VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 3023

Last change on this file since 3023 was 3023, checked in by vboxsync, 18 years ago

only check for excessive faults when in protected mode

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 168.0 KB
Line 
1/* $Id: VBoxRecompiler.c 3023 2007-06-04 12:42:50Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 innotek GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License as published by the Free Software Foundation,
13 * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
14 * distribution. VirtualBox OSE is distributed in the hope that it will
15 * be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * If you received this file as part of a commercial VirtualBox
18 * distribution, then only the terms of your commercial VirtualBox
19 * license agreement apply instead of the previous paragraph.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "exec-all.h"
29
30#include <VBox/rem.h>
31#include <VBox/vmapi.h>
32#include <VBox/tm.h>
33#include <VBox/ssm.h>
34#include <VBox/em.h>
35#include <VBox/trpm.h>
36#include <VBox/iom.h>
37#include <VBox/mm.h>
38#include <VBox/pgm.h>
39#include <VBox/pdm.h>
40#include <VBox/dbgf.h>
41#include <VBox/dbg.h>
42#include <VBox/hwaccm.h>
43#include <VBox/patm.h>
44#include <VBox/csam.h>
45#include "REMInternal.h"
46#include <VBox/vm.h>
47#include <VBox/param.h>
48#include <VBox/err.h>
49
50#include <VBox/log.h>
51#include <iprt/semaphore.h>
52#include <iprt/asm.h>
53#include <iprt/assert.h>
54#include <iprt/thread.h>
55#include <iprt/string.h>
56
57/* Don't wanna include everything. */
58extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
59extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
60extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
61extern void tlb_flush_page(CPUX86State *env, uint32_t addr);
62extern void tlb_flush(CPUState *env, int flush_global);
63extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
64extern void sync_ldtr(CPUX86State *env1, int selector);
65extern int sync_tr(CPUX86State *env1, int selector);
66
67#ifdef VBOX_STRICT
68unsigned long get_phys_page_offset(target_ulong addr);
69#endif
70
71
72/*******************************************************************************
73* Defined Constants And Macros *
74*******************************************************************************/
75
76/** Copy 80-bit fpu register at pSrc to pDst.
77 * This is probably faster than *calling* memcpy.
78 */
79#define REM_COPY_FPU_REG(pDst, pSrc) \
80 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
81
82
83/*******************************************************************************
84* Internal Functions *
85*******************************************************************************/
86static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
87static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
88static void remR3StateUpdate(PVM pVM);
89
90#if defined(PGM_DYNAMIC_RAM_ALLOC) && !defined(REM_PHYS_ADDR_IN_TLB)
91DECLINLINE(target_ulong) remR3HCVirt2GCPhysInlined(PVM pVM, void *addr);
92DECLINLINE(void *) remR3GCPhys2HCVirtInlined(PVM pVM, target_ulong addr);
93#endif
94
95static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
96static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
97static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
98static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
99static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
100static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
101
102static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
103static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
104static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
105static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
106static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
107static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
108
109
110/*******************************************************************************
111* Global Variables *
112*******************************************************************************/
113
114/** @todo Move stats to REM::s some rainy day we have nothing do to. */
115#ifdef VBOX_WITH_STATISTICS
116static STAMPROFILEADV gStatExecuteSingleInstr;
117static STAMPROFILEADV gStatCompilationQEmu;
118static STAMPROFILEADV gStatRunCodeQEmu;
119static STAMPROFILEADV gStatTotalTimeQEmu;
120static STAMPROFILEADV gStatTimers;
121static STAMPROFILEADV gStatTBLookup;
122static STAMPROFILEADV gStatIRQ;
123static STAMPROFILEADV gStatRawCheck;
124static STAMPROFILEADV gStatMemRead;
125static STAMPROFILEADV gStatMemWrite;
126#ifndef REM_PHYS_ADDR_IN_TLB
127static STAMPROFILEADV gStatMemReadHCPtr;
128static STAMPROFILEADV gStatMemWriteHCPtr;
129#endif
130#ifdef PGM_DYNAMIC_RAM_ALLOC
131static STAMPROFILE gStatGCPhys2HCVirt;
132static STAMPROFILE gStatHCVirt2GCPhys;
133#endif
134static STAMCOUNTER gStatCpuGetTSC;
135static STAMCOUNTER gStatRefuseTFInhibit;
136static STAMCOUNTER gStatRefuseVM86;
137static STAMCOUNTER gStatRefusePaging;
138static STAMCOUNTER gStatRefusePAE;
139static STAMCOUNTER gStatRefuseIOPLNot0;
140static STAMCOUNTER gStatRefuseIF0;
141static STAMCOUNTER gStatRefuseCode16;
142static STAMCOUNTER gStatRefuseWP0;
143static STAMCOUNTER gStatRefuseRing1or2;
144static STAMCOUNTER gStatRefuseCanExecute;
145static STAMCOUNTER gStatREMGDTChange;
146static STAMCOUNTER gStatREMIDTChange;
147static STAMCOUNTER gStatREMLDTRChange;
148static STAMCOUNTER gStatREMTRChange;
149static STAMCOUNTER gStatSelOutOfSync[6];
150static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
151#endif
152
153/*
154 * Global stuff.
155 */
156
157/** MMIO read callbacks. */
158CPUReadMemoryFunc *g_apfnMMIORead[3] =
159{
160 remR3MMIOReadU8,
161 remR3MMIOReadU16,
162 remR3MMIOReadU32
163};
164
165/** MMIO write callbacks. */
166CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
167{
168 remR3MMIOWriteU8,
169 remR3MMIOWriteU16,
170 remR3MMIOWriteU32
171};
172
173/** Handler read callbacks. */
174CPUReadMemoryFunc *g_apfnHandlerRead[3] =
175{
176 remR3HandlerReadU8,
177 remR3HandlerReadU16,
178 remR3HandlerReadU32
179};
180
181/** Handler write callbacks. */
182CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
183{
184 remR3HandlerWriteU8,
185 remR3HandlerWriteU16,
186 remR3HandlerWriteU32
187};
188
189
190#ifdef VBOX_WITH_DEBUGGER
191/*
192 * Debugger commands.
193 */
194static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
195
196/** '.remstep' arguments. */
197static const DBGCVARDESC g_aArgRemStep[] =
198{
199 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
200 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
201};
202
203/** Command descriptors. */
204static const DBGCCMD g_aCmds[] =
205{
206 {
207 .pszCmd ="remstep",
208 .cArgsMin = 0,
209 .cArgsMax = 1,
210 .paArgDescs = &g_aArgRemStep[0],
211 .cArgDescs = ELEMENTS(g_aArgRemStep),
212 .pResultDesc = NULL,
213 .fFlags = 0,
214 .pfnHandler = remR3CmdDisasEnableStepping,
215 .pszSyntax = "[on/off]",
216 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
217 "If no arguments show the current state."
218 }
219};
220#endif
221
222
223/* Instantiate the structure signatures. */
224#define REM_STRUCT_OP 0
225#include "InnoTek/structs.h"
226
227
228
229/*******************************************************************************
230* Internal Functions *
231*******************************************************************************/
232static void remAbort(int rc, const char *pszTip);
233extern int testmath(void);
234
235/* Put them here to avoid unused variable warning. */
236AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
237#if !defined(IPRT_NO_CRT) && (defined(__LINUX__) || defined(__DARWIN__) || defined(__WIN__))
238AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
239#else
240AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
241#endif
242
243
244/**
245 * Initializes the REM.
246 *
247 * @returns VBox status code.
248 * @param pVM The VM to operate on.
249 */
250REMR3DECL(int) REMR3Init(PVM pVM)
251{
252 uint32_t u32Dummy;
253 unsigned i;
254
255 /*
256 * Assert sanity.
257 */
258 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
259 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
260 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
261#ifdef DEBUG
262 Assert(!testmath());
263#endif
264 ASSERT_STRUCT_TABLE(Misc);
265 ASSERT_STRUCT_TABLE(TLB);
266 ASSERT_STRUCT_TABLE(SegmentCache);
267 ASSERT_STRUCT_TABLE(XMMReg);
268 ASSERT_STRUCT_TABLE(MMXReg);
269 ASSERT_STRUCT_TABLE(float_status);
270 ASSERT_STRUCT_TABLE(float32u);
271 ASSERT_STRUCT_TABLE(float64u);
272 ASSERT_STRUCT_TABLE(floatx80u);
273 ASSERT_STRUCT_TABLE(CPUState);
274
275 /*
276 * Init some internal data members.
277 */
278 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
279 pVM->rem.s.Env.pVM = pVM;
280#ifdef CPU_RAW_MODE_INIT
281 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
282#endif
283
284 /* ctx. */
285 int rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
286 if (VBOX_FAILURE(rc))
287 {
288 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
289 return rc;
290 }
291 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
292
293 /* ignore all notifications */
294 pVM->rem.s.fIgnoreAll = true;
295
296 /*
297 * Init the recompiler.
298 */
299 if (!cpu_x86_init(&pVM->rem.s.Env))
300 {
301 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
302 return VERR_GENERAL_FAILURE;
303 }
304 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
305 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
306
307 /* allocate code buffer for single instruction emulation. */
308 pVM->rem.s.Env.cbCodeBuffer = 4096;
309 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
310 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
311
312 /* finally, set the cpu_single_env global. */
313 cpu_single_env = &pVM->rem.s.Env;
314
315 /* Nothing is pending by default */
316 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
317
318 /*
319 * Register ram types.
320 */
321 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
322 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
323 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
324 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
325 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
326
327 /* stop ignoring. */
328 pVM->rem.s.fIgnoreAll = false;
329
330 /*
331 * Register the saved state data unit.
332 */
333 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
334 NULL, remR3Save, NULL,
335 NULL, remR3Load, NULL);
336 if (VBOX_FAILURE(rc))
337 return rc;
338
339#ifdef VBOX_WITH_DEBUGGER
340 /*
341 * Debugger commands.
342 */
343 static bool fRegisteredCmds = false;
344 if (!fRegisteredCmds)
345 {
346 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
347 if (VBOX_SUCCESS(rc))
348 fRegisteredCmds = true;
349 }
350#endif
351
352#ifdef VBOX_WITH_STATISTICS
353 /*
354 * Statistics.
355 */
356 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
357 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
358 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
359 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
360 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
361 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
362 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
363 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
364 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
365 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
366#ifndef REM_PHYS_ADDR_IN_TLB
367 STAM_REG(pVM, &gStatMemReadHCPtr, STAMTYPE_PROFILE, "/PROF/REM/MemReadHCPtr", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
368 STAM_REG(pVM, &gStatMemWriteHCPtr, STAMTYPE_PROFILE, "/PROF/REM/MemWriteHCPtr", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
369#endif
370#ifdef PGM_DYNAMIC_RAM_ALLOC
371 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
372 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
373#endif
374
375 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
376
377 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
378 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
379 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
380 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
381 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
382 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
383 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
384 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
385 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
386 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
387
388 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
389 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
390 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
391 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
392
393 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
394 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
395 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
396 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
397 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
398 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
399
400 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
401 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
402 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
403 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
404 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
405 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
406
407
408#endif
409
410#ifdef DEBUG_ALL_LOGGING
411 loglevel = ~0;
412#endif
413
414 return rc;
415}
416
417
418/**
419 * Terminates the REM.
420 *
421 * Termination means cleaning up and freeing all resources,
422 * the VM it self is at this point powered off or suspended.
423 *
424 * @returns VBox status code.
425 * @param pVM The VM to operate on.
426 */
427REMR3DECL(int) REMR3Term(PVM pVM)
428{
429 return VINF_SUCCESS;
430}
431
432
433/**
434 * The VM is being reset.
435 *
436 * For the REM component this means to call the cpu_reset() and
437 * reinitialize some state variables.
438 *
439 * @param pVM VM handle.
440 */
441REMR3DECL(void) REMR3Reset(PVM pVM)
442{
443 /*
444 * Reset the REM cpu.
445 */
446 pVM->rem.s.fIgnoreAll = true;
447 cpu_reset(&pVM->rem.s.Env);
448 pVM->rem.s.cInvalidatedPages = 0;
449 pVM->rem.s.fIgnoreAll = false;
450}
451
452
453/**
454 * Execute state save operation.
455 *
456 * @returns VBox status code.
457 * @param pVM VM Handle.
458 * @param pSSM SSM operation handle.
459 */
460static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
461{
462 LogFlow(("remR3Save:\n"));
463
464 /*
465 * Save the required CPU Env bits.
466 * (Not much because we're never in REM when doing the save.)
467 */
468 PREM pRem = &pVM->rem.s;
469 Assert(!pRem->fInREM);
470 SSMR3PutU32(pSSM, pRem->Env.hflags);
471 SSMR3PutMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
472 SSMR3PutU32(pSSM, ~0); /* separator */
473
474 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
475 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
476
477 /*
478 * Save the REM stuff.
479 */
480 SSMR3PutUInt(pSSM, pRem->cInvalidatedPages);
481 unsigned i;
482 for (i = 0; i < pRem->cInvalidatedPages; i++)
483 SSMR3PutGCPtr(pSSM, pRem->aGCPtrInvalidatedPages[i]);
484
485 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
486
487 return SSMR3PutU32(pSSM, ~0); /* terminator */
488}
489
490
491/**
492 * Execute state load operation.
493 *
494 * @returns VBox status code.
495 * @param pVM VM Handle.
496 * @param pSSM SSM operation handle.
497 * @param u32Version Data layout version.
498 */
499static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
500{
501 uint32_t u32Dummy;
502 uint32_t fRawRing0 = false;
503 LogFlow(("remR3Load:\n"));
504
505 /*
506 * Validate version.
507 */
508 if (u32Version != REM_SAVED_STATE_VERSION)
509 {
510 Log(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
511 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
512 }
513
514 /*
515 * Do a reset to be on the safe side...
516 */
517 REMR3Reset(pVM);
518
519 /*
520 * Ignore all ignorable notifications.
521 * (Not doing this will cause serious trouble.)
522 */
523 pVM->rem.s.fIgnoreAll = true;
524
525 /*
526 * Load the required CPU Env bits.
527 * (Not much because we're never in REM when doing the save.)
528 */
529 PREM pRem = &pVM->rem.s;
530 Assert(!pRem->fInREM);
531 SSMR3GetU32(pSSM, &pRem->Env.hflags);
532 SSMR3GetMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
533 uint32_t u32Sep;
534 int rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
535 if (VBOX_FAILURE(rc))
536 return rc;
537 if (u32Sep != ~0)
538 {
539 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
540 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
541 }
542
543 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
544 SSMR3GetUInt(pSSM, &fRawRing0);
545 if (fRawRing0)
546 pRem->Env.state |= CPU_RAW_RING0;
547
548 /*
549 * Load the REM stuff.
550 */
551 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
552 if (VBOX_FAILURE(rc))
553 return rc;
554 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
555 {
556 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
557 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
558 }
559 unsigned i;
560 for (i = 0; i < pRem->cInvalidatedPages; i++)
561 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
562
563 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
564 if (VBOX_FAILURE(rc))
565 return rc;
566
567 /* check the terminator. */
568 rc = SSMR3GetU32(pSSM, &u32Sep);
569 if (VBOX_FAILURE(rc))
570 return rc;
571 if (u32Sep != ~0)
572 {
573 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
574 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
575 }
576
577 /*
578 * Get the CPUID features.
579 */
580 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
581 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
582
583 /*
584 * Sync the Load Flush the TLB
585 */
586 tlb_flush(&pRem->Env, 1);
587
588#if 0 /** @todo r=bird: this doesn't make sense. WHY? */
589 /*
590 * Clear all lazy flags (only FPU sync for now).
591 */
592 CPUMGetAndClearFPUUsedREM(pVM);
593#endif
594
595 /*
596 * Stop ignoring ignornable notifications.
597 */
598 pVM->rem.s.fIgnoreAll = false;
599
600 return VINF_SUCCESS;
601}
602
603
604
605#undef LOG_GROUP
606#define LOG_GROUP LOG_GROUP_REM_RUN
607
608/**
609 * Single steps an instruction in recompiled mode.
610 *
611 * Before calling this function the REM state needs to be in sync with
612 * the VM. Call REMR3State() to perform the sync. It's only necessary
613 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
614 * and after calling REMR3StateBack().
615 *
616 * @returns VBox status code.
617 *
618 * @param pVM VM Handle.
619 */
620REMR3DECL(int) REMR3Step(PVM pVM)
621{
622 /*
623 * Lock the REM - we don't wanna have anyone interrupting us
624 * while stepping - and enabled single stepping. We also ignore
625 * pending interrupts and suchlike.
626 */
627 int interrupt_request = pVM->rem.s.Env.interrupt_request;
628 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
629 pVM->rem.s.Env.interrupt_request = 0;
630 cpu_single_step(&pVM->rem.s.Env, 1);
631
632 /*
633 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
634 */
635 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
636 bool fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
637
638 /*
639 * Execute and handle the return code.
640 * We execute without enabling the cpu tick, so on success we'll
641 * just flip it on and off to make sure it moves
642 */
643 int rc = cpu_exec(&pVM->rem.s.Env);
644 if (rc == EXCP_DEBUG)
645 {
646 TMCpuTickResume(pVM);
647 TMCpuTickPause(pVM);
648 TMVirtualResume(pVM);
649 TMVirtualPause(pVM);
650 rc = VINF_EM_DBG_STEPPED;
651 }
652 else
653 {
654 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
655 switch (rc)
656 {
657 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
658 case EXCP_HLT:
659 case EXCP_HALTED: rc = VINF_EM_HALT; break;
660 case EXCP_RC:
661 rc = pVM->rem.s.rc;
662 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
663 break;
664 default:
665 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
666 rc = VERR_INTERNAL_ERROR;
667 break;
668 }
669 }
670
671 /*
672 * Restore the stuff we changed to prevent interruption.
673 * Unlock the REM.
674 */
675 if (fBp)
676 {
677 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
678 Assert(rc2 == 0); NOREF(rc2);
679 }
680 cpu_single_step(&pVM->rem.s.Env, 0);
681 pVM->rem.s.Env.interrupt_request = interrupt_request;
682
683 return rc;
684}
685
686
687/**
688 * Set a breakpoint using the REM facilities.
689 *
690 * @returns VBox status code.
691 * @param pVM The VM handle.
692 * @param Address The breakpoint address.
693 * @thread The emulation thread.
694 */
695REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
696{
697 VM_ASSERT_EMT(pVM);
698 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
699 {
700 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
701 return VINF_SUCCESS;
702 }
703 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
704 return VERR_REM_NO_MORE_BP_SLOTS;
705}
706
707
708/**
709 * Clears a breakpoint set by REMR3BreakpointSet().
710 *
711 * @returns VBox status code.
712 * @param pVM The VM handle.
713 * @param Address The breakpoint address.
714 * @thread The emulation thread.
715 */
716REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
717{
718 VM_ASSERT_EMT(pVM);
719 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
720 {
721 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
722 return VINF_SUCCESS;
723 }
724 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
725 return VERR_REM_BP_NOT_FOUND;
726}
727
728
729/**
730 * Emulate an instruction.
731 *
732 * This function executes one instruction without letting anyone
733 * interrupt it. This is intended for being called while being in
734 * raw mode and thus will take care of all the state syncing between
735 * REM and the rest.
736 *
737 * @returns VBox status code.
738 * @param pVM VM handle.
739 */
740REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
741{
742 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", pVM->rem.s.pCtx->cs, pVM->rem.s.pCtx->eip));
743
744 /*
745 * Sync the state and enable single instruction / single stepping.
746 */
747 int rc = REMR3State(pVM);
748 if (VBOX_SUCCESS(rc))
749 {
750 int interrupt_request = pVM->rem.s.Env.interrupt_request;
751 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
752 Assert(!pVM->rem.s.Env.singlestep_enabled);
753#if 1
754
755 /*
756 * Now we set the execute single instruction flag and enter the cpu_exec loop.
757 */
758 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
759 rc = cpu_exec(&pVM->rem.s.Env);
760 switch (rc)
761 {
762 /*
763 * Executed without anything out of the way happening.
764 */
765 case EXCP_SINGLE_INSTR:
766 rc = VINF_EM_RESCHEDULE;
767 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
768 break;
769
770 /*
771 * If we take a trap or start servicing a pending interrupt, we might end up here.
772 * (Timer thread or some other thread wishing EMT's attention.)
773 */
774 case EXCP_INTERRUPT:
775 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
776 rc = VINF_EM_RESCHEDULE;
777 break;
778
779 /*
780 * Single step, we assume!
781 * If there was a breakpoint there we're fucked now.
782 */
783 case EXCP_DEBUG:
784 {
785 /* breakpoint or single step? */
786 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
787 int iBP;
788 rc = VINF_EM_DBG_STEPPED;
789 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
790 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
791 {
792 rc = VINF_EM_DBG_BREAKPOINT;
793 break;
794 }
795 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
796 break;
797 }
798
799 /*
800 * hlt instruction.
801 */
802 case EXCP_HLT:
803 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
804 rc = VINF_EM_HALT;
805 break;
806
807 /*
808 * The VM has halted.
809 */
810 case EXCP_HALTED:
811 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
812 rc = VINF_EM_HALT;
813 break;
814
815 /*
816 * Switch to RAW-mode.
817 */
818 case EXCP_EXECUTE_RAW:
819 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
820 rc = VINF_EM_RESCHEDULE_RAW;
821 break;
822
823 /*
824 * Switch to hardware accelerated RAW-mode.
825 */
826 case EXCP_EXECUTE_HWACC:
827 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
828 rc = VINF_EM_RESCHEDULE_HWACC;
829 break;
830
831 /*
832 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
833 */
834 case EXCP_RC:
835 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
836 rc = pVM->rem.s.rc;
837 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
838 break;
839
840 /*
841 * Figure out the rest when they arrive....
842 */
843 default:
844 AssertMsgFailed(("rc=%d\n", rc));
845 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
846 rc = VINF_EM_RESCHEDULE;
847 break;
848 }
849
850 /*
851 * Switch back the state.
852 */
853#else
854 pVM->rem.s.Env.interrupt_request = 0;
855 cpu_single_step(&pVM->rem.s.Env, 1);
856
857 /*
858 * Execute and handle the return code.
859 * We execute without enabling the cpu tick, so on success we'll
860 * just flip it on and off to make sure it moves.
861 *
862 * (We do not use emulate_single_instr() because that doesn't enter the
863 * right way in will cause serious trouble if a longjmp was attempted.)
864 */
865# ifdef DEBUG_bird
866 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
867# endif
868 int cTimesMax = 16384;
869 uint32_t eip = pVM->rem.s.Env.eip;
870 do
871 {
872 rc = cpu_exec(&pVM->rem.s.Env);
873
874 } while ( eip == pVM->rem.s.Env.eip
875 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
876 && --cTimesMax > 0);
877 switch (rc)
878 {
879 /*
880 * Single step, we assume!
881 * If there was a breakpoint there we're fucked now.
882 */
883 case EXCP_DEBUG:
884 {
885 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
886 rc = VINF_EM_RESCHEDULE;
887 break;
888 }
889
890 /*
891 * We cannot be interrupted!
892 */
893 case EXCP_INTERRUPT:
894 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
895 rc = VERR_INTERNAL_ERROR;
896 break;
897
898 /*
899 * hlt instruction.
900 */
901 case EXCP_HLT:
902 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
903 rc = VINF_EM_HALT;
904 break;
905
906 /*
907 * The VM has halted.
908 */
909 case EXCP_HALTED:
910 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
911 rc = VINF_EM_HALT;
912 break;
913
914 /*
915 * Switch to RAW-mode.
916 */
917 case EXCP_EXECUTE_RAW:
918 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
919 rc = VINF_EM_RESCHEDULE_RAW;
920 break;
921
922 /*
923 * Switch to hardware accelerated RAW-mode.
924 */
925 case EXCP_EXECUTE_HWACC:
926 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
927 rc = VINF_EM_RESCHEDULE_HWACC;
928 break;
929
930 /*
931 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
932 */
933 case EXCP_RC:
934 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
935 rc = pVM->rem.s.rc;
936 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
937 break;
938
939 /*
940 * Figure out the rest when they arrive....
941 */
942 default:
943 AssertMsgFailed(("rc=%d\n", rc));
944 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
945 rc = VINF_SUCCESS;
946 break;
947 }
948
949 /*
950 * Switch back the state.
951 */
952 cpu_single_step(&pVM->rem.s.Env, 0);
953#endif
954 pVM->rem.s.Env.interrupt_request = interrupt_request;
955 int rc2 = REMR3StateBack(pVM);
956 AssertRC(rc2);
957 }
958
959 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%08x)\n",
960 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
961 return rc;
962}
963
964
965/**
966 * Runs code in recompiled mode.
967 *
968 * Before calling this function the REM state needs to be in sync with
969 * the VM. Call REMR3State() to perform the sync. It's only necessary
970 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
971 * and after calling REMR3StateBack().
972 *
973 * @returns VBox status code.
974 *
975 * @param pVM VM Handle.
976 */
977REMR3DECL(int) REMR3Run(PVM pVM)
978{
979 Log2(("REMR3Run: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
980 Assert(pVM->rem.s.fInREM);
981////Keyboard / tb stuff:
982//if ( pVM->rem.s.Env.segs[R_CS].selector == 0xf000
983// && pVM->rem.s.Env.eip >= 0xe860
984// && pVM->rem.s.Env.eip <= 0xe880)
985// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
986////A20:
987//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x9020
988// && pVM->rem.s.Env.eip >= 0x970
989// && pVM->rem.s.Env.eip <= 0x9a0)
990// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
991////Speaker (port 61h)
992//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x0010
993// && ( (pVM->rem.s.Env.eip >= 0x90278c10 && pVM->rem.s.Env.eip <= 0x90278c30)
994// || (pVM->rem.s.Env.eip >= 0x9010e250 && pVM->rem.s.Env.eip <= 0x9010e260)
995// )
996// )
997// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
998//DBGFR3InfoLog(pVM, "timers", NULL);
999
1000
1001 int rc = cpu_exec(&pVM->rem.s.Env);
1002 switch (rc)
1003 {
1004 /*
1005 * This happens when the execution was interrupted
1006 * by an external event, like pending timers.
1007 */
1008 case EXCP_INTERRUPT:
1009 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
1010 rc = VINF_SUCCESS;
1011 break;
1012
1013 /*
1014 * hlt instruction.
1015 */
1016 case EXCP_HLT:
1017 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
1018 rc = VINF_EM_HALT;
1019 break;
1020
1021 /*
1022 * The VM has halted.
1023 */
1024 case EXCP_HALTED:
1025 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1026 rc = VINF_EM_HALT;
1027 break;
1028
1029 /*
1030 * Breakpoint/single step.
1031 */
1032 case EXCP_DEBUG:
1033 {
1034#if 0//def DEBUG_bird
1035 static int iBP = 0;
1036 printf("howdy, breakpoint! iBP=%d\n", iBP);
1037 switch (iBP)
1038 {
1039 case 0:
1040 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1041 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1042 //pVM->rem.s.Env.interrupt_request = 0;
1043 //pVM->rem.s.Env.exception_index = -1;
1044 //g_fInterruptDisabled = 1;
1045 rc = VINF_SUCCESS;
1046 asm("int3");
1047 break;
1048 default:
1049 asm("int3");
1050 break;
1051 }
1052 iBP++;
1053#else
1054 /* breakpoint or single step? */
1055 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1056 int iBP;
1057 rc = VINF_EM_DBG_STEPPED;
1058 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1059 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1060 {
1061 rc = VINF_EM_DBG_BREAKPOINT;
1062 break;
1063 }
1064 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1065#endif
1066 break;
1067 }
1068
1069 /*
1070 * Switch to RAW-mode.
1071 */
1072 case EXCP_EXECUTE_RAW:
1073 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1074 rc = VINF_EM_RESCHEDULE_RAW;
1075 break;
1076
1077 /*
1078 * Switch to hardware accelerated RAW-mode.
1079 */
1080 case EXCP_EXECUTE_HWACC:
1081 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1082 rc = VINF_EM_RESCHEDULE_HWACC;
1083 break;
1084
1085 /*
1086 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
1087 */
1088 case EXCP_RC:
1089 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1090 rc = pVM->rem.s.rc;
1091 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1092 break;
1093
1094 /*
1095 * Figure out the rest when they arrive....
1096 */
1097 default:
1098 AssertMsgFailed(("rc=%d\n", rc));
1099 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1100 rc = VINF_SUCCESS;
1101 break;
1102 }
1103
1104 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%08x)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1105 return rc;
1106}
1107
1108
1109/**
1110 * Check if the cpu state is suitable for Raw execution.
1111 *
1112 * @returns boolean
1113 * @param env The CPU env struct.
1114 * @param eip The EIP to check this for (might differ from env->eip).
1115 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1116 * @param pExceptionIndex Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1117 *
1118 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1119 */
1120bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, uint32_t *pExceptionIndex)
1121{
1122 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1123 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1124 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1125
1126 /* Update counter. */
1127 env->pVM->rem.s.cCanExecuteRaw++;
1128
1129 if (HWACCMIsEnabled(env->pVM))
1130 {
1131 env->state |= CPU_RAW_HWACC;
1132
1133 /*
1134 * Create partial context for HWACCMR3CanExecuteGuest
1135 */
1136 CPUMCTX Ctx;
1137 Ctx.cr0 = env->cr[0];
1138 Ctx.cr3 = env->cr[3];
1139 Ctx.cr4 = env->cr[4];
1140
1141 Ctx.tr = env->tr.selector;
1142 Ctx.trHid.u32Base = (uint32_t)env->tr.base;
1143 Ctx.trHid.u32Limit = env->tr.limit;
1144 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1145
1146 Ctx.idtr.cbIdt = env->idt.limit;
1147 Ctx.idtr.pIdt = (uint32_t)env->idt.base;
1148
1149 Ctx.eflags.u32 = env->eflags;
1150
1151 Ctx.cs = env->segs[R_CS].selector;
1152 Ctx.csHid.u32Base = (uint32_t)env->segs[R_CS].base;
1153 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1154 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1155
1156 Ctx.ss = env->segs[R_SS].selector;
1157 Ctx.ssHid.u32Base = (uint32_t)env->segs[R_SS].base;
1158 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1159 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1160
1161 /* Hardware accelerated raw-mode:
1162 *
1163 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1164 */
1165 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1166 {
1167 *pExceptionIndex = EXCP_EXECUTE_HWACC;
1168 return true;
1169 }
1170 return false;
1171 }
1172
1173 /*
1174 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1175 * or 32 bits protected mode ring 0 code
1176 *
1177 * The tests are ordered by the likelyhood of being true during normal execution.
1178 */
1179 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1180 {
1181 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1182 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1183 return false;
1184 }
1185
1186#ifndef VBOX_RAW_V86
1187 if (fFlags & VM_MASK) {
1188 STAM_COUNTER_INC(&gStatRefuseVM86);
1189 Log2(("raw mode refused: VM_MASK\n"));
1190 return false;
1191 }
1192#endif
1193
1194 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1195 {
1196#ifndef DEBUG_bird
1197 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1198#endif
1199 return false;
1200 }
1201
1202 if (env->singlestep_enabled)
1203 {
1204 //Log2(("raw mode refused: Single step\n"));
1205 return false;
1206 }
1207
1208 if (env->nb_breakpoints > 0)
1209 {
1210 //Log2(("raw mode refused: Breakpoints\n"));
1211 return false;
1212 }
1213
1214 uint32_t u32CR0 = env->cr[0];
1215 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1216 {
1217 STAM_COUNTER_INC(&gStatRefusePaging);
1218 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1219 return false;
1220 }
1221
1222 if (env->cr[4] & CR4_PAE_MASK)
1223 {
1224 STAM_COUNTER_INC(&gStatRefusePAE);
1225 //Log2(("raw mode refused: PAE\n"));
1226 return false;
1227 }
1228
1229 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1230 {
1231 if (!EMIsRawRing3Enabled(env->pVM))
1232 return false;
1233
1234 if (!(env->eflags & IF_MASK))
1235 {
1236 STAM_COUNTER_INC(&gStatRefuseIF0);
1237 Log2(("raw mode refused: IF (RawR3)\n"));
1238 return false;
1239 }
1240
1241 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1242 {
1243 STAM_COUNTER_INC(&gStatRefuseWP0);
1244 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1245 return false;
1246 }
1247 }
1248 else
1249 {
1250 if (!EMIsRawRing0Enabled(env->pVM))
1251 return false;
1252
1253 // Let's start with pure 32 bits ring 0 code first
1254 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1255 {
1256 STAM_COUNTER_INC(&gStatRefuseCode16);
1257 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1258 return false;
1259 }
1260
1261 // Only R0
1262 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1263 {
1264 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1265 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1266 return false;
1267 }
1268
1269 if (!(u32CR0 & CR0_WP_MASK))
1270 {
1271 STAM_COUNTER_INC(&gStatRefuseWP0);
1272 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1273 return false;
1274 }
1275
1276 if (PATMIsPatchGCAddr(env->pVM, eip))
1277 {
1278 Log2(("raw r0 mode forced: patch code\n"));
1279 *pExceptionIndex = EXCP_EXECUTE_RAW;
1280 return true;
1281 }
1282
1283#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1284 if (!(env->eflags & IF_MASK))
1285 {
1286 STAM_COUNTER_INC(&gStatRefuseIF0);
1287 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1288 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1289 return false;
1290 }
1291#endif
1292
1293 env->state |= CPU_RAW_RING0;
1294 }
1295
1296 /*
1297 * Don't reschedule the first time we're called, because there might be
1298 * special reasons why we're here that is not covered by the above checks.
1299 */
1300 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1301 {
1302 Log2(("raw mode refused: first scheduling\n"));
1303 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1304 return false;
1305 }
1306
1307 Assert(PGMPhysIsA20Enabled(env->pVM));
1308 *pExceptionIndex = EXCP_EXECUTE_RAW;
1309 return true;
1310}
1311
1312
1313/**
1314 * Fetches a code byte.
1315 *
1316 * @returns Success indicator (bool) for ease of use.
1317 * @param env The CPU environment structure.
1318 * @param GCPtrInstr Where to fetch code.
1319 * @param pu8Byte Where to store the byte on success
1320 */
1321bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1322{
1323 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1324 if (VBOX_SUCCESS(rc))
1325 return true;
1326 return false;
1327}
1328
1329
1330/**
1331 * Flush (or invalidate if you like) page table/dir entry.
1332 *
1333 * (invlpg instruction; tlb_flush_page)
1334 *
1335 * @param env Pointer to cpu environment.
1336 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1337 */
1338void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1339{
1340 PVM pVM = env->pVM;
1341
1342 /*
1343 * When we're replaying invlpg instructions or restoring a saved
1344 * state we disable this path.
1345 */
1346 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1347 return;
1348 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1349 Assert(pVM->rem.s.fInREM);
1350
1351 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1352
1353 /*
1354 * Update the control registers before calling PGMFlushPage.
1355 */
1356 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1357 pCtx->cr0 = env->cr[0];
1358 pCtx->cr3 = env->cr[3];
1359 pCtx->cr4 = env->cr[4];
1360
1361 /*
1362 * Let PGM do the rest.
1363 */
1364 int rc = PGMInvalidatePage(pVM, GCPtr);
1365 if (VBOX_FAILURE(rc))
1366 {
1367 AssertMsgFailed(("remR3FlushPage %x %x %x %d failed!!\n", GCPtr));
1368 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1369 }
1370 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1371}
1372
1373/**
1374 * Set page table/dir entry. (called from tlb_set_page)
1375 *
1376 * @param env Pointer to cpu environment.
1377 */
1378void remR3SetPage(CPUState *env, CPUTLBEntry *pTLBEntry, CPUTLBEntry *pTLBEntryIgnored, int prot, int is_user)
1379{
1380 target_ulong virt_addr;
1381 if (env->pVM->rem.s.fIgnoreSetPage || env->pVM->rem.s.fIgnoreAll)
1382 return;
1383 Assert(env->pVM->rem.s.fInREM || env->pVM->rem.s.fInStateSync);
1384
1385#ifndef PGM_DYNAMIC_RAM_ALLOC
1386 if(!is_user && !(env->state & CPU_RAW_RING0))
1387 return; /* We are currently not interested in kernel pages */
1388#endif
1389
1390#if !defined(PGM_DYNAMIC_RAM_ALLOC) && !defined(REM_PHYS_ADDR_IN_TLB)
1391 Log2(("tlb_set_page_raw (r=%x|w=%x)-%x prot %x is_user %d phys base %x\n",
1392 pTLBEntry->addr_read, pTLBEntry->addr_write, pTLBEntry->addend, prot, is_user, phys_ram_base));
1393#else /* PGM_DYNAMIC_RAM_ALLOC */
1394 Log2(("tlb_set_page_raw (r=%x|w=%x)-%x prot %x is_user %d\n",
1395 pTLBEntry->addr_read, pTLBEntry->addr_write, pTLBEntry->addend, prot, is_user));
1396#endif/* PGM_DYNAMIC_RAM_ALLOC */
1397
1398 /*
1399 * Extract the virtual address.
1400 */
1401 if (prot & PAGE_WRITE)
1402 virt_addr = pTLBEntry->addr_write;
1403 else if (prot & PAGE_READ)
1404 virt_addr = pTLBEntry->addr_read;
1405 else
1406 AssertMsgFailedReturnVoid(("tlb_set_page_raw unexpected protection flags %x\n", prot));
1407 virt_addr &= TARGET_PAGE_MASK;
1408
1409 /*
1410 * Update the control registers before calling PGMFlushPage.
1411 */
1412 PCPUMCTX pCtx = (PCPUMCTX)env->pVM->rem.s.pCtx;
1413 pCtx->cr0 = env->cr[0];
1414 pCtx->cr3 = env->cr[3];
1415 pCtx->cr4 = env->cr[4];
1416
1417 /*
1418 * Let PGM do the rest.
1419 */
1420 int rc = PGMInvalidatePage(env->pVM, (RTGCPTR)virt_addr);
1421 if (VBOX_FAILURE(rc))
1422 {
1423#ifdef VBOX_STRICT
1424 target_ulong addend = pTLBEntry->addend;
1425 target_ulong phys_addr;
1426
1427 if (!(addend & IO_MEM_ROM))
1428# ifdef REM_PHYS_ADDR_IN_TLB
1429 phys_addr = virt_addr + addend;
1430# elif defined(PGM_DYNAMIC_RAM_ALLOC)
1431 phys_addr = remR3HCVirt2GCPhysInlined(env->pVM, (void *)(virt_addr + addend));
1432# else
1433 phys_addr = virt_addr - (uintptr_t)phys_ram_base + addend;
1434# endif
1435 else
1436 phys_addr = addend;
1437 AssertMsgFailed(("RAWEx_SetPageEntry %x %x %x %d failed!!\n", virt_addr, phys_addr, prot, is_user));
1438#endif /* VBOX_STRICT */
1439 VM_FF_SET(env->pVM, VM_FF_PGM_SYNC_CR3);
1440 }
1441}
1442
1443/**
1444 * Called from tlb_protect_code in order to write monitor a code page.
1445 *
1446 * @param env Pointer to the CPU environment.
1447 * @param GCPtr Code page to monitor
1448 */
1449void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1450{
1451 Assert(env->pVM->rem.s.fInREM);
1452 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1453 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1454 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1455 && !(env->eflags & VM_MASK) /* no V86 mode */
1456 && !HWACCMIsEnabled(env->pVM))
1457 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1458}
1459
1460/**
1461 * Called when the CPU is initialized, any of the CRx registers are changed or
1462 * when the A20 line is modified.
1463 *
1464 * @param env Pointer to the CPU environment.
1465 * @param fGlobal Set if the flush is global.
1466 */
1467void remR3FlushTLB(CPUState *env, bool fGlobal)
1468{
1469 PVM pVM = env->pVM;
1470
1471 /*
1472 * When we're replaying invlpg instructions or restoring a saved
1473 * state we disable this path.
1474 */
1475 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1476 return;
1477 Assert(pVM->rem.s.fInREM);
1478
1479 /*
1480 * The caller doesn't check cr4, so we have to do that for ourselves.
1481 */
1482 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1483 fGlobal = true;
1484 Log(("remR3FlushTLB: CR0=%VGp CR3=%VGp CR4=%VGp %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1485
1486 /*
1487 * Update the control registers before calling PGMR3FlushTLB.
1488 */
1489 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1490 pCtx->cr0 = env->cr[0];
1491 pCtx->cr3 = env->cr[3];
1492 pCtx->cr4 = env->cr[4];
1493
1494 /*
1495 * Let PGM do the rest.
1496 */
1497 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1498}
1499
1500
1501/**
1502 * Called when any of the cr0, cr4 or efer registers is updated.
1503 *
1504 * @param env Pointer to the CPU environment.
1505 */
1506void remR3ChangeCpuMode(CPUState *env)
1507{
1508 int rc;
1509 PVM pVM = env->pVM;
1510
1511 /*
1512 * When we're replaying loads or restoring a saved
1513 * state this path is disabled.
1514 */
1515 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1516 return;
1517 Assert(pVM->rem.s.fInREM);
1518
1519 /*
1520 * Update the control registers before calling PGMR3ChangeMode()
1521 * as it may need to map whatever cr3 is pointing to.
1522 */
1523 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1524 pCtx->cr0 = env->cr[0];
1525 pCtx->cr3 = env->cr[3];
1526 pCtx->cr4 = env->cr[4];
1527
1528#ifdef TARGET_X86_64
1529 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1530 if (rc != VINF_SUCCESS)
1531 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1532#else
1533 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1534 if (rc != VINF_SUCCESS)
1535 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1536#endif
1537}
1538
1539
1540/**
1541 * Called from compiled code to run dma.
1542 *
1543 * @param env Pointer to the CPU environment.
1544 */
1545void remR3DmaRun(CPUState *env)
1546{
1547 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1548 PDMR3DmaRun(env->pVM);
1549 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1550}
1551
1552/**
1553 * Called from compiled code to schedule pending timers in VMM
1554 *
1555 * @param env Pointer to the CPU environment.
1556 */
1557void remR3TimersRun(CPUState *env)
1558{
1559 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1560 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1561 TMR3TimerQueuesDo(env->pVM);
1562 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1563 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1564}
1565
1566/**
1567 * Record trap occurance
1568 *
1569 * @returns VBox status code
1570 * @param env Pointer to the CPU environment.
1571 * @param uTrap Trap nr
1572 * @param uErrorCode Error code
1573 * @param pvNextEIP Next EIP
1574 */
1575int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1576{
1577 PVM pVM = (PVM)env->pVM;
1578#ifdef VBOX_WITH_STATISTICS
1579 static STAMCOUNTER aStatTrap[255];
1580 static bool aRegisters[ELEMENTS(aStatTrap)];
1581#endif
1582
1583#ifdef VBOX_WITH_STATISTICS
1584 if (uTrap < 255)
1585 {
1586 if (!aRegisters[uTrap])
1587 {
1588 aRegisters[uTrap] = true;
1589 char szStatName[64];
1590 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1591 STAM_REG(env->pVM, &aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1592 }
1593 STAM_COUNTER_INC(&aStatTrap[uTrap]);
1594 }
1595#endif
1596 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1597 if( uTrap < 0x20
1598 && (env->cr[0] & X86_CR0_PE))
1599 {
1600#ifdef DEBUG
1601 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1602#endif
1603 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1604 {
1605 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1606 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1607 return VERR_REM_TOO_MANY_TRAPS;
1608 }
1609 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1610 pVM->rem.s.cPendingExceptions = 1;
1611 pVM->rem.s.uPendingException = uTrap;
1612 pVM->rem.s.uPendingExcptEIP = env->eip;
1613 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1614 }
1615 else
1616 {
1617 pVM->rem.s.cPendingExceptions = 0;
1618 pVM->rem.s.uPendingException = uTrap;
1619 pVM->rem.s.uPendingExcptEIP = env->eip;
1620 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1621 }
1622 return VINF_SUCCESS;
1623}
1624
1625/*
1626 * Clear current active trap
1627 *
1628 * @param pVM VM Handle.
1629 */
1630void remR3TrapClear(PVM pVM)
1631{
1632 pVM->rem.s.cPendingExceptions = 0;
1633 pVM->rem.s.uPendingException = 0;
1634 pVM->rem.s.uPendingExcptEIP = 0;
1635 pVM->rem.s.uPendingExcptCR2 = 0;
1636}
1637
1638
1639/**
1640 * Syncs the internal REM state with the VM.
1641 *
1642 * This must be called before REMR3Run() is invoked whenever when the REM
1643 * state is not up to date. Calling it several times in a row is not
1644 * permitted.
1645 *
1646 * @returns VBox status code.
1647 *
1648 * @param pVM VM Handle.
1649 *
1650 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1651 * no do this since the majority of the callers don't want any unnecessary of events
1652 * pending that would immediatly interrupt execution.
1653 */
1654REMR3DECL(int) REMR3State(PVM pVM)
1655{
1656 Log2(("REMR3State:\n"));
1657 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1658 register const CPUMCTX *pCtx = pVM->rem.s.pCtx;
1659 register unsigned fFlags;
1660 bool fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1661
1662 Assert(!pVM->rem.s.fInREM);
1663 pVM->rem.s.fInStateSync = true;
1664
1665 /*
1666 * Copy the registers which requires no special handling.
1667 */
1668 Assert(R_EAX == 0);
1669 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1670 Assert(R_ECX == 1);
1671 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1672 Assert(R_EDX == 2);
1673 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1674 Assert(R_EBX == 3);
1675 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1676 Assert(R_ESP == 4);
1677 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1678 Assert(R_EBP == 5);
1679 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1680 Assert(R_ESI == 6);
1681 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1682 Assert(R_EDI == 7);
1683 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1684 pVM->rem.s.Env.eip = pCtx->eip;
1685
1686 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1687
1688 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1689
1690 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1691 pVM->rem.s.Env.dr[0] = pCtx->dr0;
1692 pVM->rem.s.Env.dr[1] = pCtx->dr1;
1693 pVM->rem.s.Env.dr[2] = pCtx->dr2;
1694 pVM->rem.s.Env.dr[3] = pCtx->dr3;
1695 pVM->rem.s.Env.dr[4] = pCtx->dr4;
1696 pVM->rem.s.Env.dr[5] = pCtx->dr5;
1697 pVM->rem.s.Env.dr[6] = pCtx->dr6;
1698 pVM->rem.s.Env.dr[7] = pCtx->dr7;
1699
1700 /*
1701 * Clear the halted hidden flag (the interrupt waking up the CPU can
1702 * have been dispatched in raw mode).
1703 */
1704 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1705
1706 /* Set current CPL */
1707 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1708
1709 /*
1710 * Replay invlpg?
1711 */
1712 if (pVM->rem.s.cInvalidatedPages)
1713 {
1714 pVM->rem.s.fIgnoreInvlPg = true;
1715 RTUINT i;
1716 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1717 {
1718 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1719 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1720 }
1721 pVM->rem.s.fIgnoreInvlPg = false;
1722 pVM->rem.s.cInvalidatedPages = 0;
1723 }
1724
1725 /*
1726 * Registers which are rarely changed and require special handling / order when changed.
1727 */
1728 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1729 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1730 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1731 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR))
1732 {
1733 if (fFlags & CPUM_CHANGED_FPU_REM)
1734 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1735
1736 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1737 {
1738 pVM->rem.s.fIgnoreCR3Load = true;
1739 tlb_flush(&pVM->rem.s.Env, true);
1740 pVM->rem.s.fIgnoreCR3Load = false;
1741 }
1742
1743 if (fFlags & CPUM_CHANGED_CR4)
1744 {
1745 pVM->rem.s.fIgnoreCR3Load = true;
1746 pVM->rem.s.fIgnoreCpuMode = true;
1747 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1748 pVM->rem.s.fIgnoreCpuMode = false;
1749 pVM->rem.s.fIgnoreCR3Load = false;
1750 }
1751
1752 if (fFlags & CPUM_CHANGED_CR0)
1753 {
1754 pVM->rem.s.fIgnoreCR3Load = true;
1755 pVM->rem.s.fIgnoreCpuMode = true;
1756 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1757 pVM->rem.s.fIgnoreCpuMode = false;
1758 pVM->rem.s.fIgnoreCR3Load = false;
1759 }
1760
1761 if (fFlags & CPUM_CHANGED_CR3)
1762 {
1763 pVM->rem.s.fIgnoreCR3Load = true;
1764 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1765 pVM->rem.s.fIgnoreCR3Load = false;
1766 }
1767
1768 if (fFlags & CPUM_CHANGED_GDTR)
1769 {
1770 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1771 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1772 }
1773
1774 if (fFlags & CPUM_CHANGED_IDTR)
1775 {
1776 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1777 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1778 }
1779
1780 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1781 {
1782 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1783 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1784 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1785 }
1786
1787 if (fFlags & CPUM_CHANGED_LDTR)
1788 {
1789 if (fHiddenSelRegsValid)
1790 {
1791 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1792 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u32Base;
1793 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1794 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1795 }
1796 else
1797 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1798 }
1799
1800 if (fFlags & CPUM_CHANGED_TR)
1801 {
1802 if (fHiddenSelRegsValid)
1803 {
1804 pVM->rem.s.Env.tr.selector = pCtx->tr;
1805 pVM->rem.s.Env.tr.base = pCtx->trHid.u32Base;
1806 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1807 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1808 }
1809 else
1810 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1811
1812 /** @note do_interrupt will fault if the busy flag is still set.... */
1813 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1814 }
1815 }
1816
1817 /*
1818 * Update selector registers.
1819 * This must be done *after* we've synced gdt, ldt and crX registers
1820 * since we're reading the GDT/LDT om sync_seg. This will happen with
1821 * saved state which takes a quick dip into rawmode for instance.
1822 */
1823 /*
1824 * Stack; Note first check this one as the CPL might have changed. The
1825 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1826 */
1827
1828 if (fHiddenSelRegsValid)
1829 {
1830 /* The hidden selector registers are valid in the CPU context. */
1831 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1832
1833 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u32Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1834 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u32Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1835 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u32Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1836 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u32Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1837 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u32Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1838 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u32Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1839 }
1840 else
1841 {
1842 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1843 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1844 {
1845 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1846
1847 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1848#ifdef VBOX_WITH_STATISTICS
1849 if (pVM->rem.s.Env.segs[R_SS].newselector)
1850 {
1851 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1852 }
1853#endif
1854 }
1855 else
1856 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1857
1858 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1859 {
1860 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1861 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1862#ifdef VBOX_WITH_STATISTICS
1863 if (pVM->rem.s.Env.segs[R_ES].newselector)
1864 {
1865 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1866 }
1867#endif
1868 }
1869 else
1870 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1871
1872 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1873 {
1874 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1875 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1876#ifdef VBOX_WITH_STATISTICS
1877 if (pVM->rem.s.Env.segs[R_CS].newselector)
1878 {
1879 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1880 }
1881#endif
1882 }
1883 else
1884 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1885
1886 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1887 {
1888 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1889 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1890#ifdef VBOX_WITH_STATISTICS
1891 if (pVM->rem.s.Env.segs[R_DS].newselector)
1892 {
1893 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1894 }
1895#endif
1896 }
1897 else
1898 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1899
1900 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1901 * be the same but not the base/limit. */
1902 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1903 {
1904 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1905 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1906#ifdef VBOX_WITH_STATISTICS
1907 if (pVM->rem.s.Env.segs[R_FS].newselector)
1908 {
1909 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1910 }
1911#endif
1912 }
1913 else
1914 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1915
1916 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1917 {
1918 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1919 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1920#ifdef VBOX_WITH_STATISTICS
1921 if (pVM->rem.s.Env.segs[R_GS].newselector)
1922 {
1923 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1924 }
1925#endif
1926 }
1927 else
1928 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1929 }
1930
1931 /*
1932 * Check for traps.
1933 */
1934 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1935 TRPMEVENT enmType;
1936 uint8_t u8TrapNo;
1937 int rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
1938 if (VBOX_SUCCESS(rc))
1939 {
1940 #ifdef DEBUG
1941 if (u8TrapNo == 0x80)
1942 {
1943 remR3DumpLnxSyscall(pVM);
1944 remR3DumpOBsdSyscall(pVM);
1945 }
1946 #endif
1947
1948 pVM->rem.s.Env.exception_index = u8TrapNo;
1949 if (enmType != TRPM_SOFTWARE_INT)
1950 {
1951 pVM->rem.s.Env.exception_is_int = 0;
1952 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
1953 }
1954 else
1955 {
1956 /*
1957 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
1958 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
1959 * for int03 and into.
1960 */
1961 pVM->rem.s.Env.exception_is_int = 1;
1962 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 2;
1963 /* int 3 may be generated by one-byte 0xcc */
1964 if (u8TrapNo == 3)
1965 {
1966 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xcc)
1967 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1968 }
1969 /* int 4 may be generated by one-byte 0xce */
1970 else if (u8TrapNo == 4)
1971 {
1972 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xce)
1973 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1974 }
1975 }
1976
1977 /* get error code and cr2 if needed. */
1978 switch (u8TrapNo)
1979 {
1980 case 0x0e:
1981 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
1982 /* fallthru */
1983 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
1984 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
1985 break;
1986
1987 case 0x11: case 0x08:
1988 default:
1989 pVM->rem.s.Env.error_code = 0;
1990 break;
1991 }
1992
1993 /*
1994 * We can now reset the active trap since the recompiler is gonna have a go at it.
1995 */
1996 rc = TRPMResetTrap(pVM);
1997 AssertRC(rc);
1998 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
1999 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
2000 }
2001
2002 /*
2003 * Clear old interrupt request flags; Check for pending hardware interrupts.
2004 * (See @remark for why we don't check for other FFs.)
2005 */
2006 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2007 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2008 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
2009 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2010
2011 /*
2012 * We're now in REM mode.
2013 */
2014 pVM->rem.s.fInREM = true;
2015 pVM->rem.s.fInStateSync = false;
2016 pVM->rem.s.cCanExecuteRaw = 0;
2017 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2018 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2019 return VINF_SUCCESS;
2020}
2021
2022
2023/**
2024 * Syncs back changes in the REM state to the the VM state.
2025 *
2026 * This must be called after invoking REMR3Run().
2027 * Calling it several times in a row is not permitted.
2028 *
2029 * @returns VBox status code.
2030 *
2031 * @param pVM VM Handle.
2032 */
2033REMR3DECL(int) REMR3StateBack(PVM pVM)
2034{
2035 Log2(("REMR3StateBack:\n"));
2036 Assert(pVM->rem.s.fInREM);
2037 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2038 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2039
2040 /*
2041 * Copy back the registers.
2042 * This is done in the order they are declared in the CPUMCTX structure.
2043 */
2044
2045 /** @todo FOP */
2046 /** @todo FPUIP */
2047 /** @todo CS */
2048 /** @todo FPUDP */
2049 /** @todo DS */
2050 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2051 pCtx->fpu.MXCSR = 0;
2052 pCtx->fpu.MXCSR_MASK = 0;
2053
2054 /** @todo check if FPU/XMM was actually used in the recompiler */
2055 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2056//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2057
2058 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2059 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2060 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2061 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2062 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2063 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2064 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2065
2066 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2067 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2068
2069#ifdef VBOX_WITH_STATISTICS
2070 if (pVM->rem.s.Env.segs[R_SS].newselector)
2071 {
2072 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2073 }
2074 if (pVM->rem.s.Env.segs[R_GS].newselector)
2075 {
2076 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2077 }
2078 if (pVM->rem.s.Env.segs[R_FS].newselector)
2079 {
2080 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2081 }
2082 if (pVM->rem.s.Env.segs[R_ES].newselector)
2083 {
2084 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2085 }
2086 if (pVM->rem.s.Env.segs[R_DS].newselector)
2087 {
2088 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2089 }
2090 if (pVM->rem.s.Env.segs[R_CS].newselector)
2091 {
2092 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2093 }
2094#endif
2095 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2096 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2097 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2098 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2099 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2100
2101 pCtx->eip = pVM->rem.s.Env.eip;
2102 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2103
2104 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2105 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2106 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2107 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2108
2109 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2110 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2111 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2112 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2113 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2114 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2115 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2116 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2117
2118 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2119 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2120 {
2121 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2122 STAM_COUNTER_INC(&gStatREMGDTChange);
2123 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2124 }
2125
2126 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2127 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2128 {
2129 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2130 STAM_COUNTER_INC(&gStatREMIDTChange);
2131 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2132 }
2133
2134 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2135 {
2136 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2137 STAM_COUNTER_INC(&gStatREMLDTRChange);
2138 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2139 }
2140 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2141 {
2142 pCtx->tr = pVM->rem.s.Env.tr.selector;
2143 STAM_COUNTER_INC(&gStatREMTRChange);
2144 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2145 }
2146
2147 /** @todo These values could still be out of sync! */
2148 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2149 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2150 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2151 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2152
2153 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2154 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2155 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2156
2157 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2158 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2159 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2160
2161 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2162 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2163 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2164
2165 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2166 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2167 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2168
2169 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2170 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2171 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2172
2173 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2174 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2175 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2176
2177 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2178 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2179 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2180
2181 /* Sysenter MSR */
2182 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2183 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2184 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2185
2186 remR3TrapClear(pVM);
2187
2188 /*
2189 * Check for traps.
2190 */
2191 if ( pVM->rem.s.Env.exception_index >= 0
2192 && pVM->rem.s.Env.exception_index < 256)
2193 {
2194 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2195 int rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2196 AssertRC(rc);
2197 switch (pVM->rem.s.Env.exception_index)
2198 {
2199 case 0x0e:
2200 TRPMSetFaultAddress(pVM, pCtx->cr2);
2201 /* fallthru */
2202 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2203 case 0x11: case 0x08: /* 0 */
2204 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2205 break;
2206 }
2207
2208 }
2209
2210 /*
2211 * We're not longer in REM mode.
2212 */
2213 pVM->rem.s.fInREM = false;
2214 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2215 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2216 return VINF_SUCCESS;
2217}
2218
2219
2220/**
2221 * This is called by the disassembler when it wants to update the cpu state
2222 * before for instance doing a register dump.
2223 */
2224static void remR3StateUpdate(PVM pVM)
2225{
2226 Assert(pVM->rem.s.fInREM);
2227 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2228
2229 /*
2230 * Copy back the registers.
2231 * This is done in the order they are declared in the CPUMCTX structure.
2232 */
2233
2234 /** @todo FOP */
2235 /** @todo FPUIP */
2236 /** @todo CS */
2237 /** @todo FPUDP */
2238 /** @todo DS */
2239 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2240 pCtx->fpu.MXCSR = 0;
2241 pCtx->fpu.MXCSR_MASK = 0;
2242
2243 /** @todo check if FPU/XMM was actually used in the recompiler */
2244 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2245//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2246
2247 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2248 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2249 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2250 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2251 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2252 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2253 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2254
2255 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2256 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2257
2258 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2259 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2260 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2261 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2262 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2263
2264 pCtx->eip = pVM->rem.s.Env.eip;
2265 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2266
2267 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2268 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2269 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2270 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2271
2272 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2273 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2274 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2275 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2276 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2277 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2278 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2279 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2280
2281 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2282 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2283 {
2284 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2285 STAM_COUNTER_INC(&gStatREMGDTChange);
2286 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2287 }
2288
2289 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2290 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2291 {
2292 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2293 STAM_COUNTER_INC(&gStatREMIDTChange);
2294 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2295 }
2296
2297 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2298 {
2299 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2300 STAM_COUNTER_INC(&gStatREMLDTRChange);
2301 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2302 }
2303 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2304 {
2305 pCtx->tr = pVM->rem.s.Env.tr.selector;
2306 STAM_COUNTER_INC(&gStatREMTRChange);
2307 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2308 }
2309
2310 /** @todo These values could still be out of sync! */
2311 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2312 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2313 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2314 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2315
2316 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2317 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2318 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2319
2320 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2321 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2322 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2323
2324 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2325 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2326 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2327
2328 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2329 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2330 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2331
2332 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2333 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2334 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2335
2336 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2337 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2338 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2339
2340 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2341 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2342 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2343
2344 /* Sysenter MSR */
2345 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2346 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2347 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2348}
2349
2350
2351/**
2352 * Update the VMM state information if we're currently in REM.
2353 *
2354 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2355 * we're currently executing in REM and the VMM state is invalid. This method will of
2356 * course check that we're executing in REM before syncing any data over to the VMM.
2357 *
2358 * @param pVM The VM handle.
2359 */
2360REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2361{
2362 if (pVM->rem.s.fInREM)
2363 remR3StateUpdate(pVM);
2364}
2365
2366
2367#undef LOG_GROUP
2368#define LOG_GROUP LOG_GROUP_REM
2369
2370
2371/**
2372 * Notify the recompiler about Address Gate 20 state change.
2373 *
2374 * This notification is required since A20 gate changes are
2375 * initialized from a device driver and the VM might just as
2376 * well be in REM mode as in RAW mode.
2377 *
2378 * @param pVM VM handle.
2379 * @param fEnable True if the gate should be enabled.
2380 * False if the gate should be disabled.
2381 */
2382REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2383{
2384 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2385 VM_ASSERT_EMT(pVM);
2386 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2387}
2388
2389
2390/**
2391 * Replays the invalidated recorded pages.
2392 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2393 *
2394 * @param pVM VM handle.
2395 */
2396REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2397{
2398 VM_ASSERT_EMT(pVM);
2399
2400 /*
2401 * Sync the required registers.
2402 */
2403 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2404 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2405 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2406 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2407
2408 /*
2409 * Replay the flushes.
2410 */
2411 pVM->rem.s.fIgnoreInvlPg = true;
2412 RTUINT i;
2413 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2414 {
2415 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2416 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2417 }
2418 pVM->rem.s.fIgnoreInvlPg = false;
2419 pVM->rem.s.cInvalidatedPages = 0;
2420}
2421
2422
2423/**
2424 * Replays the invalidated recorded pages.
2425 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2426 *
2427 * @param pVM VM handle.
2428 */
2429REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2430{
2431 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2432 VM_ASSERT_EMT(pVM);
2433
2434 /*
2435 * Replay the flushes.
2436 */
2437 RTUINT i;
2438 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2439 pVM->rem.s.cHandlerNotifications = 0;
2440 for (i = 0; i < c; i++)
2441 {
2442 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2443 switch (pRec->enmKind)
2444 {
2445 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2446 REMR3NotifyHandlerPhysicalRegister(pVM,
2447 pRec->u.PhysicalRegister.enmType,
2448 pRec->u.PhysicalRegister.GCPhys,
2449 pRec->u.PhysicalRegister.cb,
2450 pRec->u.PhysicalRegister.fHasHCHandler);
2451 break;
2452
2453 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2454 REMR3NotifyHandlerPhysicalDeregister(pVM,
2455 pRec->u.PhysicalDeregister.enmType,
2456 pRec->u.PhysicalDeregister.GCPhys,
2457 pRec->u.PhysicalDeregister.cb,
2458 pRec->u.PhysicalDeregister.fHasHCHandler,
2459 pRec->u.PhysicalDeregister.pvHCPtr);
2460 break;
2461
2462 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2463 REMR3NotifyHandlerPhysicalModify(pVM,
2464 pRec->u.PhysicalModify.enmType,
2465 pRec->u.PhysicalModify.GCPhysOld,
2466 pRec->u.PhysicalModify.GCPhysNew,
2467 pRec->u.PhysicalModify.cb,
2468 pRec->u.PhysicalModify.fHasHCHandler,
2469 pRec->u.PhysicalModify.pvHCPtr);
2470 break;
2471
2472 default:
2473 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2474 break;
2475 }
2476 }
2477}
2478
2479
2480/**
2481 * Notify REM about changed code page.
2482 *
2483 * @returns VBox status code.
2484 * @param pVM VM handle.
2485 * @param pvCodePage Code page address
2486 */
2487REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2488{
2489 int rc;
2490 RTGCPHYS PhysGC;
2491 uint64_t flags;
2492
2493 VM_ASSERT_EMT(pVM);
2494
2495 /*
2496 * Get the physical page address.
2497 */
2498 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2499 if (rc == VINF_SUCCESS)
2500 {
2501 /*
2502 * Sync the required registers and flush the whole page.
2503 * (Easier to do the whole page than notifying it about each physical
2504 * byte that was changed.
2505 */
2506 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2507 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2508 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2509 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2510
2511 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2512 }
2513 return VINF_SUCCESS;
2514}
2515
2516/**
2517 * Notification about a successful MMR3PhysRegister() call.
2518 *
2519 * @param pVM VM handle.
2520 * @param GCPhys The physical address the RAM.
2521 * @param cb Size of the memory.
2522 * @param pvRam The HC address of the RAM.
2523 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2524 */
2525REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvRam, unsigned fFlags)
2526{
2527 LogFlow(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2528 VM_ASSERT_EMT(pVM);
2529
2530 /*
2531 * Validate input - we trust the caller.
2532 */
2533 Assert(!GCPhys || pvRam);
2534 Assert(RT_ALIGN_P(pvRam, PAGE_SIZE) == pvRam);
2535 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2536 Assert(cb);
2537 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2538
2539 /*
2540 * Base ram?
2541 */
2542 if (!GCPhys)
2543 {
2544#if !defined(PGM_DYNAMIC_RAM_ALLOC) && !defined(REM_PHYS_ADDR_IN_TLB)
2545 AssertRelease(!phys_ram_base);
2546 phys_ram_base = pvRam;
2547#endif
2548 phys_ram_size = cb;
2549 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2550#ifndef VBOX_STRICT
2551 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2552 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2553#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2554 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2555 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2556 uint32_t cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2557 int rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2558 AssertRC(rc);
2559 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2560#endif
2561 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2562 }
2563
2564 /*
2565 * Register the ram.
2566 */
2567 Assert(!pVM->rem.s.fIgnoreAll);
2568 pVM->rem.s.fIgnoreAll = true;
2569
2570#ifdef PGM_DYNAMIC_RAM_ALLOC
2571 if (!GCPhys)
2572 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2573 else
2574 {
2575# ifndef REM_PHYS_ADDR_IN_TLB
2576 uint32_t i;
2577# endif
2578
2579 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2580
2581# ifndef REM_PHYS_ADDR_IN_TLB
2582 AssertRelease(pVM->rem.s.cPhysRegistrations < REM_MAX_PHYS_REGISTRATIONS);
2583 for (i = 0; i < pVM->rem.s.cPhysRegistrations; i++)
2584 {
2585 if (pVM->rem.s.aPhysReg[i].GCPhys == GCPhys)
2586 {
2587 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvRam;
2588 pVM->rem.s.aPhysReg[i].cb = cb;
2589 break;
2590 }
2591 }
2592 if (i == pVM->rem.s.cPhysRegistrations)
2593 {
2594 pVM->rem.s.aPhysReg[i].GCPhys = GCPhys;
2595 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvRam;
2596 pVM->rem.s.aPhysReg[i].cb = cb;
2597 pVM->rem.s.cPhysRegistrations++;
2598 }
2599# endif /* !REM_PHYS_ADDR_IN_TLB */
2600 }
2601#elif defined(REM_PHYS_ADDR_IN_TLB)
2602 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2603#else
2604 AssertRelease(phys_ram_base);
2605 cpu_register_physical_memory(GCPhys, cb, ((uintptr_t)pvRam - (uintptr_t)phys_ram_base)
2606 | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2607#endif
2608 Assert(pVM->rem.s.fIgnoreAll);
2609 pVM->rem.s.fIgnoreAll = false;
2610}
2611
2612
2613/**
2614 * Notification about a successful PGMR3PhysRegisterChunk() call.
2615 *
2616 * @param pVM VM handle.
2617 * @param GCPhys The physical address the RAM.
2618 * @param cb Size of the memory.
2619 * @param pvRam The HC address of the RAM.
2620 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2621 */
2622REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2623{
2624#ifdef PGM_DYNAMIC_RAM_ALLOC
2625# ifndef REM_PHYS_ADDR_IN_TLB
2626 uint32_t idx;
2627#endif
2628
2629 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2630 VM_ASSERT_EMT(pVM);
2631
2632 /*
2633 * Validate input - we trust the caller.
2634 */
2635 Assert(pvRam);
2636 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2637 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2638 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2639 Assert(fFlags == 0 /* normal RAM */);
2640
2641# ifndef REM_PHYS_ADDR_IN_TLB
2642 if (!pVM->rem.s.paHCVirtToGCPhys)
2643 {
2644 uint32_t size = (_4G >> PGM_DYNAMIC_CHUNK_SHIFT) * sizeof(REMCHUNKINFO);
2645
2646 Assert(phys_ram_size);
2647
2648 pVM->rem.s.paHCVirtToGCPhys = (PREMCHUNKINFO)MMR3HeapAllocZ(pVM, MM_TAG_REM, size);
2649 pVM->rem.s.paGCPhysToHCVirt = (RTHCPTR)MMR3HeapAllocZ(pVM, MM_TAG_REM, (phys_ram_size >> PGM_DYNAMIC_CHUNK_SHIFT)*sizeof(RTHCPTR));
2650 }
2651 pVM->rem.s.paGCPhysToHCVirt[GCPhys >> PGM_DYNAMIC_CHUNK_SHIFT] = pvRam;
2652
2653 idx = (pvRam >> PGM_DYNAMIC_CHUNK_SHIFT);
2654 if (!pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1)
2655 {
2656 pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1 = pvRam;
2657 pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 = GCPhys;
2658 }
2659 else
2660 {
2661 Assert(!pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2);
2662 pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2 = pvRam;
2663 pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 = GCPhys;
2664 }
2665 /* Does the region spawn two chunks? */
2666 if (pvRam & PGM_DYNAMIC_CHUNK_OFFSET_MASK)
2667 {
2668 if (!pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk1)
2669 {
2670 pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk1 = pvRam;
2671 pVM->rem.s.paHCVirtToGCPhys[idx+1].GCPhys1 = GCPhys;
2672 }
2673 else
2674 {
2675 Assert(!pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk2);
2676 pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk2 = pvRam;
2677 pVM->rem.s.paHCVirtToGCPhys[idx+1].GCPhys2 = GCPhys;
2678 }
2679 }
2680# endif /* !REM_PHYS_ADDR_IN_TLB */
2681
2682 Assert(!pVM->rem.s.fIgnoreAll);
2683 pVM->rem.s.fIgnoreAll = true;
2684
2685 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2686
2687 Assert(pVM->rem.s.fIgnoreAll);
2688 pVM->rem.s.fIgnoreAll = false;
2689
2690#else
2691 AssertReleaseFailed();
2692#endif
2693}
2694
2695
2696#ifdef PGM_DYNAMIC_RAM_ALLOC
2697# ifndef REM_PHYS_ADDR_IN_TLB
2698#if 0
2699static const uint8_t gabZeroPage[PAGE_SIZE];
2700#endif
2701
2702/**
2703 * Convert GC physical address to HC virt
2704 *
2705 * @returns The HC virt address corresponding to addr.
2706 * @param env The cpu environment.
2707 * @param addr The physical address.
2708 */
2709DECLINLINE(void *) remR3GCPhys2HCVirtInlined(PVM pVM, target_ulong addr)
2710{
2711 uint32_t i;
2712 void *pv;
2713 STAM_PROFILE_START(&gStatGCPhys2HCVirt, a);
2714
2715#if 1
2716 /* lookup in pVM->rem.s.aPhysReg array first (for ROM range(s) inside the guest's RAM) */
2717 for (i = 0; i < pVM->rem.s.cPhysRegistrations; i++)
2718 {
2719 RTGCPHYS off = addr - pVM->rem.s.aPhysReg[i].GCPhys;
2720 if (off < pVM->rem.s.aPhysReg[i].cb)
2721 {
2722 pv = (void *)(pVM->rem.s.aPhysReg[i].HCVirt + off);
2723 Log2(("remR3GCPhys2HCVirt: %x -> %x\n", addr, pv));
2724 STAM_PROFILE_STOP(&gStatGCPhys2HCVirt, a);
2725 return pv;
2726 }
2727 }
2728 AssertMsg(addr < phys_ram_size, ("remR3GCPhys2HCVirt: unknown physical address %x\n", addr));
2729 pv = (void *)(pVM->rem.s.paGCPhysToHCVirt[addr >> PGM_DYNAMIC_CHUNK_SHIFT] + (addr & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
2730 Log2(("remR3GCPhys2HCVirt: %x -> %x\n", addr, pv));
2731#else
2732 /** @todo figure out why this is faster than the above code. */
2733 int rc = PGMPhysGCPhys2HCPtr(pVM, addr & X86_PTE_PAE_PG_MASK, PAGE_SIZE, &pv);
2734 if (RT_FAILURE(rc))
2735 {
2736 AssertMsgFailed(("remR3GCPhys2HCVirt: unknown physical address %x\n", addr));
2737 pv = gabZeroPage;
2738 }
2739 pv = (void *)((uintptr_t)pv | (addr & PAGE_OFFSET_MASK));
2740#endif
2741 return pv;
2742}
2743
2744
2745/**
2746 * Convert GC physical address to HC virt
2747 *
2748 * @returns The HC virt address corresponding to addr.
2749 * @param env The cpu environment.
2750 * @param addr The physical address.
2751 */
2752DECLINLINE(target_ulong) remR3HCVirt2GCPhysInlined(PVM pVM, void *addr)
2753{
2754 RTHCUINTPTR HCVirt = (RTHCUINTPTR)addr;
2755 uint32_t idx = (HCVirt >> PGM_DYNAMIC_CHUNK_SHIFT);
2756 RTHCUINTPTR off;
2757 RTUINT i;
2758 target_ulong GCPhys;
2759
2760 off = HCVirt - pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1;
2761
2762 if ( pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1
2763 && off < PGM_DYNAMIC_CHUNK_SIZE)
2764 {
2765 GCPhys = pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 + off;
2766 Log2(("remR3HCVirt2GCPhys %x -> %x\n", addr, GCPhys));
2767 return GCPhys;
2768 }
2769
2770 off = HCVirt - pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2;
2771 if ( pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2
2772 && off < PGM_DYNAMIC_CHUNK_SIZE)
2773 {
2774 GCPhys = pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 + off;
2775 Log2(("remR3HCVirt2GCPhys %x -> %x\n", addr, GCPhys));
2776 return GCPhys;
2777 }
2778
2779 /* Must be externally registered RAM/ROM range */
2780 for (i = 0; i < pVM->rem.s.cPhysRegistrations; i++)
2781 {
2782 uint32_t off = HCVirt - pVM->rem.s.aPhysReg[i].HCVirt;
2783 if (off < pVM->rem.s.aPhysReg[i].cb)
2784 {
2785 GCPhys = pVM->rem.s.aPhysReg[i].GCPhys + off;
2786 Log2(("remR3HCVirt2GCPhys %x -> %x\n", addr, GCPhys));
2787 return GCPhys;
2788 }
2789 }
2790 AssertReleaseMsgFailed(("No translation for physical address %VHv???\n", addr));
2791 return 0;
2792}
2793
2794/**
2795 * Convert GC physical address to HC virt
2796 *
2797 * @returns The HC virt address corresponding to addr.
2798 * @param env The cpu environment.
2799 * @param addr The physical address.
2800 */
2801void *remR3GCPhys2HCVirt(void *env, target_ulong addr)
2802{
2803 PVM pVM = ((CPUState *)env)->pVM;
2804 void *pv;
2805 STAM_PROFILE_START(&gStatGCPhys2HCVirt, a);
2806 pv = remR3GCPhys2HCVirtInlined(pVM, addr);
2807 STAM_PROFILE_STOP(&gStatGCPhys2HCVirt, a);
2808 return pv;
2809}
2810
2811
2812/**
2813 * Convert GC physical address to HC virt
2814 *
2815 * @returns The HC virt address corresponding to addr.
2816 * @param env The cpu environment.
2817 * @param addr The physical address.
2818 */
2819target_ulong remR3HCVirt2GCPhys(void *env, void *addr)
2820{
2821 PVM pVM = ((CPUState *)env)->pVM;
2822 target_ulong GCPhys;
2823 STAM_PROFILE_START(&gStatHCVirt2GCPhys, a);
2824 GCPhys = remR3HCVirt2GCPhysInlined(pVM, addr);
2825 STAM_PROFILE_STOP(&gStatHCVirt2GCPhys, a);
2826 return GCPhys;
2827}
2828
2829# endif /* !REM_PHYS_ADDR_IN_TLB */
2830
2831/**
2832 * Grows dynamically allocated guest RAM.
2833 * Will raise a fatal error if the operation fails.
2834 *
2835 * @param physaddr The physical address.
2836 */
2837void remR3GrowDynRange(unsigned long physaddr)
2838{
2839 int rc;
2840 PVM pVM = cpu_single_env->pVM;
2841
2842 Log(("remR3GrowDynRange %VGp\n", physaddr));
2843 rc = PGM3PhysGrowRange(pVM, (RTGCPHYS)physaddr);
2844 if (VBOX_SUCCESS(rc))
2845 return;
2846
2847 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2848 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2849 AssertFatalFailed();
2850}
2851
2852#endif /* PGM_DYNAMIC_RAM_ALLOC */
2853
2854
2855/**
2856 * Notification about a successful MMR3PhysRomRegister() call.
2857 *
2858 * @param pVM VM handle.
2859 * @param GCPhys The physical address of the ROM.
2860 * @param cb The size of the ROM.
2861 * @param pvCopy Pointer to the ROM copy.
2862 */
2863REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy)
2864{
2865#if defined(PGM_DYNAMIC_RAM_ALLOC) && !defined(REM_PHYS_ADDR_IN_TLB)
2866 uint32_t i;
2867#endif
2868 LogFlow(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p\n", GCPhys, cb, pvCopy));
2869 VM_ASSERT_EMT(pVM);
2870
2871 /*
2872 * Validate input - we trust the caller.
2873 */
2874 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2875 Assert(cb);
2876 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2877 Assert(pvCopy);
2878 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2879
2880 /*
2881 * Register the rom.
2882 */
2883 Assert(!pVM->rem.s.fIgnoreAll);
2884 pVM->rem.s.fIgnoreAll = true;
2885
2886#ifdef REM_PHYS_ADDR_IN_TLB
2887 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_ROM);
2888#elif defined(PGM_DYNAMIC_RAM_ALLOC)
2889 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_ROM);
2890 AssertRelease(pVM->rem.s.cPhysRegistrations < REM_MAX_PHYS_REGISTRATIONS);
2891 for (i = 0; i < pVM->rem.s.cPhysRegistrations; i++)
2892 {
2893 if (pVM->rem.s.aPhysReg[i].GCPhys == GCPhys)
2894 {
2895 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvCopy;
2896 pVM->rem.s.aPhysReg[i].cb = cb;
2897 break;
2898 }
2899 }
2900 if (i == pVM->rem.s.cPhysRegistrations)
2901 {
2902 pVM->rem.s.aPhysReg[i].GCPhys = GCPhys;
2903 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvCopy;
2904 pVM->rem.s.aPhysReg[i].cb = cb;
2905 pVM->rem.s.cPhysRegistrations++;
2906 }
2907#else
2908 AssertRelease(phys_ram_base);
2909 cpu_register_physical_memory(GCPhys, cb, ((uintptr_t)pvCopy - (uintptr_t)phys_ram_base) | IO_MEM_ROM);
2910#endif
2911
2912 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2913
2914 Assert(pVM->rem.s.fIgnoreAll);
2915 pVM->rem.s.fIgnoreAll = false;
2916}
2917
2918
2919/**
2920 * Notification about a successful MMR3PhysRegister() call.
2921 *
2922 * @param pVM VM Handle.
2923 * @param GCPhys Start physical address.
2924 * @param cb The size of the range.
2925 */
2926REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2927{
2928 LogFlow(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2929 VM_ASSERT_EMT(pVM);
2930
2931 /*
2932 * Validate input - we trust the caller.
2933 */
2934 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2935 Assert(cb);
2936 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2937
2938 /*
2939 * Unassigning the memory.
2940 */
2941 Assert(!pVM->rem.s.fIgnoreAll);
2942 pVM->rem.s.fIgnoreAll = true;
2943
2944 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2945
2946 Assert(pVM->rem.s.fIgnoreAll);
2947 pVM->rem.s.fIgnoreAll = false;
2948}
2949
2950
2951/**
2952 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2953 *
2954 * @param pVM VM Handle.
2955 * @param enmType Handler type.
2956 * @param GCPhys Handler range address.
2957 * @param cb Size of the handler range.
2958 * @param fHasHCHandler Set if the handler has a HC callback function.
2959 *
2960 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2961 * Handler memory type to memory which has no HC handler.
2962 */
2963REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2964{
2965 LogFlow(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d\n",
2966 enmType, GCPhys, cb, fHasHCHandler));
2967 VM_ASSERT_EMT(pVM);
2968 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2969 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2970
2971 if (pVM->rem.s.cHandlerNotifications)
2972 REMR3ReplayHandlerNotifications(pVM);
2973
2974 Assert(!pVM->rem.s.fIgnoreAll);
2975 pVM->rem.s.fIgnoreAll = true;
2976
2977 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2978 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2979 else if (fHasHCHandler)
2980 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2981
2982 Assert(pVM->rem.s.fIgnoreAll);
2983 pVM->rem.s.fIgnoreAll = false;
2984}
2985
2986
2987/**
2988 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2989 *
2990 * @param pVM VM Handle.
2991 * @param enmType Handler type.
2992 * @param GCPhys Handler range address.
2993 * @param cb Size of the handler range.
2994 * @param fHasHCHandler Set if the handler has a HC callback function.
2995 * @param pvHCPtr The HC virtual address corresponding to GCPhys if available.
2996 */
2997REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, void *pvHCPtr)
2998{
2999 LogFlow(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d pvHCPtr=%p RAM=%08x\n",
3000 enmType, GCPhys, cb, fHasHCHandler, pvHCPtr, MMR3PhysGetRamSize(pVM)));
3001 VM_ASSERT_EMT(pVM);
3002
3003 if (pVM->rem.s.cHandlerNotifications)
3004 REMR3ReplayHandlerNotifications(pVM);
3005
3006 Assert(!pVM->rem.s.fIgnoreAll);
3007 pVM->rem.s.fIgnoreAll = true;
3008
3009 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
3010 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
3011 else if (fHasHCHandler)
3012 {
3013 if (!pvHCPtr)
3014 {
3015 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
3016 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
3017 }
3018 else
3019 {
3020 /* This is not perfect, but it'll do for PD monitoring... */
3021 Assert(cb == PAGE_SIZE);
3022 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
3023#ifdef REM_PHYS_ADDR_IN_TLB
3024 cpu_register_physical_memory(GCPhys, cb, GCPhys);
3025#elif defined(PGM_DYNAMIC_RAM_ALLOC)
3026 Assert(remR3HCVirt2GCPhysInlined(pVM, pvHCPtr) < MMR3PhysGetRamSize(pVM));
3027 cpu_register_physical_memory(GCPhys, cb, GCPhys);
3028#else
3029 Assert((uintptr_t)pvHCPtr - (uintptr_t)phys_ram_base < MMR3PhysGetRamSize(pVM));
3030 cpu_register_physical_memory(GCPhys, cb, (uintptr_t)pvHCPtr - (uintptr_t)phys_ram_base);
3031#endif
3032 }
3033 }
3034
3035 Assert(pVM->rem.s.fIgnoreAll);
3036 pVM->rem.s.fIgnoreAll = false;
3037}
3038
3039
3040/**
3041 * Notification about a successful PGMR3HandlerPhysicalModify() call.
3042 *
3043 * @param pVM VM Handle.
3044 * @param enmType Handler type.
3045 * @param GCPhysOld Old handler range address.
3046 * @param GCPhysNew New handler range address.
3047 * @param cb Size of the handler range.
3048 * @param fHasHCHandler Set if the handler has a HC callback function.
3049 * @param pvHCPtr The HC virtual address corresponding to GCPhys if available.
3050 */
3051REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, void *pvHCPtr)
3052{
3053 LogFlow(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%d fHasHCHandler=%d pvHCPtr=%p\n",
3054 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, pvHCPtr));
3055 VM_ASSERT_EMT(pVM);
3056 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
3057
3058 if (pVM->rem.s.cHandlerNotifications)
3059 REMR3ReplayHandlerNotifications(pVM);
3060
3061 if (fHasHCHandler)
3062 {
3063 Assert(!pVM->rem.s.fIgnoreAll);
3064 pVM->rem.s.fIgnoreAll = true;
3065
3066 /*
3067 * Reset the old page.
3068 */
3069 if (!pvHCPtr)
3070 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
3071 else
3072 {
3073 /* This is not perfect, but it'll do for PD monitoring... */
3074 Assert(cb == PAGE_SIZE);
3075 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
3076#ifdef REM_PHYS_ADDR_IN_TLB
3077 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
3078#elif defined(PGM_DYNAMIC_RAM_ALLOC)
3079 Assert(remR3HCVirt2GCPhysInlined(pVM, pvHCPtr) < MMR3PhysGetRamSize(pVM));
3080 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
3081#else
3082 AssertMsg((uintptr_t)pvHCPtr - (uintptr_t)phys_ram_base < MMR3PhysGetRamSize(pVM),
3083 ("pvHCPtr=%p phys_ram_base=%p size=%RX64 cb=%RGp\n", pvHCPtr, phys_ram_base, MMR3PhysGetRamSize(pVM), cb));
3084 cpu_register_physical_memory(GCPhysOld, cb, (uintptr_t)pvHCPtr - (uintptr_t)phys_ram_base);
3085#endif
3086 }
3087
3088 /*
3089 * Update the new page.
3090 */
3091 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
3092 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
3093 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
3094
3095 Assert(pVM->rem.s.fIgnoreAll);
3096 pVM->rem.s.fIgnoreAll = false;
3097 }
3098}
3099
3100
3101/**
3102 * Checks if we're handling access to this page or not.
3103 *
3104 * @returns true if we're trapping access.
3105 * @returns false if we aren't.
3106 * @param pVM The VM handle.
3107 * @param GCPhys The physical address.
3108 *
3109 * @remark This function will only work correctly in VBOX_STRICT builds!
3110 */
3111REMDECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
3112{
3113#ifdef VBOX_STRICT
3114 if (pVM->rem.s.cHandlerNotifications)
3115 REMR3ReplayHandlerNotifications(pVM);
3116
3117 unsigned long off = get_phys_page_offset(GCPhys);
3118 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
3119 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
3120 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
3121#else
3122 return false;
3123#endif
3124}
3125
3126
3127/**
3128 * Deals with a rare case in get_phys_addr_code where the code
3129 * is being monitored.
3130 *
3131 * It could also be an MMIO page, in which case we will raise a fatal error.
3132 *
3133 * @returns The physical address corresponding to addr.
3134 * @param env The cpu environment.
3135 * @param addr The virtual address.
3136 * @param pTLBEntry The TLB entry.
3137 */
3138target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
3139{
3140 PVM pVM = env->pVM;
3141 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
3142 {
3143 target_ulong ret = pTLBEntry->addend + addr;
3144 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv addr_code=%VGv addend=%VGp ret=%VGp\n",
3145 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
3146 return ret;
3147 }
3148 LogRel(("\nTrying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
3149 "*** handlers\n",
3150 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
3151 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
3152 LogRel(("*** mmio\n"));
3153 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
3154 LogRel(("*** phys\n"));
3155 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
3156 cpu_abort(env, "Trying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
3157 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
3158 AssertFatalFailed();
3159}
3160
3161
3162/** Validate the physical address passed to the read functions.
3163 * Useful for finding non-guest-ram reads/writes. */
3164#if 1 /* disable if it becomes bothersome... */
3165# define VBOX_CHECK_ADDR(GCPhys) AssertMsg(PGMPhysIsGCPhysValid(cpu_single_env->pVM, (GCPhys)), ("%VGp\n", (GCPhys)))
3166#else
3167# define VBOX_CHECK_ADDR(GCPhys) do { } while (0)
3168#endif
3169
3170/**
3171 * Read guest RAM and ROM.
3172 *
3173 * @param SrcGCPhys The source address (guest physical).
3174 * @param pvDst The destination address.
3175 * @param cb Number of bytes
3176 */
3177void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3178{
3179 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3180 VBOX_CHECK_ADDR(SrcGCPhys);
3181 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3182 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3183}
3184
3185
3186/**
3187 * Read guest RAM and ROM, unsigned 8-bit.
3188 *
3189 * @param SrcGCPhys The source address (guest physical).
3190 */
3191uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3192{
3193 uint8_t val;
3194 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3195 VBOX_CHECK_ADDR(SrcGCPhys);
3196 val = PGMR3PhysReadByte(cpu_single_env->pVM, SrcGCPhys);
3197 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3198 return val;
3199}
3200
3201
3202/**
3203 * Read guest RAM and ROM, signed 8-bit.
3204 *
3205 * @param SrcGCPhys The source address (guest physical).
3206 */
3207int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3208{
3209 int8_t val;
3210 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3211 VBOX_CHECK_ADDR(SrcGCPhys);
3212 val = PGMR3PhysReadByte(cpu_single_env->pVM, SrcGCPhys);
3213 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3214 return val;
3215}
3216
3217
3218/**
3219 * Read guest RAM and ROM, unsigned 16-bit.
3220 *
3221 * @param SrcGCPhys The source address (guest physical).
3222 */
3223uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3224{
3225 uint16_t val;
3226 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3227 VBOX_CHECK_ADDR(SrcGCPhys);
3228 val = PGMR3PhysReadWord(cpu_single_env->pVM, SrcGCPhys);
3229 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3230 return val;
3231}
3232
3233
3234/**
3235 * Read guest RAM and ROM, signed 16-bit.
3236 *
3237 * @param SrcGCPhys The source address (guest physical).
3238 */
3239int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3240{
3241 uint16_t val;
3242 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3243 VBOX_CHECK_ADDR(SrcGCPhys);
3244 val = PGMR3PhysReadWord(cpu_single_env->pVM, SrcGCPhys);
3245 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3246 return val;
3247}
3248
3249
3250/**
3251 * Read guest RAM and ROM, unsigned 32-bit.
3252 *
3253 * @param SrcGCPhys The source address (guest physical).
3254 */
3255uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3256{
3257 uint32_t val;
3258 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3259 VBOX_CHECK_ADDR(SrcGCPhys);
3260 val = PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys);
3261 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3262 return val;
3263}
3264
3265
3266/**
3267 * Read guest RAM and ROM, signed 32-bit.
3268 *
3269 * @param SrcGCPhys The source address (guest physical).
3270 */
3271int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3272{
3273 int32_t val;
3274 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3275 VBOX_CHECK_ADDR(SrcGCPhys);
3276 val = PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys);
3277 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3278 return val;
3279}
3280
3281
3282/**
3283 * Read guest RAM and ROM, unsigned 64-bit.
3284 *
3285 * @param SrcGCPhys The source address (guest physical).
3286 */
3287uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3288{
3289 uint64_t val;
3290 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3291 VBOX_CHECK_ADDR(SrcGCPhys);
3292 val = PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys)
3293 | ((uint64_t)PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys + 4) << 32); /** @todo fix me! */
3294 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3295 return val;
3296}
3297
3298
3299/**
3300 * Write guest RAM.
3301 *
3302 * @param DstGCPhys The destination address (guest physical).
3303 * @param pvSrc The source address.
3304 * @param cb Number of bytes to write
3305 */
3306void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3307{
3308 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3309 VBOX_CHECK_ADDR(DstGCPhys);
3310 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3311 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3312}
3313
3314
3315/**
3316 * Write guest RAM, unsigned 8-bit.
3317 *
3318 * @param DstGCPhys The destination address (guest physical).
3319 * @param val Value
3320 */
3321void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3322{
3323 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3324 VBOX_CHECK_ADDR(DstGCPhys);
3325 PGMR3PhysWriteByte(cpu_single_env->pVM, DstGCPhys, val);
3326 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3327}
3328
3329
3330/**
3331 * Write guest RAM, unsigned 8-bit.
3332 *
3333 * @param DstGCPhys The destination address (guest physical).
3334 * @param val Value
3335 */
3336void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3337{
3338 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3339 VBOX_CHECK_ADDR(DstGCPhys);
3340 PGMR3PhysWriteWord(cpu_single_env->pVM, DstGCPhys, val);
3341 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3342}
3343
3344
3345/**
3346 * Write guest RAM, unsigned 32-bit.
3347 *
3348 * @param DstGCPhys The destination address (guest physical).
3349 * @param val Value
3350 */
3351void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3352{
3353 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3354 VBOX_CHECK_ADDR(DstGCPhys);
3355 PGMR3PhysWriteDword(cpu_single_env->pVM, DstGCPhys, val);
3356 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3357}
3358
3359
3360/**
3361 * Write guest RAM, unsigned 64-bit.
3362 *
3363 * @param DstGCPhys The destination address (guest physical).
3364 * @param val Value
3365 */
3366void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3367{
3368 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3369 VBOX_CHECK_ADDR(DstGCPhys);
3370 PGMR3PhysWriteDword(cpu_single_env->pVM, DstGCPhys, (uint32_t)val); /** @todo add U64 interface. */
3371 PGMR3PhysWriteDword(cpu_single_env->pVM, DstGCPhys + 4, val >> 32);
3372 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3373}
3374
3375
3376#ifndef REM_PHYS_ADDR_IN_TLB
3377
3378/**
3379 * Read guest RAM and ROM.
3380 *
3381 * @param pbSrcPhys The source address. Relative to guest RAM.
3382 * @param pvDst The destination address.
3383 * @param cb Number of bytes
3384 */
3385void remR3PhysReadHCPtr(uint8_t *pbSrcPhys, void *pvDst, unsigned cb)
3386{
3387 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3388
3389 /*
3390 * Calc the physical address ('off') and check that it's within the RAM.
3391 * ROM is accessed this way, even if it's not part of the RAM.
3392 */
3393#ifdef PGM_DYNAMIC_RAM_ALLOC
3394 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3395#else
3396 uintptr_t off = pbSrcPhys - phys_ram_base;
3397#endif
3398 PGMPhysRead(cpu_single_env->pVM, (RTGCPHYS)off, pvDst, cb);
3399 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3400}
3401
3402
3403/**
3404 * Read guest RAM and ROM, unsigned 8-bit.
3405 *
3406 * @param pbSrcPhys The source address. Relative to guest RAM.
3407 */
3408uint8_t remR3PhysReadHCPtrU8(uint8_t *pbSrcPhys)
3409{
3410 uint8_t val;
3411
3412 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3413
3414 /*
3415 * Calc the physical address ('off') and check that it's within the RAM.
3416 * ROM is accessed this way, even if it's not part of the RAM.
3417 */
3418#ifdef PGM_DYNAMIC_RAM_ALLOC
3419 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3420#else
3421 uintptr_t off = pbSrcPhys - phys_ram_base;
3422#endif
3423 val = PGMR3PhysReadByte(cpu_single_env->pVM, (RTGCPHYS)off);
3424 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3425 return val;
3426}
3427
3428
3429/**
3430 * Read guest RAM and ROM, signed 8-bit.
3431 *
3432 * @param pbSrcPhys The source address. Relative to guest RAM.
3433 */
3434int8_t remR3PhysReadHCPtrS8(uint8_t *pbSrcPhys)
3435{
3436 int8_t val;
3437
3438 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3439
3440 /*
3441 * Calc the physical address ('off') and check that it's within the RAM.
3442 * ROM is accessed this way, even if it's not part of the RAM.
3443 */
3444#ifdef PGM_DYNAMIC_RAM_ALLOC
3445 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3446#else
3447 uintptr_t off = pbSrcPhys - phys_ram_base;
3448#endif
3449 val = PGMR3PhysReadByte(cpu_single_env->pVM, (RTGCPHYS)off);
3450 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3451 return val;
3452}
3453
3454
3455/**
3456 * Read guest RAM and ROM, unsigned 16-bit.
3457 *
3458 * @param pbSrcPhys The source address. Relative to guest RAM.
3459 */
3460uint16_t remR3PhysReadHCPtrU16(uint8_t *pbSrcPhys)
3461{
3462 uint16_t val;
3463
3464 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3465
3466 /*
3467 * Calc the physical address ('off') and check that it's within the RAM.
3468 * ROM is accessed this way, even if it's not part of the RAM.
3469 */
3470#ifdef PGM_DYNAMIC_RAM_ALLOC
3471 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3472#else
3473 uintptr_t off = pbSrcPhys - phys_ram_base;
3474#endif
3475 val = PGMR3PhysReadWord(cpu_single_env->pVM, (RTGCPHYS)off);
3476 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3477 return val;
3478}
3479
3480
3481/**
3482 * Read guest RAM and ROM, signed 16-bit.
3483 *
3484 * @param pbSrcPhys The source address. Relative to guest RAM.
3485 */
3486int16_t remR3PhysReadHCPtrS16(uint8_t *pbSrcPhys)
3487{
3488 int16_t val;
3489
3490 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3491
3492 /*
3493 * Calc the physical address ('off') and check that it's within the RAM.
3494 * ROM is accessed this way, even if it's not part of the RAM.
3495 */
3496 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3497#ifdef PGM_DYNAMIC_RAM_ALLOC
3498 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3499#else
3500 uintptr_t off = pbSrcPhys - phys_ram_base;
3501#endif
3502 val = PGMR3PhysReadWord(cpu_single_env->pVM, (RTGCPHYS)off);
3503 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3504 return val;
3505}
3506
3507
3508/**
3509 * Read guest RAM and ROM, unsigned 32-bit.
3510 *
3511 * @param pbSrcPhys The source address. Relative to guest RAM.
3512 */
3513uint32_t remR3PhysReadHCPtrU32(uint8_t *pbSrcPhys)
3514{
3515 uint32_t val;
3516
3517 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3518
3519 /*
3520 * Calc the physical address ('off') and check that it's within the RAM.
3521 * ROM is accessed this way, even if it's not part of the RAM.
3522 */
3523#ifdef PGM_DYNAMIC_RAM_ALLOC
3524 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3525#else
3526 uintptr_t off = pbSrcPhys - phys_ram_base;
3527#endif
3528 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off);
3529 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3530 return val;
3531}
3532
3533
3534/**
3535 * Read guest RAM and ROM, signed 32-bit.
3536 *
3537 * @param pbSrcPhys The source address. Relative to guest RAM.
3538 */
3539int32_t remR3PhysReadHCPtrS32(uint8_t *pbSrcPhys)
3540{
3541 int32_t val;
3542
3543 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3544
3545 /*
3546 * Calc the physical address ('off') and check that it's within the RAM.
3547 * ROM is accessed this way, even if it's not part of the RAM.
3548 */
3549#ifdef PGM_DYNAMIC_RAM_ALLOC
3550 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3551#else
3552 uintptr_t off = pbSrcPhys - phys_ram_base;
3553#endif
3554 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off);
3555 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3556 return val;
3557}
3558
3559
3560/**
3561 * Read guest RAM and ROM, unsigned 64-bit.
3562 *
3563 * @param pbSrcPhys The source address. Relative to guest RAM.
3564 */
3565uint64_t remR3PhysReadHCPtrU64(uint8_t *pbSrcPhys)
3566{
3567 uint64_t val;
3568
3569 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3570
3571 /*
3572 * Calc the physical address ('off') and check that it's within the RAM.
3573 * ROM is accessed this way, even if it's not part of the RAM.
3574 */
3575#ifdef PGM_DYNAMIC_RAM_ALLOC
3576 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3577#else
3578 uintptr_t off = pbSrcPhys - phys_ram_base;
3579#endif
3580 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off)
3581 | ((uint64_t)PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off + 4) << 32); /** @todo fix me! */
3582 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3583 return val;
3584}
3585
3586
3587/**
3588 * Write guest RAM.
3589 *
3590 * @param pbDstPhys The destination address. Relative to guest RAM.
3591 * @param pvSrc The source address.
3592 * @param cb Number of bytes to write
3593 */
3594void remR3PhysWriteHCPtr(uint8_t *pbDstPhys, const void *pvSrc, unsigned cb)
3595{
3596 STAM_PROFILE_ADV_START(&gStatMemWriteHCPtr, a);
3597 /*
3598 * Calc the physical address ('off') and check that it's within the RAM.
3599 */
3600#ifdef PGM_DYNAMIC_RAM_ALLOC
3601 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbDstPhys);
3602#else
3603 uintptr_t off = pbDstPhys - phys_ram_base;
3604#endif
3605 PGMPhysWrite(cpu_single_env->pVM, (RTGCPHYS)off, pvSrc, cb);
3606 STAM_PROFILE_ADV_STOP(&gStatMemWriteHCPtr, a);
3607}
3608
3609
3610/**
3611 * Write guest RAM, unsigned 8-bit.
3612 *
3613 * @param pbDstPhys The destination address. Relative to guest RAM.
3614 * @param val Value
3615 */
3616void remR3PhysWriteHCPtrU8(uint8_t *pbDstPhys, uint8_t val)
3617{
3618 STAM_PROFILE_ADV_START(&gStatMemWriteHCPtr, a);
3619 /*
3620 * Calc the physical address ('off') and check that it's within the RAM.
3621 */
3622#ifdef PGM_DYNAMIC_RAM_ALLOC
3623 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbDstPhys);
3624#else
3625 uintptr_t off = pbDstPhys - phys_ram_base;
3626#endif
3627 PGMR3PhysWriteByte(cpu_single_env->pVM, (RTGCPHYS)off, val);
3628 STAM_PROFILE_ADV_STOP(&gStatMemWriteHCPtr, a);
3629}
3630
3631
3632/**
3633 * Write guest RAM, unsigned 16-bit.
3634 *
3635 * @param pbDstPhys The destination address. Relative to guest RAM.
3636 * @param val Value
3637 */
3638void remR3PhysWriteHCPtrU16(uint8_t *pbDstPhys, uint16_t val)
3639{
3640 STAM_PROFILE_ADV_START(&gStatMemWriteHCPtr, a);
3641 /*
3642 * Calc the physical address ('off') and check that it's within the RAM.
3643 */
3644#ifdef PGM_DYNAMIC_RAM_ALLOC
3645 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbDstPhys);
3646#else
3647 uintptr_t off = pbDstPhys - phys_ram_base;
3648#endif
3649 PGMR3PhysWriteWord(cpu_single_env->pVM, (RTGCPHYS)off, val);
3650 STAM_PROFILE_ADV_STOP(&gStatMemWriteHCPtr, a);
3651}
3652
3653
3654/**
3655 * Write guest RAM, unsigned 32-bit.
3656 *
3657 * @param pbDstPhys The destination address. Relative to guest RAM.
3658 * @param val Value
3659 */
3660void remR3PhysWriteHCPtrU32(uint8_t *pbDstPhys, uint32_t val)
3661{
3662 STAM_PROFILE_ADV_START(&gStatMemWriteHCPtr, a);
3663 /*
3664 * Calc the physical address ('off') and check that it's within the RAM.
3665 */
3666#ifdef PGM_DYNAMIC_RAM_ALLOC
3667 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbDstPhys);
3668#else
3669 uintptr_t off = pbDstPhys - phys_ram_base;
3670#endif
3671 PGMR3PhysWriteDword(cpu_single_env->pVM, (RTGCPHYS)off, val);
3672 STAM_PROFILE_ADV_STOP(&gStatMemWriteHCPtr, a);
3673}
3674
3675
3676/**
3677 * Write guest RAM, unsigned 64-bit.
3678 *
3679 * @param pbDstPhys The destination address. Relative to guest RAM.
3680 * @param val Value
3681 */
3682void remR3PhysWriteHCPtrU64(uint8_t *pbDstPhys, uint64_t val)
3683{
3684 STAM_PROFILE_ADV_START(&gStatMemWriteHCPtr, a);
3685 /*
3686 * Calc the physical address ('off') and check that it's within the RAM.
3687 */
3688#ifdef PGM_DYNAMIC_RAM_ALLOC
3689 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbDstPhys);
3690#else
3691 uintptr_t off = pbDstPhys - phys_ram_base;
3692#endif
3693 PGMR3PhysWriteDword(cpu_single_env->pVM, (RTGCPHYS)off, (uint32_t)val); /** @todo add U64 interface. */
3694 PGMR3PhysWriteDword(cpu_single_env->pVM, (RTGCPHYS)off + 4, val >> 32);
3695 STAM_PROFILE_ADV_STOP(&gStatMemWriteHCPtr, a);
3696}
3697
3698#endif /* !REM_PHYS_ADDR_IN_TLB */
3699
3700
3701#undef LOG_GROUP
3702#define LOG_GROUP LOG_GROUP_REM_MMIO
3703
3704/** Read MMIO memory. */
3705static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3706{
3707 uint32_t u32 = 0;
3708 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3709 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3710 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3711 return u32;
3712}
3713
3714/** Read MMIO memory. */
3715static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3716{
3717 uint32_t u32 = 0;
3718 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3719 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3720 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3721 return u32;
3722}
3723
3724/** Read MMIO memory. */
3725static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3726{
3727 uint32_t u32 = 0;
3728 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3729 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3730 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3731 return u32;
3732}
3733
3734/** Write to MMIO memory. */
3735static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3736{
3737 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3738 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3739 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3740}
3741
3742/** Write to MMIO memory. */
3743static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3744{
3745 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3746 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3747 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3748}
3749
3750/** Write to MMIO memory. */
3751static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3752{
3753 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3754 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3755 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3756}
3757
3758
3759#undef LOG_GROUP
3760#define LOG_GROUP LOG_GROUP_REM_HANDLER
3761
3762/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3763
3764static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3765{
3766 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3767 uint8_t u8;
3768 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3769 return u8;
3770}
3771
3772static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3773{
3774 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3775 uint16_t u16;
3776 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3777 return u16;
3778}
3779
3780static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3781{
3782 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3783 uint32_t u32;
3784 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3785 return u32;
3786}
3787
3788static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3789{
3790 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3791 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3792}
3793
3794static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3795{
3796 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3797 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3798}
3799
3800static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3801{
3802 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3803 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3804}
3805
3806/* -+- disassembly -+- */
3807
3808#undef LOG_GROUP
3809#define LOG_GROUP LOG_GROUP_REM_DISAS
3810
3811
3812/**
3813 * Enables or disables singled stepped disassembly.
3814 *
3815 * @returns VBox status code.
3816 * @param pVM VM handle.
3817 * @param fEnable To enable set this flag, to disable clear it.
3818 */
3819static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3820{
3821 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3822 VM_ASSERT_EMT(pVM);
3823
3824 if (fEnable)
3825 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3826 else
3827 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3828 return VINF_SUCCESS;
3829}
3830
3831
3832/**
3833 * Enables or disables singled stepped disassembly.
3834 *
3835 * @returns VBox status code.
3836 * @param pVM VM handle.
3837 * @param fEnable To enable set this flag, to disable clear it.
3838 */
3839REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3840{
3841 PVMREQ pReq;
3842 int rc;
3843
3844 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3845 if (VM_IS_EMT(pVM))
3846 return remR3DisasEnableStepping(pVM, fEnable);
3847
3848 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3849 AssertRC(rc);
3850 if (VBOX_SUCCESS(rc))
3851 rc = pReq->iStatus;
3852 VMR3ReqFree(pReq);
3853 return rc;
3854}
3855
3856
3857#ifdef VBOX_WITH_DEBUGGER
3858/**
3859 * External Debugger Command: .remstep [on|off|1|0]
3860 */
3861static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3862{
3863 bool fEnable;
3864 int rc;
3865
3866 /* print status */
3867 if (cArgs == 0)
3868 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3869 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3870
3871 /* convert the argument and change the mode. */
3872 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3873 if (VBOX_FAILURE(rc))
3874 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3875 rc = REMR3DisasEnableStepping(pVM, fEnable);
3876 if (VBOX_FAILURE(rc))
3877 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3878 return rc;
3879}
3880#endif
3881
3882
3883/**
3884 * Disassembles n instructions and prints them to the log.
3885 *
3886 * @returns Success indicator.
3887 * @param env Pointer to the recompiler CPU structure.
3888 * @param f32BitCode Indicates that whether or not the code should
3889 * be disassembled as 16 or 32 bit. If -1 the CS
3890 * selector will be inspected.
3891 * @param nrInstructions Nr of instructions to disassemble
3892 * @param pszPrefix
3893 * @remark not currently used for anything but ad-hoc debugging.
3894 */
3895bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3896{
3897 int i;
3898
3899 /*
3900 * Determin 16/32 bit mode.
3901 */
3902 if (f32BitCode == -1)
3903 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3904
3905 /*
3906 * Convert cs:eip to host context address.
3907 * We don't care to much about cross page correctness presently.
3908 */
3909 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3910 void *pvPC;
3911 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3912 {
3913 /* convert eip to physical address. */
3914 int rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3915 GCPtrPC,
3916 env->cr[3],
3917 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3918 &pvPC);
3919 if (VBOX_FAILURE(rc))
3920 {
3921 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3922 return false;
3923 pvPC = (char *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3924 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3925 }
3926 }
3927 else
3928 {
3929 /* physical address */
3930 int rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16, &pvPC);
3931 if (VBOX_FAILURE(rc))
3932 return false;
3933 }
3934
3935 /*
3936 * Disassemble.
3937 */
3938 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
3939 DISCPUSTATE Cpu;
3940 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3941 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3942 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3943 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3944 //Cpu.dwUserData[2] = GCPtrPC;
3945
3946 for (i=0;i<nrInstructions;i++)
3947 {
3948 char szOutput[256];
3949 uint32_t cbOp;
3950 if (!DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0]))
3951 return false;
3952 if (pszPrefix)
3953 Log(("%s: %s", pszPrefix, szOutput));
3954 else
3955 Log(("%s", szOutput));
3956
3957 pvPC += cbOp;
3958 }
3959 return true;
3960}
3961
3962
3963/** @todo need to test the new code, using the old code in the mean while. */
3964#define USE_OLD_DUMP_AND_DISASSEMBLY
3965
3966/**
3967 * Disassembles one instruction and prints it to the log.
3968 *
3969 * @returns Success indicator.
3970 * @param env Pointer to the recompiler CPU structure.
3971 * @param f32BitCode Indicates that whether or not the code should
3972 * be disassembled as 16 or 32 bit. If -1 the CS
3973 * selector will be inspected.
3974 * @param pszPrefix
3975 */
3976bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3977{
3978#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3979 PVM pVM = env->pVM;
3980
3981 /*
3982 * Determin 16/32 bit mode.
3983 */
3984 if (f32BitCode == -1)
3985 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3986
3987 /*
3988 * Log registers
3989 */
3990 if (LogIs2Enabled())
3991 {
3992 remR3StateUpdate(pVM);
3993 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3994 }
3995
3996 /*
3997 * Convert cs:eip to host context address.
3998 * We don't care to much about cross page correctness presently.
3999 */
4000 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
4001 void *pvPC;
4002 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
4003 {
4004 /* convert eip to physical address. */
4005 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
4006 GCPtrPC,
4007 env->cr[3],
4008 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
4009 &pvPC);
4010 if (VBOX_FAILURE(rc))
4011 {
4012 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
4013 return false;
4014 pvPC = (char *)PATMR3QueryPatchMemHC(pVM, NULL)
4015 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
4016 }
4017 }
4018 else
4019 {
4020
4021 /* physical address */
4022 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, &pvPC);
4023 if (VBOX_FAILURE(rc))
4024 return false;
4025 }
4026
4027 /*
4028 * Disassemble.
4029 */
4030 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
4031 DISCPUSTATE Cpu;
4032 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
4033 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
4034 //Cpu.dwUserData[0] = (uintptr_t)pVM;
4035 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
4036 //Cpu.dwUserData[2] = GCPtrPC;
4037 char szOutput[256];
4038 uint32_t cbOp;
4039 if (!DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0]))
4040 return false;
4041
4042 if (!f32BitCode)
4043 {
4044 if (pszPrefix)
4045 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
4046 else
4047 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
4048 }
4049 else
4050 {
4051 if (pszPrefix)
4052 Log(("%s: %s", pszPrefix, szOutput));
4053 else
4054 Log(("%s", szOutput));
4055 }
4056 return true;
4057
4058#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
4059 PVM pVM = env->pVM;
4060 const bool fLog = LogIsEnabled();
4061 const bool fLog2 = LogIs2Enabled();
4062 int rc = VINF_SUCCESS;
4063
4064 /*
4065 * Don't bother if there ain't any log output to do.
4066 */
4067 if (!fLog && !fLog2)
4068 return true;
4069
4070 /*
4071 * Update the state so DBGF reads the correct register values.
4072 */
4073 remR3StateUpdate(pVM);
4074
4075 /*
4076 * Log registers if requested.
4077 */
4078 if (!fLog2)
4079 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
4080
4081 /*
4082 * Disassemble to log.
4083 */
4084 if (fLog)
4085 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
4086
4087 return VBOX_SUCCESS(rc);
4088#endif
4089}
4090
4091
4092/**
4093 * Disassemble recompiled code.
4094 *
4095 * @param phFileIgnored Ignored, logfile usually.
4096 * @param pvCode Pointer to the code block.
4097 * @param cb Size of the code block.
4098 */
4099void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
4100{
4101 if (LogIs2Enabled())
4102 {
4103 unsigned off = 0;
4104 char szOutput[256];
4105 DISCPUSTATE Cpu = {0};
4106 Cpu.mode = CPUMODE_32BIT;
4107
4108 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
4109 while (off < cb)
4110 {
4111 uint32_t cbInstr;
4112 if (DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput))
4113 RTLogPrintf("%s", szOutput);
4114 else
4115 {
4116 RTLogPrintf("disas error\n");
4117 cbInstr = 1;
4118 }
4119 off += cbInstr;
4120 }
4121 }
4122 NOREF(phFileIgnored);
4123}
4124
4125
4126/**
4127 * Disassemble guest code.
4128 *
4129 * @param phFileIgnored Ignored, logfile usually.
4130 * @param uCode The guest address of the code to disassemble. (flat?)
4131 * @param cb Number of bytes to disassemble.
4132 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
4133 */
4134void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
4135{
4136 if (LogIs2Enabled())
4137 {
4138 PVM pVM = cpu_single_env->pVM;
4139
4140 /*
4141 * Update the state so DBGF reads the correct register values (flags).
4142 */
4143 remR3StateUpdate(pVM);
4144
4145 /*
4146 * Do the disassembling.
4147 */
4148 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
4149 RTSEL cs = cpu_single_env->segs[R_CS].selector;
4150 RTGCUINTPTR eip = uCode - cpu_single_env->segs[R_CS].base;
4151 for (;;)
4152 {
4153 char szBuf[256];
4154 uint32_t cbInstr;
4155 int rc = DBGFR3DisasInstrEx(pVM,
4156 cs,
4157 eip,
4158 0,
4159 szBuf, sizeof(szBuf),
4160 &cbInstr);
4161 if (VBOX_SUCCESS(rc))
4162 RTLogPrintf("%VGp %s\n", uCode, szBuf);
4163 else
4164 {
4165 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
4166 cbInstr = 1;
4167 }
4168
4169 /* next */
4170 if (cb <= cbInstr)
4171 break;
4172 cb -= cbInstr;
4173 uCode += cbInstr;
4174 eip += cbInstr;
4175 }
4176 }
4177 NOREF(phFileIgnored);
4178}
4179
4180
4181/**
4182 * Looks up a guest symbol.
4183 *
4184 * @returns Pointer to symbol name. This is a static buffer.
4185 * @param orig_addr The address in question.
4186 */
4187const char *lookup_symbol(target_ulong orig_addr)
4188{
4189 RTGCINTPTR off = 0;
4190 DBGFSYMBOL Sym;
4191 PVM pVM = cpu_single_env->pVM;
4192 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
4193 if (VBOX_SUCCESS(rc))
4194 {
4195 static char szSym[sizeof(Sym.szName) + 48];
4196 if (!off)
4197 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
4198 else if (off > 0)
4199 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
4200 else
4201 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
4202 return szSym;
4203 }
4204 return "<N/A>";
4205}
4206
4207
4208#undef LOG_GROUP
4209#define LOG_GROUP LOG_GROUP_REM
4210
4211
4212/* -+- FF notifications -+- */
4213
4214
4215/**
4216 * Notification about a pending interrupt.
4217 *
4218 * @param pVM VM Handle.
4219 * @param u8Interrupt Interrupt
4220 * @thread The emulation thread.
4221 */
4222REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
4223{
4224 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
4225 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
4226}
4227
4228/**
4229 * Notification about a pending interrupt.
4230 *
4231 * @returns Pending interrupt or REM_NO_PENDING_IRQ
4232 * @param pVM VM Handle.
4233 * @thread The emulation thread.
4234 */
4235REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
4236{
4237 return pVM->rem.s.u32PendingInterrupt;
4238}
4239
4240/**
4241 * Notification about the interrupt FF being set.
4242 *
4243 * @param pVM VM Handle.
4244 * @thread The emulation thread.
4245 */
4246REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
4247{
4248 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
4249 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
4250 if (pVM->rem.s.fInREM)
4251 {
4252 if (VM_IS_EMT(pVM))
4253 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
4254 else
4255 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_HARD);
4256 }
4257}
4258
4259
4260/**
4261 * Notification about the interrupt FF being set.
4262 *
4263 * @param pVM VM Handle.
4264 * @thread The emulation thread.
4265 */
4266REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
4267{
4268 LogFlow(("REMR3NotifyInterruptClear:\n"));
4269 VM_ASSERT_EMT(pVM);
4270 if (pVM->rem.s.fInREM)
4271 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
4272}
4273
4274
4275/**
4276 * Notification about pending timer(s).
4277 *
4278 * @param pVM VM Handle.
4279 * @thread Any.
4280 */
4281REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
4282{
4283#ifndef DEBUG_bird
4284 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
4285#endif
4286 if (pVM->rem.s.fInREM)
4287 {
4288 if (VM_IS_EMT(pVM))
4289 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
4290 else
4291 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_TIMER);
4292 }
4293}
4294
4295
4296/**
4297 * Notification about pending DMA transfers.
4298 *
4299 * @param pVM VM Handle.
4300 * @thread Any.
4301 */
4302REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
4303{
4304 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
4305 if (pVM->rem.s.fInREM)
4306 {
4307 if (VM_IS_EMT(pVM))
4308 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
4309 else
4310 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_DMA);
4311 }
4312}
4313
4314
4315/**
4316 * Notification about pending timer(s).
4317 *
4318 * @param pVM VM Handle.
4319 * @thread Any.
4320 */
4321REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
4322{
4323 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
4324 if (pVM->rem.s.fInREM)
4325 {
4326 if (VM_IS_EMT(pVM))
4327 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
4328 else
4329 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
4330 }
4331}
4332
4333
4334/**
4335 * Notification about pending FF set by an external thread.
4336 *
4337 * @param pVM VM handle.
4338 * @thread Any.
4339 */
4340REMR3DECL(void) REMR3NotifyFF(PVM pVM)
4341{
4342 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
4343 if (pVM->rem.s.fInREM)
4344 {
4345 if (VM_IS_EMT(pVM))
4346 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
4347 else
4348 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
4349 }
4350}
4351
4352
4353#ifdef VBOX_WITH_STATISTICS
4354void remR3ProfileStart(int statcode)
4355{
4356 STAMPROFILEADV *pStat;
4357 switch(statcode)
4358 {
4359 case STATS_EMULATE_SINGLE_INSTR:
4360 pStat = &gStatExecuteSingleInstr;
4361 break;
4362 case STATS_QEMU_COMPILATION:
4363 pStat = &gStatCompilationQEmu;
4364 break;
4365 case STATS_QEMU_RUN_EMULATED_CODE:
4366 pStat = &gStatRunCodeQEmu;
4367 break;
4368 case STATS_QEMU_TOTAL:
4369 pStat = &gStatTotalTimeQEmu;
4370 break;
4371 case STATS_QEMU_RUN_TIMERS:
4372 pStat = &gStatTimers;
4373 break;
4374 case STATS_TLB_LOOKUP:
4375 pStat= &gStatTBLookup;
4376 break;
4377 case STATS_IRQ_HANDLING:
4378 pStat= &gStatIRQ;
4379 break;
4380 case STATS_RAW_CHECK:
4381 pStat = &gStatRawCheck;
4382 break;
4383
4384 default:
4385 AssertMsgFailed(("unknown stat %d\n", statcode));
4386 return;
4387 }
4388 STAM_PROFILE_ADV_START(pStat, a);
4389}
4390
4391
4392void remR3ProfileStop(int statcode)
4393{
4394 STAMPROFILEADV *pStat;
4395 switch(statcode)
4396 {
4397 case STATS_EMULATE_SINGLE_INSTR:
4398 pStat = &gStatExecuteSingleInstr;
4399 break;
4400 case STATS_QEMU_COMPILATION:
4401 pStat = &gStatCompilationQEmu;
4402 break;
4403 case STATS_QEMU_RUN_EMULATED_CODE:
4404 pStat = &gStatRunCodeQEmu;
4405 break;
4406 case STATS_QEMU_TOTAL:
4407 pStat = &gStatTotalTimeQEmu;
4408 break;
4409 case STATS_QEMU_RUN_TIMERS:
4410 pStat = &gStatTimers;
4411 break;
4412 case STATS_TLB_LOOKUP:
4413 pStat= &gStatTBLookup;
4414 break;
4415 case STATS_IRQ_HANDLING:
4416 pStat= &gStatIRQ;
4417 break;
4418 case STATS_RAW_CHECK:
4419 pStat = &gStatRawCheck;
4420 break;
4421 default:
4422 AssertMsgFailed(("unknown stat %d\n", statcode));
4423 return;
4424 }
4425 STAM_PROFILE_ADV_STOP(pStat, a);
4426}
4427#endif
4428
4429/**
4430 * Raise an RC, force rem exit.
4431 *
4432 * @param pVM VM handle.
4433 * @param rc The rc.
4434 */
4435void remR3RaiseRC(PVM pVM, int rc)
4436{
4437 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
4438 Assert(pVM->rem.s.fInREM);
4439 VM_ASSERT_EMT(pVM);
4440 pVM->rem.s.rc = rc;
4441 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
4442}
4443
4444
4445/* -+- timers -+- */
4446
4447uint64_t cpu_get_tsc(CPUX86State *env)
4448{
4449 STAM_COUNTER_INC(&gStatCpuGetTSC);
4450 return TMCpuTickGet(env->pVM);
4451}
4452
4453
4454/* -+- interrupts -+- */
4455
4456void cpu_set_ferr(CPUX86State *env)
4457{
4458 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
4459 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4460}
4461
4462int cpu_get_pic_interrupt(CPUState *env)
4463{
4464 uint8_t u8Interrupt;
4465 int rc;
4466
4467 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4468 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4469 * with the (a)pic.
4470 */
4471 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4472 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4473 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4474 * remove this kludge. */
4475 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4476 {
4477 rc = VINF_SUCCESS;
4478 Assert(env->pVM->rem.s.u32PendingInterrupt >= 0 && env->pVM->rem.s.u32PendingInterrupt <= 255);
4479 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4480 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4481 }
4482 else
4483 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4484
4485 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
4486 if (VBOX_SUCCESS(rc))
4487 {
4488 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4489 env->interrupt_request |= CPU_INTERRUPT_HARD;
4490 return u8Interrupt;
4491 }
4492 return -1;
4493}
4494
4495
4496/* -+- local apic -+- */
4497
4498void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4499{
4500 int rc = PDMApicSetBase(env->pVM, val);
4501 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
4502}
4503
4504uint64_t cpu_get_apic_base(CPUX86State *env)
4505{
4506 uint64_t u64;
4507 int rc = PDMApicGetBase(env->pVM, &u64);
4508 if (VBOX_SUCCESS(rc))
4509 {
4510 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4511 return u64;
4512 }
4513 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
4514 return 0;
4515}
4516
4517void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4518{
4519 int rc = PDMApicSetTPR(env->pVM, val);
4520 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
4521}
4522
4523uint8_t cpu_get_apic_tpr(CPUX86State *env)
4524{
4525 uint8_t u8;
4526 int rc = PDMApicGetTPR(env->pVM, &u8);
4527 if (VBOX_SUCCESS(rc))
4528 {
4529 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4530 return u8;
4531 }
4532 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
4533 return 0;
4534}
4535
4536
4537/* -+- I/O Ports -+- */
4538
4539#undef LOG_GROUP
4540#define LOG_GROUP LOG_GROUP_REM_IOPORT
4541
4542void cpu_outb(CPUState *env, int addr, int val)
4543{
4544 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4545 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4546
4547 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4548 if (rc == VINF_SUCCESS)
4549 return;
4550 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4551 {
4552 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4553 remR3RaiseRC(env->pVM, rc);
4554 return;
4555 }
4556 remAbort(rc, __FUNCTION__);
4557}
4558
4559void cpu_outw(CPUState *env, int addr, int val)
4560{
4561 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4562 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4563 if (rc == VINF_SUCCESS)
4564 return;
4565 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4566 {
4567 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4568 remR3RaiseRC(env->pVM, rc);
4569 return;
4570 }
4571 remAbort(rc, __FUNCTION__);
4572}
4573
4574void cpu_outl(CPUState *env, int addr, int val)
4575{
4576 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4577 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4578 if (rc == VINF_SUCCESS)
4579 return;
4580 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4581 {
4582 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4583 remR3RaiseRC(env->pVM, rc);
4584 return;
4585 }
4586 remAbort(rc, __FUNCTION__);
4587}
4588
4589int cpu_inb(CPUState *env, int addr)
4590{
4591 uint32_t u32 = 0;
4592 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4593 if (rc == VINF_SUCCESS)
4594 {
4595 if (/*addr != 0x61 && */addr != 0x71)
4596 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4597 return (int)u32;
4598 }
4599 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4600 {
4601 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4602 remR3RaiseRC(env->pVM, rc);
4603 return (int)u32;
4604 }
4605 remAbort(rc, __FUNCTION__);
4606 return 0xff;
4607}
4608
4609int cpu_inw(CPUState *env, int addr)
4610{
4611 uint32_t u32 = 0;
4612 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4613 if (rc == VINF_SUCCESS)
4614 {
4615 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4616 return (int)u32;
4617 }
4618 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4619 {
4620 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4621 remR3RaiseRC(env->pVM, rc);
4622 return (int)u32;
4623 }
4624 remAbort(rc, __FUNCTION__);
4625 return 0xffff;
4626}
4627
4628int cpu_inl(CPUState *env, int addr)
4629{
4630 uint32_t u32 = 0;
4631 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4632 if (rc == VINF_SUCCESS)
4633 {
4634//if (addr==0x01f0 && u32 == 0x6b6d)
4635// loglevel = ~0;
4636 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4637 return (int)u32;
4638 }
4639 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4640 {
4641 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4642 remR3RaiseRC(env->pVM, rc);
4643 return (int)u32;
4644 }
4645 remAbort(rc, __FUNCTION__);
4646 return 0xffffffff;
4647}
4648
4649#undef LOG_GROUP
4650#define LOG_GROUP LOG_GROUP_REM
4651
4652
4653/* -+- helpers and misc other interfaces -+- */
4654
4655/**
4656 * Perform the CPUID instruction.
4657 *
4658 * ASMCpuId cannot be invoked from some source files where this is used because of global
4659 * register allocations.
4660 *
4661 * @param env Pointer to the recompiler CPU structure.
4662 * @param uOperator CPUID operation (eax).
4663 * @param pvEAX Where to store eax.
4664 * @param pvEBX Where to store ebx.
4665 * @param pvECX Where to store ecx.
4666 * @param pvEDX Where to store edx.
4667 */
4668void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4669{
4670 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4671}
4672
4673
4674#if 0 /* not used */
4675/**
4676 * Interface for qemu hardware to report back fatal errors.
4677 */
4678void hw_error(const char *pszFormat, ...)
4679{
4680 /*
4681 * Bitch about it.
4682 */
4683 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4684 * this in my Odin32 tree at home! */
4685 va_list args;
4686 va_start(args, pszFormat);
4687 RTLogPrintf("fatal error in virtual hardware:");
4688 RTLogPrintfV(pszFormat, args);
4689 va_end(args);
4690 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4691
4692 /*
4693 * If we're in REM context we'll sync back the state before 'jumping' to
4694 * the EMs failure handling.
4695 */
4696 PVM pVM = cpu_single_env->pVM;
4697 if (pVM->rem.s.fInREM)
4698 REMR3StateBack(pVM);
4699 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4700 AssertMsgFailed(("EMR3FatalError returned!\n"));
4701}
4702#endif
4703
4704/**
4705 * Interface for the qemu cpu to report unhandled situation
4706 * raising a fatal VM error.
4707 */
4708void cpu_abort(CPUState *env, const char *pszFormat, ...)
4709{
4710 /*
4711 * Bitch about it.
4712 */
4713 RTLogFlags(NULL, "nodisabled nobuffered");
4714 va_list args;
4715 va_start(args, pszFormat);
4716 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4717 va_end(args);
4718 va_start(args, pszFormat);
4719 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4720 va_end(args);
4721
4722 /*
4723 * If we're in REM context we'll sync back the state before 'jumping' to
4724 * the EMs failure handling.
4725 */
4726 PVM pVM = cpu_single_env->pVM;
4727 if (pVM->rem.s.fInREM)
4728 REMR3StateBack(pVM);
4729 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4730 AssertMsgFailed(("EMR3FatalError returned!\n"));
4731}
4732
4733
4734/**
4735 * Aborts the VM.
4736 *
4737 * @param rc VBox error code.
4738 * @param pszTip Hint about why/when this happend.
4739 */
4740static void remAbort(int rc, const char *pszTip)
4741{
4742 /*
4743 * Bitch about it.
4744 */
4745 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4746 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4747
4748 /*
4749 * Jump back to where we entered the recompiler.
4750 */
4751 PVM pVM = cpu_single_env->pVM;
4752 if (pVM->rem.s.fInREM)
4753 REMR3StateBack(pVM);
4754 EMR3FatalError(pVM, rc);
4755 AssertMsgFailed(("EMR3FatalError returned!\n"));
4756}
4757
4758
4759/**
4760 * Dumps a linux system call.
4761 * @param pVM VM handle.
4762 */
4763void remR3DumpLnxSyscall(PVM pVM)
4764{
4765 static const char *apsz[] =
4766 {
4767 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4768 "sys_exit",
4769 "sys_fork",
4770 "sys_read",
4771 "sys_write",
4772 "sys_open", /* 5 */
4773 "sys_close",
4774 "sys_waitpid",
4775 "sys_creat",
4776 "sys_link",
4777 "sys_unlink", /* 10 */
4778 "sys_execve",
4779 "sys_chdir",
4780 "sys_time",
4781 "sys_mknod",
4782 "sys_chmod", /* 15 */
4783 "sys_lchown16",
4784 "sys_ni_syscall", /* old break syscall holder */
4785 "sys_stat",
4786 "sys_lseek",
4787 "sys_getpid", /* 20 */
4788 "sys_mount",
4789 "sys_oldumount",
4790 "sys_setuid16",
4791 "sys_getuid16",
4792 "sys_stime", /* 25 */
4793 "sys_ptrace",
4794 "sys_alarm",
4795 "sys_fstat",
4796 "sys_pause",
4797 "sys_utime", /* 30 */
4798 "sys_ni_syscall", /* old stty syscall holder */
4799 "sys_ni_syscall", /* old gtty syscall holder */
4800 "sys_access",
4801 "sys_nice",
4802 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4803 "sys_sync",
4804 "sys_kill",
4805 "sys_rename",
4806 "sys_mkdir",
4807 "sys_rmdir", /* 40 */
4808 "sys_dup",
4809 "sys_pipe",
4810 "sys_times",
4811 "sys_ni_syscall", /* old prof syscall holder */
4812 "sys_brk", /* 45 */
4813 "sys_setgid16",
4814 "sys_getgid16",
4815 "sys_signal",
4816 "sys_geteuid16",
4817 "sys_getegid16", /* 50 */
4818 "sys_acct",
4819 "sys_umount", /* recycled never used phys() */
4820 "sys_ni_syscall", /* old lock syscall holder */
4821 "sys_ioctl",
4822 "sys_fcntl", /* 55 */
4823 "sys_ni_syscall", /* old mpx syscall holder */
4824 "sys_setpgid",
4825 "sys_ni_syscall", /* old ulimit syscall holder */
4826 "sys_olduname",
4827 "sys_umask", /* 60 */
4828 "sys_chroot",
4829 "sys_ustat",
4830 "sys_dup2",
4831 "sys_getppid",
4832 "sys_getpgrp", /* 65 */
4833 "sys_setsid",
4834 "sys_sigaction",
4835 "sys_sgetmask",
4836 "sys_ssetmask",
4837 "sys_setreuid16", /* 70 */
4838 "sys_setregid16",
4839 "sys_sigsuspend",
4840 "sys_sigpending",
4841 "sys_sethostname",
4842 "sys_setrlimit", /* 75 */
4843 "sys_old_getrlimit",
4844 "sys_getrusage",
4845 "sys_gettimeofday",
4846 "sys_settimeofday",
4847 "sys_getgroups16", /* 80 */
4848 "sys_setgroups16",
4849 "old_select",
4850 "sys_symlink",
4851 "sys_lstat",
4852 "sys_readlink", /* 85 */
4853 "sys_uselib",
4854 "sys_swapon",
4855 "sys_reboot",
4856 "old_readdir",
4857 "old_mmap", /* 90 */
4858 "sys_munmap",
4859 "sys_truncate",
4860 "sys_ftruncate",
4861 "sys_fchmod",
4862 "sys_fchown16", /* 95 */
4863 "sys_getpriority",
4864 "sys_setpriority",
4865 "sys_ni_syscall", /* old profil syscall holder */
4866 "sys_statfs",
4867 "sys_fstatfs", /* 100 */
4868 "sys_ioperm",
4869 "sys_socketcall",
4870 "sys_syslog",
4871 "sys_setitimer",
4872 "sys_getitimer", /* 105 */
4873 "sys_newstat",
4874 "sys_newlstat",
4875 "sys_newfstat",
4876 "sys_uname",
4877 "sys_iopl", /* 110 */
4878 "sys_vhangup",
4879 "sys_ni_syscall", /* old "idle" system call */
4880 "sys_vm86old",
4881 "sys_wait4",
4882 "sys_swapoff", /* 115 */
4883 "sys_sysinfo",
4884 "sys_ipc",
4885 "sys_fsync",
4886 "sys_sigreturn",
4887 "sys_clone", /* 120 */
4888 "sys_setdomainname",
4889 "sys_newuname",
4890 "sys_modify_ldt",
4891 "sys_adjtimex",
4892 "sys_mprotect", /* 125 */
4893 "sys_sigprocmask",
4894 "sys_ni_syscall", /* old "create_module" */
4895 "sys_init_module",
4896 "sys_delete_module",
4897 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4898 "sys_quotactl",
4899 "sys_getpgid",
4900 "sys_fchdir",
4901 "sys_bdflush",
4902 "sys_sysfs", /* 135 */
4903 "sys_personality",
4904 "sys_ni_syscall", /* reserved for afs_syscall */
4905 "sys_setfsuid16",
4906 "sys_setfsgid16",
4907 "sys_llseek", /* 140 */
4908 "sys_getdents",
4909 "sys_select",
4910 "sys_flock",
4911 "sys_msync",
4912 "sys_readv", /* 145 */
4913 "sys_writev",
4914 "sys_getsid",
4915 "sys_fdatasync",
4916 "sys_sysctl",
4917 "sys_mlock", /* 150 */
4918 "sys_munlock",
4919 "sys_mlockall",
4920 "sys_munlockall",
4921 "sys_sched_setparam",
4922 "sys_sched_getparam", /* 155 */
4923 "sys_sched_setscheduler",
4924 "sys_sched_getscheduler",
4925 "sys_sched_yield",
4926 "sys_sched_get_priority_max",
4927 "sys_sched_get_priority_min", /* 160 */
4928 "sys_sched_rr_get_interval",
4929 "sys_nanosleep",
4930 "sys_mremap",
4931 "sys_setresuid16",
4932 "sys_getresuid16", /* 165 */
4933 "sys_vm86",
4934 "sys_ni_syscall", /* Old sys_query_module */
4935 "sys_poll",
4936 "sys_nfsservctl",
4937 "sys_setresgid16", /* 170 */
4938 "sys_getresgid16",
4939 "sys_prctl",
4940 "sys_rt_sigreturn",
4941 "sys_rt_sigaction",
4942 "sys_rt_sigprocmask", /* 175 */
4943 "sys_rt_sigpending",
4944 "sys_rt_sigtimedwait",
4945 "sys_rt_sigqueueinfo",
4946 "sys_rt_sigsuspend",
4947 "sys_pread64", /* 180 */
4948 "sys_pwrite64",
4949 "sys_chown16",
4950 "sys_getcwd",
4951 "sys_capget",
4952 "sys_capset", /* 185 */
4953 "sys_sigaltstack",
4954 "sys_sendfile",
4955 "sys_ni_syscall", /* reserved for streams1 */
4956 "sys_ni_syscall", /* reserved for streams2 */
4957 "sys_vfork", /* 190 */
4958 "sys_getrlimit",
4959 "sys_mmap2",
4960 "sys_truncate64",
4961 "sys_ftruncate64",
4962 "sys_stat64", /* 195 */
4963 "sys_lstat64",
4964 "sys_fstat64",
4965 "sys_lchown",
4966 "sys_getuid",
4967 "sys_getgid", /* 200 */
4968 "sys_geteuid",
4969 "sys_getegid",
4970 "sys_setreuid",
4971 "sys_setregid",
4972 "sys_getgroups", /* 205 */
4973 "sys_setgroups",
4974 "sys_fchown",
4975 "sys_setresuid",
4976 "sys_getresuid",
4977 "sys_setresgid", /* 210 */
4978 "sys_getresgid",
4979 "sys_chown",
4980 "sys_setuid",
4981 "sys_setgid",
4982 "sys_setfsuid", /* 215 */
4983 "sys_setfsgid",
4984 "sys_pivot_root",
4985 "sys_mincore",
4986 "sys_madvise",
4987 "sys_getdents64", /* 220 */
4988 "sys_fcntl64",
4989 "sys_ni_syscall", /* reserved for TUX */
4990 "sys_ni_syscall",
4991 "sys_gettid",
4992 "sys_readahead", /* 225 */
4993 "sys_setxattr",
4994 "sys_lsetxattr",
4995 "sys_fsetxattr",
4996 "sys_getxattr",
4997 "sys_lgetxattr", /* 230 */
4998 "sys_fgetxattr",
4999 "sys_listxattr",
5000 "sys_llistxattr",
5001 "sys_flistxattr",
5002 "sys_removexattr", /* 235 */
5003 "sys_lremovexattr",
5004 "sys_fremovexattr",
5005 "sys_tkill",
5006 "sys_sendfile64",
5007 "sys_futex", /* 240 */
5008 "sys_sched_setaffinity",
5009 "sys_sched_getaffinity",
5010 "sys_set_thread_area",
5011 "sys_get_thread_area",
5012 "sys_io_setup", /* 245 */
5013 "sys_io_destroy",
5014 "sys_io_getevents",
5015 "sys_io_submit",
5016 "sys_io_cancel",
5017 "sys_fadvise64", /* 250 */
5018 "sys_ni_syscall",
5019 "sys_exit_group",
5020 "sys_lookup_dcookie",
5021 "sys_epoll_create",
5022 "sys_epoll_ctl", /* 255 */
5023 "sys_epoll_wait",
5024 "sys_remap_file_pages",
5025 "sys_set_tid_address",
5026 "sys_timer_create",
5027 "sys_timer_settime", /* 260 */
5028 "sys_timer_gettime",
5029 "sys_timer_getoverrun",
5030 "sys_timer_delete",
5031 "sys_clock_settime",
5032 "sys_clock_gettime", /* 265 */
5033 "sys_clock_getres",
5034 "sys_clock_nanosleep",
5035 "sys_statfs64",
5036 "sys_fstatfs64",
5037 "sys_tgkill", /* 270 */
5038 "sys_utimes",
5039 "sys_fadvise64_64",
5040 "sys_ni_syscall" /* sys_vserver */
5041 };
5042
5043 uint32_t uEAX = CPUMGetGuestEAX(pVM);
5044 switch (uEAX)
5045 {
5046 default:
5047 if (uEAX < ELEMENTS(apsz))
5048 Log(("REM: linux syscall %3d: %s (eip=%VGv ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
5049 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
5050 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
5051 else
5052 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
5053 break;
5054
5055 }
5056}
5057
5058
5059/**
5060 * Dumps an OpenBSD system call.
5061 * @param pVM VM handle.
5062 */
5063void remR3DumpOBsdSyscall(PVM pVM)
5064{
5065 static const char *apsz[] =
5066 {
5067 "SYS_syscall", //0
5068 "SYS_exit", //1
5069 "SYS_fork", //2
5070 "SYS_read", //3
5071 "SYS_write", //4
5072 "SYS_open", //5
5073 "SYS_close", //6
5074 "SYS_wait4", //7
5075 "SYS_8",
5076 "SYS_link", //9
5077 "SYS_unlink", //10
5078 "SYS_11",
5079 "SYS_chdir", //12
5080 "SYS_fchdir", //13
5081 "SYS_mknod", //14
5082 "SYS_chmod", //15
5083 "SYS_chown", //16
5084 "SYS_break", //17
5085 "SYS_18",
5086 "SYS_19",
5087 "SYS_getpid", //20
5088 "SYS_mount", //21
5089 "SYS_unmount", //22
5090 "SYS_setuid", //23
5091 "SYS_getuid", //24
5092 "SYS_geteuid", //25
5093 "SYS_ptrace", //26
5094 "SYS_recvmsg", //27
5095 "SYS_sendmsg", //28
5096 "SYS_recvfrom", //29
5097 "SYS_accept", //30
5098 "SYS_getpeername", //31
5099 "SYS_getsockname", //32
5100 "SYS_access", //33
5101 "SYS_chflags", //34
5102 "SYS_fchflags", //35
5103 "SYS_sync", //36
5104 "SYS_kill", //37
5105 "SYS_38",
5106 "SYS_getppid", //39
5107 "SYS_40",
5108 "SYS_dup", //41
5109 "SYS_opipe", //42
5110 "SYS_getegid", //43
5111 "SYS_profil", //44
5112 "SYS_ktrace", //45
5113 "SYS_sigaction", //46
5114 "SYS_getgid", //47
5115 "SYS_sigprocmask", //48
5116 "SYS_getlogin", //49
5117 "SYS_setlogin", //50
5118 "SYS_acct", //51
5119 "SYS_sigpending", //52
5120 "SYS_osigaltstack", //53
5121 "SYS_ioctl", //54
5122 "SYS_reboot", //55
5123 "SYS_revoke", //56
5124 "SYS_symlink", //57
5125 "SYS_readlink", //58
5126 "SYS_execve", //59
5127 "SYS_umask", //60
5128 "SYS_chroot", //61
5129 "SYS_62",
5130 "SYS_63",
5131 "SYS_64",
5132 "SYS_65",
5133 "SYS_vfork", //66
5134 "SYS_67",
5135 "SYS_68",
5136 "SYS_sbrk", //69
5137 "SYS_sstk", //70
5138 "SYS_61",
5139 "SYS_vadvise", //72
5140 "SYS_munmap", //73
5141 "SYS_mprotect", //74
5142 "SYS_madvise", //75
5143 "SYS_76",
5144 "SYS_77",
5145 "SYS_mincore", //78
5146 "SYS_getgroups", //79
5147 "SYS_setgroups", //80
5148 "SYS_getpgrp", //81
5149 "SYS_setpgid", //82
5150 "SYS_setitimer", //83
5151 "SYS_84",
5152 "SYS_85",
5153 "SYS_getitimer", //86
5154 "SYS_87",
5155 "SYS_88",
5156 "SYS_89",
5157 "SYS_dup2", //90
5158 "SYS_91",
5159 "SYS_fcntl", //92
5160 "SYS_select", //93
5161 "SYS_94",
5162 "SYS_fsync", //95
5163 "SYS_setpriority", //96
5164 "SYS_socket", //97
5165 "SYS_connect", //98
5166 "SYS_99",
5167 "SYS_getpriority", //100
5168 "SYS_101",
5169 "SYS_102",
5170 "SYS_sigreturn", //103
5171 "SYS_bind", //104
5172 "SYS_setsockopt", //105
5173 "SYS_listen", //106
5174 "SYS_107",
5175 "SYS_108",
5176 "SYS_109",
5177 "SYS_110",
5178 "SYS_sigsuspend", //111
5179 "SYS_112",
5180 "SYS_113",
5181 "SYS_114",
5182 "SYS_115",
5183 "SYS_gettimeofday", //116
5184 "SYS_getrusage", //117
5185 "SYS_getsockopt", //118
5186 "SYS_119",
5187 "SYS_readv", //120
5188 "SYS_writev", //121
5189 "SYS_settimeofday", //122
5190 "SYS_fchown", //123
5191 "SYS_fchmod", //124
5192 "SYS_125",
5193 "SYS_setreuid", //126
5194 "SYS_setregid", //127
5195 "SYS_rename", //128
5196 "SYS_129",
5197 "SYS_130",
5198 "SYS_flock", //131
5199 "SYS_mkfifo", //132
5200 "SYS_sendto", //133
5201 "SYS_shutdown", //134
5202 "SYS_socketpair", //135
5203 "SYS_mkdir", //136
5204 "SYS_rmdir", //137
5205 "SYS_utimes", //138
5206 "SYS_139",
5207 "SYS_adjtime", //140
5208 "SYS_141",
5209 "SYS_142",
5210 "SYS_143",
5211 "SYS_144",
5212 "SYS_145",
5213 "SYS_146",
5214 "SYS_setsid", //147
5215 "SYS_quotactl", //148
5216 "SYS_149",
5217 "SYS_150",
5218 "SYS_151",
5219 "SYS_152",
5220 "SYS_153",
5221 "SYS_154",
5222 "SYS_nfssvc", //155
5223 "SYS_156",
5224 "SYS_157",
5225 "SYS_158",
5226 "SYS_159",
5227 "SYS_160",
5228 "SYS_getfh", //161
5229 "SYS_162",
5230 "SYS_163",
5231 "SYS_164",
5232 "SYS_sysarch", //165
5233 "SYS_166",
5234 "SYS_167",
5235 "SYS_168",
5236 "SYS_169",
5237 "SYS_170",
5238 "SYS_171",
5239 "SYS_172",
5240 "SYS_pread", //173
5241 "SYS_pwrite", //174
5242 "SYS_175",
5243 "SYS_176",
5244 "SYS_177",
5245 "SYS_178",
5246 "SYS_179",
5247 "SYS_180",
5248 "SYS_setgid", //181
5249 "SYS_setegid", //182
5250 "SYS_seteuid", //183
5251 "SYS_lfs_bmapv", //184
5252 "SYS_lfs_markv", //185
5253 "SYS_lfs_segclean", //186
5254 "SYS_lfs_segwait", //187
5255 "SYS_188",
5256 "SYS_189",
5257 "SYS_190",
5258 "SYS_pathconf", //191
5259 "SYS_fpathconf", //192
5260 "SYS_swapctl", //193
5261 "SYS_getrlimit", //194
5262 "SYS_setrlimit", //195
5263 "SYS_getdirentries", //196
5264 "SYS_mmap", //197
5265 "SYS___syscall", //198
5266 "SYS_lseek", //199
5267 "SYS_truncate", //200
5268 "SYS_ftruncate", //201
5269 "SYS___sysctl", //202
5270 "SYS_mlock", //203
5271 "SYS_munlock", //204
5272 "SYS_205",
5273 "SYS_futimes", //206
5274 "SYS_getpgid", //207
5275 "SYS_xfspioctl", //208
5276 "SYS_209",
5277 "SYS_210",
5278 "SYS_211",
5279 "SYS_212",
5280 "SYS_213",
5281 "SYS_214",
5282 "SYS_215",
5283 "SYS_216",
5284 "SYS_217",
5285 "SYS_218",
5286 "SYS_219",
5287 "SYS_220",
5288 "SYS_semget", //221
5289 "SYS_222",
5290 "SYS_223",
5291 "SYS_224",
5292 "SYS_msgget", //225
5293 "SYS_msgsnd", //226
5294 "SYS_msgrcv", //227
5295 "SYS_shmat", //228
5296 "SYS_229",
5297 "SYS_shmdt", //230
5298 "SYS_231",
5299 "SYS_clock_gettime", //232
5300 "SYS_clock_settime", //233
5301 "SYS_clock_getres", //234
5302 "SYS_235",
5303 "SYS_236",
5304 "SYS_237",
5305 "SYS_238",
5306 "SYS_239",
5307 "SYS_nanosleep", //240
5308 "SYS_241",
5309 "SYS_242",
5310 "SYS_243",
5311 "SYS_244",
5312 "SYS_245",
5313 "SYS_246",
5314 "SYS_247",
5315 "SYS_248",
5316 "SYS_249",
5317 "SYS_minherit", //250
5318 "SYS_rfork", //251
5319 "SYS_poll", //252
5320 "SYS_issetugid", //253
5321 "SYS_lchown", //254
5322 "SYS_getsid", //255
5323 "SYS_msync", //256
5324 "SYS_257",
5325 "SYS_258",
5326 "SYS_259",
5327 "SYS_getfsstat", //260
5328 "SYS_statfs", //261
5329 "SYS_fstatfs", //262
5330 "SYS_pipe", //263
5331 "SYS_fhopen", //264
5332 "SYS_265",
5333 "SYS_fhstatfs", //266
5334 "SYS_preadv", //267
5335 "SYS_pwritev", //268
5336 "SYS_kqueue", //269
5337 "SYS_kevent", //270
5338 "SYS_mlockall", //271
5339 "SYS_munlockall", //272
5340 "SYS_getpeereid", //273
5341 "SYS_274",
5342 "SYS_275",
5343 "SYS_276",
5344 "SYS_277",
5345 "SYS_278",
5346 "SYS_279",
5347 "SYS_280",
5348 "SYS_getresuid", //281
5349 "SYS_setresuid", //282
5350 "SYS_getresgid", //283
5351 "SYS_setresgid", //284
5352 "SYS_285",
5353 "SYS_mquery", //286
5354 "SYS_closefrom", //287
5355 "SYS_sigaltstack", //288
5356 "SYS_shmget", //289
5357 "SYS_semop", //290
5358 "SYS_stat", //291
5359 "SYS_fstat", //292
5360 "SYS_lstat", //293
5361 "SYS_fhstat", //294
5362 "SYS___semctl", //295
5363 "SYS_shmctl", //296
5364 "SYS_msgctl", //297
5365 "SYS_MAXSYSCALL", //298
5366 //299
5367 //300
5368 };
5369 uint32_t uEAX;
5370 if (!LogIsEnabled())
5371 return;
5372 uEAX = CPUMGetGuestEAX(pVM);
5373 switch (uEAX)
5374 {
5375 default:
5376 if (uEAX < ELEMENTS(apsz))
5377 {
5378 uint32_t au32Args[8] = {0};
5379 PGMPhysReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
5380 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
5381 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
5382 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
5383 }
5384 else
5385 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
5386 break;
5387 }
5388}
5389
5390
5391#if defined(IPRT_NO_CRT) && defined(__WIN__) && defined(__X86__)
5392/**
5393 * The Dll main entry point (stub).
5394 */
5395bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
5396{
5397 return true;
5398}
5399
5400void *memcpy(void *dst, const void *src, size_t size)
5401{
5402 uint8_t*pbDst = dst, *pbSrc = src;
5403 while (size-- > 0)
5404 *pbDst++ = *pbSrc++;
5405 return dst;
5406}
5407
5408#endif
5409
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette