VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 2241

Last change on this file since 2241 was 2223, checked in by vboxsync, 18 years ago

Incorrect check for valid hidden selector registers.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 154.3 KB
Line 
1/** @file
2 *
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006 InnoTek Systemberatung GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License as published by the Free Software Foundation,
13 * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
14 * distribution. VirtualBox OSE is distributed in the hope that it will
15 * be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * If you received this file as part of a commercial VirtualBox
18 * distribution, then only the terms of your commercial VirtualBox
19 * license agreement apply instead of the previous paragraph.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#include "vl.h"
27#include "exec-all.h"
28
29#include <VBox/rem.h>
30#include <VBox/vmapi.h>
31#include <VBox/tm.h>
32#include <VBox/ssm.h>
33#include <VBox/em.h>
34#include <VBox/trpm.h>
35#include <VBox/iom.h>
36#include <VBox/mm.h>
37#include <VBox/pgm.h>
38#include <VBox/pdm.h>
39#include <VBox/dbgf.h>
40#include <VBox/dbg.h>
41#include <VBox/hwaccm.h>
42#include <VBox/patm.h>
43#include <VBox/csam.h>
44#include "REMInternal.h"
45#include <VBox/vm.h>
46#include <VBox/param.h>
47#include <VBox/err.h>
48
49#define LOG_GROUP LOG_GROUP_REM
50#include <VBox/log.h>
51#include <iprt/semaphore.h>
52#include <iprt/asm.h>
53#include <iprt/assert.h>
54#include <iprt/thread.h>
55#include <iprt/string.h>
56
57
58/* Don't wanna include everything. */
59extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
60extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
61extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
62extern void tlb_flush_page(CPUX86State *env, uint32_t addr);
63extern void tlb_flush(CPUState *env, int flush_global);
64extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
65extern void sync_ldtr(CPUX86State *env1, int selector);
66extern int sync_tr(CPUX86State *env1, int selector);
67
68#ifdef VBOX_STRICT
69unsigned long get_phys_page_offset(target_ulong addr);
70#endif
71
72
73/*******************************************************************************
74* Defined Constants And Macros *
75*******************************************************************************/
76
77/** Copy 80-bit fpu register at pSrc to pDst.
78 * This is probably faster than *calling* memcpy.
79 */
80#define REM_COPY_FPU_REG(pDst, pSrc) \
81 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
82
83
84/*******************************************************************************
85* Internal Functions *
86*******************************************************************************/
87static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
88static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
89static void remR3StateUpdate(PVM pVM);
90static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
91static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
92static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
93static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
94static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
95static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
96
97static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
98static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
99static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
100static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
101static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
102static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
103
104
105/*******************************************************************************
106* Global Variables *
107*******************************************************************************/
108
109/** The log level of the recompiler. */
110#if 1
111extern int loglevel;
112#else
113int loglevel = ~0;
114FILE *logfile = NULL;
115#endif
116
117
118/** @todo Move stats to REM::s some rainy day we have nothing do to. */
119#ifdef VBOX_WITH_STATISTICS
120static STAMPROFILEADV gStatExecuteSingleInstr;
121static STAMPROFILEADV gStatCompilationQEmu;
122static STAMPROFILEADV gStatRunCodeQEmu;
123static STAMPROFILEADV gStatTotalTimeQEmu;
124static STAMPROFILEADV gStatTimers;
125static STAMPROFILEADV gStatTBLookup;
126static STAMPROFILEADV gStatIRQ;
127static STAMPROFILEADV gStatRawCheck;
128static STAMPROFILEADV gStatMemRead;
129static STAMPROFILEADV gStatMemWrite;
130static STAMCOUNTER gStatRefuseTFInhibit;
131static STAMCOUNTER gStatRefuseVM86;
132static STAMCOUNTER gStatRefusePaging;
133static STAMCOUNTER gStatRefusePAE;
134static STAMCOUNTER gStatRefuseIOPLNot0;
135static STAMCOUNTER gStatRefuseIF0;
136static STAMCOUNTER gStatRefuseCode16;
137static STAMCOUNTER gStatRefuseWP0;
138static STAMCOUNTER gStatRefuseRing1or2;
139static STAMCOUNTER gStatRefuseCanExecute;
140static STAMCOUNTER gStatREMGDTChange;
141static STAMCOUNTER gStatREMIDTChange;
142static STAMCOUNTER gStatREMLDTRChange;
143static STAMCOUNTER gStatREMTRChange;
144static STAMCOUNTER gStatSelOutOfSync[6];
145static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
146#endif
147
148/*
149 * Global stuff.
150 */
151
152/** MMIO read callbacks. */
153CPUReadMemoryFunc *g_apfnMMIORead[3] =
154{
155 remR3MMIOReadU8,
156 remR3MMIOReadU16,
157 remR3MMIOReadU32
158};
159
160/** MMIO write callbacks. */
161CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
162{
163 remR3MMIOWriteU8,
164 remR3MMIOWriteU16,
165 remR3MMIOWriteU32
166};
167
168/** Handler read callbacks. */
169CPUReadMemoryFunc *g_apfnHandlerRead[3] =
170{
171 remR3HandlerReadU8,
172 remR3HandlerReadU16,
173 remR3HandlerReadU32
174};
175
176/** Handler write callbacks. */
177CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
178{
179 remR3HandlerWriteU8,
180 remR3HandlerWriteU16,
181 remR3HandlerWriteU32
182};
183
184#ifndef PGM_DYNAMIC_RAM_ALLOC
185/* Guest physical RAM base. Not to be used in external code. */
186static uint8_t *phys_ram_base;
187#endif
188
189/*
190 * Instance stuff.
191 */
192/** Pointer to the cpu state. */
193CPUState *cpu_single_env;
194
195
196#ifdef VBOX_WITH_DEBUGGER
197/*
198 * Debugger commands.
199 */
200static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
201
202/** '.remstep' arguments. */
203static const DBGCVARDESC g_aArgRemStep[] =
204{
205 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
206 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
207};
208
209/** Command descriptors. */
210static const DBGCCMD g_aCmds[] =
211{
212 {
213 .pszCmd ="remstep",
214 .cArgsMin = 0,
215 .cArgsMax = 1,
216 .paArgDescs = &g_aArgRemStep[0],
217 .cArgDescs = ELEMENTS(g_aArgRemStep),
218 .pResultDesc = NULL,
219 .fFlags = 0,
220 .pfnHandler = remR3CmdDisasEnableStepping,
221 .pszSyntax = "[on/off]",
222 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
223 "If no arguments show the current state."
224 }
225};
226#endif
227
228
229/*******************************************************************************
230* Internal Functions *
231*******************************************************************************/
232static void remAbort(int rc, const char *pszTip);
233
234
235/* Put them here to avoid unused variable warning. */
236AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
237//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
238//AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
239
240/**
241 * Initializes the REM.
242 *
243 * @returns VBox status code.
244 * @param pVM The VM to operate on.
245 */
246REMR3DECL(int) REMR3Init(PVM pVM)
247{
248 uint32_t u32Dummy;
249 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
250 //AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
251 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
252#if 0 /* not merged yet */
253 Assert(!testmath());
254#endif
255
256 /*
257 * Init some internal data members.
258 */
259 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
260 pVM->rem.s.Env.pVM = pVM;
261#ifdef CPU_RAW_MODE_INIT
262 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
263#endif
264
265 /* ctx. */
266 int rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
267 if (VBOX_FAILURE(rc))
268 {
269 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
270 return rc;
271 }
272 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
273
274 /*
275 * Init the recompiler.
276 */
277 if (!cpu_x86_init(&pVM->rem.s.Env))
278 {
279 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
280 return VERR_GENERAL_FAILURE;
281 }
282 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
283
284 /* allocate code buffer for single instruction emulation. */
285 pVM->rem.s.Env.cbCodeBuffer = 4096;
286 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
287 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
288
289 /* finally, set the cpu_single_env global. */
290 cpu_single_env = &pVM->rem.s.Env;
291
292 /* Nothing is pending by default */
293 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
294
295#ifdef DEBUG_bird
296 //cpu_breakpoint_insert(&pVM->rem.s.Env, some-address);
297#endif
298
299 /*
300 * Register ram types.
301 */
302 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(0, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
303 AssertReleaseMsg(pVM->rem.s.iMMIOMemType > 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
304 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(0, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
305 AssertReleaseMsg(pVM->rem.s.iHandlerMemType > 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
306 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
307
308 /*
309 * Register the saved state data unit.
310 */
311 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
312 NULL, remR3Save, NULL,
313 NULL, remR3Load, NULL);
314 if (VBOX_FAILURE(rc))
315 return rc;
316
317#ifdef VBOX_WITH_DEBUGGER
318 /*
319 * Debugger commands.
320 */
321 static bool fRegisteredCmds = false;
322 if (!fRegisteredCmds)
323 {
324 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
325 if (VBOX_SUCCESS(rc))
326 fRegisteredCmds = true;
327 }
328#endif
329
330#ifdef VBOX_WITH_STATISTICS
331 /*
332 * Statistics.
333 */
334 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
335 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
336 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
337 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
338 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
339 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
340 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
341 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
342 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
343 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
344
345 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
346 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
347 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
348 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
349 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
350 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
351 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
352 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
353 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
354 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
355
356 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
357 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
358 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
359 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
360
361 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
362 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
363 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
364 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
365 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
366 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
367
368 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
369 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
370 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
371 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
372 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
373 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
374
375#endif
376 return rc;
377}
378
379
380/**
381 * Terminates the REM.
382 *
383 * Termination means cleaning up and freeing all resources,
384 * the VM it self is at this point powered off or suspended.
385 *
386 * @returns VBox status code.
387 * @param pVM The VM to operate on.
388 */
389REMR3DECL(int) REMR3Term(PVM pVM)
390{
391 return VINF_SUCCESS;
392}
393
394
395/**
396 * The VM is being reset.
397 *
398 * For the REM component this means to call the cpu_reset() and
399 * reinitialize some state variables.
400 *
401 * @param pVM VM handle.
402 */
403REMR3DECL(void) REMR3Reset(PVM pVM)
404{
405 pVM->rem.s.fIgnoreCR3Load = true;
406 pVM->rem.s.fIgnoreInvlPg = true;
407 pVM->rem.s.fIgnoreCpuMode = true;
408
409 /*
410 * Reset the REM cpu.
411 */
412 cpu_reset(&pVM->rem.s.Env);
413 pVM->rem.s.cInvalidatedPages = 0;
414
415 pVM->rem.s.fIgnoreCR3Load = false;
416 pVM->rem.s.fIgnoreInvlPg = false;
417 pVM->rem.s.fIgnoreCpuMode = false;
418}
419
420
421/**
422 * Execute state save operation.
423 *
424 * @returns VBox status code.
425 * @param pVM VM Handle.
426 * @param pSSM SSM operation handle.
427 */
428static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
429{
430 LogFlow(("remR3Save:\n"));
431
432 /*
433 * Save the required CPU Env bits.
434 * (Not much because we're never in REM when doing the save.)
435 */
436 PREM pRem = &pVM->rem.s;
437 Assert(!pRem->fInREM);
438 SSMR3PutU32(pSSM, pRem->Env.hflags);
439 SSMR3PutMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
440 SSMR3PutU32(pSSM, ~0); /* separator */
441
442 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
443 SSMR3PutUInt(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
444
445 /*
446 * Save the REM stuff.
447 */
448 SSMR3PutUInt(pSSM, pRem->cInvalidatedPages);
449 unsigned i;
450 for (i = 0; i < pRem->cInvalidatedPages; i++)
451 SSMR3PutGCPtr(pSSM, pRem->aGCPtrInvalidatedPages[i]);
452
453 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
454
455 return SSMR3PutU32(pSSM, ~0); /* terminator */
456}
457
458
459/**
460 * Execute state load operation.
461 *
462 * @returns VBox status code.
463 * @param pVM VM Handle.
464 * @param pSSM SSM operation handle.
465 * @param u32Version Data layout version.
466 */
467static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
468{
469 uint32_t u32Dummy;
470 uint32_t fRawRing0 = false;
471
472 LogFlow(("remR3Load:\n"));
473
474 /*
475 * Validate version.
476 */
477 if (u32Version != REM_SAVED_STATE_VERSION)
478 {
479 Log(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
480 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
481 }
482
483 /*
484 * Do a reset to be on the safe side...
485 */
486 REMR3Reset(pVM);
487
488 /*
489 * Ignore all ignorable notifications.
490 * Not doing this will cause big trouble.
491 */
492 pVM->rem.s.fIgnoreCR3Load = true;
493 pVM->rem.s.fIgnoreInvlPg = true;
494 pVM->rem.s.fIgnoreCpuMode = true;
495
496 /*
497 * Load the required CPU Env bits.
498 * (Not much because we're never in REM when doing the save.)
499 */
500 PREM pRem = &pVM->rem.s;
501 Assert(!pRem->fInREM);
502 SSMR3GetU32(pSSM, &pRem->Env.hflags);
503 SSMR3GetMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
504 uint32_t u32Sep;
505 int rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
506 if (VBOX_FAILURE(rc))
507 return rc;
508 if (u32Sep != ~0)
509 {
510 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
511 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
512 }
513
514 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
515 SSMR3GetUInt(pSSM, &fRawRing0);
516 if (fRawRing0)
517 pRem->Env.state |= CPU_RAW_RING0;
518
519 /*
520 * Load the REM stuff.
521 */
522 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
523 if (VBOX_FAILURE(rc))
524 return rc;
525 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
526 {
527 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
528 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
529 }
530 unsigned i;
531 for (i = 0; i < pRem->cInvalidatedPages; i++)
532 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
533
534 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
535 if (VBOX_FAILURE(rc))
536 return rc;
537
538 /* check the terminator. */
539 rc = SSMR3GetU32(pSSM, &u32Sep);
540 if (VBOX_FAILURE(rc))
541 return rc;
542 if (u32Sep != ~0)
543 {
544 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
545 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
546 }
547
548 /*
549 * Get the CPUID features.
550 */
551 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
552
553 /*
554 * Sync the Load Flush the TLB
555 */
556 tlb_flush(&pRem->Env, 1);
557
558#if 0 /** @todo r=bird: this doesn't make sense. WHY? */
559 /*
560 * Clear all lazy flags (only FPU sync for now).
561 */
562 CPUMGetAndClearFPUUsedREM(pVM);
563#endif
564
565 /*
566 * Stop ignoring ignornable notifications.
567 */
568 pVM->rem.s.fIgnoreCpuMode = false;
569 pVM->rem.s.fIgnoreInvlPg = false;
570 pVM->rem.s.fIgnoreCR3Load = false;
571
572 return VINF_SUCCESS;
573}
574
575
576
577#undef LOG_GROUP
578#define LOG_GROUP LOG_GROUP_REM_RUN
579
580/**
581 * Single steps an instruction in recompiled mode.
582 *
583 * Before calling this function the REM state needs to be in sync with
584 * the VM. Call REMR3State() to perform the sync. It's only necessary
585 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
586 * and after calling REMR3StateBack().
587 *
588 * @returns VBox status code.
589 *
590 * @param pVM VM Handle.
591 */
592REMR3DECL(int) REMR3Step(PVM pVM)
593{
594 /*
595 * Lock the REM - we don't wanna have anyone interrupting us
596 * while stepping - and enabled single stepping. We also ignore
597 * pending interrupts and suchlike.
598 */
599 int interrupt_request = pVM->rem.s.Env.interrupt_request;
600 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
601 pVM->rem.s.Env.interrupt_request = 0;
602 cpu_single_step(&pVM->rem.s.Env, 1);
603
604 /*
605 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
606 */
607 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
608 bool fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
609
610 /*
611 * Execute and handle the return code.
612 * We execute without enabling the cpu tick, so on success we'll
613 * just flip it on and off to make sure it moves
614 */
615 int rc = cpu_exec(&pVM->rem.s.Env);
616 if (rc == EXCP_DEBUG)
617 {
618 TMCpuTickResume(pVM);
619 TMCpuTickPause(pVM);
620 TMVirtualResume(pVM);
621 TMVirtualPause(pVM);
622 rc = VINF_EM_DBG_STEPPED;
623 }
624 else
625 {
626 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
627 switch (rc)
628 {
629 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
630 case EXCP_HLT: rc = VINF_EM_HALT; break;
631 case EXCP_RC:
632 rc = pVM->rem.s.rc;
633 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
634 break;
635 default:
636 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
637 rc = VERR_INTERNAL_ERROR;
638 break;
639 }
640 }
641
642 /*
643 * Restore the stuff we changed to prevent interruption.
644 * Unlock the REM.
645 */
646 if (fBp)
647 {
648 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
649 Assert(rc2 == 0); NOREF(rc2);
650 }
651 cpu_single_step(&pVM->rem.s.Env, 0);
652 pVM->rem.s.Env.interrupt_request = interrupt_request;
653
654 return rc;
655}
656
657
658/**
659 * Set a breakpoint using the REM facilities.
660 *
661 * @returns VBox status code.
662 * @param pVM The VM handle.
663 * @param Address The breakpoint address.
664 * @thread The emulation thread.
665 */
666REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
667{
668 VM_ASSERT_EMT(pVM);
669 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
670 {
671 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
672 return VINF_SUCCESS;
673 }
674 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
675 return VERR_REM_NO_MORE_BP_SLOTS;
676}
677
678
679/**
680 * Clears a breakpoint set by REMR3BreakpointSet().
681 *
682 * @returns VBox status code.
683 * @param pVM The VM handle.
684 * @param Address The breakpoint address.
685 * @thread The emulation thread.
686 */
687REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
688{
689 VM_ASSERT_EMT(pVM);
690 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
691 {
692 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
693 return VINF_SUCCESS;
694 }
695 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
696 return VERR_REM_BP_NOT_FOUND;
697}
698
699
700/**
701 * Emulate an instruction.
702 *
703 * This function executes one instruction without letting anyone
704 * interrupt it. This is intended for being called while being in
705 * raw mode and thus will take care of all the state syncing between
706 * REM and the rest.
707 *
708 * @returns VBox status code.
709 * @param pVM VM handle.
710 */
711REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
712{
713 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
714
715 /*
716 * Sync the state and enable single instruction / single stepping.
717 */
718 int rc = REMR3State(pVM);
719 if (VBOX_SUCCESS(rc))
720 {
721 int interrupt_request = pVM->rem.s.Env.interrupt_request;
722 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
723 Assert(!pVM->rem.s.Env.singlestep_enabled);
724#if 1
725
726 /*
727 * Now we set the execute single instruction flag and enter the cpu_exec loop.
728 */
729 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
730 rc = cpu_exec(&pVM->rem.s.Env);
731 switch (rc)
732 {
733 /*
734 * Executed without anything out of the way happening.
735 */
736 case EXCP_SINGLE_INSTR:
737 rc = VINF_EM_RESCHEDULE;
738 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
739 break;
740
741 /*
742 * If we take a trap or start servicing a pending interrupt, we might end up here.
743 * (Timer thread or some other thread wishing EMT's attention.)
744 */
745 case EXCP_INTERRUPT:
746 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
747 rc = VINF_EM_RESCHEDULE;
748 break;
749
750 /*
751 * Single step, we assume!
752 * If there was a breakpoint there we're fucked now.
753 */
754 case EXCP_DEBUG:
755 {
756 /* breakpoint or single step? */
757 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
758 int iBP;
759 rc = VINF_EM_DBG_STEPPED;
760 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
761 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
762 {
763 rc = VINF_EM_DBG_BREAKPOINT;
764 break;
765 }
766 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
767 break;
768 }
769
770 /*
771 * hlt instruction.
772 */
773 case EXCP_HLT:
774 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
775 rc = VINF_EM_HALT;
776 break;
777
778 /*
779 * Switch to RAW-mode.
780 */
781 case EXCP_EXECUTE_RAW:
782 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
783 rc = VINF_EM_RESCHEDULE_RAW;
784 break;
785
786 /*
787 * Switch to hardware accelerated RAW-mode.
788 */
789 case EXCP_EXECUTE_HWACC:
790 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
791 rc = VINF_EM_RESCHEDULE_HWACC;
792 break;
793
794 /*
795 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
796 */
797 case EXCP_RC:
798 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
799 rc = pVM->rem.s.rc;
800 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
801 break;
802
803 /*
804 * Figure out the rest when they arrive....
805 */
806 default:
807 AssertMsgFailed(("rc=%d\n", rc));
808 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
809 rc = VINF_EM_RESCHEDULE;
810 break;
811 }
812
813 /*
814 * Switch back the state.
815 */
816#else
817 pVM->rem.s.Env.interrupt_request = 0;
818 cpu_single_step(&pVM->rem.s.Env, 1);
819
820 /*
821 * Execute and handle the return code.
822 * We execute without enabling the cpu tick, so on success we'll
823 * just flip it on and off to make sure it moves.
824 *
825 * (We do not use emulate_single_instr() because that doesn't enter the
826 * right way in will cause serious trouble if a longjmp was attempted.)
827 */
828 #ifdef DEBUG_bird
829 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
830 #endif
831 int cTimesMax = 16384;
832 uint32_t eip = pVM->rem.s.Env.eip;
833 do
834 {
835 rc = cpu_exec(&pVM->rem.s.Env);
836 } while ( eip == pVM->rem.s.Env.eip
837 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
838 && --cTimesMax > 0);
839 switch (rc)
840 {
841 /*
842 * Single step, we assume!
843 * If there was a breakpoint there we're fucked now.
844 */
845 case EXCP_DEBUG:
846 {
847 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
848 rc = VINF_EM_RESCHEDULE;
849 break;
850 }
851
852 /*
853 * We cannot be interrupted!
854 */
855 case EXCP_INTERRUPT:
856 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
857 rc = VERR_INTERNAL_ERROR;
858 break;
859
860 /*
861 * hlt instruction.
862 */
863 case EXCP_HLT:
864 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
865 rc = VINF_EM_HALT;
866 break;
867
868 /*
869 * Switch to RAW-mode.
870 */
871 case EXCP_EXECUTE_RAW:
872 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
873 rc = VINF_EM_RESCHEDULE_RAW;
874 break;
875
876 /*
877 * Switch to hardware accelerated RAW-mode.
878 */
879 case EXCP_EXECUTE_HWACC:
880 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
881 rc = VINF_EM_RESCHEDULE_HWACC;
882 break;
883
884 /*
885 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
886 */
887 case EXCP_RC:
888 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
889 rc = pVM->rem.s.rc;
890 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
891 break;
892
893 /*
894 * Figure out the rest when they arrive....
895 */
896 default:
897 AssertMsgFailed(("rc=%d\n", rc));
898 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
899 rc = VINF_SUCCESS;
900 break;
901 }
902
903 /*
904 * Switch back the state.
905 */
906 cpu_single_step(&pVM->rem.s.Env, 0);
907#endif
908 pVM->rem.s.Env.interrupt_request = interrupt_request;
909 int rc2 = REMR3StateBack(pVM);
910 AssertRC(rc2);
911 }
912
913 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%08x)\n",
914 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
915 return rc;
916}
917
918
919/**
920 * Runs code in recompiled mode.
921 *
922 * Before calling this function the REM state needs to be in sync with
923 * the VM. Call REMR3State() to perform the sync. It's only necessary
924 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
925 * and after calling REMR3StateBack().
926 *
927 * @returns VBox status code.
928 *
929 * @param pVM VM Handle.
930 */
931REMR3DECL(int) REMR3Run(PVM pVM)
932{
933 Log2(("REMR3Run: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
934 Assert(pVM->rem.s.fInREM);
935////Keyboard / tb stuff:
936//if ( pVM->rem.s.Env.segs[R_CS].selector == 0xf000
937// && pVM->rem.s.Env.eip >= 0xe860
938// && pVM->rem.s.Env.eip <= 0xe880)
939// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
940////A20:
941//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x9020
942// && pVM->rem.s.Env.eip >= 0x970
943// && pVM->rem.s.Env.eip <= 0x9a0)
944// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
945////Speaker (port 61h)
946//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x0010
947// && ( (pVM->rem.s.Env.eip >= 0x90278c10 && pVM->rem.s.Env.eip <= 0x90278c30)
948// || (pVM->rem.s.Env.eip >= 0x9010e250 && pVM->rem.s.Env.eip <= 0x9010e260)
949// )
950// )
951// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
952//DBGFR3InfoLog(pVM, "timers", NULL);
953
954
955 int rc = cpu_exec(&pVM->rem.s.Env);
956 switch (rc)
957 {
958 /*
959 * This happens when the execution was interrupted
960 * by an external event, like pending timers.
961 */
962 case EXCP_INTERRUPT:
963 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
964 rc = VINF_SUCCESS;
965 break;
966
967 /*
968 * hlt instruction.
969 */
970 case EXCP_HLT:
971 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
972 rc = VINF_EM_HALT;
973 break;
974
975 /*
976 * Breakpoint/single step.
977 */
978 case EXCP_DEBUG:
979 {
980#if 0//def DEBUG_bird
981 static int iBP = 0;
982 printf("howdy, breakpoint! iBP=%d\n", iBP);
983 switch (iBP)
984 {
985 case 0:
986 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
987 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
988 //pVM->rem.s.Env.interrupt_request = 0;
989 //pVM->rem.s.Env.exception_index = -1;
990 //g_fInterruptDisabled = 1;
991 rc = VINF_SUCCESS;
992 asm("int3");
993 break;
994 default:
995 asm("int3");
996 break;
997 }
998 iBP++;
999#else
1000 /* breakpoint or single step? */
1001 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1002 int iBP;
1003 rc = VINF_EM_DBG_STEPPED;
1004 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1005 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1006 {
1007 rc = VINF_EM_DBG_BREAKPOINT;
1008 break;
1009 }
1010 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1011#endif
1012 break;
1013 }
1014
1015 /*
1016 * Switch to RAW-mode.
1017 */
1018 case EXCP_EXECUTE_RAW:
1019 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1020 rc = VINF_EM_RESCHEDULE_RAW;
1021 break;
1022
1023 /*
1024 * Switch to hardware accelerated RAW-mode.
1025 */
1026 case EXCP_EXECUTE_HWACC:
1027 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1028 rc = VINF_EM_RESCHEDULE_HWACC;
1029 break;
1030
1031 /*
1032 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
1033 */
1034 case EXCP_RC:
1035 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1036 rc = pVM->rem.s.rc;
1037 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1038 break;
1039
1040 /*
1041 * Figure out the rest when they arrive....
1042 */
1043 default:
1044 AssertMsgFailed(("rc=%d\n", rc));
1045 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1046 rc = VINF_SUCCESS;
1047 break;
1048 }
1049
1050 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%08x)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1051 return rc;
1052}
1053
1054
1055/**
1056 * Check if the cpu state is suitable for Raw execution.
1057 *
1058 * @returns boolean
1059 * @param env The CPU env struct.
1060 * @param eip The EIP to check this for (might differ from env->eip).
1061 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1062 * @param pExceptionIndex Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1063 *
1064 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1065 */
1066bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, uint32_t *pExceptionIndex)
1067{
1068 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1069 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1070 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1071
1072 /* Update counter. */
1073 env->pVM->rem.s.cCanExecuteRaw++;
1074
1075 if (HWACCMIsEnabled(env->pVM))
1076 {
1077 env->state |= CPU_RAW_HWACC;
1078
1079 /*
1080 * Create partial context for HWACCMR3CanExecuteGuest
1081 */
1082 CPUMCTX Ctx;
1083 Ctx.cr0 = env->cr[0];
1084 Ctx.cr3 = env->cr[3];
1085 Ctx.cr4 = env->cr[4];
1086
1087 Ctx.tr = env->tr.selector;
1088 Ctx.trHid.u32Base = (uint32_t)env->tr.base;
1089 Ctx.trHid.u32Limit = env->tr.limit;
1090 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1091
1092 Ctx.idtr.cbIdt = env->idt.limit;
1093 Ctx.idtr.pIdt = (uint32_t)env->idt.base;
1094
1095 Ctx.eflags.u32 = env->eflags;
1096
1097 Ctx.cs = env->segs[R_CS].selector;
1098 Ctx.csHid.u32Base = (uint32_t)env->segs[R_CS].base;
1099 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1100 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1101
1102 Ctx.ss = env->segs[R_SS].selector;
1103 Ctx.ssHid.u32Base = (uint32_t)env->segs[R_SS].base;
1104 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1105 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1106
1107 /* Hardware accelerated raw-mode:
1108 *
1109 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1110 */
1111 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1112 {
1113 *pExceptionIndex = EXCP_EXECUTE_HWACC;
1114 return true;
1115 }
1116 return false;
1117 }
1118
1119 /*
1120 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1121 * or 32 bits protected mode ring 0 code
1122 *
1123 * The tests are ordered by the likelyhood of being true during normal execution.
1124 */
1125 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1126 {
1127 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1128 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1129 return false;
1130 }
1131
1132#ifndef VBOX_RAW_V86
1133 if (fFlags & VM_MASK) {
1134 STAM_COUNTER_INC(&gStatRefuseVM86);
1135 Log2(("raw mode refused: VM_MASK\n"));
1136 return false;
1137 }
1138#endif
1139
1140 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1141 {
1142#ifndef DEBUG_bird
1143 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1144#endif
1145 return false;
1146 }
1147
1148 if (env->singlestep_enabled)
1149 {
1150 //Log2(("raw mode refused: Single step\n"));
1151 return false;
1152 }
1153
1154 if (env->nb_breakpoints > 0)
1155 {
1156 //Log2(("raw mode refused: Breakpoints\n"));
1157 return false;
1158 }
1159
1160 uint32_t u32CR0 = env->cr[0];
1161 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1162 {
1163 STAM_COUNTER_INC(&gStatRefusePaging);
1164 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1165 return false;
1166 }
1167
1168 if (env->cr[4] & CR4_PAE_MASK)
1169 {
1170 STAM_COUNTER_INC(&gStatRefusePAE);
1171 //Log2(("raw mode refused: PAE\n"));
1172 return false;
1173 }
1174
1175 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1176 {
1177 if (!EMIsRawRing3Enabled(env->pVM))
1178 return false;
1179
1180 if (!(env->eflags & IF_MASK))
1181 {
1182 STAM_COUNTER_INC(&gStatRefuseIF0);
1183 Log2(("raw mode refused: IF (RawR3)\n"));
1184 return false;
1185 }
1186
1187 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1188 {
1189 STAM_COUNTER_INC(&gStatRefuseWP0);
1190 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1191 return false;
1192 }
1193 }
1194 else
1195 {
1196 if (!EMIsRawRing0Enabled(env->pVM))
1197 return false;
1198
1199 // Let's start with pure 32 bits ring 0 code first
1200 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1201 {
1202 STAM_COUNTER_INC(&gStatRefuseCode16);
1203 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1204 return false;
1205 }
1206
1207 // Only R0
1208 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1209 {
1210 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1211 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1212 return false;
1213 }
1214
1215 if (!(u32CR0 & CR0_WP_MASK))
1216 {
1217 STAM_COUNTER_INC(&gStatRefuseWP0);
1218 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1219 return false;
1220 }
1221
1222 if (PATMIsPatchGCAddr(env->pVM, eip))
1223 {
1224 Log2(("raw r0 mode forced: patch code\n"));
1225 *pExceptionIndex = EXCP_EXECUTE_RAW;
1226 return true;
1227 }
1228
1229#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1230 if (!(env->eflags & IF_MASK))
1231 {
1232 STAM_COUNTER_INC(&gStatRefuseIF0);
1233 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1234 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1235 return false;
1236 }
1237#endif
1238
1239 env->state |= CPU_RAW_RING0;
1240 }
1241
1242 /*
1243 * Don't reschedule the first time we're called, because there might be
1244 * special reasons why we're here that is not covered by the above checks.
1245 */
1246 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1247 {
1248 Log2(("raw mode refused: first scheduling\n"));
1249 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1250 return false;
1251 }
1252
1253 Assert(PGMPhysIsA20Enabled(env->pVM));
1254 *pExceptionIndex = EXCP_EXECUTE_RAW;
1255 return true;
1256}
1257
1258
1259/**
1260 * Fetches a code byte.
1261 *
1262 * @returns Success indicator (bool) for ease of use.
1263 * @param env The CPU environment structure.
1264 * @param GCPtrInstr Where to fetch code.
1265 * @param pu8Byte Where to store the byte on success
1266 */
1267bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1268{
1269 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1270 if (VBOX_SUCCESS(rc))
1271 return true;
1272 return false;
1273}
1274
1275
1276/**
1277 * Flush (or invalidate if you like) page table/dir entry.
1278 *
1279 * (invlpg instruction; tlb_flush_page)
1280 *
1281 * @param env Pointer to cpu environment.
1282 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1283 */
1284void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1285{
1286 PVM pVM = env->pVM;
1287
1288 /*
1289 * When we're replaying invlpg instructions or restoring a saved
1290 * state we disable this path.
1291 */
1292 if (pVM->rem.s.fIgnoreInvlPg)
1293 return;
1294 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1295
1296 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1297
1298 /*
1299 * Update the control registers before calling PGMFlushPage.
1300 */
1301 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1302 pCtx->cr0 = env->cr[0];
1303 pCtx->cr3 = env->cr[3];
1304 pCtx->cr4 = env->cr[4];
1305
1306 /*
1307 * Let PGM do the rest.
1308 */
1309 int rc = PGMInvalidatePage(pVM, GCPtr);
1310 if (VBOX_FAILURE(rc))
1311 {
1312 AssertMsgFailed(("remR3FlushPage %x %x %x %d failed!!\n", GCPtr));
1313 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1314 }
1315 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1316}
1317
1318/**
1319 * Set page table/dir entry. (called from tlb_set_page)
1320 *
1321 * @param env Pointer to cpu environment.
1322 */
1323void remR3SetPage(CPUState *env, CPUTLBEntry *pRead, CPUTLBEntry *pWrite, int prot, int is_user)
1324{
1325 uint32_t virt_addr, addend;
1326
1327 Log2(("tlb_set_page_raw read (%x-%x) write (%x-%x) prot %x is_user %d\n", pRead->address, pRead->addend, pWrite->address, pWrite->addend, prot, is_user));
1328
1329 if (prot & PAGE_WRITE)
1330 {
1331 addend = pWrite->addend;
1332 virt_addr = pWrite->address;
1333 }
1334 else
1335 if (prot & PAGE_READ)
1336 {
1337 addend = pRead->addend;
1338 virt_addr = pRead->address;
1339 }
1340 else
1341 {
1342 // Should never happen!
1343 AssertMsgFailed(("tlb_set_page_raw unexpected protection flags %x\n", prot));
1344 return;
1345 }
1346
1347 // Clear IO_* flags (TODO: are they actually useful for us??)
1348 virt_addr &= ~0xFFF;
1349
1350 /*
1351 * Update the control registers before calling PGMFlushPage.
1352 */
1353 PCPUMCTX pCtx = (PCPUMCTX)env->pVM->rem.s.pCtx;
1354 pCtx->cr0 = env->cr[0];
1355 pCtx->cr3 = env->cr[3];
1356 pCtx->cr4 = env->cr[4];
1357
1358 /*
1359 * Let PGM do the rest.
1360 */
1361 int rc = PGMInvalidatePage(env->pVM, (RTGCPTR)virt_addr);
1362 if (VBOX_FAILURE(rc))
1363 {
1364 AssertMsgFailed(("RAWEx_SetPageEntry %x %x %d failed!!\n", virt_addr, prot, is_user));
1365 VM_FF_SET(env->pVM, VM_FF_PGM_SYNC_CR3);
1366 }
1367}
1368
1369/**
1370 * Called from tlb_protect_code in order to write monitor a code page.
1371 *
1372 * @param env Pointer to the CPU environment.
1373 * @param GCPtr Code page to monitor
1374 */
1375void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1376{
1377 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1378 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1379 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1380 && !(env->eflags & VM_MASK) /* no V86 mode */
1381 && !HWACCMIsEnabled(env->pVM))
1382 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1383}
1384
1385/**
1386 * Called when the CPU is initialized, any of the CRx registers are changed or
1387 * when the A20 line is modified.
1388 *
1389 * @param env Pointer to the CPU environment.
1390 * @param fGlobal Set if the flush is global.
1391 */
1392void remR3FlushTLB(CPUState *env, bool fGlobal)
1393{
1394 PVM pVM = env->pVM;
1395
1396 /*
1397 * When we're replaying invlpg instructions or restoring a saved
1398 * state we disable this path.
1399 */
1400 if (pVM->rem.s.fIgnoreCR3Load)
1401 return;
1402
1403 /*
1404 * The caller doesn't check cr4, so we have to do that for ourselves.
1405 */
1406 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1407 fGlobal = true;
1408 Log(("remR3FlushTLB: CR0=%VGp CR3=%VGp CR4=%VGp %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1409
1410 /*
1411 * Update the control registers before calling PGMR3FlushTLB.
1412 */
1413 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1414 pCtx->cr0 = env->cr[0];
1415 pCtx->cr3 = env->cr[3];
1416 pCtx->cr4 = env->cr[4];
1417
1418 /*
1419 * Let PGM do the rest.
1420 */
1421 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1422}
1423
1424
1425/**
1426 * Called when any of the cr0, cr4 or efer registers is updated.
1427 *
1428 * @param env Pointer to the CPU environment.
1429 */
1430void remR3ChangeCpuMode(CPUState *env)
1431{
1432 int rc;
1433 PVM pVM = env->pVM;
1434
1435 /*
1436 * When we're replaying loads or restoring a saved
1437 * state this path is disabled.
1438 */
1439 if (pVM->rem.s.fIgnoreCpuMode)
1440 return;
1441
1442 /*
1443 * Update the control registers before calling PGMR3ChangeMode()
1444 * as it may need to map whatever cr3 is pointing to.
1445 */
1446 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1447 pCtx->cr0 = env->cr[0];
1448 pCtx->cr3 = env->cr[3];
1449 pCtx->cr4 = env->cr[4];
1450
1451#ifdef TARGET_X86_64
1452 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1453 if (rc != VINF_SUCCESS)
1454 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1455#else
1456 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1457 if (rc != VINF_SUCCESS)
1458 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1459#endif
1460}
1461
1462
1463/**
1464 * Called from compiled code to run dma.
1465 *
1466 * @param env Pointer to the CPU environment.
1467 */
1468void remR3DmaRun(CPUState *env)
1469{
1470 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1471 PDMR3DmaRun(env->pVM);
1472 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1473}
1474
1475/**
1476 * Called from compiled code to schedule pending timers in VMM
1477 *
1478 * @param env Pointer to the CPU environment.
1479 */
1480void remR3TimersRun(CPUState *env)
1481{
1482 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1483 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1484 TMR3TimerQueuesDo(env->pVM);
1485 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1486 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1487}
1488
1489/**
1490 * Record trap occurance
1491 *
1492 * @returns VBox status code
1493 * @param env Pointer to the CPU environment.
1494 * @param uTrap Trap nr
1495 * @param uErrorCode Error code
1496 * @param pvNextEIP Next EIP
1497 */
1498int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1499{
1500 PVM pVM = (PVM)env->pVM;
1501#ifdef VBOX_WITH_STATISTICS
1502 static STAMCOUNTER aStatTrap[255];
1503 static bool aRegisters[ELEMENTS(aStatTrap)];
1504#endif
1505
1506#ifdef VBOX_WITH_STATISTICS
1507 if (uTrap < 255)
1508 {
1509 if (!aRegisters[uTrap])
1510 {
1511 aRegisters[uTrap] = true;
1512 char szStatName[64];
1513 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1514 STAM_REG(env->pVM, &aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1515 }
1516 STAM_COUNTER_INC(&aStatTrap[uTrap]);
1517 }
1518#endif
1519 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1520 if(uTrap < 0x20)
1521 {
1522 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1523
1524 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 128)
1525 {
1526 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1527 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1528 return VERR_REM_TOO_MANY_TRAPS;
1529 }
1530 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1531 pVM->rem.s.cPendingExceptions = 1;
1532 pVM->rem.s.uPendingException = uTrap;
1533 pVM->rem.s.uPendingExcptEIP = env->eip;
1534 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1535 }
1536 else
1537 {
1538 pVM->rem.s.cPendingExceptions = 0;
1539 pVM->rem.s.uPendingException = uTrap;
1540 pVM->rem.s.uPendingExcptEIP = env->eip;
1541 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1542 }
1543 return VINF_SUCCESS;
1544}
1545
1546/*
1547 * Clear current active trap
1548 *
1549 * @param pVM VM Handle.
1550 */
1551void remR3TrapClear(PVM pVM)
1552{
1553 pVM->rem.s.cPendingExceptions = 0;
1554 pVM->rem.s.uPendingException = 0;
1555 pVM->rem.s.uPendingExcptEIP = 0;
1556 pVM->rem.s.uPendingExcptCR2 = 0;
1557}
1558
1559
1560/**
1561 * Syncs the internal REM state with the VM.
1562 *
1563 * This must be called before REMR3Run() is invoked whenever when the REM
1564 * state is not up to date. Calling it several times in a row is not
1565 * permitted.
1566 *
1567 * @returns VBox status code.
1568 *
1569 * @param pVM VM Handle.
1570 *
1571 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1572 * no do this since the majority of the callers don't want any unnecessary of events
1573 * pending that would immediatly interrupt execution.
1574 */
1575REMR3DECL(int) REMR3State(PVM pVM)
1576{
1577 Assert(!pVM->rem.s.fInREM);
1578 Log2(("REMR3State:\n"));
1579 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1580 register const CPUMCTX *pCtx = pVM->rem.s.pCtx;
1581 register unsigned fFlags;
1582 bool fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1583
1584 /*
1585 * Copy the registers which requires no special handling.
1586 */
1587 Assert(R_EAX == 0);
1588 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1589 Assert(R_ECX == 1);
1590 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1591 Assert(R_EDX == 2);
1592 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1593 Assert(R_EBX == 3);
1594 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1595 Assert(R_ESP == 4);
1596 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1597 Assert(R_EBP == 5);
1598 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1599 Assert(R_ESI == 6);
1600 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1601 Assert(R_EDI == 7);
1602 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1603 pVM->rem.s.Env.eip = pCtx->eip;
1604
1605 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1606
1607 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1608
1609 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1610 pVM->rem.s.Env.dr[0] = pCtx->dr0;
1611 pVM->rem.s.Env.dr[1] = pCtx->dr1;
1612 pVM->rem.s.Env.dr[2] = pCtx->dr2;
1613 pVM->rem.s.Env.dr[3] = pCtx->dr3;
1614 pVM->rem.s.Env.dr[4] = pCtx->dr4;
1615 pVM->rem.s.Env.dr[5] = pCtx->dr5;
1616 pVM->rem.s.Env.dr[6] = pCtx->dr6;
1617 pVM->rem.s.Env.dr[7] = pCtx->dr7;
1618
1619 /*
1620 * Replay invlpg?
1621 */
1622 if (pVM->rem.s.cInvalidatedPages)
1623 {
1624 pVM->rem.s.fIgnoreInvlPg = true;
1625 RTUINT i;
1626 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1627 {
1628 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1629 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1630 }
1631 pVM->rem.s.fIgnoreInvlPg = false;
1632 pVM->rem.s.cInvalidatedPages = 0;
1633 }
1634
1635 /*
1636 * Registers which are seldomly changed and require special handling / order when changed.
1637 */
1638 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1639 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1640 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1641 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR))
1642 {
1643 if (fFlags & CPUM_CHANGED_FPU_REM)
1644 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1645
1646 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1647 {
1648 pVM->rem.s.fIgnoreCR3Load = true;
1649 tlb_flush(&pVM->rem.s.Env, true);
1650 pVM->rem.s.fIgnoreCR3Load = false;
1651 }
1652
1653 if (fFlags & CPUM_CHANGED_CR4)
1654 {
1655 pVM->rem.s.fIgnoreCR3Load = true;
1656 pVM->rem.s.fIgnoreCpuMode = true;
1657 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1658 pVM->rem.s.fIgnoreCpuMode = false;
1659 pVM->rem.s.fIgnoreCR3Load = false;
1660 }
1661
1662 if (fFlags & CPUM_CHANGED_CR0)
1663 {
1664 pVM->rem.s.fIgnoreCR3Load = true;
1665 pVM->rem.s.fIgnoreCpuMode = true;
1666 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1667 pVM->rem.s.fIgnoreCpuMode = false;
1668 pVM->rem.s.fIgnoreCR3Load = false;
1669 }
1670
1671 if (fFlags & CPUM_CHANGED_CR3)
1672 {
1673 pVM->rem.s.fIgnoreCR3Load = true;
1674 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1675 pVM->rem.s.fIgnoreCR3Load = false;
1676 }
1677
1678 if (fFlags & CPUM_CHANGED_GDTR)
1679 {
1680 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1681 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1682 }
1683
1684 if (fFlags & CPUM_CHANGED_IDTR)
1685 {
1686 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1687 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1688 }
1689
1690 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1691 {
1692 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1693 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1694 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1695 }
1696
1697 if (fFlags & CPUM_CHANGED_LDTR)
1698 {
1699 if (fHiddenSelRegsValid)
1700 {
1701 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1702 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u32Base;
1703 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1704 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1705 }
1706 else
1707 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1708 }
1709
1710 if (fFlags & CPUM_CHANGED_TR)
1711 {
1712 if (fHiddenSelRegsValid)
1713 {
1714 pVM->rem.s.Env.tr.selector = pCtx->tr;
1715 pVM->rem.s.Env.tr.base = pCtx->trHid.u32Base;
1716 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1717 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1718 }
1719 else
1720 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1721
1722 /** @note do_interrupt will fault if the busy flag is still set.... */
1723 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1724 }
1725 }
1726
1727 /*
1728 * Update selector registers.
1729 * This must be done *after* we've synced gdt, ldt and crX registers
1730 * since we're reading the GDT/LDT om sync_seg. This will happen with
1731 * saved state which takes a quick dip into rawmode for instance.
1732 */
1733 /*
1734 * Stack; Note first check this one as the CPL might have changed. The
1735 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1736 */
1737
1738 if (fHiddenSelRegsValid)
1739 {
1740 /* The hidden selector registers are valid in the CPU context. */
1741 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1742
1743 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u32Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1744 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u32Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1745 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u32Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1746 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u32Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1747 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u32Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1748 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u32Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1749
1750 /* Set current CPL. */
1751 if (pCtx->eflags.Bits.u1VM == 1)
1752 cpu_x86_set_cpl(&pVM->rem.s.Env, 3);
1753 else
1754 cpu_x86_set_cpl(&pVM->rem.s.Env, pCtx->ss & 3);
1755 }
1756 else
1757 {
1758 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1759 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1760 {
1761 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1762
1763 cpu_x86_set_cpl(&pVM->rem.s.Env, (pCtx->eflags.Bits.u1VM) ? 3 : (pCtx->ss & 3));
1764 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1765#ifdef VBOX_WITH_STATISTICS
1766 if (pVM->rem.s.Env.segs[R_SS].newselector)
1767 {
1768 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1769 }
1770#endif
1771 }
1772 else
1773 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1774
1775 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1776 {
1777 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1778 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1779#ifdef VBOX_WITH_STATISTICS
1780 if (pVM->rem.s.Env.segs[R_ES].newselector)
1781 {
1782 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1783 }
1784#endif
1785 }
1786 else
1787 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1788
1789 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1790 {
1791 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1792 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1793#ifdef VBOX_WITH_STATISTICS
1794 if (pVM->rem.s.Env.segs[R_CS].newselector)
1795 {
1796 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1797 }
1798#endif
1799 }
1800 else
1801 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1802
1803 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1804 {
1805 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1806 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1807#ifdef VBOX_WITH_STATISTICS
1808 if (pVM->rem.s.Env.segs[R_DS].newselector)
1809 {
1810 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1811 }
1812#endif
1813 }
1814 else
1815 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1816
1817 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1818 * be the same but not the base/limit. */
1819 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1820 {
1821 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1822 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1823#ifdef VBOX_WITH_STATISTICS
1824 if (pVM->rem.s.Env.segs[R_FS].newselector)
1825 {
1826 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1827 }
1828#endif
1829 }
1830 else
1831 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1832
1833 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1834 {
1835 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1836 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1837#ifdef VBOX_WITH_STATISTICS
1838 if (pVM->rem.s.Env.segs[R_GS].newselector)
1839 {
1840 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1841 }
1842#endif
1843 }
1844 else
1845 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1846 }
1847
1848 /*
1849 * Check for traps.
1850 */
1851 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1852 TRPMEVENT enmType;
1853 uint8_t u8TrapNo;
1854 int rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
1855 if (VBOX_SUCCESS(rc))
1856 {
1857 #ifdef DEBUG
1858 if (u8TrapNo == 0x80)
1859 {
1860 remR3DumpLnxSyscall(pVM);
1861 remR3DumpOBsdSyscall(pVM);
1862 }
1863 #endif
1864
1865 pVM->rem.s.Env.exception_index = u8TrapNo;
1866 if (enmType != TRPM_SOFTWARE_INT)
1867 {
1868 pVM->rem.s.Env.exception_is_int = 0;
1869 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
1870 }
1871 else
1872 {
1873 /*
1874 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
1875 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
1876 * for int03 and into.
1877 */
1878 pVM->rem.s.Env.exception_is_int = 1;
1879 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 2;
1880 /* int 3 may be generated by one-byte 0xcc */
1881 if (u8TrapNo == 3)
1882 {
1883 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xcc)
1884 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1885 }
1886 /* int 4 may be generated by one-byte 0xce */
1887 else if (u8TrapNo == 4)
1888 {
1889 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xce)
1890 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1891 }
1892 }
1893
1894 /* get error code and cr2 if needed. */
1895 switch (u8TrapNo)
1896 {
1897 case 0x0e:
1898 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
1899 /* fallthru */
1900 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
1901 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
1902 break;
1903
1904 case 0x11: case 0x08:
1905 default:
1906 pVM->rem.s.Env.error_code = 0;
1907 break;
1908 }
1909
1910 /*
1911 * We can now reset the active trap since the recompiler is gonna have a go at it.
1912 */
1913 rc = TRPMResetTrap(pVM);
1914 AssertRC(rc);
1915 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
1916 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
1917 }
1918
1919 /*
1920 * Clear old interrupt request flags; Check for pending hardware interrupts.
1921 * (See @remark for why we don't check for other FFs.)
1922 */
1923 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
1924 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
1925 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
1926 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
1927
1928 /*
1929 * We're now in REM mode.
1930 */
1931 pVM->rem.s.fInREM = true;
1932 pVM->rem.s.cCanExecuteRaw = 0;
1933 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
1934 Log2(("REMR3State: returns VINF_SUCCESS\n"));
1935 return VINF_SUCCESS;
1936}
1937
1938
1939/**
1940 * Syncs back changes in the REM state to the the VM state.
1941 *
1942 * This must be called after invoking REMR3Run().
1943 * Calling it several times in a row is not permitted.
1944 *
1945 * @returns VBox status code.
1946 *
1947 * @param pVM VM Handle.
1948 */
1949REMR3DECL(int) REMR3StateBack(PVM pVM)
1950{
1951 Log2(("REMR3StateBack:\n"));
1952 Assert(pVM->rem.s.fInREM);
1953 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
1954 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
1955
1956 /*
1957 * Copy back the registers.
1958 * This is done in the order they are declared in the CPUMCTX structure.
1959 */
1960
1961 /** @todo FOP */
1962 /** @todo FPUIP */
1963 /** @todo CS */
1964 /** @todo FPUDP */
1965 /** @todo DS */
1966 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
1967 pCtx->fpu.MXCSR = 0;
1968 pCtx->fpu.MXCSR_MASK = 0;
1969
1970 /** @todo check if FPU/XMM was actually used in the recompiler */
1971 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
1972//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
1973
1974 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
1975 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
1976 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
1977 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
1978 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
1979 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
1980 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
1981
1982 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
1983 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
1984
1985#ifdef VBOX_WITH_STATISTICS
1986 if (pVM->rem.s.Env.segs[R_SS].newselector)
1987 {
1988 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
1989 }
1990 if (pVM->rem.s.Env.segs[R_GS].newselector)
1991 {
1992 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
1993 }
1994 if (pVM->rem.s.Env.segs[R_FS].newselector)
1995 {
1996 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
1997 }
1998 if (pVM->rem.s.Env.segs[R_ES].newselector)
1999 {
2000 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2001 }
2002 if (pVM->rem.s.Env.segs[R_DS].newselector)
2003 {
2004 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2005 }
2006 if (pVM->rem.s.Env.segs[R_CS].newselector)
2007 {
2008 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2009 }
2010#endif
2011 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2012 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2013 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2014 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2015 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2016
2017 pCtx->eip = pVM->rem.s.Env.eip;
2018 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2019
2020 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2021 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2022 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2023 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2024
2025 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2026 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2027 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2028 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2029 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2030 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2031 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2032 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2033
2034 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2035 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2036 {
2037 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2038 STAM_COUNTER_INC(&gStatREMGDTChange);
2039 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2040 }
2041
2042 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2043 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2044 {
2045 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2046 STAM_COUNTER_INC(&gStatREMIDTChange);
2047 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2048 }
2049
2050 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2051 {
2052 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2053 STAM_COUNTER_INC(&gStatREMLDTRChange);
2054 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2055 }
2056 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2057 {
2058 pCtx->tr = pVM->rem.s.Env.tr.selector;
2059 STAM_COUNTER_INC(&gStatREMTRChange);
2060 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2061 }
2062
2063 /** @todo These values could still be out of sync! */
2064 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2065 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2066 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2067 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2068
2069 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2070 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2071 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2072
2073 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2074 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2075 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2076
2077 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2078 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2079 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2080
2081 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2082 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2083 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2084
2085 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2086 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2087 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2088
2089 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2090 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2091 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2092
2093 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2094 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2095 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2096
2097 /* Sysenter MSR */
2098 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2099 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2100 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2101
2102 remR3TrapClear(pVM);
2103
2104 /*
2105 * Check for traps.
2106 */
2107 if ( pVM->rem.s.Env.exception_index >= 0
2108 && pVM->rem.s.Env.exception_index < 256)
2109 {
2110 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2111 int rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2112 AssertRC(rc);
2113 switch (pVM->rem.s.Env.exception_index)
2114 {
2115 case 0x0e:
2116 TRPMSetFaultAddress(pVM, pCtx->cr2);
2117 /* fallthru */
2118 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2119 case 0x11: case 0x08: /* 0 */
2120 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2121 break;
2122 }
2123
2124 }
2125
2126 /*
2127 * We're not longer in REM mode.
2128 */
2129 pVM->rem.s.fInREM = false;
2130 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2131 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2132 return VINF_SUCCESS;
2133}
2134
2135
2136/**
2137 * This is called by the disassembler when it wants to update the cpu state
2138 * before for instance doing a register dump.
2139 */
2140static void remR3StateUpdate(PVM pVM)
2141{
2142 Assert(pVM->rem.s.fInREM);
2143 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2144
2145 /*
2146 * Copy back the registers.
2147 * This is done in the order they are declared in the CPUMCTX structure.
2148 */
2149
2150 /** @todo FOP */
2151 /** @todo FPUIP */
2152 /** @todo CS */
2153 /** @todo FPUDP */
2154 /** @todo DS */
2155 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2156 pCtx->fpu.MXCSR = 0;
2157 pCtx->fpu.MXCSR_MASK = 0;
2158
2159 /** @todo check if FPU/XMM was actually used in the recompiler */
2160 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2161//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2162
2163 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2164 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2165 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2166 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2167 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2168 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2169 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2170
2171 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2172 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2173
2174 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2175 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2176 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2177 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2178 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2179
2180 pCtx->eip = pVM->rem.s.Env.eip;
2181 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2182
2183 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2184 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2185 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2186 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2187
2188 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2189 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2190 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2191 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2192 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2193 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2194 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2195 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2196
2197 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2198 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2199 {
2200 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2201 STAM_COUNTER_INC(&gStatREMGDTChange);
2202 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2203 }
2204
2205 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2206 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2207 {
2208 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2209 STAM_COUNTER_INC(&gStatREMIDTChange);
2210 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2211 }
2212
2213 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2214 {
2215 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2216 STAM_COUNTER_INC(&gStatREMLDTRChange);
2217 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2218 }
2219 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2220 {
2221 pCtx->tr = pVM->rem.s.Env.tr.selector;
2222 STAM_COUNTER_INC(&gStatREMTRChange);
2223 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2224 }
2225
2226 /** @todo These values could still be out of sync! */
2227 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2228 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2229 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2230 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2231
2232 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2233 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2234 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2235
2236 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2237 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2238 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2239
2240 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2241 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2242 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2243
2244 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2245 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2246 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2247
2248 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2249 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2250 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2251
2252 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2253 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2254 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2255
2256 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2257 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2258 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2259
2260 /* Sysenter MSR */
2261 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2262 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2263 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2264}
2265
2266
2267/**
2268 * Update the VMM state information if we're currently in REM.
2269 *
2270 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2271 * we're currently executing in REM and the VMM state is invalid. This method will of
2272 * course check that we're executing in REM before syncing any data over to the VMM.
2273 *
2274 * @param pVM The VM handle.
2275 */
2276REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2277{
2278 if (pVM->rem.s.fInREM)
2279 remR3StateUpdate(pVM);
2280}
2281
2282
2283#undef LOG_GROUP
2284#define LOG_GROUP LOG_GROUP_REM
2285
2286
2287/**
2288 * Notify the recompiler about Address Gate 20 state change.
2289 *
2290 * This notification is required since A20 gate changes are
2291 * initialized from a device driver and the VM might just as
2292 * well be in REM mode as in RAW mode.
2293 *
2294 * @param pVM VM handle.
2295 * @param fEnable True if the gate should be enabled.
2296 * False if the gate should be disabled.
2297 */
2298REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2299{
2300 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2301 VM_ASSERT_EMT(pVM);
2302 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2303}
2304
2305
2306/**
2307 * Replays the invalidated recorded pages.
2308 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2309 *
2310 * @param pVM VM handle.
2311 */
2312REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2313{
2314 VM_ASSERT_EMT(pVM);
2315
2316 /*
2317 * Sync the required registers.
2318 */
2319 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2320 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2321 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2322 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2323
2324 /*
2325 * Replay the flushes.
2326 */
2327 pVM->rem.s.fIgnoreInvlPg = true;
2328 RTUINT i;
2329 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2330 {
2331 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2332 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2333 }
2334 pVM->rem.s.fIgnoreInvlPg = false;
2335 pVM->rem.s.cInvalidatedPages = 0;
2336}
2337
2338
2339/**
2340 * Replays the invalidated recorded pages.
2341 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2342 *
2343 * @param pVM VM handle.
2344 */
2345REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2346{
2347 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2348 VM_ASSERT_EMT(pVM);
2349
2350 /*
2351 * Replay the flushes.
2352 */
2353 RTUINT i;
2354 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2355 pVM->rem.s.cHandlerNotifications = 0;
2356 for (i = 0; i < c; i++)
2357 {
2358 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2359 switch (pRec->enmKind)
2360 {
2361 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2362 REMR3NotifyHandlerPhysicalRegister(pVM,
2363 pRec->u.PhysicalRegister.enmType,
2364 pRec->u.PhysicalRegister.GCPhys,
2365 pRec->u.PhysicalRegister.cb,
2366 pRec->u.PhysicalRegister.fHasHCHandler);
2367 break;
2368
2369 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2370 REMR3NotifyHandlerPhysicalDeregister(pVM,
2371 pRec->u.PhysicalDeregister.enmType,
2372 pRec->u.PhysicalDeregister.GCPhys,
2373 pRec->u.PhysicalDeregister.cb,
2374 pRec->u.PhysicalDeregister.fHasHCHandler,
2375 pRec->u.PhysicalDeregister.pvHCPtr);
2376 break;
2377
2378 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2379 REMR3NotifyHandlerPhysicalModify(pVM,
2380 pRec->u.PhysicalModify.enmType,
2381 pRec->u.PhysicalModify.GCPhysOld,
2382 pRec->u.PhysicalModify.GCPhysNew,
2383 pRec->u.PhysicalModify.cb,
2384 pRec->u.PhysicalModify.fHasHCHandler,
2385 pRec->u.PhysicalModify.pvHCPtr);
2386 break;
2387
2388 default:
2389 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2390 break;
2391 }
2392 }
2393}
2394
2395
2396/**
2397 * Notify REM about changed code page.
2398 *
2399 * @returns VBox status code.
2400 * @param pVM VM handle.
2401 * @param pvCodePage Code page address
2402 */
2403REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2404{
2405 int rc;
2406 RTGCPHYS PhysGC;
2407 uint64_t flags;
2408
2409 VM_ASSERT_EMT(pVM);
2410
2411 /*
2412 * Get the physical page address.
2413 */
2414 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2415 if (rc == VINF_SUCCESS)
2416 {
2417 /*
2418 * Sync the required registers and flush the whole page.
2419 * (Easier to do the whole page than notifying it about each physical
2420 * byte that was changed.
2421 */
2422 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2423 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2424 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2425 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2426
2427 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2428 }
2429 return VINF_SUCCESS;
2430}
2431
2432/**
2433 * Notification about a successful MMR3PhysRegister() call.
2434 *
2435 * @param pVM VM handle.
2436 * @param GCPhys The physical address the RAM.
2437 * @param cb Size of the memory.
2438 * @param pvRam The HC address of the RAM.
2439 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2440 */
2441REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvRam, unsigned fFlags)
2442{
2443 Log(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2444 VM_ASSERT_EMT(pVM);
2445
2446 /*
2447 * Validate input - we trust the caller.
2448 */
2449 Assert(!GCPhys || pvRam);
2450 Assert(RT_ALIGN_P(pvRam, PAGE_SIZE) == pvRam);
2451 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2452 Assert(cb);
2453 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2454
2455 /*
2456 * Base ram?
2457 */
2458 if (!GCPhys)
2459 {
2460#ifndef PGM_DYNAMIC_RAM_ALLOC
2461 AssertRelease(!phys_ram_base);
2462 phys_ram_base = pvRam;
2463#endif
2464 phys_ram_size = cb;
2465 phys_ram_dirty = MMR3HeapAllocZ(pVM, MM_TAG_REM, cb >> PAGE_SHIFT);
2466 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", cb >> PAGE_SHIFT));
2467 }
2468#ifndef PGM_DYNAMIC_RAM_ALLOC
2469 AssertRelease(phys_ram_base);
2470#endif
2471
2472 /*
2473 * Register the ram.
2474 */
2475#ifdef PGM_DYNAMIC_RAM_ALLOC
2476 if (!GCPhys)
2477 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2478 else
2479 {
2480 uint32_t i;
2481
2482 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2483
2484 AssertRelease(pVM->rem.s.cPhysRegistrations < REM_MAX_PHYS_REGISTRATIONS);
2485 for (i=0;i<pVM->rem.s.cPhysRegistrations;i++)
2486 {
2487 if (pVM->rem.s.aPhysReg[i].GCPhys == GCPhys)
2488 {
2489 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvRam;
2490 pVM->rem.s.aPhysReg[i].cb = cb;
2491 break;
2492 }
2493 }
2494 if (i == pVM->rem.s.cPhysRegistrations)
2495 {
2496 pVM->rem.s.aPhysReg[i].GCPhys = GCPhys;
2497 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvRam;
2498 pVM->rem.s.aPhysReg[i].cb = cb;
2499 pVM->rem.s.cPhysRegistrations++;
2500 }
2501 }
2502#else
2503 cpu_register_physical_memory(GCPhys, cb, ((uintptr_t)pvRam - (uintptr_t)phys_ram_base)
2504 | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2505#endif
2506}
2507
2508
2509/**
2510 * Notification about a successful PGMR3PhysRegisterChunk() call.
2511 *
2512 * @param pVM VM handle.
2513 * @param GCPhys The physical address the RAM.
2514 * @param cb Size of the memory.
2515 * @param pvRam The HC address of the RAM.
2516 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2517 */
2518REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2519{
2520 uint32_t idx;
2521
2522 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2523 VM_ASSERT_EMT(pVM);
2524
2525 /*
2526 * Validate input - we trust the caller.
2527 */
2528 Assert(pvRam);
2529 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2530 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2531 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2532 Assert(fFlags == 0 /* normal RAM */);
2533
2534 if (!pVM->rem.s.paHCVirtToGCPhys)
2535 {
2536 uint32_t size = (_4G >> PGM_DYNAMIC_CHUNK_SHIFT) * sizeof(REMCHUNKINFO);
2537
2538 Assert(phys_ram_size);
2539
2540 pVM->rem.s.paHCVirtToGCPhys = (PREMCHUNKINFO)MMR3HeapAllocZ(pVM, MM_TAG_REM, size);
2541 pVM->rem.s.paGCPhysToHCVirt = (RTHCPTR)MMR3HeapAllocZ(pVM, MM_TAG_REM, (phys_ram_size >> PGM_DYNAMIC_CHUNK_SHIFT)*sizeof(RTHCPTR));
2542 }
2543 pVM->rem.s.paGCPhysToHCVirt[GCPhys >> PGM_DYNAMIC_CHUNK_SHIFT] = pvRam;
2544
2545 idx = (pvRam >> PGM_DYNAMIC_CHUNK_SHIFT);
2546 if (!pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1)
2547 {
2548 pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1 = pvRam;
2549 pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 = GCPhys;
2550 }
2551 else
2552 {
2553 Assert(!pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2);
2554 pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2 = pvRam;
2555 pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 = GCPhys;
2556 }
2557 /* Does the region spawn two chunks? */
2558 if (pvRam & PGM_DYNAMIC_CHUNK_OFFSET_MASK)
2559 {
2560 if (!pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk1)
2561 {
2562 pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk1 = pvRam;
2563 pVM->rem.s.paHCVirtToGCPhys[idx+1].GCPhys1 = GCPhys;
2564 }
2565 else
2566 {
2567 Assert(!pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk2);
2568 pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk2 = pvRam;
2569 pVM->rem.s.paHCVirtToGCPhys[idx+1].GCPhys2 = GCPhys;
2570 }
2571 }
2572 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2573}
2574
2575/**
2576 * Convert GC physical address to HC virt
2577 *
2578 * @returns The HC virt address corresponding to addr.
2579 * @param env The cpu environment.
2580 * @param addr The physical address.
2581 */
2582void *remR3GCPhys2HCVirt(void *env, target_ulong addr)
2583{
2584#ifdef PGM_DYNAMIC_RAM_ALLOC
2585 PVM pVM = ((CPUState *)env)->pVM;
2586 uint32_t i;
2587
2588 /* lookup in pVM->rem.s.aPhysReg array first (for ROM range(s) inside the guest's RAM) */
2589 for (i=0;i<pVM->rem.s.cPhysRegistrations;i++)
2590 {
2591 uint32_t off = addr - pVM->rem.s.aPhysReg[i].GCPhys;
2592 if (off < pVM->rem.s.aPhysReg[i].cb)
2593 {
2594 Log2(("remR3GCPhys2HCVirt: %x -> %x\n", addr, pVM->rem.s.aPhysReg[i].HCVirt + off));
2595 return (void *)(pVM->rem.s.aPhysReg[i].HCVirt + off);
2596 }
2597 }
2598 AssertMsg(addr < phys_ram_size, ("remR3GCPhys2HCVirt: unknown physical address %x\n", addr));
2599 Log2(("remR3GCPhys2HCVirt: %x -> %x\n", addr, pVM->rem.s.paGCPhysToHCVirt[addr >> PGM_DYNAMIC_CHUNK_SHIFT] + (addr & PGM_DYNAMIC_CHUNK_OFFSET_MASK)));
2600 return (void *)(pVM->rem.s.paGCPhysToHCVirt[addr >> PGM_DYNAMIC_CHUNK_SHIFT] + (addr & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
2601#else
2602 return phys_ram_base + addr;
2603#endif
2604}
2605
2606/**
2607 * Convert GC physical address to HC virt
2608 *
2609 * @returns The HC virt address corresponding to addr.
2610 * @param env The cpu environment.
2611 * @param addr The physical address.
2612 */
2613target_ulong remR3HCVirt2GCPhys(void *env, void *addr)
2614{
2615#ifdef PGM_DYNAMIC_RAM_ALLOC
2616 PVM pVM = ((CPUState *)env)->pVM;
2617 RTHCUINTPTR HCVirt = (RTHCUINTPTR)addr;
2618 uint32_t idx = (HCVirt >> PGM_DYNAMIC_CHUNK_SHIFT);
2619 RTHCUINTPTR off;
2620 RTUINT i;
2621
2622 off = HCVirt - pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1;
2623
2624 if ( pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1
2625 && off < PGM_DYNAMIC_CHUNK_SIZE)
2626 {
2627 Log2(("remR3HCVirt2GCPhys %x -> %x\n", addr, pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 + off));
2628 return pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 + off;
2629 }
2630
2631 off = HCVirt - pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2;
2632 if ( pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2
2633 && off < PGM_DYNAMIC_CHUNK_SIZE)
2634 {
2635 Log2(("remR3HCVirt2GCPhys %x -> %x\n", addr, pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 + off));
2636 return pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 + off;
2637 }
2638
2639 /* Must be externally registered RAM/ROM range */
2640 for (i=0;i<pVM->rem.s.cPhysRegistrations;i++)
2641 {
2642 uint32_t off = HCVirt - pVM->rem.s.aPhysReg[i].HCVirt;
2643 if (off < pVM->rem.s.aPhysReg[i].cb)
2644 {
2645 Log2(("remR3HCVirt2GCPhys %x -> %x\n", addr, pVM->rem.s.aPhysReg[i].GCPhys + off));
2646 return pVM->rem.s.aPhysReg[i].GCPhys + off;
2647 }
2648 }
2649 AssertReleaseMsgFailed(("No translation for physical address %VHv???\n", addr));
2650 return 0;
2651#else
2652 return (target_ulong)addr - (target_ulong)phys_ram_base;
2653#endif
2654}
2655
2656/**
2657 * Grows dynamically allocated guest RAM.
2658 * Will raise a fatal error if the operation fails.
2659 *
2660 * @param physaddr The physical address.
2661 */
2662void remR3GrowDynRange(unsigned long physaddr)
2663{
2664 int rc;
2665 PVM pVM = cpu_single_env->pVM;
2666
2667 Log(("remR3GrowDynRange %VGp\n", physaddr));
2668 rc = PGM3PhysGrowRange(pVM, (RTGCPHYS)physaddr);
2669 if (VBOX_SUCCESS(rc))
2670 return;
2671
2672 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2673 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2674 AssertFatalFailed();
2675}
2676
2677/**
2678 * Notification about a successful MMR3PhysRomRegister() call.
2679 *
2680 * @param pVM VM handle.
2681 * @param GCPhys The physical address of the ROM.
2682 * @param cb The size of the ROM.
2683 * @param pvCopy Pointer to the ROM copy.
2684 */
2685REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy)
2686{
2687#ifdef PGM_DYNAMIC_RAM_ALLOC
2688 uint32_t i;
2689#endif
2690 Log(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p\n", GCPhys, cb, pvCopy));
2691 VM_ASSERT_EMT(pVM);
2692
2693 /*
2694 * Validate input - we trust the caller.
2695 */
2696 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2697 Assert(cb);
2698 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2699 Assert(pvCopy);
2700 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2701
2702 /*
2703 * Register the rom.
2704 */
2705#ifdef PGM_DYNAMIC_RAM_ALLOC
2706 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_ROM);
2707 AssertRelease(pVM->rem.s.cPhysRegistrations < REM_MAX_PHYS_REGISTRATIONS);
2708 for (i=0;i<pVM->rem.s.cPhysRegistrations;i++)
2709 {
2710 if (pVM->rem.s.aPhysReg[i].GCPhys == GCPhys)
2711 {
2712 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvCopy;
2713 pVM->rem.s.aPhysReg[i].cb = cb;
2714 break;
2715 }
2716 }
2717 if (i == pVM->rem.s.cPhysRegistrations)
2718 {
2719 pVM->rem.s.aPhysReg[i].GCPhys = GCPhys;
2720 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvCopy;
2721 pVM->rem.s.aPhysReg[i].cb = cb;
2722 pVM->rem.s.cPhysRegistrations++;
2723 }
2724#else
2725 AssertRelease(phys_ram_base);
2726 cpu_register_physical_memory(GCPhys, cb, ((uintptr_t)pvCopy - (uintptr_t)phys_ram_base) | IO_MEM_ROM);
2727#endif
2728 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2729}
2730
2731
2732/**
2733 * Notification about a successful MMR3PhysRegister() call.
2734 *
2735 * @param pVM VM Handle.
2736 * @param GCPhys Start physical address.
2737 * @param cb The size of the range.
2738 */
2739REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2740{
2741 LogFlow(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2742 VM_ASSERT_EMT(pVM);
2743
2744 /*
2745 * Validate input - we trust the caller.
2746 */
2747 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2748 Assert(cb);
2749 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2750
2751 /*
2752 * Unassigning the memory.
2753 */
2754 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2755}
2756
2757
2758/**
2759 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2760 *
2761 * @param pVM VM Handle.
2762 * @param enmType Handler type.
2763 * @param GCPhys Handler range address.
2764 * @param cb Size of the handler range.
2765 * @param fHasHCHandler Set if the handler has a HC callback function.
2766 *
2767 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2768 * Handler memory type to memory which has no HC handler.
2769 */
2770REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2771{
2772 LogFlow(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d\n",
2773 enmType, GCPhys, cb, fHasHCHandler));
2774 VM_ASSERT_EMT(pVM);
2775 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2776 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2777
2778 if (pVM->rem.s.cHandlerNotifications)
2779 REMR3ReplayHandlerNotifications(pVM);
2780
2781 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2782 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2783 else if (fHasHCHandler)
2784 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2785}
2786
2787
2788/**
2789 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2790 *
2791 * @param pVM VM Handle.
2792 * @param enmType Handler type.
2793 * @param GCPhys Handler range address.
2794 * @param cb Size of the handler range.
2795 * @param fHasHCHandler Set if the handler has a HC callback function.
2796 * @param pvHCPtr The HC virtual address corresponding to GCPhys if available.
2797 */
2798REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, void *pvHCPtr)
2799{
2800 LogFlow(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d pvHCPtr=%p RAM=%08x\n",
2801 enmType, GCPhys, cb, fHasHCHandler, pvHCPtr, MMR3PhysGetRamSize(pVM)));
2802 VM_ASSERT_EMT(pVM);
2803
2804 if (pVM->rem.s.cHandlerNotifications)
2805 REMR3ReplayHandlerNotifications(pVM);
2806
2807 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2808 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2809 else if (fHasHCHandler)
2810 {
2811 if (!pvHCPtr)
2812 {
2813 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2814 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2815 }
2816 else
2817 {
2818 /* This is not prefect, but it'll do for PD monitoring... */
2819 Assert(cb == PAGE_SIZE);
2820 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2821 Assert(remR3HCVirt2GCPhys(cpu_single_env, pvHCPtr) < MMR3PhysGetRamSize(pVM));
2822#ifdef PGM_DYNAMIC_RAM_ALLOC
2823 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2824#else
2825 cpu_register_physical_memory(GCPhys, cb, remR3HCVirt2GCPhys(cpu_single_env, pvHCPtr));
2826#endif
2827 }
2828 }
2829}
2830
2831
2832/**
2833 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2834 *
2835 * @param pVM VM Handle.
2836 * @param enmType Handler type.
2837 * @param GCPhysOld Old handler range address.
2838 * @param GCPhysNew New handler range address.
2839 * @param cb Size of the handler range.
2840 * @param fHasHCHandler Set if the handler has a HC callback function.
2841 * @param pvHCPtr The HC virtual address corresponding to GCPhys if available.
2842 */
2843REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, void *pvHCPtr)
2844{
2845 LogFlow(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%d fHasHCHandler=%d pvHCPtr=%p\n",
2846 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, pvHCPtr));
2847 VM_ASSERT_EMT(pVM);
2848 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2849
2850 if (pVM->rem.s.cHandlerNotifications)
2851 REMR3ReplayHandlerNotifications(pVM);
2852
2853 if (fHasHCHandler)
2854 {
2855 /*
2856 * Reset the old page.
2857 */
2858 if (!pvHCPtr)
2859 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2860 else
2861 {
2862 /* This is not prefect, but it'll do for PD monitoring... */
2863 Assert(cb == PAGE_SIZE);
2864 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2865 Assert(remR3HCVirt2GCPhys(cpu_single_env, pvHCPtr) < MMR3PhysGetRamSize(pVM));
2866#ifdef PGM_DYNAMIC_RAM_ALLOC
2867 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2868#else
2869 cpu_register_physical_memory(GCPhysOld, cb, remR3HCVirt2GCPhys(cpu_single_env, pvHCPtr));
2870#endif
2871 }
2872
2873 /*
2874 * Update the new page.
2875 */
2876 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2877 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2878 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2879 }
2880}
2881
2882
2883/**
2884 * Checks if we're handling access to this page or not.
2885 *
2886 * @returns true if we're trapping access.
2887 * @returns false if we aren't.
2888 * @param pVM The VM handle.
2889 * @param GCPhys The physical address.
2890 *
2891 * @remark This function will only work correctly in VBOX_STRICT builds!
2892 */
2893REMDECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
2894{
2895#ifdef VBOX_STRICT
2896 if (pVM->rem.s.cHandlerNotifications)
2897 REMR3ReplayHandlerNotifications(pVM);
2898
2899 unsigned long off = get_phys_page_offset(GCPhys);
2900 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
2901 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
2902 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
2903#else
2904 return false;
2905#endif
2906}
2907
2908
2909/**
2910 * Deals with a rare case in get_phys_addr_code where the code
2911 * is being monitored.
2912 *
2913 * It could also be an MMIO page, in which case we will raise a fatal error.
2914 *
2915 * @returns The physical address corresponding to addr.
2916 * @param env The cpu environment.
2917 * @param addr The virtual address.
2918 * @param pTLBEntry The TLB entry.
2919 */
2920target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
2921{
2922 PVM pVM = env->pVM;
2923 if ((pTLBEntry->address & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
2924 {
2925 target_ulong ret = pTLBEntry->addend + addr;
2926 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv address=%VGv addend=%VGp ret=%VGp\n",
2927 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->address, (RTGCPHYS)pTLBEntry->addend, ret);
2928 return ret;
2929 }
2930 LogRel(("\nTrying to execute code with memory type address=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
2931 "*** handlers\n",
2932 (RTGCPTR)pTLBEntry->address, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
2933 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
2934 LogRel(("*** mmio\n"));
2935 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
2936 LogRel(("*** phys\n"));
2937 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
2938 cpu_abort(env, "Trying to execute code with memory type address=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
2939 (RTGCPTR)pTLBEntry->address, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
2940 AssertFatalFailed();
2941}
2942
2943/**
2944 * Read guest RAM and ROM.
2945 *
2946 * @param pbSrcPhys The source address. Relative to guest RAM.
2947 * @param pvDst The destination address.
2948 * @param cb Number of bytes
2949 */
2950void remR3PhysReadBytes(uint8_t *pbSrcPhys, void *pvDst, unsigned cb)
2951{
2952 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2953
2954 /*
2955 * Calc the physical address ('off') and check that it's within the RAM.
2956 * ROM is accessed this way, even if it's not part of the RAM.
2957 */
2958 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
2959 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
2960 if (off < (uintptr_t)phys_ram_size)
2961 PGMPhysRead(cpu_single_env->pVM, (RTGCPHYS)off, pvDst, cb);
2962 else
2963 {
2964 /* ROM range outside physical RAM, HC address passed directly */
2965 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
2966 memcpy(pvDst, pbSrcPhys, cb);
2967 }
2968 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2969}
2970
2971/** @todo r=bird: s/Byte/U8/ s/Word/U16/ s/Dword/U32/, see MMIO and other functions.
2972 * It could be an idea to inline these wrapper functions... */
2973
2974/**
2975 * Read guest RAM and ROM.
2976 *
2977 * @param pbSrcPhys The source address. Relative to guest RAM.
2978 */
2979uint8_t remR3PhysReadUByte(uint8_t *pbSrcPhys)
2980{
2981 uint8_t val;
2982
2983 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2984
2985 /*
2986 * Calc the physical address ('off') and check that it's within the RAM.
2987 * ROM is accessed this way, even if it's not part of the RAM.
2988 */
2989 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
2990 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
2991 if (off < (uintptr_t)phys_ram_size)
2992 val = PGMR3PhysReadByte(cpu_single_env->pVM, (RTGCPHYS)off);
2993 else
2994 {
2995 /* ROM range outside physical RAM, HC address passed directly */
2996 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
2997 val = *pbSrcPhys;
2998 }
2999 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3000 return val;
3001}
3002
3003/**
3004 * Read guest RAM and ROM.
3005 *
3006 * @param pbSrcPhys The source address. Relative to guest RAM.
3007 */
3008int8_t remR3PhysReadSByte(uint8_t *pbSrcPhys)
3009{
3010 int8_t val;
3011
3012 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3013
3014 /*
3015 * Calc the physical address ('off') and check that it's within the RAM.
3016 * ROM is accessed this way, even if it's not part of the RAM.
3017 */
3018 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3019 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3020 if (off < (uintptr_t)phys_ram_size)
3021 val = PGMR3PhysReadByte(cpu_single_env->pVM, (RTGCPHYS)off);
3022 else
3023 {
3024 /* ROM range outside physical RAM, HC address passed directly */
3025 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3026 val = *(int8_t *)pbSrcPhys;
3027 }
3028 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3029 return val;
3030}
3031
3032/**
3033 * Read guest RAM and ROM.
3034 *
3035 * @param pbSrcPhys The source address. Relative to guest RAM.
3036 */
3037uint16_t remR3PhysReadUWord(uint8_t *pbSrcPhys)
3038{
3039 uint16_t val;
3040
3041 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3042
3043 /*
3044 * Calc the physical address ('off') and check that it's within the RAM.
3045 * ROM is accessed this way, even if it's not part of the RAM.
3046 */
3047 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3048 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3049 if (off < (uintptr_t)phys_ram_size)
3050 val = PGMR3PhysReadWord(cpu_single_env->pVM, (RTGCPHYS)off);
3051 else
3052 {
3053 /* ROM range outside physical RAM, HC address passed directly */
3054 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3055 val = *(uint16_t *)pbSrcPhys;
3056 }
3057 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3058 return val;
3059}
3060
3061/**
3062 * Read guest RAM and ROM.
3063 *
3064 * @param pbSrcPhys The source address. Relative to guest RAM.
3065 */
3066int16_t remR3PhysReadSWord(uint8_t *pbSrcPhys)
3067{
3068 int16_t val;
3069
3070 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3071
3072 /*
3073 * Calc the physical address ('off') and check that it's within the RAM.
3074 * ROM is accessed this way, even if it's not part of the RAM.
3075 */
3076 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3077 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3078 if (off < (uintptr_t)phys_ram_size)
3079 val = PGMR3PhysReadWord(cpu_single_env->pVM, (RTGCPHYS)off);
3080 else
3081 {
3082 /* ROM range outside physical RAM, HC address passed directly */
3083 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3084 val = *(int16_t *)pbSrcPhys;
3085 }
3086 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3087 return val;
3088}
3089
3090/**
3091 * Read guest RAM and ROM.
3092 *
3093 * @param pbSrcPhys The source address. Relative to guest RAM.
3094 */
3095uint32_t remR3PhysReadULong(uint8_t *pbSrcPhys)
3096{
3097 uint32_t val;
3098
3099 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3100
3101 /*
3102 * Calc the physical address ('off') and check that it's within the RAM.
3103 * ROM is accessed this way, even if it's not part of the RAM.
3104 */
3105 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3106 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3107 if (off < (uintptr_t)phys_ram_size)
3108 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off);
3109 else
3110 {
3111 /* ROM range outside physical RAM, HC address passed directly */
3112 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3113 val = *(uint32_t *)pbSrcPhys;
3114 }
3115 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3116 return val;
3117}
3118
3119/**
3120 * Read guest RAM and ROM.
3121 *
3122 * @param pbSrcPhys The source address. Relative to guest RAM.
3123 */
3124int32_t remR3PhysReadSLong(uint8_t *pbSrcPhys)
3125{
3126 int32_t val;
3127
3128 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3129
3130 /*
3131 * Calc the physical address ('off') and check that it's within the RAM.
3132 * ROM is accessed this way, even if it's not part of the RAM.
3133 */
3134 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3135 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3136 if (off < (uintptr_t)phys_ram_size)
3137 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off);
3138 else
3139 {
3140 /* ROM range outside physical RAM, HC address passed directly */
3141 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3142 val = *(int32_t *)pbSrcPhys;
3143 }
3144 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3145 return val;
3146}
3147
3148/**
3149 * Write guest RAM.
3150 *
3151 * @param pbDstPhys The destination address. Relative to guest RAM.
3152 * @param pvSrc The source address.
3153 * @param cb Number of bytes to write
3154 */
3155void remR3PhysWriteBytes(uint8_t *pbDstPhys, const void *pvSrc, unsigned cb)
3156{
3157 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3158 /*
3159 * Calc the physical address ('off') and check that it's within the RAM.
3160 */
3161 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbDstPhys);
3162 if (off < (uintptr_t)phys_ram_size)
3163 PGMPhysWrite(cpu_single_env->pVM, (RTGCPHYS)off, pvSrc, cb);
3164 else
3165 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, cb));
3166 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3167}
3168
3169
3170/**
3171 * Write guest RAM.
3172 *
3173 * @param pbDstPhys The destination address. Relative to guest RAM.
3174 * @param val Value
3175 */
3176void remR3PhysWriteByte(uint8_t *pbDstPhys, uint8_t val)
3177{
3178 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3179 /*
3180 * Calc the physical address ('off') and check that it's within the RAM.
3181 */
3182 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbDstPhys);
3183 if (off < (uintptr_t)phys_ram_size)
3184 PGMR3PhysWriteByte(cpu_single_env->pVM, (RTGCPHYS)off, val);
3185 else
3186 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, 1));
3187 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3188}
3189
3190/**
3191 * Write guest RAM.
3192 *
3193 * @param pbDstPhys The destination address. Relative to guest RAM.
3194 * @param val Value
3195 */
3196void remR3PhysWriteWord(uint8_t *pbDstPhys, uint16_t val)
3197{
3198 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3199 /*
3200 * Calc the physical address ('off') and check that it's within the RAM.
3201 */
3202 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbDstPhys);
3203 if (off < (uintptr_t)phys_ram_size)
3204 PGMR3PhysWriteWord(cpu_single_env->pVM, (RTGCPHYS)off, val);
3205 else
3206 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, 2));
3207 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3208}
3209
3210/**
3211 * Write guest RAM.
3212 *
3213 * @param pbDstPhys The destination address. Relative to guest RAM.
3214 * @param val Value
3215 */
3216void remR3PhysWriteDword(uint8_t *pbDstPhys, uint32_t val)
3217{
3218 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3219 /*
3220 * Calc the physical address ('off') and check that it's within the RAM.
3221 */
3222 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbDstPhys);
3223 if (off < (uintptr_t)phys_ram_size)
3224 PGMR3PhysWriteDword(cpu_single_env->pVM, (RTGCPHYS)off, val);
3225 else
3226 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, 4));
3227 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3228}
3229
3230
3231
3232#undef LOG_GROUP
3233#define LOG_GROUP LOG_GROUP_REM_MMIO
3234
3235/** Read MMIO memory. */
3236static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3237{
3238 uint32_t u32 = 0;
3239 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3240 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3241 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3242 return u32;
3243}
3244
3245/** Read MMIO memory. */
3246static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3247{
3248 uint32_t u32 = 0;
3249 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3250 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3251 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3252 return u32;
3253}
3254
3255/** Read MMIO memory. */
3256static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3257{
3258 uint32_t u32 = 0;
3259 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3260 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3261 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3262 return u32;
3263}
3264
3265/** Write to MMIO memory. */
3266static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3267{
3268 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3269 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3270 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3271}
3272
3273/** Write to MMIO memory. */
3274static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3275{
3276 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3277 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3278 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3279}
3280
3281/** Write to MMIO memory. */
3282static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3283{
3284 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3285 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3286 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3287}
3288
3289
3290#undef LOG_GROUP
3291#define LOG_GROUP LOG_GROUP_REM_HANDLER
3292
3293/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3294
3295static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3296{
3297 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3298 uint8_t u8;
3299 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3300 return u8;
3301}
3302
3303static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3304{
3305 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3306 uint16_t u16;
3307 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3308 return u16;
3309}
3310
3311static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3312{
3313 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3314 uint32_t u32;
3315 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3316 return u32;
3317}
3318
3319static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3320{
3321 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3322 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3323}
3324
3325static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3326{
3327 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3328 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3329}
3330
3331static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3332{
3333 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3334 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3335}
3336
3337/* -+- disassembly -+- */
3338
3339#undef LOG_GROUP
3340#define LOG_GROUP LOG_GROUP_REM_DISAS
3341
3342
3343/**
3344 * Enables or disables singled stepped disassembly.
3345 *
3346 * @returns VBox status code.
3347 * @param pVM VM handle.
3348 * @param fEnable To enable set this flag, to disable clear it.
3349 */
3350static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3351{
3352 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3353 VM_ASSERT_EMT(pVM);
3354
3355 if (fEnable)
3356 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3357 else
3358 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3359 return VINF_SUCCESS;
3360}
3361
3362
3363/**
3364 * Enables or disables singled stepped disassembly.
3365 *
3366 * @returns VBox status code.
3367 * @param pVM VM handle.
3368 * @param fEnable To enable set this flag, to disable clear it.
3369 */
3370REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3371{
3372 PVMREQ pReq;
3373 int rc;
3374
3375 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3376 if (VM_IS_EMT(pVM))
3377 return remR3DisasEnableStepping(pVM, fEnable);
3378
3379 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3380 AssertRC(rc);
3381 if (VBOX_SUCCESS(rc))
3382 rc = pReq->iStatus;
3383 VMR3ReqFree(pReq);
3384 return rc;
3385}
3386
3387
3388#ifdef VBOX_WITH_DEBUGGER
3389/**
3390 * External Debugger Command: .remstep [on|off|1|0]
3391 */
3392static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3393{
3394 bool fEnable;
3395 int rc;
3396
3397 /* print status */
3398 if (cArgs == 0)
3399 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3400 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3401
3402 /* convert the argument and change the mode. */
3403 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3404 if (VBOX_FAILURE(rc))
3405 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3406 rc = REMR3DisasEnableStepping(pVM, fEnable);
3407 if (VBOX_FAILURE(rc))
3408 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3409 return rc;
3410}
3411#endif
3412
3413
3414/**
3415 * Disassembles n instructions and prints them to the log.
3416 *
3417 * @returns Success indicator.
3418 * @param env Pointer to the recompiler CPU structure.
3419 * @param f32BitCode Indicates that whether or not the code should
3420 * be disassembled as 16 or 32 bit. If -1 the CS
3421 * selector will be inspected.
3422 * @param nrInstructions Nr of instructions to disassemble
3423 * @param pszPrefix
3424 * @remark not currently used for anything but ad-hoc debugging.
3425 */
3426bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3427{
3428 int i;
3429
3430 /*
3431 * Determin 16/32 bit mode.
3432 */
3433 if (f32BitCode == -1)
3434 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3435
3436 /*
3437 * Convert cs:eip to host context address.
3438 * We don't care to much about cross page correctness presently.
3439 */
3440 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3441 void *pvPC;
3442 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3443 {
3444 /* convert eip to physical address. */
3445 int rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3446 GCPtrPC,
3447 env->cr[3],
3448 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3449 &pvPC);
3450 if (VBOX_FAILURE(rc))
3451 {
3452 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3453 return false;
3454 pvPC = (char *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3455 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3456 }
3457 }
3458 else
3459 {
3460 /* physical address */
3461 int rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions*16, &pvPC);
3462 if (VBOX_FAILURE(rc))
3463 return false;
3464 }
3465
3466 /*
3467 * Disassemble.
3468 */
3469 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
3470 DISCPUSTATE Cpu;
3471 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3472 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3473 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3474 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3475 //Cpu.dwUserData[2] = GCPtrPC;
3476
3477 for (i=0;i<nrInstructions;i++)
3478 {
3479 char szOutput[256];
3480 uint32_t cbOp;
3481 if (!DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0]))
3482 return false;
3483 if (pszPrefix)
3484 Log(("%s: %s", pszPrefix, szOutput));
3485 else
3486 Log(("%s", szOutput));
3487
3488 pvPC += cbOp;
3489 }
3490 return true;
3491}
3492
3493
3494/** @todo need to test the new code, using the old code in the mean while. */
3495#define USE_OLD_DUMP_AND_DISASSEMBLY
3496
3497/**
3498 * Disassembles one instruction and prints it to the log.
3499 *
3500 * @returns Success indicator.
3501 * @param env Pointer to the recompiler CPU structure.
3502 * @param f32BitCode Indicates that whether or not the code should
3503 * be disassembled as 16 or 32 bit. If -1 the CS
3504 * selector will be inspected.
3505 * @param pszPrefix
3506 */
3507bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3508{
3509#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3510 PVM pVM = env->pVM;
3511
3512 /*
3513 * Determin 16/32 bit mode.
3514 */
3515 if (f32BitCode == -1)
3516 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3517
3518 /*
3519 * Log registers
3520 */
3521 if (LogIs2Enabled())
3522 {
3523 remR3StateUpdate(pVM);
3524 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3525 }
3526
3527 /*
3528 * Convert cs:eip to host context address.
3529 * We don't care to much about cross page correctness presently.
3530 */
3531 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3532 void *pvPC;
3533 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3534 {
3535 /* convert eip to physical address. */
3536 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
3537 GCPtrPC,
3538 env->cr[3],
3539 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3540 &pvPC);
3541 if (VBOX_FAILURE(rc))
3542 {
3543 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3544 return false;
3545 pvPC = (char *)PATMR3QueryPatchMemHC(pVM, NULL)
3546 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3547 }
3548 }
3549 else
3550 {
3551
3552 /* physical address */
3553 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, &pvPC);
3554 if (VBOX_FAILURE(rc))
3555 return false;
3556 }
3557
3558 /*
3559 * Disassemble.
3560 */
3561 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
3562 DISCPUSTATE Cpu;
3563 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3564 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3565 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3566 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3567 //Cpu.dwUserData[2] = GCPtrPC;
3568 char szOutput[256];
3569 uint32_t cbOp;
3570 if (!DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0]))
3571 return false;
3572
3573 if (!f32BitCode)
3574 {
3575 if (pszPrefix)
3576 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3577 else
3578 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3579 }
3580 else
3581 {
3582 if (pszPrefix)
3583 Log(("%s: %s", pszPrefix, szOutput));
3584 else
3585 Log(("%s", szOutput));
3586 }
3587 return true;
3588
3589#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3590 PVM pVM = env->pVM;
3591 const bool fLog = LogIsEnabled();
3592 const bool fLog2 = LogIs2Enabled();
3593 int rc = VINF_SUCCESS;
3594
3595 /*
3596 * Don't bother if there ain't any log output to do.
3597 */
3598 if (!fLog && !fLog2)
3599 return true;
3600
3601 /*
3602 * Update the state so DBGF reads the correct register values.
3603 */
3604 remR3StateUpdate(pVM);
3605
3606 /*
3607 * Log registers if requested.
3608 */
3609 if (!fLog2)
3610 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3611
3612 /*
3613 * Disassemble to log.
3614 */
3615 if (fLog)
3616 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3617
3618 return VBOX_SUCCESS(rc);
3619#endif
3620}
3621
3622
3623/**
3624 * Disassemble recompiled code.
3625 *
3626 * @param phFileIgnored Ignored, logfile usually.
3627 * @param pvCode Pointer to the code block.
3628 * @param cb Size of the code block.
3629 */
3630void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3631{
3632 if (LogIs2Enabled())
3633 {
3634 unsigned off = 0;
3635 char szOutput[256];
3636 DISCPUSTATE Cpu = {0};
3637 Cpu.mode = CPUMODE_32BIT;
3638
3639 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3640 while (off < cb)
3641 {
3642 uint32_t cbInstr;
3643 if (DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput))
3644 RTLogPrintf("%s", szOutput);
3645 else
3646 {
3647 RTLogPrintf("disas error\n");
3648 cbInstr = 1;
3649 }
3650 off += cbInstr;
3651 }
3652 }
3653 NOREF(phFileIgnored);
3654}
3655
3656
3657/**
3658 * Disassemble guest code.
3659 *
3660 * @param phFileIgnored Ignored, logfile usually.
3661 * @param uCode The guest address of the code to disassemble. (flat?)
3662 * @param cb Number of bytes to disassemble.
3663 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3664 */
3665void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3666{
3667 if (LogIs2Enabled())
3668 {
3669 PVM pVM = cpu_single_env->pVM;
3670
3671 /*
3672 * Update the state so DBGF reads the correct register values (flags).
3673 */
3674 remR3StateUpdate(pVM);
3675
3676 /*
3677 * Do the disassembling.
3678 */
3679 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
3680 RTSEL cs = cpu_single_env->segs[R_CS].selector;
3681 RTGCUINTPTR eip = uCode - cpu_single_env->segs[R_CS].base;
3682 for (;;)
3683 {
3684 char szBuf[256];
3685 size_t cbInstr;
3686 int rc = DBGFR3DisasInstrEx(pVM,
3687 cs,
3688 eip,
3689 0,
3690 szBuf, sizeof(szBuf),
3691 &cbInstr);
3692 if (VBOX_SUCCESS(rc))
3693 RTLogPrintf("%VGp %s\n", uCode, szBuf);
3694 else
3695 {
3696 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
3697 cbInstr = 1;
3698 }
3699
3700 /* next */
3701 if (cb <= cbInstr)
3702 break;
3703 cb -= cbInstr;
3704 uCode += cbInstr;
3705 eip += cbInstr;
3706 }
3707 }
3708 NOREF(phFileIgnored);
3709}
3710
3711
3712/**
3713 * Looks up a guest symbol.
3714 *
3715 * @returns Pointer to symbol name. This is a static buffer.
3716 * @param orig_addr The address in question.
3717 */
3718const char *lookup_symbol(target_ulong orig_addr)
3719{
3720 RTGCINTPTR off = 0;
3721 DBGFSYMBOL Sym;
3722 PVM pVM = cpu_single_env->pVM;
3723 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3724 if (VBOX_SUCCESS(rc))
3725 {
3726 static char szSym[sizeof(Sym.szName) + 48];
3727 if (!off)
3728 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3729 else if (off > 0)
3730 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3731 else
3732 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3733 return szSym;
3734 }
3735 return "<N/A>";
3736}
3737
3738
3739#undef LOG_GROUP
3740#define LOG_GROUP LOG_GROUP_REM
3741
3742
3743/* -+- FF notifications -+- */
3744
3745
3746/**
3747 * Notification about a pending interrupt.
3748 *
3749 * @param pVM VM Handle.
3750 * @param u8Interrupt Interrupt
3751 * @thread The emulation thread.
3752 */
3753REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3754{
3755 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3756 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3757}
3758
3759/**
3760 * Notification about a pending interrupt.
3761 *
3762 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3763 * @param pVM VM Handle.
3764 * @thread The emulation thread.
3765 */
3766REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3767{
3768 return pVM->rem.s.u32PendingInterrupt;
3769}
3770
3771/**
3772 * Notification about the interrupt FF being set.
3773 *
3774 * @param pVM VM Handle.
3775 * @thread The emulation thread.
3776 */
3777REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3778{
3779 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3780 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3781 if (pVM->rem.s.fInREM)
3782 {
3783 if (VM_IS_EMT(pVM))
3784 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3785 else
3786 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_HARD);
3787 }
3788}
3789
3790
3791/**
3792 * Notification about the interrupt FF being set.
3793 *
3794 * @param pVM VM Handle.
3795 * @thread The emulation thread.
3796 */
3797REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3798{
3799 LogFlow(("REMR3NotifyInterruptClear:\n"));
3800 VM_ASSERT_EMT(pVM);
3801 if (pVM->rem.s.fInREM)
3802 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3803}
3804
3805
3806/**
3807 * Notification about pending timer(s).
3808 *
3809 * @param pVM VM Handle.
3810 * @thread Any.
3811 */
3812REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3813{
3814#ifndef DEBUG_bird
3815 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3816#endif
3817 if (pVM->rem.s.fInREM)
3818 {
3819 if (VM_IS_EMT(pVM))
3820 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3821 else
3822 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_TIMER);
3823 }
3824}
3825
3826
3827/**
3828 * Notification about pending DMA transfers.
3829 *
3830 * @param pVM VM Handle.
3831 * @thread Any.
3832 */
3833REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3834{
3835 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3836 if (pVM->rem.s.fInREM)
3837 {
3838 if (VM_IS_EMT(pVM))
3839 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3840 else
3841 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_DMA);
3842 }
3843}
3844
3845
3846/**
3847 * Notification about pending timer(s).
3848 *
3849 * @param pVM VM Handle.
3850 * @thread Any.
3851 */
3852REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3853{
3854 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3855 if (pVM->rem.s.fInREM)
3856 {
3857 if (VM_IS_EMT(pVM))
3858 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3859 else
3860 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3861 }
3862}
3863
3864
3865/**
3866 * Notification about pending FF set by an external thread.
3867 *
3868 * @param pVM VM handle.
3869 * @thread Any.
3870 */
3871REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3872{
3873 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3874 if (pVM->rem.s.fInREM)
3875 {
3876 if (VM_IS_EMT(pVM))
3877 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3878 else
3879 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3880 }
3881}
3882
3883
3884#ifdef VBOX_WITH_STATISTICS
3885void remR3ProfileStart(int statcode)
3886{
3887 STAMPROFILEADV *pStat;
3888 switch(statcode)
3889 {
3890 case STATS_EMULATE_SINGLE_INSTR:
3891 pStat = &gStatExecuteSingleInstr;
3892 break;
3893 case STATS_QEMU_COMPILATION:
3894 pStat = &gStatCompilationQEmu;
3895 break;
3896 case STATS_QEMU_RUN_EMULATED_CODE:
3897 pStat = &gStatRunCodeQEmu;
3898 break;
3899 case STATS_QEMU_TOTAL:
3900 pStat = &gStatTotalTimeQEmu;
3901 break;
3902 case STATS_QEMU_RUN_TIMERS:
3903 pStat = &gStatTimers;
3904 break;
3905 case STATS_TLB_LOOKUP:
3906 pStat= &gStatTBLookup;
3907 break;
3908 case STATS_IRQ_HANDLING:
3909 pStat= &gStatIRQ;
3910 break;
3911 case STATS_RAW_CHECK:
3912 pStat = &gStatRawCheck;
3913 break;
3914
3915 default:
3916 AssertMsgFailed(("unknown stat %d\n", statcode));
3917 return;
3918 }
3919 STAM_PROFILE_ADV_START(pStat, a);
3920}
3921
3922
3923void remR3ProfileStop(int statcode)
3924{
3925 STAMPROFILEADV *pStat;
3926 switch(statcode)
3927 {
3928 case STATS_EMULATE_SINGLE_INSTR:
3929 pStat = &gStatExecuteSingleInstr;
3930 break;
3931 case STATS_QEMU_COMPILATION:
3932 pStat = &gStatCompilationQEmu;
3933 break;
3934 case STATS_QEMU_RUN_EMULATED_CODE:
3935 pStat = &gStatRunCodeQEmu;
3936 break;
3937 case STATS_QEMU_TOTAL:
3938 pStat = &gStatTotalTimeQEmu;
3939 break;
3940 case STATS_QEMU_RUN_TIMERS:
3941 pStat = &gStatTimers;
3942 break;
3943 case STATS_TLB_LOOKUP:
3944 pStat= &gStatTBLookup;
3945 break;
3946 case STATS_IRQ_HANDLING:
3947 pStat= &gStatIRQ;
3948 break;
3949 case STATS_RAW_CHECK:
3950 pStat = &gStatRawCheck;
3951 break;
3952 default:
3953 AssertMsgFailed(("unknown stat %d\n", statcode));
3954 return;
3955 }
3956 STAM_PROFILE_ADV_STOP(pStat, a);
3957}
3958#endif
3959
3960/**
3961 * Raise an RC, force rem exit.
3962 *
3963 * @param pVM VM handle.
3964 * @param rc The rc.
3965 */
3966void remR3RaiseRC(PVM pVM, int rc)
3967{
3968 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
3969 Assert(pVM->rem.s.fInREM);
3970 VM_ASSERT_EMT(pVM);
3971 pVM->rem.s.rc = rc;
3972 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
3973}
3974
3975
3976/* -+- timers -+- */
3977
3978uint64_t cpu_get_tsc(CPUX86State *env)
3979{
3980 return TMCpuTickGet(env->pVM);
3981}
3982
3983
3984/* -+- interrupts -+- */
3985
3986void cpu_set_ferr(CPUX86State *env)
3987{
3988 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
3989 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
3990}
3991
3992int cpu_get_pic_interrupt(CPUState *env)
3993{
3994 uint8_t u8Interrupt;
3995 int rc;
3996
3997 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
3998 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
3999 * with the (a)pic.
4000 */
4001 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4002 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4003 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4004 * remove this kludge. */
4005 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4006 {
4007 rc = VINF_SUCCESS;
4008 Assert(env->pVM->rem.s.u32PendingInterrupt >= 0 && env->pVM->rem.s.u32PendingInterrupt <= 255);
4009 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4010 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4011 }
4012 else
4013 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4014
4015 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
4016 if (VBOX_SUCCESS(rc))
4017 {
4018 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4019 env->interrupt_request |= CPU_INTERRUPT_HARD;
4020 return u8Interrupt;
4021 }
4022 return -1;
4023}
4024
4025
4026/* -+- local apic -+- */
4027
4028void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4029{
4030 int rc = PDMApicSetBase(env->pVM, val);
4031 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
4032}
4033
4034uint64_t cpu_get_apic_base(CPUX86State *env)
4035{
4036 uint64_t u64;
4037 int rc = PDMApicGetBase(env->pVM, &u64);
4038 if (VBOX_SUCCESS(rc))
4039 {
4040 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4041 return u64;
4042 }
4043 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
4044 return 0;
4045}
4046
4047void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4048{
4049 int rc = PDMApicSetTPR(env->pVM, val);
4050 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
4051}
4052
4053uint8_t cpu_get_apic_tpr(CPUX86State *env)
4054{
4055 uint8_t u8;
4056 int rc = PDMApicGetTPR(env->pVM, &u8);
4057 if (VBOX_SUCCESS(rc))
4058 {
4059 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4060 return u8;
4061 }
4062 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
4063 return 0;
4064}
4065
4066
4067/* -+- I/O Ports -+- */
4068
4069#undef LOG_GROUP
4070#define LOG_GROUP LOG_GROUP_REM_IOPORT
4071
4072void cpu_outb(CPUState *env, int addr, int val)
4073{
4074 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4075 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4076
4077 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4078 if (rc == VINF_SUCCESS)
4079 return;
4080 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4081 {
4082 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4083 remR3RaiseRC(env->pVM, rc);
4084 return;
4085 }
4086 remAbort(rc, __FUNCTION__);
4087}
4088
4089void cpu_outw(CPUState *env, int addr, int val)
4090{
4091 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4092 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4093 if (rc == VINF_SUCCESS)
4094 return;
4095 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4096 {
4097 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4098 remR3RaiseRC(env->pVM, rc);
4099 return;
4100 }
4101 remAbort(rc, __FUNCTION__);
4102}
4103
4104void cpu_outl(CPUState *env, int addr, int val)
4105{
4106 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4107 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4108 if (rc == VINF_SUCCESS)
4109 return;
4110 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4111 {
4112 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4113 remR3RaiseRC(env->pVM, rc);
4114 return;
4115 }
4116 remAbort(rc, __FUNCTION__);
4117}
4118
4119int cpu_inb(CPUState *env, int addr)
4120{
4121 uint32_t u32 = 0;
4122 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4123 if (rc == VINF_SUCCESS)
4124 {
4125 if (/*addr != 0x61 && */addr != 0x71)
4126 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4127 return (int)u32;
4128 }
4129 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4130 {
4131 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4132 remR3RaiseRC(env->pVM, rc);
4133 return (int)u32;
4134 }
4135 remAbort(rc, __FUNCTION__);
4136 return 0xff;
4137}
4138
4139int cpu_inw(CPUState *env, int addr)
4140{
4141 uint32_t u32 = 0;
4142 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4143 if (rc == VINF_SUCCESS)
4144 {
4145 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4146 return (int)u32;
4147 }
4148 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4149 {
4150 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4151 remR3RaiseRC(env->pVM, rc);
4152 return (int)u32;
4153 }
4154 remAbort(rc, __FUNCTION__);
4155 return 0xffff;
4156}
4157
4158int cpu_inl(CPUState *env, int addr)
4159{
4160 uint32_t u32 = 0;
4161 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4162 if (rc == VINF_SUCCESS)
4163 {
4164//if (addr==0x01f0 && u32 == 0x6b6d)
4165// loglevel = ~0;
4166 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4167 return (int)u32;
4168 }
4169 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4170 {
4171 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4172 remR3RaiseRC(env->pVM, rc);
4173 return (int)u32;
4174 }
4175 remAbort(rc, __FUNCTION__);
4176 return 0xffffffff;
4177}
4178
4179#undef LOG_GROUP
4180#define LOG_GROUP LOG_GROUP_REM
4181
4182
4183/* -+- helpers and misc other interfaces -+- */
4184
4185/**
4186 * Perform the CPUID instruction.
4187 *
4188 * ASMCpuId cannot be invoked from some source files where this is used because of global
4189 * register allocations.
4190 *
4191 * @param env Pointer to the recompiler CPU structure.
4192 * @param uOperator CPUID operation (eax).
4193 * @param pvEAX Where to store eax.
4194 * @param pvEBX Where to store ebx.
4195 * @param pvECX Where to store ecx.
4196 * @param pvEDX Where to store edx.
4197 */
4198void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4199{
4200 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4201}
4202
4203
4204#if 0 /* not used */
4205/**
4206 * Interface for qemu hardware to report back fatal errors.
4207 */
4208void hw_error(const char *pszFormat, ...)
4209{
4210 /*
4211 * Bitch about it.
4212 */
4213 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4214 * this in my Odin32 tree at home! */
4215 va_list args;
4216 va_start(args, pszFormat);
4217 RTLogPrintf("fatal error in virtual hardware:");
4218 RTLogPrintfV(pszFormat, args);
4219 va_end(args);
4220 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4221
4222 /*
4223 * If we're in REM context we'll sync back the state before 'jumping' to
4224 * the EMs failure handling.
4225 */
4226 PVM pVM = cpu_single_env->pVM;
4227 if (pVM->rem.s.fInREM)
4228 REMR3StateBack(pVM);
4229 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4230 AssertMsgFailed(("EMR3FatalError returned!\n"));
4231}
4232#endif
4233
4234/**
4235 * Interface for the qemu cpu to report unhandled situation
4236 * raising a fatal VM error.
4237 */
4238void cpu_abort(CPUState *env, const char *pszFormat, ...)
4239{
4240 /*
4241 * Bitch about it.
4242 */
4243 RTLogFlags(NULL, "nodisabled nobuffered");
4244 va_list args;
4245 va_start(args, pszFormat);
4246 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4247 va_end(args);
4248 va_start(args, pszFormat);
4249 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4250 va_end(args);
4251
4252 /*
4253 * If we're in REM context we'll sync back the state before 'jumping' to
4254 * the EMs failure handling.
4255 */
4256 PVM pVM = cpu_single_env->pVM;
4257 if (pVM->rem.s.fInREM)
4258 REMR3StateBack(pVM);
4259 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4260 AssertMsgFailed(("EMR3FatalError returned!\n"));
4261}
4262
4263
4264/**
4265 * Aborts the VM.
4266 *
4267 * @param rc VBox error code.
4268 * @param pszTip Hint about why/when this happend.
4269 */
4270static void remAbort(int rc, const char *pszTip)
4271{
4272 /*
4273 * Bitch about it.
4274 */
4275 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4276 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4277
4278 /*
4279 * Jump back to where we entered the recompiler.
4280 */
4281 PVM pVM = cpu_single_env->pVM;
4282 if (pVM->rem.s.fInREM)
4283 REMR3StateBack(pVM);
4284 EMR3FatalError(pVM, rc);
4285 AssertMsgFailed(("EMR3FatalError returned!\n"));
4286}
4287
4288
4289/**
4290 * Dumps a linux system call.
4291 * @param pVM VM handle.
4292 */
4293void remR3DumpLnxSyscall(PVM pVM)
4294{
4295 static const char *apsz[] =
4296 {
4297 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4298 "sys_exit",
4299 "sys_fork",
4300 "sys_read",
4301 "sys_write",
4302 "sys_open", /* 5 */
4303 "sys_close",
4304 "sys_waitpid",
4305 "sys_creat",
4306 "sys_link",
4307 "sys_unlink", /* 10 */
4308 "sys_execve",
4309 "sys_chdir",
4310 "sys_time",
4311 "sys_mknod",
4312 "sys_chmod", /* 15 */
4313 "sys_lchown16",
4314 "sys_ni_syscall", /* old break syscall holder */
4315 "sys_stat",
4316 "sys_lseek",
4317 "sys_getpid", /* 20 */
4318 "sys_mount",
4319 "sys_oldumount",
4320 "sys_setuid16",
4321 "sys_getuid16",
4322 "sys_stime", /* 25 */
4323 "sys_ptrace",
4324 "sys_alarm",
4325 "sys_fstat",
4326 "sys_pause",
4327 "sys_utime", /* 30 */
4328 "sys_ni_syscall", /* old stty syscall holder */
4329 "sys_ni_syscall", /* old gtty syscall holder */
4330 "sys_access",
4331 "sys_nice",
4332 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4333 "sys_sync",
4334 "sys_kill",
4335 "sys_rename",
4336 "sys_mkdir",
4337 "sys_rmdir", /* 40 */
4338 "sys_dup",
4339 "sys_pipe",
4340 "sys_times",
4341 "sys_ni_syscall", /* old prof syscall holder */
4342 "sys_brk", /* 45 */
4343 "sys_setgid16",
4344 "sys_getgid16",
4345 "sys_signal",
4346 "sys_geteuid16",
4347 "sys_getegid16", /* 50 */
4348 "sys_acct",
4349 "sys_umount", /* recycled never used phys() */
4350 "sys_ni_syscall", /* old lock syscall holder */
4351 "sys_ioctl",
4352 "sys_fcntl", /* 55 */
4353 "sys_ni_syscall", /* old mpx syscall holder */
4354 "sys_setpgid",
4355 "sys_ni_syscall", /* old ulimit syscall holder */
4356 "sys_olduname",
4357 "sys_umask", /* 60 */
4358 "sys_chroot",
4359 "sys_ustat",
4360 "sys_dup2",
4361 "sys_getppid",
4362 "sys_getpgrp", /* 65 */
4363 "sys_setsid",
4364 "sys_sigaction",
4365 "sys_sgetmask",
4366 "sys_ssetmask",
4367 "sys_setreuid16", /* 70 */
4368 "sys_setregid16",
4369 "sys_sigsuspend",
4370 "sys_sigpending",
4371 "sys_sethostname",
4372 "sys_setrlimit", /* 75 */
4373 "sys_old_getrlimit",
4374 "sys_getrusage",
4375 "sys_gettimeofday",
4376 "sys_settimeofday",
4377 "sys_getgroups16", /* 80 */
4378 "sys_setgroups16",
4379 "old_select",
4380 "sys_symlink",
4381 "sys_lstat",
4382 "sys_readlink", /* 85 */
4383 "sys_uselib",
4384 "sys_swapon",
4385 "sys_reboot",
4386 "old_readdir",
4387 "old_mmap", /* 90 */
4388 "sys_munmap",
4389 "sys_truncate",
4390 "sys_ftruncate",
4391 "sys_fchmod",
4392 "sys_fchown16", /* 95 */
4393 "sys_getpriority",
4394 "sys_setpriority",
4395 "sys_ni_syscall", /* old profil syscall holder */
4396 "sys_statfs",
4397 "sys_fstatfs", /* 100 */
4398 "sys_ioperm",
4399 "sys_socketcall",
4400 "sys_syslog",
4401 "sys_setitimer",
4402 "sys_getitimer", /* 105 */
4403 "sys_newstat",
4404 "sys_newlstat",
4405 "sys_newfstat",
4406 "sys_uname",
4407 "sys_iopl", /* 110 */
4408 "sys_vhangup",
4409 "sys_ni_syscall", /* old "idle" system call */
4410 "sys_vm86old",
4411 "sys_wait4",
4412 "sys_swapoff", /* 115 */
4413 "sys_sysinfo",
4414 "sys_ipc",
4415 "sys_fsync",
4416 "sys_sigreturn",
4417 "sys_clone", /* 120 */
4418 "sys_setdomainname",
4419 "sys_newuname",
4420 "sys_modify_ldt",
4421 "sys_adjtimex",
4422 "sys_mprotect", /* 125 */
4423 "sys_sigprocmask",
4424 "sys_ni_syscall", /* old "create_module" */
4425 "sys_init_module",
4426 "sys_delete_module",
4427 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4428 "sys_quotactl",
4429 "sys_getpgid",
4430 "sys_fchdir",
4431 "sys_bdflush",
4432 "sys_sysfs", /* 135 */
4433 "sys_personality",
4434 "sys_ni_syscall", /* reserved for afs_syscall */
4435 "sys_setfsuid16",
4436 "sys_setfsgid16",
4437 "sys_llseek", /* 140 */
4438 "sys_getdents",
4439 "sys_select",
4440 "sys_flock",
4441 "sys_msync",
4442 "sys_readv", /* 145 */
4443 "sys_writev",
4444 "sys_getsid",
4445 "sys_fdatasync",
4446 "sys_sysctl",
4447 "sys_mlock", /* 150 */
4448 "sys_munlock",
4449 "sys_mlockall",
4450 "sys_munlockall",
4451 "sys_sched_setparam",
4452 "sys_sched_getparam", /* 155 */
4453 "sys_sched_setscheduler",
4454 "sys_sched_getscheduler",
4455 "sys_sched_yield",
4456 "sys_sched_get_priority_max",
4457 "sys_sched_get_priority_min", /* 160 */
4458 "sys_sched_rr_get_interval",
4459 "sys_nanosleep",
4460 "sys_mremap",
4461 "sys_setresuid16",
4462 "sys_getresuid16", /* 165 */
4463 "sys_vm86",
4464 "sys_ni_syscall", /* Old sys_query_module */
4465 "sys_poll",
4466 "sys_nfsservctl",
4467 "sys_setresgid16", /* 170 */
4468 "sys_getresgid16",
4469 "sys_prctl",
4470 "sys_rt_sigreturn",
4471 "sys_rt_sigaction",
4472 "sys_rt_sigprocmask", /* 175 */
4473 "sys_rt_sigpending",
4474 "sys_rt_sigtimedwait",
4475 "sys_rt_sigqueueinfo",
4476 "sys_rt_sigsuspend",
4477 "sys_pread64", /* 180 */
4478 "sys_pwrite64",
4479 "sys_chown16",
4480 "sys_getcwd",
4481 "sys_capget",
4482 "sys_capset", /* 185 */
4483 "sys_sigaltstack",
4484 "sys_sendfile",
4485 "sys_ni_syscall", /* reserved for streams1 */
4486 "sys_ni_syscall", /* reserved for streams2 */
4487 "sys_vfork", /* 190 */
4488 "sys_getrlimit",
4489 "sys_mmap2",
4490 "sys_truncate64",
4491 "sys_ftruncate64",
4492 "sys_stat64", /* 195 */
4493 "sys_lstat64",
4494 "sys_fstat64",
4495 "sys_lchown",
4496 "sys_getuid",
4497 "sys_getgid", /* 200 */
4498 "sys_geteuid",
4499 "sys_getegid",
4500 "sys_setreuid",
4501 "sys_setregid",
4502 "sys_getgroups", /* 205 */
4503 "sys_setgroups",
4504 "sys_fchown",
4505 "sys_setresuid",
4506 "sys_getresuid",
4507 "sys_setresgid", /* 210 */
4508 "sys_getresgid",
4509 "sys_chown",
4510 "sys_setuid",
4511 "sys_setgid",
4512 "sys_setfsuid", /* 215 */
4513 "sys_setfsgid",
4514 "sys_pivot_root",
4515 "sys_mincore",
4516 "sys_madvise",
4517 "sys_getdents64", /* 220 */
4518 "sys_fcntl64",
4519 "sys_ni_syscall", /* reserved for TUX */
4520 "sys_ni_syscall",
4521 "sys_gettid",
4522 "sys_readahead", /* 225 */
4523 "sys_setxattr",
4524 "sys_lsetxattr",
4525 "sys_fsetxattr",
4526 "sys_getxattr",
4527 "sys_lgetxattr", /* 230 */
4528 "sys_fgetxattr",
4529 "sys_listxattr",
4530 "sys_llistxattr",
4531 "sys_flistxattr",
4532 "sys_removexattr", /* 235 */
4533 "sys_lremovexattr",
4534 "sys_fremovexattr",
4535 "sys_tkill",
4536 "sys_sendfile64",
4537 "sys_futex", /* 240 */
4538 "sys_sched_setaffinity",
4539 "sys_sched_getaffinity",
4540 "sys_set_thread_area",
4541 "sys_get_thread_area",
4542 "sys_io_setup", /* 245 */
4543 "sys_io_destroy",
4544 "sys_io_getevents",
4545 "sys_io_submit",
4546 "sys_io_cancel",
4547 "sys_fadvise64", /* 250 */
4548 "sys_ni_syscall",
4549 "sys_exit_group",
4550 "sys_lookup_dcookie",
4551 "sys_epoll_create",
4552 "sys_epoll_ctl", /* 255 */
4553 "sys_epoll_wait",
4554 "sys_remap_file_pages",
4555 "sys_set_tid_address",
4556 "sys_timer_create",
4557 "sys_timer_settime", /* 260 */
4558 "sys_timer_gettime",
4559 "sys_timer_getoverrun",
4560 "sys_timer_delete",
4561 "sys_clock_settime",
4562 "sys_clock_gettime", /* 265 */
4563 "sys_clock_getres",
4564 "sys_clock_nanosleep",
4565 "sys_statfs64",
4566 "sys_fstatfs64",
4567 "sys_tgkill", /* 270 */
4568 "sys_utimes",
4569 "sys_fadvise64_64",
4570 "sys_ni_syscall" /* sys_vserver */
4571 };
4572
4573 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4574 switch (uEAX)
4575 {
4576 default:
4577 if (uEAX < ELEMENTS(apsz))
4578 Log(("REM: linux syscall %3d: %s (eip=%VGv ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4579 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4580 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4581 else
4582 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4583 break;
4584
4585 }
4586}
4587
4588
4589/**
4590 * Dumps an OpenBSD system call.
4591 * @param pVM VM handle.
4592 */
4593void remR3DumpOBsdSyscall(PVM pVM)
4594{
4595 static const char *apsz[] =
4596 {
4597 "SYS_syscall", //0
4598 "SYS_exit", //1
4599 "SYS_fork", //2
4600 "SYS_read", //3
4601 "SYS_write", //4
4602 "SYS_open", //5
4603 "SYS_close", //6
4604 "SYS_wait4", //7
4605 "SYS_8",
4606 "SYS_link", //9
4607 "SYS_unlink", //10
4608 "SYS_11",
4609 "SYS_chdir", //12
4610 "SYS_fchdir", //13
4611 "SYS_mknod", //14
4612 "SYS_chmod", //15
4613 "SYS_chown", //16
4614 "SYS_break", //17
4615 "SYS_18",
4616 "SYS_19",
4617 "SYS_getpid", //20
4618 "SYS_mount", //21
4619 "SYS_unmount", //22
4620 "SYS_setuid", //23
4621 "SYS_getuid", //24
4622 "SYS_geteuid", //25
4623 "SYS_ptrace", //26
4624 "SYS_recvmsg", //27
4625 "SYS_sendmsg", //28
4626 "SYS_recvfrom", //29
4627 "SYS_accept", //30
4628 "SYS_getpeername", //31
4629 "SYS_getsockname", //32
4630 "SYS_access", //33
4631 "SYS_chflags", //34
4632 "SYS_fchflags", //35
4633 "SYS_sync", //36
4634 "SYS_kill", //37
4635 "SYS_38",
4636 "SYS_getppid", //39
4637 "SYS_40",
4638 "SYS_dup", //41
4639 "SYS_opipe", //42
4640 "SYS_getegid", //43
4641 "SYS_profil", //44
4642 "SYS_ktrace", //45
4643 "SYS_sigaction", //46
4644 "SYS_getgid", //47
4645 "SYS_sigprocmask", //48
4646 "SYS_getlogin", //49
4647 "SYS_setlogin", //50
4648 "SYS_acct", //51
4649 "SYS_sigpending", //52
4650 "SYS_osigaltstack", //53
4651 "SYS_ioctl", //54
4652 "SYS_reboot", //55
4653 "SYS_revoke", //56
4654 "SYS_symlink", //57
4655 "SYS_readlink", //58
4656 "SYS_execve", //59
4657 "SYS_umask", //60
4658 "SYS_chroot", //61
4659 "SYS_62",
4660 "SYS_63",
4661 "SYS_64",
4662 "SYS_65",
4663 "SYS_vfork", //66
4664 "SYS_67",
4665 "SYS_68",
4666 "SYS_sbrk", //69
4667 "SYS_sstk", //70
4668 "SYS_61",
4669 "SYS_vadvise", //72
4670 "SYS_munmap", //73
4671 "SYS_mprotect", //74
4672 "SYS_madvise", //75
4673 "SYS_76",
4674 "SYS_77",
4675 "SYS_mincore", //78
4676 "SYS_getgroups", //79
4677 "SYS_setgroups", //80
4678 "SYS_getpgrp", //81
4679 "SYS_setpgid", //82
4680 "SYS_setitimer", //83
4681 "SYS_84",
4682 "SYS_85",
4683 "SYS_getitimer", //86
4684 "SYS_87",
4685 "SYS_88",
4686 "SYS_89",
4687 "SYS_dup2", //90
4688 "SYS_91",
4689 "SYS_fcntl", //92
4690 "SYS_select", //93
4691 "SYS_94",
4692 "SYS_fsync", //95
4693 "SYS_setpriority", //96
4694 "SYS_socket", //97
4695 "SYS_connect", //98
4696 "SYS_99",
4697 "SYS_getpriority", //100
4698 "SYS_101",
4699 "SYS_102",
4700 "SYS_sigreturn", //103
4701 "SYS_bind", //104
4702 "SYS_setsockopt", //105
4703 "SYS_listen", //106
4704 "SYS_107",
4705 "SYS_108",
4706 "SYS_109",
4707 "SYS_110",
4708 "SYS_sigsuspend", //111
4709 "SYS_112",
4710 "SYS_113",
4711 "SYS_114",
4712 "SYS_115",
4713 "SYS_gettimeofday", //116
4714 "SYS_getrusage", //117
4715 "SYS_getsockopt", //118
4716 "SYS_119",
4717 "SYS_readv", //120
4718 "SYS_writev", //121
4719 "SYS_settimeofday", //122
4720 "SYS_fchown", //123
4721 "SYS_fchmod", //124
4722 "SYS_125",
4723 "SYS_setreuid", //126
4724 "SYS_setregid", //127
4725 "SYS_rename", //128
4726 "SYS_129",
4727 "SYS_130",
4728 "SYS_flock", //131
4729 "SYS_mkfifo", //132
4730 "SYS_sendto", //133
4731 "SYS_shutdown", //134
4732 "SYS_socketpair", //135
4733 "SYS_mkdir", //136
4734 "SYS_rmdir", //137
4735 "SYS_utimes", //138
4736 "SYS_139",
4737 "SYS_adjtime", //140
4738 "SYS_141",
4739 "SYS_142",
4740 "SYS_143",
4741 "SYS_144",
4742 "SYS_145",
4743 "SYS_146",
4744 "SYS_setsid", //147
4745 "SYS_quotactl", //148
4746 "SYS_149",
4747 "SYS_150",
4748 "SYS_151",
4749 "SYS_152",
4750 "SYS_153",
4751 "SYS_154",
4752 "SYS_nfssvc", //155
4753 "SYS_156",
4754 "SYS_157",
4755 "SYS_158",
4756 "SYS_159",
4757 "SYS_160",
4758 "SYS_getfh", //161
4759 "SYS_162",
4760 "SYS_163",
4761 "SYS_164",
4762 "SYS_sysarch", //165
4763 "SYS_166",
4764 "SYS_167",
4765 "SYS_168",
4766 "SYS_169",
4767 "SYS_170",
4768 "SYS_171",
4769 "SYS_172",
4770 "SYS_pread", //173
4771 "SYS_pwrite", //174
4772 "SYS_175",
4773 "SYS_176",
4774 "SYS_177",
4775 "SYS_178",
4776 "SYS_179",
4777 "SYS_180",
4778 "SYS_setgid", //181
4779 "SYS_setegid", //182
4780 "SYS_seteuid", //183
4781 "SYS_lfs_bmapv", //184
4782 "SYS_lfs_markv", //185
4783 "SYS_lfs_segclean", //186
4784 "SYS_lfs_segwait", //187
4785 "SYS_188",
4786 "SYS_189",
4787 "SYS_190",
4788 "SYS_pathconf", //191
4789 "SYS_fpathconf", //192
4790 "SYS_swapctl", //193
4791 "SYS_getrlimit", //194
4792 "SYS_setrlimit", //195
4793 "SYS_getdirentries", //196
4794 "SYS_mmap", //197
4795 "SYS___syscall", //198
4796 "SYS_lseek", //199
4797 "SYS_truncate", //200
4798 "SYS_ftruncate", //201
4799 "SYS___sysctl", //202
4800 "SYS_mlock", //203
4801 "SYS_munlock", //204
4802 "SYS_205",
4803 "SYS_futimes", //206
4804 "SYS_getpgid", //207
4805 "SYS_xfspioctl", //208
4806 "SYS_209",
4807 "SYS_210",
4808 "SYS_211",
4809 "SYS_212",
4810 "SYS_213",
4811 "SYS_214",
4812 "SYS_215",
4813 "SYS_216",
4814 "SYS_217",
4815 "SYS_218",
4816 "SYS_219",
4817 "SYS_220",
4818 "SYS_semget", //221
4819 "SYS_222",
4820 "SYS_223",
4821 "SYS_224",
4822 "SYS_msgget", //225
4823 "SYS_msgsnd", //226
4824 "SYS_msgrcv", //227
4825 "SYS_shmat", //228
4826 "SYS_229",
4827 "SYS_shmdt", //230
4828 "SYS_231",
4829 "SYS_clock_gettime", //232
4830 "SYS_clock_settime", //233
4831 "SYS_clock_getres", //234
4832 "SYS_235",
4833 "SYS_236",
4834 "SYS_237",
4835 "SYS_238",
4836 "SYS_239",
4837 "SYS_nanosleep", //240
4838 "SYS_241",
4839 "SYS_242",
4840 "SYS_243",
4841 "SYS_244",
4842 "SYS_245",
4843 "SYS_246",
4844 "SYS_247",
4845 "SYS_248",
4846 "SYS_249",
4847 "SYS_minherit", //250
4848 "SYS_rfork", //251
4849 "SYS_poll", //252
4850 "SYS_issetugid", //253
4851 "SYS_lchown", //254
4852 "SYS_getsid", //255
4853 "SYS_msync", //256
4854 "SYS_257",
4855 "SYS_258",
4856 "SYS_259",
4857 "SYS_getfsstat", //260
4858 "SYS_statfs", //261
4859 "SYS_fstatfs", //262
4860 "SYS_pipe", //263
4861 "SYS_fhopen", //264
4862 "SYS_265",
4863 "SYS_fhstatfs", //266
4864 "SYS_preadv", //267
4865 "SYS_pwritev", //268
4866 "SYS_kqueue", //269
4867 "SYS_kevent", //270
4868 "SYS_mlockall", //271
4869 "SYS_munlockall", //272
4870 "SYS_getpeereid", //273
4871 "SYS_274",
4872 "SYS_275",
4873 "SYS_276",
4874 "SYS_277",
4875 "SYS_278",
4876 "SYS_279",
4877 "SYS_280",
4878 "SYS_getresuid", //281
4879 "SYS_setresuid", //282
4880 "SYS_getresgid", //283
4881 "SYS_setresgid", //284
4882 "SYS_285",
4883 "SYS_mquery", //286
4884 "SYS_closefrom", //287
4885 "SYS_sigaltstack", //288
4886 "SYS_shmget", //289
4887 "SYS_semop", //290
4888 "SYS_stat", //291
4889 "SYS_fstat", //292
4890 "SYS_lstat", //293
4891 "SYS_fhstat", //294
4892 "SYS___semctl", //295
4893 "SYS_shmctl", //296
4894 "SYS_msgctl", //297
4895 "SYS_MAXSYSCALL", //298
4896 //299
4897 //300
4898 };
4899 uint32_t uEAX;
4900#ifndef DEBUG_bird
4901 if (!LogIsEnabled())
4902 return;
4903#endif
4904 uEAX = CPUMGetGuestEAX(pVM);
4905 switch (uEAX)
4906 {
4907 default:
4908 if (uEAX < ELEMENTS(apsz))
4909 {
4910 uint32_t au32Args[8] = {0};
4911 PGMPhysReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
4912 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
4913 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
4914 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
4915 }
4916 else
4917 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
4918 break;
4919 }
4920}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette