdef VBOX_WITH_REM_LOCKING
2942 EMRemLock(pVM);
2943#endif
2944 if (pVM->rem.s.cHandlerNotifications)
2945 REMR3ReplayHandlerNotifications(pVM);
2946
2947 Assert(!pVM->rem.s.fIgnoreAll);
2948 pVM->rem.s.fIgnoreAll = true;
2949
2950 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2951 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2952 else if (fHasHCHandler)
2953 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2954
2955 Assert(pVM->rem.s.fIgnoreAll);
2956 pVM->rem.s.fIgnoreAll = false;
2957#ifdef VBOX_WITH_REM_LOCKING
2958 EMRemUnlock(pVM);
2959#endif
2960}
2961
2962
2963/**
2964 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2965 *
2966 * @param pVM VM Handle.
2967 * @param enmType Handler type.
2968 * @param GCPhys Handler range address.
2969 * @param cb Size of the handler range.
2970 * @param fHasHCHandler Set if the handler has a HC callback function.
2971 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2972 */
2973REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2974{
2975 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2976 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2977 VM_ASSERT_EMT(pVM);
2978
2979#ifdef VBOX_WITH_REM_LOCKING
2980 EMRemLock(pVM);
2981#endif
2982 if (pVM->rem.s.cHandlerNotifications)
2983 REMR3ReplayHandlerNotifications(pVM);
2984
2985 Assert(!pVM->rem.s.fIgnoreAll);
2986 pVM->rem.s.fIgnoreAll = true;
2987
2988/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
2989 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2990 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2991 else if (fHasHCHandler)
2992 {
2993 if (!fRestoreAsRAM)
2994 {
2995 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2996 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2997 }
2998 else
2999 {
3000 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
3001 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
3002 cpu_register_physical_memory(GCPhys, cb, GCPhys);
3003 }
3004 }
3005
3006 Assert(pVM->rem.s.fIgnoreAll);
3007 pVM->rem.s.fIgnoreAll = false;
3008#ifdef VBOX_WITH_REM_LOCKING
3009 EMRemUnlock(pVM);
3010#endif
3011}
3012
3013
3014/**
3015 * Notification about a successful PGMR3HandlerPhysicalModify() call.
3016 *
3017 * @param pVM VM Handle.
3018 * @param enmType Handler type.
3019 * @param GCPhysOld Old handler range address.
3020 * @param GCPhysNew New handler range address.
3021 * @param cb Size of the handler range.
3022 * @param fHasHCHandler Set if the handler has a HC callback function.
3023 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
3024 */
3025REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
3026{
3027 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%RGp GCPhysNew=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
3028 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
3029 VM_ASSERT_EMT(pVM);
3030 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
3031
3032#ifdef VBOX_WITH_REM_LOCKING
3033 EMRemLock(pVM);
3034#endif
3035 if (pVM->rem.s.cHandlerNotifications)
3036 REMR3ReplayHandlerNotifications(pVM);
3037
3038 if (fHasHCHandler)
3039 {
3040 Assert(!pVM->rem.s.fIgnoreAll);
3041 pVM->rem.s.fIgnoreAll = true;
3042
3043 /*
3044 * Reset the old page.
3045 */
3046 if (!fRestoreAsRAM)
3047 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
3048 else
3049 {
3050 /* This is not perfect, but it'll do for PD monitoring... */
3051 Assert(cb == PAGE_SIZE);
3052 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
3053 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
3054 }
3055
3056 /*
3057 * Update the new page.
3058 */
3059 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
3060 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
3061 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
3062
3063 Assert(pVM->rem.s.fIgnoreAll);
3064 pVM->rem.s.fIgnoreAll = false;
3065 }
3066#ifdef VBOX_WITH_REM_LOCKING
3067 EMRemUnlock(pVM);
3068#endif
3069}
3070
3071
3072/**
3073 * Checks if we're handling access to this page or not.
3074 *
3075 * @returns true if we're trapping access.
3076 * @returns false if we aren't.
3077 * @param pVM The VM handle.
3078 * @param GCPhys The physical address.
3079 *
3080 * @remark This function will only work correctly in VBOX_STRICT builds!
3081 */
3082REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
3083{
3084#ifdef VBOX_STRICT
3085 unsigned long off;
3086 if (pVM->rem.s.cHandlerNotifications)
3087 REMR3ReplayHandlerNotifications(pVM);
3088
3089 off = get_phys_page_offset(GCPhys);
3090 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
3091 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
3092 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
3093#else
3094 return false;
3095#endif
3096}
3097
3098
3099/**
3100 * Deals with a rare case in get_phys_addr_code where the code
3101 * is being monitored.
3102 *
3103 * It could also be an MMIO page, in which case we will raise a fatal error.
3104 *
3105 * @returns The physical address corresponding to addr.
3106 * @param env The cpu environment.
3107 * @param addr The virtual address.
3108 * @param pTLBEntry The TLB entry.
3109 */
3110target_ulong remR3PhysGetPhysicalAddressCode(CPUState* env,
3111 target_ulong addr,
3112 CPUTLBEntry* pTLBEntry,
3113 target_phys_addr_t ioTLBEntry)
3114{
3115 PVM pVM = env->pVM;
3116
3117 if ((ioTLBEntry & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
3118 {
3119 /* If code memory is being monitored, appropriate IOTLB entry will have
3120 handler IO type, and addend will provide real physical address, no
3121 matter if we store VA in TLB or not, as handlers are always passed PA */
3122 target_ulong ret = (ioTLBEntry & TARGET_PAGE_MASK) + addr;
3123 return ret;
3124 }
3125 LogRel(("\nTrying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv! (iHandlerMemType=%#x iMMIOMemType=%#x IOTLB=%RGp)\n"
3126 "*** handlers\n",
3127 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType, (RTGCPHYS)ioTLBEntry));
3128 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
3129 LogRel(("*** mmio\n"));
3130 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
3131 LogRel(("*** phys\n"));
3132 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
3133 cpu_abort(env, "Trying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
3134 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
3135 AssertFatalFailed();
3136}
3137
3138/**
3139 * Read guest RAM and ROM.
3140 *
3141 * @param SrcGCPhys The source address (guest physical).
3142 * @param pvDst The destination address.
3143 * @param cb Number of bytes
3144 */
3145void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3146{
3147 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3148 VBOX_CHECK_ADDR(SrcGCPhys);
3149 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3150#ifdef VBOX_DEBUG_PHYS
3151 LogRel(("read(%d): %08x\n", cb, (uint32_t)SrcGCPhys));
3152#endif
3153 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3154}
3155
3156
3157/**
3158 * Read guest RAM and ROM, unsigned 8-bit.
3159 *
3160 * @param SrcGCPhys The source address (guest physical).
3161 */
3162RTCCUINTREG remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3163{
3164 uint8_t val;
3165 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3166 VBOX_CHECK_ADDR(SrcGCPhys);
3167 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3168 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3169#ifdef VBOX_DEBUG_PHYS
3170 LogRel(("readu8: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3171#endif
3172 return val;
3173}
3174
3175
3176/**
3177 * Read guest RAM and ROM, signed 8-bit.
3178 *
3179 * @param SrcGCPhys The source address (guest physical).
3180 */
3181RTCCINTREG remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3182{
3183 int8_t val;
3184 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3185 VBOX_CHECK_ADDR(SrcGCPhys);
3186 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3187 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3188#ifdef VBOX_DEBUG_PHYS
3189 LogRel(("reads8: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3190#endif
3191 return val;
3192}
3193
3194
3195/**
3196 * Read guest RAM and ROM, unsigned 16-bit.
3197 *
3198 * @param SrcGCPhys The source address (guest physical).
3199 */
3200RTCCUINTREG remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3201{
3202 uint16_t val;
3203 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3204 VBOX_CHECK_ADDR(SrcGCPhys);
3205 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3206 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3207#ifdef VBOX_DEBUG_PHYS
3208 LogRel(("readu16: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3209#endif
3210 return val;
3211}
3212
3213
3214/**
3215 * Read guest RAM and ROM, signed 16-bit.
3216 *
3217 * @param SrcGCPhys The source address (guest physical).
3218 */
3219RTCCINTREG remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3220{
3221 int16_t val;
3222 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3223 VBOX_CHECK_ADDR(SrcGCPhys);
3224 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3225 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3226#ifdef VBOX_DEBUG_PHYS
3227 LogRel(("reads16: %x <- %08x\n", (uint16_t)val, (uint32_t)SrcGCPhys));
3228#endif
3229 return val;
3230}
3231
3232
3233/**
3234 * Read guest RAM and ROM, unsigned 32-bit.
3235 *
3236 * @param SrcGCPhys The source address (guest physical).
3237 */
3238RTCCUINTREG remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3239{
3240 uint32_t val;
3241 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3242 VBOX_CHECK_ADDR(SrcGCPhys);
3243 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3244 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3245#ifdef VBOX_DEBUG_PHYS
3246 LogRel(("readu32: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3247#endif
3248 return val;
3249}
3250
3251
3252/**
3253 * Read guest RAM and ROM, signed 32-bit.
3254 *
3255 * @param SrcGCPhys The source address (guest physical).
3256 */
3257RTCCINTREG remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3258{
3259 int32_t val;
3260 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3261 VBOX_CHECK_ADDR(SrcGCPhys);
3262 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3263 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3264#ifdef VBOX_DEBUG_PHYS
3265 LogRel(("reads32: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3266#endif
3267 return val;
3268}
3269
3270
3271/**
3272 * Read guest RAM and ROM, unsigned 64-bit.
3273 *
3274 * @param SrcGCPhys The source address (guest physical).
3275 */
3276uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3277{
3278 uint64_t val;
3279 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3280 VBOX_CHECK_ADDR(SrcGCPhys);
3281 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3282 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3283#ifdef VBOX_DEBUG_PHYS
3284 LogRel(("readu64: %llx <- %08x\n", val, (uint32_t)SrcGCPhys));
3285#endif
3286 return val;
3287}
3288
3289
3290/**
3291 * Read guest RAM and ROM, signed 64-bit.
3292 *
3293 * @param SrcGCPhys The source address (guest physical).
3294 */
3295int64_t remR3PhysReadS64(RTGCPHYS SrcGCPhys)
3296{
3297 int64_t val;
3298 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3299 VBOX_CHECK_ADDR(SrcGCPhys);
3300 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3301 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3302#ifdef VBOX_DEBUG_PHYS
3303 LogRel(("reads64: %llx <- %08x\n", val, (uint32_t)SrcGCPhys));
3304#endif
3305 return val;
3306}
3307
3308
3309/**
3310 * Write guest RAM.
3311 *
3312 * @param DstGCPhys The destination address (guest physical).
3313 * @param pvSrc The source address.
3314 * @param cb Number of bytes to write
3315 */
3316void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3317{
3318 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3319 VBOX_CHECK_ADDR(DstGCPhys);
3320 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3321 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3322#ifdef VBOX_DEBUG_PHYS
3323 LogRel(("write(%d): %08x\n", cb, (uint32_t)DstGCPhys));
3324#endif
3325}
3326
3327
3328/**
3329 * Write guest RAM, unsigned 8-bit.
3330 *
3331 * @param DstGCPhys The destination address (guest physical).
3332 * @param val Value
3333 */
3334void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3335{
3336 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3337 VBOX_CHECK_ADDR(DstGCPhys);
3338 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3339 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3340#ifdef VBOX_DEBUG_PHYS
3341 LogRel(("writeu8: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3342#endif
3343}
3344
3345
3346/**
3347 * Write guest RAM, unsigned 8-bit.
3348 *
3349 * @param DstGCPhys The destination address (guest physical).
3350 * @param val Value
3351 */
3352void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3353{
3354 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3355 VBOX_CHECK_ADDR(DstGCPhys);
3356 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3357 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3358#ifdef VBOX_DEBUG_PHYS
3359 LogRel(("writeu16: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3360#endif
3361}
3362
3363
3364/**
3365 * Write guest RAM, unsigned 32-bit.
3366 *
3367 * @param DstGCPhys The destination address (guest physical).
3368 * @param val Value
3369 */
3370void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3371{
3372 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3373 VBOX_CHECK_ADDR(DstGCPhys);
3374 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3375 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3376#ifdef VBOX_DEBUG_PHYS
3377 LogRel(("writeu32: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3378#endif
3379}
3380
3381
3382/**
3383 * Write guest RAM, unsigned 64-bit.
3384 *
3385 * @param DstGCPhys The destination address (guest physical).
3386 * @param val Value
3387 */
3388void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3389{
3390 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3391 VBOX_CHECK_ADDR(DstGCPhys);
3392 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3393 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3394#ifdef VBOX_DEBUG_PHYS
3395 LogRel(("writeu64: %llx -> %08x\n", val, (uint32_t)SrcGCPhys));
3396#endif
3397}
3398
3399#undef LOG_GROUP
3400#define LOG_GROUP LOG_GROUP_REM_MMIO
3401
3402/** Read MMIO memory. */
3403static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3404{
3405 uint32_t u32 = 0;
3406 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3407 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3408 Log2(("remR3MMIOReadU8: GCPhys=%RGp -> %02x\n", GCPhys, u32));
3409 return u32;
3410}
3411
3412/** Read MMIO memory. */
3413static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3414{
3415 uint32_t u32 = 0;
3416 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3417 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3418 Log2(("remR3MMIOReadU16: GCPhys=%RGp -> %04x\n", GCPhys, u32));
3419 return u32;
3420}
3421
3422/** Read MMIO memory. */
3423static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3424{
3425 uint32_t u32 = 0;
3426 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3427 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3428 Log2(("remR3MMIOReadU32: GCPhys=%RGp -> %08x\n", GCPhys, u32));
3429 return u32;
3430}
3431
3432/** Write to MMIO memory. */
3433static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3434{
3435 int rc;
3436 Log2(("remR3MMIOWriteU8: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3437 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3438 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3439}
3440
3441/** Write to MMIO memory. */
3442static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3443{
3444 int rc;
3445 Log2(("remR3MMIOWriteU16: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3446 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3447 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3448}
3449
3450/** Write to MMIO memory. */
3451static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3452{
3453 int rc;
3454 Log2(("remR3MMIOWriteU32: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3455 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3456 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3457}
3458
3459
3460#undef LOG_GROUP
3461#define LOG_GROUP LOG_GROUP_REM_HANDLER
3462
3463/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3464
3465static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3466{
3467 uint8_t u8;
3468 Log2(("remR3HandlerReadU8: GCPhys=%RGp\n", GCPhys));
3469 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3470 return u8;
3471}
3472
3473static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3474{
3475 uint16_t u16;
3476 Log2(("remR3HandlerReadU16: GCPhys=%RGp\n", GCPhys));
3477 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3478 return u16;
3479}
3480
3481static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3482{
3483 uint32_t u32;
3484 Log2(("remR3HandlerReadU32: GCPhys=%RGp\n", GCPhys));
3485 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3486 return u32;
3487}
3488
3489static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3490{
3491 Log2(("remR3HandlerWriteU8: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3492 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3493}
3494
3495static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3496{
3497 Log2(("remR3HandlerWriteU16: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3498 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3499}
3500
3501static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3502{
3503 Log2(("remR3HandlerWriteU32: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3504 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3505}
3506
3507/* -+- disassembly -+- */
3508
3509#undef LOG_GROUP
3510#define LOG_GROUP LOG_GROUP_REM_DISAS
3511
3512
3513/**
3514 * Enables or disables singled stepped disassembly.
3515 *
3516 * @returns VBox status code.
3517 * @param pVM VM handle.
3518 * @param fEnable To enable set this flag, to disable clear it.
3519 */
3520static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3521{
3522 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3523 VM_ASSERT_EMT(pVM);
3524
3525 if (fEnable)
3526 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3527 else
3528 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3529 return VINF_SUCCESS;
3530}
3531
3532
3533/**
3534 * Enables or disables singled stepped disassembly.
3535 *
3536 * @returns VBox status code.
3537 * @param pVM VM handle.
3538 * @param fEnable To enable set this flag, to disable clear it.
3539 */
3540REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3541{
3542 PVMREQ pReq;
3543 int rc;
3544
3545 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3546 if (VM_IS_EMT(pVM))
3547 return remR3DisasEnableStepping(pVM, fEnable);
3548
3549 rc = VMR3ReqCall(pVM, VMCPUID_ANY, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3550 AssertRC(rc);
3551 if (RT_SUCCESS(rc))
3552 rc = pReq->iStatus;
3553 VMR3ReqFree(pReq);
3554 return rc;
3555}
3556
3557
3558#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3559/**
3560 * External Debugger Command: .remstep [on|off|1|0]
3561 */
3562static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3563{
3564 bool fEnable;
3565 int rc;
3566
3567 /* print status */
3568 if (cArgs == 0)
3569 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3570 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3571
3572 /* convert the argument and change the mode. */
3573 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3574 if (RT_FAILURE(rc))
3575 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3576 rc = REMR3DisasEnableStepping(pVM, fEnable);
3577 if (RT_FAILURE(rc))
3578 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3579 return rc;
3580}
3581#endif
3582
3583
3584/**
3585 * Disassembles one instruction and prints it to the log.
3586 *
3587 * @returns Success indicator.
3588 * @param env Pointer to the recompiler CPU structure.
3589 * @param f32BitCode Indicates that whether or not the code should
3590 * be disassembled as 16 or 32 bit. If -1 the CS
3591 * selector will be inspected.
3592 * @param pszPrefix
3593 */
3594bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3595{
3596 PVM pVM = env->pVM;
3597 const bool fLog = LogIsEnabled();
3598 const bool fLog2 = LogIs2Enabled();
3599 int rc = VINF_SUCCESS;
3600
3601 /*
3602 * Don't bother if there ain't any log output to do.
3603 */
3604 if (!fLog && !fLog2)
3605 return true;
3606
3607 /*
3608 * Update the state so DBGF reads the correct register values.
3609 */
3610 remR3StateUpdate(pVM, env->pVCpu);
3611
3612 /*
3613 * Log registers if requested.
3614 */
3615 if (!fLog2)
3616 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3617
3618 /*
3619 * Disassemble to log.
3620 */
3621 if (fLog)
3622 rc = DBGFR3DisasInstrCurrentLogInternal(env->pVCpu, pszPrefix);
3623
3624 return RT_SUCCESS(rc);
3625}
3626
3627
3628/**
3629 * Disassemble recompiled code.
3630 *
3631 * @param phFileIgnored Ignored, logfile usually.
3632 * @param pvCode Pointer to the code block.
3633 * @param cb Size of the code block.
3634 */
3635void disas(FILE *phFile, void *pvCode, unsigned long cb)
3636{
3637#ifdef DEBUG_TMP_LOGGING
3638# define DISAS_PRINTF(x...) fprintf(phFile, x)
3639#else
3640# define DISAS_PRINTF(x...) RTLogPrintf(x)
3641 if (LogIs2Enabled())
3642#endif
3643 {
3644 unsigned off = 0;
3645 char szOutput[256];
3646 DISCPUSTATE Cpu;
3647
3648 memset(&Cpu, 0, sizeof(Cpu));
3649#ifdef RT_ARCH_X86
3650 Cpu.mode = CPUMODE_32BIT;
3651#else
3652 Cpu.mode = CPUMODE_64BIT;
3653#endif
3654
3655 DISAS_PRINTF("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3656 while (off < cb)
3657 {
3658 uint32_t cbInstr;
3659 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3660 DISAS_PRINTF("%s", szOutput);
3661 else
3662 {
3663 DISAS_PRINTF("disas error\n");
3664 cbInstr = 1;
3665#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3666 break;
3667#endif
3668 }
3669 off += cbInstr;
3670 }
3671 }
3672
3673#undef DISAS_PRINTF
3674}
3675
3676
3677/**
3678 * Disassemble guest code.
3679 *
3680 * @param phFileIgnored Ignored, logfile usually.
3681 * @param uCode The guest address of the code to disassemble. (flat?)
3682 * @param cb Number of bytes to disassemble.
3683 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3684 */
3685void target_disas(FILE *phFile, target_ulong uCode, target_ulong cb, int fFlags)
3686{
3687#ifdef DEBUG_TMP_LOGGING
3688# define DISAS_PRINTF(x...) fprintf(phFile, x)
3689#else
3690# define DISAS_PRINTF(x...) RTLogPrintf(x)
3691 if (LogIs2Enabled())
3692#endif
3693 {
3694 PVM pVM = cpu_single_env->pVM;
3695 PVMCPU pVCpu = cpu_single_env->pVCpu;
3696 RTSEL cs;
3697 RTGCUINTPTR eip;
3698
3699 Assert(pVCpu);
3700
3701 /*
3702 * Update the state so DBGF reads the correct register values (flags).
3703 */
3704 remR3StateUpdate(pVM, pVCpu);
3705
3706 /*
3707 * Do the disassembling.
3708 */
3709 DISAS_PRINTF("Guest Code: PC=%llx %llx bytes fFlags=%d\n", (uint64_t)uCode, (uint64_t)cb, fFlags);
3710 cs = cpu_single_env->segs[R_CS].selector;
3711 eip = uCode - cpu_single_env->segs[R_CS].base;
3712 for (;;)
3713 {
3714 char szBuf[256];
3715 uint32_t cbInstr;
3716 int rc = DBGFR3DisasInstrEx(pVM,
3717 pVCpu->idCpu,
3718 cs,
3719 eip,
3720 0,
3721 szBuf, sizeof(szBuf),
3722 &cbInstr);
3723 if (RT_SUCCESS(rc))
3724 DISAS_PRINTF("%llx %s\n", (uint64_t)uCode, szBuf);
3725 else
3726 {
3727 DISAS_PRINTF("%llx %04x:%llx: %s\n", (uint64_t)uCode, cs, (uint64_t)eip, szBuf);
3728 cbInstr = 1;
3729 }
3730
3731 /* next */
3732 if (cb <= cbInstr)
3733 break;
3734 cb -= cbInstr;
3735 uCode += cbInstr;
3736 eip += cbInstr;
3737 }
3738 }
3739#undef DISAS_PRINTF
3740}
3741
3742
3743/**
3744 * Looks up a guest symbol.
3745 *
3746 * @returns Pointer to symbol name. This is a static buffer.
3747 * @param orig_addr The address in question.
3748 */
3749const char *lookup_symbol(target_ulong orig_addr)
3750{
3751 RTGCINTPTR off = 0;
3752 DBGFSYMBOL Sym;
3753 PVM pVM = cpu_single_env->pVM;
3754 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3755 if (RT_SUCCESS(rc))
3756 {
3757 static char szSym[sizeof(Sym.szName) + 48];
3758 if (!off)
3759 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3760 else if (off > 0)
3761 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3762 else
3763 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3764 return szSym;
3765 }
3766 return "<N/A>";
3767}
3768
3769
3770#undef LOG_GROUP
3771#define LOG_GROUP LOG_GROUP_REM
3772
3773
3774/* -+- FF notifications -+- */
3775
3776
3777/**
3778 * Notification about a pending interrupt.
3779 *
3780 * @param pVM VM Handle.
3781 * @param pVCpu VMCPU Handle.
3782 * @param u8Interrupt Interrupt
3783 * @thread The emulation thread.
3784 */
3785REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, PVMCPU pVCpu, uint8_t u8Interrupt)
3786{
3787 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3788 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3789}
3790
3791/**
3792 * Notification about a pending interrupt.
3793 *
3794 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3795 * @param pVM VM Handle.
3796 * @param pVCpu VMCPU Handle.
3797 * @thread The emulation thread.
3798 */
3799REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM, PVMCPU pVCpu)
3800{
3801 return pVM->rem.s.u32PendingInterrupt;
3802}
3803
3804/**
3805 * Notification about the interrupt FF being set.
3806 *
3807 * @param pVM VM Handle.
3808 * @param pVCpu VMCPU Handle.
3809 * @thread The emulation thread.
3810 */
3811REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM, PVMCPU pVCpu)
3812{
3813 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3814 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3815 if (pVM->rem.s.fInREM)
3816 {
3817 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3818 CPU_INTERRUPT_EXTERNAL_HARD);
3819 }
3820}
3821
3822
3823/**
3824 * Notification about the interrupt FF being set.
3825 *
3826 * @param pVM VM Handle.
3827 * @param pVCpu VMCPU Handle.
3828 * @thread Any.
3829 */
3830REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM, PVMCPU pVCpu)
3831{
3832 LogFlow(("REMR3NotifyInterruptClear:\n"));
3833 if (pVM->rem.s.fInREM)
3834 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3835}
3836
3837
3838/**
3839 * Notification about pending timer(s).
3840 *
3841 * @param pVM VM Handle.
3842 * @param pVCpuDst The target cpu for this notification.
3843 * TM will not broadcast pending timer events, but use
3844 * a decidated EMT for them. So, only interrupt REM
3845 * execution if the given CPU is executing in REM.
3846 * @thread Any.
3847 */
3848REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM, PVMCPU pVCpuDst)
3849{
3850#ifndef DEBUG_bird
3851 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3852#endif
3853 if (pVM->rem.s.fInREM)
3854 {
3855 if (pVM->rem.s.Env.pVCpu == pVCpuDst)
3856 {
3857 LogIt(LOG_INSTANCE, RTLOGGRPFLAGS_LEVEL_5, LOG_GROUP_TM, ("REMR3NotifyTimerPending: setting\n"));
3858 ASMAtomicOrS32((int32_t volatile *)&pVM->rem.s.Env.interrupt_request,
3859 CPU_INTERRUPT_EXTERNAL_TIMER);
3860 }
3861 else
3862 LogIt(LOG_INSTANCE, RTLOGGRPFLAGS_LEVEL_5, LOG_GROUP_TM, ("REMR3NotifyTimerPending: pVCpu:%p != pVCpuDst:%p\n", pVM->rem.s.Env.pVCpu, pVCpuDst));
3863 }
3864 else
3865 LogIt(LOG_INSTANCE, RTLOGGRPFLAGS_LEVEL_5, LOG_GROUP_TM, ("REMR3NotifyTimerPending: !fInREM; cpu state=%d\n", VMCPU_GET_STATE(pVCpuDst)));
3866}
3867
3868
3869/**
3870 * Notification about pending DMA transfers.
3871 *
3872 * @param pVM VM Handle.
3873 * @thread Any.
3874 */
3875REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3876{
3877 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3878 if (pVM->rem.s.fInREM)
3879 {
3880 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3881 CPU_INTERRUPT_EXTERNAL_DMA);
3882 }
3883}
3884
3885
3886/**
3887 * Notification about pending timer(s).
3888 *
3889 * @param pVM VM Handle.
3890 * @thread Any.
3891 */
3892REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3893{
3894 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3895 if (pVM->rem.s.fInREM)
3896 {
3897 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3898 CPU_INTERRUPT_EXTERNAL_EXIT);
3899 }
3900}
3901
3902
3903/**
3904 * Notification about pending FF set by an external thread.
3905 *
3906 * @param pVM VM handle.
3907 * @thread Any.
3908 */
3909REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3910{
3911 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3912 if (pVM->rem.s.fInREM)
3913 {
3914 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3915 CPU_INTERRUPT_EXTERNAL_EXIT);
3916 }
3917}
3918
3919
3920#ifdef VBOX_WITH_STATISTICS
3921void remR3ProfileStart(int statcode)
3922{
3923 STAMPROFILEADV *pStat;
3924 switch(statcode)
3925 {
3926 case STATS_EMULATE_SINGLE_INSTR:
3927 pStat = &gStatExecuteSingleInstr;
3928 break;
3929 case STATS_QEMU_COMPILATION:
3930 pStat = &gStatCompilationQEmu;
3931 break;
3932 case STATS_QEMU_RUN_EMULATED_CODE:
3933 pStat = &gStatRunCodeQEmu;
3934 break;
3935 case STATS_QEMU_TOTAL:
3936 pStat = &gStatTotalTimeQEmu;
3937 break;
3938 case STATS_QEMU_RUN_TIMERS:
3939 pStat = &gStatTimers;
3940 break;
3941 case STATS_TLB_LOOKUP:
3942 pStat= &gStatTBLookup;
3943 break;
3944 case STATS_IRQ_HANDLING:
3945 pStat= &gStatIRQ;
3946 break;
3947 case STATS_RAW_CHECK:
3948 pStat = &gStatRawCheck;
3949 break;
3950
3951 default:
3952 AssertMsgFailed(("unknown stat %d\n", statcode));
3953 return;
3954 }
3955 STAM_PROFILE_ADV_START(pStat, a);
3956}
3957
3958
3959void remR3ProfileStop(int statcode)
3960{
3961 STAMPROFILEADV *pStat;
3962 switch(statcode)
3963 {
3964 case STATS_EMULATE_SINGLE_INSTR:
3965 pStat = &gStatExecuteSingleInstr;
3966 break;
3967 case STATS_QEMU_COMPILATION:
3968 pStat = &gStatCompilationQEmu;
3969 break;
3970 case STATS_QEMU_RUN_EMULATED_CODE:
3971 pStat = &gStatRunCodeQEmu;
3972 break;
3973 case STATS_QEMU_TOTAL:
3974 pStat = &gStatTotalTimeQEmu;
3975 break;
3976 case STATS_QEMU_RUN_TIMERS:
3977 pStat = &gStatTimers;
3978 break;
3979 case STATS_TLB_LOOKUP:
3980 pStat= &gStatTBLookup;
3981 break;
3982 case STATS_IRQ_HANDLING:
3983 pStat= &gStatIRQ;
3984 break;
3985 case STATS_RAW_CHECK:
3986 pStat = &gStatRawCheck;
3987 break;
3988 default:
3989 AssertMsgFailed(("unknown stat %d\n", statcode));
3990 return;
3991 }
3992 STAM_PROFILE_ADV_STOP(pStat, a);
3993}
3994#endif
3995
3996/**
3997 * Raise an RC, force rem exit.
3998 *
3999 * @param pVM VM handle.
4000 * @param rc The rc.
4001 */
4002void remR3RaiseRC(PVM pVM, int rc)
4003{
4004 Log(("remR3RaiseRC: rc=%Rrc\n", rc));
4005 Assert(pVM->rem.s.fInREM);
4006 VM_ASSERT_EMT(pVM);
4007 pVM->rem.s.rc = rc;
4008 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
4009}
4010
4011
4012/* -+- timers -+- */
4013
4014uint64_t cpu_get_tsc(CPUX86State *env)
4015{
4016 STAM_COUNTER_INC(&gStatCpuGetTSC);
4017 return TMCpuTickGet(env->pVCpu);
4018}
4019
4020
4021/* -+- interrupts -+- */
4022
4023void cpu_set_ferr(CPUX86State *env)
4024{
4025 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
4026 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4027}
4028
4029int cpu_get_pic_interrupt(CPUState *env)
4030{
4031 uint8_t u8Interrupt;
4032 int rc;
4033
4034 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4035 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4036 * with the (a)pic.
4037 */
4038 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4039 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4040 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4041 * remove this kludge. */
4042 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4043 {
4044 rc = VINF_SUCCESS;
4045 Assert(env->pVM->rem.s.u32PendingInterrupt <= 255);
4046 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4047 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4048 }
4049 else
4050 rc = PDMGetInterrupt(env->pVCpu, &u8Interrupt);
4051
4052 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Rrc\n", u8Interrupt, rc));
4053 if (RT_SUCCESS(rc))
4054 {
4055 if (VMCPU_FF_ISPENDING(env->pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
4056 env->interrupt_request |= CPU_INTERRUPT_HARD;
4057 return u8Interrupt;
4058 }
4059 return -1;
4060}
4061
4062
4063/* -+- local apic -+- */
4064
4065void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4066{
4067 int rc = PDMApicSetBase(env->pVM, val);
4068 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Rrc\n", val, rc)); NOREF(rc);
4069}
4070
4071uint64_t cpu_get_apic_base(CPUX86State *env)
4072{
4073 uint64_t u64;
4074 int rc = PDMApicGetBase(env->pVM, &u64);
4075 if (RT_SUCCESS(rc))
4076 {
4077 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4078 return u64;
4079 }
4080 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Rrc)\n", rc));
4081 return 0;
4082}
4083
4084void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4085{
4086 int rc = PDMApicSetTPR(env->pVCpu, val);
4087 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Rrc\n", val, rc)); NOREF(rc);
4088}
4089
4090uint8_t cpu_get_apic_tpr(CPUX86State *env)
4091{
4092 uint8_t u8;
4093 int rc = PDMApicGetTPR(env->pVCpu, &u8, NULL);
4094 if (RT_SUCCESS(rc))
4095 {
4096 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4097 return u8;
4098 }
4099 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Rrc)\n", rc));
4100 return 0;
4101}
4102
4103
4104uint64_t cpu_apic_rdmsr(CPUX86State *env, uint32_t reg)
4105{
4106 uint64_t value;
4107 int rc = PDMApicReadMSR(env->pVM, 0/* cpu */, reg, &value);
4108 if (RT_SUCCESS(rc))
4109 {
4110 LogFlow(("cpu_apic_rdms returns %#x\n", value));
4111 return value;
4112 }
4113 /** @todo: exception ? */
4114 LogFlow(("cpu_apic_rdms returns 0 (rc=%Rrc)\n", rc));
4115 return value;
4116}
4117
4118void cpu_apic_wrmsr(CPUX86State *env, uint32_t reg, uint64_t value)
4119{
4120 int rc = PDMApicWriteMSR(env->pVM, 0 /* cpu */, reg, value);
4121 /** @todo: exception if error ? */
4122 LogFlow(("cpu_apic_wrmsr: rc=%Rrc\n", rc)); NOREF(rc);
4123}
4124
4125uint64_t cpu_rdmsr(CPUX86State *env, uint32_t msr)
4126{
4127 Assert(env->pVCpu);
4128 return CPUMGetGuestMsr(env->pVCpu, msr);
4129}
4130
4131void cpu_wrmsr(CPUX86State *env, uint32_t msr, uint64_t val)
4132{
4133 Assert(env->pVCpu);
4134 CPUMSetGuestMsr(env->pVCpu, msr, val);
4135}
4136
4137/* -+- I/O Ports -+- */
4138
4139#undef LOG_GROUP
4140#define LOG_GROUP LOG_GROUP_REM_IOPORT
4141
4142void cpu_outb(CPUState *env, int addr, int val)
4143{
4144 int rc;
4145
4146 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4147 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4148
4149 rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4150 if (RT_LIKELY(rc == VINF_SUCCESS))
4151 return;
4152 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4153 {
4154 Log(("cpu_outb: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4155 remR3RaiseRC(env->pVM, rc);
4156 return;
4157 }
4158 remAbort(rc, __FUNCTION__);
4159}
4160
4161void cpu_outw(CPUState *env, int addr, int val)
4162{
4163 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4164 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4165 if (RT_LIKELY(rc == VINF_SUCCESS))
4166 return;
4167 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4168 {
4169 Log(("cpu_outw: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4170 remR3RaiseRC(env->pVM, rc);
4171 return;
4172 }
4173 remAbort(rc, __FUNCTION__);
4174}
4175
4176void cpu_outl(CPUState *env, int addr, int val)
4177{
4178 int rc;
4179 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4180 rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4181 if (RT_LIKELY(rc == VINF_SUCCESS))
4182 return;
4183 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4184 {
4185 Log(("cpu_outl: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4186 remR3RaiseRC(env->pVM, rc);
4187 return;
4188 }
4189 remAbort(rc, __FUNCTION__);
4190}
4191
4192int cpu_inb(CPUState *env, int addr)
4193{
4194 uint32_t u32 = 0;
4195 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4196 if (RT_LIKELY(rc == VINF_SUCCESS))
4197 {
4198 if (/*addr != 0x61 && */addr != 0x71)
4199 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4200 return (int)u32;
4201 }
4202 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4203 {
4204 Log(("cpu_inb: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4205 remR3RaiseRC(env->pVM, rc);
4206 return (int)u32;
4207 }
4208 remAbort(rc, __FUNCTION__);
4209 return 0xff;
4210}
4211
4212int cpu_inw(CPUState *env, int addr)
4213{
4214 uint32_t u32 = 0;
4215 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4216 if (RT_LIKELY(rc == VINF_SUCCESS))
4217 {
4218 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4219 return (int)u32;
4220 }
4221 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4222 {
4223 Log(("cpu_inw: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4224 remR3RaiseRC(env->pVM, rc);
4225 return (int)u32;
4226 }
4227 remAbort(rc, __FUNCTION__);
4228 return 0xffff;
4229}
4230
4231int cpu_inl(CPUState *env, int addr)
4232{
4233 uint32_t u32 = 0;
4234 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4235 if (RT_LIKELY(rc == VINF_SUCCESS))
4236 {
4237//if (addr==0x01f0 && u32 == 0x6b6d)
4238// loglevel = ~0;
4239 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4240 return (int)u32;
4241 }
4242 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4243 {
4244 Log(("cpu_inl: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4245 remR3RaiseRC(env->pVM, rc);
4246 return (int)u32;
4247 }
4248 remAbort(rc, __FUNCTION__);
4249 return 0xffffffff;
4250}
4251
4252#undef LOG_GROUP
4253#define LOG_GROUP LOG_GROUP_REM
4254
4255
4256/* -+- helpers and misc other interfaces -+- */
4257
4258/**
4259 * Perform the CPUID instruction.
4260 *
4261 * ASMCpuId cannot be invoked from some source files where this is used because of global
4262 * register allocations.
4263 *
4264 * @param env Pointer to the recompiler CPU structure.
4265 * @param uOperator CPUID operation (eax).
4266 * @param pvEAX Where to store eax.
4267 * @param pvEBX Where to store ebx.
4268 * @param pvECX Where to store ecx.
4269 * @param pvEDX Where to store edx.
4270 */
4271void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4272{
4273 CPUMGetGuestCpuId(env->pVCpu, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4274}
4275
4276
4277#if 0 /* not used */
4278/**
4279 * Interface for qemu hardware to report back fatal errors.
4280 */
4281void hw_error(const char *pszFormat, ...)
4282{
4283 /*
4284 * Bitch about it.
4285 */
4286 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4287 * this in my Odin32 tree at home! */
4288 va_list args;
4289 va_start(args, pszFormat);
4290 RTLogPrintf("fatal error in virtual hardware:");
4291 RTLogPrintfV(pszFormat, args);
4292 va_end(args);
4293 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4294
4295 /*
4296 * If we're in REM context we'll sync back the state before 'jumping' to
4297 * the EMs failure handling.
4298 */
4299 PVM pVM = cpu_single_env->pVM;
4300 if (pVM->rem.s.fInREM)
4301 REMR3StateBack(pVM);
4302 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4303 AssertMsgFailed(("EMR3FatalError returned!\n"));
4304}
4305#endif
4306
4307/**
4308 * Interface for the qemu cpu to report unhandled situation
4309 * raising a fatal VM error.
4310 */
4311void cpu_abort(CPUState *env, const char *pszFormat, ...)
4312{
4313 va_list va;
4314 PVM pVM;
4315 PVMCPU pVCpu;
4316 char szMsg[256];
4317
4318 /*
4319 * Bitch about it.
4320 */
4321 RTLogFlags(NULL, "nodisabled nobuffered");
4322 RTLogFlush(NULL);
4323
4324 va_start(va, pszFormat);
4325#if defined(RT_OS_WINDOWS) && ARCH_BITS == 64
4326 /* It's a bit complicated when mixing MSC and GCC on AMD64. This is a bit ugly, but it works. */
4327 unsigned cArgs = 0;
4328 uintptr_t auArgs[6] = {0,0,0,0,0,0};
4329 const char *psz = strchr(pszFormat, '%');
4330 while (psz && cArgs < 6)
4331 {
4332 auArgs[cArgs++] = va_arg(va, uintptr_t);
4333 psz = strchr(psz + 1, '%');
4334 }
4335 switch (cArgs)
4336 {
4337 case 1: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0]); break;
4338 case 2: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0], auArgs[1]); break;
4339 case 3: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0], auArgs[1], auArgs[2]); break;
4340 case 4: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0], auArgs[1], auArgs[2], auArgs[3]); break;
4341 case 5: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0], auArgs[1], auArgs[2], auArgs[3], auArgs[4]); break;
4342 case 6: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0], auArgs[1], auArgs[2], auArgs[3], auArgs[4], auArgs[5]); break;
4343 default:
4344 case 0: RTStrPrintf(szMsg, sizeof(szMsg), "%s", pszFormat); break;
4345 }
4346#else
4347 RTStrPrintfV(szMsg, sizeof(szMsg), pszFormat, va);
4348#endif
4349 va_end(va);
4350
4351 RTLogPrintf("fatal error in recompiler cpu: %s\n", szMsg);
4352 RTLogRelPrintf("fatal error in recompiler cpu: %s\n", szMsg);
4353
4354 /*
4355 * If we're in REM context we'll sync back the state before 'jumping' to
4356 * the EMs failure handling.
4357 */
4358 pVM = cpu_single_env->pVM;
4359 pVCpu = cpu_single_env->pVCpu;
4360 Assert(pVCpu);
4361
4362 if (pVM->rem.s.fInREM)
4363 REMR3StateBack(pVM, pVCpu);
4364 EMR3FatalError(pVCpu, VERR_REM_VIRTUAL_CPU_ERROR);
4365 AssertMsgFailed(("EMR3FatalError returned!\n"));
4366}
4367
4368
4369/**
4370 * Aborts the VM.
4371 *
4372 * @param rc VBox error code.
4373 * @param pszTip Hint about why/when this happend.
4374 */
4375void remAbort(int rc, const char *pszTip)
4376{
4377 PVM pVM;
4378 PVMCPU pVCpu;
4379
4380 /*
4381 * Bitch about it.
4382 */
4383 RTLogPrintf("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip);
4384 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip));
4385
4386 /*
4387 * Jump back to where we entered the recompiler.
4388 */
4389 pVM = cpu_single_env->pVM;
4390 pVCpu = cpu_single_env->pVCpu;
4391 Assert(pVCpu);
4392
4393 if (pVM->rem.s.fInREM)
4394 REMR3StateBack(pVM, pVCpu);
4395
4396 EMR3FatalError(pVCpu, rc);
4397 AssertMsgFailed(("EMR3FatalError returned!\n"));
4398}
4399
4400
4401/**
4402 * Dumps a linux system call.
4403 * @param pVCpu VMCPU handle.
4404 */
4405void remR3DumpLnxSyscall(PVMCPU pVCpu)
4406{
4407 static const char *apsz[] =
4408 {
4409 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4410 "sys_exit",
4411 "sys_fork",
4412 "sys_read",
4413 "sys_write",
4414 "sys_open", /* 5 */
4415 "sys_close",
4416 "sys_waitpid",
4417 "sys_creat",
4418 "sys_link",
4419 "sys_unlink", /* 10 */
4420 "sys_execve",
4421 "sys_chdir",
4422 "sys_time",
4423 "sys_mknod",
4424 "sys_chmod", /* 15 */
4425 "sys_lchown16",
4426 "sys_ni_syscall", /* old break syscall holder */
4427 "sys_stat",
4428 "sys_lseek",
4429 "sys_getpid", /* 20 */
4430 "sys_mount",
4431 "sys_oldumount",
4432 "sys_setuid16",
4433 "sys_getuid16",
4434 "sys_stime", /* 25 */
4435 "sys_ptrace",
4436 "sys_alarm",
4437 "sys_fstat",
4438 "sys_pause",
4439 "sys_utime", /* 30 */
4440 "sys_ni_syscall", /* old stty syscall holder */
4441 "sys_ni_syscall", /* old gtty syscall holder */
4442 "sys_access",
4443 "sys_nice",
4444 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4445 "sys_sync",
4446 "sys_kill",
4447 "sys_rename",
4448 "sys_mkdir",
4449 "sys_rmdir", /* 40 */
4450 "sys_dup",
4451 "sys_pipe",
4452 "sys_times",
4453 "sys_ni_syscall", /* old prof syscall holder */
4454 "sys_brk", /* 45 */
4455 "sys_setgid16",
4456 "sys_getgid16",
4457 "sys_signal",
4458 "sys_geteuid16",
4459 "sys_getegid16", /* 50 */
4460 "sys_acct",
4461 "sys_umount", /* recycled never used phys() */
4462 "sys_ni_syscall", /* old lock syscall holder */
4463 "sys_ioctl",
4464 "sys_fcntl", /* 55 */
4465 "sys_ni_syscall", /* old mpx syscall holder */
4466 "sys_setpgid",
4467 "sys_ni_syscall", /* old ulimit syscall holder */
4468 "sys_olduname",
4469 "sys_umask", /* 60 */
4470 "sys_chroot",
4471 "sys_ustat",
4472 "sys_dup2",
4473 "sys_getppid",
4474 "sys_getpgrp", /* 65 */
4475 "sys_setsid",
4476 "sys_sigaction",
4477 "sys_sgetmask",
4478 "sys_ssetmask",
4479 "sys_setreuid16", /* 70 */
4480 "sys_setregid16",
4481 "sys_sigsuspend",
4482 "sys_sigpending",
4483 "sys_sethostname",
4484 "sys_setrlimit", /* 75 */
4485 "sys_old_getrlimit",
4486 "sys_getrusage",
4487 "sys_gettimeofday",
4488 "sys_settimeofday",
4489 "sys_getgroups16", /* 80 */
4490 "sys_setgroups16",
4491 "old_select",
4492 "sys_symlink",
4493 "sys_lstat",
4494 "sys_readlink", /* 85 */
4495 "sys_uselib",
4496 "sys_swapon",
4497 "sys_reboot",
4498 "old_readdir",
4499 "old_mmap", /* 90 */
4500 "sys_munmap",
4501 "sys_truncate",
4502 "sys_ftruncate",
4503 "sys_fchmod",
4504 "sys_fchown16", /* 95 */
4505 "sys_getpriority",
4506 "sys_setpriority",
4507 "sys_ni_syscall", /* old profil syscall holder */
4508 "sys_statfs",
4509 "sys_fstatfs", /* 100 */
4510 "sys_ioperm",
4511 "sys_socketcall",
4512 "sys_syslog",
4513 "sys_setitimer",
4514 "sys_getitimer", /* 105 */
4515 "sys_newstat",
4516 "sys_newlstat",
4517 "sys_newfstat",
4518 "sys_uname",
4519 "sys_iopl", /* 110 */
4520 "sys_vhangup",
4521 "sys_ni_syscall", /* old "idle" system call */
4522 "sys_vm86old",
4523 "sys_wait4",
4524 "sys_swapoff", /* 115 */
4525 "sys_sysinfo",
4526 "sys_ipc",
4527 "sys_fsync",
4528 "sys_sigreturn",
4529 "sys_clone", /* 120 */
4530 "sys_setdomainname",
4531 "sys_newuname",
4532 "sys_modify_ldt",
4533 "sys_adjtimex",
4534 "sys_mprotect", /* 125 */
4535 "sys_sigprocmask",
4536 "sys_ni_syscall", /* old "create_module" */
4537 "sys_init_module",
4538 "sys_delete_module",
4539 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4540 "sys_quotactl",
4541 "sys_getpgid",
4542 "sys_fchdir",
4543 "sys_bdflush",
4544 "sys_sysfs", /* 135 */
4545 "sys_personality",
4546 "sys_ni_syscall", /* reserved for afs_syscall */
4547 "sys_setfsuid16",
4548 "sys_setfsgid16",
4549 "sys_llseek", /* 140 */
4550 "sys_getdents",
4551 "sys_select",
4552 "sys_flock",
4553 "sys_msync",
4554 "sys_readv", /* 145 */
4555 "sys_writev",
4556 "sys_getsid",
4557 "sys_fdatasync",
4558 "sys_sysctl",
4559 "sys_mlock", /* 150 */
4560 "sys_munlock",
4561 "sys_mlockall",
4562 "sys_munlockall",
4563 "sys_sched_setparam",
4564 "sys_sched_getparam", /* 155 */
4565 "sys_sched_setscheduler",
4566 "sys_sched_getscheduler",
4567 "sys_sched_yield",
4568 "sys_sched_get_priority_max",
4569 "sys_sched_get_priority_min", /* 160 */
4570 "sys_sched_rr_get_interval",
4571 "sys_nanosleep",
4572 "sys_mremap",
4573 "sys_setresuid16",
4574 "sys_getresuid16", /* 165 */
4575 "sys_vm86",
4576 "sys_ni_syscall", /* Old sys_query_module */
4577 "sys_poll",
4578 "sys_nfsservctl",
4579 "sys_setresgid16", /* 170 */
4580 "sys_getresgid16",
4581 "sys_prctl",
4582 "sys_rt_sigreturn",
4583 "sys_rt_sigaction",
4584 "sys_rt_sigprocmask", /* 175 */
4585 "sys_rt_sigpending",
4586 "sys_rt_sigtimedwait",
4587 "sys_rt_sigqueueinfo",
4588 "sys_rt_sigsuspend",
4589 "sys_pread64", /* 180 */
4590 "sys_pwrite64",
4591 "sys_chown16",
4592 "sys_getcwd",
4593 "sys_capget",
4594 "sys_capset", /* 185 */
4595 "sys_sigaltstack",
4596 "sys_sendfile",
4597 "sys_ni_syscall", /* reserved for streams1 */
4598 "sys_ni_syscall", /* reserved for streams2 */
4599 "sys_vfork", /* 190 */
4600 "sys_getrlimit",
4601 "sys_mmap2",
4602 "sys_truncate64",
4603 "sys_ftruncate64",
4604 "sys_stat64", /* 195 */
4605 "sys_lstat64",
4606 "sys_fstat64",
4607 "sys_lchown",
4608 "sys_getuid",
4609 "sys_getgid", /* 200 */
4610 "sys_geteuid",
4611 "sys_getegid",
4612 "sys_setreuid",
4613 "sys_setregid",
4614 "sys_getgroups", /* 205 */
4615 "sys_setgroups",
4616 "sys_fchown",
4617 "sys_setresuid",
4618 "sys_getresuid",
4619 "sys_setresgid", /* 210 */
4620 "sys_getresgid",
4621 "sys_chown",
4622 "sys_setuid",
4623 "sys_setgid",
4624 "sys_setfsuid", /* 215 */
4625 "sys_setfsgid",
4626 "sys_pivot_root",
4627 "sys_mincore",
4628 "sys_madvise",
4629 "sys_getdents64", /* 220 */
4630 "sys_fcntl64",
4631 "sys_ni_syscall", /* reserved for TUX */
4632 "sys_ni_syscall",
4633 "sys_gettid",
4634 "sys_readahead", /* 225 */
4635 "sys_setxattr",
4636 "sys_lsetxattr",
4637 "sys_fsetxattr",
4638 "sys_getxattr",
4639 "sys_lgetxattr", /* 230 */
4640 "sys_fgetxattr",
4641 "sys_listxattr",
4642 "sys_llistxattr",
4643 "sys_flistxattr",
4644 "sys_removexattr", /* 235 */
4645 "sys_lremovexattr",
4646 "sys_fremovexattr",
4647 "sys_tkill",
4648 "sys_sendfile64",
4649 "sys_futex", /* 240 */
4650 "sys_sched_setaffinity",
4651 "sys_sched_getaffinity",
4652 "sys_set_thread_area",
4653 "sys_get_thread_area",
4654 "sys_io_setup", /* 245 */
4655 "sys_io_destroy",
4656 "sys_io_getevents",
4657 "sys_io_submit",
4658 "sys_io_cancel",
4659 "sys_fadvise64", /* 250 */
4660 "sys_ni_syscall",
4661 "sys_exit_group",
4662 "sys_lookup_dcookie",
4663 "sys_epoll_create",
4664 "sys_epoll_ctl", /* 255 */
4665 "sys_epoll_wait",
4666 "sys_remap_file_pages",
4667 "sys_set_tid_address",
4668 "sys_timer_create",
4669 "sys_timer_settime", /* 260 */
4670 "sys_timer_gettime",
4671 "sys_timer_getoverrun",
4672 "sys_timer_delete",
4673 "sys_clock_settime",
4674 "sys_clock_gettime", /* 265 */
4675 "sys_clock_getres",
4676 "sys_clock_nanosleep",
4677 "sys_statfs64",
4678 "sys_fstatfs64",
4679 "sys_tgkill", /* 270 */
4680 "sys_utimes",
4681 "sys_fadvise64_64",
4682 "sys_ni_syscall" /* sys_vserver */
4683 };
4684
4685 uint32_t uEAX = CPUMGetGuestEAX(pVCpu);
4686 switch (uEAX)
4687 {
4688 default:
4689 if (uEAX < RT_ELEMENTS(apsz))
4690 Log(("REM: linux syscall %3d: %s (eip=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4691 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVCpu), CPUMGetGuestEBX(pVCpu), CPUMGetGuestECX(pVCpu),
4692 CPUMGetGuestEDX(pVCpu), CPUMGetGuestESI(pVCpu), CPUMGetGuestEDI(pVCpu), CPUMGetGuestEBP(pVCpu)));
4693 else
4694 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVCpu), uEAX, uEAX));
4695 break;
4696
4697 }
4698}
4699
4700
4701/**
4702 * Dumps an OpenBSD system call.
4703 * @param pVCpu VMCPU handle.
4704 */
4705void remR3DumpOBsdSyscall(PVMCPU pVCpu)
4706{
4707 static const char *apsz[] =
4708 {
4709 "SYS_syscall", //0
4710 "SYS_exit", //1
4711 "SYS_fork", //2
4712 "SYS_read", //3
4713 "SYS_write", //4
4714 "SYS_open", //5
4715 "SYS_close", //6
4716 "SYS_wait4", //7
4717 "SYS_8",
4718 "SYS_link", //9
4719 "SYS_unlink", //10
4720 "SYS_11",
4721 "SYS_chdir", //12
4722 "SYS_fchdir", //13
4723 "SYS_mknod", //14
4724 "SYS_chmod", //15
4725 "SYS_chown", //16
4726 "SYS_break", //17
4727 "SYS_18",
4728 "SYS_19",
4729 "SYS_getpid", //20
4730 "SYS_mount", //21
4731 "SYS_unmount", //22
4732 "SYS_setuid", //23
4733 "SYS_getuid", //24
4734 "SYS_geteuid", //25
4735 "SYS_ptrace", //26
4736 "SYS_recvmsg", //27
4737 "SYS_sendmsg", //28
4738 "SYS_recvfrom", //29
4739 "SYS_accept", //30
4740 "SYS_getpeername", //31
4741 "SYS_getsockname", //32
4742 "SYS_access", //33
4743 "SYS_chflags", //34
4744 "SYS_fchflags", //35
4745 "SYS_sync", //36
4746 "SYS_kill", //37
4747 "SYS_38",
4748 "SYS_getppid", //39
4749 "SYS_40",
4750 "SYS_dup", //41
4751 "SYS_opipe", //42
4752 "SYS_getegid", //43
4753 "SYS_profil", //44
4754 "SYS_ktrace", //45
4755 "SYS_sigaction", //46
4756 "SYS_getgid", //47
4757 "SYS_sigprocmask", //48
4758 "SYS_getlogin", //49
4759 "SYS_setlogin", //50
4760 "SYS_acct", //51
4761 "SYS_sigpending", //52
4762 "SYS_osigaltstack", //53
4763 "SYS_ioctl", //54
4764 "SYS_reboot", //55
4765 "SYS_revoke", //56
4766 "SYS_symlink", //57
4767 "SYS_readlink", //58
4768 "SYS_execve", //59
4769 "SYS_umask", //60
4770 "SYS_chroot", //61
4771 "SYS_62",
4772 "SYS_63",
4773 "SYS_64",
4774 "SYS_65",
4775 "SYS_vfork", //66
4776 "SYS_67",
4777 "SYS_68",
4778 "SYS_sbrk", //69
4779 "SYS_sstk", //70
4780 "SYS_61",
4781 "SYS_vadvise", //72
4782 "SYS_munmap", //73
4783 "SYS_mprotect", //74
4784 "SYS_madvise", //75
4785 "SYS_76",
4786 "SYS_77",
4787 "SYS_mincore", //78
4788 "SYS_getgroups", //79
4789 "SYS_setgroups", //80
4790 "SYS_getpgrp", //81
4791 "SYS_setpgid", //82
4792 "SYS_setitimer", //83
4793 "SYS_84",
4794 "SYS_85",
4795 "SYS_getitimer", //86
4796 "SYS_87",
4797 "SYS_88",
4798 "SYS_89",
4799 "SYS_dup2", //90
4800 "SYS_91",
4801 "SYS_fcntl", //92
4802 "SYS_select", //93
4803 "SYS_94",
4804 "SYS_fsync", //95
4805 "SYS_setpriority", //96
4806 "SYS_socket", //97
4807 "SYS_connect", //98
4808 "SYS_99",
4809 "SYS_getpriority", //100
4810 "SYS_101",
4811 "SYS_102",
4812 "SYS_sigreturn", //103
4813 "SYS_bind", //104
4814 "SYS_setsockopt", //105
4815 "SYS_listen", //106
4816 "SYS_107",
4817 "SYS_108",
4818 "SYS_109",
4819 "SYS_110",
4820 "SYS_sigsuspend", //111
4821 "SYS_112",
4822 "SYS_113",
4823 "SYS_114",
4824 "SYS_115",
4825 "SYS_gettimeofday", //116
4826 "SYS_getrusage", //117
4827 "SYS_getsockopt", //118
4828 "SYS_119",
4829 "SYS_readv", //120
4830 "SYS_writev", //121
4831 "SYS_settimeofday", //122
4832 "SYS_fchown", //123
4833 "SYS_fchmod", //124
4834 "SYS_125",
4835 "SYS_setreuid", //126
4836 "SYS_setregid", //127
4837 "SYS_rename", //128
4838 "SYS_129",
4839 "SYS_130",
4840 "SYS_flock", //131
4841 "SYS_mkfifo", //132
4842 "SYS_sendto", //133
4843 "SYS_shutdown", //134
4844 "SYS_socketpair", //135
4845 "SYS_mkdir", //136
4846 "SYS_rmdir", //137
4847 "SYS_utimes", //138
4848 "SYS_139",
4849 "SYS_adjtime", //140
4850 "SYS_141",
4851 "SYS_142",
4852 "SYS_143",
4853 "SYS_144",
4854 "SYS_145",
4855 "SYS_146",
4856 "SYS_setsid", //147
4857 "SYS_quotactl", //148
4858 "SYS_149",
4859 "SYS_150",
4860 "SYS_151",
4861 "SYS_152",
4862 "SYS_153",
4863 "SYS_154",
4864 "SYS_nfssvc", //155
4865 "SYS_156",
4866 "SYS_157",
4867 "SYS_158",
4868 "SYS_159",
4869 "SYS_160",
4870 "SYS_getfh", //161
4871 "SYS_162",
4872 "SYS_163",
4873 "SYS_164",
4874 "SYS_sysarch", //165
4875 "SYS_166",
4876 "SYS_167",
4877 "SYS_168",
4878 "SYS_169",
4879 "SYS_170",
4880 "SYS_171",
4881 "SYS_172",
4882 "SYS_pread", //173
4883 "SYS_pwrite", //174
4884 "SYS_175",
4885 "SYS_176",
4886 "SYS_177",
4887 "SYS_178",
4888 "SYS_179",
4889 "SYS_180",
4890 "SYS_setgid", //181
4891 "SYS_setegid", //182
4892 "SYS_seteuid", //183
4893 "SYS_lfs_bmapv", //184
4894 "SYS_lfs_markv", //185
4895 "SYS_lfs_segclean", //186
4896 "SYS_lfs_segwait", //187
4897 "SYS_188",
4898 "SYS_189",
4899 "SYS_190",
4900 "SYS_pathconf", //191
4901 "SYS_fpathconf", //192
4902 "SYS_swapctl", //193
4903 "SYS_getrlimit", //194
4904 "SYS_setrlimit", //195
4905 "SYS_getdirentries", //196
4906 "SYS_mmap", //197
4907 "SYS___syscall", //198
4908 "SYS_lseek", //199
4909 "SYS_truncate", //200
4910 "SYS_ftruncate", //201
4911 "SYS___sysctl", //202
4912 "SYS_mlock", //203
4913 "SYS_munlock", //204
4914 "SYS_205",
4915 "SYS_futimes", //206
4916 "SYS_getpgid", //207
4917 "SYS_xfspioctl", //208
4918 "SYS_209",
4919 "SYS_210",
4920 "SYS_211",
4921 "SYS_212",
4922 "SYS_213",
4923 "SYS_214",
4924 "SYS_215",
4925 "SYS_216",
4926 "SYS_217",
4927 "SYS_218",
4928 "SYS_219",
4929 "SYS_220",
4930 "SYS_semget", //221
4931 "SYS_222",
4932 "SYS_223",
4933 "SYS_224",
4934 "SYS_msgget", //225
4935 "SYS_msgsnd", //226
4936 "SYS_msgrcv", //227
4937 "SYS_shmat", //228
4938 "SYS_229",
4939 "SYS_shmdt", //230
4940 "SYS_231",
4941 "SYS_clock_gettime", //232
4942 "SYS_clock_settime", //233
4943 "SYS_clock_getres", //234
4944 "SYS_235",
4945 "SYS_236",
4946 "SYS_237",
4947 "SYS_238",
4948 "SYS_239",
4949 "SYS_nanosleep", //240
4950 "SYS_241",
4951 "SYS_242",
4952 "SYS_243",
4953 "SYS_244",
4954 "SYS_245",
4955 "SYS_246",
4956 "SYS_247",
4957 "SYS_248",
4958 "SYS_249",
4959 "SYS_minherit", //250
4960 "SYS_rfork", //251
4961 "SYS_poll", //252
4962 "SYS_issetugid", //253
4963 "SYS_lchown", //254
4964 "SYS_getsid", //255
4965 "SYS_msync", //256
4966 "SYS_257",
4967 "SYS_258",
4968 "SYS_259",
4969 "SYS_getfsstat", //260
4970 "SYS_statfs", //261
4971 "SYS_fstatfs", //262
4972 "SYS_pipe", //263
4973 "SYS_fhopen", //264
4974 "SYS_265",
4975 "SYS_fhstatfs", //266
4976 "SYS_preadv", //267
4977 "SYS_pwritev", //268
4978 "SYS_kqueue", //269
4979 "SYS_kevent", //270
4980 "SYS_mlockall", //271
4981 "SYS_munlockall", //272
4982 "SYS_getpeereid", //273
4983 "SYS_274",
4984 "SYS_275",
4985 "SYS_276",
4986 "SYS_277",
4987 "SYS_278",
4988 "SYS_279",
4989 "SYS_280",
4990 "SYS_getresuid", //281
4991 "SYS_setresuid", //282
4992 "SYS_getresgid", //283
4993 "SYS_setresgid", //284
4994 "SYS_285",
4995 "SYS_mquery", //286
4996 "SYS_closefrom", //287
4997 "SYS_sigaltstack", //288
4998 "SYS_shmget", //289
4999 "SYS_semop", //290
5000 "SYS_stat", //291
5001 "SYS_fstat", //292
5002 "SYS_lstat", //293
5003 "SYS_fhstat", //294
5004 "SYS___semctl", //295
5005 "SYS_shmctl", //296
5006 "SYS_msgctl", //297
5007 "SYS_MAXSYSCALL", //298
5008 //299
5009 //300
5010 };
5011 uint32_t uEAX;
5012 if (!LogIsEnabled())
5013 return;
5014 uEAX = CPUMGetGuestEAX(pVCpu);
5015 switch (uEAX)
5016 {
5017 default:
5018 if (uEAX < RT_ELEMENTS(apsz))
5019 {
5020 uint32_t au32Args[8] = {0};
5021 PGMPhysSimpleReadGCPtr(pVCpu, au32Args, CPUMGetGuestESP(pVCpu), sizeof(au32Args));
5022 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
5023 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVCpu), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
5024 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
5025 }
5026 else
5027 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVCpu), uEAX, uEAX);
5028 break;
5029 }
5030}
5031
5032
5033#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
5034/**
5035 * The Dll main entry point (stub).
5036 */
5037bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
5038{
5039 return true;
5040}
5041
5042void *memcpy(void *dst, const void *src, size_t size)
5043{
5044 uint8_t*pbDst = dst, *pbSrc = src;
5045 while (size-- > 0)
5046 *pbDst++ = *pbSrc++;
5047 return dst;
5048}
5049
5050#endif
5051
5052void cpu_smm_update(CPUState *env)
5053{
5054}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette