VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 2890

Last change on this file since 2890 was 2890, checked in by vboxsync, 18 years ago

Corrected syncing of CPL.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 167.9 KB
Line 
1/* $Id: VBoxRecompiler.c 2890 2007-05-28 11:49:44Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006 InnoTek Systemberatung GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License as published by the Free Software Foundation,
13 * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
14 * distribution. VirtualBox OSE is distributed in the hope that it will
15 * be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * If you received this file as part of a commercial VirtualBox
18 * distribution, then only the terms of your commercial VirtualBox
19 * license agreement apply instead of the previous paragraph.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "exec-all.h"
29
30#include <VBox/rem.h>
31#include <VBox/vmapi.h>
32#include <VBox/tm.h>
33#include <VBox/ssm.h>
34#include <VBox/em.h>
35#include <VBox/trpm.h>
36#include <VBox/iom.h>
37#include <VBox/mm.h>
38#include <VBox/pgm.h>
39#include <VBox/pdm.h>
40#include <VBox/dbgf.h>
41#include <VBox/dbg.h>
42#include <VBox/hwaccm.h>
43#include <VBox/patm.h>
44#include <VBox/csam.h>
45#include "REMInternal.h"
46#include <VBox/vm.h>
47#include <VBox/param.h>
48#include <VBox/err.h>
49
50#include <VBox/log.h>
51#include <iprt/semaphore.h>
52#include <iprt/asm.h>
53#include <iprt/assert.h>
54#include <iprt/thread.h>
55#include <iprt/string.h>
56
57/* Don't wanna include everything. */
58extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
59extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
60extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
61extern void tlb_flush_page(CPUX86State *env, uint32_t addr);
62extern void tlb_flush(CPUState *env, int flush_global);
63extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
64extern void sync_ldtr(CPUX86State *env1, int selector);
65extern int sync_tr(CPUX86State *env1, int selector);
66
67#ifdef VBOX_STRICT
68unsigned long get_phys_page_offset(target_ulong addr);
69#endif
70
71
72/*******************************************************************************
73* Defined Constants And Macros *
74*******************************************************************************/
75
76/** Copy 80-bit fpu register at pSrc to pDst.
77 * This is probably faster than *calling* memcpy.
78 */
79#define REM_COPY_FPU_REG(pDst, pSrc) \
80 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
81
82
83/*******************************************************************************
84* Internal Functions *
85*******************************************************************************/
86static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
87static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
88static void remR3StateUpdate(PVM pVM);
89
90#if defined(PGM_DYNAMIC_RAM_ALLOC) && !defined(REM_PHYS_ADDR_IN_TLB)
91DECLINLINE(target_ulong) remR3HCVirt2GCPhysInlined(PVM pVM, void *addr);
92DECLINLINE(void *) remR3GCPhys2HCVirtInlined(PVM pVM, target_ulong addr);
93#endif
94
95static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
96static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
97static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
98static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
99static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
100static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
101
102static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
103static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
104static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
105static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
106static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
107static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
108
109
110/*******************************************************************************
111* Global Variables *
112*******************************************************************************/
113
114/** @todo Move stats to REM::s some rainy day we have nothing do to. */
115#ifdef VBOX_WITH_STATISTICS
116static STAMPROFILEADV gStatExecuteSingleInstr;
117static STAMPROFILEADV gStatCompilationQEmu;
118static STAMPROFILEADV gStatRunCodeQEmu;
119static STAMPROFILEADV gStatTotalTimeQEmu;
120static STAMPROFILEADV gStatTimers;
121static STAMPROFILEADV gStatTBLookup;
122static STAMPROFILEADV gStatIRQ;
123static STAMPROFILEADV gStatRawCheck;
124static STAMPROFILEADV gStatMemRead;
125static STAMPROFILEADV gStatMemWrite;
126#ifndef REM_PHYS_ADDR_IN_TLB
127static STAMPROFILEADV gStatMemReadHCPtr;
128static STAMPROFILEADV gStatMemWriteHCPtr;
129#endif
130#ifdef PGM_DYNAMIC_RAM_ALLOC
131static STAMPROFILE gStatGCPhys2HCVirt;
132static STAMPROFILE gStatHCVirt2GCPhys;
133#endif
134static STAMCOUNTER gStatCpuGetTSC;
135static STAMCOUNTER gStatRefuseTFInhibit;
136static STAMCOUNTER gStatRefuseVM86;
137static STAMCOUNTER gStatRefusePaging;
138static STAMCOUNTER gStatRefusePAE;
139static STAMCOUNTER gStatRefuseIOPLNot0;
140static STAMCOUNTER gStatRefuseIF0;
141static STAMCOUNTER gStatRefuseCode16;
142static STAMCOUNTER gStatRefuseWP0;
143static STAMCOUNTER gStatRefuseRing1or2;
144static STAMCOUNTER gStatRefuseCanExecute;
145static STAMCOUNTER gStatREMGDTChange;
146static STAMCOUNTER gStatREMIDTChange;
147static STAMCOUNTER gStatREMLDTRChange;
148static STAMCOUNTER gStatREMTRChange;
149static STAMCOUNTER gStatSelOutOfSync[6];
150static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
151#endif
152
153/*
154 * Global stuff.
155 */
156
157/** MMIO read callbacks. */
158CPUReadMemoryFunc *g_apfnMMIORead[3] =
159{
160 remR3MMIOReadU8,
161 remR3MMIOReadU16,
162 remR3MMIOReadU32
163};
164
165/** MMIO write callbacks. */
166CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
167{
168 remR3MMIOWriteU8,
169 remR3MMIOWriteU16,
170 remR3MMIOWriteU32
171};
172
173/** Handler read callbacks. */
174CPUReadMemoryFunc *g_apfnHandlerRead[3] =
175{
176 remR3HandlerReadU8,
177 remR3HandlerReadU16,
178 remR3HandlerReadU32
179};
180
181/** Handler write callbacks. */
182CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
183{
184 remR3HandlerWriteU8,
185 remR3HandlerWriteU16,
186 remR3HandlerWriteU32
187};
188
189
190#ifdef VBOX_WITH_DEBUGGER
191/*
192 * Debugger commands.
193 */
194static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
195
196/** '.remstep' arguments. */
197static const DBGCVARDESC g_aArgRemStep[] =
198{
199 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
200 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
201};
202
203/** Command descriptors. */
204static const DBGCCMD g_aCmds[] =
205{
206 {
207 .pszCmd ="remstep",
208 .cArgsMin = 0,
209 .cArgsMax = 1,
210 .paArgDescs = &g_aArgRemStep[0],
211 .cArgDescs = ELEMENTS(g_aArgRemStep),
212 .pResultDesc = NULL,
213 .fFlags = 0,
214 .pfnHandler = remR3CmdDisasEnableStepping,
215 .pszSyntax = "[on/off]",
216 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
217 "If no arguments show the current state."
218 }
219};
220#endif
221
222
223/* Instantiate the structure signatures. */
224#define REM_STRUCT_OP 0
225#include "InnoTek/structs.h"
226
227
228
229/*******************************************************************************
230* Internal Functions *
231*******************************************************************************/
232static void remAbort(int rc, const char *pszTip);
233extern int testmath(void);
234
235/* Put them here to avoid unused variable warning. */
236AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
237#if !defined(IPRT_NO_CRT) && (defined(__LINUX__) || defined(__DARWIN__) || defined(__WIN__))
238AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
239#else
240AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
241#endif
242
243
244/**
245 * Initializes the REM.
246 *
247 * @returns VBox status code.
248 * @param pVM The VM to operate on.
249 */
250REMR3DECL(int) REMR3Init(PVM pVM)
251{
252 uint32_t u32Dummy;
253 unsigned i;
254
255 /*
256 * Assert sanity.
257 */
258 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
259 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
260 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
261 Assert(!testmath());
262 ASSERT_STRUCT_TABLE(Misc);
263 ASSERT_STRUCT_TABLE(TLB);
264 ASSERT_STRUCT_TABLE(SegmentCache);
265 ASSERT_STRUCT_TABLE(XMMReg);
266 ASSERT_STRUCT_TABLE(MMXReg);
267 ASSERT_STRUCT_TABLE(float_status);
268 ASSERT_STRUCT_TABLE(float32u);
269 ASSERT_STRUCT_TABLE(float64u);
270 ASSERT_STRUCT_TABLE(floatx80u);
271 ASSERT_STRUCT_TABLE(CPUState);
272
273 /*
274 * Init some internal data members.
275 */
276 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
277 pVM->rem.s.Env.pVM = pVM;
278#ifdef CPU_RAW_MODE_INIT
279 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
280#endif
281
282 /* ctx. */
283 int rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
284 if (VBOX_FAILURE(rc))
285 {
286 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
287 return rc;
288 }
289 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
290
291 /* ignore all notifications */
292 pVM->rem.s.fIgnoreAll = true;
293
294 /*
295 * Init the recompiler.
296 */
297 if (!cpu_x86_init(&pVM->rem.s.Env))
298 {
299 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
300 return VERR_GENERAL_FAILURE;
301 }
302 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
303 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
304
305 /* allocate code buffer for single instruction emulation. */
306 pVM->rem.s.Env.cbCodeBuffer = 4096;
307 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
308 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
309
310 /* finally, set the cpu_single_env global. */
311 cpu_single_env = &pVM->rem.s.Env;
312
313 /* Nothing is pending by default */
314 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
315
316 /*
317 * Register ram types.
318 */
319 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
320 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
321 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
322 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
323 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
324
325 /* stop ignoring. */
326 pVM->rem.s.fIgnoreAll = false;
327
328 /*
329 * Register the saved state data unit.
330 */
331 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
332 NULL, remR3Save, NULL,
333 NULL, remR3Load, NULL);
334 if (VBOX_FAILURE(rc))
335 return rc;
336
337#ifdef VBOX_WITH_DEBUGGER
338 /*
339 * Debugger commands.
340 */
341 static bool fRegisteredCmds = false;
342 if (!fRegisteredCmds)
343 {
344 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
345 if (VBOX_SUCCESS(rc))
346 fRegisteredCmds = true;
347 }
348#endif
349
350#ifdef VBOX_WITH_STATISTICS
351 /*
352 * Statistics.
353 */
354 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
355 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
356 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
357 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
358 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
359 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
360 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
361 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
362 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
363 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
364#ifndef REM_PHYS_ADDR_IN_TLB
365 STAM_REG(pVM, &gStatMemReadHCPtr, STAMTYPE_PROFILE, "/PROF/REM/MemReadHCPtr", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
366 STAM_REG(pVM, &gStatMemWriteHCPtr, STAMTYPE_PROFILE, "/PROF/REM/MemWriteHCPtr", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
367#endif
368#ifdef PGM_DYNAMIC_RAM_ALLOC
369 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
370 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
371#endif
372
373 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
374
375 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
376 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
377 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
378 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
379 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
380 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
381 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
382 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
383 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
384 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
385
386 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
387 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
388 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
389 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
390
391 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
392 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
393 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
394 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
395 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
396 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
397
398 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
399 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
400 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
401 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
402 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
403 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
404
405
406#endif
407
408#ifdef DEBUG_ALL_LOGGING
409 loglevel = ~0;
410#endif
411
412 return rc;
413}
414
415
416/**
417 * Terminates the REM.
418 *
419 * Termination means cleaning up and freeing all resources,
420 * the VM it self is at this point powered off or suspended.
421 *
422 * @returns VBox status code.
423 * @param pVM The VM to operate on.
424 */
425REMR3DECL(int) REMR3Term(PVM pVM)
426{
427 return VINF_SUCCESS;
428}
429
430
431/**
432 * The VM is being reset.
433 *
434 * For the REM component this means to call the cpu_reset() and
435 * reinitialize some state variables.
436 *
437 * @param pVM VM handle.
438 */
439REMR3DECL(void) REMR3Reset(PVM pVM)
440{
441 /*
442 * Reset the REM cpu.
443 */
444 pVM->rem.s.fIgnoreAll = true;
445 cpu_reset(&pVM->rem.s.Env);
446 pVM->rem.s.cInvalidatedPages = 0;
447 pVM->rem.s.fIgnoreAll = false;
448}
449
450
451/**
452 * Execute state save operation.
453 *
454 * @returns VBox status code.
455 * @param pVM VM Handle.
456 * @param pSSM SSM operation handle.
457 */
458static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
459{
460 LogFlow(("remR3Save:\n"));
461
462 /*
463 * Save the required CPU Env bits.
464 * (Not much because we're never in REM when doing the save.)
465 */
466 PREM pRem = &pVM->rem.s;
467 Assert(!pRem->fInREM);
468 SSMR3PutU32(pSSM, pRem->Env.hflags);
469 SSMR3PutMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
470 SSMR3PutU32(pSSM, ~0); /* separator */
471
472 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
473 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
474
475 /*
476 * Save the REM stuff.
477 */
478 SSMR3PutUInt(pSSM, pRem->cInvalidatedPages);
479 unsigned i;
480 for (i = 0; i < pRem->cInvalidatedPages; i++)
481 SSMR3PutGCPtr(pSSM, pRem->aGCPtrInvalidatedPages[i]);
482
483 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
484
485 return SSMR3PutU32(pSSM, ~0); /* terminator */
486}
487
488
489/**
490 * Execute state load operation.
491 *
492 * @returns VBox status code.
493 * @param pVM VM Handle.
494 * @param pSSM SSM operation handle.
495 * @param u32Version Data layout version.
496 */
497static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
498{
499 uint32_t u32Dummy;
500 uint32_t fRawRing0 = false;
501 LogFlow(("remR3Load:\n"));
502
503 /*
504 * Validate version.
505 */
506 if (u32Version != REM_SAVED_STATE_VERSION)
507 {
508 Log(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
509 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
510 }
511
512 /*
513 * Do a reset to be on the safe side...
514 */
515 REMR3Reset(pVM);
516
517 /*
518 * Ignore all ignorable notifications.
519 * (Not doing this will cause serious trouble.)
520 */
521 pVM->rem.s.fIgnoreAll = true;
522
523 /*
524 * Load the required CPU Env bits.
525 * (Not much because we're never in REM when doing the save.)
526 */
527 PREM pRem = &pVM->rem.s;
528 Assert(!pRem->fInREM);
529 SSMR3GetU32(pSSM, &pRem->Env.hflags);
530 SSMR3GetMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
531 uint32_t u32Sep;
532 int rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
533 if (VBOX_FAILURE(rc))
534 return rc;
535 if (u32Sep != ~0)
536 {
537 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
538 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
539 }
540
541 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
542 SSMR3GetUInt(pSSM, &fRawRing0);
543 if (fRawRing0)
544 pRem->Env.state |= CPU_RAW_RING0;
545
546 /*
547 * Load the REM stuff.
548 */
549 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
550 if (VBOX_FAILURE(rc))
551 return rc;
552 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
553 {
554 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
555 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
556 }
557 unsigned i;
558 for (i = 0; i < pRem->cInvalidatedPages; i++)
559 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
560
561 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
562 if (VBOX_FAILURE(rc))
563 return rc;
564
565 /* check the terminator. */
566 rc = SSMR3GetU32(pSSM, &u32Sep);
567 if (VBOX_FAILURE(rc))
568 return rc;
569 if (u32Sep != ~0)
570 {
571 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
572 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
573 }
574
575 /*
576 * Get the CPUID features.
577 */
578 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
579 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
580
581 /*
582 * Sync the Load Flush the TLB
583 */
584 tlb_flush(&pRem->Env, 1);
585
586#if 0 /** @todo r=bird: this doesn't make sense. WHY? */
587 /*
588 * Clear all lazy flags (only FPU sync for now).
589 */
590 CPUMGetAndClearFPUUsedREM(pVM);
591#endif
592
593 /*
594 * Stop ignoring ignornable notifications.
595 */
596 pVM->rem.s.fIgnoreAll = false;
597
598 return VINF_SUCCESS;
599}
600
601
602
603#undef LOG_GROUP
604#define LOG_GROUP LOG_GROUP_REM_RUN
605
606/**
607 * Single steps an instruction in recompiled mode.
608 *
609 * Before calling this function the REM state needs to be in sync with
610 * the VM. Call REMR3State() to perform the sync. It's only necessary
611 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
612 * and after calling REMR3StateBack().
613 *
614 * @returns VBox status code.
615 *
616 * @param pVM VM Handle.
617 */
618REMR3DECL(int) REMR3Step(PVM pVM)
619{
620 /*
621 * Lock the REM - we don't wanna have anyone interrupting us
622 * while stepping - and enabled single stepping. We also ignore
623 * pending interrupts and suchlike.
624 */
625 int interrupt_request = pVM->rem.s.Env.interrupt_request;
626 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
627 pVM->rem.s.Env.interrupt_request = 0;
628 cpu_single_step(&pVM->rem.s.Env, 1);
629
630 /*
631 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
632 */
633 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
634 bool fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
635
636 /*
637 * Execute and handle the return code.
638 * We execute without enabling the cpu tick, so on success we'll
639 * just flip it on and off to make sure it moves
640 */
641 int rc = cpu_exec(&pVM->rem.s.Env);
642 if (rc == EXCP_DEBUG)
643 {
644 TMCpuTickResume(pVM);
645 TMCpuTickPause(pVM);
646 TMVirtualResume(pVM);
647 TMVirtualPause(pVM);
648 rc = VINF_EM_DBG_STEPPED;
649 }
650 else
651 {
652 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
653 switch (rc)
654 {
655 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
656 case EXCP_HLT:
657 case EXCP_HALTED: rc = VINF_EM_HALT; break;
658 case EXCP_RC:
659 rc = pVM->rem.s.rc;
660 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
661 break;
662 default:
663 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
664 rc = VERR_INTERNAL_ERROR;
665 break;
666 }
667 }
668
669 /*
670 * Restore the stuff we changed to prevent interruption.
671 * Unlock the REM.
672 */
673 if (fBp)
674 {
675 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
676 Assert(rc2 == 0); NOREF(rc2);
677 }
678 cpu_single_step(&pVM->rem.s.Env, 0);
679 pVM->rem.s.Env.interrupt_request = interrupt_request;
680
681 return rc;
682}
683
684
685/**
686 * Set a breakpoint using the REM facilities.
687 *
688 * @returns VBox status code.
689 * @param pVM The VM handle.
690 * @param Address The breakpoint address.
691 * @thread The emulation thread.
692 */
693REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
694{
695 VM_ASSERT_EMT(pVM);
696 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
697 {
698 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
699 return VINF_SUCCESS;
700 }
701 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
702 return VERR_REM_NO_MORE_BP_SLOTS;
703}
704
705
706/**
707 * Clears a breakpoint set by REMR3BreakpointSet().
708 *
709 * @returns VBox status code.
710 * @param pVM The VM handle.
711 * @param Address The breakpoint address.
712 * @thread The emulation thread.
713 */
714REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
715{
716 VM_ASSERT_EMT(pVM);
717 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
718 {
719 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
720 return VINF_SUCCESS;
721 }
722 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
723 return VERR_REM_BP_NOT_FOUND;
724}
725
726
727/**
728 * Emulate an instruction.
729 *
730 * This function executes one instruction without letting anyone
731 * interrupt it. This is intended for being called while being in
732 * raw mode and thus will take care of all the state syncing between
733 * REM and the rest.
734 *
735 * @returns VBox status code.
736 * @param pVM VM handle.
737 */
738REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
739{
740 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", pVM->rem.s.pCtx->cs, pVM->rem.s.pCtx->eip));
741
742 /*
743 * Sync the state and enable single instruction / single stepping.
744 */
745 int rc = REMR3State(pVM);
746 if (VBOX_SUCCESS(rc))
747 {
748 int interrupt_request = pVM->rem.s.Env.interrupt_request;
749 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
750 Assert(!pVM->rem.s.Env.singlestep_enabled);
751#if 1
752
753 /*
754 * Now we set the execute single instruction flag and enter the cpu_exec loop.
755 */
756 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
757 rc = cpu_exec(&pVM->rem.s.Env);
758 switch (rc)
759 {
760 /*
761 * Executed without anything out of the way happening.
762 */
763 case EXCP_SINGLE_INSTR:
764 rc = VINF_EM_RESCHEDULE;
765 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
766 break;
767
768 /*
769 * If we take a trap or start servicing a pending interrupt, we might end up here.
770 * (Timer thread or some other thread wishing EMT's attention.)
771 */
772 case EXCP_INTERRUPT:
773 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
774 rc = VINF_EM_RESCHEDULE;
775 break;
776
777 /*
778 * Single step, we assume!
779 * If there was a breakpoint there we're fucked now.
780 */
781 case EXCP_DEBUG:
782 {
783 /* breakpoint or single step? */
784 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
785 int iBP;
786 rc = VINF_EM_DBG_STEPPED;
787 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
788 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
789 {
790 rc = VINF_EM_DBG_BREAKPOINT;
791 break;
792 }
793 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
794 break;
795 }
796
797 /*
798 * hlt instruction.
799 */
800 case EXCP_HLT:
801 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
802 rc = VINF_EM_HALT;
803 break;
804
805 /*
806 * The VM has halted.
807 */
808 case EXCP_HALTED:
809 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
810 rc = VINF_EM_HALT;
811 break;
812
813 /*
814 * Switch to RAW-mode.
815 */
816 case EXCP_EXECUTE_RAW:
817 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
818 rc = VINF_EM_RESCHEDULE_RAW;
819 break;
820
821 /*
822 * Switch to hardware accelerated RAW-mode.
823 */
824 case EXCP_EXECUTE_HWACC:
825 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
826 rc = VINF_EM_RESCHEDULE_HWACC;
827 break;
828
829 /*
830 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
831 */
832 case EXCP_RC:
833 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
834 rc = pVM->rem.s.rc;
835 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
836 break;
837
838 /*
839 * Figure out the rest when they arrive....
840 */
841 default:
842 AssertMsgFailed(("rc=%d\n", rc));
843 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
844 rc = VINF_EM_RESCHEDULE;
845 break;
846 }
847
848 /*
849 * Switch back the state.
850 */
851#else
852 pVM->rem.s.Env.interrupt_request = 0;
853 cpu_single_step(&pVM->rem.s.Env, 1);
854
855 /*
856 * Execute and handle the return code.
857 * We execute without enabling the cpu tick, so on success we'll
858 * just flip it on and off to make sure it moves.
859 *
860 * (We do not use emulate_single_instr() because that doesn't enter the
861 * right way in will cause serious trouble if a longjmp was attempted.)
862 */
863# ifdef DEBUG_bird
864 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
865# endif
866 int cTimesMax = 16384;
867 uint32_t eip = pVM->rem.s.Env.eip;
868 do
869 {
870 rc = cpu_exec(&pVM->rem.s.Env);
871
872 } while ( eip == pVM->rem.s.Env.eip
873 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
874 && --cTimesMax > 0);
875 switch (rc)
876 {
877 /*
878 * Single step, we assume!
879 * If there was a breakpoint there we're fucked now.
880 */
881 case EXCP_DEBUG:
882 {
883 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
884 rc = VINF_EM_RESCHEDULE;
885 break;
886 }
887
888 /*
889 * We cannot be interrupted!
890 */
891 case EXCP_INTERRUPT:
892 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
893 rc = VERR_INTERNAL_ERROR;
894 break;
895
896 /*
897 * hlt instruction.
898 */
899 case EXCP_HLT:
900 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
901 rc = VINF_EM_HALT;
902 break;
903
904 /*
905 * The VM has halted.
906 */
907 case EXCP_HALTED:
908 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
909 rc = VINF_EM_HALT;
910 break;
911
912 /*
913 * Switch to RAW-mode.
914 */
915 case EXCP_EXECUTE_RAW:
916 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
917 rc = VINF_EM_RESCHEDULE_RAW;
918 break;
919
920 /*
921 * Switch to hardware accelerated RAW-mode.
922 */
923 case EXCP_EXECUTE_HWACC:
924 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
925 rc = VINF_EM_RESCHEDULE_HWACC;
926 break;
927
928 /*
929 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
930 */
931 case EXCP_RC:
932 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
933 rc = pVM->rem.s.rc;
934 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
935 break;
936
937 /*
938 * Figure out the rest when they arrive....
939 */
940 default:
941 AssertMsgFailed(("rc=%d\n", rc));
942 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
943 rc = VINF_SUCCESS;
944 break;
945 }
946
947 /*
948 * Switch back the state.
949 */
950 cpu_single_step(&pVM->rem.s.Env, 0);
951#endif
952 pVM->rem.s.Env.interrupt_request = interrupt_request;
953 int rc2 = REMR3StateBack(pVM);
954 AssertRC(rc2);
955 }
956
957 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%08x)\n",
958 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
959 return rc;
960}
961
962
963/**
964 * Runs code in recompiled mode.
965 *
966 * Before calling this function the REM state needs to be in sync with
967 * the VM. Call REMR3State() to perform the sync. It's only necessary
968 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
969 * and after calling REMR3StateBack().
970 *
971 * @returns VBox status code.
972 *
973 * @param pVM VM Handle.
974 */
975REMR3DECL(int) REMR3Run(PVM pVM)
976{
977 Log2(("REMR3Run: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
978 Assert(pVM->rem.s.fInREM);
979////Keyboard / tb stuff:
980//if ( pVM->rem.s.Env.segs[R_CS].selector == 0xf000
981// && pVM->rem.s.Env.eip >= 0xe860
982// && pVM->rem.s.Env.eip <= 0xe880)
983// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
984////A20:
985//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x9020
986// && pVM->rem.s.Env.eip >= 0x970
987// && pVM->rem.s.Env.eip <= 0x9a0)
988// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
989////Speaker (port 61h)
990//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x0010
991// && ( (pVM->rem.s.Env.eip >= 0x90278c10 && pVM->rem.s.Env.eip <= 0x90278c30)
992// || (pVM->rem.s.Env.eip >= 0x9010e250 && pVM->rem.s.Env.eip <= 0x9010e260)
993// )
994// )
995// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
996//DBGFR3InfoLog(pVM, "timers", NULL);
997
998
999 int rc = cpu_exec(&pVM->rem.s.Env);
1000 switch (rc)
1001 {
1002 /*
1003 * This happens when the execution was interrupted
1004 * by an external event, like pending timers.
1005 */
1006 case EXCP_INTERRUPT:
1007 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
1008 rc = VINF_SUCCESS;
1009 break;
1010
1011 /*
1012 * hlt instruction.
1013 */
1014 case EXCP_HLT:
1015 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
1016 rc = VINF_EM_HALT;
1017 break;
1018
1019 /*
1020 * The VM has halted.
1021 */
1022 case EXCP_HALTED:
1023 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1024 rc = VINF_EM_HALT;
1025 break;
1026
1027 /*
1028 * Breakpoint/single step.
1029 */
1030 case EXCP_DEBUG:
1031 {
1032#if 0//def DEBUG_bird
1033 static int iBP = 0;
1034 printf("howdy, breakpoint! iBP=%d\n", iBP);
1035 switch (iBP)
1036 {
1037 case 0:
1038 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1039 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1040 //pVM->rem.s.Env.interrupt_request = 0;
1041 //pVM->rem.s.Env.exception_index = -1;
1042 //g_fInterruptDisabled = 1;
1043 rc = VINF_SUCCESS;
1044 asm("int3");
1045 break;
1046 default:
1047 asm("int3");
1048 break;
1049 }
1050 iBP++;
1051#else
1052 /* breakpoint or single step? */
1053 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1054 int iBP;
1055 rc = VINF_EM_DBG_STEPPED;
1056 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1057 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1058 {
1059 rc = VINF_EM_DBG_BREAKPOINT;
1060 break;
1061 }
1062 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1063#endif
1064 break;
1065 }
1066
1067 /*
1068 * Switch to RAW-mode.
1069 */
1070 case EXCP_EXECUTE_RAW:
1071 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1072 rc = VINF_EM_RESCHEDULE_RAW;
1073 break;
1074
1075 /*
1076 * Switch to hardware accelerated RAW-mode.
1077 */
1078 case EXCP_EXECUTE_HWACC:
1079 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1080 rc = VINF_EM_RESCHEDULE_HWACC;
1081 break;
1082
1083 /*
1084 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
1085 */
1086 case EXCP_RC:
1087 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1088 rc = pVM->rem.s.rc;
1089 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1090 break;
1091
1092 /*
1093 * Figure out the rest when they arrive....
1094 */
1095 default:
1096 AssertMsgFailed(("rc=%d\n", rc));
1097 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1098 rc = VINF_SUCCESS;
1099 break;
1100 }
1101
1102 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%08x)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1103 return rc;
1104}
1105
1106
1107/**
1108 * Check if the cpu state is suitable for Raw execution.
1109 *
1110 * @returns boolean
1111 * @param env The CPU env struct.
1112 * @param eip The EIP to check this for (might differ from env->eip).
1113 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1114 * @param pExceptionIndex Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1115 *
1116 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1117 */
1118bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, uint32_t *pExceptionIndex)
1119{
1120 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1121 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1122 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1123
1124 /* Update counter. */
1125 env->pVM->rem.s.cCanExecuteRaw++;
1126
1127 if (HWACCMIsEnabled(env->pVM))
1128 {
1129 env->state |= CPU_RAW_HWACC;
1130
1131 /*
1132 * Create partial context for HWACCMR3CanExecuteGuest
1133 */
1134 CPUMCTX Ctx;
1135 Ctx.cr0 = env->cr[0];
1136 Ctx.cr3 = env->cr[3];
1137 Ctx.cr4 = env->cr[4];
1138
1139 Ctx.tr = env->tr.selector;
1140 Ctx.trHid.u32Base = (uint32_t)env->tr.base;
1141 Ctx.trHid.u32Limit = env->tr.limit;
1142 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1143
1144 Ctx.idtr.cbIdt = env->idt.limit;
1145 Ctx.idtr.pIdt = (uint32_t)env->idt.base;
1146
1147 Ctx.eflags.u32 = env->eflags;
1148
1149 Ctx.cs = env->segs[R_CS].selector;
1150 Ctx.csHid.u32Base = (uint32_t)env->segs[R_CS].base;
1151 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1152 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1153
1154 Ctx.ss = env->segs[R_SS].selector;
1155 Ctx.ssHid.u32Base = (uint32_t)env->segs[R_SS].base;
1156 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1157 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1158
1159 /* Hardware accelerated raw-mode:
1160 *
1161 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1162 */
1163 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1164 {
1165 *pExceptionIndex = EXCP_EXECUTE_HWACC;
1166 return true;
1167 }
1168 return false;
1169 }
1170
1171 /*
1172 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1173 * or 32 bits protected mode ring 0 code
1174 *
1175 * The tests are ordered by the likelyhood of being true during normal execution.
1176 */
1177 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1178 {
1179 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1180 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1181 return false;
1182 }
1183
1184#ifndef VBOX_RAW_V86
1185 if (fFlags & VM_MASK) {
1186 STAM_COUNTER_INC(&gStatRefuseVM86);
1187 Log2(("raw mode refused: VM_MASK\n"));
1188 return false;
1189 }
1190#endif
1191
1192 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1193 {
1194#ifndef DEBUG_bird
1195 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1196#endif
1197 return false;
1198 }
1199
1200 if (env->singlestep_enabled)
1201 {
1202 //Log2(("raw mode refused: Single step\n"));
1203 return false;
1204 }
1205
1206 if (env->nb_breakpoints > 0)
1207 {
1208 //Log2(("raw mode refused: Breakpoints\n"));
1209 return false;
1210 }
1211
1212 uint32_t u32CR0 = env->cr[0];
1213 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1214 {
1215 STAM_COUNTER_INC(&gStatRefusePaging);
1216 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1217 return false;
1218 }
1219
1220 if (env->cr[4] & CR4_PAE_MASK)
1221 {
1222 STAM_COUNTER_INC(&gStatRefusePAE);
1223 //Log2(("raw mode refused: PAE\n"));
1224 return false;
1225 }
1226
1227 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1228 {
1229 if (!EMIsRawRing3Enabled(env->pVM))
1230 return false;
1231
1232 if (!(env->eflags & IF_MASK))
1233 {
1234 STAM_COUNTER_INC(&gStatRefuseIF0);
1235 Log2(("raw mode refused: IF (RawR3)\n"));
1236 return false;
1237 }
1238
1239 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1240 {
1241 STAM_COUNTER_INC(&gStatRefuseWP0);
1242 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1243 return false;
1244 }
1245 }
1246 else
1247 {
1248 if (!EMIsRawRing0Enabled(env->pVM))
1249 return false;
1250
1251 // Let's start with pure 32 bits ring 0 code first
1252 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1253 {
1254 STAM_COUNTER_INC(&gStatRefuseCode16);
1255 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1256 return false;
1257 }
1258
1259 // Only R0
1260 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1261 {
1262 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1263 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1264 return false;
1265 }
1266
1267 if (!(u32CR0 & CR0_WP_MASK))
1268 {
1269 STAM_COUNTER_INC(&gStatRefuseWP0);
1270 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1271 return false;
1272 }
1273
1274 if (PATMIsPatchGCAddr(env->pVM, eip))
1275 {
1276 Log2(("raw r0 mode forced: patch code\n"));
1277 *pExceptionIndex = EXCP_EXECUTE_RAW;
1278 return true;
1279 }
1280
1281#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1282 if (!(env->eflags & IF_MASK))
1283 {
1284 STAM_COUNTER_INC(&gStatRefuseIF0);
1285 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1286 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1287 return false;
1288 }
1289#endif
1290
1291 env->state |= CPU_RAW_RING0;
1292 }
1293
1294 /*
1295 * Don't reschedule the first time we're called, because there might be
1296 * special reasons why we're here that is not covered by the above checks.
1297 */
1298 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1299 {
1300 Log2(("raw mode refused: first scheduling\n"));
1301 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1302 return false;
1303 }
1304
1305 Assert(PGMPhysIsA20Enabled(env->pVM));
1306 *pExceptionIndex = EXCP_EXECUTE_RAW;
1307 return true;
1308}
1309
1310
1311/**
1312 * Fetches a code byte.
1313 *
1314 * @returns Success indicator (bool) for ease of use.
1315 * @param env The CPU environment structure.
1316 * @param GCPtrInstr Where to fetch code.
1317 * @param pu8Byte Where to store the byte on success
1318 */
1319bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1320{
1321 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1322 if (VBOX_SUCCESS(rc))
1323 return true;
1324 return false;
1325}
1326
1327
1328/**
1329 * Flush (or invalidate if you like) page table/dir entry.
1330 *
1331 * (invlpg instruction; tlb_flush_page)
1332 *
1333 * @param env Pointer to cpu environment.
1334 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1335 */
1336void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1337{
1338 PVM pVM = env->pVM;
1339
1340 /*
1341 * When we're replaying invlpg instructions or restoring a saved
1342 * state we disable this path.
1343 */
1344 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1345 return;
1346 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1347 Assert(pVM->rem.s.fInREM);
1348
1349 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1350
1351 /*
1352 * Update the control registers before calling PGMFlushPage.
1353 */
1354 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1355 pCtx->cr0 = env->cr[0];
1356 pCtx->cr3 = env->cr[3];
1357 pCtx->cr4 = env->cr[4];
1358
1359 /*
1360 * Let PGM do the rest.
1361 */
1362 int rc = PGMInvalidatePage(pVM, GCPtr);
1363 if (VBOX_FAILURE(rc))
1364 {
1365 AssertMsgFailed(("remR3FlushPage %x %x %x %d failed!!\n", GCPtr));
1366 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1367 }
1368 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1369}
1370
1371/**
1372 * Set page table/dir entry. (called from tlb_set_page)
1373 *
1374 * @param env Pointer to cpu environment.
1375 */
1376void remR3SetPage(CPUState *env, CPUTLBEntry *pTLBEntry, CPUTLBEntry *pTLBEntryIgnored, int prot, int is_user)
1377{
1378 target_ulong virt_addr;
1379 if (env->pVM->rem.s.fIgnoreSetPage || env->pVM->rem.s.fIgnoreAll)
1380 return;
1381 Assert(env->pVM->rem.s.fInREM || env->pVM->rem.s.fInStateSync);
1382
1383#ifndef PGM_DYNAMIC_RAM_ALLOC
1384 if(!is_user && !(env->state & CPU_RAW_RING0))
1385 return; /* We are currently not interested in kernel pages */
1386#endif
1387
1388#if !defined(PGM_DYNAMIC_RAM_ALLOC) && !defined(REM_PHYS_ADDR_IN_TLB)
1389 Log2(("tlb_set_page_raw (r=%x|w=%x)-%x prot %x is_user %d phys base %x\n",
1390 pTLBEntry->addr_read, pTLBEntry->addr_write, pTLBEntry->addend, prot, is_user, phys_ram_base));
1391#else /* PGM_DYNAMIC_RAM_ALLOC */
1392 Log2(("tlb_set_page_raw (r=%x|w=%x)-%x prot %x is_user %d\n",
1393 pTLBEntry->addr_read, pTLBEntry->addr_write, pTLBEntry->addend, prot, is_user));
1394#endif/* PGM_DYNAMIC_RAM_ALLOC */
1395
1396 /*
1397 * Extract the virtual address.
1398 */
1399 if (prot & PAGE_WRITE)
1400 virt_addr = pTLBEntry->addr_write;
1401 else if (prot & PAGE_READ)
1402 virt_addr = pTLBEntry->addr_read;
1403 else
1404 AssertMsgFailedReturnVoid(("tlb_set_page_raw unexpected protection flags %x\n", prot));
1405 virt_addr &= TARGET_PAGE_MASK;
1406
1407 /*
1408 * Update the control registers before calling PGMFlushPage.
1409 */
1410 PCPUMCTX pCtx = (PCPUMCTX)env->pVM->rem.s.pCtx;
1411 pCtx->cr0 = env->cr[0];
1412 pCtx->cr3 = env->cr[3];
1413 pCtx->cr4 = env->cr[4];
1414
1415 /*
1416 * Let PGM do the rest.
1417 */
1418 int rc = PGMInvalidatePage(env->pVM, (RTGCPTR)virt_addr);
1419 if (VBOX_FAILURE(rc))
1420 {
1421#ifdef VBOX_STRICT
1422 target_ulong addend = pTLBEntry->addend;
1423 target_ulong phys_addr;
1424
1425 if (!(addend & IO_MEM_ROM))
1426# ifdef REM_PHYS_ADDR_IN_TLB
1427 phys_addr = virt_addr + addend;
1428# elif defined(PGM_DYNAMIC_RAM_ALLOC)
1429 phys_addr = remR3HCVirt2GCPhysInlined(env->pVM, (void *)(virt_addr + addend));
1430# else
1431 phys_addr = virt_addr - (uintptr_t)phys_ram_base + addend;
1432# endif
1433 else
1434 phys_addr = addend;
1435 AssertMsgFailed(("RAWEx_SetPageEntry %x %x %x %d failed!!\n", virt_addr, phys_addr, prot, is_user));
1436#endif /* VBOX_STRICT */
1437 VM_FF_SET(env->pVM, VM_FF_PGM_SYNC_CR3);
1438 }
1439}
1440
1441/**
1442 * Called from tlb_protect_code in order to write monitor a code page.
1443 *
1444 * @param env Pointer to the CPU environment.
1445 * @param GCPtr Code page to monitor
1446 */
1447void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1448{
1449 Assert(env->pVM->rem.s.fInREM);
1450 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1451 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1452 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1453 && !(env->eflags & VM_MASK) /* no V86 mode */
1454 && !HWACCMIsEnabled(env->pVM))
1455 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1456}
1457
1458/**
1459 * Called when the CPU is initialized, any of the CRx registers are changed or
1460 * when the A20 line is modified.
1461 *
1462 * @param env Pointer to the CPU environment.
1463 * @param fGlobal Set if the flush is global.
1464 */
1465void remR3FlushTLB(CPUState *env, bool fGlobal)
1466{
1467 PVM pVM = env->pVM;
1468
1469 /*
1470 * When we're replaying invlpg instructions or restoring a saved
1471 * state we disable this path.
1472 */
1473 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1474 return;
1475 Assert(pVM->rem.s.fInREM);
1476
1477 /*
1478 * The caller doesn't check cr4, so we have to do that for ourselves.
1479 */
1480 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1481 fGlobal = true;
1482 Log(("remR3FlushTLB: CR0=%VGp CR3=%VGp CR4=%VGp %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1483
1484 /*
1485 * Update the control registers before calling PGMR3FlushTLB.
1486 */
1487 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1488 pCtx->cr0 = env->cr[0];
1489 pCtx->cr3 = env->cr[3];
1490 pCtx->cr4 = env->cr[4];
1491
1492 /*
1493 * Let PGM do the rest.
1494 */
1495 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1496}
1497
1498
1499/**
1500 * Called when any of the cr0, cr4 or efer registers is updated.
1501 *
1502 * @param env Pointer to the CPU environment.
1503 */
1504void remR3ChangeCpuMode(CPUState *env)
1505{
1506 int rc;
1507 PVM pVM = env->pVM;
1508
1509 /*
1510 * When we're replaying loads or restoring a saved
1511 * state this path is disabled.
1512 */
1513 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1514 return;
1515 Assert(pVM->rem.s.fInREM);
1516
1517 /*
1518 * Update the control registers before calling PGMR3ChangeMode()
1519 * as it may need to map whatever cr3 is pointing to.
1520 */
1521 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1522 pCtx->cr0 = env->cr[0];
1523 pCtx->cr3 = env->cr[3];
1524 pCtx->cr4 = env->cr[4];
1525
1526#ifdef TARGET_X86_64
1527 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1528 if (rc != VINF_SUCCESS)
1529 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1530#else
1531 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1532 if (rc != VINF_SUCCESS)
1533 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1534#endif
1535}
1536
1537
1538/**
1539 * Called from compiled code to run dma.
1540 *
1541 * @param env Pointer to the CPU environment.
1542 */
1543void remR3DmaRun(CPUState *env)
1544{
1545 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1546 PDMR3DmaRun(env->pVM);
1547 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1548}
1549
1550/**
1551 * Called from compiled code to schedule pending timers in VMM
1552 *
1553 * @param env Pointer to the CPU environment.
1554 */
1555void remR3TimersRun(CPUState *env)
1556{
1557 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1558 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1559 TMR3TimerQueuesDo(env->pVM);
1560 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1561 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1562}
1563
1564/**
1565 * Record trap occurance
1566 *
1567 * @returns VBox status code
1568 * @param env Pointer to the CPU environment.
1569 * @param uTrap Trap nr
1570 * @param uErrorCode Error code
1571 * @param pvNextEIP Next EIP
1572 */
1573int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1574{
1575 PVM pVM = (PVM)env->pVM;
1576#ifdef VBOX_WITH_STATISTICS
1577 static STAMCOUNTER aStatTrap[255];
1578 static bool aRegisters[ELEMENTS(aStatTrap)];
1579#endif
1580
1581#ifdef VBOX_WITH_STATISTICS
1582 if (uTrap < 255)
1583 {
1584 if (!aRegisters[uTrap])
1585 {
1586 aRegisters[uTrap] = true;
1587 char szStatName[64];
1588 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1589 STAM_REG(env->pVM, &aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1590 }
1591 STAM_COUNTER_INC(&aStatTrap[uTrap]);
1592 }
1593#endif
1594 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1595 if(uTrap < 0x20)
1596 {
1597#ifdef DEBUG
1598 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1599#endif
1600 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 128)
1601 {
1602 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1603 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1604 return VERR_REM_TOO_MANY_TRAPS;
1605 }
1606 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1607 pVM->rem.s.cPendingExceptions = 1;
1608 pVM->rem.s.uPendingException = uTrap;
1609 pVM->rem.s.uPendingExcptEIP = env->eip;
1610 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1611 }
1612 else
1613 {
1614 pVM->rem.s.cPendingExceptions = 0;
1615 pVM->rem.s.uPendingException = uTrap;
1616 pVM->rem.s.uPendingExcptEIP = env->eip;
1617 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1618 }
1619 return VINF_SUCCESS;
1620}
1621
1622/*
1623 * Clear current active trap
1624 *
1625 * @param pVM VM Handle.
1626 */
1627void remR3TrapClear(PVM pVM)
1628{
1629 pVM->rem.s.cPendingExceptions = 0;
1630 pVM->rem.s.uPendingException = 0;
1631 pVM->rem.s.uPendingExcptEIP = 0;
1632 pVM->rem.s.uPendingExcptCR2 = 0;
1633}
1634
1635
1636/**
1637 * Syncs the internal REM state with the VM.
1638 *
1639 * This must be called before REMR3Run() is invoked whenever when the REM
1640 * state is not up to date. Calling it several times in a row is not
1641 * permitted.
1642 *
1643 * @returns VBox status code.
1644 *
1645 * @param pVM VM Handle.
1646 *
1647 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1648 * no do this since the majority of the callers don't want any unnecessary of events
1649 * pending that would immediatly interrupt execution.
1650 */
1651REMR3DECL(int) REMR3State(PVM pVM)
1652{
1653 Log2(("REMR3State:\n"));
1654 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1655 register const CPUMCTX *pCtx = pVM->rem.s.pCtx;
1656 register unsigned fFlags;
1657 bool fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1658
1659 Assert(!pVM->rem.s.fInREM);
1660 pVM->rem.s.fInStateSync = true;
1661
1662 /*
1663 * Copy the registers which requires no special handling.
1664 */
1665 Assert(R_EAX == 0);
1666 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1667 Assert(R_ECX == 1);
1668 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1669 Assert(R_EDX == 2);
1670 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1671 Assert(R_EBX == 3);
1672 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1673 Assert(R_ESP == 4);
1674 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1675 Assert(R_EBP == 5);
1676 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1677 Assert(R_ESI == 6);
1678 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1679 Assert(R_EDI == 7);
1680 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1681 pVM->rem.s.Env.eip = pCtx->eip;
1682
1683 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1684
1685 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1686
1687 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1688 pVM->rem.s.Env.dr[0] = pCtx->dr0;
1689 pVM->rem.s.Env.dr[1] = pCtx->dr1;
1690 pVM->rem.s.Env.dr[2] = pCtx->dr2;
1691 pVM->rem.s.Env.dr[3] = pCtx->dr3;
1692 pVM->rem.s.Env.dr[4] = pCtx->dr4;
1693 pVM->rem.s.Env.dr[5] = pCtx->dr5;
1694 pVM->rem.s.Env.dr[6] = pCtx->dr6;
1695 pVM->rem.s.Env.dr[7] = pCtx->dr7;
1696
1697 /*
1698 * Clear the halted hidden flag (the interrupt waking up the CPU can
1699 * have been dispatched in raw mode).
1700 */
1701 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1702
1703 /* Set current CPL */
1704 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1705
1706 /*
1707 * Replay invlpg?
1708 */
1709 if (pVM->rem.s.cInvalidatedPages)
1710 {
1711 pVM->rem.s.fIgnoreInvlPg = true;
1712 RTUINT i;
1713 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1714 {
1715 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1716 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1717 }
1718 pVM->rem.s.fIgnoreInvlPg = false;
1719 pVM->rem.s.cInvalidatedPages = 0;
1720 }
1721
1722 /*
1723 * Registers which are rarely changed and require special handling / order when changed.
1724 */
1725 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1726 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1727 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1728 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR))
1729 {
1730 if (fFlags & CPUM_CHANGED_FPU_REM)
1731 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1732
1733 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1734 {
1735 pVM->rem.s.fIgnoreCR3Load = true;
1736 tlb_flush(&pVM->rem.s.Env, true);
1737 pVM->rem.s.fIgnoreCR3Load = false;
1738 }
1739
1740 if (fFlags & CPUM_CHANGED_CR4)
1741 {
1742 pVM->rem.s.fIgnoreCR3Load = true;
1743 pVM->rem.s.fIgnoreCpuMode = true;
1744 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1745 pVM->rem.s.fIgnoreCpuMode = false;
1746 pVM->rem.s.fIgnoreCR3Load = false;
1747 }
1748
1749 if (fFlags & CPUM_CHANGED_CR0)
1750 {
1751 pVM->rem.s.fIgnoreCR3Load = true;
1752 pVM->rem.s.fIgnoreCpuMode = true;
1753 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1754 pVM->rem.s.fIgnoreCpuMode = false;
1755 pVM->rem.s.fIgnoreCR3Load = false;
1756 }
1757
1758 if (fFlags & CPUM_CHANGED_CR3)
1759 {
1760 pVM->rem.s.fIgnoreCR3Load = true;
1761 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1762 pVM->rem.s.fIgnoreCR3Load = false;
1763 }
1764
1765 if (fFlags & CPUM_CHANGED_GDTR)
1766 {
1767 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1768 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1769 }
1770
1771 if (fFlags & CPUM_CHANGED_IDTR)
1772 {
1773 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1774 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1775 }
1776
1777 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1778 {
1779 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1780 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1781 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1782 }
1783
1784 if (fFlags & CPUM_CHANGED_LDTR)
1785 {
1786 if (fHiddenSelRegsValid)
1787 {
1788 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1789 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u32Base;
1790 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1791 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1792 }
1793 else
1794 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1795 }
1796
1797 if (fFlags & CPUM_CHANGED_TR)
1798 {
1799 if (fHiddenSelRegsValid)
1800 {
1801 pVM->rem.s.Env.tr.selector = pCtx->tr;
1802 pVM->rem.s.Env.tr.base = pCtx->trHid.u32Base;
1803 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1804 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1805 }
1806 else
1807 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1808
1809 /** @note do_interrupt will fault if the busy flag is still set.... */
1810 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1811 }
1812 }
1813
1814 /*
1815 * Update selector registers.
1816 * This must be done *after* we've synced gdt, ldt and crX registers
1817 * since we're reading the GDT/LDT om sync_seg. This will happen with
1818 * saved state which takes a quick dip into rawmode for instance.
1819 */
1820 /*
1821 * Stack; Note first check this one as the CPL might have changed. The
1822 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1823 */
1824
1825 if (fHiddenSelRegsValid)
1826 {
1827 /* The hidden selector registers are valid in the CPU context. */
1828 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1829
1830 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u32Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1831 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u32Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1832 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u32Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1833 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u32Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1834 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u32Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1835 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u32Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1836 }
1837 else
1838 {
1839 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1840 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1841 {
1842 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1843
1844 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1845#ifdef VBOX_WITH_STATISTICS
1846 if (pVM->rem.s.Env.segs[R_SS].newselector)
1847 {
1848 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1849 }
1850#endif
1851 }
1852 else
1853 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1854
1855 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1856 {
1857 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1858 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1859#ifdef VBOX_WITH_STATISTICS
1860 if (pVM->rem.s.Env.segs[R_ES].newselector)
1861 {
1862 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1863 }
1864#endif
1865 }
1866 else
1867 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1868
1869 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1870 {
1871 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1872 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1873#ifdef VBOX_WITH_STATISTICS
1874 if (pVM->rem.s.Env.segs[R_CS].newselector)
1875 {
1876 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1877 }
1878#endif
1879 }
1880 else
1881 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1882
1883 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1884 {
1885 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1886 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1887#ifdef VBOX_WITH_STATISTICS
1888 if (pVM->rem.s.Env.segs[R_DS].newselector)
1889 {
1890 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1891 }
1892#endif
1893 }
1894 else
1895 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1896
1897 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1898 * be the same but not the base/limit. */
1899 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1900 {
1901 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1902 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1903#ifdef VBOX_WITH_STATISTICS
1904 if (pVM->rem.s.Env.segs[R_FS].newselector)
1905 {
1906 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1907 }
1908#endif
1909 }
1910 else
1911 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1912
1913 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1914 {
1915 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1916 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1917#ifdef VBOX_WITH_STATISTICS
1918 if (pVM->rem.s.Env.segs[R_GS].newselector)
1919 {
1920 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1921 }
1922#endif
1923 }
1924 else
1925 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1926 }
1927
1928 /*
1929 * Check for traps.
1930 */
1931 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1932 TRPMEVENT enmType;
1933 uint8_t u8TrapNo;
1934 int rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
1935 if (VBOX_SUCCESS(rc))
1936 {
1937 #ifdef DEBUG
1938 if (u8TrapNo == 0x80)
1939 {
1940 remR3DumpLnxSyscall(pVM);
1941 remR3DumpOBsdSyscall(pVM);
1942 }
1943 #endif
1944
1945 pVM->rem.s.Env.exception_index = u8TrapNo;
1946 if (enmType != TRPM_SOFTWARE_INT)
1947 {
1948 pVM->rem.s.Env.exception_is_int = 0;
1949 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
1950 }
1951 else
1952 {
1953 /*
1954 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
1955 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
1956 * for int03 and into.
1957 */
1958 pVM->rem.s.Env.exception_is_int = 1;
1959 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 2;
1960 /* int 3 may be generated by one-byte 0xcc */
1961 if (u8TrapNo == 3)
1962 {
1963 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xcc)
1964 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1965 }
1966 /* int 4 may be generated by one-byte 0xce */
1967 else if (u8TrapNo == 4)
1968 {
1969 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xce)
1970 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1971 }
1972 }
1973
1974 /* get error code and cr2 if needed. */
1975 switch (u8TrapNo)
1976 {
1977 case 0x0e:
1978 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
1979 /* fallthru */
1980 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
1981 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
1982 break;
1983
1984 case 0x11: case 0x08:
1985 default:
1986 pVM->rem.s.Env.error_code = 0;
1987 break;
1988 }
1989
1990 /*
1991 * We can now reset the active trap since the recompiler is gonna have a go at it.
1992 */
1993 rc = TRPMResetTrap(pVM);
1994 AssertRC(rc);
1995 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
1996 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
1997 }
1998
1999 /*
2000 * Clear old interrupt request flags; Check for pending hardware interrupts.
2001 * (See @remark for why we don't check for other FFs.)
2002 */
2003 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2004 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2005 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
2006 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2007
2008 /*
2009 * We're now in REM mode.
2010 */
2011 pVM->rem.s.fInREM = true;
2012 pVM->rem.s.fInStateSync = false;
2013 pVM->rem.s.cCanExecuteRaw = 0;
2014 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2015 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2016 return VINF_SUCCESS;
2017}
2018
2019
2020/**
2021 * Syncs back changes in the REM state to the the VM state.
2022 *
2023 * This must be called after invoking REMR3Run().
2024 * Calling it several times in a row is not permitted.
2025 *
2026 * @returns VBox status code.
2027 *
2028 * @param pVM VM Handle.
2029 */
2030REMR3DECL(int) REMR3StateBack(PVM pVM)
2031{
2032 Log2(("REMR3StateBack:\n"));
2033 Assert(pVM->rem.s.fInREM);
2034 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2035 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2036
2037 /*
2038 * Copy back the registers.
2039 * This is done in the order they are declared in the CPUMCTX structure.
2040 */
2041
2042 /** @todo FOP */
2043 /** @todo FPUIP */
2044 /** @todo CS */
2045 /** @todo FPUDP */
2046 /** @todo DS */
2047 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2048 pCtx->fpu.MXCSR = 0;
2049 pCtx->fpu.MXCSR_MASK = 0;
2050
2051 /** @todo check if FPU/XMM was actually used in the recompiler */
2052 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2053//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2054
2055 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2056 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2057 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2058 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2059 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2060 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2061 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2062
2063 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2064 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2065
2066#ifdef VBOX_WITH_STATISTICS
2067 if (pVM->rem.s.Env.segs[R_SS].newselector)
2068 {
2069 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2070 }
2071 if (pVM->rem.s.Env.segs[R_GS].newselector)
2072 {
2073 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2074 }
2075 if (pVM->rem.s.Env.segs[R_FS].newselector)
2076 {
2077 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2078 }
2079 if (pVM->rem.s.Env.segs[R_ES].newselector)
2080 {
2081 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2082 }
2083 if (pVM->rem.s.Env.segs[R_DS].newselector)
2084 {
2085 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2086 }
2087 if (pVM->rem.s.Env.segs[R_CS].newselector)
2088 {
2089 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2090 }
2091#endif
2092 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2093 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2094 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2095 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2096 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2097
2098 pCtx->eip = pVM->rem.s.Env.eip;
2099 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2100
2101 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2102 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2103 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2104 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2105
2106 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2107 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2108 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2109 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2110 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2111 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2112 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2113 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2114
2115 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2116 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2117 {
2118 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2119 STAM_COUNTER_INC(&gStatREMGDTChange);
2120 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2121 }
2122
2123 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2124 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2125 {
2126 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2127 STAM_COUNTER_INC(&gStatREMIDTChange);
2128 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2129 }
2130
2131 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2132 {
2133 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2134 STAM_COUNTER_INC(&gStatREMLDTRChange);
2135 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2136 }
2137 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2138 {
2139 pCtx->tr = pVM->rem.s.Env.tr.selector;
2140 STAM_COUNTER_INC(&gStatREMTRChange);
2141 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2142 }
2143
2144 /** @todo These values could still be out of sync! */
2145 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2146 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2147 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2148 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2149
2150 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2151 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2152 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2153
2154 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2155 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2156 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2157
2158 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2159 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2160 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2161
2162 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2163 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2164 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2165
2166 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2167 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2168 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2169
2170 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2171 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2172 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2173
2174 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2175 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2176 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2177
2178 /* Sysenter MSR */
2179 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2180 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2181 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2182
2183 remR3TrapClear(pVM);
2184
2185 /*
2186 * Check for traps.
2187 */
2188 if ( pVM->rem.s.Env.exception_index >= 0
2189 && pVM->rem.s.Env.exception_index < 256)
2190 {
2191 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2192 int rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2193 AssertRC(rc);
2194 switch (pVM->rem.s.Env.exception_index)
2195 {
2196 case 0x0e:
2197 TRPMSetFaultAddress(pVM, pCtx->cr2);
2198 /* fallthru */
2199 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2200 case 0x11: case 0x08: /* 0 */
2201 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2202 break;
2203 }
2204
2205 }
2206
2207 /*
2208 * We're not longer in REM mode.
2209 */
2210 pVM->rem.s.fInREM = false;
2211 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2212 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2213 return VINF_SUCCESS;
2214}
2215
2216
2217/**
2218 * This is called by the disassembler when it wants to update the cpu state
2219 * before for instance doing a register dump.
2220 */
2221static void remR3StateUpdate(PVM pVM)
2222{
2223 Assert(pVM->rem.s.fInREM);
2224 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2225
2226 /*
2227 * Copy back the registers.
2228 * This is done in the order they are declared in the CPUMCTX structure.
2229 */
2230
2231 /** @todo FOP */
2232 /** @todo FPUIP */
2233 /** @todo CS */
2234 /** @todo FPUDP */
2235 /** @todo DS */
2236 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2237 pCtx->fpu.MXCSR = 0;
2238 pCtx->fpu.MXCSR_MASK = 0;
2239
2240 /** @todo check if FPU/XMM was actually used in the recompiler */
2241 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2242//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2243
2244 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2245 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2246 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2247 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2248 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2249 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2250 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2251
2252 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2253 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2254
2255 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2256 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2257 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2258 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2259 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2260
2261 pCtx->eip = pVM->rem.s.Env.eip;
2262 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2263
2264 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2265 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2266 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2267 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2268
2269 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2270 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2271 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2272 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2273 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2274 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2275 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2276 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2277
2278 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2279 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2280 {
2281 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2282 STAM_COUNTER_INC(&gStatREMGDTChange);
2283 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2284 }
2285
2286 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2287 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2288 {
2289 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2290 STAM_COUNTER_INC(&gStatREMIDTChange);
2291 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2292 }
2293
2294 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2295 {
2296 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2297 STAM_COUNTER_INC(&gStatREMLDTRChange);
2298 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2299 }
2300 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2301 {
2302 pCtx->tr = pVM->rem.s.Env.tr.selector;
2303 STAM_COUNTER_INC(&gStatREMTRChange);
2304 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2305 }
2306
2307 /** @todo These values could still be out of sync! */
2308 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2309 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2310 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2311 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2312
2313 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2314 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2315 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2316
2317 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2318 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2319 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2320
2321 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2322 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2323 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2324
2325 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2326 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2327 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2328
2329 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2330 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2331 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2332
2333 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2334 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2335 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2336
2337 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2338 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2339 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2340
2341 /* Sysenter MSR */
2342 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2343 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2344 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2345}
2346
2347
2348/**
2349 * Update the VMM state information if we're currently in REM.
2350 *
2351 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2352 * we're currently executing in REM and the VMM state is invalid. This method will of
2353 * course check that we're executing in REM before syncing any data over to the VMM.
2354 *
2355 * @param pVM The VM handle.
2356 */
2357REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2358{
2359 if (pVM->rem.s.fInREM)
2360 remR3StateUpdate(pVM);
2361}
2362
2363
2364#undef LOG_GROUP
2365#define LOG_GROUP LOG_GROUP_REM
2366
2367
2368/**
2369 * Notify the recompiler about Address Gate 20 state change.
2370 *
2371 * This notification is required since A20 gate changes are
2372 * initialized from a device driver and the VM might just as
2373 * well be in REM mode as in RAW mode.
2374 *
2375 * @param pVM VM handle.
2376 * @param fEnable True if the gate should be enabled.
2377 * False if the gate should be disabled.
2378 */
2379REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2380{
2381 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2382 VM_ASSERT_EMT(pVM);
2383 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2384}
2385
2386
2387/**
2388 * Replays the invalidated recorded pages.
2389 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2390 *
2391 * @param pVM VM handle.
2392 */
2393REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2394{
2395 VM_ASSERT_EMT(pVM);
2396
2397 /*
2398 * Sync the required registers.
2399 */
2400 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2401 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2402 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2403 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2404
2405 /*
2406 * Replay the flushes.
2407 */
2408 pVM->rem.s.fIgnoreInvlPg = true;
2409 RTUINT i;
2410 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2411 {
2412 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2413 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2414 }
2415 pVM->rem.s.fIgnoreInvlPg = false;
2416 pVM->rem.s.cInvalidatedPages = 0;
2417}
2418
2419
2420/**
2421 * Replays the invalidated recorded pages.
2422 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2423 *
2424 * @param pVM VM handle.
2425 */
2426REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2427{
2428 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2429 VM_ASSERT_EMT(pVM);
2430
2431 /*
2432 * Replay the flushes.
2433 */
2434 RTUINT i;
2435 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2436 pVM->rem.s.cHandlerNotifications = 0;
2437 for (i = 0; i < c; i++)
2438 {
2439 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2440 switch (pRec->enmKind)
2441 {
2442 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2443 REMR3NotifyHandlerPhysicalRegister(pVM,
2444 pRec->u.PhysicalRegister.enmType,
2445 pRec->u.PhysicalRegister.GCPhys,
2446 pRec->u.PhysicalRegister.cb,
2447 pRec->u.PhysicalRegister.fHasHCHandler);
2448 break;
2449
2450 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2451 REMR3NotifyHandlerPhysicalDeregister(pVM,
2452 pRec->u.PhysicalDeregister.enmType,
2453 pRec->u.PhysicalDeregister.GCPhys,
2454 pRec->u.PhysicalDeregister.cb,
2455 pRec->u.PhysicalDeregister.fHasHCHandler,
2456 pRec->u.PhysicalDeregister.pvHCPtr);
2457 break;
2458
2459 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2460 REMR3NotifyHandlerPhysicalModify(pVM,
2461 pRec->u.PhysicalModify.enmType,
2462 pRec->u.PhysicalModify.GCPhysOld,
2463 pRec->u.PhysicalModify.GCPhysNew,
2464 pRec->u.PhysicalModify.cb,
2465 pRec->u.PhysicalModify.fHasHCHandler,
2466 pRec->u.PhysicalModify.pvHCPtr);
2467 break;
2468
2469 default:
2470 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2471 break;
2472 }
2473 }
2474}
2475
2476
2477/**
2478 * Notify REM about changed code page.
2479 *
2480 * @returns VBox status code.
2481 * @param pVM VM handle.
2482 * @param pvCodePage Code page address
2483 */
2484REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2485{
2486 int rc;
2487 RTGCPHYS PhysGC;
2488 uint64_t flags;
2489
2490 VM_ASSERT_EMT(pVM);
2491
2492 /*
2493 * Get the physical page address.
2494 */
2495 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2496 if (rc == VINF_SUCCESS)
2497 {
2498 /*
2499 * Sync the required registers and flush the whole page.
2500 * (Easier to do the whole page than notifying it about each physical
2501 * byte that was changed.
2502 */
2503 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2504 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2505 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2506 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2507
2508 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2509 }
2510 return VINF_SUCCESS;
2511}
2512
2513/**
2514 * Notification about a successful MMR3PhysRegister() call.
2515 *
2516 * @param pVM VM handle.
2517 * @param GCPhys The physical address the RAM.
2518 * @param cb Size of the memory.
2519 * @param pvRam The HC address of the RAM.
2520 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2521 */
2522REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvRam, unsigned fFlags)
2523{
2524 LogFlow(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2525 VM_ASSERT_EMT(pVM);
2526
2527 /*
2528 * Validate input - we trust the caller.
2529 */
2530 Assert(!GCPhys || pvRam);
2531 Assert(RT_ALIGN_P(pvRam, PAGE_SIZE) == pvRam);
2532 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2533 Assert(cb);
2534 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2535
2536 /*
2537 * Base ram?
2538 */
2539 if (!GCPhys)
2540 {
2541#if !defined(PGM_DYNAMIC_RAM_ALLOC) && !defined(REM_PHYS_ADDR_IN_TLB)
2542 AssertRelease(!phys_ram_base);
2543 phys_ram_base = pvRam;
2544#endif
2545 phys_ram_size = cb;
2546 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2547#ifndef VBOX_STRICT
2548 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2549 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2550#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2551 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2552 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2553 uint32_t cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2554 int rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2555 AssertRC(rc);
2556 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2557#endif
2558 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2559 }
2560
2561 /*
2562 * Register the ram.
2563 */
2564 Assert(!pVM->rem.s.fIgnoreAll);
2565 pVM->rem.s.fIgnoreAll = true;
2566
2567#ifdef PGM_DYNAMIC_RAM_ALLOC
2568 if (!GCPhys)
2569 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2570 else
2571 {
2572# ifndef REM_PHYS_ADDR_IN_TLB
2573 uint32_t i;
2574# endif
2575
2576 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2577
2578# ifndef REM_PHYS_ADDR_IN_TLB
2579 AssertRelease(pVM->rem.s.cPhysRegistrations < REM_MAX_PHYS_REGISTRATIONS);
2580 for (i = 0; i < pVM->rem.s.cPhysRegistrations; i++)
2581 {
2582 if (pVM->rem.s.aPhysReg[i].GCPhys == GCPhys)
2583 {
2584 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvRam;
2585 pVM->rem.s.aPhysReg[i].cb = cb;
2586 break;
2587 }
2588 }
2589 if (i == pVM->rem.s.cPhysRegistrations)
2590 {
2591 pVM->rem.s.aPhysReg[i].GCPhys = GCPhys;
2592 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvRam;
2593 pVM->rem.s.aPhysReg[i].cb = cb;
2594 pVM->rem.s.cPhysRegistrations++;
2595 }
2596# endif /* !REM_PHYS_ADDR_IN_TLB */
2597 }
2598#elif defined(REM_PHYS_ADDR_IN_TLB)
2599 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2600#else
2601 AssertRelease(phys_ram_base);
2602 cpu_register_physical_memory(GCPhys, cb, ((uintptr_t)pvRam - (uintptr_t)phys_ram_base)
2603 | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2604#endif
2605 Assert(pVM->rem.s.fIgnoreAll);
2606 pVM->rem.s.fIgnoreAll = false;
2607}
2608
2609
2610/**
2611 * Notification about a successful PGMR3PhysRegisterChunk() call.
2612 *
2613 * @param pVM VM handle.
2614 * @param GCPhys The physical address the RAM.
2615 * @param cb Size of the memory.
2616 * @param pvRam The HC address of the RAM.
2617 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2618 */
2619REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2620{
2621#ifdef PGM_DYNAMIC_RAM_ALLOC
2622# ifndef REM_PHYS_ADDR_IN_TLB
2623 uint32_t idx;
2624#endif
2625
2626 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2627 VM_ASSERT_EMT(pVM);
2628
2629 /*
2630 * Validate input - we trust the caller.
2631 */
2632 Assert(pvRam);
2633 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2634 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2635 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2636 Assert(fFlags == 0 /* normal RAM */);
2637
2638# ifndef REM_PHYS_ADDR_IN_TLB
2639 if (!pVM->rem.s.paHCVirtToGCPhys)
2640 {
2641 uint32_t size = (_4G >> PGM_DYNAMIC_CHUNK_SHIFT) * sizeof(REMCHUNKINFO);
2642
2643 Assert(phys_ram_size);
2644
2645 pVM->rem.s.paHCVirtToGCPhys = (PREMCHUNKINFO)MMR3HeapAllocZ(pVM, MM_TAG_REM, size);
2646 pVM->rem.s.paGCPhysToHCVirt = (RTHCPTR)MMR3HeapAllocZ(pVM, MM_TAG_REM, (phys_ram_size >> PGM_DYNAMIC_CHUNK_SHIFT)*sizeof(RTHCPTR));
2647 }
2648 pVM->rem.s.paGCPhysToHCVirt[GCPhys >> PGM_DYNAMIC_CHUNK_SHIFT] = pvRam;
2649
2650 idx = (pvRam >> PGM_DYNAMIC_CHUNK_SHIFT);
2651 if (!pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1)
2652 {
2653 pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1 = pvRam;
2654 pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 = GCPhys;
2655 }
2656 else
2657 {
2658 Assert(!pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2);
2659 pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2 = pvRam;
2660 pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 = GCPhys;
2661 }
2662 /* Does the region spawn two chunks? */
2663 if (pvRam & PGM_DYNAMIC_CHUNK_OFFSET_MASK)
2664 {
2665 if (!pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk1)
2666 {
2667 pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk1 = pvRam;
2668 pVM->rem.s.paHCVirtToGCPhys[idx+1].GCPhys1 = GCPhys;
2669 }
2670 else
2671 {
2672 Assert(!pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk2);
2673 pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk2 = pvRam;
2674 pVM->rem.s.paHCVirtToGCPhys[idx+1].GCPhys2 = GCPhys;
2675 }
2676 }
2677# endif /* !REM_PHYS_ADDR_IN_TLB */
2678
2679 Assert(!pVM->rem.s.fIgnoreAll);
2680 pVM->rem.s.fIgnoreAll = true;
2681
2682 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2683
2684 Assert(pVM->rem.s.fIgnoreAll);
2685 pVM->rem.s.fIgnoreAll = false;
2686
2687#else
2688 AssertReleaseFailed();
2689#endif
2690}
2691
2692
2693#ifdef PGM_DYNAMIC_RAM_ALLOC
2694# ifndef REM_PHYS_ADDR_IN_TLB
2695#if 0
2696static const uint8_t gabZeroPage[PAGE_SIZE];
2697#endif
2698
2699/**
2700 * Convert GC physical address to HC virt
2701 *
2702 * @returns The HC virt address corresponding to addr.
2703 * @param env The cpu environment.
2704 * @param addr The physical address.
2705 */
2706DECLINLINE(void *) remR3GCPhys2HCVirtInlined(PVM pVM, target_ulong addr)
2707{
2708 uint32_t i;
2709 void *pv;
2710 STAM_PROFILE_START(&gStatGCPhys2HCVirt, a);
2711
2712#if 1
2713 /* lookup in pVM->rem.s.aPhysReg array first (for ROM range(s) inside the guest's RAM) */
2714 for (i = 0; i < pVM->rem.s.cPhysRegistrations; i++)
2715 {
2716 RTGCPHYS off = addr - pVM->rem.s.aPhysReg[i].GCPhys;
2717 if (off < pVM->rem.s.aPhysReg[i].cb)
2718 {
2719 pv = (void *)(pVM->rem.s.aPhysReg[i].HCVirt + off);
2720 Log2(("remR3GCPhys2HCVirt: %x -> %x\n", addr, pv));
2721 STAM_PROFILE_STOP(&gStatGCPhys2HCVirt, a);
2722 return pv;
2723 }
2724 }
2725 AssertMsg(addr < phys_ram_size, ("remR3GCPhys2HCVirt: unknown physical address %x\n", addr));
2726 pv = (void *)(pVM->rem.s.paGCPhysToHCVirt[addr >> PGM_DYNAMIC_CHUNK_SHIFT] + (addr & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
2727 Log2(("remR3GCPhys2HCVirt: %x -> %x\n", addr, pv));
2728#else
2729 /** @todo figure out why this is faster than the above code. */
2730 int rc = PGMPhysGCPhys2HCPtr(pVM, addr & X86_PTE_PAE_PG_MASK, PAGE_SIZE, &pv);
2731 if (RT_FAILURE(rc))
2732 {
2733 AssertMsgFailed(("remR3GCPhys2HCVirt: unknown physical address %x\n", addr));
2734 pv = gabZeroPage;
2735 }
2736 pv = (void *)((uintptr_t)pv | (addr & PAGE_OFFSET_MASK));
2737#endif
2738 return pv;
2739}
2740
2741
2742/**
2743 * Convert GC physical address to HC virt
2744 *
2745 * @returns The HC virt address corresponding to addr.
2746 * @param env The cpu environment.
2747 * @param addr The physical address.
2748 */
2749DECLINLINE(target_ulong) remR3HCVirt2GCPhysInlined(PVM pVM, void *addr)
2750{
2751 RTHCUINTPTR HCVirt = (RTHCUINTPTR)addr;
2752 uint32_t idx = (HCVirt >> PGM_DYNAMIC_CHUNK_SHIFT);
2753 RTHCUINTPTR off;
2754 RTUINT i;
2755 target_ulong GCPhys;
2756
2757 off = HCVirt - pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1;
2758
2759 if ( pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1
2760 && off < PGM_DYNAMIC_CHUNK_SIZE)
2761 {
2762 GCPhys = pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 + off;
2763 Log2(("remR3HCVirt2GCPhys %x -> %x\n", addr, GCPhys));
2764 return GCPhys;
2765 }
2766
2767 off = HCVirt - pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2;
2768 if ( pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2
2769 && off < PGM_DYNAMIC_CHUNK_SIZE)
2770 {
2771 GCPhys = pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 + off;
2772 Log2(("remR3HCVirt2GCPhys %x -> %x\n", addr, GCPhys));
2773 return GCPhys;
2774 }
2775
2776 /* Must be externally registered RAM/ROM range */
2777 for (i = 0; i < pVM->rem.s.cPhysRegistrations; i++)
2778 {
2779 uint32_t off = HCVirt - pVM->rem.s.aPhysReg[i].HCVirt;
2780 if (off < pVM->rem.s.aPhysReg[i].cb)
2781 {
2782 GCPhys = pVM->rem.s.aPhysReg[i].GCPhys + off;
2783 Log2(("remR3HCVirt2GCPhys %x -> %x\n", addr, GCPhys));
2784 return GCPhys;
2785 }
2786 }
2787 AssertReleaseMsgFailed(("No translation for physical address %VHv???\n", addr));
2788 return 0;
2789}
2790
2791/**
2792 * Convert GC physical address to HC virt
2793 *
2794 * @returns The HC virt address corresponding to addr.
2795 * @param env The cpu environment.
2796 * @param addr The physical address.
2797 */
2798void *remR3GCPhys2HCVirt(void *env, target_ulong addr)
2799{
2800 PVM pVM = ((CPUState *)env)->pVM;
2801 void *pv;
2802 STAM_PROFILE_START(&gStatGCPhys2HCVirt, a);
2803 pv = remR3GCPhys2HCVirtInlined(pVM, addr);
2804 STAM_PROFILE_STOP(&gStatGCPhys2HCVirt, a);
2805 return pv;
2806}
2807
2808
2809/**
2810 * Convert GC physical address to HC virt
2811 *
2812 * @returns The HC virt address corresponding to addr.
2813 * @param env The cpu environment.
2814 * @param addr The physical address.
2815 */
2816target_ulong remR3HCVirt2GCPhys(void *env, void *addr)
2817{
2818 PVM pVM = ((CPUState *)env)->pVM;
2819 target_ulong GCPhys;
2820 STAM_PROFILE_START(&gStatHCVirt2GCPhys, a);
2821 GCPhys = remR3HCVirt2GCPhysInlined(pVM, addr);
2822 STAM_PROFILE_STOP(&gStatHCVirt2GCPhys, a);
2823 return GCPhys;
2824}
2825
2826# endif /* !REM_PHYS_ADDR_IN_TLB */
2827
2828/**
2829 * Grows dynamically allocated guest RAM.
2830 * Will raise a fatal error if the operation fails.
2831 *
2832 * @param physaddr The physical address.
2833 */
2834void remR3GrowDynRange(unsigned long physaddr)
2835{
2836 int rc;
2837 PVM pVM = cpu_single_env->pVM;
2838
2839 Log(("remR3GrowDynRange %VGp\n", physaddr));
2840 rc = PGM3PhysGrowRange(pVM, (RTGCPHYS)physaddr);
2841 if (VBOX_SUCCESS(rc))
2842 return;
2843
2844 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2845 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2846 AssertFatalFailed();
2847}
2848
2849#endif /* PGM_DYNAMIC_RAM_ALLOC */
2850
2851
2852/**
2853 * Notification about a successful MMR3PhysRomRegister() call.
2854 *
2855 * @param pVM VM handle.
2856 * @param GCPhys The physical address of the ROM.
2857 * @param cb The size of the ROM.
2858 * @param pvCopy Pointer to the ROM copy.
2859 */
2860REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy)
2861{
2862#if defined(PGM_DYNAMIC_RAM_ALLOC) && !defined(REM_PHYS_ADDR_IN_TLB)
2863 uint32_t i;
2864#endif
2865 LogFlow(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p\n", GCPhys, cb, pvCopy));
2866 VM_ASSERT_EMT(pVM);
2867
2868 /*
2869 * Validate input - we trust the caller.
2870 */
2871 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2872 Assert(cb);
2873 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2874 Assert(pvCopy);
2875 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2876
2877 /*
2878 * Register the rom.
2879 */
2880 Assert(!pVM->rem.s.fIgnoreAll);
2881 pVM->rem.s.fIgnoreAll = true;
2882
2883#ifdef REM_PHYS_ADDR_IN_TLB
2884 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_ROM);
2885#elif defined(PGM_DYNAMIC_RAM_ALLOC)
2886 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_ROM);
2887 AssertRelease(pVM->rem.s.cPhysRegistrations < REM_MAX_PHYS_REGISTRATIONS);
2888 for (i = 0; i < pVM->rem.s.cPhysRegistrations; i++)
2889 {
2890 if (pVM->rem.s.aPhysReg[i].GCPhys == GCPhys)
2891 {
2892 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvCopy;
2893 pVM->rem.s.aPhysReg[i].cb = cb;
2894 break;
2895 }
2896 }
2897 if (i == pVM->rem.s.cPhysRegistrations)
2898 {
2899 pVM->rem.s.aPhysReg[i].GCPhys = GCPhys;
2900 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvCopy;
2901 pVM->rem.s.aPhysReg[i].cb = cb;
2902 pVM->rem.s.cPhysRegistrations++;
2903 }
2904#else
2905 AssertRelease(phys_ram_base);
2906 cpu_register_physical_memory(GCPhys, cb, ((uintptr_t)pvCopy - (uintptr_t)phys_ram_base) | IO_MEM_ROM);
2907#endif
2908
2909 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2910
2911 Assert(pVM->rem.s.fIgnoreAll);
2912 pVM->rem.s.fIgnoreAll = false;
2913}
2914
2915
2916/**
2917 * Notification about a successful MMR3PhysRegister() call.
2918 *
2919 * @param pVM VM Handle.
2920 * @param GCPhys Start physical address.
2921 * @param cb The size of the range.
2922 */
2923REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2924{
2925 LogFlow(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2926 VM_ASSERT_EMT(pVM);
2927
2928 /*
2929 * Validate input - we trust the caller.
2930 */
2931 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2932 Assert(cb);
2933 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2934
2935 /*
2936 * Unassigning the memory.
2937 */
2938 Assert(!pVM->rem.s.fIgnoreAll);
2939 pVM->rem.s.fIgnoreAll = true;
2940
2941 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2942
2943 Assert(pVM->rem.s.fIgnoreAll);
2944 pVM->rem.s.fIgnoreAll = false;
2945}
2946
2947
2948/**
2949 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2950 *
2951 * @param pVM VM Handle.
2952 * @param enmType Handler type.
2953 * @param GCPhys Handler range address.
2954 * @param cb Size of the handler range.
2955 * @param fHasHCHandler Set if the handler has a HC callback function.
2956 *
2957 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2958 * Handler memory type to memory which has no HC handler.
2959 */
2960REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2961{
2962 LogFlow(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d\n",
2963 enmType, GCPhys, cb, fHasHCHandler));
2964 VM_ASSERT_EMT(pVM);
2965 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2966 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2967
2968 if (pVM->rem.s.cHandlerNotifications)
2969 REMR3ReplayHandlerNotifications(pVM);
2970
2971 Assert(!pVM->rem.s.fIgnoreAll);
2972 pVM->rem.s.fIgnoreAll = true;
2973
2974 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2975 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2976 else if (fHasHCHandler)
2977 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2978
2979 Assert(pVM->rem.s.fIgnoreAll);
2980 pVM->rem.s.fIgnoreAll = false;
2981}
2982
2983
2984/**
2985 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2986 *
2987 * @param pVM VM Handle.
2988 * @param enmType Handler type.
2989 * @param GCPhys Handler range address.
2990 * @param cb Size of the handler range.
2991 * @param fHasHCHandler Set if the handler has a HC callback function.
2992 * @param pvHCPtr The HC virtual address corresponding to GCPhys if available.
2993 */
2994REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, void *pvHCPtr)
2995{
2996 LogFlow(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d pvHCPtr=%p RAM=%08x\n",
2997 enmType, GCPhys, cb, fHasHCHandler, pvHCPtr, MMR3PhysGetRamSize(pVM)));
2998 VM_ASSERT_EMT(pVM);
2999
3000 if (pVM->rem.s.cHandlerNotifications)
3001 REMR3ReplayHandlerNotifications(pVM);
3002
3003 Assert(!pVM->rem.s.fIgnoreAll);
3004 pVM->rem.s.fIgnoreAll = true;
3005
3006 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
3007 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
3008 else if (fHasHCHandler)
3009 {
3010 if (!pvHCPtr)
3011 {
3012 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
3013 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
3014 }
3015 else
3016 {
3017 /* This is not perfect, but it'll do for PD monitoring... */
3018 Assert(cb == PAGE_SIZE);
3019 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
3020#ifdef REM_PHYS_ADDR_IN_TLB
3021 cpu_register_physical_memory(GCPhys, cb, GCPhys);
3022#elif defined(PGM_DYNAMIC_RAM_ALLOC)
3023 Assert(remR3HCVirt2GCPhysInlined(pVM, pvHCPtr) < MMR3PhysGetRamSize(pVM));
3024 cpu_register_physical_memory(GCPhys, cb, GCPhys);
3025#else
3026 Assert((uintptr_t)pvHCPtr - (uintptr_t)phys_ram_base < MMR3PhysGetRamSize(pVM));
3027 cpu_register_physical_memory(GCPhys, cb, (uintptr_t)pvHCPtr - (uintptr_t)phys_ram_base);
3028#endif
3029 }
3030 }
3031
3032 Assert(pVM->rem.s.fIgnoreAll);
3033 pVM->rem.s.fIgnoreAll = false;
3034}
3035
3036
3037/**
3038 * Notification about a successful PGMR3HandlerPhysicalModify() call.
3039 *
3040 * @param pVM VM Handle.
3041 * @param enmType Handler type.
3042 * @param GCPhysOld Old handler range address.
3043 * @param GCPhysNew New handler range address.
3044 * @param cb Size of the handler range.
3045 * @param fHasHCHandler Set if the handler has a HC callback function.
3046 * @param pvHCPtr The HC virtual address corresponding to GCPhys if available.
3047 */
3048REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, void *pvHCPtr)
3049{
3050 LogFlow(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%d fHasHCHandler=%d pvHCPtr=%p\n",
3051 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, pvHCPtr));
3052 VM_ASSERT_EMT(pVM);
3053 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
3054
3055 if (pVM->rem.s.cHandlerNotifications)
3056 REMR3ReplayHandlerNotifications(pVM);
3057
3058 if (fHasHCHandler)
3059 {
3060 Assert(!pVM->rem.s.fIgnoreAll);
3061 pVM->rem.s.fIgnoreAll = true;
3062
3063 /*
3064 * Reset the old page.
3065 */
3066 if (!pvHCPtr)
3067 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
3068 else
3069 {
3070 /* This is not perfect, but it'll do for PD monitoring... */
3071 Assert(cb == PAGE_SIZE);
3072 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
3073#ifdef REM_PHYS_ADDR_IN_TLB
3074 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
3075#elif defined(PGM_DYNAMIC_RAM_ALLOC)
3076 Assert(remR3HCVirt2GCPhysInlined(pVM, pvHCPtr) < MMR3PhysGetRamSize(pVM));
3077 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
3078#else
3079 AssertMsg((uintptr_t)pvHCPtr - (uintptr_t)phys_ram_base < MMR3PhysGetRamSize(pVM),
3080 ("pvHCPtr=%p phys_ram_base=%p size=%RX64 cb=%RGp\n", pvHCPtr, phys_ram_base, MMR3PhysGetRamSize(pVM), cb));
3081 cpu_register_physical_memory(GCPhysOld, cb, (uintptr_t)pvHCPtr - (uintptr_t)phys_ram_base);
3082#endif
3083 }
3084
3085 /*
3086 * Update the new page.
3087 */
3088 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
3089 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
3090 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
3091
3092 Assert(pVM->rem.s.fIgnoreAll);
3093 pVM->rem.s.fIgnoreAll = false;
3094 }
3095}
3096
3097
3098/**
3099 * Checks if we're handling access to this page or not.
3100 *
3101 * @returns true if we're trapping access.
3102 * @returns false if we aren't.
3103 * @param pVM The VM handle.
3104 * @param GCPhys The physical address.
3105 *
3106 * @remark This function will only work correctly in VBOX_STRICT builds!
3107 */
3108REMDECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
3109{
3110#ifdef VBOX_STRICT
3111 if (pVM->rem.s.cHandlerNotifications)
3112 REMR3ReplayHandlerNotifications(pVM);
3113
3114 unsigned long off = get_phys_page_offset(GCPhys);
3115 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
3116 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
3117 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
3118#else
3119 return false;
3120#endif
3121}
3122
3123
3124/**
3125 * Deals with a rare case in get_phys_addr_code where the code
3126 * is being monitored.
3127 *
3128 * It could also be an MMIO page, in which case we will raise a fatal error.
3129 *
3130 * @returns The physical address corresponding to addr.
3131 * @param env The cpu environment.
3132 * @param addr The virtual address.
3133 * @param pTLBEntry The TLB entry.
3134 */
3135target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
3136{
3137 PVM pVM = env->pVM;
3138 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
3139 {
3140 target_ulong ret = pTLBEntry->addend + addr;
3141 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv addr_code=%VGv addend=%VGp ret=%VGp\n",
3142 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
3143 return ret;
3144 }
3145 LogRel(("\nTrying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
3146 "*** handlers\n",
3147 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
3148 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
3149 LogRel(("*** mmio\n"));
3150 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
3151 LogRel(("*** phys\n"));
3152 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
3153 cpu_abort(env, "Trying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
3154 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
3155 AssertFatalFailed();
3156}
3157
3158
3159/** Validate the physical address passed to the read functions.
3160 * Useful for finding non-guest-ram reads/writes. */
3161#if 1 /* disable if it becomes bothersome... */
3162# define VBOX_CHECK_ADDR(GCPhys) AssertMsg(PGMPhysIsGCPhysValid(cpu_single_env->pVM, (GCPhys)), ("%VGp\n", (GCPhys)))
3163#else
3164# define VBOX_CHECK_ADDR(GCPhys) do { } while (0)
3165#endif
3166
3167/**
3168 * Read guest RAM and ROM.
3169 *
3170 * @param SrcGCPhys The source address (guest physical).
3171 * @param pvDst The destination address.
3172 * @param cb Number of bytes
3173 */
3174void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3175{
3176 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3177 VBOX_CHECK_ADDR(SrcGCPhys);
3178 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3179 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3180}
3181
3182
3183/**
3184 * Read guest RAM and ROM, unsigned 8-bit.
3185 *
3186 * @param SrcGCPhys The source address (guest physical).
3187 */
3188uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3189{
3190 uint8_t val;
3191 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3192 VBOX_CHECK_ADDR(SrcGCPhys);
3193 val = PGMR3PhysReadByte(cpu_single_env->pVM, SrcGCPhys);
3194 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3195 return val;
3196}
3197
3198
3199/**
3200 * Read guest RAM and ROM, signed 8-bit.
3201 *
3202 * @param SrcGCPhys The source address (guest physical).
3203 */
3204int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3205{
3206 int8_t val;
3207 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3208 VBOX_CHECK_ADDR(SrcGCPhys);
3209 val = PGMR3PhysReadByte(cpu_single_env->pVM, SrcGCPhys);
3210 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3211 return val;
3212}
3213
3214
3215/**
3216 * Read guest RAM and ROM, unsigned 16-bit.
3217 *
3218 * @param SrcGCPhys The source address (guest physical).
3219 */
3220uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3221{
3222 uint16_t val;
3223 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3224 VBOX_CHECK_ADDR(SrcGCPhys);
3225 val = PGMR3PhysReadWord(cpu_single_env->pVM, SrcGCPhys);
3226 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3227 return val;
3228}
3229
3230
3231/**
3232 * Read guest RAM and ROM, signed 16-bit.
3233 *
3234 * @param SrcGCPhys The source address (guest physical).
3235 */
3236int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3237{
3238 uint16_t val;
3239 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3240 VBOX_CHECK_ADDR(SrcGCPhys);
3241 val = PGMR3PhysReadWord(cpu_single_env->pVM, SrcGCPhys);
3242 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3243 return val;
3244}
3245
3246
3247/**
3248 * Read guest RAM and ROM, unsigned 32-bit.
3249 *
3250 * @param SrcGCPhys The source address (guest physical).
3251 */
3252uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3253{
3254 uint32_t val;
3255 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3256 VBOX_CHECK_ADDR(SrcGCPhys);
3257 val = PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys);
3258 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3259 return val;
3260}
3261
3262
3263/**
3264 * Read guest RAM and ROM, signed 32-bit.
3265 *
3266 * @param SrcGCPhys The source address (guest physical).
3267 */
3268int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3269{
3270 int32_t val;
3271 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3272 VBOX_CHECK_ADDR(SrcGCPhys);
3273 val = PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys);
3274 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3275 return val;
3276}
3277
3278
3279/**
3280 * Read guest RAM and ROM, unsigned 64-bit.
3281 *
3282 * @param SrcGCPhys The source address (guest physical).
3283 */
3284uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3285{
3286 uint64_t val;
3287 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3288 VBOX_CHECK_ADDR(SrcGCPhys);
3289 val = PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys)
3290 | ((uint64_t)PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys + 4) << 32); /** @todo fix me! */
3291 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3292 return val;
3293}
3294
3295
3296/**
3297 * Write guest RAM.
3298 *
3299 * @param DstGCPhys The destination address (guest physical).
3300 * @param pvSrc The source address.
3301 * @param cb Number of bytes to write
3302 */
3303void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3304{
3305 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3306 VBOX_CHECK_ADDR(DstGCPhys);
3307 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3308 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3309}
3310
3311
3312/**
3313 * Write guest RAM, unsigned 8-bit.
3314 *
3315 * @param DstGCPhys The destination address (guest physical).
3316 * @param val Value
3317 */
3318void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3319{
3320 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3321 VBOX_CHECK_ADDR(DstGCPhys);
3322 PGMR3PhysWriteByte(cpu_single_env->pVM, DstGCPhys, val);
3323 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3324}
3325
3326
3327/**
3328 * Write guest RAM, unsigned 8-bit.
3329 *
3330 * @param DstGCPhys The destination address (guest physical).
3331 * @param val Value
3332 */
3333void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3334{
3335 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3336 VBOX_CHECK_ADDR(DstGCPhys);
3337 PGMR3PhysWriteWord(cpu_single_env->pVM, DstGCPhys, val);
3338 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3339}
3340
3341
3342/**
3343 * Write guest RAM, unsigned 32-bit.
3344 *
3345 * @param DstGCPhys The destination address (guest physical).
3346 * @param val Value
3347 */
3348void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3349{
3350 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3351 VBOX_CHECK_ADDR(DstGCPhys);
3352 PGMR3PhysWriteDword(cpu_single_env->pVM, DstGCPhys, val);
3353 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3354}
3355
3356
3357/**
3358 * Write guest RAM, unsigned 64-bit.
3359 *
3360 * @param DstGCPhys The destination address (guest physical).
3361 * @param val Value
3362 */
3363void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3364{
3365 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3366 VBOX_CHECK_ADDR(DstGCPhys);
3367 PGMR3PhysWriteDword(cpu_single_env->pVM, DstGCPhys, (uint32_t)val); /** @todo add U64 interface. */
3368 PGMR3PhysWriteDword(cpu_single_env->pVM, DstGCPhys + 4, val >> 32);
3369 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3370}
3371
3372
3373#ifndef REM_PHYS_ADDR_IN_TLB
3374
3375/**
3376 * Read guest RAM and ROM.
3377 *
3378 * @param pbSrcPhys The source address. Relative to guest RAM.
3379 * @param pvDst The destination address.
3380 * @param cb Number of bytes
3381 */
3382void remR3PhysReadHCPtr(uint8_t *pbSrcPhys, void *pvDst, unsigned cb)
3383{
3384 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3385
3386 /*
3387 * Calc the physical address ('off') and check that it's within the RAM.
3388 * ROM is accessed this way, even if it's not part of the RAM.
3389 */
3390#ifdef PGM_DYNAMIC_RAM_ALLOC
3391 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3392#else
3393 uintptr_t off = pbSrcPhys - phys_ram_base;
3394#endif
3395 PGMPhysRead(cpu_single_env->pVM, (RTGCPHYS)off, pvDst, cb);
3396 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3397}
3398
3399
3400/**
3401 * Read guest RAM and ROM, unsigned 8-bit.
3402 *
3403 * @param pbSrcPhys The source address. Relative to guest RAM.
3404 */
3405uint8_t remR3PhysReadHCPtrU8(uint8_t *pbSrcPhys)
3406{
3407 uint8_t val;
3408
3409 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3410
3411 /*
3412 * Calc the physical address ('off') and check that it's within the RAM.
3413 * ROM is accessed this way, even if it's not part of the RAM.
3414 */
3415#ifdef PGM_DYNAMIC_RAM_ALLOC
3416 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3417#else
3418 uintptr_t off = pbSrcPhys - phys_ram_base;
3419#endif
3420 val = PGMR3PhysReadByte(cpu_single_env->pVM, (RTGCPHYS)off);
3421 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3422 return val;
3423}
3424
3425
3426/**
3427 * Read guest RAM and ROM, signed 8-bit.
3428 *
3429 * @param pbSrcPhys The source address. Relative to guest RAM.
3430 */
3431int8_t remR3PhysReadHCPtrS8(uint8_t *pbSrcPhys)
3432{
3433 int8_t val;
3434
3435 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3436
3437 /*
3438 * Calc the physical address ('off') and check that it's within the RAM.
3439 * ROM is accessed this way, even if it's not part of the RAM.
3440 */
3441#ifdef PGM_DYNAMIC_RAM_ALLOC
3442 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3443#else
3444 uintptr_t off = pbSrcPhys - phys_ram_base;
3445#endif
3446 val = PGMR3PhysReadByte(cpu_single_env->pVM, (RTGCPHYS)off);
3447 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3448 return val;
3449}
3450
3451
3452/**
3453 * Read guest RAM and ROM, unsigned 16-bit.
3454 *
3455 * @param pbSrcPhys The source address. Relative to guest RAM.
3456 */
3457uint16_t remR3PhysReadHCPtrU16(uint8_t *pbSrcPhys)
3458{
3459 uint16_t val;
3460
3461 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3462
3463 /*
3464 * Calc the physical address ('off') and check that it's within the RAM.
3465 * ROM is accessed this way, even if it's not part of the RAM.
3466 */
3467#ifdef PGM_DYNAMIC_RAM_ALLOC
3468 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3469#else
3470 uintptr_t off = pbSrcPhys - phys_ram_base;
3471#endif
3472 val = PGMR3PhysReadWord(cpu_single_env->pVM, (RTGCPHYS)off);
3473 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3474 return val;
3475}
3476
3477
3478/**
3479 * Read guest RAM and ROM, signed 16-bit.
3480 *
3481 * @param pbSrcPhys The source address. Relative to guest RAM.
3482 */
3483int16_t remR3PhysReadHCPtrS16(uint8_t *pbSrcPhys)
3484{
3485 int16_t val;
3486
3487 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3488
3489 /*
3490 * Calc the physical address ('off') and check that it's within the RAM.
3491 * ROM is accessed this way, even if it's not part of the RAM.
3492 */
3493 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3494#ifdef PGM_DYNAMIC_RAM_ALLOC
3495 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3496#else
3497 uintptr_t off = pbSrcPhys - phys_ram_base;
3498#endif
3499 val = PGMR3PhysReadWord(cpu_single_env->pVM, (RTGCPHYS)off);
3500 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3501 return val;
3502}
3503
3504
3505/**
3506 * Read guest RAM and ROM, unsigned 32-bit.
3507 *
3508 * @param pbSrcPhys The source address. Relative to guest RAM.
3509 */
3510uint32_t remR3PhysReadHCPtrU32(uint8_t *pbSrcPhys)
3511{
3512 uint32_t val;
3513
3514 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3515
3516 /*
3517 * Calc the physical address ('off') and check that it's within the RAM.
3518 * ROM is accessed this way, even if it's not part of the RAM.
3519 */
3520#ifdef PGM_DYNAMIC_RAM_ALLOC
3521 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3522#else
3523 uintptr_t off = pbSrcPhys - phys_ram_base;
3524#endif
3525 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off);
3526 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3527 return val;
3528}
3529
3530
3531/**
3532 * Read guest RAM and ROM, signed 32-bit.
3533 *
3534 * @param pbSrcPhys The source address. Relative to guest RAM.
3535 */
3536int32_t remR3PhysReadHCPtrS32(uint8_t *pbSrcPhys)
3537{
3538 int32_t val;
3539
3540 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3541
3542 /*
3543 * Calc the physical address ('off') and check that it's within the RAM.
3544 * ROM is accessed this way, even if it's not part of the RAM.
3545 */
3546#ifdef PGM_DYNAMIC_RAM_ALLOC
3547 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3548#else
3549 uintptr_t off = pbSrcPhys - phys_ram_base;
3550#endif
3551 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off);
3552 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3553 return val;
3554}
3555
3556
3557/**
3558 * Read guest RAM and ROM, unsigned 64-bit.
3559 *
3560 * @param pbSrcPhys The source address. Relative to guest RAM.
3561 */
3562uint64_t remR3PhysReadHCPtrU64(uint8_t *pbSrcPhys)
3563{
3564 uint64_t val;
3565
3566 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3567
3568 /*
3569 * Calc the physical address ('off') and check that it's within the RAM.
3570 * ROM is accessed this way, even if it's not part of the RAM.
3571 */
3572#ifdef PGM_DYNAMIC_RAM_ALLOC
3573 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3574#else
3575 uintptr_t off = pbSrcPhys - phys_ram_base;
3576#endif
3577 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off)
3578 | ((uint64_t)PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off + 4) << 32); /** @todo fix me! */
3579 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3580 return val;
3581}
3582
3583
3584/**
3585 * Write guest RAM.
3586 *
3587 * @param pbDstPhys The destination address. Relative to guest RAM.
3588 * @param pvSrc The source address.
3589 * @param cb Number of bytes to write
3590 */
3591void remR3PhysWriteHCPtr(uint8_t *pbDstPhys, const void *pvSrc, unsigned cb)
3592{
3593 STAM_PROFILE_ADV_START(&gStatMemWriteHCPtr, a);
3594 /*
3595 * Calc the physical address ('off') and check that it's within the RAM.
3596 */
3597#ifdef PGM_DYNAMIC_RAM_ALLOC
3598 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbDstPhys);
3599#else
3600 uintptr_t off = pbDstPhys - phys_ram_base;
3601#endif
3602 PGMPhysWrite(cpu_single_env->pVM, (RTGCPHYS)off, pvSrc, cb);
3603 STAM_PROFILE_ADV_STOP(&gStatMemWriteHCPtr, a);
3604}
3605
3606
3607/**
3608 * Write guest RAM, unsigned 8-bit.
3609 *
3610 * @param pbDstPhys The destination address. Relative to guest RAM.
3611 * @param val Value
3612 */
3613void remR3PhysWriteHCPtrU8(uint8_t *pbDstPhys, uint8_t val)
3614{
3615 STAM_PROFILE_ADV_START(&gStatMemWriteHCPtr, a);
3616 /*
3617 * Calc the physical address ('off') and check that it's within the RAM.
3618 */
3619#ifdef PGM_DYNAMIC_RAM_ALLOC
3620 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbDstPhys);
3621#else
3622 uintptr_t off = pbDstPhys - phys_ram_base;
3623#endif
3624 PGMR3PhysWriteByte(cpu_single_env->pVM, (RTGCPHYS)off, val);
3625 STAM_PROFILE_ADV_STOP(&gStatMemWriteHCPtr, a);
3626}
3627
3628
3629/**
3630 * Write guest RAM, unsigned 16-bit.
3631 *
3632 * @param pbDstPhys The destination address. Relative to guest RAM.
3633 * @param val Value
3634 */
3635void remR3PhysWriteHCPtrU16(uint8_t *pbDstPhys, uint16_t val)
3636{
3637 STAM_PROFILE_ADV_START(&gStatMemWriteHCPtr, a);
3638 /*
3639 * Calc the physical address ('off') and check that it's within the RAM.
3640 */
3641#ifdef PGM_DYNAMIC_RAM_ALLOC
3642 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbDstPhys);
3643#else
3644 uintptr_t off = pbDstPhys - phys_ram_base;
3645#endif
3646 PGMR3PhysWriteWord(cpu_single_env->pVM, (RTGCPHYS)off, val);
3647 STAM_PROFILE_ADV_STOP(&gStatMemWriteHCPtr, a);
3648}
3649
3650
3651/**
3652 * Write guest RAM, unsigned 32-bit.
3653 *
3654 * @param pbDstPhys The destination address. Relative to guest RAM.
3655 * @param val Value
3656 */
3657void remR3PhysWriteHCPtrU32(uint8_t *pbDstPhys, uint32_t val)
3658{
3659 STAM_PROFILE_ADV_START(&gStatMemWriteHCPtr, a);
3660 /*
3661 * Calc the physical address ('off') and check that it's within the RAM.
3662 */
3663#ifdef PGM_DYNAMIC_RAM_ALLOC
3664 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbDstPhys);
3665#else
3666 uintptr_t off = pbDstPhys - phys_ram_base;
3667#endif
3668 PGMR3PhysWriteDword(cpu_single_env->pVM, (RTGCPHYS)off, val);
3669 STAM_PROFILE_ADV_STOP(&gStatMemWriteHCPtr, a);
3670}
3671
3672
3673/**
3674 * Write guest RAM, unsigned 64-bit.
3675 *
3676 * @param pbDstPhys The destination address. Relative to guest RAM.
3677 * @param val Value
3678 */
3679void remR3PhysWriteHCPtrU64(uint8_t *pbDstPhys, uint64_t val)
3680{
3681 STAM_PROFILE_ADV_START(&gStatMemWriteHCPtr, a);
3682 /*
3683 * Calc the physical address ('off') and check that it's within the RAM.
3684 */
3685#ifdef PGM_DYNAMIC_RAM_ALLOC
3686 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbDstPhys);
3687#else
3688 uintptr_t off = pbDstPhys - phys_ram_base;
3689#endif
3690 PGMR3PhysWriteDword(cpu_single_env->pVM, (RTGCPHYS)off, (uint32_t)val); /** @todo add U64 interface. */
3691 PGMR3PhysWriteDword(cpu_single_env->pVM, (RTGCPHYS)off + 4, val >> 32);
3692 STAM_PROFILE_ADV_STOP(&gStatMemWriteHCPtr, a);
3693}
3694
3695#endif /* !REM_PHYS_ADDR_IN_TLB */
3696
3697
3698#undef LOG_GROUP
3699#define LOG_GROUP LOG_GROUP_REM_MMIO
3700
3701/** Read MMIO memory. */
3702static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3703{
3704 uint32_t u32 = 0;
3705 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3706 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3707 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3708 return u32;
3709}
3710
3711/** Read MMIO memory. */
3712static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3713{
3714 uint32_t u32 = 0;
3715 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3716 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3717 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3718 return u32;
3719}
3720
3721/** Read MMIO memory. */
3722static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3723{
3724 uint32_t u32 = 0;
3725 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3726 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3727 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3728 return u32;
3729}
3730
3731/** Write to MMIO memory. */
3732static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3733{
3734 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3735 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3736 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3737}
3738
3739/** Write to MMIO memory. */
3740static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3741{
3742 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3743 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3744 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3745}
3746
3747/** Write to MMIO memory. */
3748static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3749{
3750 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3751 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3752 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3753}
3754
3755
3756#undef LOG_GROUP
3757#define LOG_GROUP LOG_GROUP_REM_HANDLER
3758
3759/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3760
3761static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3762{
3763 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3764 uint8_t u8;
3765 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3766 return u8;
3767}
3768
3769static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3770{
3771 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3772 uint16_t u16;
3773 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3774 return u16;
3775}
3776
3777static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3778{
3779 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3780 uint32_t u32;
3781 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3782 return u32;
3783}
3784
3785static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3786{
3787 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3788 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3789}
3790
3791static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3792{
3793 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3794 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3795}
3796
3797static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3798{
3799 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3800 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3801}
3802
3803/* -+- disassembly -+- */
3804
3805#undef LOG_GROUP
3806#define LOG_GROUP LOG_GROUP_REM_DISAS
3807
3808
3809/**
3810 * Enables or disables singled stepped disassembly.
3811 *
3812 * @returns VBox status code.
3813 * @param pVM VM handle.
3814 * @param fEnable To enable set this flag, to disable clear it.
3815 */
3816static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3817{
3818 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3819 VM_ASSERT_EMT(pVM);
3820
3821 if (fEnable)
3822 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3823 else
3824 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3825 return VINF_SUCCESS;
3826}
3827
3828
3829/**
3830 * Enables or disables singled stepped disassembly.
3831 *
3832 * @returns VBox status code.
3833 * @param pVM VM handle.
3834 * @param fEnable To enable set this flag, to disable clear it.
3835 */
3836REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3837{
3838 PVMREQ pReq;
3839 int rc;
3840
3841 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3842 if (VM_IS_EMT(pVM))
3843 return remR3DisasEnableStepping(pVM, fEnable);
3844
3845 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3846 AssertRC(rc);
3847 if (VBOX_SUCCESS(rc))
3848 rc = pReq->iStatus;
3849 VMR3ReqFree(pReq);
3850 return rc;
3851}
3852
3853
3854#ifdef VBOX_WITH_DEBUGGER
3855/**
3856 * External Debugger Command: .remstep [on|off|1|0]
3857 */
3858static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3859{
3860 bool fEnable;
3861 int rc;
3862
3863 /* print status */
3864 if (cArgs == 0)
3865 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3866 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3867
3868 /* convert the argument and change the mode. */
3869 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3870 if (VBOX_FAILURE(rc))
3871 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3872 rc = REMR3DisasEnableStepping(pVM, fEnable);
3873 if (VBOX_FAILURE(rc))
3874 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3875 return rc;
3876}
3877#endif
3878
3879
3880/**
3881 * Disassembles n instructions and prints them to the log.
3882 *
3883 * @returns Success indicator.
3884 * @param env Pointer to the recompiler CPU structure.
3885 * @param f32BitCode Indicates that whether or not the code should
3886 * be disassembled as 16 or 32 bit. If -1 the CS
3887 * selector will be inspected.
3888 * @param nrInstructions Nr of instructions to disassemble
3889 * @param pszPrefix
3890 * @remark not currently used for anything but ad-hoc debugging.
3891 */
3892bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3893{
3894 int i;
3895
3896 /*
3897 * Determin 16/32 bit mode.
3898 */
3899 if (f32BitCode == -1)
3900 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3901
3902 /*
3903 * Convert cs:eip to host context address.
3904 * We don't care to much about cross page correctness presently.
3905 */
3906 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3907 void *pvPC;
3908 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3909 {
3910 /* convert eip to physical address. */
3911 int rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3912 GCPtrPC,
3913 env->cr[3],
3914 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3915 &pvPC);
3916 if (VBOX_FAILURE(rc))
3917 {
3918 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3919 return false;
3920 pvPC = (char *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3921 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3922 }
3923 }
3924 else
3925 {
3926 /* physical address */
3927 int rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16, &pvPC);
3928 if (VBOX_FAILURE(rc))
3929 return false;
3930 }
3931
3932 /*
3933 * Disassemble.
3934 */
3935 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
3936 DISCPUSTATE Cpu;
3937 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3938 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3939 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3940 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3941 //Cpu.dwUserData[2] = GCPtrPC;
3942
3943 for (i=0;i<nrInstructions;i++)
3944 {
3945 char szOutput[256];
3946 uint32_t cbOp;
3947 if (!DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0]))
3948 return false;
3949 if (pszPrefix)
3950 Log(("%s: %s", pszPrefix, szOutput));
3951 else
3952 Log(("%s", szOutput));
3953
3954 pvPC += cbOp;
3955 }
3956 return true;
3957}
3958
3959
3960/** @todo need to test the new code, using the old code in the mean while. */
3961#define USE_OLD_DUMP_AND_DISASSEMBLY
3962
3963/**
3964 * Disassembles one instruction and prints it to the log.
3965 *
3966 * @returns Success indicator.
3967 * @param env Pointer to the recompiler CPU structure.
3968 * @param f32BitCode Indicates that whether or not the code should
3969 * be disassembled as 16 or 32 bit. If -1 the CS
3970 * selector will be inspected.
3971 * @param pszPrefix
3972 */
3973bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3974{
3975#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3976 PVM pVM = env->pVM;
3977
3978 /*
3979 * Determin 16/32 bit mode.
3980 */
3981 if (f32BitCode == -1)
3982 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3983
3984 /*
3985 * Log registers
3986 */
3987 if (LogIs2Enabled())
3988 {
3989 remR3StateUpdate(pVM);
3990 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3991 }
3992
3993 /*
3994 * Convert cs:eip to host context address.
3995 * We don't care to much about cross page correctness presently.
3996 */
3997 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3998 void *pvPC;
3999 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
4000 {
4001 /* convert eip to physical address. */
4002 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
4003 GCPtrPC,
4004 env->cr[3],
4005 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
4006 &pvPC);
4007 if (VBOX_FAILURE(rc))
4008 {
4009 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
4010 return false;
4011 pvPC = (char *)PATMR3QueryPatchMemHC(pVM, NULL)
4012 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
4013 }
4014 }
4015 else
4016 {
4017
4018 /* physical address */
4019 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, &pvPC);
4020 if (VBOX_FAILURE(rc))
4021 return false;
4022 }
4023
4024 /*
4025 * Disassemble.
4026 */
4027 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
4028 DISCPUSTATE Cpu;
4029 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
4030 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
4031 //Cpu.dwUserData[0] = (uintptr_t)pVM;
4032 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
4033 //Cpu.dwUserData[2] = GCPtrPC;
4034 char szOutput[256];
4035 uint32_t cbOp;
4036 if (!DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0]))
4037 return false;
4038
4039 if (!f32BitCode)
4040 {
4041 if (pszPrefix)
4042 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
4043 else
4044 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
4045 }
4046 else
4047 {
4048 if (pszPrefix)
4049 Log(("%s: %s", pszPrefix, szOutput));
4050 else
4051 Log(("%s", szOutput));
4052 }
4053 return true;
4054
4055#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
4056 PVM pVM = env->pVM;
4057 const bool fLog = LogIsEnabled();
4058 const bool fLog2 = LogIs2Enabled();
4059 int rc = VINF_SUCCESS;
4060
4061 /*
4062 * Don't bother if there ain't any log output to do.
4063 */
4064 if (!fLog && !fLog2)
4065 return true;
4066
4067 /*
4068 * Update the state so DBGF reads the correct register values.
4069 */
4070 remR3StateUpdate(pVM);
4071
4072 /*
4073 * Log registers if requested.
4074 */
4075 if (!fLog2)
4076 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
4077
4078 /*
4079 * Disassemble to log.
4080 */
4081 if (fLog)
4082 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
4083
4084 return VBOX_SUCCESS(rc);
4085#endif
4086}
4087
4088
4089/**
4090 * Disassemble recompiled code.
4091 *
4092 * @param phFileIgnored Ignored, logfile usually.
4093 * @param pvCode Pointer to the code block.
4094 * @param cb Size of the code block.
4095 */
4096void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
4097{
4098 if (LogIs2Enabled())
4099 {
4100 unsigned off = 0;
4101 char szOutput[256];
4102 DISCPUSTATE Cpu = {0};
4103 Cpu.mode = CPUMODE_32BIT;
4104
4105 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
4106 while (off < cb)
4107 {
4108 uint32_t cbInstr;
4109 if (DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput))
4110 RTLogPrintf("%s", szOutput);
4111 else
4112 {
4113 RTLogPrintf("disas error\n");
4114 cbInstr = 1;
4115 }
4116 off += cbInstr;
4117 }
4118 }
4119 NOREF(phFileIgnored);
4120}
4121
4122
4123/**
4124 * Disassemble guest code.
4125 *
4126 * @param phFileIgnored Ignored, logfile usually.
4127 * @param uCode The guest address of the code to disassemble. (flat?)
4128 * @param cb Number of bytes to disassemble.
4129 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
4130 */
4131void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
4132{
4133 if (LogIs2Enabled())
4134 {
4135 PVM pVM = cpu_single_env->pVM;
4136
4137 /*
4138 * Update the state so DBGF reads the correct register values (flags).
4139 */
4140 remR3StateUpdate(pVM);
4141
4142 /*
4143 * Do the disassembling.
4144 */
4145 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
4146 RTSEL cs = cpu_single_env->segs[R_CS].selector;
4147 RTGCUINTPTR eip = uCode - cpu_single_env->segs[R_CS].base;
4148 for (;;)
4149 {
4150 char szBuf[256];
4151 uint32_t cbInstr;
4152 int rc = DBGFR3DisasInstrEx(pVM,
4153 cs,
4154 eip,
4155 0,
4156 szBuf, sizeof(szBuf),
4157 &cbInstr);
4158 if (VBOX_SUCCESS(rc))
4159 RTLogPrintf("%VGp %s\n", uCode, szBuf);
4160 else
4161 {
4162 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
4163 cbInstr = 1;
4164 }
4165
4166 /* next */
4167 if (cb <= cbInstr)
4168 break;
4169 cb -= cbInstr;
4170 uCode += cbInstr;
4171 eip += cbInstr;
4172 }
4173 }
4174 NOREF(phFileIgnored);
4175}
4176
4177
4178/**
4179 * Looks up a guest symbol.
4180 *
4181 * @returns Pointer to symbol name. This is a static buffer.
4182 * @param orig_addr The address in question.
4183 */
4184const char *lookup_symbol(target_ulong orig_addr)
4185{
4186 RTGCINTPTR off = 0;
4187 DBGFSYMBOL Sym;
4188 PVM pVM = cpu_single_env->pVM;
4189 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
4190 if (VBOX_SUCCESS(rc))
4191 {
4192 static char szSym[sizeof(Sym.szName) + 48];
4193 if (!off)
4194 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
4195 else if (off > 0)
4196 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
4197 else
4198 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
4199 return szSym;
4200 }
4201 return "<N/A>";
4202}
4203
4204
4205#undef LOG_GROUP
4206#define LOG_GROUP LOG_GROUP_REM
4207
4208
4209/* -+- FF notifications -+- */
4210
4211
4212/**
4213 * Notification about a pending interrupt.
4214 *
4215 * @param pVM VM Handle.
4216 * @param u8Interrupt Interrupt
4217 * @thread The emulation thread.
4218 */
4219REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
4220{
4221 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
4222 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
4223}
4224
4225/**
4226 * Notification about a pending interrupt.
4227 *
4228 * @returns Pending interrupt or REM_NO_PENDING_IRQ
4229 * @param pVM VM Handle.
4230 * @thread The emulation thread.
4231 */
4232REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
4233{
4234 return pVM->rem.s.u32PendingInterrupt;
4235}
4236
4237/**
4238 * Notification about the interrupt FF being set.
4239 *
4240 * @param pVM VM Handle.
4241 * @thread The emulation thread.
4242 */
4243REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
4244{
4245 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
4246 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
4247 if (pVM->rem.s.fInREM)
4248 {
4249 if (VM_IS_EMT(pVM))
4250 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
4251 else
4252 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_HARD);
4253 }
4254}
4255
4256
4257/**
4258 * Notification about the interrupt FF being set.
4259 *
4260 * @param pVM VM Handle.
4261 * @thread The emulation thread.
4262 */
4263REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
4264{
4265 LogFlow(("REMR3NotifyInterruptClear:\n"));
4266 VM_ASSERT_EMT(pVM);
4267 if (pVM->rem.s.fInREM)
4268 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
4269}
4270
4271
4272/**
4273 * Notification about pending timer(s).
4274 *
4275 * @param pVM VM Handle.
4276 * @thread Any.
4277 */
4278REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
4279{
4280#ifndef DEBUG_bird
4281 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
4282#endif
4283 if (pVM->rem.s.fInREM)
4284 {
4285 if (VM_IS_EMT(pVM))
4286 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
4287 else
4288 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_TIMER);
4289 }
4290}
4291
4292
4293/**
4294 * Notification about pending DMA transfers.
4295 *
4296 * @param pVM VM Handle.
4297 * @thread Any.
4298 */
4299REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
4300{
4301 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
4302 if (pVM->rem.s.fInREM)
4303 {
4304 if (VM_IS_EMT(pVM))
4305 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
4306 else
4307 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_DMA);
4308 }
4309}
4310
4311
4312/**
4313 * Notification about pending timer(s).
4314 *
4315 * @param pVM VM Handle.
4316 * @thread Any.
4317 */
4318REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
4319{
4320 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
4321 if (pVM->rem.s.fInREM)
4322 {
4323 if (VM_IS_EMT(pVM))
4324 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
4325 else
4326 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
4327 }
4328}
4329
4330
4331/**
4332 * Notification about pending FF set by an external thread.
4333 *
4334 * @param pVM VM handle.
4335 * @thread Any.
4336 */
4337REMR3DECL(void) REMR3NotifyFF(PVM pVM)
4338{
4339 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
4340 if (pVM->rem.s.fInREM)
4341 {
4342 if (VM_IS_EMT(pVM))
4343 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
4344 else
4345 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
4346 }
4347}
4348
4349
4350#ifdef VBOX_WITH_STATISTICS
4351void remR3ProfileStart(int statcode)
4352{
4353 STAMPROFILEADV *pStat;
4354 switch(statcode)
4355 {
4356 case STATS_EMULATE_SINGLE_INSTR:
4357 pStat = &gStatExecuteSingleInstr;
4358 break;
4359 case STATS_QEMU_COMPILATION:
4360 pStat = &gStatCompilationQEmu;
4361 break;
4362 case STATS_QEMU_RUN_EMULATED_CODE:
4363 pStat = &gStatRunCodeQEmu;
4364 break;
4365 case STATS_QEMU_TOTAL:
4366 pStat = &gStatTotalTimeQEmu;
4367 break;
4368 case STATS_QEMU_RUN_TIMERS:
4369 pStat = &gStatTimers;
4370 break;
4371 case STATS_TLB_LOOKUP:
4372 pStat= &gStatTBLookup;
4373 break;
4374 case STATS_IRQ_HANDLING:
4375 pStat= &gStatIRQ;
4376 break;
4377 case STATS_RAW_CHECK:
4378 pStat = &gStatRawCheck;
4379 break;
4380
4381 default:
4382 AssertMsgFailed(("unknown stat %d\n", statcode));
4383 return;
4384 }
4385 STAM_PROFILE_ADV_START(pStat, a);
4386}
4387
4388
4389void remR3ProfileStop(int statcode)
4390{
4391 STAMPROFILEADV *pStat;
4392 switch(statcode)
4393 {
4394 case STATS_EMULATE_SINGLE_INSTR:
4395 pStat = &gStatExecuteSingleInstr;
4396 break;
4397 case STATS_QEMU_COMPILATION:
4398 pStat = &gStatCompilationQEmu;
4399 break;
4400 case STATS_QEMU_RUN_EMULATED_CODE:
4401 pStat = &gStatRunCodeQEmu;
4402 break;
4403 case STATS_QEMU_TOTAL:
4404 pStat = &gStatTotalTimeQEmu;
4405 break;
4406 case STATS_QEMU_RUN_TIMERS:
4407 pStat = &gStatTimers;
4408 break;
4409 case STATS_TLB_LOOKUP:
4410 pStat= &gStatTBLookup;
4411 break;
4412 case STATS_IRQ_HANDLING:
4413 pStat= &gStatIRQ;
4414 break;
4415 case STATS_RAW_CHECK:
4416 pStat = &gStatRawCheck;
4417 break;
4418 default:
4419 AssertMsgFailed(("unknown stat %d\n", statcode));
4420 return;
4421 }
4422 STAM_PROFILE_ADV_STOP(pStat, a);
4423}
4424#endif
4425
4426/**
4427 * Raise an RC, force rem exit.
4428 *
4429 * @param pVM VM handle.
4430 * @param rc The rc.
4431 */
4432void remR3RaiseRC(PVM pVM, int rc)
4433{
4434 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
4435 Assert(pVM->rem.s.fInREM);
4436 VM_ASSERT_EMT(pVM);
4437 pVM->rem.s.rc = rc;
4438 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
4439}
4440
4441
4442/* -+- timers -+- */
4443
4444uint64_t cpu_get_tsc(CPUX86State *env)
4445{
4446 STAM_COUNTER_INC(&gStatCpuGetTSC);
4447 return TMCpuTickGet(env->pVM);
4448}
4449
4450
4451/* -+- interrupts -+- */
4452
4453void cpu_set_ferr(CPUX86State *env)
4454{
4455 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
4456 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4457}
4458
4459int cpu_get_pic_interrupt(CPUState *env)
4460{
4461 uint8_t u8Interrupt;
4462 int rc;
4463
4464 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4465 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4466 * with the (a)pic.
4467 */
4468 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4469 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4470 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4471 * remove this kludge. */
4472 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4473 {
4474 rc = VINF_SUCCESS;
4475 Assert(env->pVM->rem.s.u32PendingInterrupt >= 0 && env->pVM->rem.s.u32PendingInterrupt <= 255);
4476 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4477 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4478 }
4479 else
4480 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4481
4482 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
4483 if (VBOX_SUCCESS(rc))
4484 {
4485 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4486 env->interrupt_request |= CPU_INTERRUPT_HARD;
4487 return u8Interrupt;
4488 }
4489 return -1;
4490}
4491
4492
4493/* -+- local apic -+- */
4494
4495void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4496{
4497 int rc = PDMApicSetBase(env->pVM, val);
4498 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
4499}
4500
4501uint64_t cpu_get_apic_base(CPUX86State *env)
4502{
4503 uint64_t u64;
4504 int rc = PDMApicGetBase(env->pVM, &u64);
4505 if (VBOX_SUCCESS(rc))
4506 {
4507 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4508 return u64;
4509 }
4510 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
4511 return 0;
4512}
4513
4514void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4515{
4516 int rc = PDMApicSetTPR(env->pVM, val);
4517 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
4518}
4519
4520uint8_t cpu_get_apic_tpr(CPUX86State *env)
4521{
4522 uint8_t u8;
4523 int rc = PDMApicGetTPR(env->pVM, &u8);
4524 if (VBOX_SUCCESS(rc))
4525 {
4526 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4527 return u8;
4528 }
4529 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
4530 return 0;
4531}
4532
4533
4534/* -+- I/O Ports -+- */
4535
4536#undef LOG_GROUP
4537#define LOG_GROUP LOG_GROUP_REM_IOPORT
4538
4539void cpu_outb(CPUState *env, int addr, int val)
4540{
4541 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4542 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4543
4544 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4545 if (rc == VINF_SUCCESS)
4546 return;
4547 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4548 {
4549 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4550 remR3RaiseRC(env->pVM, rc);
4551 return;
4552 }
4553 remAbort(rc, __FUNCTION__);
4554}
4555
4556void cpu_outw(CPUState *env, int addr, int val)
4557{
4558 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4559 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4560 if (rc == VINF_SUCCESS)
4561 return;
4562 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4563 {
4564 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4565 remR3RaiseRC(env->pVM, rc);
4566 return;
4567 }
4568 remAbort(rc, __FUNCTION__);
4569}
4570
4571void cpu_outl(CPUState *env, int addr, int val)
4572{
4573 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4574 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4575 if (rc == VINF_SUCCESS)
4576 return;
4577 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4578 {
4579 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4580 remR3RaiseRC(env->pVM, rc);
4581 return;
4582 }
4583 remAbort(rc, __FUNCTION__);
4584}
4585
4586int cpu_inb(CPUState *env, int addr)
4587{
4588 uint32_t u32 = 0;
4589 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4590 if (rc == VINF_SUCCESS)
4591 {
4592 if (/*addr != 0x61 && */addr != 0x71)
4593 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4594 return (int)u32;
4595 }
4596 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4597 {
4598 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4599 remR3RaiseRC(env->pVM, rc);
4600 return (int)u32;
4601 }
4602 remAbort(rc, __FUNCTION__);
4603 return 0xff;
4604}
4605
4606int cpu_inw(CPUState *env, int addr)
4607{
4608 uint32_t u32 = 0;
4609 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4610 if (rc == VINF_SUCCESS)
4611 {
4612 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4613 return (int)u32;
4614 }
4615 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4616 {
4617 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4618 remR3RaiseRC(env->pVM, rc);
4619 return (int)u32;
4620 }
4621 remAbort(rc, __FUNCTION__);
4622 return 0xffff;
4623}
4624
4625int cpu_inl(CPUState *env, int addr)
4626{
4627 uint32_t u32 = 0;
4628 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4629 if (rc == VINF_SUCCESS)
4630 {
4631//if (addr==0x01f0 && u32 == 0x6b6d)
4632// loglevel = ~0;
4633 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4634 return (int)u32;
4635 }
4636 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4637 {
4638 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4639 remR3RaiseRC(env->pVM, rc);
4640 return (int)u32;
4641 }
4642 remAbort(rc, __FUNCTION__);
4643 return 0xffffffff;
4644}
4645
4646#undef LOG_GROUP
4647#define LOG_GROUP LOG_GROUP_REM
4648
4649
4650/* -+- helpers and misc other interfaces -+- */
4651
4652/**
4653 * Perform the CPUID instruction.
4654 *
4655 * ASMCpuId cannot be invoked from some source files where this is used because of global
4656 * register allocations.
4657 *
4658 * @param env Pointer to the recompiler CPU structure.
4659 * @param uOperator CPUID operation (eax).
4660 * @param pvEAX Where to store eax.
4661 * @param pvEBX Where to store ebx.
4662 * @param pvECX Where to store ecx.
4663 * @param pvEDX Where to store edx.
4664 */
4665void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4666{
4667 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4668}
4669
4670
4671#if 0 /* not used */
4672/**
4673 * Interface for qemu hardware to report back fatal errors.
4674 */
4675void hw_error(const char *pszFormat, ...)
4676{
4677 /*
4678 * Bitch about it.
4679 */
4680 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4681 * this in my Odin32 tree at home! */
4682 va_list args;
4683 va_start(args, pszFormat);
4684 RTLogPrintf("fatal error in virtual hardware:");
4685 RTLogPrintfV(pszFormat, args);
4686 va_end(args);
4687 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4688
4689 /*
4690 * If we're in REM context we'll sync back the state before 'jumping' to
4691 * the EMs failure handling.
4692 */
4693 PVM pVM = cpu_single_env->pVM;
4694 if (pVM->rem.s.fInREM)
4695 REMR3StateBack(pVM);
4696 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4697 AssertMsgFailed(("EMR3FatalError returned!\n"));
4698}
4699#endif
4700
4701/**
4702 * Interface for the qemu cpu to report unhandled situation
4703 * raising a fatal VM error.
4704 */
4705void cpu_abort(CPUState *env, const char *pszFormat, ...)
4706{
4707 /*
4708 * Bitch about it.
4709 */
4710 RTLogFlags(NULL, "nodisabled nobuffered");
4711 va_list args;
4712 va_start(args, pszFormat);
4713 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4714 va_end(args);
4715 va_start(args, pszFormat);
4716 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4717 va_end(args);
4718
4719 /*
4720 * If we're in REM context we'll sync back the state before 'jumping' to
4721 * the EMs failure handling.
4722 */
4723 PVM pVM = cpu_single_env->pVM;
4724 if (pVM->rem.s.fInREM)
4725 REMR3StateBack(pVM);
4726 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4727 AssertMsgFailed(("EMR3FatalError returned!\n"));
4728}
4729
4730
4731/**
4732 * Aborts the VM.
4733 *
4734 * @param rc VBox error code.
4735 * @param pszTip Hint about why/when this happend.
4736 */
4737static void remAbort(int rc, const char *pszTip)
4738{
4739 /*
4740 * Bitch about it.
4741 */
4742 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4743 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4744
4745 /*
4746 * Jump back to where we entered the recompiler.
4747 */
4748 PVM pVM = cpu_single_env->pVM;
4749 if (pVM->rem.s.fInREM)
4750 REMR3StateBack(pVM);
4751 EMR3FatalError(pVM, rc);
4752 AssertMsgFailed(("EMR3FatalError returned!\n"));
4753}
4754
4755
4756/**
4757 * Dumps a linux system call.
4758 * @param pVM VM handle.
4759 */
4760void remR3DumpLnxSyscall(PVM pVM)
4761{
4762 static const char *apsz[] =
4763 {
4764 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4765 "sys_exit",
4766 "sys_fork",
4767 "sys_read",
4768 "sys_write",
4769 "sys_open", /* 5 */
4770 "sys_close",
4771 "sys_waitpid",
4772 "sys_creat",
4773 "sys_link",
4774 "sys_unlink", /* 10 */
4775 "sys_execve",
4776 "sys_chdir",
4777 "sys_time",
4778 "sys_mknod",
4779 "sys_chmod", /* 15 */
4780 "sys_lchown16",
4781 "sys_ni_syscall", /* old break syscall holder */
4782 "sys_stat",
4783 "sys_lseek",
4784 "sys_getpid", /* 20 */
4785 "sys_mount",
4786 "sys_oldumount",
4787 "sys_setuid16",
4788 "sys_getuid16",
4789 "sys_stime", /* 25 */
4790 "sys_ptrace",
4791 "sys_alarm",
4792 "sys_fstat",
4793 "sys_pause",
4794 "sys_utime", /* 30 */
4795 "sys_ni_syscall", /* old stty syscall holder */
4796 "sys_ni_syscall", /* old gtty syscall holder */
4797 "sys_access",
4798 "sys_nice",
4799 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4800 "sys_sync",
4801 "sys_kill",
4802 "sys_rename",
4803 "sys_mkdir",
4804 "sys_rmdir", /* 40 */
4805 "sys_dup",
4806 "sys_pipe",
4807 "sys_times",
4808 "sys_ni_syscall", /* old prof syscall holder */
4809 "sys_brk", /* 45 */
4810 "sys_setgid16",
4811 "sys_getgid16",
4812 "sys_signal",
4813 "sys_geteuid16",
4814 "sys_getegid16", /* 50 */
4815 "sys_acct",
4816 "sys_umount", /* recycled never used phys() */
4817 "sys_ni_syscall", /* old lock syscall holder */
4818 "sys_ioctl",
4819 "sys_fcntl", /* 55 */
4820 "sys_ni_syscall", /* old mpx syscall holder */
4821 "sys_setpgid",
4822 "sys_ni_syscall", /* old ulimit syscall holder */
4823 "sys_olduname",
4824 "sys_umask", /* 60 */
4825 "sys_chroot",
4826 "sys_ustat",
4827 "sys_dup2",
4828 "sys_getppid",
4829 "sys_getpgrp", /* 65 */
4830 "sys_setsid",
4831 "sys_sigaction",
4832 "sys_sgetmask",
4833 "sys_ssetmask",
4834 "sys_setreuid16", /* 70 */
4835 "sys_setregid16",
4836 "sys_sigsuspend",
4837 "sys_sigpending",
4838 "sys_sethostname",
4839 "sys_setrlimit", /* 75 */
4840 "sys_old_getrlimit",
4841 "sys_getrusage",
4842 "sys_gettimeofday",
4843 "sys_settimeofday",
4844 "sys_getgroups16", /* 80 */
4845 "sys_setgroups16",
4846 "old_select",
4847 "sys_symlink",
4848 "sys_lstat",
4849 "sys_readlink", /* 85 */
4850 "sys_uselib",
4851 "sys_swapon",
4852 "sys_reboot",
4853 "old_readdir",
4854 "old_mmap", /* 90 */
4855 "sys_munmap",
4856 "sys_truncate",
4857 "sys_ftruncate",
4858 "sys_fchmod",
4859 "sys_fchown16", /* 95 */
4860 "sys_getpriority",
4861 "sys_setpriority",
4862 "sys_ni_syscall", /* old profil syscall holder */
4863 "sys_statfs",
4864 "sys_fstatfs", /* 100 */
4865 "sys_ioperm",
4866 "sys_socketcall",
4867 "sys_syslog",
4868 "sys_setitimer",
4869 "sys_getitimer", /* 105 */
4870 "sys_newstat",
4871 "sys_newlstat",
4872 "sys_newfstat",
4873 "sys_uname",
4874 "sys_iopl", /* 110 */
4875 "sys_vhangup",
4876 "sys_ni_syscall", /* old "idle" system call */
4877 "sys_vm86old",
4878 "sys_wait4",
4879 "sys_swapoff", /* 115 */
4880 "sys_sysinfo",
4881 "sys_ipc",
4882 "sys_fsync",
4883 "sys_sigreturn",
4884 "sys_clone", /* 120 */
4885 "sys_setdomainname",
4886 "sys_newuname",
4887 "sys_modify_ldt",
4888 "sys_adjtimex",
4889 "sys_mprotect", /* 125 */
4890 "sys_sigprocmask",
4891 "sys_ni_syscall", /* old "create_module" */
4892 "sys_init_module",
4893 "sys_delete_module",
4894 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4895 "sys_quotactl",
4896 "sys_getpgid",
4897 "sys_fchdir",
4898 "sys_bdflush",
4899 "sys_sysfs", /* 135 */
4900 "sys_personality",
4901 "sys_ni_syscall", /* reserved for afs_syscall */
4902 "sys_setfsuid16",
4903 "sys_setfsgid16",
4904 "sys_llseek", /* 140 */
4905 "sys_getdents",
4906 "sys_select",
4907 "sys_flock",
4908 "sys_msync",
4909 "sys_readv", /* 145 */
4910 "sys_writev",
4911 "sys_getsid",
4912 "sys_fdatasync",
4913 "sys_sysctl",
4914 "sys_mlock", /* 150 */
4915 "sys_munlock",
4916 "sys_mlockall",
4917 "sys_munlockall",
4918 "sys_sched_setparam",
4919 "sys_sched_getparam", /* 155 */
4920 "sys_sched_setscheduler",
4921 "sys_sched_getscheduler",
4922 "sys_sched_yield",
4923 "sys_sched_get_priority_max",
4924 "sys_sched_get_priority_min", /* 160 */
4925 "sys_sched_rr_get_interval",
4926 "sys_nanosleep",
4927 "sys_mremap",
4928 "sys_setresuid16",
4929 "sys_getresuid16", /* 165 */
4930 "sys_vm86",
4931 "sys_ni_syscall", /* Old sys_query_module */
4932 "sys_poll",
4933 "sys_nfsservctl",
4934 "sys_setresgid16", /* 170 */
4935 "sys_getresgid16",
4936 "sys_prctl",
4937 "sys_rt_sigreturn",
4938 "sys_rt_sigaction",
4939 "sys_rt_sigprocmask", /* 175 */
4940 "sys_rt_sigpending",
4941 "sys_rt_sigtimedwait",
4942 "sys_rt_sigqueueinfo",
4943 "sys_rt_sigsuspend",
4944 "sys_pread64", /* 180 */
4945 "sys_pwrite64",
4946 "sys_chown16",
4947 "sys_getcwd",
4948 "sys_capget",
4949 "sys_capset", /* 185 */
4950 "sys_sigaltstack",
4951 "sys_sendfile",
4952 "sys_ni_syscall", /* reserved for streams1 */
4953 "sys_ni_syscall", /* reserved for streams2 */
4954 "sys_vfork", /* 190 */
4955 "sys_getrlimit",
4956 "sys_mmap2",
4957 "sys_truncate64",
4958 "sys_ftruncate64",
4959 "sys_stat64", /* 195 */
4960 "sys_lstat64",
4961 "sys_fstat64",
4962 "sys_lchown",
4963 "sys_getuid",
4964 "sys_getgid", /* 200 */
4965 "sys_geteuid",
4966 "sys_getegid",
4967 "sys_setreuid",
4968 "sys_setregid",
4969 "sys_getgroups", /* 205 */
4970 "sys_setgroups",
4971 "sys_fchown",
4972 "sys_setresuid",
4973 "sys_getresuid",
4974 "sys_setresgid", /* 210 */
4975 "sys_getresgid",
4976 "sys_chown",
4977 "sys_setuid",
4978 "sys_setgid",
4979 "sys_setfsuid", /* 215 */
4980 "sys_setfsgid",
4981 "sys_pivot_root",
4982 "sys_mincore",
4983 "sys_madvise",
4984 "sys_getdents64", /* 220 */
4985 "sys_fcntl64",
4986 "sys_ni_syscall", /* reserved for TUX */
4987 "sys_ni_syscall",
4988 "sys_gettid",
4989 "sys_readahead", /* 225 */
4990 "sys_setxattr",
4991 "sys_lsetxattr",
4992 "sys_fsetxattr",
4993 "sys_getxattr",
4994 "sys_lgetxattr", /* 230 */
4995 "sys_fgetxattr",
4996 "sys_listxattr",
4997 "sys_llistxattr",
4998 "sys_flistxattr",
4999 "sys_removexattr", /* 235 */
5000 "sys_lremovexattr",
5001 "sys_fremovexattr",
5002 "sys_tkill",
5003 "sys_sendfile64",
5004 "sys_futex", /* 240 */
5005 "sys_sched_setaffinity",
5006 "sys_sched_getaffinity",
5007 "sys_set_thread_area",
5008 "sys_get_thread_area",
5009 "sys_io_setup", /* 245 */
5010 "sys_io_destroy",
5011 "sys_io_getevents",
5012 "sys_io_submit",
5013 "sys_io_cancel",
5014 "sys_fadvise64", /* 250 */
5015 "sys_ni_syscall",
5016 "sys_exit_group",
5017 "sys_lookup_dcookie",
5018 "sys_epoll_create",
5019 "sys_epoll_ctl", /* 255 */
5020 "sys_epoll_wait",
5021 "sys_remap_file_pages",
5022 "sys_set_tid_address",
5023 "sys_timer_create",
5024 "sys_timer_settime", /* 260 */
5025 "sys_timer_gettime",
5026 "sys_timer_getoverrun",
5027 "sys_timer_delete",
5028 "sys_clock_settime",
5029 "sys_clock_gettime", /* 265 */
5030 "sys_clock_getres",
5031 "sys_clock_nanosleep",
5032 "sys_statfs64",
5033 "sys_fstatfs64",
5034 "sys_tgkill", /* 270 */
5035 "sys_utimes",
5036 "sys_fadvise64_64",
5037 "sys_ni_syscall" /* sys_vserver */
5038 };
5039
5040 uint32_t uEAX = CPUMGetGuestEAX(pVM);
5041 switch (uEAX)
5042 {
5043 default:
5044 if (uEAX < ELEMENTS(apsz))
5045 Log(("REM: linux syscall %3d: %s (eip=%VGv ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
5046 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
5047 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
5048 else
5049 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
5050 break;
5051
5052 }
5053}
5054
5055
5056/**
5057 * Dumps an OpenBSD system call.
5058 * @param pVM VM handle.
5059 */
5060void remR3DumpOBsdSyscall(PVM pVM)
5061{
5062 static const char *apsz[] =
5063 {
5064 "SYS_syscall", //0
5065 "SYS_exit", //1
5066 "SYS_fork", //2
5067 "SYS_read", //3
5068 "SYS_write", //4
5069 "SYS_open", //5
5070 "SYS_close", //6
5071 "SYS_wait4", //7
5072 "SYS_8",
5073 "SYS_link", //9
5074 "SYS_unlink", //10
5075 "SYS_11",
5076 "SYS_chdir", //12
5077 "SYS_fchdir", //13
5078 "SYS_mknod", //14
5079 "SYS_chmod", //15
5080 "SYS_chown", //16
5081 "SYS_break", //17
5082 "SYS_18",
5083 "SYS_19",
5084 "SYS_getpid", //20
5085 "SYS_mount", //21
5086 "SYS_unmount", //22
5087 "SYS_setuid", //23
5088 "SYS_getuid", //24
5089 "SYS_geteuid", //25
5090 "SYS_ptrace", //26
5091 "SYS_recvmsg", //27
5092 "SYS_sendmsg", //28
5093 "SYS_recvfrom", //29
5094 "SYS_accept", //30
5095 "SYS_getpeername", //31
5096 "SYS_getsockname", //32
5097 "SYS_access", //33
5098 "SYS_chflags", //34
5099 "SYS_fchflags", //35
5100 "SYS_sync", //36
5101 "SYS_kill", //37
5102 "SYS_38",
5103 "SYS_getppid", //39
5104 "SYS_40",
5105 "SYS_dup", //41
5106 "SYS_opipe", //42
5107 "SYS_getegid", //43
5108 "SYS_profil", //44
5109 "SYS_ktrace", //45
5110 "SYS_sigaction", //46
5111 "SYS_getgid", //47
5112 "SYS_sigprocmask", //48
5113 "SYS_getlogin", //49
5114 "SYS_setlogin", //50
5115 "SYS_acct", //51
5116 "SYS_sigpending", //52
5117 "SYS_osigaltstack", //53
5118 "SYS_ioctl", //54
5119 "SYS_reboot", //55
5120 "SYS_revoke", //56
5121 "SYS_symlink", //57
5122 "SYS_readlink", //58
5123 "SYS_execve", //59
5124 "SYS_umask", //60
5125 "SYS_chroot", //61
5126 "SYS_62",
5127 "SYS_63",
5128 "SYS_64",
5129 "SYS_65",
5130 "SYS_vfork", //66
5131 "SYS_67",
5132 "SYS_68",
5133 "SYS_sbrk", //69
5134 "SYS_sstk", //70
5135 "SYS_61",
5136 "SYS_vadvise", //72
5137 "SYS_munmap", //73
5138 "SYS_mprotect", //74
5139 "SYS_madvise", //75
5140 "SYS_76",
5141 "SYS_77",
5142 "SYS_mincore", //78
5143 "SYS_getgroups", //79
5144 "SYS_setgroups", //80
5145 "SYS_getpgrp", //81
5146 "SYS_setpgid", //82
5147 "SYS_setitimer", //83
5148 "SYS_84",
5149 "SYS_85",
5150 "SYS_getitimer", //86
5151 "SYS_87",
5152 "SYS_88",
5153 "SYS_89",
5154 "SYS_dup2", //90
5155 "SYS_91",
5156 "SYS_fcntl", //92
5157 "SYS_select", //93
5158 "SYS_94",
5159 "SYS_fsync", //95
5160 "SYS_setpriority", //96
5161 "SYS_socket", //97
5162 "SYS_connect", //98
5163 "SYS_99",
5164 "SYS_getpriority", //100
5165 "SYS_101",
5166 "SYS_102",
5167 "SYS_sigreturn", //103
5168 "SYS_bind", //104
5169 "SYS_setsockopt", //105
5170 "SYS_listen", //106
5171 "SYS_107",
5172 "SYS_108",
5173 "SYS_109",
5174 "SYS_110",
5175 "SYS_sigsuspend", //111
5176 "SYS_112",
5177 "SYS_113",
5178 "SYS_114",
5179 "SYS_115",
5180 "SYS_gettimeofday", //116
5181 "SYS_getrusage", //117
5182 "SYS_getsockopt", //118
5183 "SYS_119",
5184 "SYS_readv", //120
5185 "SYS_writev", //121
5186 "SYS_settimeofday", //122
5187 "SYS_fchown", //123
5188 "SYS_fchmod", //124
5189 "SYS_125",
5190 "SYS_setreuid", //126
5191 "SYS_setregid", //127
5192 "SYS_rename", //128
5193 "SYS_129",
5194 "SYS_130",
5195 "SYS_flock", //131
5196 "SYS_mkfifo", //132
5197 "SYS_sendto", //133
5198 "SYS_shutdown", //134
5199 "SYS_socketpair", //135
5200 "SYS_mkdir", //136
5201 "SYS_rmdir", //137
5202 "SYS_utimes", //138
5203 "SYS_139",
5204 "SYS_adjtime", //140
5205 "SYS_141",
5206 "SYS_142",
5207 "SYS_143",
5208 "SYS_144",
5209 "SYS_145",
5210 "SYS_146",
5211 "SYS_setsid", //147
5212 "SYS_quotactl", //148
5213 "SYS_149",
5214 "SYS_150",
5215 "SYS_151",
5216 "SYS_152",
5217 "SYS_153",
5218 "SYS_154",
5219 "SYS_nfssvc", //155
5220 "SYS_156",
5221 "SYS_157",
5222 "SYS_158",
5223 "SYS_159",
5224 "SYS_160",
5225 "SYS_getfh", //161
5226 "SYS_162",
5227 "SYS_163",
5228 "SYS_164",
5229 "SYS_sysarch", //165
5230 "SYS_166",
5231 "SYS_167",
5232 "SYS_168",
5233 "SYS_169",
5234 "SYS_170",
5235 "SYS_171",
5236 "SYS_172",
5237 "SYS_pread", //173
5238 "SYS_pwrite", //174
5239 "SYS_175",
5240 "SYS_176",
5241 "SYS_177",
5242 "SYS_178",
5243 "SYS_179",
5244 "SYS_180",
5245 "SYS_setgid", //181
5246 "SYS_setegid", //182
5247 "SYS_seteuid", //183
5248 "SYS_lfs_bmapv", //184
5249 "SYS_lfs_markv", //185
5250 "SYS_lfs_segclean", //186
5251 "SYS_lfs_segwait", //187
5252 "SYS_188",
5253 "SYS_189",
5254 "SYS_190",
5255 "SYS_pathconf", //191
5256 "SYS_fpathconf", //192
5257 "SYS_swapctl", //193
5258 "SYS_getrlimit", //194
5259 "SYS_setrlimit", //195
5260 "SYS_getdirentries", //196
5261 "SYS_mmap", //197
5262 "SYS___syscall", //198
5263 "SYS_lseek", //199
5264 "SYS_truncate", //200
5265 "SYS_ftruncate", //201
5266 "SYS___sysctl", //202
5267 "SYS_mlock", //203
5268 "SYS_munlock", //204
5269 "SYS_205",
5270 "SYS_futimes", //206
5271 "SYS_getpgid", //207
5272 "SYS_xfspioctl", //208
5273 "SYS_209",
5274 "SYS_210",
5275 "SYS_211",
5276 "SYS_212",
5277 "SYS_213",
5278 "SYS_214",
5279 "SYS_215",
5280 "SYS_216",
5281 "SYS_217",
5282 "SYS_218",
5283 "SYS_219",
5284 "SYS_220",
5285 "SYS_semget", //221
5286 "SYS_222",
5287 "SYS_223",
5288 "SYS_224",
5289 "SYS_msgget", //225
5290 "SYS_msgsnd", //226
5291 "SYS_msgrcv", //227
5292 "SYS_shmat", //228
5293 "SYS_229",
5294 "SYS_shmdt", //230
5295 "SYS_231",
5296 "SYS_clock_gettime", //232
5297 "SYS_clock_settime", //233
5298 "SYS_clock_getres", //234
5299 "SYS_235",
5300 "SYS_236",
5301 "SYS_237",
5302 "SYS_238",
5303 "SYS_239",
5304 "SYS_nanosleep", //240
5305 "SYS_241",
5306 "SYS_242",
5307 "SYS_243",
5308 "SYS_244",
5309 "SYS_245",
5310 "SYS_246",
5311 "SYS_247",
5312 "SYS_248",
5313 "SYS_249",
5314 "SYS_minherit", //250
5315 "SYS_rfork", //251
5316 "SYS_poll", //252
5317 "SYS_issetugid", //253
5318 "SYS_lchown", //254
5319 "SYS_getsid", //255
5320 "SYS_msync", //256
5321 "SYS_257",
5322 "SYS_258",
5323 "SYS_259",
5324 "SYS_getfsstat", //260
5325 "SYS_statfs", //261
5326 "SYS_fstatfs", //262
5327 "SYS_pipe", //263
5328 "SYS_fhopen", //264
5329 "SYS_265",
5330 "SYS_fhstatfs", //266
5331 "SYS_preadv", //267
5332 "SYS_pwritev", //268
5333 "SYS_kqueue", //269
5334 "SYS_kevent", //270
5335 "SYS_mlockall", //271
5336 "SYS_munlockall", //272
5337 "SYS_getpeereid", //273
5338 "SYS_274",
5339 "SYS_275",
5340 "SYS_276",
5341 "SYS_277",
5342 "SYS_278",
5343 "SYS_279",
5344 "SYS_280",
5345 "SYS_getresuid", //281
5346 "SYS_setresuid", //282
5347 "SYS_getresgid", //283
5348 "SYS_setresgid", //284
5349 "SYS_285",
5350 "SYS_mquery", //286
5351 "SYS_closefrom", //287
5352 "SYS_sigaltstack", //288
5353 "SYS_shmget", //289
5354 "SYS_semop", //290
5355 "SYS_stat", //291
5356 "SYS_fstat", //292
5357 "SYS_lstat", //293
5358 "SYS_fhstat", //294
5359 "SYS___semctl", //295
5360 "SYS_shmctl", //296
5361 "SYS_msgctl", //297
5362 "SYS_MAXSYSCALL", //298
5363 //299
5364 //300
5365 };
5366 uint32_t uEAX;
5367 if (!LogIsEnabled())
5368 return;
5369 uEAX = CPUMGetGuestEAX(pVM);
5370 switch (uEAX)
5371 {
5372 default:
5373 if (uEAX < ELEMENTS(apsz))
5374 {
5375 uint32_t au32Args[8] = {0};
5376 PGMPhysReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
5377 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
5378 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
5379 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
5380 }
5381 else
5382 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
5383 break;
5384 }
5385}
5386
5387
5388#if defined(IPRT_NO_CRT) && defined(__WIN__) && defined(__X86__)
5389/**
5390 * The Dll main entry point (stub).
5391 */
5392bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
5393{
5394 return true;
5395}
5396
5397void *memcpy(void *dst, const void *src, size_t size)
5398{
5399 uint8_t*pbDst = dst, *pbSrc = src;
5400 while (size-- > 0)
5401 *pbDst++ = *pbSrc++;
5402 return dst;
5403}
5404
5405#endif
5406
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette