VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 2126

Last change on this file since 2126 was 2126, checked in by vboxsync, 18 years ago

TRPM changes to assert and report trap/interrupt types accurately.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 154.2 KB
Line 
1/** @file
2 *
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006 InnoTek Systemberatung GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License as published by the Free Software Foundation,
13 * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
14 * distribution. VirtualBox OSE is distributed in the hope that it will
15 * be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * If you received this file as part of a commercial VirtualBox
18 * distribution, then only the terms of your commercial VirtualBox
19 * license agreement apply instead of the previous paragraph.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#include "vl.h"
27#include "exec-all.h"
28
29#include <VBox/rem.h>
30#include <VBox/vmapi.h>
31#include <VBox/tm.h>
32#include <VBox/ssm.h>
33#include <VBox/em.h>
34#include <VBox/trpm.h>
35#include <VBox/iom.h>
36#include <VBox/mm.h>
37#include <VBox/pgm.h>
38#include <VBox/pdm.h>
39#include <VBox/dbgf.h>
40#include <VBox/dbg.h>
41#include <VBox/hwaccm.h>
42#include <VBox/patm.h>
43#include <VBox/csam.h>
44#include "REMInternal.h"
45#include <VBox/vm.h>
46#include <VBox/param.h>
47#include <VBox/err.h>
48
49#define LOG_GROUP LOG_GROUP_REM
50#include <VBox/log.h>
51#include <iprt/semaphore.h>
52#include <iprt/asm.h>
53#include <iprt/assert.h>
54#include <iprt/thread.h>
55#include <iprt/string.h>
56
57
58/* Don't wanna include everything. */
59extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
60extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
61extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
62extern void tlb_flush_page(CPUX86State *env, uint32_t addr);
63extern void tlb_flush(CPUState *env, int flush_global);
64extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
65extern void sync_ldtr(CPUX86State *env1, int selector);
66extern int sync_tr(CPUX86State *env1, int selector);
67
68#ifdef VBOX_STRICT
69unsigned long get_phys_page_offset(target_ulong addr);
70#endif
71
72
73/*******************************************************************************
74* Defined Constants And Macros *
75*******************************************************************************/
76
77/** Copy 80-bit fpu register at pSrc to pDst.
78 * This is probably faster than *calling* memcpy.
79 */
80#define REM_COPY_FPU_REG(pDst, pSrc) \
81 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
82
83
84/*******************************************************************************
85* Internal Functions *
86*******************************************************************************/
87static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
88static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
89static void remR3StateUpdate(PVM pVM);
90static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
91static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
92static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
93static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
94static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
95static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
96
97static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
98static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
99static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
100static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
101static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
102static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
103
104
105/*******************************************************************************
106* Global Variables *
107*******************************************************************************/
108
109/** The log level of the recompiler. */
110#if 1
111extern int loglevel;
112#else
113int loglevel = ~0;
114FILE *logfile = NULL;
115#endif
116
117
118/** @todo Move stats to REM::s some rainy day we have nothing do to. */
119#ifdef VBOX_WITH_STATISTICS
120static STAMPROFILEADV gStatExecuteSingleInstr;
121static STAMPROFILEADV gStatCompilationQEmu;
122static STAMPROFILEADV gStatRunCodeQEmu;
123static STAMPROFILEADV gStatTotalTimeQEmu;
124static STAMPROFILEADV gStatTimers;
125static STAMPROFILEADV gStatTBLookup;
126static STAMPROFILEADV gStatIRQ;
127static STAMPROFILEADV gStatRawCheck;
128static STAMPROFILEADV gStatMemRead;
129static STAMPROFILEADV gStatMemWrite;
130static STAMCOUNTER gStatRefuseTFInhibit;
131static STAMCOUNTER gStatRefuseVM86;
132static STAMCOUNTER gStatRefusePaging;
133static STAMCOUNTER gStatRefusePAE;
134static STAMCOUNTER gStatRefuseIOPLNot0;
135static STAMCOUNTER gStatRefuseIF0;
136static STAMCOUNTER gStatRefuseCode16;
137static STAMCOUNTER gStatRefuseWP0;
138static STAMCOUNTER gStatRefuseRing1or2;
139static STAMCOUNTER gStatRefuseCanExecute;
140static STAMCOUNTER gStatREMGDTChange;
141static STAMCOUNTER gStatREMIDTChange;
142static STAMCOUNTER gStatREMLDTRChange;
143static STAMCOUNTER gStatREMTRChange;
144static STAMCOUNTER gStatSelOutOfSync[6];
145static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
146#endif
147
148/*
149 * Global stuff.
150 */
151
152/** MMIO read callbacks. */
153CPUReadMemoryFunc *g_apfnMMIORead[3] =
154{
155 remR3MMIOReadU8,
156 remR3MMIOReadU16,
157 remR3MMIOReadU32
158};
159
160/** MMIO write callbacks. */
161CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
162{
163 remR3MMIOWriteU8,
164 remR3MMIOWriteU16,
165 remR3MMIOWriteU32
166};
167
168/** Handler read callbacks. */
169CPUReadMemoryFunc *g_apfnHandlerRead[3] =
170{
171 remR3HandlerReadU8,
172 remR3HandlerReadU16,
173 remR3HandlerReadU32
174};
175
176/** Handler write callbacks. */
177CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
178{
179 remR3HandlerWriteU8,
180 remR3HandlerWriteU16,
181 remR3HandlerWriteU32
182};
183
184#ifndef PGM_DYNAMIC_RAM_ALLOC
185/* Guest physical RAM base. Not to be used in external code. */
186static uint8_t *phys_ram_base;
187#endif
188
189/*
190 * Instance stuff.
191 */
192/** Pointer to the cpu state. */
193CPUState *cpu_single_env;
194
195
196#ifdef VBOX_WITH_DEBUGGER
197/*
198 * Debugger commands.
199 */
200static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
201
202/** '.remstep' arguments. */
203static const DBGCVARDESC g_aArgRemStep[] =
204{
205 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
206 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
207};
208
209/** Command descriptors. */
210static const DBGCCMD g_aCmds[] =
211{
212 {
213 .pszCmd ="remstep",
214 .cArgsMin = 0,
215 .cArgsMax = 1,
216 .paArgDescs = &g_aArgRemStep[0],
217 .cArgDescs = ELEMENTS(g_aArgRemStep),
218 .pResultDesc = NULL,
219 .fFlags = 0,
220 .pfnHandler = remR3CmdDisasEnableStepping,
221 .pszSyntax = "[on/off]",
222 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
223 "If no arguments show the current state."
224 }
225};
226#endif
227
228
229/*******************************************************************************
230* Internal Functions *
231*******************************************************************************/
232static void remAbort(int rc, const char *pszTip);
233
234
235/* Put them here to avoid unused variable warning. */
236AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
237//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
238//AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
239
240/**
241 * Initializes the REM.
242 *
243 * @returns VBox status code.
244 * @param pVM The VM to operate on.
245 */
246REMR3DECL(int) REMR3Init(PVM pVM)
247{
248 uint32_t u32Dummy;
249 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
250 //AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
251 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
252#if 0 /* not merged yet */
253 Assert(!testmath());
254#endif
255
256 /*
257 * Init some internal data members.
258 */
259 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
260 pVM->rem.s.Env.pVM = pVM;
261#ifdef CPU_RAW_MODE_INIT
262 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
263#endif
264
265 /* ctx. */
266 int rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
267 if (VBOX_FAILURE(rc))
268 {
269 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
270 return rc;
271 }
272 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
273
274 /*
275 * Init the recompiler.
276 */
277 if (!cpu_x86_init(&pVM->rem.s.Env))
278 {
279 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
280 return VERR_GENERAL_FAILURE;
281 }
282 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
283
284 /* allocate code buffer for single instruction emulation. */
285 pVM->rem.s.Env.cbCodeBuffer = 4096;
286 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
287 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
288
289 /* finally, set the cpu_single_env global. */
290 cpu_single_env = &pVM->rem.s.Env;
291
292 /* Nothing is pending by default */
293 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
294
295#ifdef DEBUG_bird
296 //cpu_breakpoint_insert(&pVM->rem.s.Env, some-address);
297#endif
298
299 /*
300 * Register ram types.
301 */
302 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(0, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
303 AssertReleaseMsg(pVM->rem.s.iMMIOMemType > 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
304 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(0, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
305 AssertReleaseMsg(pVM->rem.s.iHandlerMemType > 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
306 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
307
308 /*
309 * Register the saved state data unit.
310 */
311 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
312 NULL, remR3Save, NULL,
313 NULL, remR3Load, NULL);
314 if (VBOX_FAILURE(rc))
315 return rc;
316
317#ifdef VBOX_WITH_DEBUGGER
318 /*
319 * Debugger commands.
320 */
321 static bool fRegisteredCmds = false;
322 if (!fRegisteredCmds)
323 {
324 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
325 if (VBOX_SUCCESS(rc))
326 fRegisteredCmds = true;
327 }
328#endif
329
330#ifdef VBOX_WITH_STATISTICS
331 /*
332 * Statistics.
333 */
334 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
335 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
336 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
337 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
338 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
339 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
340 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
341 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
342 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
343 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
344
345 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
346 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
347 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
348 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
349 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
350 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
351 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
352 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
353 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
354 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
355
356 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
357 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
358 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
359 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
360
361 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
362 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
363 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
364 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
365 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
366 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
367
368 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
369 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
370 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
371 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
372 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
373 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
374
375#endif
376 return rc;
377}
378
379
380/**
381 * Terminates the REM.
382 *
383 * Termination means cleaning up and freeing all resources,
384 * the VM it self is at this point powered off or suspended.
385 *
386 * @returns VBox status code.
387 * @param pVM The VM to operate on.
388 */
389REMR3DECL(int) REMR3Term(PVM pVM)
390{
391 return VINF_SUCCESS;
392}
393
394
395/**
396 * The VM is being reset.
397 *
398 * For the REM component this means to call the cpu_reset() and
399 * reinitialize some state variables.
400 *
401 * @param pVM VM handle.
402 */
403REMR3DECL(void) REMR3Reset(PVM pVM)
404{
405 pVM->rem.s.fIgnoreCR3Load = true;
406 pVM->rem.s.fIgnoreInvlPg = true;
407 pVM->rem.s.fIgnoreCpuMode = true;
408
409 /*
410 * Reset the REM cpu.
411 */
412 cpu_reset(&pVM->rem.s.Env);
413 pVM->rem.s.cInvalidatedPages = 0;
414
415 pVM->rem.s.fIgnoreCR3Load = false;
416 pVM->rem.s.fIgnoreInvlPg = false;
417 pVM->rem.s.fIgnoreCpuMode = false;
418}
419
420
421/**
422 * Execute state save operation.
423 *
424 * @returns VBox status code.
425 * @param pVM VM Handle.
426 * @param pSSM SSM operation handle.
427 */
428static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
429{
430 LogFlow(("remR3Save:\n"));
431
432 /*
433 * Save the required CPU Env bits.
434 * (Not much because we're never in REM when doing the save.)
435 */
436 PREM pRem = &pVM->rem.s;
437 Assert(!pRem->fInREM);
438 SSMR3PutU32(pSSM, pRem->Env.hflags);
439 SSMR3PutMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
440 SSMR3PutU32(pSSM, ~0); /* separator */
441
442 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
443 SSMR3PutUInt(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
444
445 /*
446 * Save the REM stuff.
447 */
448 SSMR3PutUInt(pSSM, pRem->cInvalidatedPages);
449 unsigned i;
450 for (i = 0; i < pRem->cInvalidatedPages; i++)
451 SSMR3PutGCPtr(pSSM, pRem->aGCPtrInvalidatedPages[i]);
452
453 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
454
455 return SSMR3PutU32(pSSM, ~0); /* terminator */
456}
457
458
459/**
460 * Execute state load operation.
461 *
462 * @returns VBox status code.
463 * @param pVM VM Handle.
464 * @param pSSM SSM operation handle.
465 * @param u32Version Data layout version.
466 */
467static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
468{
469 uint32_t u32Dummy;
470 uint32_t fRawRing0 = false;
471
472 LogFlow(("remR3Load:\n"));
473
474 /*
475 * Validate version.
476 */
477 if (u32Version != REM_SAVED_STATE_VERSION)
478 {
479 Log(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
480 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
481 }
482
483 /*
484 * Do a reset to be on the safe side...
485 */
486 REMR3Reset(pVM);
487
488 /*
489 * Ignore all ignorable notifications.
490 * Not doing this will cause big trouble.
491 */
492 pVM->rem.s.fIgnoreCR3Load = true;
493 pVM->rem.s.fIgnoreInvlPg = true;
494 pVM->rem.s.fIgnoreCpuMode = true;
495
496 /*
497 * Load the required CPU Env bits.
498 * (Not much because we're never in REM when doing the save.)
499 */
500 PREM pRem = &pVM->rem.s;
501 Assert(!pRem->fInREM);
502 SSMR3GetU32(pSSM, &pRem->Env.hflags);
503 SSMR3GetMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
504 uint32_t u32Sep;
505 int rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
506 if (VBOX_FAILURE(rc))
507 return rc;
508 if (u32Sep != ~0)
509 {
510 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
511 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
512 }
513
514 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
515 SSMR3GetUInt(pSSM, &fRawRing0);
516 if (fRawRing0)
517 pRem->Env.state |= CPU_RAW_RING0;
518
519 /*
520 * Load the REM stuff.
521 */
522 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
523 if (VBOX_FAILURE(rc))
524 return rc;
525 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
526 {
527 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
528 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
529 }
530 unsigned i;
531 for (i = 0; i < pRem->cInvalidatedPages; i++)
532 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
533
534 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
535 if (VBOX_FAILURE(rc))
536 return rc;
537
538 /* check the terminator. */
539 rc = SSMR3GetU32(pSSM, &u32Sep);
540 if (VBOX_FAILURE(rc))
541 return rc;
542 if (u32Sep != ~0)
543 {
544 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
545 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
546 }
547
548 /*
549 * Get the CPUID features.
550 */
551 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
552
553 /*
554 * Sync the Load Flush the TLB
555 */
556 tlb_flush(&pRem->Env, 1);
557
558#if 0 /** @todo r=bird: this doesn't make sense. WHY? */
559 /*
560 * Clear all lazy flags (only FPU sync for now).
561 */
562 CPUMGetAndClearFPUUsedREM(pVM);
563#endif
564
565 /*
566 * Stop ignoring ignornable notifications.
567 */
568 pVM->rem.s.fIgnoreCpuMode = false;
569 pVM->rem.s.fIgnoreInvlPg = false;
570 pVM->rem.s.fIgnoreCR3Load = false;
571
572 return VINF_SUCCESS;
573}
574
575
576
577#undef LOG_GROUP
578#define LOG_GROUP LOG_GROUP_REM_RUN
579
580/**
581 * Single steps an instruction in recompiled mode.
582 *
583 * Before calling this function the REM state needs to be in sync with
584 * the VM. Call REMR3State() to perform the sync. It's only necessary
585 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
586 * and after calling REMR3StateBack().
587 *
588 * @returns VBox status code.
589 *
590 * @param pVM VM Handle.
591 */
592REMR3DECL(int) REMR3Step(PVM pVM)
593{
594 /*
595 * Lock the REM - we don't wanna have anyone interrupting us
596 * while stepping - and enabled single stepping. We also ignore
597 * pending interrupts and suchlike.
598 */
599 int interrupt_request = pVM->rem.s.Env.interrupt_request;
600 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
601 pVM->rem.s.Env.interrupt_request = 0;
602 cpu_single_step(&pVM->rem.s.Env, 1);
603
604 /*
605 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
606 */
607 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
608 bool fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
609
610 /*
611 * Execute and handle the return code.
612 * We execute without enabling the cpu tick, so on success we'll
613 * just flip it on and off to make sure it moves
614 */
615 int rc = cpu_exec(&pVM->rem.s.Env);
616 if (rc == EXCP_DEBUG)
617 {
618 TMCpuTickResume(pVM);
619 TMCpuTickPause(pVM);
620 TMVirtualResume(pVM);
621 TMVirtualPause(pVM);
622 rc = VINF_EM_DBG_STEPPED;
623 }
624 else
625 {
626 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
627 switch (rc)
628 {
629 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
630 case EXCP_HLT: rc = VINF_EM_HALT; break;
631 case EXCP_RC:
632 rc = pVM->rem.s.rc;
633 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
634 break;
635 default:
636 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
637 rc = VERR_INTERNAL_ERROR;
638 break;
639 }
640 }
641
642 /*
643 * Restore the stuff we changed to prevent interruption.
644 * Unlock the REM.
645 */
646 if (fBp)
647 {
648 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
649 Assert(rc2 == 0); NOREF(rc2);
650 }
651 cpu_single_step(&pVM->rem.s.Env, 0);
652 pVM->rem.s.Env.interrupt_request = interrupt_request;
653
654 return rc;
655}
656
657
658/**
659 * Set a breakpoint using the REM facilities.
660 *
661 * @returns VBox status code.
662 * @param pVM The VM handle.
663 * @param Address The breakpoint address.
664 * @thread The emulation thread.
665 */
666REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
667{
668 VM_ASSERT_EMT(pVM);
669 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
670 {
671 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
672 return VINF_SUCCESS;
673 }
674 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
675 return VERR_REM_NO_MORE_BP_SLOTS;
676}
677
678
679/**
680 * Clears a breakpoint set by REMR3BreakpointSet().
681 *
682 * @returns VBox status code.
683 * @param pVM The VM handle.
684 * @param Address The breakpoint address.
685 * @thread The emulation thread.
686 */
687REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
688{
689 VM_ASSERT_EMT(pVM);
690 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
691 {
692 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
693 return VINF_SUCCESS;
694 }
695 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
696 return VERR_REM_BP_NOT_FOUND;
697}
698
699
700/**
701 * Emulate an instruction.
702 *
703 * This function executes one instruction without letting anyone
704 * interrupt it. This is intended for being called while being in
705 * raw mode and thus will take care of all the state syncing between
706 * REM and the rest.
707 *
708 * @returns VBox status code.
709 * @param pVM VM handle.
710 */
711REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
712{
713 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
714
715 /*
716 * Sync the state and enable single instruction / single stepping.
717 */
718 int rc = REMR3State(pVM);
719 if (VBOX_SUCCESS(rc))
720 {
721 int interrupt_request = pVM->rem.s.Env.interrupt_request;
722 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
723 Assert(!pVM->rem.s.Env.singlestep_enabled);
724#if 1
725
726 /*
727 * Now we set the execute single instruction flag and enter the cpu_exec loop.
728 */
729 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
730 rc = cpu_exec(&pVM->rem.s.Env);
731 switch (rc)
732 {
733 /*
734 * Executed without anything out of the way happening.
735 */
736 case EXCP_SINGLE_INSTR:
737 rc = VINF_EM_RESCHEDULE;
738 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
739 break;
740
741 /*
742 * If we take a trap or start servicing a pending interrupt, we might end up here.
743 * (Timer thread or some other thread wishing EMT's attention.)
744 */
745 case EXCP_INTERRUPT:
746 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
747 rc = VINF_EM_RESCHEDULE;
748 break;
749
750 /*
751 * Single step, we assume!
752 * If there was a breakpoint there we're fucked now.
753 */
754 case EXCP_DEBUG:
755 {
756 /* breakpoint or single step? */
757 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
758 int iBP;
759 rc = VINF_EM_DBG_STEPPED;
760 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
761 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
762 {
763 rc = VINF_EM_DBG_BREAKPOINT;
764 break;
765 }
766 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
767 break;
768 }
769
770 /*
771 * hlt instruction.
772 */
773 case EXCP_HLT:
774 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
775 rc = VINF_EM_HALT;
776 break;
777
778 /*
779 * Switch to RAW-mode.
780 */
781 case EXCP_EXECUTE_RAW:
782 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
783 rc = VINF_EM_RESCHEDULE_RAW;
784 break;
785
786 /*
787 * Switch to hardware accelerated RAW-mode.
788 */
789 case EXCP_EXECUTE_HWACC:
790 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
791 rc = VINF_EM_RESCHEDULE_HWACC;
792 break;
793
794 /*
795 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
796 */
797 case EXCP_RC:
798 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
799 rc = pVM->rem.s.rc;
800 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
801 break;
802
803 /*
804 * Figure out the rest when they arrive....
805 */
806 default:
807 AssertMsgFailed(("rc=%d\n", rc));
808 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
809 rc = VINF_EM_RESCHEDULE;
810 break;
811 }
812
813 /*
814 * Switch back the state.
815 */
816#else
817 pVM->rem.s.Env.interrupt_request = 0;
818 cpu_single_step(&pVM->rem.s.Env, 1);
819
820 /*
821 * Execute and handle the return code.
822 * We execute without enabling the cpu tick, so on success we'll
823 * just flip it on and off to make sure it moves.
824 *
825 * (We do not use emulate_single_instr() because that doesn't enter the
826 * right way in will cause serious trouble if a longjmp was attempted.)
827 */
828 #ifdef DEBUG_bird
829 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
830 #endif
831 int cTimesMax = 16384;
832 uint32_t eip = pVM->rem.s.Env.eip;
833 do
834 {
835 rc = cpu_exec(&pVM->rem.s.Env);
836 } while ( eip == pVM->rem.s.Env.eip
837 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
838 && --cTimesMax > 0);
839 switch (rc)
840 {
841 /*
842 * Single step, we assume!
843 * If there was a breakpoint there we're fucked now.
844 */
845 case EXCP_DEBUG:
846 {
847 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
848 rc = VINF_EM_RESCHEDULE;
849 break;
850 }
851
852 /*
853 * We cannot be interrupted!
854 */
855 case EXCP_INTERRUPT:
856 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
857 rc = VERR_INTERNAL_ERROR;
858 break;
859
860 /*
861 * hlt instruction.
862 */
863 case EXCP_HLT:
864 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
865 rc = VINF_EM_HALT;
866 break;
867
868 /*
869 * Switch to RAW-mode.
870 */
871 case EXCP_EXECUTE_RAW:
872 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
873 rc = VINF_EM_RESCHEDULE_RAW;
874 break;
875
876 /*
877 * Switch to hardware accelerated RAW-mode.
878 */
879 case EXCP_EXECUTE_HWACC:
880 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
881 rc = VINF_EM_RESCHEDULE_HWACC;
882 break;
883
884 /*
885 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
886 */
887 case EXCP_RC:
888 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
889 rc = pVM->rem.s.rc;
890 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
891 break;
892
893 /*
894 * Figure out the rest when they arrive....
895 */
896 default:
897 AssertMsgFailed(("rc=%d\n", rc));
898 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
899 rc = VINF_SUCCESS;
900 break;
901 }
902
903 /*
904 * Switch back the state.
905 */
906 cpu_single_step(&pVM->rem.s.Env, 0);
907#endif
908 pVM->rem.s.Env.interrupt_request = interrupt_request;
909 int rc2 = REMR3StateBack(pVM);
910 AssertRC(rc2);
911 }
912
913 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%08x)\n",
914 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
915 return rc;
916}
917
918
919/**
920 * Runs code in recompiled mode.
921 *
922 * Before calling this function the REM state needs to be in sync with
923 * the VM. Call REMR3State() to perform the sync. It's only necessary
924 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
925 * and after calling REMR3StateBack().
926 *
927 * @returns VBox status code.
928 *
929 * @param pVM VM Handle.
930 */
931REMR3DECL(int) REMR3Run(PVM pVM)
932{
933 Log2(("REMR3Run: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
934 Assert(pVM->rem.s.fInREM);
935////Keyboard / tb stuff:
936//if ( pVM->rem.s.Env.segs[R_CS].selector == 0xf000
937// && pVM->rem.s.Env.eip >= 0xe860
938// && pVM->rem.s.Env.eip <= 0xe880)
939// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
940////A20:
941//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x9020
942// && pVM->rem.s.Env.eip >= 0x970
943// && pVM->rem.s.Env.eip <= 0x9a0)
944// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
945////Speaker (port 61h)
946//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x0010
947// && ( (pVM->rem.s.Env.eip >= 0x90278c10 && pVM->rem.s.Env.eip <= 0x90278c30)
948// || (pVM->rem.s.Env.eip >= 0x9010e250 && pVM->rem.s.Env.eip <= 0x9010e260)
949// )
950// )
951// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
952//DBGFR3InfoLog(pVM, "timers", NULL);
953
954
955 int rc = cpu_exec(&pVM->rem.s.Env);
956 switch (rc)
957 {
958 /*
959 * This happens when the execution was interrupted
960 * by an external event, like pending timers.
961 */
962 case EXCP_INTERRUPT:
963 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
964 rc = VINF_SUCCESS;
965 break;
966
967 /*
968 * hlt instruction.
969 */
970 case EXCP_HLT:
971 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
972 rc = VINF_EM_HALT;
973 break;
974
975 /*
976 * Breakpoint/single step.
977 */
978 case EXCP_DEBUG:
979 {
980#if 0//def DEBUG_bird
981 static int iBP = 0;
982 printf("howdy, breakpoint! iBP=%d\n", iBP);
983 switch (iBP)
984 {
985 case 0:
986 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
987 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
988 //pVM->rem.s.Env.interrupt_request = 0;
989 //pVM->rem.s.Env.exception_index = -1;
990 //g_fInterruptDisabled = 1;
991 rc = VINF_SUCCESS;
992 asm("int3");
993 break;
994 default:
995 asm("int3");
996 break;
997 }
998 iBP++;
999#else
1000 /* breakpoint or single step? */
1001 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1002 int iBP;
1003 rc = VINF_EM_DBG_STEPPED;
1004 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1005 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1006 {
1007 rc = VINF_EM_DBG_BREAKPOINT;
1008 break;
1009 }
1010 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1011#endif
1012 break;
1013 }
1014
1015 /*
1016 * Switch to RAW-mode.
1017 */
1018 case EXCP_EXECUTE_RAW:
1019 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1020 rc = VINF_EM_RESCHEDULE_RAW;
1021 break;
1022
1023 /*
1024 * Switch to hardware accelerated RAW-mode.
1025 */
1026 case EXCP_EXECUTE_HWACC:
1027 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1028 rc = VINF_EM_RESCHEDULE_HWACC;
1029 break;
1030
1031 /*
1032 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
1033 */
1034 case EXCP_RC:
1035 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1036 rc = pVM->rem.s.rc;
1037 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1038 break;
1039
1040 /*
1041 * Figure out the rest when they arrive....
1042 */
1043 default:
1044 AssertMsgFailed(("rc=%d\n", rc));
1045 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1046 rc = VINF_SUCCESS;
1047 break;
1048 }
1049
1050 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%08x)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1051 return rc;
1052}
1053
1054
1055/**
1056 * Check if the cpu state is suitable for Raw execution.
1057 *
1058 * @returns boolean
1059 * @param env The CPU env struct.
1060 * @param eip The EIP to check this for (might differ from env->eip).
1061 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1062 * @param pExceptionIndex Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1063 *
1064 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1065 */
1066bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, uint32_t *pExceptionIndex)
1067{
1068 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1069 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1070 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1071
1072 /* Update counter. */
1073 env->pVM->rem.s.cCanExecuteRaw++;
1074
1075 if (HWACCMIsEnabled(env->pVM))
1076 {
1077 env->state |= CPU_RAW_HWACC;
1078
1079 /*
1080 * Create partial context for HWACCMR3CanExecuteGuest
1081 */
1082 CPUMCTX Ctx;
1083 Ctx.cr0 = env->cr[0];
1084 Ctx.cr3 = env->cr[3];
1085 Ctx.cr4 = env->cr[4];
1086
1087 Ctx.tr = env->tr.selector;
1088 Ctx.trHid.u32Base = (uint32_t)env->tr.base;
1089 Ctx.trHid.u32Limit = env->tr.limit;
1090 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1091
1092 Ctx.idtr.cbIdt = env->idt.limit;
1093 Ctx.idtr.pIdt = (uint32_t)env->idt.base;
1094
1095 Ctx.eflags.u32 = env->eflags;
1096
1097 Ctx.cs = env->segs[R_CS].selector;
1098 Ctx.csHid.u32Base = (uint32_t)env->segs[R_CS].base;
1099 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1100 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1101
1102 Ctx.ss = env->segs[R_SS].selector;
1103 Ctx.ssHid.u32Base = (uint32_t)env->segs[R_SS].base;
1104 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1105 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1106
1107 /* Hardware accelerated raw-mode:
1108 *
1109 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1110 */
1111 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1112 {
1113 *pExceptionIndex = EXCP_EXECUTE_HWACC;
1114 return true;
1115 }
1116 return false;
1117 }
1118
1119 /*
1120 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1121 * or 32 bits protected mode ring 0 code
1122 *
1123 * The tests are ordered by the likelyhood of being true during normal execution.
1124 */
1125 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1126 {
1127 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1128 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1129 return false;
1130 }
1131
1132#ifndef VBOX_RAW_V86
1133 if (fFlags & VM_MASK) {
1134 STAM_COUNTER_INC(&gStatRefuseVM86);
1135 Log2(("raw mode refused: VM_MASK\n"));
1136 return false;
1137 }
1138#endif
1139
1140 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1141 {
1142#ifndef DEBUG_bird
1143 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1144#endif
1145 return false;
1146 }
1147
1148 if (env->singlestep_enabled)
1149 {
1150 //Log2(("raw mode refused: Single step\n"));
1151 return false;
1152 }
1153
1154 if (env->nb_breakpoints > 0)
1155 {
1156 //Log2(("raw mode refused: Breakpoints\n"));
1157 return false;
1158 }
1159
1160 uint32_t u32CR0 = env->cr[0];
1161 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1162 {
1163 STAM_COUNTER_INC(&gStatRefusePaging);
1164 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1165 return false;
1166 }
1167
1168 if (env->cr[4] & CR4_PAE_MASK)
1169 {
1170 STAM_COUNTER_INC(&gStatRefusePAE);
1171 //Log2(("raw mode refused: PAE\n"));
1172 return false;
1173 }
1174
1175 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1176 {
1177 if (!EMIsRawRing3Enabled(env->pVM))
1178 return false;
1179
1180 if (!(env->eflags & IF_MASK))
1181 {
1182 STAM_COUNTER_INC(&gStatRefuseIF0);
1183 Log2(("raw mode refused: IF (RawR3)\n"));
1184 return false;
1185 }
1186
1187 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1188 {
1189 STAM_COUNTER_INC(&gStatRefuseWP0);
1190 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1191 return false;
1192 }
1193 }
1194 else
1195 {
1196 if (!EMIsRawRing0Enabled(env->pVM))
1197 return false;
1198
1199 // Let's start with pure 32 bits ring 0 code first
1200 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1201 {
1202 STAM_COUNTER_INC(&gStatRefuseCode16);
1203 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1204 return false;
1205 }
1206
1207 // Only R0
1208 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1209 {
1210 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1211 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1212 return false;
1213 }
1214
1215 if (!(u32CR0 & CR0_WP_MASK))
1216 {
1217 STAM_COUNTER_INC(&gStatRefuseWP0);
1218 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1219 return false;
1220 }
1221
1222 if (PATMIsPatchGCAddr(env->pVM, eip))
1223 {
1224 Log2(("raw r0 mode forced: patch code\n"));
1225 *pExceptionIndex = EXCP_EXECUTE_RAW;
1226 return true;
1227 }
1228
1229#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1230 if (!(env->eflags & IF_MASK))
1231 {
1232 STAM_COUNTER_INC(&gStatRefuseIF0);
1233 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1234 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1235 return false;
1236 }
1237#endif
1238
1239 env->state |= CPU_RAW_RING0;
1240 }
1241
1242 /*
1243 * Don't reschedule the first time we're called, because there might be
1244 * special reasons why we're here that is not covered by the above checks.
1245 */
1246 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1247 {
1248 Log2(("raw mode refused: first scheduling\n"));
1249 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1250 return false;
1251 }
1252
1253 Assert(PGMPhysIsA20Enabled(env->pVM));
1254 *pExceptionIndex = EXCP_EXECUTE_RAW;
1255 return true;
1256}
1257
1258
1259/**
1260 * Fetches a code byte.
1261 *
1262 * @returns Success indicator (bool) for ease of use.
1263 * @param env The CPU environment structure.
1264 * @param GCPtrInstr Where to fetch code.
1265 * @param pu8Byte Where to store the byte on success
1266 */
1267bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1268{
1269 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1270 if (VBOX_SUCCESS(rc))
1271 return true;
1272 return false;
1273}
1274
1275
1276/**
1277 * Flush (or invalidate if you like) page table/dir entry.
1278 *
1279 * (invlpg instruction; tlb_flush_page)
1280 *
1281 * @param env Pointer to cpu environment.
1282 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1283 */
1284void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1285{
1286 PVM pVM = env->pVM;
1287
1288 /*
1289 * When we're replaying invlpg instructions or restoring a saved
1290 * state we disable this path.
1291 */
1292 if (pVM->rem.s.fIgnoreInvlPg)
1293 return;
1294 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1295
1296 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1297
1298 /*
1299 * Update the control registers before calling PGMFlushPage.
1300 */
1301 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1302 pCtx->cr0 = env->cr[0];
1303 pCtx->cr3 = env->cr[3];
1304 pCtx->cr4 = env->cr[4];
1305
1306 /*
1307 * Let PGM do the rest.
1308 */
1309 int rc = PGMInvalidatePage(pVM, GCPtr);
1310 if (VBOX_FAILURE(rc))
1311 {
1312 AssertMsgFailed(("remR3FlushPage %x %x %x %d failed!!\n", GCPtr));
1313 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1314 }
1315 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1316}
1317
1318/**
1319 * Set page table/dir entry. (called from tlb_set_page)
1320 *
1321 * @param env Pointer to cpu environment.
1322 */
1323void remR3SetPage(CPUState *env, CPUTLBEntry *pRead, CPUTLBEntry *pWrite, int prot, int is_user)
1324{
1325 uint32_t virt_addr, addend;
1326
1327 Log2(("tlb_set_page_raw read (%x-%x) write (%x-%x) prot %x is_user %d\n", pRead->address, pRead->addend, pWrite->address, pWrite->addend, prot, is_user));
1328
1329 if (prot & PAGE_WRITE)
1330 {
1331 addend = pWrite->addend;
1332 virt_addr = pWrite->address;
1333 }
1334 else
1335 if (prot & PAGE_READ)
1336 {
1337 addend = pRead->addend;
1338 virt_addr = pRead->address;
1339 }
1340 else
1341 {
1342 // Should never happen!
1343 AssertMsgFailed(("tlb_set_page_raw unexpected protection flags %x\n", prot));
1344 return;
1345 }
1346
1347 // Clear IO_* flags (TODO: are they actually useful for us??)
1348 virt_addr &= ~0xFFF;
1349
1350 /*
1351 * Update the control registers before calling PGMFlushPage.
1352 */
1353 PCPUMCTX pCtx = (PCPUMCTX)env->pVM->rem.s.pCtx;
1354 pCtx->cr0 = env->cr[0];
1355 pCtx->cr3 = env->cr[3];
1356 pCtx->cr4 = env->cr[4];
1357
1358 /*
1359 * Let PGM do the rest.
1360 */
1361 int rc = PGMInvalidatePage(env->pVM, (RTGCPTR)virt_addr);
1362 if (VBOX_FAILURE(rc))
1363 {
1364 AssertMsgFailed(("RAWEx_SetPageEntry %x %x %d failed!!\n", virt_addr, prot, is_user));
1365 VM_FF_SET(env->pVM, VM_FF_PGM_SYNC_CR3);
1366 }
1367}
1368
1369/**
1370 * Called from tlb_protect_code in order to write monitor a code page.
1371 *
1372 * @param env Pointer to the CPU environment.
1373 * @param GCPtr Code page to monitor
1374 */
1375void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1376{
1377 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1378 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1379 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1380 && !(env->eflags & VM_MASK) /* no V86 mode */
1381 && !HWACCMIsEnabled(env->pVM))
1382 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1383}
1384
1385/**
1386 * Called when the CPU is initialized, any of the CRx registers are changed or
1387 * when the A20 line is modified.
1388 *
1389 * @param env Pointer to the CPU environment.
1390 * @param fGlobal Set if the flush is global.
1391 */
1392void remR3FlushTLB(CPUState *env, bool fGlobal)
1393{
1394 PVM pVM = env->pVM;
1395
1396 /*
1397 * When we're replaying invlpg instructions or restoring a saved
1398 * state we disable this path.
1399 */
1400 if (pVM->rem.s.fIgnoreCR3Load)
1401 return;
1402
1403 /*
1404 * The caller doesn't check cr4, so we have to do that for ourselves.
1405 */
1406 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1407 fGlobal = true;
1408 Log(("remR3FlushTLB: CR0=%VGp CR3=%VGp CR4=%VGp %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1409
1410 /*
1411 * Update the control registers before calling PGMR3FlushTLB.
1412 */
1413 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1414 pCtx->cr0 = env->cr[0];
1415 pCtx->cr3 = env->cr[3];
1416 pCtx->cr4 = env->cr[4];
1417
1418 /*
1419 * Let PGM do the rest.
1420 */
1421 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1422}
1423
1424
1425/**
1426 * Called when any of the cr0, cr4 or efer registers is updated.
1427 *
1428 * @param env Pointer to the CPU environment.
1429 */
1430void remR3ChangeCpuMode(CPUState *env)
1431{
1432 int rc;
1433 PVM pVM = env->pVM;
1434
1435 /*
1436 * When we're replaying loads or restoring a saved
1437 * state this path is disabled.
1438 */
1439 if (pVM->rem.s.fIgnoreCpuMode)
1440 return;
1441
1442 /*
1443 * Update the control registers before calling PGMR3ChangeMode()
1444 * as it may need to map whatever cr3 is pointing to.
1445 */
1446 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1447 pCtx->cr0 = env->cr[0];
1448 pCtx->cr3 = env->cr[3];
1449 pCtx->cr4 = env->cr[4];
1450
1451#ifdef TARGET_X86_64
1452 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1453 if (rc != VINF_SUCCESS)
1454 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1455#else
1456 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1457 if (rc != VINF_SUCCESS)
1458 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1459#endif
1460}
1461
1462
1463/**
1464 * Called from compiled code to run dma.
1465 *
1466 * @param env Pointer to the CPU environment.
1467 */
1468void remR3DmaRun(CPUState *env)
1469{
1470 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1471 PDMR3DmaRun(env->pVM);
1472 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1473}
1474
1475/**
1476 * Called from compiled code to schedule pending timers in VMM
1477 *
1478 * @param env Pointer to the CPU environment.
1479 */
1480void remR3TimersRun(CPUState *env)
1481{
1482 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1483 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1484 TMR3TimerQueuesDo(env->pVM);
1485 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1486 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1487}
1488
1489/**
1490 * Record trap occurance
1491 *
1492 * @returns VBox status code
1493 * @param env Pointer to the CPU environment.
1494 * @param uTrap Trap nr
1495 * @param uErrorCode Error code
1496 * @param pvNextEIP Next EIP
1497 */
1498int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1499{
1500 PVM pVM = (PVM)env->pVM;
1501#ifdef VBOX_WITH_STATISTICS
1502 static STAMCOUNTER aStatTrap[255];
1503 static bool aRegisters[ELEMENTS(aStatTrap)];
1504#endif
1505
1506#ifdef VBOX_WITH_STATISTICS
1507 if (uTrap < 255)
1508 {
1509 if (!aRegisters[uTrap])
1510 {
1511 aRegisters[uTrap] = true;
1512 char szStatName[64];
1513 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1514 STAM_REG(env->pVM, &aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1515 }
1516 STAM_COUNTER_INC(&aStatTrap[uTrap]);
1517 }
1518#endif
1519 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1520 if(uTrap < 0x20)
1521 {
1522 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1523
1524 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 128)
1525 {
1526 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1527 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1528 return VERR_REM_TOO_MANY_TRAPS;
1529 }
1530 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1531 pVM->rem.s.cPendingExceptions = 1;
1532 pVM->rem.s.uPendingException = uTrap;
1533 pVM->rem.s.uPendingExcptEIP = env->eip;
1534 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1535 }
1536 else
1537 {
1538 pVM->rem.s.cPendingExceptions = 0;
1539 pVM->rem.s.uPendingException = uTrap;
1540 pVM->rem.s.uPendingExcptEIP = env->eip;
1541 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1542 }
1543 return VINF_SUCCESS;
1544}
1545
1546/*
1547 * Clear current active trap
1548 *
1549 * @param pVM VM Handle.
1550 */
1551void remR3TrapClear(PVM pVM)
1552{
1553 pVM->rem.s.cPendingExceptions = 0;
1554 pVM->rem.s.uPendingException = 0;
1555 pVM->rem.s.uPendingExcptEIP = 0;
1556 pVM->rem.s.uPendingExcptCR2 = 0;
1557}
1558
1559
1560/**
1561 * Syncs the internal REM state with the VM.
1562 *
1563 * This must be called before REMR3Run() is invoked whenever when the REM
1564 * state is not up to date. Calling it several times in a row is not
1565 * permitted.
1566 *
1567 * @returns VBox status code.
1568 *
1569 * @param pVM VM Handle.
1570 *
1571 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1572 * no do this since the majority of the callers don't want any unnecessary of events
1573 * pending that would immediatly interrupt execution.
1574 */
1575REMR3DECL(int) REMR3State(PVM pVM)
1576{
1577 Assert(!pVM->rem.s.fInREM);
1578 Log2(("REMR3State:\n"));
1579 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1580 register const CPUMCTX *pCtx = pVM->rem.s.pCtx;
1581 register unsigned fFlags;
1582
1583 /*
1584 * Copy the registers which requires no special handling.
1585 */
1586 Assert(R_EAX == 0);
1587 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1588 Assert(R_ECX == 1);
1589 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1590 Assert(R_EDX == 2);
1591 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1592 Assert(R_EBX == 3);
1593 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1594 Assert(R_ESP == 4);
1595 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1596 Assert(R_EBP == 5);
1597 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1598 Assert(R_ESI == 6);
1599 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1600 Assert(R_EDI == 7);
1601 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1602 pVM->rem.s.Env.eip = pCtx->eip;
1603
1604 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1605
1606 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1607
1608 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1609 pVM->rem.s.Env.dr[0] = pCtx->dr0;
1610 pVM->rem.s.Env.dr[1] = pCtx->dr1;
1611 pVM->rem.s.Env.dr[2] = pCtx->dr2;
1612 pVM->rem.s.Env.dr[3] = pCtx->dr3;
1613 pVM->rem.s.Env.dr[4] = pCtx->dr4;
1614 pVM->rem.s.Env.dr[5] = pCtx->dr5;
1615 pVM->rem.s.Env.dr[6] = pCtx->dr6;
1616 pVM->rem.s.Env.dr[7] = pCtx->dr7;
1617
1618 /*
1619 * Replay invlpg?
1620 */
1621 if (pVM->rem.s.cInvalidatedPages)
1622 {
1623 pVM->rem.s.fIgnoreInvlPg = true;
1624 RTUINT i;
1625 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1626 {
1627 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1628 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1629 }
1630 pVM->rem.s.fIgnoreInvlPg = false;
1631 pVM->rem.s.cInvalidatedPages = 0;
1632 }
1633
1634 /*
1635 * Registers which are seldomly changed and require special handling / order when changed.
1636 */
1637 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1638 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1639 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1640 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR))
1641 {
1642 if (fFlags & CPUM_CHANGED_FPU_REM)
1643 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1644
1645 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1646 {
1647 pVM->rem.s.fIgnoreCR3Load = true;
1648 tlb_flush(&pVM->rem.s.Env, true);
1649 pVM->rem.s.fIgnoreCR3Load = false;
1650 }
1651
1652 if (fFlags & CPUM_CHANGED_CR4)
1653 {
1654 pVM->rem.s.fIgnoreCR3Load = true;
1655 pVM->rem.s.fIgnoreCpuMode = true;
1656 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1657 pVM->rem.s.fIgnoreCpuMode = false;
1658 pVM->rem.s.fIgnoreCR3Load = false;
1659 }
1660
1661 if (fFlags & CPUM_CHANGED_CR0)
1662 {
1663 pVM->rem.s.fIgnoreCR3Load = true;
1664 pVM->rem.s.fIgnoreCpuMode = true;
1665 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1666 pVM->rem.s.fIgnoreCpuMode = false;
1667 pVM->rem.s.fIgnoreCR3Load = false;
1668 }
1669
1670 if (fFlags & CPUM_CHANGED_CR3)
1671 {
1672 pVM->rem.s.fIgnoreCR3Load = true;
1673 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1674 pVM->rem.s.fIgnoreCR3Load = false;
1675 }
1676
1677 if (fFlags & CPUM_CHANGED_GDTR)
1678 {
1679 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1680 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1681 }
1682
1683 if (fFlags & CPUM_CHANGED_IDTR)
1684 {
1685 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1686 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1687 }
1688
1689 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1690 {
1691 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1692 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1693 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1694 }
1695
1696 if (fFlags & CPUM_CHANGED_LDTR)
1697 {
1698 if (fFlags & CPUM_CHANGED_HIDDEN_SEL_REGS)
1699 {
1700 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1701 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u32Base;
1702 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1703 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1704 }
1705 else
1706 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1707 }
1708
1709 if (fFlags & CPUM_CHANGED_TR)
1710 {
1711 if (fFlags & CPUM_CHANGED_HIDDEN_SEL_REGS)
1712 {
1713 pVM->rem.s.Env.tr.selector = pCtx->tr;
1714 pVM->rem.s.Env.tr.base = pCtx->trHid.u32Base;
1715 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1716 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1717 }
1718 else
1719 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1720
1721 /** @note do_interrupt will fault if the busy flag is still set.... */
1722 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1723 }
1724 }
1725
1726 /*
1727 * Update selector registers.
1728 * This must be done *after* we've synced gdt, ldt and crX registers
1729 * since we're reading the GDT/LDT om sync_seg. This will happen with
1730 * saved state which takes a quick dip into rawmode for instance.
1731 */
1732 /*
1733 * Stack; Note first check this one as the CPL might have changed. The
1734 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1735 */
1736
1737 if (fFlags & CPUM_CHANGED_HIDDEN_SEL_REGS)
1738 {
1739 /* The hidden selector registers are valid in the CPU context. */
1740 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1741
1742 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u32Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1743 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u32Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1744 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u32Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1745 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u32Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1746 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u32Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1747 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u32Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1748
1749 /* Set current CPL. */
1750 if (pCtx->eflags.Bits.u1VM == 1)
1751 cpu_x86_set_cpl(&pVM->rem.s.Env, 3);
1752 else
1753 cpu_x86_set_cpl(&pVM->rem.s.Env, pCtx->ss & 3);
1754 }
1755 else
1756 {
1757 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1758 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1759 {
1760 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1761
1762 cpu_x86_set_cpl(&pVM->rem.s.Env, (pCtx->eflags.Bits.u1VM) ? 3 : (pCtx->ss & 3));
1763 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1764#ifdef VBOX_WITH_STATISTICS
1765 if (pVM->rem.s.Env.segs[R_SS].newselector)
1766 {
1767 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1768 }
1769#endif
1770 }
1771 else
1772 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1773
1774 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1775 {
1776 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1777 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1778#ifdef VBOX_WITH_STATISTICS
1779 if (pVM->rem.s.Env.segs[R_ES].newselector)
1780 {
1781 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1782 }
1783#endif
1784 }
1785 else
1786 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1787
1788 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1789 {
1790 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1791 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1792#ifdef VBOX_WITH_STATISTICS
1793 if (pVM->rem.s.Env.segs[R_CS].newselector)
1794 {
1795 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1796 }
1797#endif
1798 }
1799 else
1800 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1801
1802 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1803 {
1804 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1805 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1806#ifdef VBOX_WITH_STATISTICS
1807 if (pVM->rem.s.Env.segs[R_DS].newselector)
1808 {
1809 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1810 }
1811#endif
1812 }
1813 else
1814 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1815
1816 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1817 * be the same but not the base/limit. */
1818 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1819 {
1820 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1821 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1822#ifdef VBOX_WITH_STATISTICS
1823 if (pVM->rem.s.Env.segs[R_FS].newselector)
1824 {
1825 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1826 }
1827#endif
1828 }
1829 else
1830 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1831
1832 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1833 {
1834 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1835 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1836#ifdef VBOX_WITH_STATISTICS
1837 if (pVM->rem.s.Env.segs[R_GS].newselector)
1838 {
1839 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1840 }
1841#endif
1842 }
1843 else
1844 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1845 }
1846
1847 /*
1848 * Check for traps.
1849 */
1850 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1851 TRPMEVENT enmType;
1852 uint8_t u8TrapNo;
1853 int rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
1854 if (VBOX_SUCCESS(rc))
1855 {
1856 #ifdef DEBUG
1857 if (u8TrapNo == 0x80)
1858 {
1859 remR3DumpLnxSyscall(pVM);
1860 remR3DumpOBsdSyscall(pVM);
1861 }
1862 #endif
1863
1864 pVM->rem.s.Env.exception_index = u8TrapNo;
1865 if (enmType != TRPM_SOFTWARE_INT)
1866 {
1867 pVM->rem.s.Env.exception_is_int = 0;
1868 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
1869 }
1870 else
1871 {
1872 /*
1873 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
1874 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
1875 * for int03 and into.
1876 */
1877 pVM->rem.s.Env.exception_is_int = 1;
1878 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 2;
1879 /* int 3 may be generated by one-byte 0xcc */
1880 if (u8TrapNo == 3)
1881 {
1882 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xcc)
1883 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1884 }
1885 /* int 4 may be generated by one-byte 0xce */
1886 else if (u8TrapNo == 4)
1887 {
1888 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xce)
1889 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1890 }
1891 }
1892
1893 /* get error code and cr2 if needed. */
1894 switch (u8TrapNo)
1895 {
1896 case 0x0e:
1897 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
1898 /* fallthru */
1899 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
1900 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
1901 break;
1902
1903 case 0x11: case 0x08:
1904 default:
1905 pVM->rem.s.Env.error_code = 0;
1906 break;
1907 }
1908
1909 /*
1910 * We can now reset the active trap since the recompiler is gonna have a go at it.
1911 */
1912 rc = TRPMResetTrap(pVM);
1913 AssertRC(rc);
1914 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
1915 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
1916 }
1917
1918 /*
1919 * Clear old interrupt request flags; Check for pending hardware interrupts.
1920 * (See @remark for why we don't check for other FFs.)
1921 */
1922 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
1923 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
1924 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
1925 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
1926
1927 /*
1928 * We're now in REM mode.
1929 */
1930 pVM->rem.s.fInREM = true;
1931 pVM->rem.s.cCanExecuteRaw = 0;
1932 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
1933 Log2(("REMR3State: returns VINF_SUCCESS\n"));
1934 return VINF_SUCCESS;
1935}
1936
1937
1938/**
1939 * Syncs back changes in the REM state to the the VM state.
1940 *
1941 * This must be called after invoking REMR3Run().
1942 * Calling it several times in a row is not permitted.
1943 *
1944 * @returns VBox status code.
1945 *
1946 * @param pVM VM Handle.
1947 */
1948REMR3DECL(int) REMR3StateBack(PVM pVM)
1949{
1950 Log2(("REMR3StateBack:\n"));
1951 Assert(pVM->rem.s.fInREM);
1952 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
1953 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
1954
1955 /*
1956 * Copy back the registers.
1957 * This is done in the order they are declared in the CPUMCTX structure.
1958 */
1959
1960 /** @todo FOP */
1961 /** @todo FPUIP */
1962 /** @todo CS */
1963 /** @todo FPUDP */
1964 /** @todo DS */
1965 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
1966 pCtx->fpu.MXCSR = 0;
1967 pCtx->fpu.MXCSR_MASK = 0;
1968
1969 /** @todo check if FPU/XMM was actually used in the recompiler */
1970 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
1971//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
1972
1973 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
1974 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
1975 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
1976 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
1977 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
1978 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
1979 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
1980
1981 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
1982 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
1983
1984#ifdef VBOX_WITH_STATISTICS
1985 if (pVM->rem.s.Env.segs[R_SS].newselector)
1986 {
1987 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
1988 }
1989 if (pVM->rem.s.Env.segs[R_GS].newselector)
1990 {
1991 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
1992 }
1993 if (pVM->rem.s.Env.segs[R_FS].newselector)
1994 {
1995 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
1996 }
1997 if (pVM->rem.s.Env.segs[R_ES].newselector)
1998 {
1999 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2000 }
2001 if (pVM->rem.s.Env.segs[R_DS].newselector)
2002 {
2003 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2004 }
2005 if (pVM->rem.s.Env.segs[R_CS].newselector)
2006 {
2007 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2008 }
2009#endif
2010 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2011 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2012 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2013 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2014 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2015
2016 pCtx->eip = pVM->rem.s.Env.eip;
2017 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2018
2019 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2020 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2021 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2022 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2023
2024 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2025 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2026 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2027 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2028 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2029 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2030 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2031 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2032
2033 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2034 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2035 {
2036 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2037 STAM_COUNTER_INC(&gStatREMGDTChange);
2038 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2039 }
2040
2041 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2042 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2043 {
2044 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2045 STAM_COUNTER_INC(&gStatREMIDTChange);
2046 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2047 }
2048
2049 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2050 {
2051 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2052 STAM_COUNTER_INC(&gStatREMLDTRChange);
2053 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2054 }
2055 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2056 {
2057 pCtx->tr = pVM->rem.s.Env.tr.selector;
2058 STAM_COUNTER_INC(&gStatREMTRChange);
2059 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2060 }
2061
2062 /** @todo These values could still be out of sync! */
2063 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2064 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2065 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2066 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2067
2068 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2069 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2070 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2071
2072 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2073 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2074 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2075
2076 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2077 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2078 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2079
2080 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2081 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2082 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2083
2084 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2085 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2086 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2087
2088 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2089 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2090 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2091
2092 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2093 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2094 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2095
2096 /* Sysenter MSR */
2097 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2098 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2099 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2100
2101 remR3TrapClear(pVM);
2102
2103 /*
2104 * Check for traps.
2105 */
2106 if ( pVM->rem.s.Env.exception_index >= 0
2107 && pVM->rem.s.Env.exception_index < 256)
2108 {
2109 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2110 int rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int);
2111 AssertRC(rc);
2112 switch (pVM->rem.s.Env.exception_index)
2113 {
2114 case 0x0e:
2115 TRPMSetFaultAddress(pVM, pCtx->cr2);
2116 /* fallthru */
2117 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2118 case 0x11: case 0x08: /* 0 */
2119 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2120 break;
2121 }
2122
2123 }
2124
2125 /*
2126 * We're not longer in REM mode.
2127 */
2128 pVM->rem.s.fInREM = false;
2129 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2130 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2131 return VINF_SUCCESS;
2132}
2133
2134
2135/**
2136 * This is called by the disassembler when it wants to update the cpu state
2137 * before for instance doing a register dump.
2138 */
2139static void remR3StateUpdate(PVM pVM)
2140{
2141 Assert(pVM->rem.s.fInREM);
2142 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2143
2144 /*
2145 * Copy back the registers.
2146 * This is done in the order they are declared in the CPUMCTX structure.
2147 */
2148
2149 /** @todo FOP */
2150 /** @todo FPUIP */
2151 /** @todo CS */
2152 /** @todo FPUDP */
2153 /** @todo DS */
2154 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2155 pCtx->fpu.MXCSR = 0;
2156 pCtx->fpu.MXCSR_MASK = 0;
2157
2158 /** @todo check if FPU/XMM was actually used in the recompiler */
2159 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2160//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2161
2162 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2163 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2164 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2165 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2166 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2167 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2168 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2169
2170 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2171 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2172
2173 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2174 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2175 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2176 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2177 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2178
2179 pCtx->eip = pVM->rem.s.Env.eip;
2180 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2181
2182 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2183 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2184 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2185 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2186
2187 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2188 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2189 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2190 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2191 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2192 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2193 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2194 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2195
2196 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2197 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2198 {
2199 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2200 STAM_COUNTER_INC(&gStatREMGDTChange);
2201 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2202 }
2203
2204 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2205 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2206 {
2207 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2208 STAM_COUNTER_INC(&gStatREMIDTChange);
2209 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2210 }
2211
2212 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2213 {
2214 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2215 STAM_COUNTER_INC(&gStatREMLDTRChange);
2216 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2217 }
2218 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2219 {
2220 pCtx->tr = pVM->rem.s.Env.tr.selector;
2221 STAM_COUNTER_INC(&gStatREMTRChange);
2222 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2223 }
2224
2225 /** @todo These values could still be out of sync! */
2226 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2227 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2228 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2229 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2230
2231 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2232 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2233 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2234
2235 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2236 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2237 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2238
2239 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2240 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2241 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2242
2243 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2244 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2245 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2246
2247 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2248 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2249 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2250
2251 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2252 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2253 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2254
2255 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2256 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2257 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2258
2259 /* Sysenter MSR */
2260 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2261 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2262 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2263}
2264
2265
2266/**
2267 * Update the VMM state information if we're currently in REM.
2268 *
2269 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2270 * we're currently executing in REM and the VMM state is invalid. This method will of
2271 * course check that we're executing in REM before syncing any data over to the VMM.
2272 *
2273 * @param pVM The VM handle.
2274 */
2275REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2276{
2277 if (pVM->rem.s.fInREM)
2278 remR3StateUpdate(pVM);
2279}
2280
2281
2282#undef LOG_GROUP
2283#define LOG_GROUP LOG_GROUP_REM
2284
2285
2286/**
2287 * Notify the recompiler about Address Gate 20 state change.
2288 *
2289 * This notification is required since A20 gate changes are
2290 * initialized from a device driver and the VM might just as
2291 * well be in REM mode as in RAW mode.
2292 *
2293 * @param pVM VM handle.
2294 * @param fEnable True if the gate should be enabled.
2295 * False if the gate should be disabled.
2296 */
2297REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2298{
2299 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2300 VM_ASSERT_EMT(pVM);
2301 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2302}
2303
2304
2305/**
2306 * Replays the invalidated recorded pages.
2307 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2308 *
2309 * @param pVM VM handle.
2310 */
2311REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2312{
2313 VM_ASSERT_EMT(pVM);
2314
2315 /*
2316 * Sync the required registers.
2317 */
2318 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2319 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2320 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2321 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2322
2323 /*
2324 * Replay the flushes.
2325 */
2326 pVM->rem.s.fIgnoreInvlPg = true;
2327 RTUINT i;
2328 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2329 {
2330 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2331 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2332 }
2333 pVM->rem.s.fIgnoreInvlPg = false;
2334 pVM->rem.s.cInvalidatedPages = 0;
2335}
2336
2337
2338/**
2339 * Replays the invalidated recorded pages.
2340 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2341 *
2342 * @param pVM VM handle.
2343 */
2344REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2345{
2346 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2347 VM_ASSERT_EMT(pVM);
2348
2349 /*
2350 * Replay the flushes.
2351 */
2352 RTUINT i;
2353 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2354 pVM->rem.s.cHandlerNotifications = 0;
2355 for (i = 0; i < c; i++)
2356 {
2357 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2358 switch (pRec->enmKind)
2359 {
2360 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2361 REMR3NotifyHandlerPhysicalRegister(pVM,
2362 pRec->u.PhysicalRegister.enmType,
2363 pRec->u.PhysicalRegister.GCPhys,
2364 pRec->u.PhysicalRegister.cb,
2365 pRec->u.PhysicalRegister.fHasHCHandler);
2366 break;
2367
2368 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2369 REMR3NotifyHandlerPhysicalDeregister(pVM,
2370 pRec->u.PhysicalDeregister.enmType,
2371 pRec->u.PhysicalDeregister.GCPhys,
2372 pRec->u.PhysicalDeregister.cb,
2373 pRec->u.PhysicalDeregister.fHasHCHandler,
2374 pRec->u.PhysicalDeregister.pvHCPtr);
2375 break;
2376
2377 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2378 REMR3NotifyHandlerPhysicalModify(pVM,
2379 pRec->u.PhysicalModify.enmType,
2380 pRec->u.PhysicalModify.GCPhysOld,
2381 pRec->u.PhysicalModify.GCPhysNew,
2382 pRec->u.PhysicalModify.cb,
2383 pRec->u.PhysicalModify.fHasHCHandler,
2384 pRec->u.PhysicalModify.pvHCPtr);
2385 break;
2386
2387 default:
2388 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2389 break;
2390 }
2391 }
2392}
2393
2394
2395/**
2396 * Notify REM about changed code page.
2397 *
2398 * @returns VBox status code.
2399 * @param pVM VM handle.
2400 * @param pvCodePage Code page address
2401 */
2402REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2403{
2404 int rc;
2405 RTGCPHYS PhysGC;
2406 uint64_t flags;
2407
2408 VM_ASSERT_EMT(pVM);
2409
2410 /*
2411 * Get the physical page address.
2412 */
2413 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2414 if (rc == VINF_SUCCESS)
2415 {
2416 /*
2417 * Sync the required registers and flush the whole page.
2418 * (Easier to do the whole page than notifying it about each physical
2419 * byte that was changed.
2420 */
2421 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2422 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2423 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2424 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2425
2426 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2427 }
2428 return VINF_SUCCESS;
2429}
2430
2431/**
2432 * Notification about a successful MMR3PhysRegister() call.
2433 *
2434 * @param pVM VM handle.
2435 * @param GCPhys The physical address the RAM.
2436 * @param cb Size of the memory.
2437 * @param pvRam The HC address of the RAM.
2438 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2439 */
2440REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvRam, unsigned fFlags)
2441{
2442 Log(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2443 VM_ASSERT_EMT(pVM);
2444
2445 /*
2446 * Validate input - we trust the caller.
2447 */
2448 Assert(!GCPhys || pvRam);
2449 Assert(RT_ALIGN_P(pvRam, PAGE_SIZE) == pvRam);
2450 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2451 Assert(cb);
2452 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2453
2454 /*
2455 * Base ram?
2456 */
2457 if (!GCPhys)
2458 {
2459#ifndef PGM_DYNAMIC_RAM_ALLOC
2460 AssertRelease(!phys_ram_base);
2461 phys_ram_base = pvRam;
2462#endif
2463 phys_ram_size = cb;
2464 phys_ram_dirty = MMR3HeapAllocZ(pVM, MM_TAG_REM, cb >> PAGE_SHIFT);
2465 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", cb >> PAGE_SHIFT));
2466 }
2467#ifndef PGM_DYNAMIC_RAM_ALLOC
2468 AssertRelease(phys_ram_base);
2469#endif
2470
2471 /*
2472 * Register the ram.
2473 */
2474#ifdef PGM_DYNAMIC_RAM_ALLOC
2475 if (!GCPhys)
2476 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2477 else
2478 {
2479 uint32_t i;
2480
2481 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2482
2483 AssertRelease(pVM->rem.s.cPhysRegistrations < REM_MAX_PHYS_REGISTRATIONS);
2484 for (i=0;i<pVM->rem.s.cPhysRegistrations;i++)
2485 {
2486 if (pVM->rem.s.aPhysReg[i].GCPhys == GCPhys)
2487 {
2488 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvRam;
2489 pVM->rem.s.aPhysReg[i].cb = cb;
2490 break;
2491 }
2492 }
2493 if (i == pVM->rem.s.cPhysRegistrations)
2494 {
2495 pVM->rem.s.aPhysReg[i].GCPhys = GCPhys;
2496 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvRam;
2497 pVM->rem.s.aPhysReg[i].cb = cb;
2498 pVM->rem.s.cPhysRegistrations++;
2499 }
2500 }
2501#else
2502 cpu_register_physical_memory(GCPhys, cb, ((uintptr_t)pvRam - (uintptr_t)phys_ram_base)
2503 | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2504#endif
2505}
2506
2507
2508/**
2509 * Notification about a successful PGMR3PhysRegisterChunk() call.
2510 *
2511 * @param pVM VM handle.
2512 * @param GCPhys The physical address the RAM.
2513 * @param cb Size of the memory.
2514 * @param pvRam The HC address of the RAM.
2515 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2516 */
2517REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2518{
2519 uint32_t idx;
2520
2521 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2522 VM_ASSERT_EMT(pVM);
2523
2524 /*
2525 * Validate input - we trust the caller.
2526 */
2527 Assert(pvRam);
2528 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2529 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2530 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2531 Assert(fFlags == 0 /* normal RAM */);
2532
2533 if (!pVM->rem.s.paHCVirtToGCPhys)
2534 {
2535 uint32_t size = (_4G >> PGM_DYNAMIC_CHUNK_SHIFT) * sizeof(REMCHUNKINFO);
2536
2537 Assert(phys_ram_size);
2538
2539 pVM->rem.s.paHCVirtToGCPhys = (PREMCHUNKINFO)MMR3HeapAllocZ(pVM, MM_TAG_REM, size);
2540 pVM->rem.s.paGCPhysToHCVirt = (RTHCPTR)MMR3HeapAllocZ(pVM, MM_TAG_REM, (phys_ram_size >> PGM_DYNAMIC_CHUNK_SHIFT)*sizeof(RTHCPTR));
2541 }
2542 pVM->rem.s.paGCPhysToHCVirt[GCPhys >> PGM_DYNAMIC_CHUNK_SHIFT] = pvRam;
2543
2544 idx = (pvRam >> PGM_DYNAMIC_CHUNK_SHIFT);
2545 if (!pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1)
2546 {
2547 pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1 = pvRam;
2548 pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 = GCPhys;
2549 }
2550 else
2551 {
2552 Assert(!pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2);
2553 pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2 = pvRam;
2554 pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 = GCPhys;
2555 }
2556 /* Does the region spawn two chunks? */
2557 if (pvRam & PGM_DYNAMIC_CHUNK_OFFSET_MASK)
2558 {
2559 if (!pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk1)
2560 {
2561 pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk1 = pvRam;
2562 pVM->rem.s.paHCVirtToGCPhys[idx+1].GCPhys1 = GCPhys;
2563 }
2564 else
2565 {
2566 Assert(!pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk2);
2567 pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk2 = pvRam;
2568 pVM->rem.s.paHCVirtToGCPhys[idx+1].GCPhys2 = GCPhys;
2569 }
2570 }
2571 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2572}
2573
2574/**
2575 * Convert GC physical address to HC virt
2576 *
2577 * @returns The HC virt address corresponding to addr.
2578 * @param env The cpu environment.
2579 * @param addr The physical address.
2580 */
2581void *remR3GCPhys2HCVirt(void *env, target_ulong addr)
2582{
2583#ifdef PGM_DYNAMIC_RAM_ALLOC
2584 PVM pVM = ((CPUState *)env)->pVM;
2585 uint32_t i;
2586
2587 /* lookup in pVM->rem.s.aPhysReg array first (for ROM range(s) inside the guest's RAM) */
2588 for (i=0;i<pVM->rem.s.cPhysRegistrations;i++)
2589 {
2590 uint32_t off = addr - pVM->rem.s.aPhysReg[i].GCPhys;
2591 if (off < pVM->rem.s.aPhysReg[i].cb)
2592 {
2593 Log2(("remR3GCPhys2HCVirt: %x -> %x\n", addr, pVM->rem.s.aPhysReg[i].HCVirt + off));
2594 return (void *)(pVM->rem.s.aPhysReg[i].HCVirt + off);
2595 }
2596 }
2597 AssertMsg(addr < phys_ram_size, ("remR3GCPhys2HCVirt: unknown physical address %x\n", addr));
2598 Log2(("remR3GCPhys2HCVirt: %x -> %x\n", addr, pVM->rem.s.paGCPhysToHCVirt[addr >> PGM_DYNAMIC_CHUNK_SHIFT] + (addr & PGM_DYNAMIC_CHUNK_OFFSET_MASK)));
2599 return (void *)(pVM->rem.s.paGCPhysToHCVirt[addr >> PGM_DYNAMIC_CHUNK_SHIFT] + (addr & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
2600#else
2601 return phys_ram_base + addr;
2602#endif
2603}
2604
2605/**
2606 * Convert GC physical address to HC virt
2607 *
2608 * @returns The HC virt address corresponding to addr.
2609 * @param env The cpu environment.
2610 * @param addr The physical address.
2611 */
2612target_ulong remR3HCVirt2GCPhys(void *env, void *addr)
2613{
2614#ifdef PGM_DYNAMIC_RAM_ALLOC
2615 PVM pVM = ((CPUState *)env)->pVM;
2616 RTHCUINTPTR HCVirt = (RTHCUINTPTR)addr;
2617 uint32_t idx = (HCVirt >> PGM_DYNAMIC_CHUNK_SHIFT);
2618 RTHCUINTPTR off;
2619 RTUINT i;
2620
2621 off = HCVirt - pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1;
2622
2623 if ( pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1
2624 && off < PGM_DYNAMIC_CHUNK_SIZE)
2625 {
2626 Log2(("remR3HCVirt2GCPhys %x -> %x\n", addr, pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 + off));
2627 return pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 + off;
2628 }
2629
2630 off = HCVirt - pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2;
2631 if ( pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2
2632 && off < PGM_DYNAMIC_CHUNK_SIZE)
2633 {
2634 Log2(("remR3HCVirt2GCPhys %x -> %x\n", addr, pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 + off));
2635 return pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 + off;
2636 }
2637
2638 /* Must be externally registered RAM/ROM range */
2639 for (i=0;i<pVM->rem.s.cPhysRegistrations;i++)
2640 {
2641 uint32_t off = HCVirt - pVM->rem.s.aPhysReg[i].HCVirt;
2642 if (off < pVM->rem.s.aPhysReg[i].cb)
2643 {
2644 Log2(("remR3HCVirt2GCPhys %x -> %x\n", addr, pVM->rem.s.aPhysReg[i].GCPhys + off));
2645 return pVM->rem.s.aPhysReg[i].GCPhys + off;
2646 }
2647 }
2648 AssertReleaseMsgFailed(("No translation for physical address %VHv???\n", addr));
2649 return 0;
2650#else
2651 return (target_ulong)addr - (target_ulong)phys_ram_base;
2652#endif
2653}
2654
2655/**
2656 * Grows dynamically allocated guest RAM.
2657 * Will raise a fatal error if the operation fails.
2658 *
2659 * @param physaddr The physical address.
2660 */
2661void remR3GrowDynRange(unsigned long physaddr)
2662{
2663 int rc;
2664 PVM pVM = cpu_single_env->pVM;
2665
2666 Log(("remR3GrowDynRange %VGp\n", physaddr));
2667 rc = PGM3PhysGrowRange(pVM, (RTGCPHYS)physaddr);
2668 if (VBOX_SUCCESS(rc))
2669 return;
2670
2671 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2672 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2673 AssertFatalFailed();
2674}
2675
2676/**
2677 * Notification about a successful MMR3PhysRomRegister() call.
2678 *
2679 * @param pVM VM handle.
2680 * @param GCPhys The physical address of the ROM.
2681 * @param cb The size of the ROM.
2682 * @param pvCopy Pointer to the ROM copy.
2683 */
2684REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy)
2685{
2686#ifdef PGM_DYNAMIC_RAM_ALLOC
2687 uint32_t i;
2688#endif
2689 Log(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p\n", GCPhys, cb, pvCopy));
2690 VM_ASSERT_EMT(pVM);
2691
2692 /*
2693 * Validate input - we trust the caller.
2694 */
2695 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2696 Assert(cb);
2697 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2698 Assert(pvCopy);
2699 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2700
2701 /*
2702 * Register the rom.
2703 */
2704#ifdef PGM_DYNAMIC_RAM_ALLOC
2705 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_ROM);
2706 AssertRelease(pVM->rem.s.cPhysRegistrations < REM_MAX_PHYS_REGISTRATIONS);
2707 for (i=0;i<pVM->rem.s.cPhysRegistrations;i++)
2708 {
2709 if (pVM->rem.s.aPhysReg[i].GCPhys == GCPhys)
2710 {
2711 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvCopy;
2712 pVM->rem.s.aPhysReg[i].cb = cb;
2713 break;
2714 }
2715 }
2716 if (i == pVM->rem.s.cPhysRegistrations)
2717 {
2718 pVM->rem.s.aPhysReg[i].GCPhys = GCPhys;
2719 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvCopy;
2720 pVM->rem.s.aPhysReg[i].cb = cb;
2721 pVM->rem.s.cPhysRegistrations++;
2722 }
2723#else
2724 AssertRelease(phys_ram_base);
2725 cpu_register_physical_memory(GCPhys, cb, ((uintptr_t)pvCopy - (uintptr_t)phys_ram_base) | IO_MEM_ROM);
2726#endif
2727 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2728}
2729
2730
2731/**
2732 * Notification about a successful MMR3PhysRegister() call.
2733 *
2734 * @param pVM VM Handle.
2735 * @param GCPhys Start physical address.
2736 * @param cb The size of the range.
2737 */
2738REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2739{
2740 LogFlow(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2741 VM_ASSERT_EMT(pVM);
2742
2743 /*
2744 * Validate input - we trust the caller.
2745 */
2746 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2747 Assert(cb);
2748 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2749
2750 /*
2751 * Unassigning the memory.
2752 */
2753 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2754}
2755
2756
2757/**
2758 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2759 *
2760 * @param pVM VM Handle.
2761 * @param enmType Handler type.
2762 * @param GCPhys Handler range address.
2763 * @param cb Size of the handler range.
2764 * @param fHasHCHandler Set if the handler has a HC callback function.
2765 *
2766 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2767 * Handler memory type to memory which has no HC handler.
2768 */
2769REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2770{
2771 LogFlow(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d\n",
2772 enmType, GCPhys, cb, fHasHCHandler));
2773 VM_ASSERT_EMT(pVM);
2774 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2775 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2776
2777 if (pVM->rem.s.cHandlerNotifications)
2778 REMR3ReplayHandlerNotifications(pVM);
2779
2780 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2781 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2782 else if (fHasHCHandler)
2783 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2784}
2785
2786
2787/**
2788 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2789 *
2790 * @param pVM VM Handle.
2791 * @param enmType Handler type.
2792 * @param GCPhys Handler range address.
2793 * @param cb Size of the handler range.
2794 * @param fHasHCHandler Set if the handler has a HC callback function.
2795 * @param pvHCPtr The HC virtual address corresponding to GCPhys if available.
2796 */
2797REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, void *pvHCPtr)
2798{
2799 LogFlow(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d pvHCPtr=%p RAM=%08x\n",
2800 enmType, GCPhys, cb, fHasHCHandler, pvHCPtr, MMR3PhysGetRamSize(pVM)));
2801 VM_ASSERT_EMT(pVM);
2802
2803 if (pVM->rem.s.cHandlerNotifications)
2804 REMR3ReplayHandlerNotifications(pVM);
2805
2806 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2807 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2808 else if (fHasHCHandler)
2809 {
2810 if (!pvHCPtr)
2811 {
2812 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2813 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2814 }
2815 else
2816 {
2817 /* This is not prefect, but it'll do for PD monitoring... */
2818 Assert(cb == PAGE_SIZE);
2819 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2820 Assert(remR3HCVirt2GCPhys(cpu_single_env, pvHCPtr) < MMR3PhysGetRamSize(pVM));
2821#ifdef PGM_DYNAMIC_RAM_ALLOC
2822 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2823#else
2824 cpu_register_physical_memory(GCPhys, cb, remR3HCVirt2GCPhys(cpu_single_env, pvHCPtr));
2825#endif
2826 }
2827 }
2828}
2829
2830
2831/**
2832 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2833 *
2834 * @param pVM VM Handle.
2835 * @param enmType Handler type.
2836 * @param GCPhysOld Old handler range address.
2837 * @param GCPhysNew New handler range address.
2838 * @param cb Size of the handler range.
2839 * @param fHasHCHandler Set if the handler has a HC callback function.
2840 * @param pvHCPtr The HC virtual address corresponding to GCPhys if available.
2841 */
2842REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, void *pvHCPtr)
2843{
2844 LogFlow(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%d fHasHCHandler=%d pvHCPtr=%p\n",
2845 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, pvHCPtr));
2846 VM_ASSERT_EMT(pVM);
2847 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2848
2849 if (pVM->rem.s.cHandlerNotifications)
2850 REMR3ReplayHandlerNotifications(pVM);
2851
2852 if (fHasHCHandler)
2853 {
2854 /*
2855 * Reset the old page.
2856 */
2857 if (!pvHCPtr)
2858 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2859 else
2860 {
2861 /* This is not prefect, but it'll do for PD monitoring... */
2862 Assert(cb == PAGE_SIZE);
2863 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2864 Assert(remR3HCVirt2GCPhys(cpu_single_env, pvHCPtr) < MMR3PhysGetRamSize(pVM));
2865#ifdef PGM_DYNAMIC_RAM_ALLOC
2866 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2867#else
2868 cpu_register_physical_memory(GCPhysOld, cb, remR3HCVirt2GCPhys(cpu_single_env, pvHCPtr));
2869#endif
2870 }
2871
2872 /*
2873 * Update the new page.
2874 */
2875 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2876 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2877 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2878 }
2879}
2880
2881
2882/**
2883 * Checks if we're handling access to this page or not.
2884 *
2885 * @returns true if we're trapping access.
2886 * @returns false if we aren't.
2887 * @param pVM The VM handle.
2888 * @param GCPhys The physical address.
2889 *
2890 * @remark This function will only work correctly in VBOX_STRICT builds!
2891 */
2892REMDECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
2893{
2894#ifdef VBOX_STRICT
2895 if (pVM->rem.s.cHandlerNotifications)
2896 REMR3ReplayHandlerNotifications(pVM);
2897
2898 unsigned long off = get_phys_page_offset(GCPhys);
2899 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
2900 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
2901 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
2902#else
2903 return false;
2904#endif
2905}
2906
2907
2908/**
2909 * Deals with a rare case in get_phys_addr_code where the code
2910 * is being monitored.
2911 *
2912 * It could also be an MMIO page, in which case we will raise a fatal error.
2913 *
2914 * @returns The physical address corresponding to addr.
2915 * @param env The cpu environment.
2916 * @param addr The virtual address.
2917 * @param pTLBEntry The TLB entry.
2918 */
2919target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
2920{
2921 PVM pVM = env->pVM;
2922 if ((pTLBEntry->address & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
2923 {
2924 target_ulong ret = pTLBEntry->addend + addr;
2925 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv address=%VGv addend=%VGp ret=%VGp\n",
2926 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->address, (RTGCPHYS)pTLBEntry->addend, ret);
2927 return ret;
2928 }
2929 LogRel(("\nTrying to execute code with memory type address=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
2930 "*** handlers\n",
2931 (RTGCPTR)pTLBEntry->address, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
2932 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
2933 LogRel(("*** mmio\n"));
2934 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
2935 LogRel(("*** phys\n"));
2936 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
2937 cpu_abort(env, "Trying to execute code with memory type address=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
2938 (RTGCPTR)pTLBEntry->address, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
2939 AssertFatalFailed();
2940}
2941
2942/**
2943 * Read guest RAM and ROM.
2944 *
2945 * @param pbSrcPhys The source address. Relative to guest RAM.
2946 * @param pvDst The destination address.
2947 * @param cb Number of bytes
2948 */
2949void remR3PhysReadBytes(uint8_t *pbSrcPhys, void *pvDst, unsigned cb)
2950{
2951 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2952
2953 /*
2954 * Calc the physical address ('off') and check that it's within the RAM.
2955 * ROM is accessed this way, even if it's not part of the RAM.
2956 */
2957 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
2958 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
2959 if (off < (uintptr_t)phys_ram_size)
2960 PGMPhysRead(cpu_single_env->pVM, (RTGCPHYS)off, pvDst, cb);
2961 else
2962 {
2963 /* ROM range outside physical RAM, HC address passed directly */
2964 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
2965 memcpy(pvDst, pbSrcPhys, cb);
2966 }
2967 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2968}
2969
2970/** @todo r=bird: s/Byte/U8/ s/Word/U16/ s/Dword/U32/, see MMIO and other functions.
2971 * It could be an idea to inline these wrapper functions... */
2972
2973/**
2974 * Read guest RAM and ROM.
2975 *
2976 * @param pbSrcPhys The source address. Relative to guest RAM.
2977 */
2978uint8_t remR3PhysReadUByte(uint8_t *pbSrcPhys)
2979{
2980 uint8_t val;
2981
2982 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2983
2984 /*
2985 * Calc the physical address ('off') and check that it's within the RAM.
2986 * ROM is accessed this way, even if it's not part of the RAM.
2987 */
2988 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
2989 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
2990 if (off < (uintptr_t)phys_ram_size)
2991 val = PGMR3PhysReadByte(cpu_single_env->pVM, (RTGCPHYS)off);
2992 else
2993 {
2994 /* ROM range outside physical RAM, HC address passed directly */
2995 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
2996 val = *pbSrcPhys;
2997 }
2998 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2999 return val;
3000}
3001
3002/**
3003 * Read guest RAM and ROM.
3004 *
3005 * @param pbSrcPhys The source address. Relative to guest RAM.
3006 */
3007int8_t remR3PhysReadSByte(uint8_t *pbSrcPhys)
3008{
3009 int8_t val;
3010
3011 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3012
3013 /*
3014 * Calc the physical address ('off') and check that it's within the RAM.
3015 * ROM is accessed this way, even if it's not part of the RAM.
3016 */
3017 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3018 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3019 if (off < (uintptr_t)phys_ram_size)
3020 val = PGMR3PhysReadByte(cpu_single_env->pVM, (RTGCPHYS)off);
3021 else
3022 {
3023 /* ROM range outside physical RAM, HC address passed directly */
3024 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3025 val = *(int8_t *)pbSrcPhys;
3026 }
3027 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3028 return val;
3029}
3030
3031/**
3032 * Read guest RAM and ROM.
3033 *
3034 * @param pbSrcPhys The source address. Relative to guest RAM.
3035 */
3036uint16_t remR3PhysReadUWord(uint8_t *pbSrcPhys)
3037{
3038 uint16_t val;
3039
3040 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3041
3042 /*
3043 * Calc the physical address ('off') and check that it's within the RAM.
3044 * ROM is accessed this way, even if it's not part of the RAM.
3045 */
3046 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3047 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3048 if (off < (uintptr_t)phys_ram_size)
3049 val = PGMR3PhysReadWord(cpu_single_env->pVM, (RTGCPHYS)off);
3050 else
3051 {
3052 /* ROM range outside physical RAM, HC address passed directly */
3053 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3054 val = *(uint16_t *)pbSrcPhys;
3055 }
3056 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3057 return val;
3058}
3059
3060/**
3061 * Read guest RAM and ROM.
3062 *
3063 * @param pbSrcPhys The source address. Relative to guest RAM.
3064 */
3065int16_t remR3PhysReadSWord(uint8_t *pbSrcPhys)
3066{
3067 int16_t val;
3068
3069 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3070
3071 /*
3072 * Calc the physical address ('off') and check that it's within the RAM.
3073 * ROM is accessed this way, even if it's not part of the RAM.
3074 */
3075 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3076 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3077 if (off < (uintptr_t)phys_ram_size)
3078 val = PGMR3PhysReadWord(cpu_single_env->pVM, (RTGCPHYS)off);
3079 else
3080 {
3081 /* ROM range outside physical RAM, HC address passed directly */
3082 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3083 val = *(int16_t *)pbSrcPhys;
3084 }
3085 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3086 return val;
3087}
3088
3089/**
3090 * Read guest RAM and ROM.
3091 *
3092 * @param pbSrcPhys The source address. Relative to guest RAM.
3093 */
3094uint32_t remR3PhysReadULong(uint8_t *pbSrcPhys)
3095{
3096 uint32_t val;
3097
3098 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3099
3100 /*
3101 * Calc the physical address ('off') and check that it's within the RAM.
3102 * ROM is accessed this way, even if it's not part of the RAM.
3103 */
3104 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3105 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3106 if (off < (uintptr_t)phys_ram_size)
3107 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off);
3108 else
3109 {
3110 /* ROM range outside physical RAM, HC address passed directly */
3111 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3112 val = *(uint32_t *)pbSrcPhys;
3113 }
3114 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3115 return val;
3116}
3117
3118/**
3119 * Read guest RAM and ROM.
3120 *
3121 * @param pbSrcPhys The source address. Relative to guest RAM.
3122 */
3123int32_t remR3PhysReadSLong(uint8_t *pbSrcPhys)
3124{
3125 int32_t val;
3126
3127 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3128
3129 /*
3130 * Calc the physical address ('off') and check that it's within the RAM.
3131 * ROM is accessed this way, even if it's not part of the RAM.
3132 */
3133 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3134 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3135 if (off < (uintptr_t)phys_ram_size)
3136 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off);
3137 else
3138 {
3139 /* ROM range outside physical RAM, HC address passed directly */
3140 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3141 val = *(int32_t *)pbSrcPhys;
3142 }
3143 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3144 return val;
3145}
3146
3147/**
3148 * Write guest RAM.
3149 *
3150 * @param pbDstPhys The destination address. Relative to guest RAM.
3151 * @param pvSrc The source address.
3152 * @param cb Number of bytes to write
3153 */
3154void remR3PhysWriteBytes(uint8_t *pbDstPhys, const void *pvSrc, unsigned cb)
3155{
3156 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3157 /*
3158 * Calc the physical address ('off') and check that it's within the RAM.
3159 */
3160 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbDstPhys);
3161 if (off < (uintptr_t)phys_ram_size)
3162 PGMPhysWrite(cpu_single_env->pVM, (RTGCPHYS)off, pvSrc, cb);
3163 else
3164 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, cb));
3165 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3166}
3167
3168
3169/**
3170 * Write guest RAM.
3171 *
3172 * @param pbDstPhys The destination address. Relative to guest RAM.
3173 * @param val Value
3174 */
3175void remR3PhysWriteByte(uint8_t *pbDstPhys, uint8_t val)
3176{
3177 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3178 /*
3179 * Calc the physical address ('off') and check that it's within the RAM.
3180 */
3181 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbDstPhys);
3182 if (off < (uintptr_t)phys_ram_size)
3183 PGMR3PhysWriteByte(cpu_single_env->pVM, (RTGCPHYS)off, val);
3184 else
3185 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, 1));
3186 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3187}
3188
3189/**
3190 * Write guest RAM.
3191 *
3192 * @param pbDstPhys The destination address. Relative to guest RAM.
3193 * @param val Value
3194 */
3195void remR3PhysWriteWord(uint8_t *pbDstPhys, uint16_t val)
3196{
3197 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3198 /*
3199 * Calc the physical address ('off') and check that it's within the RAM.
3200 */
3201 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbDstPhys);
3202 if (off < (uintptr_t)phys_ram_size)
3203 PGMR3PhysWriteWord(cpu_single_env->pVM, (RTGCPHYS)off, val);
3204 else
3205 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, 2));
3206 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3207}
3208
3209/**
3210 * Write guest RAM.
3211 *
3212 * @param pbDstPhys The destination address. Relative to guest RAM.
3213 * @param val Value
3214 */
3215void remR3PhysWriteDword(uint8_t *pbDstPhys, uint32_t val)
3216{
3217 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3218 /*
3219 * Calc the physical address ('off') and check that it's within the RAM.
3220 */
3221 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbDstPhys);
3222 if (off < (uintptr_t)phys_ram_size)
3223 PGMR3PhysWriteDword(cpu_single_env->pVM, (RTGCPHYS)off, val);
3224 else
3225 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, 4));
3226 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3227}
3228
3229
3230
3231#undef LOG_GROUP
3232#define LOG_GROUP LOG_GROUP_REM_MMIO
3233
3234/** Read MMIO memory. */
3235static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3236{
3237 uint32_t u32 = 0;
3238 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3239 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3240 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3241 return u32;
3242}
3243
3244/** Read MMIO memory. */
3245static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3246{
3247 uint32_t u32 = 0;
3248 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3249 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3250 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3251 return u32;
3252}
3253
3254/** Read MMIO memory. */
3255static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3256{
3257 uint32_t u32 = 0;
3258 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3259 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3260 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3261 return u32;
3262}
3263
3264/** Write to MMIO memory. */
3265static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3266{
3267 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3268 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3269 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3270}
3271
3272/** Write to MMIO memory. */
3273static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3274{
3275 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3276 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3277 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3278}
3279
3280/** Write to MMIO memory. */
3281static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3282{
3283 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3284 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3285 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3286}
3287
3288
3289#undef LOG_GROUP
3290#define LOG_GROUP LOG_GROUP_REM_HANDLER
3291
3292/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3293
3294static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3295{
3296 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3297 uint8_t u8;
3298 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3299 return u8;
3300}
3301
3302static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3303{
3304 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3305 uint16_t u16;
3306 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3307 return u16;
3308}
3309
3310static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3311{
3312 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3313 uint32_t u32;
3314 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3315 return u32;
3316}
3317
3318static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3319{
3320 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3321 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3322}
3323
3324static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3325{
3326 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3327 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3328}
3329
3330static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3331{
3332 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3333 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3334}
3335
3336/* -+- disassembly -+- */
3337
3338#undef LOG_GROUP
3339#define LOG_GROUP LOG_GROUP_REM_DISAS
3340
3341
3342/**
3343 * Enables or disables singled stepped disassembly.
3344 *
3345 * @returns VBox status code.
3346 * @param pVM VM handle.
3347 * @param fEnable To enable set this flag, to disable clear it.
3348 */
3349static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3350{
3351 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3352 VM_ASSERT_EMT(pVM);
3353
3354 if (fEnable)
3355 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3356 else
3357 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3358 return VINF_SUCCESS;
3359}
3360
3361
3362/**
3363 * Enables or disables singled stepped disassembly.
3364 *
3365 * @returns VBox status code.
3366 * @param pVM VM handle.
3367 * @param fEnable To enable set this flag, to disable clear it.
3368 */
3369REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3370{
3371 PVMREQ pReq;
3372 int rc;
3373
3374 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3375 if (VM_IS_EMT(pVM))
3376 return remR3DisasEnableStepping(pVM, fEnable);
3377
3378 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3379 AssertRC(rc);
3380 if (VBOX_SUCCESS(rc))
3381 rc = pReq->iStatus;
3382 VMR3ReqFree(pReq);
3383 return rc;
3384}
3385
3386
3387#ifdef VBOX_WITH_DEBUGGER
3388/**
3389 * External Debugger Command: .remstep [on|off|1|0]
3390 */
3391static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3392{
3393 bool fEnable;
3394 int rc;
3395
3396 /* print status */
3397 if (cArgs == 0)
3398 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3399 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3400
3401 /* convert the argument and change the mode. */
3402 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3403 if (VBOX_FAILURE(rc))
3404 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3405 rc = REMR3DisasEnableStepping(pVM, fEnable);
3406 if (VBOX_FAILURE(rc))
3407 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3408 return rc;
3409}
3410#endif
3411
3412
3413/**
3414 * Disassembles n instructions and prints them to the log.
3415 *
3416 * @returns Success indicator.
3417 * @param env Pointer to the recompiler CPU structure.
3418 * @param f32BitCode Indicates that whether or not the code should
3419 * be disassembled as 16 or 32 bit. If -1 the CS
3420 * selector will be inspected.
3421 * @param nrInstructions Nr of instructions to disassemble
3422 * @param pszPrefix
3423 * @remark not currently used for anything but ad-hoc debugging.
3424 */
3425bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3426{
3427 int i;
3428
3429 /*
3430 * Determin 16/32 bit mode.
3431 */
3432 if (f32BitCode == -1)
3433 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3434
3435 /*
3436 * Convert cs:eip to host context address.
3437 * We don't care to much about cross page correctness presently.
3438 */
3439 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3440 void *pvPC;
3441 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3442 {
3443 /* convert eip to physical address. */
3444 int rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3445 GCPtrPC,
3446 env->cr[3],
3447 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3448 &pvPC);
3449 if (VBOX_FAILURE(rc))
3450 {
3451 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3452 return false;
3453 pvPC = (char *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3454 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3455 }
3456 }
3457 else
3458 {
3459 /* physical address */
3460 int rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions*16, &pvPC);
3461 if (VBOX_FAILURE(rc))
3462 return false;
3463 }
3464
3465 /*
3466 * Disassemble.
3467 */
3468 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
3469 DISCPUSTATE Cpu;
3470 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3471 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3472 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3473 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3474 //Cpu.dwUserData[2] = GCPtrPC;
3475
3476 for (i=0;i<nrInstructions;i++)
3477 {
3478 char szOutput[256];
3479 uint32_t cbOp;
3480 if (!DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0]))
3481 return false;
3482 if (pszPrefix)
3483 Log(("%s: %s", pszPrefix, szOutput));
3484 else
3485 Log(("%s", szOutput));
3486
3487 pvPC += cbOp;
3488 }
3489 return true;
3490}
3491
3492
3493/** @todo need to test the new code, using the old code in the mean while. */
3494#define USE_OLD_DUMP_AND_DISASSEMBLY
3495
3496/**
3497 * Disassembles one instruction and prints it to the log.
3498 *
3499 * @returns Success indicator.
3500 * @param env Pointer to the recompiler CPU structure.
3501 * @param f32BitCode Indicates that whether or not the code should
3502 * be disassembled as 16 or 32 bit. If -1 the CS
3503 * selector will be inspected.
3504 * @param pszPrefix
3505 */
3506bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3507{
3508#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3509 PVM pVM = env->pVM;
3510
3511 /*
3512 * Determin 16/32 bit mode.
3513 */
3514 if (f32BitCode == -1)
3515 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3516
3517 /*
3518 * Log registers
3519 */
3520 if (LogIs2Enabled())
3521 {
3522 remR3StateUpdate(pVM);
3523 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3524 }
3525
3526 /*
3527 * Convert cs:eip to host context address.
3528 * We don't care to much about cross page correctness presently.
3529 */
3530 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3531 void *pvPC;
3532 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3533 {
3534 /* convert eip to physical address. */
3535 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
3536 GCPtrPC,
3537 env->cr[3],
3538 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3539 &pvPC);
3540 if (VBOX_FAILURE(rc))
3541 {
3542 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3543 return false;
3544 pvPC = (char *)PATMR3QueryPatchMemHC(pVM, NULL)
3545 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3546 }
3547 }
3548 else
3549 {
3550
3551 /* physical address */
3552 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, &pvPC);
3553 if (VBOX_FAILURE(rc))
3554 return false;
3555 }
3556
3557 /*
3558 * Disassemble.
3559 */
3560 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
3561 DISCPUSTATE Cpu;
3562 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3563 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3564 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3565 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3566 //Cpu.dwUserData[2] = GCPtrPC;
3567 char szOutput[256];
3568 uint32_t cbOp;
3569 if (!DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0]))
3570 return false;
3571
3572 if (!f32BitCode)
3573 {
3574 if (pszPrefix)
3575 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3576 else
3577 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3578 }
3579 else
3580 {
3581 if (pszPrefix)
3582 Log(("%s: %s", pszPrefix, szOutput));
3583 else
3584 Log(("%s", szOutput));
3585 }
3586 return true;
3587
3588#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3589 PVM pVM = env->pVM;
3590 const bool fLog = LogIsEnabled();
3591 const bool fLog2 = LogIs2Enabled();
3592 int rc = VINF_SUCCESS;
3593
3594 /*
3595 * Don't bother if there ain't any log output to do.
3596 */
3597 if (!fLog && !fLog2)
3598 return true;
3599
3600 /*
3601 * Update the state so DBGF reads the correct register values.
3602 */
3603 remR3StateUpdate(pVM);
3604
3605 /*
3606 * Log registers if requested.
3607 */
3608 if (!fLog2)
3609 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3610
3611 /*
3612 * Disassemble to log.
3613 */
3614 if (fLog)
3615 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3616
3617 return VBOX_SUCCESS(rc);
3618#endif
3619}
3620
3621
3622/**
3623 * Disassemble recompiled code.
3624 *
3625 * @param phFileIgnored Ignored, logfile usually.
3626 * @param pvCode Pointer to the code block.
3627 * @param cb Size of the code block.
3628 */
3629void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3630{
3631 if (LogIs2Enabled())
3632 {
3633 unsigned off = 0;
3634 char szOutput[256];
3635 DISCPUSTATE Cpu = {0};
3636 Cpu.mode = CPUMODE_32BIT;
3637
3638 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3639 while (off < cb)
3640 {
3641 uint32_t cbInstr;
3642 if (DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput))
3643 RTLogPrintf("%s", szOutput);
3644 else
3645 {
3646 RTLogPrintf("disas error\n");
3647 cbInstr = 1;
3648 }
3649 off += cbInstr;
3650 }
3651 }
3652 NOREF(phFileIgnored);
3653}
3654
3655
3656/**
3657 * Disassemble guest code.
3658 *
3659 * @param phFileIgnored Ignored, logfile usually.
3660 * @param uCode The guest address of the code to disassemble. (flat?)
3661 * @param cb Number of bytes to disassemble.
3662 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3663 */
3664void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3665{
3666 if (LogIs2Enabled())
3667 {
3668 PVM pVM = cpu_single_env->pVM;
3669
3670 /*
3671 * Update the state so DBGF reads the correct register values (flags).
3672 */
3673 remR3StateUpdate(pVM);
3674
3675 /*
3676 * Do the disassembling.
3677 */
3678 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
3679 RTSEL cs = cpu_single_env->segs[R_CS].selector;
3680 RTGCUINTPTR eip = uCode - cpu_single_env->segs[R_CS].base;
3681 for (;;)
3682 {
3683 char szBuf[256];
3684 size_t cbInstr;
3685 int rc = DBGFR3DisasInstrEx(pVM,
3686 cs,
3687 eip,
3688 0,
3689 szBuf, sizeof(szBuf),
3690 &cbInstr);
3691 if (VBOX_SUCCESS(rc))
3692 RTLogPrintf("%VGp %s\n", uCode, szBuf);
3693 else
3694 {
3695 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
3696 cbInstr = 1;
3697 }
3698
3699 /* next */
3700 if (cb <= cbInstr)
3701 break;
3702 cb -= cbInstr;
3703 uCode += cbInstr;
3704 eip += cbInstr;
3705 }
3706 }
3707 NOREF(phFileIgnored);
3708}
3709
3710
3711/**
3712 * Looks up a guest symbol.
3713 *
3714 * @returns Pointer to symbol name. This is a static buffer.
3715 * @param orig_addr The address in question.
3716 */
3717const char *lookup_symbol(target_ulong orig_addr)
3718{
3719 RTGCINTPTR off = 0;
3720 DBGFSYMBOL Sym;
3721 PVM pVM = cpu_single_env->pVM;
3722 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3723 if (VBOX_SUCCESS(rc))
3724 {
3725 static char szSym[sizeof(Sym.szName) + 48];
3726 if (!off)
3727 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3728 else if (off > 0)
3729 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3730 else
3731 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3732 return szSym;
3733 }
3734 return "<N/A>";
3735}
3736
3737
3738#undef LOG_GROUP
3739#define LOG_GROUP LOG_GROUP_REM
3740
3741
3742/* -+- FF notifications -+- */
3743
3744
3745/**
3746 * Notification about a pending interrupt.
3747 *
3748 * @param pVM VM Handle.
3749 * @param u8Interrupt Interrupt
3750 * @thread The emulation thread.
3751 */
3752REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3753{
3754 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3755 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3756}
3757
3758/**
3759 * Notification about a pending interrupt.
3760 *
3761 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3762 * @param pVM VM Handle.
3763 * @thread The emulation thread.
3764 */
3765REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3766{
3767 return pVM->rem.s.u32PendingInterrupt;
3768}
3769
3770/**
3771 * Notification about the interrupt FF being set.
3772 *
3773 * @param pVM VM Handle.
3774 * @thread The emulation thread.
3775 */
3776REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3777{
3778 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3779 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3780 if (pVM->rem.s.fInREM)
3781 {
3782 if (VM_IS_EMT(pVM))
3783 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3784 else
3785 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_HARD);
3786 }
3787}
3788
3789
3790/**
3791 * Notification about the interrupt FF being set.
3792 *
3793 * @param pVM VM Handle.
3794 * @thread The emulation thread.
3795 */
3796REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3797{
3798 LogFlow(("REMR3NotifyInterruptClear:\n"));
3799 VM_ASSERT_EMT(pVM);
3800 if (pVM->rem.s.fInREM)
3801 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3802}
3803
3804
3805/**
3806 * Notification about pending timer(s).
3807 *
3808 * @param pVM VM Handle.
3809 * @thread Any.
3810 */
3811REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3812{
3813#ifndef DEBUG_bird
3814 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3815#endif
3816 if (pVM->rem.s.fInREM)
3817 {
3818 if (VM_IS_EMT(pVM))
3819 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3820 else
3821 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_TIMER);
3822 }
3823}
3824
3825
3826/**
3827 * Notification about pending DMA transfers.
3828 *
3829 * @param pVM VM Handle.
3830 * @thread Any.
3831 */
3832REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3833{
3834 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3835 if (pVM->rem.s.fInREM)
3836 {
3837 if (VM_IS_EMT(pVM))
3838 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3839 else
3840 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_DMA);
3841 }
3842}
3843
3844
3845/**
3846 * Notification about pending timer(s).
3847 *
3848 * @param pVM VM Handle.
3849 * @thread Any.
3850 */
3851REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3852{
3853 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3854 if (pVM->rem.s.fInREM)
3855 {
3856 if (VM_IS_EMT(pVM))
3857 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3858 else
3859 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3860 }
3861}
3862
3863
3864/**
3865 * Notification about pending FF set by an external thread.
3866 *
3867 * @param pVM VM handle.
3868 * @thread Any.
3869 */
3870REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3871{
3872 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3873 if (pVM->rem.s.fInREM)
3874 {
3875 if (VM_IS_EMT(pVM))
3876 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3877 else
3878 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3879 }
3880}
3881
3882
3883#ifdef VBOX_WITH_STATISTICS
3884void remR3ProfileStart(int statcode)
3885{
3886 STAMPROFILEADV *pStat;
3887 switch(statcode)
3888 {
3889 case STATS_EMULATE_SINGLE_INSTR:
3890 pStat = &gStatExecuteSingleInstr;
3891 break;
3892 case STATS_QEMU_COMPILATION:
3893 pStat = &gStatCompilationQEmu;
3894 break;
3895 case STATS_QEMU_RUN_EMULATED_CODE:
3896 pStat = &gStatRunCodeQEmu;
3897 break;
3898 case STATS_QEMU_TOTAL:
3899 pStat = &gStatTotalTimeQEmu;
3900 break;
3901 case STATS_QEMU_RUN_TIMERS:
3902 pStat = &gStatTimers;
3903 break;
3904 case STATS_TLB_LOOKUP:
3905 pStat= &gStatTBLookup;
3906 break;
3907 case STATS_IRQ_HANDLING:
3908 pStat= &gStatIRQ;
3909 break;
3910 case STATS_RAW_CHECK:
3911 pStat = &gStatRawCheck;
3912 break;
3913
3914 default:
3915 AssertMsgFailed(("unknown stat %d\n", statcode));
3916 return;
3917 }
3918 STAM_PROFILE_ADV_START(pStat, a);
3919}
3920
3921
3922void remR3ProfileStop(int statcode)
3923{
3924 STAMPROFILEADV *pStat;
3925 switch(statcode)
3926 {
3927 case STATS_EMULATE_SINGLE_INSTR:
3928 pStat = &gStatExecuteSingleInstr;
3929 break;
3930 case STATS_QEMU_COMPILATION:
3931 pStat = &gStatCompilationQEmu;
3932 break;
3933 case STATS_QEMU_RUN_EMULATED_CODE:
3934 pStat = &gStatRunCodeQEmu;
3935 break;
3936 case STATS_QEMU_TOTAL:
3937 pStat = &gStatTotalTimeQEmu;
3938 break;
3939 case STATS_QEMU_RUN_TIMERS:
3940 pStat = &gStatTimers;
3941 break;
3942 case STATS_TLB_LOOKUP:
3943 pStat= &gStatTBLookup;
3944 break;
3945 case STATS_IRQ_HANDLING:
3946 pStat= &gStatIRQ;
3947 break;
3948 case STATS_RAW_CHECK:
3949 pStat = &gStatRawCheck;
3950 break;
3951 default:
3952 AssertMsgFailed(("unknown stat %d\n", statcode));
3953 return;
3954 }
3955 STAM_PROFILE_ADV_STOP(pStat, a);
3956}
3957#endif
3958
3959/**
3960 * Raise an RC, force rem exit.
3961 *
3962 * @param pVM VM handle.
3963 * @param rc The rc.
3964 */
3965void remR3RaiseRC(PVM pVM, int rc)
3966{
3967 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
3968 Assert(pVM->rem.s.fInREM);
3969 VM_ASSERT_EMT(pVM);
3970 pVM->rem.s.rc = rc;
3971 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
3972}
3973
3974
3975/* -+- timers -+- */
3976
3977uint64_t cpu_get_tsc(CPUX86State *env)
3978{
3979 return TMCpuTickGet(env->pVM);
3980}
3981
3982
3983/* -+- interrupts -+- */
3984
3985void cpu_set_ferr(CPUX86State *env)
3986{
3987 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
3988 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
3989}
3990
3991int cpu_get_pic_interrupt(CPUState *env)
3992{
3993 uint8_t u8Interrupt;
3994 int rc;
3995
3996 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
3997 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
3998 * with the (a)pic.
3999 */
4000 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4001 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4002 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4003 * remove this kludge. */
4004 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4005 {
4006 rc = VINF_SUCCESS;
4007 Assert(env->pVM->rem.s.u32PendingInterrupt >= 0 && env->pVM->rem.s.u32PendingInterrupt <= 255);
4008 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4009 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4010 }
4011 else
4012 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4013
4014 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
4015 if (VBOX_SUCCESS(rc))
4016 {
4017 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4018 env->interrupt_request |= CPU_INTERRUPT_HARD;
4019 return u8Interrupt;
4020 }
4021 return -1;
4022}
4023
4024
4025/* -+- local apic -+- */
4026
4027void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4028{
4029 int rc = PDMApicSetBase(env->pVM, val);
4030 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
4031}
4032
4033uint64_t cpu_get_apic_base(CPUX86State *env)
4034{
4035 uint64_t u64;
4036 int rc = PDMApicGetBase(env->pVM, &u64);
4037 if (VBOX_SUCCESS(rc))
4038 {
4039 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4040 return u64;
4041 }
4042 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
4043 return 0;
4044}
4045
4046void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4047{
4048 int rc = PDMApicSetTPR(env->pVM, val);
4049 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
4050}
4051
4052uint8_t cpu_get_apic_tpr(CPUX86State *env)
4053{
4054 uint8_t u8;
4055 int rc = PDMApicGetTPR(env->pVM, &u8);
4056 if (VBOX_SUCCESS(rc))
4057 {
4058 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4059 return u8;
4060 }
4061 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
4062 return 0;
4063}
4064
4065
4066/* -+- I/O Ports -+- */
4067
4068#undef LOG_GROUP
4069#define LOG_GROUP LOG_GROUP_REM_IOPORT
4070
4071void cpu_outb(CPUState *env, int addr, int val)
4072{
4073 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4074 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4075
4076 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4077 if (rc == VINF_SUCCESS)
4078 return;
4079 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4080 {
4081 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4082 remR3RaiseRC(env->pVM, rc);
4083 return;
4084 }
4085 remAbort(rc, __FUNCTION__);
4086}
4087
4088void cpu_outw(CPUState *env, int addr, int val)
4089{
4090 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4091 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4092 if (rc == VINF_SUCCESS)
4093 return;
4094 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4095 {
4096 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4097 remR3RaiseRC(env->pVM, rc);
4098 return;
4099 }
4100 remAbort(rc, __FUNCTION__);
4101}
4102
4103void cpu_outl(CPUState *env, int addr, int val)
4104{
4105 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4106 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4107 if (rc == VINF_SUCCESS)
4108 return;
4109 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4110 {
4111 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4112 remR3RaiseRC(env->pVM, rc);
4113 return;
4114 }
4115 remAbort(rc, __FUNCTION__);
4116}
4117
4118int cpu_inb(CPUState *env, int addr)
4119{
4120 uint32_t u32 = 0;
4121 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4122 if (rc == VINF_SUCCESS)
4123 {
4124 if (/*addr != 0x61 && */addr != 0x71)
4125 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4126 return (int)u32;
4127 }
4128 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4129 {
4130 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4131 remR3RaiseRC(env->pVM, rc);
4132 return (int)u32;
4133 }
4134 remAbort(rc, __FUNCTION__);
4135 return 0xff;
4136}
4137
4138int cpu_inw(CPUState *env, int addr)
4139{
4140 uint32_t u32 = 0;
4141 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4142 if (rc == VINF_SUCCESS)
4143 {
4144 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4145 return (int)u32;
4146 }
4147 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4148 {
4149 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4150 remR3RaiseRC(env->pVM, rc);
4151 return (int)u32;
4152 }
4153 remAbort(rc, __FUNCTION__);
4154 return 0xffff;
4155}
4156
4157int cpu_inl(CPUState *env, int addr)
4158{
4159 uint32_t u32 = 0;
4160 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4161 if (rc == VINF_SUCCESS)
4162 {
4163//if (addr==0x01f0 && u32 == 0x6b6d)
4164// loglevel = ~0;
4165 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4166 return (int)u32;
4167 }
4168 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4169 {
4170 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4171 remR3RaiseRC(env->pVM, rc);
4172 return (int)u32;
4173 }
4174 remAbort(rc, __FUNCTION__);
4175 return 0xffffffff;
4176}
4177
4178#undef LOG_GROUP
4179#define LOG_GROUP LOG_GROUP_REM
4180
4181
4182/* -+- helpers and misc other interfaces -+- */
4183
4184/**
4185 * Perform the CPUID instruction.
4186 *
4187 * ASMCpuId cannot be invoked from some source files where this is used because of global
4188 * register allocations.
4189 *
4190 * @param env Pointer to the recompiler CPU structure.
4191 * @param uOperator CPUID operation (eax).
4192 * @param pvEAX Where to store eax.
4193 * @param pvEBX Where to store ebx.
4194 * @param pvECX Where to store ecx.
4195 * @param pvEDX Where to store edx.
4196 */
4197void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4198{
4199 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4200}
4201
4202
4203#if 0 /* not used */
4204/**
4205 * Interface for qemu hardware to report back fatal errors.
4206 */
4207void hw_error(const char *pszFormat, ...)
4208{
4209 /*
4210 * Bitch about it.
4211 */
4212 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4213 * this in my Odin32 tree at home! */
4214 va_list args;
4215 va_start(args, pszFormat);
4216 RTLogPrintf("fatal error in virtual hardware:");
4217 RTLogPrintfV(pszFormat, args);
4218 va_end(args);
4219 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4220
4221 /*
4222 * If we're in REM context we'll sync back the state before 'jumping' to
4223 * the EMs failure handling.
4224 */
4225 PVM pVM = cpu_single_env->pVM;
4226 if (pVM->rem.s.fInREM)
4227 REMR3StateBack(pVM);
4228 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4229 AssertMsgFailed(("EMR3FatalError returned!\n"));
4230}
4231#endif
4232
4233/**
4234 * Interface for the qemu cpu to report unhandled situation
4235 * raising a fatal VM error.
4236 */
4237void cpu_abort(CPUState *env, const char *pszFormat, ...)
4238{
4239 /*
4240 * Bitch about it.
4241 */
4242 RTLogFlags(NULL, "nodisabled nobuffered");
4243 va_list args;
4244 va_start(args, pszFormat);
4245 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4246 va_end(args);
4247 va_start(args, pszFormat);
4248 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4249 va_end(args);
4250
4251 /*
4252 * If we're in REM context we'll sync back the state before 'jumping' to
4253 * the EMs failure handling.
4254 */
4255 PVM pVM = cpu_single_env->pVM;
4256 if (pVM->rem.s.fInREM)
4257 REMR3StateBack(pVM);
4258 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4259 AssertMsgFailed(("EMR3FatalError returned!\n"));
4260}
4261
4262
4263/**
4264 * Aborts the VM.
4265 *
4266 * @param rc VBox error code.
4267 * @param pszTip Hint about why/when this happend.
4268 */
4269static void remAbort(int rc, const char *pszTip)
4270{
4271 /*
4272 * Bitch about it.
4273 */
4274 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4275 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4276
4277 /*
4278 * Jump back to where we entered the recompiler.
4279 */
4280 PVM pVM = cpu_single_env->pVM;
4281 if (pVM->rem.s.fInREM)
4282 REMR3StateBack(pVM);
4283 EMR3FatalError(pVM, rc);
4284 AssertMsgFailed(("EMR3FatalError returned!\n"));
4285}
4286
4287
4288/**
4289 * Dumps a linux system call.
4290 * @param pVM VM handle.
4291 */
4292void remR3DumpLnxSyscall(PVM pVM)
4293{
4294 static const char *apsz[] =
4295 {
4296 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4297 "sys_exit",
4298 "sys_fork",
4299 "sys_read",
4300 "sys_write",
4301 "sys_open", /* 5 */
4302 "sys_close",
4303 "sys_waitpid",
4304 "sys_creat",
4305 "sys_link",
4306 "sys_unlink", /* 10 */
4307 "sys_execve",
4308 "sys_chdir",
4309 "sys_time",
4310 "sys_mknod",
4311 "sys_chmod", /* 15 */
4312 "sys_lchown16",
4313 "sys_ni_syscall", /* old break syscall holder */
4314 "sys_stat",
4315 "sys_lseek",
4316 "sys_getpid", /* 20 */
4317 "sys_mount",
4318 "sys_oldumount",
4319 "sys_setuid16",
4320 "sys_getuid16",
4321 "sys_stime", /* 25 */
4322 "sys_ptrace",
4323 "sys_alarm",
4324 "sys_fstat",
4325 "sys_pause",
4326 "sys_utime", /* 30 */
4327 "sys_ni_syscall", /* old stty syscall holder */
4328 "sys_ni_syscall", /* old gtty syscall holder */
4329 "sys_access",
4330 "sys_nice",
4331 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4332 "sys_sync",
4333 "sys_kill",
4334 "sys_rename",
4335 "sys_mkdir",
4336 "sys_rmdir", /* 40 */
4337 "sys_dup",
4338 "sys_pipe",
4339 "sys_times",
4340 "sys_ni_syscall", /* old prof syscall holder */
4341 "sys_brk", /* 45 */
4342 "sys_setgid16",
4343 "sys_getgid16",
4344 "sys_signal",
4345 "sys_geteuid16",
4346 "sys_getegid16", /* 50 */
4347 "sys_acct",
4348 "sys_umount", /* recycled never used phys() */
4349 "sys_ni_syscall", /* old lock syscall holder */
4350 "sys_ioctl",
4351 "sys_fcntl", /* 55 */
4352 "sys_ni_syscall", /* old mpx syscall holder */
4353 "sys_setpgid",
4354 "sys_ni_syscall", /* old ulimit syscall holder */
4355 "sys_olduname",
4356 "sys_umask", /* 60 */
4357 "sys_chroot",
4358 "sys_ustat",
4359 "sys_dup2",
4360 "sys_getppid",
4361 "sys_getpgrp", /* 65 */
4362 "sys_setsid",
4363 "sys_sigaction",
4364 "sys_sgetmask",
4365 "sys_ssetmask",
4366 "sys_setreuid16", /* 70 */
4367 "sys_setregid16",
4368 "sys_sigsuspend",
4369 "sys_sigpending",
4370 "sys_sethostname",
4371 "sys_setrlimit", /* 75 */
4372 "sys_old_getrlimit",
4373 "sys_getrusage",
4374 "sys_gettimeofday",
4375 "sys_settimeofday",
4376 "sys_getgroups16", /* 80 */
4377 "sys_setgroups16",
4378 "old_select",
4379 "sys_symlink",
4380 "sys_lstat",
4381 "sys_readlink", /* 85 */
4382 "sys_uselib",
4383 "sys_swapon",
4384 "sys_reboot",
4385 "old_readdir",
4386 "old_mmap", /* 90 */
4387 "sys_munmap",
4388 "sys_truncate",
4389 "sys_ftruncate",
4390 "sys_fchmod",
4391 "sys_fchown16", /* 95 */
4392 "sys_getpriority",
4393 "sys_setpriority",
4394 "sys_ni_syscall", /* old profil syscall holder */
4395 "sys_statfs",
4396 "sys_fstatfs", /* 100 */
4397 "sys_ioperm",
4398 "sys_socketcall",
4399 "sys_syslog",
4400 "sys_setitimer",
4401 "sys_getitimer", /* 105 */
4402 "sys_newstat",
4403 "sys_newlstat",
4404 "sys_newfstat",
4405 "sys_uname",
4406 "sys_iopl", /* 110 */
4407 "sys_vhangup",
4408 "sys_ni_syscall", /* old "idle" system call */
4409 "sys_vm86old",
4410 "sys_wait4",
4411 "sys_swapoff", /* 115 */
4412 "sys_sysinfo",
4413 "sys_ipc",
4414 "sys_fsync",
4415 "sys_sigreturn",
4416 "sys_clone", /* 120 */
4417 "sys_setdomainname",
4418 "sys_newuname",
4419 "sys_modify_ldt",
4420 "sys_adjtimex",
4421 "sys_mprotect", /* 125 */
4422 "sys_sigprocmask",
4423 "sys_ni_syscall", /* old "create_module" */
4424 "sys_init_module",
4425 "sys_delete_module",
4426 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4427 "sys_quotactl",
4428 "sys_getpgid",
4429 "sys_fchdir",
4430 "sys_bdflush",
4431 "sys_sysfs", /* 135 */
4432 "sys_personality",
4433 "sys_ni_syscall", /* reserved for afs_syscall */
4434 "sys_setfsuid16",
4435 "sys_setfsgid16",
4436 "sys_llseek", /* 140 */
4437 "sys_getdents",
4438 "sys_select",
4439 "sys_flock",
4440 "sys_msync",
4441 "sys_readv", /* 145 */
4442 "sys_writev",
4443 "sys_getsid",
4444 "sys_fdatasync",
4445 "sys_sysctl",
4446 "sys_mlock", /* 150 */
4447 "sys_munlock",
4448 "sys_mlockall",
4449 "sys_munlockall",
4450 "sys_sched_setparam",
4451 "sys_sched_getparam", /* 155 */
4452 "sys_sched_setscheduler",
4453 "sys_sched_getscheduler",
4454 "sys_sched_yield",
4455 "sys_sched_get_priority_max",
4456 "sys_sched_get_priority_min", /* 160 */
4457 "sys_sched_rr_get_interval",
4458 "sys_nanosleep",
4459 "sys_mremap",
4460 "sys_setresuid16",
4461 "sys_getresuid16", /* 165 */
4462 "sys_vm86",
4463 "sys_ni_syscall", /* Old sys_query_module */
4464 "sys_poll",
4465 "sys_nfsservctl",
4466 "sys_setresgid16", /* 170 */
4467 "sys_getresgid16",
4468 "sys_prctl",
4469 "sys_rt_sigreturn",
4470 "sys_rt_sigaction",
4471 "sys_rt_sigprocmask", /* 175 */
4472 "sys_rt_sigpending",
4473 "sys_rt_sigtimedwait",
4474 "sys_rt_sigqueueinfo",
4475 "sys_rt_sigsuspend",
4476 "sys_pread64", /* 180 */
4477 "sys_pwrite64",
4478 "sys_chown16",
4479 "sys_getcwd",
4480 "sys_capget",
4481 "sys_capset", /* 185 */
4482 "sys_sigaltstack",
4483 "sys_sendfile",
4484 "sys_ni_syscall", /* reserved for streams1 */
4485 "sys_ni_syscall", /* reserved for streams2 */
4486 "sys_vfork", /* 190 */
4487 "sys_getrlimit",
4488 "sys_mmap2",
4489 "sys_truncate64",
4490 "sys_ftruncate64",
4491 "sys_stat64", /* 195 */
4492 "sys_lstat64",
4493 "sys_fstat64",
4494 "sys_lchown",
4495 "sys_getuid",
4496 "sys_getgid", /* 200 */
4497 "sys_geteuid",
4498 "sys_getegid",
4499 "sys_setreuid",
4500 "sys_setregid",
4501 "sys_getgroups", /* 205 */
4502 "sys_setgroups",
4503 "sys_fchown",
4504 "sys_setresuid",
4505 "sys_getresuid",
4506 "sys_setresgid", /* 210 */
4507 "sys_getresgid",
4508 "sys_chown",
4509 "sys_setuid",
4510 "sys_setgid",
4511 "sys_setfsuid", /* 215 */
4512 "sys_setfsgid",
4513 "sys_pivot_root",
4514 "sys_mincore",
4515 "sys_madvise",
4516 "sys_getdents64", /* 220 */
4517 "sys_fcntl64",
4518 "sys_ni_syscall", /* reserved for TUX */
4519 "sys_ni_syscall",
4520 "sys_gettid",
4521 "sys_readahead", /* 225 */
4522 "sys_setxattr",
4523 "sys_lsetxattr",
4524 "sys_fsetxattr",
4525 "sys_getxattr",
4526 "sys_lgetxattr", /* 230 */
4527 "sys_fgetxattr",
4528 "sys_listxattr",
4529 "sys_llistxattr",
4530 "sys_flistxattr",
4531 "sys_removexattr", /* 235 */
4532 "sys_lremovexattr",
4533 "sys_fremovexattr",
4534 "sys_tkill",
4535 "sys_sendfile64",
4536 "sys_futex", /* 240 */
4537 "sys_sched_setaffinity",
4538 "sys_sched_getaffinity",
4539 "sys_set_thread_area",
4540 "sys_get_thread_area",
4541 "sys_io_setup", /* 245 */
4542 "sys_io_destroy",
4543 "sys_io_getevents",
4544 "sys_io_submit",
4545 "sys_io_cancel",
4546 "sys_fadvise64", /* 250 */
4547 "sys_ni_syscall",
4548 "sys_exit_group",
4549 "sys_lookup_dcookie",
4550 "sys_epoll_create",
4551 "sys_epoll_ctl", /* 255 */
4552 "sys_epoll_wait",
4553 "sys_remap_file_pages",
4554 "sys_set_tid_address",
4555 "sys_timer_create",
4556 "sys_timer_settime", /* 260 */
4557 "sys_timer_gettime",
4558 "sys_timer_getoverrun",
4559 "sys_timer_delete",
4560 "sys_clock_settime",
4561 "sys_clock_gettime", /* 265 */
4562 "sys_clock_getres",
4563 "sys_clock_nanosleep",
4564 "sys_statfs64",
4565 "sys_fstatfs64",
4566 "sys_tgkill", /* 270 */
4567 "sys_utimes",
4568 "sys_fadvise64_64",
4569 "sys_ni_syscall" /* sys_vserver */
4570 };
4571
4572 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4573 switch (uEAX)
4574 {
4575 default:
4576 if (uEAX < ELEMENTS(apsz))
4577 Log(("REM: linux syscall %3d: %s (eip=%VGv ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4578 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4579 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4580 else
4581 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4582 break;
4583
4584 }
4585}
4586
4587
4588/**
4589 * Dumps an OpenBSD system call.
4590 * @param pVM VM handle.
4591 */
4592void remR3DumpOBsdSyscall(PVM pVM)
4593{
4594 static const char *apsz[] =
4595 {
4596 "SYS_syscall", //0
4597 "SYS_exit", //1
4598 "SYS_fork", //2
4599 "SYS_read", //3
4600 "SYS_write", //4
4601 "SYS_open", //5
4602 "SYS_close", //6
4603 "SYS_wait4", //7
4604 "SYS_8",
4605 "SYS_link", //9
4606 "SYS_unlink", //10
4607 "SYS_11",
4608 "SYS_chdir", //12
4609 "SYS_fchdir", //13
4610 "SYS_mknod", //14
4611 "SYS_chmod", //15
4612 "SYS_chown", //16
4613 "SYS_break", //17
4614 "SYS_18",
4615 "SYS_19",
4616 "SYS_getpid", //20
4617 "SYS_mount", //21
4618 "SYS_unmount", //22
4619 "SYS_setuid", //23
4620 "SYS_getuid", //24
4621 "SYS_geteuid", //25
4622 "SYS_ptrace", //26
4623 "SYS_recvmsg", //27
4624 "SYS_sendmsg", //28
4625 "SYS_recvfrom", //29
4626 "SYS_accept", //30
4627 "SYS_getpeername", //31
4628 "SYS_getsockname", //32
4629 "SYS_access", //33
4630 "SYS_chflags", //34
4631 "SYS_fchflags", //35
4632 "SYS_sync", //36
4633 "SYS_kill", //37
4634 "SYS_38",
4635 "SYS_getppid", //39
4636 "SYS_40",
4637 "SYS_dup", //41
4638 "SYS_opipe", //42
4639 "SYS_getegid", //43
4640 "SYS_profil", //44
4641 "SYS_ktrace", //45
4642 "SYS_sigaction", //46
4643 "SYS_getgid", //47
4644 "SYS_sigprocmask", //48
4645 "SYS_getlogin", //49
4646 "SYS_setlogin", //50
4647 "SYS_acct", //51
4648 "SYS_sigpending", //52
4649 "SYS_osigaltstack", //53
4650 "SYS_ioctl", //54
4651 "SYS_reboot", //55
4652 "SYS_revoke", //56
4653 "SYS_symlink", //57
4654 "SYS_readlink", //58
4655 "SYS_execve", //59
4656 "SYS_umask", //60
4657 "SYS_chroot", //61
4658 "SYS_62",
4659 "SYS_63",
4660 "SYS_64",
4661 "SYS_65",
4662 "SYS_vfork", //66
4663 "SYS_67",
4664 "SYS_68",
4665 "SYS_sbrk", //69
4666 "SYS_sstk", //70
4667 "SYS_61",
4668 "SYS_vadvise", //72
4669 "SYS_munmap", //73
4670 "SYS_mprotect", //74
4671 "SYS_madvise", //75
4672 "SYS_76",
4673 "SYS_77",
4674 "SYS_mincore", //78
4675 "SYS_getgroups", //79
4676 "SYS_setgroups", //80
4677 "SYS_getpgrp", //81
4678 "SYS_setpgid", //82
4679 "SYS_setitimer", //83
4680 "SYS_84",
4681 "SYS_85",
4682 "SYS_getitimer", //86
4683 "SYS_87",
4684 "SYS_88",
4685 "SYS_89",
4686 "SYS_dup2", //90
4687 "SYS_91",
4688 "SYS_fcntl", //92
4689 "SYS_select", //93
4690 "SYS_94",
4691 "SYS_fsync", //95
4692 "SYS_setpriority", //96
4693 "SYS_socket", //97
4694 "SYS_connect", //98
4695 "SYS_99",
4696 "SYS_getpriority", //100
4697 "SYS_101",
4698 "SYS_102",
4699 "SYS_sigreturn", //103
4700 "SYS_bind", //104
4701 "SYS_setsockopt", //105
4702 "SYS_listen", //106
4703 "SYS_107",
4704 "SYS_108",
4705 "SYS_109",
4706 "SYS_110",
4707 "SYS_sigsuspend", //111
4708 "SYS_112",
4709 "SYS_113",
4710 "SYS_114",
4711 "SYS_115",
4712 "SYS_gettimeofday", //116
4713 "SYS_getrusage", //117
4714 "SYS_getsockopt", //118
4715 "SYS_119",
4716 "SYS_readv", //120
4717 "SYS_writev", //121
4718 "SYS_settimeofday", //122
4719 "SYS_fchown", //123
4720 "SYS_fchmod", //124
4721 "SYS_125",
4722 "SYS_setreuid", //126
4723 "SYS_setregid", //127
4724 "SYS_rename", //128
4725 "SYS_129",
4726 "SYS_130",
4727 "SYS_flock", //131
4728 "SYS_mkfifo", //132
4729 "SYS_sendto", //133
4730 "SYS_shutdown", //134
4731 "SYS_socketpair", //135
4732 "SYS_mkdir", //136
4733 "SYS_rmdir", //137
4734 "SYS_utimes", //138
4735 "SYS_139",
4736 "SYS_adjtime", //140
4737 "SYS_141",
4738 "SYS_142",
4739 "SYS_143",
4740 "SYS_144",
4741 "SYS_145",
4742 "SYS_146",
4743 "SYS_setsid", //147
4744 "SYS_quotactl", //148
4745 "SYS_149",
4746 "SYS_150",
4747 "SYS_151",
4748 "SYS_152",
4749 "SYS_153",
4750 "SYS_154",
4751 "SYS_nfssvc", //155
4752 "SYS_156",
4753 "SYS_157",
4754 "SYS_158",
4755 "SYS_159",
4756 "SYS_160",
4757 "SYS_getfh", //161
4758 "SYS_162",
4759 "SYS_163",
4760 "SYS_164",
4761 "SYS_sysarch", //165
4762 "SYS_166",
4763 "SYS_167",
4764 "SYS_168",
4765 "SYS_169",
4766 "SYS_170",
4767 "SYS_171",
4768 "SYS_172",
4769 "SYS_pread", //173
4770 "SYS_pwrite", //174
4771 "SYS_175",
4772 "SYS_176",
4773 "SYS_177",
4774 "SYS_178",
4775 "SYS_179",
4776 "SYS_180",
4777 "SYS_setgid", //181
4778 "SYS_setegid", //182
4779 "SYS_seteuid", //183
4780 "SYS_lfs_bmapv", //184
4781 "SYS_lfs_markv", //185
4782 "SYS_lfs_segclean", //186
4783 "SYS_lfs_segwait", //187
4784 "SYS_188",
4785 "SYS_189",
4786 "SYS_190",
4787 "SYS_pathconf", //191
4788 "SYS_fpathconf", //192
4789 "SYS_swapctl", //193
4790 "SYS_getrlimit", //194
4791 "SYS_setrlimit", //195
4792 "SYS_getdirentries", //196
4793 "SYS_mmap", //197
4794 "SYS___syscall", //198
4795 "SYS_lseek", //199
4796 "SYS_truncate", //200
4797 "SYS_ftruncate", //201
4798 "SYS___sysctl", //202
4799 "SYS_mlock", //203
4800 "SYS_munlock", //204
4801 "SYS_205",
4802 "SYS_futimes", //206
4803 "SYS_getpgid", //207
4804 "SYS_xfspioctl", //208
4805 "SYS_209",
4806 "SYS_210",
4807 "SYS_211",
4808 "SYS_212",
4809 "SYS_213",
4810 "SYS_214",
4811 "SYS_215",
4812 "SYS_216",
4813 "SYS_217",
4814 "SYS_218",
4815 "SYS_219",
4816 "SYS_220",
4817 "SYS_semget", //221
4818 "SYS_222",
4819 "SYS_223",
4820 "SYS_224",
4821 "SYS_msgget", //225
4822 "SYS_msgsnd", //226
4823 "SYS_msgrcv", //227
4824 "SYS_shmat", //228
4825 "SYS_229",
4826 "SYS_shmdt", //230
4827 "SYS_231",
4828 "SYS_clock_gettime", //232
4829 "SYS_clock_settime", //233
4830 "SYS_clock_getres", //234
4831 "SYS_235",
4832 "SYS_236",
4833 "SYS_237",
4834 "SYS_238",
4835 "SYS_239",
4836 "SYS_nanosleep", //240
4837 "SYS_241",
4838 "SYS_242",
4839 "SYS_243",
4840 "SYS_244",
4841 "SYS_245",
4842 "SYS_246",
4843 "SYS_247",
4844 "SYS_248",
4845 "SYS_249",
4846 "SYS_minherit", //250
4847 "SYS_rfork", //251
4848 "SYS_poll", //252
4849 "SYS_issetugid", //253
4850 "SYS_lchown", //254
4851 "SYS_getsid", //255
4852 "SYS_msync", //256
4853 "SYS_257",
4854 "SYS_258",
4855 "SYS_259",
4856 "SYS_getfsstat", //260
4857 "SYS_statfs", //261
4858 "SYS_fstatfs", //262
4859 "SYS_pipe", //263
4860 "SYS_fhopen", //264
4861 "SYS_265",
4862 "SYS_fhstatfs", //266
4863 "SYS_preadv", //267
4864 "SYS_pwritev", //268
4865 "SYS_kqueue", //269
4866 "SYS_kevent", //270
4867 "SYS_mlockall", //271
4868 "SYS_munlockall", //272
4869 "SYS_getpeereid", //273
4870 "SYS_274",
4871 "SYS_275",
4872 "SYS_276",
4873 "SYS_277",
4874 "SYS_278",
4875 "SYS_279",
4876 "SYS_280",
4877 "SYS_getresuid", //281
4878 "SYS_setresuid", //282
4879 "SYS_getresgid", //283
4880 "SYS_setresgid", //284
4881 "SYS_285",
4882 "SYS_mquery", //286
4883 "SYS_closefrom", //287
4884 "SYS_sigaltstack", //288
4885 "SYS_shmget", //289
4886 "SYS_semop", //290
4887 "SYS_stat", //291
4888 "SYS_fstat", //292
4889 "SYS_lstat", //293
4890 "SYS_fhstat", //294
4891 "SYS___semctl", //295
4892 "SYS_shmctl", //296
4893 "SYS_msgctl", //297
4894 "SYS_MAXSYSCALL", //298
4895 //299
4896 //300
4897 };
4898 uint32_t uEAX;
4899#ifndef DEBUG_bird
4900 if (!LogIsEnabled())
4901 return;
4902#endif
4903 uEAX = CPUMGetGuestEAX(pVM);
4904 switch (uEAX)
4905 {
4906 default:
4907 if (uEAX < ELEMENTS(apsz))
4908 {
4909 uint32_t au32Args[8] = {0};
4910 PGMPhysReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
4911 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
4912 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
4913 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
4914 }
4915 else
4916 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
4917 break;
4918 }
4919}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette