VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 3825

Last change on this file since 3825 was 3726, checked in by vboxsync, 18 years ago

Double underscore cleanup.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 168.3 KB
Line 
1/* $Id: VBoxRecompiler.c 3726 2007-07-19 19:07:48Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 innotek GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License as published by the Free Software Foundation,
13 * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
14 * distribution. VirtualBox OSE is distributed in the hope that it will
15 * be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * If you received this file as part of a commercial VirtualBox
18 * distribution, then only the terms of your commercial VirtualBox
19 * license agreement apply instead of the previous paragraph.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "exec-all.h"
29
30#include <VBox/rem.h>
31#include <VBox/vmapi.h>
32#include <VBox/tm.h>
33#include <VBox/ssm.h>
34#include <VBox/em.h>
35#include <VBox/trpm.h>
36#include <VBox/iom.h>
37#include <VBox/mm.h>
38#include <VBox/pgm.h>
39#include <VBox/pdm.h>
40#include <VBox/dbgf.h>
41#include <VBox/dbg.h>
42#include <VBox/hwaccm.h>
43#include <VBox/patm.h>
44#include <VBox/csam.h>
45#include "REMInternal.h"
46#include <VBox/vm.h>
47#include <VBox/param.h>
48#include <VBox/err.h>
49
50#include <VBox/log.h>
51#include <iprt/semaphore.h>
52#include <iprt/asm.h>
53#include <iprt/assert.h>
54#include <iprt/thread.h>
55#include <iprt/string.h>
56
57/* Don't wanna include everything. */
58extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
59extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
60extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
61extern void tlb_flush_page(CPUX86State *env, uint32_t addr);
62extern void tlb_flush(CPUState *env, int flush_global);
63extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
64extern void sync_ldtr(CPUX86State *env1, int selector);
65extern int sync_tr(CPUX86State *env1, int selector);
66
67#ifdef VBOX_STRICT
68unsigned long get_phys_page_offset(target_ulong addr);
69#endif
70
71
72/*******************************************************************************
73* Defined Constants And Macros *
74*******************************************************************************/
75
76/** Copy 80-bit fpu register at pSrc to pDst.
77 * This is probably faster than *calling* memcpy.
78 */
79#define REM_COPY_FPU_REG(pDst, pSrc) \
80 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
81
82
83/*******************************************************************************
84* Internal Functions *
85*******************************************************************************/
86static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
87static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
88static void remR3StateUpdate(PVM pVM);
89
90#if defined(PGM_DYNAMIC_RAM_ALLOC) && !defined(REM_PHYS_ADDR_IN_TLB)
91DECLINLINE(target_ulong) remR3HCVirt2GCPhysInlined(PVM pVM, void *addr);
92DECLINLINE(void *) remR3GCPhys2HCVirtInlined(PVM pVM, target_ulong addr);
93#endif
94
95static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
96static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
97static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
98static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
99static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
100static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
101
102static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
103static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
104static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
105static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
106static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
107static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
108
109
110/*******************************************************************************
111* Global Variables *
112*******************************************************************************/
113
114/** @todo Move stats to REM::s some rainy day we have nothing do to. */
115#ifdef VBOX_WITH_STATISTICS
116static STAMPROFILEADV gStatExecuteSingleInstr;
117static STAMPROFILEADV gStatCompilationQEmu;
118static STAMPROFILEADV gStatRunCodeQEmu;
119static STAMPROFILEADV gStatTotalTimeQEmu;
120static STAMPROFILEADV gStatTimers;
121static STAMPROFILEADV gStatTBLookup;
122static STAMPROFILEADV gStatIRQ;
123static STAMPROFILEADV gStatRawCheck;
124static STAMPROFILEADV gStatMemRead;
125static STAMPROFILEADV gStatMemWrite;
126#ifndef REM_PHYS_ADDR_IN_TLB
127static STAMPROFILEADV gStatMemReadHCPtr;
128static STAMPROFILEADV gStatMemWriteHCPtr;
129#endif
130#ifdef PGM_DYNAMIC_RAM_ALLOC
131static STAMPROFILE gStatGCPhys2HCVirt;
132static STAMPROFILE gStatHCVirt2GCPhys;
133#endif
134static STAMCOUNTER gStatCpuGetTSC;
135static STAMCOUNTER gStatRefuseTFInhibit;
136static STAMCOUNTER gStatRefuseVM86;
137static STAMCOUNTER gStatRefusePaging;
138static STAMCOUNTER gStatRefusePAE;
139static STAMCOUNTER gStatRefuseIOPLNot0;
140static STAMCOUNTER gStatRefuseIF0;
141static STAMCOUNTER gStatRefuseCode16;
142static STAMCOUNTER gStatRefuseWP0;
143static STAMCOUNTER gStatRefuseRing1or2;
144static STAMCOUNTER gStatRefuseCanExecute;
145static STAMCOUNTER gStatREMGDTChange;
146static STAMCOUNTER gStatREMIDTChange;
147static STAMCOUNTER gStatREMLDTRChange;
148static STAMCOUNTER gStatREMTRChange;
149static STAMCOUNTER gStatSelOutOfSync[6];
150static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
151#endif
152
153/*
154 * Global stuff.
155 */
156
157/** MMIO read callbacks. */
158CPUReadMemoryFunc *g_apfnMMIORead[3] =
159{
160 remR3MMIOReadU8,
161 remR3MMIOReadU16,
162 remR3MMIOReadU32
163};
164
165/** MMIO write callbacks. */
166CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
167{
168 remR3MMIOWriteU8,
169 remR3MMIOWriteU16,
170 remR3MMIOWriteU32
171};
172
173/** Handler read callbacks. */
174CPUReadMemoryFunc *g_apfnHandlerRead[3] =
175{
176 remR3HandlerReadU8,
177 remR3HandlerReadU16,
178 remR3HandlerReadU32
179};
180
181/** Handler write callbacks. */
182CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
183{
184 remR3HandlerWriteU8,
185 remR3HandlerWriteU16,
186 remR3HandlerWriteU32
187};
188
189
190#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDWS) && defined(RT_ARCH_AMD64))
191/*
192 * Debugger commands.
193 */
194static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
195
196/** '.remstep' arguments. */
197static const DBGCVARDESC g_aArgRemStep[] =
198{
199 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
200 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
201};
202
203/** Command descriptors. */
204static const DBGCCMD g_aCmds[] =
205{
206 {
207 .pszCmd ="remstep",
208 .cArgsMin = 0,
209 .cArgsMax = 1,
210 .paArgDescs = &g_aArgRemStep[0],
211 .cArgDescs = ELEMENTS(g_aArgRemStep),
212 .pResultDesc = NULL,
213 .fFlags = 0,
214 .pfnHandler = remR3CmdDisasEnableStepping,
215 .pszSyntax = "[on/off]",
216 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
217 "If no arguments show the current state."
218 }
219};
220#endif
221
222
223/* Instantiate the structure signatures. */
224#define REM_STRUCT_OP 0
225#include "InnoTek/structs.h"
226
227
228
229/*******************************************************************************
230* Internal Functions *
231*******************************************************************************/
232static void remAbort(int rc, const char *pszTip);
233extern int testmath(void);
234
235/* Put them here to avoid unused variable warning. */
236AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
237#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
238AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
239#else
240AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
241#endif
242
243
244/**
245 * Initializes the REM.
246 *
247 * @returns VBox status code.
248 * @param pVM The VM to operate on.
249 */
250REMR3DECL(int) REMR3Init(PVM pVM)
251{
252 uint32_t u32Dummy;
253 unsigned i;
254
255 /*
256 * Assert sanity.
257 */
258 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
259 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
260 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
261#ifdef DEBUG
262 Assert(!testmath());
263#endif
264 ASSERT_STRUCT_TABLE(Misc);
265 ASSERT_STRUCT_TABLE(TLB);
266 ASSERT_STRUCT_TABLE(SegmentCache);
267 ASSERT_STRUCT_TABLE(XMMReg);
268 ASSERT_STRUCT_TABLE(MMXReg);
269 ASSERT_STRUCT_TABLE(float_status);
270 ASSERT_STRUCT_TABLE(float32u);
271 ASSERT_STRUCT_TABLE(float64u);
272 ASSERT_STRUCT_TABLE(floatx80u);
273 ASSERT_STRUCT_TABLE(CPUState);
274
275 /*
276 * Init some internal data members.
277 */
278 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
279 pVM->rem.s.Env.pVM = pVM;
280#ifdef CPU_RAW_MODE_INIT
281 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
282#endif
283
284 /* ctx. */
285 int rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
286 if (VBOX_FAILURE(rc))
287 {
288 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
289 return rc;
290 }
291 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
292
293 /* ignore all notifications */
294 pVM->rem.s.fIgnoreAll = true;
295
296 /*
297 * Init the recompiler.
298 */
299 if (!cpu_x86_init(&pVM->rem.s.Env))
300 {
301 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
302 return VERR_GENERAL_FAILURE;
303 }
304 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
305 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
306
307 /* allocate code buffer for single instruction emulation. */
308 pVM->rem.s.Env.cbCodeBuffer = 4096;
309 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
310 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
311
312 /* finally, set the cpu_single_env global. */
313 cpu_single_env = &pVM->rem.s.Env;
314
315 /* Nothing is pending by default */
316 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
317
318 /*
319 * Register ram types.
320 */
321 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
322 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
323 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
324 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
325 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
326
327 /* stop ignoring. */
328 pVM->rem.s.fIgnoreAll = false;
329
330 /*
331 * Register the saved state data unit.
332 */
333 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
334 NULL, remR3Save, NULL,
335 NULL, remR3Load, NULL);
336 if (VBOX_FAILURE(rc))
337 return rc;
338
339#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
340 /*
341 * Debugger commands.
342 */
343 static bool fRegisteredCmds = false;
344 if (!fRegisteredCmds)
345 {
346 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
347 if (VBOX_SUCCESS(rc))
348 fRegisteredCmds = true;
349 }
350#endif
351
352#ifdef VBOX_WITH_STATISTICS
353 /*
354 * Statistics.
355 */
356 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
357 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
358 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
359 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
360 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
361 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
362 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
363 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
364 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
365 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
366#ifndef REM_PHYS_ADDR_IN_TLB
367 STAM_REG(pVM, &gStatMemReadHCPtr, STAMTYPE_PROFILE, "/PROF/REM/MemReadHCPtr", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
368 STAM_REG(pVM, &gStatMemWriteHCPtr, STAMTYPE_PROFILE, "/PROF/REM/MemWriteHCPtr", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
369#endif
370#ifdef PGM_DYNAMIC_RAM_ALLOC
371 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
372 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
373#endif
374
375 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
376
377 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
378 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
379 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
380 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
381 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
382 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
383 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
384 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
385 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
386 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
387
388 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
389 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
390 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
391 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
392
393 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
394 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
395 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
396 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
397 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
398 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
399
400 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
401 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
402 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
403 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
404 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
405 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
406
407
408#endif
409
410#ifdef DEBUG_ALL_LOGGING
411 loglevel = ~0;
412#endif
413
414 return rc;
415}
416
417
418/**
419 * Terminates the REM.
420 *
421 * Termination means cleaning up and freeing all resources,
422 * the VM it self is at this point powered off or suspended.
423 *
424 * @returns VBox status code.
425 * @param pVM The VM to operate on.
426 */
427REMR3DECL(int) REMR3Term(PVM pVM)
428{
429 return VINF_SUCCESS;
430}
431
432
433/**
434 * The VM is being reset.
435 *
436 * For the REM component this means to call the cpu_reset() and
437 * reinitialize some state variables.
438 *
439 * @param pVM VM handle.
440 */
441REMR3DECL(void) REMR3Reset(PVM pVM)
442{
443 /*
444 * Reset the REM cpu.
445 */
446 pVM->rem.s.fIgnoreAll = true;
447 cpu_reset(&pVM->rem.s.Env);
448 pVM->rem.s.cInvalidatedPages = 0;
449 pVM->rem.s.fIgnoreAll = false;
450}
451
452
453/**
454 * Execute state save operation.
455 *
456 * @returns VBox status code.
457 * @param pVM VM Handle.
458 * @param pSSM SSM operation handle.
459 */
460static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
461{
462 LogFlow(("remR3Save:\n"));
463
464 /*
465 * Save the required CPU Env bits.
466 * (Not much because we're never in REM when doing the save.)
467 */
468 PREM pRem = &pVM->rem.s;
469 Assert(!pRem->fInREM);
470 SSMR3PutU32(pSSM, pRem->Env.hflags);
471 SSMR3PutMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
472 SSMR3PutU32(pSSM, ~0); /* separator */
473
474 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
475 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
476
477 /*
478 * Save the REM stuff.
479 */
480 SSMR3PutUInt(pSSM, pRem->cInvalidatedPages);
481 unsigned i;
482 for (i = 0; i < pRem->cInvalidatedPages; i++)
483 SSMR3PutGCPtr(pSSM, pRem->aGCPtrInvalidatedPages[i]);
484
485 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
486
487 return SSMR3PutU32(pSSM, ~0); /* terminator */
488}
489
490
491/**
492 * Execute state load operation.
493 *
494 * @returns VBox status code.
495 * @param pVM VM Handle.
496 * @param pSSM SSM operation handle.
497 * @param u32Version Data layout version.
498 */
499static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
500{
501 uint32_t u32Dummy;
502 uint32_t fRawRing0 = false;
503 LogFlow(("remR3Load:\n"));
504
505 /*
506 * Validate version.
507 */
508 if (u32Version != REM_SAVED_STATE_VERSION)
509 {
510 Log(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
511 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
512 }
513
514 /*
515 * Do a reset to be on the safe side...
516 */
517 REMR3Reset(pVM);
518
519 /*
520 * Ignore all ignorable notifications.
521 * (Not doing this will cause serious trouble.)
522 */
523 pVM->rem.s.fIgnoreAll = true;
524
525 /*
526 * Load the required CPU Env bits.
527 * (Not much because we're never in REM when doing the save.)
528 */
529 PREM pRem = &pVM->rem.s;
530 Assert(!pRem->fInREM);
531 SSMR3GetU32(pSSM, &pRem->Env.hflags);
532 SSMR3GetMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
533 uint32_t u32Sep;
534 int rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
535 if (VBOX_FAILURE(rc))
536 return rc;
537 if (u32Sep != ~0)
538 {
539 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
540 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
541 }
542
543 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
544 SSMR3GetUInt(pSSM, &fRawRing0);
545 if (fRawRing0)
546 pRem->Env.state |= CPU_RAW_RING0;
547
548 /*
549 * Load the REM stuff.
550 */
551 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
552 if (VBOX_FAILURE(rc))
553 return rc;
554 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
555 {
556 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
557 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
558 }
559 unsigned i;
560 for (i = 0; i < pRem->cInvalidatedPages; i++)
561 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
562
563 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
564 if (VBOX_FAILURE(rc))
565 return rc;
566
567 /* check the terminator. */
568 rc = SSMR3GetU32(pSSM, &u32Sep);
569 if (VBOX_FAILURE(rc))
570 return rc;
571 if (u32Sep != ~0)
572 {
573 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
574 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
575 }
576
577 /*
578 * Get the CPUID features.
579 */
580 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
581 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
582
583 /*
584 * Sync the Load Flush the TLB
585 */
586 tlb_flush(&pRem->Env, 1);
587
588#if 0 /** @todo r=bird: this doesn't make sense. WHY? */
589 /*
590 * Clear all lazy flags (only FPU sync for now).
591 */
592 CPUMGetAndClearFPUUsedREM(pVM);
593#endif
594
595 /*
596 * Stop ignoring ignornable notifications.
597 */
598 pVM->rem.s.fIgnoreAll = false;
599
600 return VINF_SUCCESS;
601}
602
603
604
605#undef LOG_GROUP
606#define LOG_GROUP LOG_GROUP_REM_RUN
607
608/**
609 * Single steps an instruction in recompiled mode.
610 *
611 * Before calling this function the REM state needs to be in sync with
612 * the VM. Call REMR3State() to perform the sync. It's only necessary
613 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
614 * and after calling REMR3StateBack().
615 *
616 * @returns VBox status code.
617 *
618 * @param pVM VM Handle.
619 */
620REMR3DECL(int) REMR3Step(PVM pVM)
621{
622 /*
623 * Lock the REM - we don't wanna have anyone interrupting us
624 * while stepping - and enabled single stepping. We also ignore
625 * pending interrupts and suchlike.
626 */
627 int interrupt_request = pVM->rem.s.Env.interrupt_request;
628 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
629 pVM->rem.s.Env.interrupt_request = 0;
630 cpu_single_step(&pVM->rem.s.Env, 1);
631
632 /*
633 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
634 */
635 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
636 bool fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
637
638 /*
639 * Execute and handle the return code.
640 * We execute without enabling the cpu tick, so on success we'll
641 * just flip it on and off to make sure it moves
642 */
643 int rc = cpu_exec(&pVM->rem.s.Env);
644 if (rc == EXCP_DEBUG)
645 {
646 TMCpuTickResume(pVM);
647 TMCpuTickPause(pVM);
648 TMVirtualResume(pVM);
649 TMVirtualPause(pVM);
650 rc = VINF_EM_DBG_STEPPED;
651 }
652 else
653 {
654 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
655 switch (rc)
656 {
657 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
658 case EXCP_HLT:
659 case EXCP_HALTED: rc = VINF_EM_HALT; break;
660 case EXCP_RC:
661 rc = pVM->rem.s.rc;
662 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
663 break;
664 default:
665 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
666 rc = VERR_INTERNAL_ERROR;
667 break;
668 }
669 }
670
671 /*
672 * Restore the stuff we changed to prevent interruption.
673 * Unlock the REM.
674 */
675 if (fBp)
676 {
677 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
678 Assert(rc2 == 0); NOREF(rc2);
679 }
680 cpu_single_step(&pVM->rem.s.Env, 0);
681 pVM->rem.s.Env.interrupt_request = interrupt_request;
682
683 return rc;
684}
685
686
687/**
688 * Set a breakpoint using the REM facilities.
689 *
690 * @returns VBox status code.
691 * @param pVM The VM handle.
692 * @param Address The breakpoint address.
693 * @thread The emulation thread.
694 */
695REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
696{
697 VM_ASSERT_EMT(pVM);
698 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
699 {
700 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
701 return VINF_SUCCESS;
702 }
703 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
704 return VERR_REM_NO_MORE_BP_SLOTS;
705}
706
707
708/**
709 * Clears a breakpoint set by REMR3BreakpointSet().
710 *
711 * @returns VBox status code.
712 * @param pVM The VM handle.
713 * @param Address The breakpoint address.
714 * @thread The emulation thread.
715 */
716REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
717{
718 VM_ASSERT_EMT(pVM);
719 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
720 {
721 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
722 return VINF_SUCCESS;
723 }
724 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
725 return VERR_REM_BP_NOT_FOUND;
726}
727
728
729/**
730 * Emulate an instruction.
731 *
732 * This function executes one instruction without letting anyone
733 * interrupt it. This is intended for being called while being in
734 * raw mode and thus will take care of all the state syncing between
735 * REM and the rest.
736 *
737 * @returns VBox status code.
738 * @param pVM VM handle.
739 */
740REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
741{
742 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", pVM->rem.s.pCtx->cs, pVM->rem.s.pCtx->eip));
743
744 /*
745 * Sync the state and enable single instruction / single stepping.
746 */
747 int rc = REMR3State(pVM);
748 if (VBOX_SUCCESS(rc))
749 {
750 int interrupt_request = pVM->rem.s.Env.interrupt_request;
751 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
752 Assert(!pVM->rem.s.Env.singlestep_enabled);
753#if 1
754
755 /*
756 * Now we set the execute single instruction flag and enter the cpu_exec loop.
757 */
758 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
759 rc = cpu_exec(&pVM->rem.s.Env);
760 switch (rc)
761 {
762 /*
763 * Executed without anything out of the way happening.
764 */
765 case EXCP_SINGLE_INSTR:
766 rc = VINF_EM_RESCHEDULE;
767 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
768 break;
769
770 /*
771 * If we take a trap or start servicing a pending interrupt, we might end up here.
772 * (Timer thread or some other thread wishing EMT's attention.)
773 */
774 case EXCP_INTERRUPT:
775 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
776 rc = VINF_EM_RESCHEDULE;
777 break;
778
779 /*
780 * Single step, we assume!
781 * If there was a breakpoint there we're fucked now.
782 */
783 case EXCP_DEBUG:
784 {
785 /* breakpoint or single step? */
786 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
787 int iBP;
788 rc = VINF_EM_DBG_STEPPED;
789 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
790 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
791 {
792 rc = VINF_EM_DBG_BREAKPOINT;
793 break;
794 }
795 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
796 break;
797 }
798
799 /*
800 * hlt instruction.
801 */
802 case EXCP_HLT:
803 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
804 rc = VINF_EM_HALT;
805 break;
806
807 /*
808 * The VM has halted.
809 */
810 case EXCP_HALTED:
811 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
812 rc = VINF_EM_HALT;
813 break;
814
815 /*
816 * Switch to RAW-mode.
817 */
818 case EXCP_EXECUTE_RAW:
819 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
820 rc = VINF_EM_RESCHEDULE_RAW;
821 break;
822
823 /*
824 * Switch to hardware accelerated RAW-mode.
825 */
826 case EXCP_EXECUTE_HWACC:
827 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
828 rc = VINF_EM_RESCHEDULE_HWACC;
829 break;
830
831 /*
832 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
833 */
834 case EXCP_RC:
835 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
836 rc = pVM->rem.s.rc;
837 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
838 break;
839
840 /*
841 * Figure out the rest when they arrive....
842 */
843 default:
844 AssertMsgFailed(("rc=%d\n", rc));
845 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
846 rc = VINF_EM_RESCHEDULE;
847 break;
848 }
849
850 /*
851 * Switch back the state.
852 */
853#else
854 pVM->rem.s.Env.interrupt_request = 0;
855 cpu_single_step(&pVM->rem.s.Env, 1);
856
857 /*
858 * Execute and handle the return code.
859 * We execute without enabling the cpu tick, so on success we'll
860 * just flip it on and off to make sure it moves.
861 *
862 * (We do not use emulate_single_instr() because that doesn't enter the
863 * right way in will cause serious trouble if a longjmp was attempted.)
864 */
865# ifdef DEBUG_bird
866 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
867# endif
868 int cTimesMax = 16384;
869 uint32_t eip = pVM->rem.s.Env.eip;
870 do
871 {
872 rc = cpu_exec(&pVM->rem.s.Env);
873
874 } while ( eip == pVM->rem.s.Env.eip
875 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
876 && --cTimesMax > 0);
877 switch (rc)
878 {
879 /*
880 * Single step, we assume!
881 * If there was a breakpoint there we're fucked now.
882 */
883 case EXCP_DEBUG:
884 {
885 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
886 rc = VINF_EM_RESCHEDULE;
887 break;
888 }
889
890 /*
891 * We cannot be interrupted!
892 */
893 case EXCP_INTERRUPT:
894 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
895 rc = VERR_INTERNAL_ERROR;
896 break;
897
898 /*
899 * hlt instruction.
900 */
901 case EXCP_HLT:
902 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
903 rc = VINF_EM_HALT;
904 break;
905
906 /*
907 * The VM has halted.
908 */
909 case EXCP_HALTED:
910 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
911 rc = VINF_EM_HALT;
912 break;
913
914 /*
915 * Switch to RAW-mode.
916 */
917 case EXCP_EXECUTE_RAW:
918 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
919 rc = VINF_EM_RESCHEDULE_RAW;
920 break;
921
922 /*
923 * Switch to hardware accelerated RAW-mode.
924 */
925 case EXCP_EXECUTE_HWACC:
926 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
927 rc = VINF_EM_RESCHEDULE_HWACC;
928 break;
929
930 /*
931 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
932 */
933 case EXCP_RC:
934 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
935 rc = pVM->rem.s.rc;
936 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
937 break;
938
939 /*
940 * Figure out the rest when they arrive....
941 */
942 default:
943 AssertMsgFailed(("rc=%d\n", rc));
944 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
945 rc = VINF_SUCCESS;
946 break;
947 }
948
949 /*
950 * Switch back the state.
951 */
952 cpu_single_step(&pVM->rem.s.Env, 0);
953#endif
954 pVM->rem.s.Env.interrupt_request = interrupt_request;
955 int rc2 = REMR3StateBack(pVM);
956 AssertRC(rc2);
957 }
958
959 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%08x)\n",
960 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
961 return rc;
962}
963
964
965/**
966 * Runs code in recompiled mode.
967 *
968 * Before calling this function the REM state needs to be in sync with
969 * the VM. Call REMR3State() to perform the sync. It's only necessary
970 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
971 * and after calling REMR3StateBack().
972 *
973 * @returns VBox status code.
974 *
975 * @param pVM VM Handle.
976 */
977REMR3DECL(int) REMR3Run(PVM pVM)
978{
979 Log2(("REMR3Run: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
980 Assert(pVM->rem.s.fInREM);
981////Keyboard / tb stuff:
982//if ( pVM->rem.s.Env.segs[R_CS].selector == 0xf000
983// && pVM->rem.s.Env.eip >= 0xe860
984// && pVM->rem.s.Env.eip <= 0xe880)
985// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
986////A20:
987//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x9020
988// && pVM->rem.s.Env.eip >= 0x970
989// && pVM->rem.s.Env.eip <= 0x9a0)
990// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
991////Speaker (port 61h)
992//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x0010
993// && ( (pVM->rem.s.Env.eip >= 0x90278c10 && pVM->rem.s.Env.eip <= 0x90278c30)
994// || (pVM->rem.s.Env.eip >= 0x9010e250 && pVM->rem.s.Env.eip <= 0x9010e260)
995// )
996// )
997// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
998//DBGFR3InfoLog(pVM, "timers", NULL);
999
1000
1001 int rc = cpu_exec(&pVM->rem.s.Env);
1002 switch (rc)
1003 {
1004 /*
1005 * This happens when the execution was interrupted
1006 * by an external event, like pending timers.
1007 */
1008 case EXCP_INTERRUPT:
1009 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
1010 rc = VINF_SUCCESS;
1011 break;
1012
1013 /*
1014 * hlt instruction.
1015 */
1016 case EXCP_HLT:
1017 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
1018 rc = VINF_EM_HALT;
1019 break;
1020
1021 /*
1022 * The VM has halted.
1023 */
1024 case EXCP_HALTED:
1025 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1026 rc = VINF_EM_HALT;
1027 break;
1028
1029 /*
1030 * Breakpoint/single step.
1031 */
1032 case EXCP_DEBUG:
1033 {
1034#if 0//def DEBUG_bird
1035 static int iBP = 0;
1036 printf("howdy, breakpoint! iBP=%d\n", iBP);
1037 switch (iBP)
1038 {
1039 case 0:
1040 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1041 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1042 //pVM->rem.s.Env.interrupt_request = 0;
1043 //pVM->rem.s.Env.exception_index = -1;
1044 //g_fInterruptDisabled = 1;
1045 rc = VINF_SUCCESS;
1046 asm("int3");
1047 break;
1048 default:
1049 asm("int3");
1050 break;
1051 }
1052 iBP++;
1053#else
1054 /* breakpoint or single step? */
1055 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1056 int iBP;
1057 rc = VINF_EM_DBG_STEPPED;
1058 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1059 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1060 {
1061 rc = VINF_EM_DBG_BREAKPOINT;
1062 break;
1063 }
1064 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1065#endif
1066 break;
1067 }
1068
1069 /*
1070 * Switch to RAW-mode.
1071 */
1072 case EXCP_EXECUTE_RAW:
1073 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1074 rc = VINF_EM_RESCHEDULE_RAW;
1075 break;
1076
1077 /*
1078 * Switch to hardware accelerated RAW-mode.
1079 */
1080 case EXCP_EXECUTE_HWACC:
1081 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1082 rc = VINF_EM_RESCHEDULE_HWACC;
1083 break;
1084
1085 /*
1086 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
1087 */
1088 case EXCP_RC:
1089 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1090 rc = pVM->rem.s.rc;
1091 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1092 break;
1093
1094 /*
1095 * Figure out the rest when they arrive....
1096 */
1097 default:
1098 AssertMsgFailed(("rc=%d\n", rc));
1099 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1100 rc = VINF_SUCCESS;
1101 break;
1102 }
1103
1104 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%08x)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1105 return rc;
1106}
1107
1108
1109/**
1110 * Check if the cpu state is suitable for Raw execution.
1111 *
1112 * @returns boolean
1113 * @param env The CPU env struct.
1114 * @param eip The EIP to check this for (might differ from env->eip).
1115 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1116 * @param pExceptionIndex Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1117 *
1118 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1119 */
1120bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, uint32_t *pExceptionIndex)
1121{
1122 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1123 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1124 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1125
1126 /* Update counter. */
1127 env->pVM->rem.s.cCanExecuteRaw++;
1128
1129 if (HWACCMIsEnabled(env->pVM))
1130 {
1131 env->state |= CPU_RAW_HWACC;
1132
1133 /*
1134 * Create partial context for HWACCMR3CanExecuteGuest
1135 */
1136 CPUMCTX Ctx;
1137 Ctx.cr0 = env->cr[0];
1138 Ctx.cr3 = env->cr[3];
1139 Ctx.cr4 = env->cr[4];
1140
1141 Ctx.tr = env->tr.selector;
1142 Ctx.trHid.u32Base = (uint32_t)env->tr.base;
1143 Ctx.trHid.u32Limit = env->tr.limit;
1144 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1145
1146 Ctx.idtr.cbIdt = env->idt.limit;
1147 Ctx.idtr.pIdt = (uint32_t)env->idt.base;
1148
1149 Ctx.eflags.u32 = env->eflags;
1150
1151 Ctx.cs = env->segs[R_CS].selector;
1152 Ctx.csHid.u32Base = (uint32_t)env->segs[R_CS].base;
1153 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1154 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1155
1156 Ctx.ss = env->segs[R_SS].selector;
1157 Ctx.ssHid.u32Base = (uint32_t)env->segs[R_SS].base;
1158 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1159 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1160
1161 /* Hardware accelerated raw-mode:
1162 *
1163 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1164 */
1165 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1166 {
1167 *pExceptionIndex = EXCP_EXECUTE_HWACC;
1168 return true;
1169 }
1170 return false;
1171 }
1172
1173 /*
1174 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1175 * or 32 bits protected mode ring 0 code
1176 *
1177 * The tests are ordered by the likelyhood of being true during normal execution.
1178 */
1179 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1180 {
1181 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1182 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1183 return false;
1184 }
1185
1186#ifndef VBOX_RAW_V86
1187 if (fFlags & VM_MASK) {
1188 STAM_COUNTER_INC(&gStatRefuseVM86);
1189 Log2(("raw mode refused: VM_MASK\n"));
1190 return false;
1191 }
1192#endif
1193
1194 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1195 {
1196#ifndef DEBUG_bird
1197 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1198#endif
1199 return false;
1200 }
1201
1202 if (env->singlestep_enabled)
1203 {
1204 //Log2(("raw mode refused: Single step\n"));
1205 return false;
1206 }
1207
1208 if (env->nb_breakpoints > 0)
1209 {
1210 //Log2(("raw mode refused: Breakpoints\n"));
1211 return false;
1212 }
1213
1214 uint32_t u32CR0 = env->cr[0];
1215 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1216 {
1217 STAM_COUNTER_INC(&gStatRefusePaging);
1218 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1219 return false;
1220 }
1221
1222 if (env->cr[4] & CR4_PAE_MASK)
1223 {
1224 STAM_COUNTER_INC(&gStatRefusePAE);
1225 //Log2(("raw mode refused: PAE\n"));
1226 return false;
1227 }
1228
1229 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1230 {
1231 if (!EMIsRawRing3Enabled(env->pVM))
1232 return false;
1233
1234 if (!(env->eflags & IF_MASK))
1235 {
1236 STAM_COUNTER_INC(&gStatRefuseIF0);
1237 Log2(("raw mode refused: IF (RawR3)\n"));
1238 return false;
1239 }
1240
1241 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1242 {
1243 STAM_COUNTER_INC(&gStatRefuseWP0);
1244 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1245 return false;
1246 }
1247 }
1248 else
1249 {
1250 if (!EMIsRawRing0Enabled(env->pVM))
1251 return false;
1252
1253 // Let's start with pure 32 bits ring 0 code first
1254 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1255 {
1256 STAM_COUNTER_INC(&gStatRefuseCode16);
1257 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1258 return false;
1259 }
1260
1261 // Only R0
1262 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1263 {
1264 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1265 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1266 return false;
1267 }
1268
1269 if (!(u32CR0 & CR0_WP_MASK))
1270 {
1271 STAM_COUNTER_INC(&gStatRefuseWP0);
1272 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1273 return false;
1274 }
1275
1276 if (PATMIsPatchGCAddr(env->pVM, eip))
1277 {
1278 Log2(("raw r0 mode forced: patch code\n"));
1279 *pExceptionIndex = EXCP_EXECUTE_RAW;
1280 return true;
1281 }
1282
1283#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1284 if (!(env->eflags & IF_MASK))
1285 {
1286 STAM_COUNTER_INC(&gStatRefuseIF0);
1287 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1288 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1289 return false;
1290 }
1291#endif
1292
1293 env->state |= CPU_RAW_RING0;
1294 }
1295
1296 /*
1297 * Don't reschedule the first time we're called, because there might be
1298 * special reasons why we're here that is not covered by the above checks.
1299 */
1300 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1301 {
1302 Log2(("raw mode refused: first scheduling\n"));
1303 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1304 return false;
1305 }
1306
1307 Assert(PGMPhysIsA20Enabled(env->pVM));
1308 *pExceptionIndex = EXCP_EXECUTE_RAW;
1309 return true;
1310}
1311
1312
1313/**
1314 * Fetches a code byte.
1315 *
1316 * @returns Success indicator (bool) for ease of use.
1317 * @param env The CPU environment structure.
1318 * @param GCPtrInstr Where to fetch code.
1319 * @param pu8Byte Where to store the byte on success
1320 */
1321bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1322{
1323 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1324 if (VBOX_SUCCESS(rc))
1325 return true;
1326 return false;
1327}
1328
1329
1330/**
1331 * Flush (or invalidate if you like) page table/dir entry.
1332 *
1333 * (invlpg instruction; tlb_flush_page)
1334 *
1335 * @param env Pointer to cpu environment.
1336 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1337 */
1338void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1339{
1340 PVM pVM = env->pVM;
1341
1342 /*
1343 * When we're replaying invlpg instructions or restoring a saved
1344 * state we disable this path.
1345 */
1346 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1347 return;
1348 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1349 Assert(pVM->rem.s.fInREM);
1350
1351 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1352
1353 /*
1354 * Update the control registers before calling PGMFlushPage.
1355 */
1356 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1357 pCtx->cr0 = env->cr[0];
1358 pCtx->cr3 = env->cr[3];
1359 pCtx->cr4 = env->cr[4];
1360
1361 /*
1362 * Let PGM do the rest.
1363 */
1364 int rc = PGMInvalidatePage(pVM, GCPtr);
1365 if (VBOX_FAILURE(rc))
1366 {
1367 AssertMsgFailed(("remR3FlushPage %x %x %x %d failed!!\n", GCPtr));
1368 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1369 }
1370 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1371}
1372
1373/**
1374 * Set page table/dir entry. (called from tlb_set_page)
1375 *
1376 * @param env Pointer to cpu environment.
1377 */
1378void remR3SetPage(CPUState *env, CPUTLBEntry *pTLBEntry, CPUTLBEntry *pTLBEntryIgnored, int prot, int is_user)
1379{
1380 target_ulong virt_addr;
1381 if (env->pVM->rem.s.fIgnoreSetPage || env->pVM->rem.s.fIgnoreAll)
1382 return;
1383 Assert(env->pVM->rem.s.fInREM || env->pVM->rem.s.fInStateSync);
1384
1385#ifndef PGM_DYNAMIC_RAM_ALLOC
1386 if(!is_user && !(env->state & CPU_RAW_RING0))
1387 return; /* We are currently not interested in kernel pages */
1388#endif
1389
1390#if !defined(PGM_DYNAMIC_RAM_ALLOC) && !defined(REM_PHYS_ADDR_IN_TLB)
1391 Log2(("tlb_set_page_raw (r=%x|w=%x)-%x prot %x is_user %d phys base %x\n",
1392 pTLBEntry->addr_read, pTLBEntry->addr_write, pTLBEntry->addend, prot, is_user, phys_ram_base));
1393#else /* PGM_DYNAMIC_RAM_ALLOC */
1394 Log2(("tlb_set_page_raw (r=%x|w=%x)-%x prot %x is_user %d\n",
1395 pTLBEntry->addr_read, pTLBEntry->addr_write, pTLBEntry->addend, prot, is_user));
1396#endif/* PGM_DYNAMIC_RAM_ALLOC */
1397
1398 /*
1399 * Extract the virtual address.
1400 */
1401 if (prot & PAGE_WRITE)
1402 virt_addr = pTLBEntry->addr_write;
1403 else if (prot & PAGE_READ)
1404 virt_addr = pTLBEntry->addr_read;
1405 else
1406 AssertMsgFailedReturnVoid(("tlb_set_page_raw unexpected protection flags %x\n", prot));
1407 virt_addr &= TARGET_PAGE_MASK;
1408
1409 /*
1410 * Update the control registers before calling PGMFlushPage.
1411 */
1412 PCPUMCTX pCtx = (PCPUMCTX)env->pVM->rem.s.pCtx;
1413 pCtx->cr0 = env->cr[0];
1414 pCtx->cr3 = env->cr[3];
1415 pCtx->cr4 = env->cr[4];
1416
1417 /*
1418 * Let PGM do the rest.
1419 */
1420 int rc = PGMInvalidatePage(env->pVM, (RTGCPTR)virt_addr);
1421 if (VBOX_FAILURE(rc))
1422 {
1423#ifdef VBOX_STRICT
1424 target_ulong addend = pTLBEntry->addend;
1425 target_ulong phys_addr;
1426
1427 if (!(addend & IO_MEM_ROM))
1428# ifdef REM_PHYS_ADDR_IN_TLB
1429 phys_addr = virt_addr + addend;
1430# elif defined(PGM_DYNAMIC_RAM_ALLOC)
1431 phys_addr = remR3HCVirt2GCPhysInlined(env->pVM, (void *)(virt_addr + addend));
1432# else
1433 phys_addr = virt_addr - (uintptr_t)phys_ram_base + addend;
1434# endif
1435 else
1436 phys_addr = addend;
1437 AssertMsgFailed(("RAWEx_SetPageEntry %x %x %x %d failed!!\n", virt_addr, phys_addr, prot, is_user));
1438#endif /* VBOX_STRICT */
1439 VM_FF_SET(env->pVM, VM_FF_PGM_SYNC_CR3);
1440 }
1441}
1442
1443/**
1444 * Called from tlb_protect_code in order to write monitor a code page.
1445 *
1446 * @param env Pointer to the CPU environment.
1447 * @param GCPtr Code page to monitor
1448 */
1449void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1450{
1451 Assert(env->pVM->rem.s.fInREM);
1452 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1453 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1454 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1455 && !(env->eflags & VM_MASK) /* no V86 mode */
1456 && !HWACCMIsEnabled(env->pVM))
1457 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1458}
1459
1460/**
1461 * Called when the CPU is initialized, any of the CRx registers are changed or
1462 * when the A20 line is modified.
1463 *
1464 * @param env Pointer to the CPU environment.
1465 * @param fGlobal Set if the flush is global.
1466 */
1467void remR3FlushTLB(CPUState *env, bool fGlobal)
1468{
1469 PVM pVM = env->pVM;
1470
1471 /*
1472 * When we're replaying invlpg instructions or restoring a saved
1473 * state we disable this path.
1474 */
1475 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1476 return;
1477 Assert(pVM->rem.s.fInREM);
1478
1479 /*
1480 * The caller doesn't check cr4, so we have to do that for ourselves.
1481 */
1482 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1483 fGlobal = true;
1484 Log(("remR3FlushTLB: CR0=%VGp CR3=%VGp CR4=%VGp %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1485
1486 /*
1487 * Update the control registers before calling PGMR3FlushTLB.
1488 */
1489 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1490 pCtx->cr0 = env->cr[0];
1491 pCtx->cr3 = env->cr[3];
1492 pCtx->cr4 = env->cr[4];
1493
1494 /*
1495 * Let PGM do the rest.
1496 */
1497 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1498}
1499
1500
1501/**
1502 * Called when any of the cr0, cr4 or efer registers is updated.
1503 *
1504 * @param env Pointer to the CPU environment.
1505 */
1506void remR3ChangeCpuMode(CPUState *env)
1507{
1508 int rc;
1509 PVM pVM = env->pVM;
1510
1511 /*
1512 * When we're replaying loads or restoring a saved
1513 * state this path is disabled.
1514 */
1515 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1516 return;
1517 Assert(pVM->rem.s.fInREM);
1518
1519 /*
1520 * Update the control registers before calling PGMR3ChangeMode()
1521 * as it may need to map whatever cr3 is pointing to.
1522 */
1523 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1524 pCtx->cr0 = env->cr[0];
1525 pCtx->cr3 = env->cr[3];
1526 pCtx->cr4 = env->cr[4];
1527
1528#ifdef TARGET_X86_64
1529 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1530 if (rc != VINF_SUCCESS)
1531 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1532#else
1533 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1534 if (rc != VINF_SUCCESS)
1535 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1536#endif
1537}
1538
1539
1540/**
1541 * Called from compiled code to run dma.
1542 *
1543 * @param env Pointer to the CPU environment.
1544 */
1545void remR3DmaRun(CPUState *env)
1546{
1547 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1548 PDMR3DmaRun(env->pVM);
1549 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1550}
1551
1552/**
1553 * Called from compiled code to schedule pending timers in VMM
1554 *
1555 * @param env Pointer to the CPU environment.
1556 */
1557void remR3TimersRun(CPUState *env)
1558{
1559 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1560 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1561 TMR3TimerQueuesDo(env->pVM);
1562 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1563 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1564}
1565
1566/**
1567 * Record trap occurance
1568 *
1569 * @returns VBox status code
1570 * @param env Pointer to the CPU environment.
1571 * @param uTrap Trap nr
1572 * @param uErrorCode Error code
1573 * @param pvNextEIP Next EIP
1574 */
1575int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1576{
1577 PVM pVM = (PVM)env->pVM;
1578#ifdef VBOX_WITH_STATISTICS
1579 static STAMCOUNTER aStatTrap[255];
1580 static bool aRegisters[ELEMENTS(aStatTrap)];
1581#endif
1582
1583#ifdef VBOX_WITH_STATISTICS
1584 if (uTrap < 255)
1585 {
1586 if (!aRegisters[uTrap])
1587 {
1588 aRegisters[uTrap] = true;
1589 char szStatName[64];
1590 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1591 STAM_REG(env->pVM, &aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1592 }
1593 STAM_COUNTER_INC(&aStatTrap[uTrap]);
1594 }
1595#endif
1596 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1597 if( uTrap < 0x20
1598 && (env->cr[0] & X86_CR0_PE)
1599 && !(env->eflags & X86_EFL_VM))
1600 {
1601#ifdef DEBUG
1602 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1603#endif
1604 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1605 {
1606 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1607 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1608 return VERR_REM_TOO_MANY_TRAPS;
1609 }
1610 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1611 pVM->rem.s.cPendingExceptions = 1;
1612 pVM->rem.s.uPendingException = uTrap;
1613 pVM->rem.s.uPendingExcptEIP = env->eip;
1614 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1615 }
1616 else
1617 {
1618 pVM->rem.s.cPendingExceptions = 0;
1619 pVM->rem.s.uPendingException = uTrap;
1620 pVM->rem.s.uPendingExcptEIP = env->eip;
1621 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1622 }
1623 return VINF_SUCCESS;
1624}
1625
1626/*
1627 * Clear current active trap
1628 *
1629 * @param pVM VM Handle.
1630 */
1631void remR3TrapClear(PVM pVM)
1632{
1633 pVM->rem.s.cPendingExceptions = 0;
1634 pVM->rem.s.uPendingException = 0;
1635 pVM->rem.s.uPendingExcptEIP = 0;
1636 pVM->rem.s.uPendingExcptCR2 = 0;
1637}
1638
1639
1640/**
1641 * Syncs the internal REM state with the VM.
1642 *
1643 * This must be called before REMR3Run() is invoked whenever when the REM
1644 * state is not up to date. Calling it several times in a row is not
1645 * permitted.
1646 *
1647 * @returns VBox status code.
1648 *
1649 * @param pVM VM Handle.
1650 *
1651 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1652 * no do this since the majority of the callers don't want any unnecessary of events
1653 * pending that would immediatly interrupt execution.
1654 */
1655REMR3DECL(int) REMR3State(PVM pVM)
1656{
1657 Log2(("REMR3State:\n"));
1658 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1659 register const CPUMCTX *pCtx = pVM->rem.s.pCtx;
1660 register unsigned fFlags;
1661 bool fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1662
1663 Assert(!pVM->rem.s.fInREM);
1664 pVM->rem.s.fInStateSync = true;
1665
1666 /*
1667 * Copy the registers which requires no special handling.
1668 */
1669 Assert(R_EAX == 0);
1670 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1671 Assert(R_ECX == 1);
1672 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1673 Assert(R_EDX == 2);
1674 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1675 Assert(R_EBX == 3);
1676 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1677 Assert(R_ESP == 4);
1678 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1679 Assert(R_EBP == 5);
1680 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1681 Assert(R_ESI == 6);
1682 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1683 Assert(R_EDI == 7);
1684 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1685 pVM->rem.s.Env.eip = pCtx->eip;
1686
1687 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1688
1689 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1690
1691 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1692 pVM->rem.s.Env.dr[0] = pCtx->dr0;
1693 pVM->rem.s.Env.dr[1] = pCtx->dr1;
1694 pVM->rem.s.Env.dr[2] = pCtx->dr2;
1695 pVM->rem.s.Env.dr[3] = pCtx->dr3;
1696 pVM->rem.s.Env.dr[4] = pCtx->dr4;
1697 pVM->rem.s.Env.dr[5] = pCtx->dr5;
1698 pVM->rem.s.Env.dr[6] = pCtx->dr6;
1699 pVM->rem.s.Env.dr[7] = pCtx->dr7;
1700
1701 /*
1702 * Clear the halted hidden flag (the interrupt waking up the CPU can
1703 * have been dispatched in raw mode).
1704 */
1705 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1706
1707 /*
1708 * Replay invlpg?
1709 */
1710 if (pVM->rem.s.cInvalidatedPages)
1711 {
1712 pVM->rem.s.fIgnoreInvlPg = true;
1713 RTUINT i;
1714 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1715 {
1716 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1717 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1718 }
1719 pVM->rem.s.fIgnoreInvlPg = false;
1720 pVM->rem.s.cInvalidatedPages = 0;
1721 }
1722
1723 /*
1724 * Registers which are rarely changed and require special handling / order when changed.
1725 */
1726 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1727 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1728 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1729 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR))
1730 {
1731 if (fFlags & CPUM_CHANGED_FPU_REM)
1732 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1733
1734 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1735 {
1736 pVM->rem.s.fIgnoreCR3Load = true;
1737 tlb_flush(&pVM->rem.s.Env, true);
1738 pVM->rem.s.fIgnoreCR3Load = false;
1739 }
1740
1741 if (fFlags & CPUM_CHANGED_CR4)
1742 {
1743 pVM->rem.s.fIgnoreCR3Load = true;
1744 pVM->rem.s.fIgnoreCpuMode = true;
1745 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1746 pVM->rem.s.fIgnoreCpuMode = false;
1747 pVM->rem.s.fIgnoreCR3Load = false;
1748 }
1749
1750 if (fFlags & CPUM_CHANGED_CR0)
1751 {
1752 pVM->rem.s.fIgnoreCR3Load = true;
1753 pVM->rem.s.fIgnoreCpuMode = true;
1754 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1755 pVM->rem.s.fIgnoreCpuMode = false;
1756 pVM->rem.s.fIgnoreCR3Load = false;
1757 }
1758
1759 if (fFlags & CPUM_CHANGED_CR3)
1760 {
1761 pVM->rem.s.fIgnoreCR3Load = true;
1762 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1763 pVM->rem.s.fIgnoreCR3Load = false;
1764 }
1765
1766 if (fFlags & CPUM_CHANGED_GDTR)
1767 {
1768 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1769 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1770 }
1771
1772 if (fFlags & CPUM_CHANGED_IDTR)
1773 {
1774 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1775 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1776 }
1777
1778 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1779 {
1780 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1781 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1782 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1783 }
1784
1785 if (fFlags & CPUM_CHANGED_LDTR)
1786 {
1787 if (fHiddenSelRegsValid)
1788 {
1789 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1790 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u32Base;
1791 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1792 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1793 }
1794 else
1795 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1796 }
1797
1798 if (fFlags & CPUM_CHANGED_TR)
1799 {
1800 if (fHiddenSelRegsValid)
1801 {
1802 pVM->rem.s.Env.tr.selector = pCtx->tr;
1803 pVM->rem.s.Env.tr.base = pCtx->trHid.u32Base;
1804 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1805 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1806 }
1807 else
1808 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1809
1810 /** @note do_interrupt will fault if the busy flag is still set.... */
1811 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1812 }
1813 }
1814
1815 /*
1816 * Update selector registers.
1817 * This must be done *after* we've synced gdt, ldt and crX registers
1818 * since we're reading the GDT/LDT om sync_seg. This will happen with
1819 * saved state which takes a quick dip into rawmode for instance.
1820 */
1821 /*
1822 * Stack; Note first check this one as the CPL might have changed. The
1823 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1824 */
1825
1826 if (fHiddenSelRegsValid)
1827 {
1828 /* The hidden selector registers are valid in the CPU context. */
1829 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1830
1831 /* Set current CPL */
1832 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1833
1834 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u32Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1835 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u32Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1836 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u32Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1837 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u32Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1838 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u32Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1839 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u32Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1840 }
1841 else
1842 {
1843 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1844 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1845 {
1846 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1847
1848 cpu_x86_set_cpl(&pVM->rem.s.Env, (pCtx->eflags.Bits.u1VM) ? 3 : (pCtx->ss & 3));
1849 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1850#ifdef VBOX_WITH_STATISTICS
1851 if (pVM->rem.s.Env.segs[R_SS].newselector)
1852 {
1853 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1854 }
1855#endif
1856 }
1857 else
1858 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1859
1860 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1861 {
1862 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1863 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1864#ifdef VBOX_WITH_STATISTICS
1865 if (pVM->rem.s.Env.segs[R_ES].newselector)
1866 {
1867 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1868 }
1869#endif
1870 }
1871 else
1872 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1873
1874 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1875 {
1876 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1877 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1878#ifdef VBOX_WITH_STATISTICS
1879 if (pVM->rem.s.Env.segs[R_CS].newselector)
1880 {
1881 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1882 }
1883#endif
1884 }
1885 else
1886 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1887
1888 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1889 {
1890 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1891 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1892#ifdef VBOX_WITH_STATISTICS
1893 if (pVM->rem.s.Env.segs[R_DS].newselector)
1894 {
1895 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1896 }
1897#endif
1898 }
1899 else
1900 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1901
1902 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1903 * be the same but not the base/limit. */
1904 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1905 {
1906 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1907 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1908#ifdef VBOX_WITH_STATISTICS
1909 if (pVM->rem.s.Env.segs[R_FS].newselector)
1910 {
1911 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1912 }
1913#endif
1914 }
1915 else
1916 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1917
1918 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1919 {
1920 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1921 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1922#ifdef VBOX_WITH_STATISTICS
1923 if (pVM->rem.s.Env.segs[R_GS].newselector)
1924 {
1925 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1926 }
1927#endif
1928 }
1929 else
1930 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1931 }
1932
1933 /*
1934 * Check for traps.
1935 */
1936 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1937 TRPMEVENT enmType;
1938 uint8_t u8TrapNo;
1939 int rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
1940 if (VBOX_SUCCESS(rc))
1941 {
1942 #ifdef DEBUG
1943 if (u8TrapNo == 0x80)
1944 {
1945 remR3DumpLnxSyscall(pVM);
1946 remR3DumpOBsdSyscall(pVM);
1947 }
1948 #endif
1949
1950 pVM->rem.s.Env.exception_index = u8TrapNo;
1951 if (enmType != TRPM_SOFTWARE_INT)
1952 {
1953 pVM->rem.s.Env.exception_is_int = 0;
1954 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
1955 }
1956 else
1957 {
1958 /*
1959 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
1960 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
1961 * for int03 and into.
1962 */
1963 pVM->rem.s.Env.exception_is_int = 1;
1964 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 2;
1965 /* int 3 may be generated by one-byte 0xcc */
1966 if (u8TrapNo == 3)
1967 {
1968 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xcc)
1969 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1970 }
1971 /* int 4 may be generated by one-byte 0xce */
1972 else if (u8TrapNo == 4)
1973 {
1974 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xce)
1975 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1976 }
1977 }
1978
1979 /* get error code and cr2 if needed. */
1980 switch (u8TrapNo)
1981 {
1982 case 0x0e:
1983 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
1984 /* fallthru */
1985 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
1986 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
1987 break;
1988
1989 case 0x11: case 0x08:
1990 default:
1991 pVM->rem.s.Env.error_code = 0;
1992 break;
1993 }
1994
1995 /*
1996 * We can now reset the active trap since the recompiler is gonna have a go at it.
1997 */
1998 rc = TRPMResetTrap(pVM);
1999 AssertRC(rc);
2000 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
2001 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
2002 }
2003
2004 /*
2005 * Clear old interrupt request flags; Check for pending hardware interrupts.
2006 * (See @remark for why we don't check for other FFs.)
2007 */
2008 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2009 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2010 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
2011 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2012
2013 /*
2014 * We're now in REM mode.
2015 */
2016 pVM->rem.s.fInREM = true;
2017 pVM->rem.s.fInStateSync = false;
2018 pVM->rem.s.cCanExecuteRaw = 0;
2019 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2020 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2021 return VINF_SUCCESS;
2022}
2023
2024
2025/**
2026 * Syncs back changes in the REM state to the the VM state.
2027 *
2028 * This must be called after invoking REMR3Run().
2029 * Calling it several times in a row is not permitted.
2030 *
2031 * @returns VBox status code.
2032 *
2033 * @param pVM VM Handle.
2034 */
2035REMR3DECL(int) REMR3StateBack(PVM pVM)
2036{
2037 Log2(("REMR3StateBack:\n"));
2038 Assert(pVM->rem.s.fInREM);
2039 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2040 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2041
2042 /*
2043 * Copy back the registers.
2044 * This is done in the order they are declared in the CPUMCTX structure.
2045 */
2046
2047 /** @todo FOP */
2048 /** @todo FPUIP */
2049 /** @todo CS */
2050 /** @todo FPUDP */
2051 /** @todo DS */
2052 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2053 pCtx->fpu.MXCSR = 0;
2054 pCtx->fpu.MXCSR_MASK = 0;
2055
2056 /** @todo check if FPU/XMM was actually used in the recompiler */
2057 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2058//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2059
2060 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2061 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2062 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2063 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2064 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2065 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2066 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2067
2068 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2069 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2070
2071#ifdef VBOX_WITH_STATISTICS
2072 if (pVM->rem.s.Env.segs[R_SS].newselector)
2073 {
2074 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2075 }
2076 if (pVM->rem.s.Env.segs[R_GS].newselector)
2077 {
2078 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2079 }
2080 if (pVM->rem.s.Env.segs[R_FS].newselector)
2081 {
2082 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2083 }
2084 if (pVM->rem.s.Env.segs[R_ES].newselector)
2085 {
2086 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2087 }
2088 if (pVM->rem.s.Env.segs[R_DS].newselector)
2089 {
2090 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2091 }
2092 if (pVM->rem.s.Env.segs[R_CS].newselector)
2093 {
2094 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2095 }
2096#endif
2097 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2098 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2099 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2100 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2101 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2102
2103 pCtx->eip = pVM->rem.s.Env.eip;
2104 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2105
2106 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2107 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2108 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2109 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2110
2111 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2112 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2113 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2114 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2115 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2116 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2117 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2118 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2119
2120 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2121 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2122 {
2123 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2124 STAM_COUNTER_INC(&gStatREMGDTChange);
2125 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2126 }
2127
2128 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2129 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2130 {
2131 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2132 STAM_COUNTER_INC(&gStatREMIDTChange);
2133 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2134 }
2135
2136 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2137 {
2138 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2139 STAM_COUNTER_INC(&gStatREMLDTRChange);
2140 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2141 }
2142 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2143 {
2144 pCtx->tr = pVM->rem.s.Env.tr.selector;
2145 STAM_COUNTER_INC(&gStatREMTRChange);
2146 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2147 }
2148
2149 /** @todo These values could still be out of sync! */
2150 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2151 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2152 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2153 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2154
2155 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2156 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2157 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2158
2159 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2160 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2161 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2162
2163 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2164 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2165 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2166
2167 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2168 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2169 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2170
2171 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2172 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2173 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2174
2175 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2176 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2177 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2178
2179 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2180 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2181 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2182
2183 /* Sysenter MSR */
2184 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2185 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2186 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2187
2188 remR3TrapClear(pVM);
2189
2190 /*
2191 * Check for traps.
2192 */
2193 if ( pVM->rem.s.Env.exception_index >= 0
2194 && pVM->rem.s.Env.exception_index < 256)
2195 {
2196 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2197 int rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2198 AssertRC(rc);
2199 switch (pVM->rem.s.Env.exception_index)
2200 {
2201 case 0x0e:
2202 TRPMSetFaultAddress(pVM, pCtx->cr2);
2203 /* fallthru */
2204 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2205 case 0x11: case 0x08: /* 0 */
2206 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2207 break;
2208 }
2209
2210 }
2211
2212 /*
2213 * We're not longer in REM mode.
2214 */
2215 pVM->rem.s.fInREM = false;
2216 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2217 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2218 return VINF_SUCCESS;
2219}
2220
2221
2222/**
2223 * This is called by the disassembler when it wants to update the cpu state
2224 * before for instance doing a register dump.
2225 */
2226static void remR3StateUpdate(PVM pVM)
2227{
2228 Assert(pVM->rem.s.fInREM);
2229 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2230
2231 /*
2232 * Copy back the registers.
2233 * This is done in the order they are declared in the CPUMCTX structure.
2234 */
2235
2236 /** @todo FOP */
2237 /** @todo FPUIP */
2238 /** @todo CS */
2239 /** @todo FPUDP */
2240 /** @todo DS */
2241 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2242 pCtx->fpu.MXCSR = 0;
2243 pCtx->fpu.MXCSR_MASK = 0;
2244
2245 /** @todo check if FPU/XMM was actually used in the recompiler */
2246 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2247//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2248
2249 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2250 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2251 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2252 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2253 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2254 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2255 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2256
2257 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2258 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2259
2260 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2261 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2262 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2263 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2264 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2265
2266 pCtx->eip = pVM->rem.s.Env.eip;
2267 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2268
2269 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2270 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2271 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2272 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2273
2274 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2275 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2276 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2277 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2278 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2279 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2280 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2281 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2282
2283 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2284 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2285 {
2286 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2287 STAM_COUNTER_INC(&gStatREMGDTChange);
2288 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2289 }
2290
2291 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2292 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2293 {
2294 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2295 STAM_COUNTER_INC(&gStatREMIDTChange);
2296 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2297 }
2298
2299 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2300 {
2301 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2302 STAM_COUNTER_INC(&gStatREMLDTRChange);
2303 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2304 }
2305 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2306 {
2307 pCtx->tr = pVM->rem.s.Env.tr.selector;
2308 STAM_COUNTER_INC(&gStatREMTRChange);
2309 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2310 }
2311
2312 /** @todo These values could still be out of sync! */
2313 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2314 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2315 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2316 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2317
2318 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2319 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2320 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2321
2322 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2323 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2324 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2325
2326 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2327 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2328 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2329
2330 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2331 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2332 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2333
2334 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2335 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2336 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2337
2338 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2339 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2340 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2341
2342 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2343 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2344 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2345
2346 /* Sysenter MSR */
2347 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2348 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2349 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2350}
2351
2352
2353/**
2354 * Update the VMM state information if we're currently in REM.
2355 *
2356 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2357 * we're currently executing in REM and the VMM state is invalid. This method will of
2358 * course check that we're executing in REM before syncing any data over to the VMM.
2359 *
2360 * @param pVM The VM handle.
2361 */
2362REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2363{
2364 if (pVM->rem.s.fInREM)
2365 remR3StateUpdate(pVM);
2366}
2367
2368
2369#undef LOG_GROUP
2370#define LOG_GROUP LOG_GROUP_REM
2371
2372
2373/**
2374 * Notify the recompiler about Address Gate 20 state change.
2375 *
2376 * This notification is required since A20 gate changes are
2377 * initialized from a device driver and the VM might just as
2378 * well be in REM mode as in RAW mode.
2379 *
2380 * @param pVM VM handle.
2381 * @param fEnable True if the gate should be enabled.
2382 * False if the gate should be disabled.
2383 */
2384REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2385{
2386 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2387 VM_ASSERT_EMT(pVM);
2388 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2389}
2390
2391
2392/**
2393 * Replays the invalidated recorded pages.
2394 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2395 *
2396 * @param pVM VM handle.
2397 */
2398REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2399{
2400 VM_ASSERT_EMT(pVM);
2401
2402 /*
2403 * Sync the required registers.
2404 */
2405 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2406 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2407 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2408 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2409
2410 /*
2411 * Replay the flushes.
2412 */
2413 pVM->rem.s.fIgnoreInvlPg = true;
2414 RTUINT i;
2415 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2416 {
2417 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2418 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2419 }
2420 pVM->rem.s.fIgnoreInvlPg = false;
2421 pVM->rem.s.cInvalidatedPages = 0;
2422}
2423
2424
2425/**
2426 * Replays the invalidated recorded pages.
2427 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2428 *
2429 * @param pVM VM handle.
2430 */
2431REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2432{
2433 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2434 VM_ASSERT_EMT(pVM);
2435
2436 /*
2437 * Replay the flushes.
2438 */
2439 RTUINT i;
2440 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2441 pVM->rem.s.cHandlerNotifications = 0;
2442 for (i = 0; i < c; i++)
2443 {
2444 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2445 switch (pRec->enmKind)
2446 {
2447 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2448 REMR3NotifyHandlerPhysicalRegister(pVM,
2449 pRec->u.PhysicalRegister.enmType,
2450 pRec->u.PhysicalRegister.GCPhys,
2451 pRec->u.PhysicalRegister.cb,
2452 pRec->u.PhysicalRegister.fHasHCHandler);
2453 break;
2454
2455 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2456 REMR3NotifyHandlerPhysicalDeregister(pVM,
2457 pRec->u.PhysicalDeregister.enmType,
2458 pRec->u.PhysicalDeregister.GCPhys,
2459 pRec->u.PhysicalDeregister.cb,
2460 pRec->u.PhysicalDeregister.fHasHCHandler,
2461 pRec->u.PhysicalDeregister.pvHCPtr);
2462 break;
2463
2464 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2465 REMR3NotifyHandlerPhysicalModify(pVM,
2466 pRec->u.PhysicalModify.enmType,
2467 pRec->u.PhysicalModify.GCPhysOld,
2468 pRec->u.PhysicalModify.GCPhysNew,
2469 pRec->u.PhysicalModify.cb,
2470 pRec->u.PhysicalModify.fHasHCHandler,
2471 pRec->u.PhysicalModify.pvHCPtr);
2472 break;
2473
2474 default:
2475 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2476 break;
2477 }
2478 }
2479}
2480
2481
2482/**
2483 * Notify REM about changed code page.
2484 *
2485 * @returns VBox status code.
2486 * @param pVM VM handle.
2487 * @param pvCodePage Code page address
2488 */
2489REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2490{
2491 int rc;
2492 RTGCPHYS PhysGC;
2493 uint64_t flags;
2494
2495 VM_ASSERT_EMT(pVM);
2496
2497 /*
2498 * Get the physical page address.
2499 */
2500 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2501 if (rc == VINF_SUCCESS)
2502 {
2503 /*
2504 * Sync the required registers and flush the whole page.
2505 * (Easier to do the whole page than notifying it about each physical
2506 * byte that was changed.
2507 */
2508 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2509 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2510 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2511 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2512
2513 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2514 }
2515 return VINF_SUCCESS;
2516}
2517
2518/**
2519 * Notification about a successful MMR3PhysRegister() call.
2520 *
2521 * @param pVM VM handle.
2522 * @param GCPhys The physical address the RAM.
2523 * @param cb Size of the memory.
2524 * @param pvRam The HC address of the RAM.
2525 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2526 */
2527REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvRam, unsigned fFlags)
2528{
2529 LogFlow(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2530 VM_ASSERT_EMT(pVM);
2531
2532 /*
2533 * Validate input - we trust the caller.
2534 */
2535 Assert(!GCPhys || pvRam);
2536 Assert(RT_ALIGN_P(pvRam, PAGE_SIZE) == pvRam);
2537 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2538 Assert(cb);
2539 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2540
2541 /*
2542 * Base ram?
2543 */
2544 if (!GCPhys)
2545 {
2546#if !defined(PGM_DYNAMIC_RAM_ALLOC) && !defined(REM_PHYS_ADDR_IN_TLB)
2547 AssertRelease(!phys_ram_base);
2548 phys_ram_base = pvRam;
2549#endif
2550 phys_ram_size = cb;
2551 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2552#ifndef VBOX_STRICT
2553 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2554 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2555#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2556 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2557 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2558 uint32_t cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2559 int rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2560 AssertRC(rc);
2561 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2562#endif
2563 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2564 }
2565
2566 /*
2567 * Register the ram.
2568 */
2569 Assert(!pVM->rem.s.fIgnoreAll);
2570 pVM->rem.s.fIgnoreAll = true;
2571
2572#ifdef PGM_DYNAMIC_RAM_ALLOC
2573 if (!GCPhys)
2574 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2575 else
2576 {
2577# ifndef REM_PHYS_ADDR_IN_TLB
2578 uint32_t i;
2579# endif
2580
2581 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2582
2583# ifndef REM_PHYS_ADDR_IN_TLB
2584 AssertRelease(pVM->rem.s.cPhysRegistrations < REM_MAX_PHYS_REGISTRATIONS);
2585 for (i = 0; i < pVM->rem.s.cPhysRegistrations; i++)
2586 {
2587 if (pVM->rem.s.aPhysReg[i].GCPhys == GCPhys)
2588 {
2589 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvRam;
2590 pVM->rem.s.aPhysReg[i].cb = cb;
2591 break;
2592 }
2593 }
2594 if (i == pVM->rem.s.cPhysRegistrations)
2595 {
2596 pVM->rem.s.aPhysReg[i].GCPhys = GCPhys;
2597 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvRam;
2598 pVM->rem.s.aPhysReg[i].cb = cb;
2599 pVM->rem.s.cPhysRegistrations++;
2600 }
2601# endif /* !REM_PHYS_ADDR_IN_TLB */
2602 }
2603#elif defined(REM_PHYS_ADDR_IN_TLB)
2604 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2605#else
2606 AssertRelease(phys_ram_base);
2607 cpu_register_physical_memory(GCPhys, cb, ((uintptr_t)pvRam - (uintptr_t)phys_ram_base)
2608 | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2609#endif
2610 Assert(pVM->rem.s.fIgnoreAll);
2611 pVM->rem.s.fIgnoreAll = false;
2612}
2613
2614
2615/**
2616 * Notification about a successful PGMR3PhysRegisterChunk() call.
2617 *
2618 * @param pVM VM handle.
2619 * @param GCPhys The physical address the RAM.
2620 * @param cb Size of the memory.
2621 * @param pvRam The HC address of the RAM.
2622 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2623 */
2624REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2625{
2626#ifdef PGM_DYNAMIC_RAM_ALLOC
2627# ifndef REM_PHYS_ADDR_IN_TLB
2628 uint32_t idx;
2629#endif
2630
2631 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2632 VM_ASSERT_EMT(pVM);
2633
2634 /*
2635 * Validate input - we trust the caller.
2636 */
2637 Assert(pvRam);
2638 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2639 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2640 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2641 Assert(fFlags == 0 /* normal RAM */);
2642
2643# ifndef REM_PHYS_ADDR_IN_TLB
2644 if (!pVM->rem.s.paHCVirtToGCPhys)
2645 {
2646 uint32_t size = (_4G >> PGM_DYNAMIC_CHUNK_SHIFT) * sizeof(REMCHUNKINFO);
2647
2648 Assert(phys_ram_size);
2649
2650 pVM->rem.s.paHCVirtToGCPhys = (PREMCHUNKINFO)MMR3HeapAllocZ(pVM, MM_TAG_REM, size);
2651 pVM->rem.s.paGCPhysToHCVirt = (RTHCPTR)MMR3HeapAllocZ(pVM, MM_TAG_REM, (phys_ram_size >> PGM_DYNAMIC_CHUNK_SHIFT)*sizeof(RTHCPTR));
2652 }
2653 pVM->rem.s.paGCPhysToHCVirt[GCPhys >> PGM_DYNAMIC_CHUNK_SHIFT] = pvRam;
2654
2655 idx = (pvRam >> PGM_DYNAMIC_CHUNK_SHIFT);
2656 if (!pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1)
2657 {
2658 pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1 = pvRam;
2659 pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 = GCPhys;
2660 }
2661 else
2662 {
2663 Assert(!pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2);
2664 pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2 = pvRam;
2665 pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 = GCPhys;
2666 }
2667 /* Does the region spawn two chunks? */
2668 if (pvRam & PGM_DYNAMIC_CHUNK_OFFSET_MASK)
2669 {
2670 if (!pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk1)
2671 {
2672 pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk1 = pvRam;
2673 pVM->rem.s.paHCVirtToGCPhys[idx+1].GCPhys1 = GCPhys;
2674 }
2675 else
2676 {
2677 Assert(!pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk2);
2678 pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk2 = pvRam;
2679 pVM->rem.s.paHCVirtToGCPhys[idx+1].GCPhys2 = GCPhys;
2680 }
2681 }
2682# endif /* !REM_PHYS_ADDR_IN_TLB */
2683
2684 Assert(!pVM->rem.s.fIgnoreAll);
2685 pVM->rem.s.fIgnoreAll = true;
2686
2687 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2688
2689 Assert(pVM->rem.s.fIgnoreAll);
2690 pVM->rem.s.fIgnoreAll = false;
2691
2692#else
2693 AssertReleaseFailed();
2694#endif
2695}
2696
2697
2698#ifdef PGM_DYNAMIC_RAM_ALLOC
2699# ifndef REM_PHYS_ADDR_IN_TLB
2700#if 0
2701static const uint8_t gabZeroPage[PAGE_SIZE];
2702#endif
2703
2704/**
2705 * Convert GC physical address to HC virt
2706 *
2707 * @returns The HC virt address corresponding to addr.
2708 * @param env The cpu environment.
2709 * @param addr The physical address.
2710 */
2711DECLINLINE(void *) remR3GCPhys2HCVirtInlined(PVM pVM, target_ulong addr)
2712{
2713 uint32_t i;
2714 void *pv;
2715 STAM_PROFILE_START(&gStatGCPhys2HCVirt, a);
2716
2717#if 1
2718 /* lookup in pVM->rem.s.aPhysReg array first (for ROM range(s) inside the guest's RAM) */
2719 for (i = 0; i < pVM->rem.s.cPhysRegistrations; i++)
2720 {
2721 RTGCPHYS off = addr - pVM->rem.s.aPhysReg[i].GCPhys;
2722 if (off < pVM->rem.s.aPhysReg[i].cb)
2723 {
2724 pv = (void *)(pVM->rem.s.aPhysReg[i].HCVirt + off);
2725 Log2(("remR3GCPhys2HCVirt: %x -> %x\n", addr, pv));
2726 STAM_PROFILE_STOP(&gStatGCPhys2HCVirt, a);
2727 return pv;
2728 }
2729 }
2730 AssertMsg(addr < phys_ram_size, ("remR3GCPhys2HCVirt: unknown physical address %x\n", addr));
2731 pv = (void *)(pVM->rem.s.paGCPhysToHCVirt[addr >> PGM_DYNAMIC_CHUNK_SHIFT] + (addr & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
2732 Log2(("remR3GCPhys2HCVirt: %x -> %x\n", addr, pv));
2733#else
2734 /** @todo figure out why this is faster than the above code. */
2735 int rc = PGMPhysGCPhys2HCPtr(pVM, addr & X86_PTE_PAE_PG_MASK, PAGE_SIZE, &pv);
2736 if (RT_FAILURE(rc))
2737 {
2738 AssertMsgFailed(("remR3GCPhys2HCVirt: unknown physical address %x\n", addr));
2739 pv = gabZeroPage;
2740 }
2741 pv = (void *)((uintptr_t)pv | (addr & PAGE_OFFSET_MASK));
2742#endif
2743 return pv;
2744}
2745
2746
2747/**
2748 * Convert GC physical address to HC virt
2749 *
2750 * @returns The HC virt address corresponding to addr.
2751 * @param env The cpu environment.
2752 * @param addr The physical address.
2753 */
2754DECLINLINE(target_ulong) remR3HCVirt2GCPhysInlined(PVM pVM, void *addr)
2755{
2756 RTHCUINTPTR HCVirt = (RTHCUINTPTR)addr;
2757 uint32_t idx = (HCVirt >> PGM_DYNAMIC_CHUNK_SHIFT);
2758 RTHCUINTPTR off;
2759 RTUINT i;
2760 target_ulong GCPhys;
2761
2762 off = HCVirt - pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1;
2763
2764 if ( pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1
2765 && off < PGM_DYNAMIC_CHUNK_SIZE)
2766 {
2767 GCPhys = pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 + off;
2768 Log2(("remR3HCVirt2GCPhys %x -> %x\n", addr, GCPhys));
2769 return GCPhys;
2770 }
2771
2772 off = HCVirt - pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2;
2773 if ( pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2
2774 && off < PGM_DYNAMIC_CHUNK_SIZE)
2775 {
2776 GCPhys = pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 + off;
2777 Log2(("remR3HCVirt2GCPhys %x -> %x\n", addr, GCPhys));
2778 return GCPhys;
2779 }
2780
2781 /* Must be externally registered RAM/ROM range */
2782 for (i = 0; i < pVM->rem.s.cPhysRegistrations; i++)
2783 {
2784 uint32_t off = HCVirt - pVM->rem.s.aPhysReg[i].HCVirt;
2785 if (off < pVM->rem.s.aPhysReg[i].cb)
2786 {
2787 GCPhys = pVM->rem.s.aPhysReg[i].GCPhys + off;
2788 Log2(("remR3HCVirt2GCPhys %x -> %x\n", addr, GCPhys));
2789 return GCPhys;
2790 }
2791 }
2792 AssertReleaseMsgFailed(("No translation for physical address %VHv???\n", addr));
2793 return 0;
2794}
2795
2796/**
2797 * Convert GC physical address to HC virt
2798 *
2799 * @returns The HC virt address corresponding to addr.
2800 * @param env The cpu environment.
2801 * @param addr The physical address.
2802 */
2803void *remR3GCPhys2HCVirt(void *env, target_ulong addr)
2804{
2805 PVM pVM = ((CPUState *)env)->pVM;
2806 void *pv;
2807 STAM_PROFILE_START(&gStatGCPhys2HCVirt, a);
2808 pv = remR3GCPhys2HCVirtInlined(pVM, addr);
2809 STAM_PROFILE_STOP(&gStatGCPhys2HCVirt, a);
2810 return pv;
2811}
2812
2813
2814/**
2815 * Convert GC physical address to HC virt
2816 *
2817 * @returns The HC virt address corresponding to addr.
2818 * @param env The cpu environment.
2819 * @param addr The physical address.
2820 */
2821target_ulong remR3HCVirt2GCPhys(void *env, void *addr)
2822{
2823 PVM pVM = ((CPUState *)env)->pVM;
2824 target_ulong GCPhys;
2825 STAM_PROFILE_START(&gStatHCVirt2GCPhys, a);
2826 GCPhys = remR3HCVirt2GCPhysInlined(pVM, addr);
2827 STAM_PROFILE_STOP(&gStatHCVirt2GCPhys, a);
2828 return GCPhys;
2829}
2830
2831# endif /* !REM_PHYS_ADDR_IN_TLB */
2832
2833/**
2834 * Grows dynamically allocated guest RAM.
2835 * Will raise a fatal error if the operation fails.
2836 *
2837 * @param physaddr The physical address.
2838 */
2839void remR3GrowDynRange(unsigned long physaddr)
2840{
2841 int rc;
2842 PVM pVM = cpu_single_env->pVM;
2843
2844 Log(("remR3GrowDynRange %VGp\n", physaddr));
2845 rc = PGM3PhysGrowRange(pVM, (RTGCPHYS)physaddr);
2846 if (VBOX_SUCCESS(rc))
2847 return;
2848
2849 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2850 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2851 AssertFatalFailed();
2852}
2853
2854#endif /* PGM_DYNAMIC_RAM_ALLOC */
2855
2856
2857/**
2858 * Notification about a successful MMR3PhysRomRegister() call.
2859 *
2860 * @param pVM VM handle.
2861 * @param GCPhys The physical address of the ROM.
2862 * @param cb The size of the ROM.
2863 * @param pvCopy Pointer to the ROM copy.
2864 */
2865REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy)
2866{
2867#if defined(PGM_DYNAMIC_RAM_ALLOC) && !defined(REM_PHYS_ADDR_IN_TLB)
2868 uint32_t i;
2869#endif
2870 LogFlow(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p\n", GCPhys, cb, pvCopy));
2871 VM_ASSERT_EMT(pVM);
2872
2873 /*
2874 * Validate input - we trust the caller.
2875 */
2876 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2877 Assert(cb);
2878 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2879 Assert(pvCopy);
2880 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2881
2882 /*
2883 * Register the rom.
2884 */
2885 Assert(!pVM->rem.s.fIgnoreAll);
2886 pVM->rem.s.fIgnoreAll = true;
2887
2888#ifdef REM_PHYS_ADDR_IN_TLB
2889 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_ROM);
2890#elif defined(PGM_DYNAMIC_RAM_ALLOC)
2891 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_ROM);
2892 AssertRelease(pVM->rem.s.cPhysRegistrations < REM_MAX_PHYS_REGISTRATIONS);
2893 for (i = 0; i < pVM->rem.s.cPhysRegistrations; i++)
2894 {
2895 if (pVM->rem.s.aPhysReg[i].GCPhys == GCPhys)
2896 {
2897 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvCopy;
2898 pVM->rem.s.aPhysReg[i].cb = cb;
2899 break;
2900 }
2901 }
2902 if (i == pVM->rem.s.cPhysRegistrations)
2903 {
2904 pVM->rem.s.aPhysReg[i].GCPhys = GCPhys;
2905 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvCopy;
2906 pVM->rem.s.aPhysReg[i].cb = cb;
2907 pVM->rem.s.cPhysRegistrations++;
2908 }
2909#else
2910 AssertRelease(phys_ram_base);
2911 cpu_register_physical_memory(GCPhys, cb, ((uintptr_t)pvCopy - (uintptr_t)phys_ram_base) | IO_MEM_ROM);
2912#endif
2913
2914 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2915
2916 Assert(pVM->rem.s.fIgnoreAll);
2917 pVM->rem.s.fIgnoreAll = false;
2918}
2919
2920
2921/**
2922 * Notification about a successful MMR3PhysRegister() call.
2923 *
2924 * @param pVM VM Handle.
2925 * @param GCPhys Start physical address.
2926 * @param cb The size of the range.
2927 */
2928REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2929{
2930 LogFlow(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2931 VM_ASSERT_EMT(pVM);
2932
2933 /*
2934 * Validate input - we trust the caller.
2935 */
2936 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2937 Assert(cb);
2938 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2939
2940 /*
2941 * Unassigning the memory.
2942 */
2943 Assert(!pVM->rem.s.fIgnoreAll);
2944 pVM->rem.s.fIgnoreAll = true;
2945
2946 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2947
2948 Assert(pVM->rem.s.fIgnoreAll);
2949 pVM->rem.s.fIgnoreAll = false;
2950}
2951
2952
2953/**
2954 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2955 *
2956 * @param pVM VM Handle.
2957 * @param enmType Handler type.
2958 * @param GCPhys Handler range address.
2959 * @param cb Size of the handler range.
2960 * @param fHasHCHandler Set if the handler has a HC callback function.
2961 *
2962 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2963 * Handler memory type to memory which has no HC handler.
2964 */
2965REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2966{
2967 LogFlow(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d\n",
2968 enmType, GCPhys, cb, fHasHCHandler));
2969 VM_ASSERT_EMT(pVM);
2970 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2971 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2972
2973 if (pVM->rem.s.cHandlerNotifications)
2974 REMR3ReplayHandlerNotifications(pVM);
2975
2976 Assert(!pVM->rem.s.fIgnoreAll);
2977 pVM->rem.s.fIgnoreAll = true;
2978
2979 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2980 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2981 else if (fHasHCHandler)
2982 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2983
2984 Assert(pVM->rem.s.fIgnoreAll);
2985 pVM->rem.s.fIgnoreAll = false;
2986}
2987
2988
2989/**
2990 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2991 *
2992 * @param pVM VM Handle.
2993 * @param enmType Handler type.
2994 * @param GCPhys Handler range address.
2995 * @param cb Size of the handler range.
2996 * @param fHasHCHandler Set if the handler has a HC callback function.
2997 * @param pvHCPtr The HC virtual address corresponding to GCPhys if available.
2998 */
2999REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, void *pvHCPtr)
3000{
3001 LogFlow(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d pvHCPtr=%p RAM=%08x\n",
3002 enmType, GCPhys, cb, fHasHCHandler, pvHCPtr, MMR3PhysGetRamSize(pVM)));
3003 VM_ASSERT_EMT(pVM);
3004
3005 if (pVM->rem.s.cHandlerNotifications)
3006 REMR3ReplayHandlerNotifications(pVM);
3007
3008 Assert(!pVM->rem.s.fIgnoreAll);
3009 pVM->rem.s.fIgnoreAll = true;
3010
3011 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
3012 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
3013 else if (fHasHCHandler)
3014 {
3015 if (!pvHCPtr)
3016 {
3017 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
3018 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
3019 }
3020 else
3021 {
3022 /* This is not perfect, but it'll do for PD monitoring... */
3023 Assert(cb == PAGE_SIZE);
3024 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
3025#ifdef REM_PHYS_ADDR_IN_TLB
3026 cpu_register_physical_memory(GCPhys, cb, GCPhys);
3027#elif defined(PGM_DYNAMIC_RAM_ALLOC)
3028 Assert(remR3HCVirt2GCPhysInlined(pVM, pvHCPtr) < MMR3PhysGetRamSize(pVM));
3029 cpu_register_physical_memory(GCPhys, cb, GCPhys);
3030#else
3031 Assert((uintptr_t)pvHCPtr - (uintptr_t)phys_ram_base < MMR3PhysGetRamSize(pVM));
3032 cpu_register_physical_memory(GCPhys, cb, (uintptr_t)pvHCPtr - (uintptr_t)phys_ram_base);
3033#endif
3034 }
3035 }
3036
3037 Assert(pVM->rem.s.fIgnoreAll);
3038 pVM->rem.s.fIgnoreAll = false;
3039}
3040
3041
3042/**
3043 * Notification about a successful PGMR3HandlerPhysicalModify() call.
3044 *
3045 * @param pVM VM Handle.
3046 * @param enmType Handler type.
3047 * @param GCPhysOld Old handler range address.
3048 * @param GCPhysNew New handler range address.
3049 * @param cb Size of the handler range.
3050 * @param fHasHCHandler Set if the handler has a HC callback function.
3051 * @param pvHCPtr The HC virtual address corresponding to GCPhys if available.
3052 */
3053REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, void *pvHCPtr)
3054{
3055 LogFlow(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%d fHasHCHandler=%d pvHCPtr=%p\n",
3056 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, pvHCPtr));
3057 VM_ASSERT_EMT(pVM);
3058 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
3059
3060 if (pVM->rem.s.cHandlerNotifications)
3061 REMR3ReplayHandlerNotifications(pVM);
3062
3063 if (fHasHCHandler)
3064 {
3065 Assert(!pVM->rem.s.fIgnoreAll);
3066 pVM->rem.s.fIgnoreAll = true;
3067
3068 /*
3069 * Reset the old page.
3070 */
3071 if (!pvHCPtr)
3072 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
3073 else
3074 {
3075 /* This is not perfect, but it'll do for PD monitoring... */
3076 Assert(cb == PAGE_SIZE);
3077 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
3078#ifdef REM_PHYS_ADDR_IN_TLB
3079 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
3080#elif defined(PGM_DYNAMIC_RAM_ALLOC)
3081 Assert(remR3HCVirt2GCPhysInlined(pVM, pvHCPtr) < MMR3PhysGetRamSize(pVM));
3082 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
3083#else
3084 AssertMsg((uintptr_t)pvHCPtr - (uintptr_t)phys_ram_base < MMR3PhysGetRamSize(pVM),
3085 ("pvHCPtr=%p phys_ram_base=%p size=%RX64 cb=%RGp\n", pvHCPtr, phys_ram_base, MMR3PhysGetRamSize(pVM), cb));
3086 cpu_register_physical_memory(GCPhysOld, cb, (uintptr_t)pvHCPtr - (uintptr_t)phys_ram_base);
3087#endif
3088 }
3089
3090 /*
3091 * Update the new page.
3092 */
3093 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
3094 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
3095 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
3096
3097 Assert(pVM->rem.s.fIgnoreAll);
3098 pVM->rem.s.fIgnoreAll = false;
3099 }
3100}
3101
3102
3103/**
3104 * Checks if we're handling access to this page or not.
3105 *
3106 * @returns true if we're trapping access.
3107 * @returns false if we aren't.
3108 * @param pVM The VM handle.
3109 * @param GCPhys The physical address.
3110 *
3111 * @remark This function will only work correctly in VBOX_STRICT builds!
3112 */
3113REMDECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
3114{
3115#ifdef VBOX_STRICT
3116 if (pVM->rem.s.cHandlerNotifications)
3117 REMR3ReplayHandlerNotifications(pVM);
3118
3119 unsigned long off = get_phys_page_offset(GCPhys);
3120 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
3121 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
3122 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
3123#else
3124 return false;
3125#endif
3126}
3127
3128
3129/**
3130 * Deals with a rare case in get_phys_addr_code where the code
3131 * is being monitored.
3132 *
3133 * It could also be an MMIO page, in which case we will raise a fatal error.
3134 *
3135 * @returns The physical address corresponding to addr.
3136 * @param env The cpu environment.
3137 * @param addr The virtual address.
3138 * @param pTLBEntry The TLB entry.
3139 */
3140target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
3141{
3142 PVM pVM = env->pVM;
3143 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
3144 {
3145 target_ulong ret = pTLBEntry->addend + addr;
3146 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv addr_code=%VGv addend=%VGp ret=%VGp\n",
3147 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
3148 return ret;
3149 }
3150 LogRel(("\nTrying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
3151 "*** handlers\n",
3152 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
3153 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
3154 LogRel(("*** mmio\n"));
3155 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
3156 LogRel(("*** phys\n"));
3157 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
3158 cpu_abort(env, "Trying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
3159 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
3160 AssertFatalFailed();
3161}
3162
3163
3164/** Validate the physical address passed to the read functions.
3165 * Useful for finding non-guest-ram reads/writes. */
3166#if 1 /* disable if it becomes bothersome... */
3167# define VBOX_CHECK_ADDR(GCPhys) AssertMsg(PGMPhysIsGCPhysValid(cpu_single_env->pVM, (GCPhys)), ("%VGp\n", (GCPhys)))
3168#else
3169# define VBOX_CHECK_ADDR(GCPhys) do { } while (0)
3170#endif
3171
3172/**
3173 * Read guest RAM and ROM.
3174 *
3175 * @param SrcGCPhys The source address (guest physical).
3176 * @param pvDst The destination address.
3177 * @param cb Number of bytes
3178 */
3179void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3180{
3181 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3182 VBOX_CHECK_ADDR(SrcGCPhys);
3183 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3184 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3185}
3186
3187
3188/**
3189 * Read guest RAM and ROM, unsigned 8-bit.
3190 *
3191 * @param SrcGCPhys The source address (guest physical).
3192 */
3193uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3194{
3195 uint8_t val;
3196 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3197 VBOX_CHECK_ADDR(SrcGCPhys);
3198 val = PGMR3PhysReadByte(cpu_single_env->pVM, SrcGCPhys);
3199 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3200 return val;
3201}
3202
3203
3204/**
3205 * Read guest RAM and ROM, signed 8-bit.
3206 *
3207 * @param SrcGCPhys The source address (guest physical).
3208 */
3209int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3210{
3211 int8_t val;
3212 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3213 VBOX_CHECK_ADDR(SrcGCPhys);
3214 val = PGMR3PhysReadByte(cpu_single_env->pVM, SrcGCPhys);
3215 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3216 return val;
3217}
3218
3219
3220/**
3221 * Read guest RAM and ROM, unsigned 16-bit.
3222 *
3223 * @param SrcGCPhys The source address (guest physical).
3224 */
3225uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3226{
3227 uint16_t val;
3228 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3229 VBOX_CHECK_ADDR(SrcGCPhys);
3230 val = PGMR3PhysReadWord(cpu_single_env->pVM, SrcGCPhys);
3231 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3232 return val;
3233}
3234
3235
3236/**
3237 * Read guest RAM and ROM, signed 16-bit.
3238 *
3239 * @param SrcGCPhys The source address (guest physical).
3240 */
3241int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3242{
3243 uint16_t val;
3244 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3245 VBOX_CHECK_ADDR(SrcGCPhys);
3246 val = PGMR3PhysReadWord(cpu_single_env->pVM, SrcGCPhys);
3247 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3248 return val;
3249}
3250
3251
3252/**
3253 * Read guest RAM and ROM, unsigned 32-bit.
3254 *
3255 * @param SrcGCPhys The source address (guest physical).
3256 */
3257uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3258{
3259 uint32_t val;
3260 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3261 VBOX_CHECK_ADDR(SrcGCPhys);
3262 val = PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys);
3263 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3264 return val;
3265}
3266
3267
3268/**
3269 * Read guest RAM and ROM, signed 32-bit.
3270 *
3271 * @param SrcGCPhys The source address (guest physical).
3272 */
3273int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3274{
3275 int32_t val;
3276 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3277 VBOX_CHECK_ADDR(SrcGCPhys);
3278 val = PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys);
3279 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3280 return val;
3281}
3282
3283
3284/**
3285 * Read guest RAM and ROM, unsigned 64-bit.
3286 *
3287 * @param SrcGCPhys The source address (guest physical).
3288 */
3289uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3290{
3291 uint64_t val;
3292 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3293 VBOX_CHECK_ADDR(SrcGCPhys);
3294 val = PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys)
3295 | ((uint64_t)PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys + 4) << 32); /** @todo fix me! */
3296 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3297 return val;
3298}
3299
3300
3301/**
3302 * Write guest RAM.
3303 *
3304 * @param DstGCPhys The destination address (guest physical).
3305 * @param pvSrc The source address.
3306 * @param cb Number of bytes to write
3307 */
3308void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3309{
3310 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3311 VBOX_CHECK_ADDR(DstGCPhys);
3312 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3313 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3314}
3315
3316
3317/**
3318 * Write guest RAM, unsigned 8-bit.
3319 *
3320 * @param DstGCPhys The destination address (guest physical).
3321 * @param val Value
3322 */
3323void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3324{
3325 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3326 VBOX_CHECK_ADDR(DstGCPhys);
3327 PGMR3PhysWriteByte(cpu_single_env->pVM, DstGCPhys, val);
3328 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3329}
3330
3331
3332/**
3333 * Write guest RAM, unsigned 8-bit.
3334 *
3335 * @param DstGCPhys The destination address (guest physical).
3336 * @param val Value
3337 */
3338void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3339{
3340 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3341 VBOX_CHECK_ADDR(DstGCPhys);
3342 PGMR3PhysWriteWord(cpu_single_env->pVM, DstGCPhys, val);
3343 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3344}
3345
3346
3347/**
3348 * Write guest RAM, unsigned 32-bit.
3349 *
3350 * @param DstGCPhys The destination address (guest physical).
3351 * @param val Value
3352 */
3353void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3354{
3355 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3356 VBOX_CHECK_ADDR(DstGCPhys);
3357 PGMR3PhysWriteDword(cpu_single_env->pVM, DstGCPhys, val);
3358 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3359}
3360
3361
3362/**
3363 * Write guest RAM, unsigned 64-bit.
3364 *
3365 * @param DstGCPhys The destination address (guest physical).
3366 * @param val Value
3367 */
3368void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3369{
3370 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3371 VBOX_CHECK_ADDR(DstGCPhys);
3372 PGMR3PhysWriteDword(cpu_single_env->pVM, DstGCPhys, (uint32_t)val); /** @todo add U64 interface. */
3373 PGMR3PhysWriteDword(cpu_single_env->pVM, DstGCPhys + 4, val >> 32);
3374 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3375}
3376
3377
3378#ifndef REM_PHYS_ADDR_IN_TLB
3379
3380/**
3381 * Read guest RAM and ROM.
3382 *
3383 * @param pbSrcPhys The source address. Relative to guest RAM.
3384 * @param pvDst The destination address.
3385 * @param cb Number of bytes
3386 */
3387void remR3PhysReadHCPtr(uint8_t *pbSrcPhys, void *pvDst, unsigned cb)
3388{
3389 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3390
3391 /*
3392 * Calc the physical address ('off') and check that it's within the RAM.
3393 * ROM is accessed this way, even if it's not part of the RAM.
3394 */
3395#ifdef PGM_DYNAMIC_RAM_ALLOC
3396 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3397#else
3398 uintptr_t off = pbSrcPhys - phys_ram_base;
3399#endif
3400 PGMPhysRead(cpu_single_env->pVM, (RTGCPHYS)off, pvDst, cb);
3401 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3402}
3403
3404
3405/**
3406 * Read guest RAM and ROM, unsigned 8-bit.
3407 *
3408 * @param pbSrcPhys The source address. Relative to guest RAM.
3409 */
3410uint8_t remR3PhysReadHCPtrU8(uint8_t *pbSrcPhys)
3411{
3412 uint8_t val;
3413
3414 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3415
3416 /*
3417 * Calc the physical address ('off') and check that it's within the RAM.
3418 * ROM is accessed this way, even if it's not part of the RAM.
3419 */
3420#ifdef PGM_DYNAMIC_RAM_ALLOC
3421 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3422#else
3423 uintptr_t off = pbSrcPhys - phys_ram_base;
3424#endif
3425 val = PGMR3PhysReadByte(cpu_single_env->pVM, (RTGCPHYS)off);
3426 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3427 return val;
3428}
3429
3430
3431/**
3432 * Read guest RAM and ROM, signed 8-bit.
3433 *
3434 * @param pbSrcPhys The source address. Relative to guest RAM.
3435 */
3436int8_t remR3PhysReadHCPtrS8(uint8_t *pbSrcPhys)
3437{
3438 int8_t val;
3439
3440 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3441
3442 /*
3443 * Calc the physical address ('off') and check that it's within the RAM.
3444 * ROM is accessed this way, even if it's not part of the RAM.
3445 */
3446#ifdef PGM_DYNAMIC_RAM_ALLOC
3447 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3448#else
3449 uintptr_t off = pbSrcPhys - phys_ram_base;
3450#endif
3451 val = PGMR3PhysReadByte(cpu_single_env->pVM, (RTGCPHYS)off);
3452 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3453 return val;
3454}
3455
3456
3457/**
3458 * Read guest RAM and ROM, unsigned 16-bit.
3459 *
3460 * @param pbSrcPhys The source address. Relative to guest RAM.
3461 */
3462uint16_t remR3PhysReadHCPtrU16(uint8_t *pbSrcPhys)
3463{
3464 uint16_t val;
3465
3466 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3467
3468 /*
3469 * Calc the physical address ('off') and check that it's within the RAM.
3470 * ROM is accessed this way, even if it's not part of the RAM.
3471 */
3472#ifdef PGM_DYNAMIC_RAM_ALLOC
3473 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3474#else
3475 uintptr_t off = pbSrcPhys - phys_ram_base;
3476#endif
3477 val = PGMR3PhysReadWord(cpu_single_env->pVM, (RTGCPHYS)off);
3478 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3479 return val;
3480}
3481
3482
3483/**
3484 * Read guest RAM and ROM, signed 16-bit.
3485 *
3486 * @param pbSrcPhys The source address. Relative to guest RAM.
3487 */
3488int16_t remR3PhysReadHCPtrS16(uint8_t *pbSrcPhys)
3489{
3490 int16_t val;
3491
3492 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3493
3494 /*
3495 * Calc the physical address ('off') and check that it's within the RAM.
3496 * ROM is accessed this way, even if it's not part of the RAM.
3497 */
3498 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3499#ifdef PGM_DYNAMIC_RAM_ALLOC
3500 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3501#else
3502 uintptr_t off = pbSrcPhys - phys_ram_base;
3503#endif
3504 val = PGMR3PhysReadWord(cpu_single_env->pVM, (RTGCPHYS)off);
3505 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3506 return val;
3507}
3508
3509
3510/**
3511 * Read guest RAM and ROM, unsigned 32-bit.
3512 *
3513 * @param pbSrcPhys The source address. Relative to guest RAM.
3514 */
3515uint32_t remR3PhysReadHCPtrU32(uint8_t *pbSrcPhys)
3516{
3517 uint32_t val;
3518
3519 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3520
3521 /*
3522 * Calc the physical address ('off') and check that it's within the RAM.
3523 * ROM is accessed this way, even if it's not part of the RAM.
3524 */
3525#ifdef PGM_DYNAMIC_RAM_ALLOC
3526 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3527#else
3528 uintptr_t off = pbSrcPhys - phys_ram_base;
3529#endif
3530 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off);
3531 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3532 return val;
3533}
3534
3535
3536/**
3537 * Read guest RAM and ROM, signed 32-bit.
3538 *
3539 * @param pbSrcPhys The source address. Relative to guest RAM.
3540 */
3541int32_t remR3PhysReadHCPtrS32(uint8_t *pbSrcPhys)
3542{
3543 int32_t val;
3544
3545 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3546
3547 /*
3548 * Calc the physical address ('off') and check that it's within the RAM.
3549 * ROM is accessed this way, even if it's not part of the RAM.
3550 */
3551#ifdef PGM_DYNAMIC_RAM_ALLOC
3552 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3553#else
3554 uintptr_t off = pbSrcPhys - phys_ram_base;
3555#endif
3556 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off);
3557 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3558 return val;
3559}
3560
3561
3562/**
3563 * Read guest RAM and ROM, unsigned 64-bit.
3564 *
3565 * @param pbSrcPhys The source address. Relative to guest RAM.
3566 */
3567uint64_t remR3PhysReadHCPtrU64(uint8_t *pbSrcPhys)
3568{
3569 uint64_t val;
3570
3571 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3572
3573 /*
3574 * Calc the physical address ('off') and check that it's within the RAM.
3575 * ROM is accessed this way, even if it's not part of the RAM.
3576 */
3577#ifdef PGM_DYNAMIC_RAM_ALLOC
3578 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3579#else
3580 uintptr_t off = pbSrcPhys - phys_ram_base;
3581#endif
3582 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off)
3583 | ((uint64_t)PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off + 4) << 32); /** @todo fix me! */
3584 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3585 return val;
3586}
3587
3588
3589/**
3590 * Write guest RAM.
3591 *
3592 * @param pbDstPhys The destination address. Relative to guest RAM.
3593 * @param pvSrc The source address.
3594 * @param cb Number of bytes to write
3595 */
3596void remR3PhysWriteHCPtr(uint8_t *pbDstPhys, const void *pvSrc, unsigned cb)
3597{
3598 STAM_PROFILE_ADV_START(&gStatMemWriteHCPtr, a);
3599 /*
3600 * Calc the physical address ('off') and check that it's within the RAM.
3601 */
3602#ifdef PGM_DYNAMIC_RAM_ALLOC
3603 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbDstPhys);
3604#else
3605 uintptr_t off = pbDstPhys - phys_ram_base;
3606#endif
3607 PGMPhysWrite(cpu_single_env->pVM, (RTGCPHYS)off, pvSrc, cb);
3608 STAM_PROFILE_ADV_STOP(&gStatMemWriteHCPtr, a);
3609}
3610
3611
3612/**
3613 * Write guest RAM, unsigned 8-bit.
3614 *
3615 * @param pbDstPhys The destination address. Relative to guest RAM.
3616 * @param val Value
3617 */
3618void remR3PhysWriteHCPtrU8(uint8_t *pbDstPhys, uint8_t val)
3619{
3620 STAM_PROFILE_ADV_START(&gStatMemWriteHCPtr, a);
3621 /*
3622 * Calc the physical address ('off') and check that it's within the RAM.
3623 */
3624#ifdef PGM_DYNAMIC_RAM_ALLOC
3625 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbDstPhys);
3626#else
3627 uintptr_t off = pbDstPhys - phys_ram_base;
3628#endif
3629 PGMR3PhysWriteByte(cpu_single_env->pVM, (RTGCPHYS)off, val);
3630 STAM_PROFILE_ADV_STOP(&gStatMemWriteHCPtr, a);
3631}
3632
3633
3634/**
3635 * Write guest RAM, unsigned 16-bit.
3636 *
3637 * @param pbDstPhys The destination address. Relative to guest RAM.
3638 * @param val Value
3639 */
3640void remR3PhysWriteHCPtrU16(uint8_t *pbDstPhys, uint16_t val)
3641{
3642 STAM_PROFILE_ADV_START(&gStatMemWriteHCPtr, a);
3643 /*
3644 * Calc the physical address ('off') and check that it's within the RAM.
3645 */
3646#ifdef PGM_DYNAMIC_RAM_ALLOC
3647 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbDstPhys);
3648#else
3649 uintptr_t off = pbDstPhys - phys_ram_base;
3650#endif
3651 PGMR3PhysWriteWord(cpu_single_env->pVM, (RTGCPHYS)off, val);
3652 STAM_PROFILE_ADV_STOP(&gStatMemWriteHCPtr, a);
3653}
3654
3655
3656/**
3657 * Write guest RAM, unsigned 32-bit.
3658 *
3659 * @param pbDstPhys The destination address. Relative to guest RAM.
3660 * @param val Value
3661 */
3662void remR3PhysWriteHCPtrU32(uint8_t *pbDstPhys, uint32_t val)
3663{
3664 STAM_PROFILE_ADV_START(&gStatMemWriteHCPtr, a);
3665 /*
3666 * Calc the physical address ('off') and check that it's within the RAM.
3667 */
3668#ifdef PGM_DYNAMIC_RAM_ALLOC
3669 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbDstPhys);
3670#else
3671 uintptr_t off = pbDstPhys - phys_ram_base;
3672#endif
3673 PGMR3PhysWriteDword(cpu_single_env->pVM, (RTGCPHYS)off, val);
3674 STAM_PROFILE_ADV_STOP(&gStatMemWriteHCPtr, a);
3675}
3676
3677
3678/**
3679 * Write guest RAM, unsigned 64-bit.
3680 *
3681 * @param pbDstPhys The destination address. Relative to guest RAM.
3682 * @param val Value
3683 */
3684void remR3PhysWriteHCPtrU64(uint8_t *pbDstPhys, uint64_t val)
3685{
3686 STAM_PROFILE_ADV_START(&gStatMemWriteHCPtr, a);
3687 /*
3688 * Calc the physical address ('off') and check that it's within the RAM.
3689 */
3690#ifdef PGM_DYNAMIC_RAM_ALLOC
3691 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbDstPhys);
3692#else
3693 uintptr_t off = pbDstPhys - phys_ram_base;
3694#endif
3695 PGMR3PhysWriteDword(cpu_single_env->pVM, (RTGCPHYS)off, (uint32_t)val); /** @todo add U64 interface. */
3696 PGMR3PhysWriteDword(cpu_single_env->pVM, (RTGCPHYS)off + 4, val >> 32);
3697 STAM_PROFILE_ADV_STOP(&gStatMemWriteHCPtr, a);
3698}
3699
3700#endif /* !REM_PHYS_ADDR_IN_TLB */
3701
3702
3703#undef LOG_GROUP
3704#define LOG_GROUP LOG_GROUP_REM_MMIO
3705
3706/** Read MMIO memory. */
3707static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3708{
3709 uint32_t u32 = 0;
3710 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3711 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3712 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3713 return u32;
3714}
3715
3716/** Read MMIO memory. */
3717static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3718{
3719 uint32_t u32 = 0;
3720 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3721 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3722 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3723 return u32;
3724}
3725
3726/** Read MMIO memory. */
3727static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3728{
3729 uint32_t u32 = 0;
3730 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3731 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3732 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3733 return u32;
3734}
3735
3736/** Write to MMIO memory. */
3737static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3738{
3739 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3740 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3741 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3742}
3743
3744/** Write to MMIO memory. */
3745static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3746{
3747 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3748 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3749 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3750}
3751
3752/** Write to MMIO memory. */
3753static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3754{
3755 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3756 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3757 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3758}
3759
3760
3761#undef LOG_GROUP
3762#define LOG_GROUP LOG_GROUP_REM_HANDLER
3763
3764/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3765
3766static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3767{
3768 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3769 uint8_t u8;
3770 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3771 return u8;
3772}
3773
3774static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3775{
3776 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3777 uint16_t u16;
3778 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3779 return u16;
3780}
3781
3782static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3783{
3784 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3785 uint32_t u32;
3786 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3787 return u32;
3788}
3789
3790static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3791{
3792 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3793 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3794}
3795
3796static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3797{
3798 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3799 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3800}
3801
3802static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3803{
3804 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3805 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3806}
3807
3808/* -+- disassembly -+- */
3809
3810#undef LOG_GROUP
3811#define LOG_GROUP LOG_GROUP_REM_DISAS
3812
3813
3814/**
3815 * Enables or disables singled stepped disassembly.
3816 *
3817 * @returns VBox status code.
3818 * @param pVM VM handle.
3819 * @param fEnable To enable set this flag, to disable clear it.
3820 */
3821static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3822{
3823 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3824 VM_ASSERT_EMT(pVM);
3825
3826 if (fEnable)
3827 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3828 else
3829 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3830 return VINF_SUCCESS;
3831}
3832
3833
3834/**
3835 * Enables or disables singled stepped disassembly.
3836 *
3837 * @returns VBox status code.
3838 * @param pVM VM handle.
3839 * @param fEnable To enable set this flag, to disable clear it.
3840 */
3841REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3842{
3843 PVMREQ pReq;
3844 int rc;
3845
3846 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3847 if (VM_IS_EMT(pVM))
3848 return remR3DisasEnableStepping(pVM, fEnable);
3849
3850 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3851 AssertRC(rc);
3852 if (VBOX_SUCCESS(rc))
3853 rc = pReq->iStatus;
3854 VMR3ReqFree(pReq);
3855 return rc;
3856}
3857
3858
3859#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3860/**
3861 * External Debugger Command: .remstep [on|off|1|0]
3862 */
3863static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3864{
3865 bool fEnable;
3866 int rc;
3867
3868 /* print status */
3869 if (cArgs == 0)
3870 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3871 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3872
3873 /* convert the argument and change the mode. */
3874 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3875 if (VBOX_FAILURE(rc))
3876 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3877 rc = REMR3DisasEnableStepping(pVM, fEnable);
3878 if (VBOX_FAILURE(rc))
3879 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3880 return rc;
3881}
3882#endif
3883
3884
3885/**
3886 * Disassembles n instructions and prints them to the log.
3887 *
3888 * @returns Success indicator.
3889 * @param env Pointer to the recompiler CPU structure.
3890 * @param f32BitCode Indicates that whether or not the code should
3891 * be disassembled as 16 or 32 bit. If -1 the CS
3892 * selector will be inspected.
3893 * @param nrInstructions Nr of instructions to disassemble
3894 * @param pszPrefix
3895 * @remark not currently used for anything but ad-hoc debugging.
3896 */
3897bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3898{
3899 int i;
3900
3901 /*
3902 * Determin 16/32 bit mode.
3903 */
3904 if (f32BitCode == -1)
3905 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3906
3907 /*
3908 * Convert cs:eip to host context address.
3909 * We don't care to much about cross page correctness presently.
3910 */
3911 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3912 void *pvPC;
3913 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3914 {
3915 /* convert eip to physical address. */
3916 int rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3917 GCPtrPC,
3918 env->cr[3],
3919 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3920 &pvPC);
3921 if (VBOX_FAILURE(rc))
3922 {
3923 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3924 return false;
3925 pvPC = (char *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3926 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3927 }
3928 }
3929 else
3930 {
3931 /* physical address */
3932 int rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16, &pvPC);
3933 if (VBOX_FAILURE(rc))
3934 return false;
3935 }
3936
3937 /*
3938 * Disassemble.
3939 */
3940 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
3941 DISCPUSTATE Cpu;
3942 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3943 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3944 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3945 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3946 //Cpu.dwUserData[2] = GCPtrPC;
3947
3948 for (i=0;i<nrInstructions;i++)
3949 {
3950 char szOutput[256];
3951 uint32_t cbOp;
3952 if (!DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0]))
3953 return false;
3954 if (pszPrefix)
3955 Log(("%s: %s", pszPrefix, szOutput));
3956 else
3957 Log(("%s", szOutput));
3958
3959 pvPC += cbOp;
3960 }
3961 return true;
3962}
3963
3964
3965/** @todo need to test the new code, using the old code in the mean while. */
3966#define USE_OLD_DUMP_AND_DISASSEMBLY
3967
3968/**
3969 * Disassembles one instruction and prints it to the log.
3970 *
3971 * @returns Success indicator.
3972 * @param env Pointer to the recompiler CPU structure.
3973 * @param f32BitCode Indicates that whether or not the code should
3974 * be disassembled as 16 or 32 bit. If -1 the CS
3975 * selector will be inspected.
3976 * @param pszPrefix
3977 */
3978bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3979{
3980#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3981 PVM pVM = env->pVM;
3982
3983 /*
3984 * Determin 16/32 bit mode.
3985 */
3986 if (f32BitCode == -1)
3987 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3988
3989 /*
3990 * Log registers
3991 */
3992 if (LogIs2Enabled())
3993 {
3994 remR3StateUpdate(pVM);
3995 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3996 }
3997
3998 /*
3999 * Convert cs:eip to host context address.
4000 * We don't care to much about cross page correctness presently.
4001 */
4002 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
4003 void *pvPC;
4004 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
4005 {
4006 /* convert eip to physical address. */
4007 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
4008 GCPtrPC,
4009 env->cr[3],
4010 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
4011 &pvPC);
4012 if (VBOX_FAILURE(rc))
4013 {
4014 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
4015 return false;
4016 pvPC = (char *)PATMR3QueryPatchMemHC(pVM, NULL)
4017 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
4018 }
4019 }
4020 else
4021 {
4022
4023 /* physical address */
4024 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, &pvPC);
4025 if (VBOX_FAILURE(rc))
4026 return false;
4027 }
4028
4029 /*
4030 * Disassemble.
4031 */
4032 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
4033 DISCPUSTATE Cpu;
4034 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
4035 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
4036 //Cpu.dwUserData[0] = (uintptr_t)pVM;
4037 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
4038 //Cpu.dwUserData[2] = GCPtrPC;
4039 char szOutput[256];
4040 uint32_t cbOp;
4041 if (!DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0]))
4042 return false;
4043
4044 if (!f32BitCode)
4045 {
4046 if (pszPrefix)
4047 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
4048 else
4049 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
4050 }
4051 else
4052 {
4053 if (pszPrefix)
4054 Log(("%s: %s", pszPrefix, szOutput));
4055 else
4056 Log(("%s", szOutput));
4057 }
4058 return true;
4059
4060#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
4061 PVM pVM = env->pVM;
4062 const bool fLog = LogIsEnabled();
4063 const bool fLog2 = LogIs2Enabled();
4064 int rc = VINF_SUCCESS;
4065
4066 /*
4067 * Don't bother if there ain't any log output to do.
4068 */
4069 if (!fLog && !fLog2)
4070 return true;
4071
4072 /*
4073 * Update the state so DBGF reads the correct register values.
4074 */
4075 remR3StateUpdate(pVM);
4076
4077 /*
4078 * Log registers if requested.
4079 */
4080 if (!fLog2)
4081 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
4082
4083 /*
4084 * Disassemble to log.
4085 */
4086 if (fLog)
4087 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
4088
4089 return VBOX_SUCCESS(rc);
4090#endif
4091}
4092
4093
4094/**
4095 * Disassemble recompiled code.
4096 *
4097 * @param phFileIgnored Ignored, logfile usually.
4098 * @param pvCode Pointer to the code block.
4099 * @param cb Size of the code block.
4100 */
4101void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
4102{
4103 if (LogIs2Enabled())
4104 {
4105 unsigned off = 0;
4106 char szOutput[256];
4107 DISCPUSTATE Cpu = {0};
4108 Cpu.mode = CPUMODE_32BIT;
4109
4110 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
4111 while (off < cb)
4112 {
4113 uint32_t cbInstr;
4114 if (DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput))
4115 RTLogPrintf("%s", szOutput);
4116 else
4117 {
4118 RTLogPrintf("disas error\n");
4119 cbInstr = 1;
4120 }
4121 off += cbInstr;
4122 }
4123 }
4124 NOREF(phFileIgnored);
4125}
4126
4127
4128/**
4129 * Disassemble guest code.
4130 *
4131 * @param phFileIgnored Ignored, logfile usually.
4132 * @param uCode The guest address of the code to disassemble. (flat?)
4133 * @param cb Number of bytes to disassemble.
4134 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
4135 */
4136void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
4137{
4138 if (LogIs2Enabled())
4139 {
4140 PVM pVM = cpu_single_env->pVM;
4141
4142 /*
4143 * Update the state so DBGF reads the correct register values (flags).
4144 */
4145 remR3StateUpdate(pVM);
4146
4147 /*
4148 * Do the disassembling.
4149 */
4150 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
4151 RTSEL cs = cpu_single_env->segs[R_CS].selector;
4152 RTGCUINTPTR eip = uCode - cpu_single_env->segs[R_CS].base;
4153 for (;;)
4154 {
4155 char szBuf[256];
4156 uint32_t cbInstr;
4157 int rc = DBGFR3DisasInstrEx(pVM,
4158 cs,
4159 eip,
4160 0,
4161 szBuf, sizeof(szBuf),
4162 &cbInstr);
4163 if (VBOX_SUCCESS(rc))
4164 RTLogPrintf("%VGp %s\n", uCode, szBuf);
4165 else
4166 {
4167 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
4168 cbInstr = 1;
4169 }
4170
4171 /* next */
4172 if (cb <= cbInstr)
4173 break;
4174 cb -= cbInstr;
4175 uCode += cbInstr;
4176 eip += cbInstr;
4177 }
4178 }
4179 NOREF(phFileIgnored);
4180}
4181
4182
4183/**
4184 * Looks up a guest symbol.
4185 *
4186 * @returns Pointer to symbol name. This is a static buffer.
4187 * @param orig_addr The address in question.
4188 */
4189const char *lookup_symbol(target_ulong orig_addr)
4190{
4191 RTGCINTPTR off = 0;
4192 DBGFSYMBOL Sym;
4193 PVM pVM = cpu_single_env->pVM;
4194 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
4195 if (VBOX_SUCCESS(rc))
4196 {
4197 static char szSym[sizeof(Sym.szName) + 48];
4198 if (!off)
4199 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
4200 else if (off > 0)
4201 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
4202 else
4203 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
4204 return szSym;
4205 }
4206 return "<N/A>";
4207}
4208
4209
4210#undef LOG_GROUP
4211#define LOG_GROUP LOG_GROUP_REM
4212
4213
4214/* -+- FF notifications -+- */
4215
4216
4217/**
4218 * Notification about a pending interrupt.
4219 *
4220 * @param pVM VM Handle.
4221 * @param u8Interrupt Interrupt
4222 * @thread The emulation thread.
4223 */
4224REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
4225{
4226 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
4227 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
4228}
4229
4230/**
4231 * Notification about a pending interrupt.
4232 *
4233 * @returns Pending interrupt or REM_NO_PENDING_IRQ
4234 * @param pVM VM Handle.
4235 * @thread The emulation thread.
4236 */
4237REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
4238{
4239 return pVM->rem.s.u32PendingInterrupt;
4240}
4241
4242/**
4243 * Notification about the interrupt FF being set.
4244 *
4245 * @param pVM VM Handle.
4246 * @thread The emulation thread.
4247 */
4248REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
4249{
4250 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
4251 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
4252 if (pVM->rem.s.fInREM)
4253 {
4254 if (VM_IS_EMT(pVM))
4255 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
4256 else
4257 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_HARD);
4258 }
4259}
4260
4261
4262/**
4263 * Notification about the interrupt FF being set.
4264 *
4265 * @param pVM VM Handle.
4266 * @thread The emulation thread.
4267 */
4268REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
4269{
4270 LogFlow(("REMR3NotifyInterruptClear:\n"));
4271 VM_ASSERT_EMT(pVM);
4272 if (pVM->rem.s.fInREM)
4273 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
4274}
4275
4276
4277/**
4278 * Notification about pending timer(s).
4279 *
4280 * @param pVM VM Handle.
4281 * @thread Any.
4282 */
4283REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
4284{
4285#ifndef DEBUG_bird
4286 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
4287#endif
4288 if (pVM->rem.s.fInREM)
4289 {
4290 if (VM_IS_EMT(pVM))
4291 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
4292 else
4293 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_TIMER);
4294 }
4295}
4296
4297
4298/**
4299 * Notification about pending DMA transfers.
4300 *
4301 * @param pVM VM Handle.
4302 * @thread Any.
4303 */
4304REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
4305{
4306 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
4307 if (pVM->rem.s.fInREM)
4308 {
4309 if (VM_IS_EMT(pVM))
4310 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
4311 else
4312 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_DMA);
4313 }
4314}
4315
4316
4317/**
4318 * Notification about pending timer(s).
4319 *
4320 * @param pVM VM Handle.
4321 * @thread Any.
4322 */
4323REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
4324{
4325 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
4326 if (pVM->rem.s.fInREM)
4327 {
4328 if (VM_IS_EMT(pVM))
4329 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
4330 else
4331 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
4332 }
4333}
4334
4335
4336/**
4337 * Notification about pending FF set by an external thread.
4338 *
4339 * @param pVM VM handle.
4340 * @thread Any.
4341 */
4342REMR3DECL(void) REMR3NotifyFF(PVM pVM)
4343{
4344 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
4345 if (pVM->rem.s.fInREM)
4346 {
4347 if (VM_IS_EMT(pVM))
4348 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
4349 else
4350 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
4351 }
4352}
4353
4354
4355#ifdef VBOX_WITH_STATISTICS
4356void remR3ProfileStart(int statcode)
4357{
4358 STAMPROFILEADV *pStat;
4359 switch(statcode)
4360 {
4361 case STATS_EMULATE_SINGLE_INSTR:
4362 pStat = &gStatExecuteSingleInstr;
4363 break;
4364 case STATS_QEMU_COMPILATION:
4365 pStat = &gStatCompilationQEmu;
4366 break;
4367 case STATS_QEMU_RUN_EMULATED_CODE:
4368 pStat = &gStatRunCodeQEmu;
4369 break;
4370 case STATS_QEMU_TOTAL:
4371 pStat = &gStatTotalTimeQEmu;
4372 break;
4373 case STATS_QEMU_RUN_TIMERS:
4374 pStat = &gStatTimers;
4375 break;
4376 case STATS_TLB_LOOKUP:
4377 pStat= &gStatTBLookup;
4378 break;
4379 case STATS_IRQ_HANDLING:
4380 pStat= &gStatIRQ;
4381 break;
4382 case STATS_RAW_CHECK:
4383 pStat = &gStatRawCheck;
4384 break;
4385
4386 default:
4387 AssertMsgFailed(("unknown stat %d\n", statcode));
4388 return;
4389 }
4390 STAM_PROFILE_ADV_START(pStat, a);
4391}
4392
4393
4394void remR3ProfileStop(int statcode)
4395{
4396 STAMPROFILEADV *pStat;
4397 switch(statcode)
4398 {
4399 case STATS_EMULATE_SINGLE_INSTR:
4400 pStat = &gStatExecuteSingleInstr;
4401 break;
4402 case STATS_QEMU_COMPILATION:
4403 pStat = &gStatCompilationQEmu;
4404 break;
4405 case STATS_QEMU_RUN_EMULATED_CODE:
4406 pStat = &gStatRunCodeQEmu;
4407 break;
4408 case STATS_QEMU_TOTAL:
4409 pStat = &gStatTotalTimeQEmu;
4410 break;
4411 case STATS_QEMU_RUN_TIMERS:
4412 pStat = &gStatTimers;
4413 break;
4414 case STATS_TLB_LOOKUP:
4415 pStat= &gStatTBLookup;
4416 break;
4417 case STATS_IRQ_HANDLING:
4418 pStat= &gStatIRQ;
4419 break;
4420 case STATS_RAW_CHECK:
4421 pStat = &gStatRawCheck;
4422 break;
4423 default:
4424 AssertMsgFailed(("unknown stat %d\n", statcode));
4425 return;
4426 }
4427 STAM_PROFILE_ADV_STOP(pStat, a);
4428}
4429#endif
4430
4431/**
4432 * Raise an RC, force rem exit.
4433 *
4434 * @param pVM VM handle.
4435 * @param rc The rc.
4436 */
4437void remR3RaiseRC(PVM pVM, int rc)
4438{
4439 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
4440 Assert(pVM->rem.s.fInREM);
4441 VM_ASSERT_EMT(pVM);
4442 pVM->rem.s.rc = rc;
4443 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
4444}
4445
4446
4447/* -+- timers -+- */
4448
4449uint64_t cpu_get_tsc(CPUX86State *env)
4450{
4451 STAM_COUNTER_INC(&gStatCpuGetTSC);
4452 return TMCpuTickGet(env->pVM);
4453}
4454
4455
4456/* -+- interrupts -+- */
4457
4458void cpu_set_ferr(CPUX86State *env)
4459{
4460 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
4461 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4462}
4463
4464int cpu_get_pic_interrupt(CPUState *env)
4465{
4466 uint8_t u8Interrupt;
4467 int rc;
4468
4469 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4470 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4471 * with the (a)pic.
4472 */
4473 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4474 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4475 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4476 * remove this kludge. */
4477 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4478 {
4479 rc = VINF_SUCCESS;
4480 Assert(env->pVM->rem.s.u32PendingInterrupt >= 0 && env->pVM->rem.s.u32PendingInterrupt <= 255);
4481 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4482 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4483 }
4484 else
4485 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4486
4487 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
4488 if (VBOX_SUCCESS(rc))
4489 {
4490 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4491 env->interrupt_request |= CPU_INTERRUPT_HARD;
4492 return u8Interrupt;
4493 }
4494 return -1;
4495}
4496
4497
4498/* -+- local apic -+- */
4499
4500void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4501{
4502 int rc = PDMApicSetBase(env->pVM, val);
4503 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
4504}
4505
4506uint64_t cpu_get_apic_base(CPUX86State *env)
4507{
4508 uint64_t u64;
4509 int rc = PDMApicGetBase(env->pVM, &u64);
4510 if (VBOX_SUCCESS(rc))
4511 {
4512 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4513 return u64;
4514 }
4515 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
4516 return 0;
4517}
4518
4519void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4520{
4521 int rc = PDMApicSetTPR(env->pVM, val);
4522 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
4523}
4524
4525uint8_t cpu_get_apic_tpr(CPUX86State *env)
4526{
4527 uint8_t u8;
4528 int rc = PDMApicGetTPR(env->pVM, &u8);
4529 if (VBOX_SUCCESS(rc))
4530 {
4531 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4532 return u8;
4533 }
4534 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
4535 return 0;
4536}
4537
4538
4539/* -+- I/O Ports -+- */
4540
4541#undef LOG_GROUP
4542#define LOG_GROUP LOG_GROUP_REM_IOPORT
4543
4544void cpu_outb(CPUState *env, int addr, int val)
4545{
4546 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4547 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4548
4549 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4550 if (rc == VINF_SUCCESS)
4551 return;
4552 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4553 {
4554 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4555 remR3RaiseRC(env->pVM, rc);
4556 return;
4557 }
4558 remAbort(rc, __FUNCTION__);
4559}
4560
4561void cpu_outw(CPUState *env, int addr, int val)
4562{
4563 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4564 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4565 if (rc == VINF_SUCCESS)
4566 return;
4567 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4568 {
4569 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4570 remR3RaiseRC(env->pVM, rc);
4571 return;
4572 }
4573 remAbort(rc, __FUNCTION__);
4574}
4575
4576void cpu_outl(CPUState *env, int addr, int val)
4577{
4578 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4579 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4580 if (rc == VINF_SUCCESS)
4581 return;
4582 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4583 {
4584 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4585 remR3RaiseRC(env->pVM, rc);
4586 return;
4587 }
4588 remAbort(rc, __FUNCTION__);
4589}
4590
4591int cpu_inb(CPUState *env, int addr)
4592{
4593 uint32_t u32 = 0;
4594 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4595 if (rc == VINF_SUCCESS)
4596 {
4597 if (/*addr != 0x61 && */addr != 0x71)
4598 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4599 return (int)u32;
4600 }
4601 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4602 {
4603 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4604 remR3RaiseRC(env->pVM, rc);
4605 return (int)u32;
4606 }
4607 remAbort(rc, __FUNCTION__);
4608 return 0xff;
4609}
4610
4611int cpu_inw(CPUState *env, int addr)
4612{
4613 uint32_t u32 = 0;
4614 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4615 if (rc == VINF_SUCCESS)
4616 {
4617 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4618 return (int)u32;
4619 }
4620 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4621 {
4622 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4623 remR3RaiseRC(env->pVM, rc);
4624 return (int)u32;
4625 }
4626 remAbort(rc, __FUNCTION__);
4627 return 0xffff;
4628}
4629
4630int cpu_inl(CPUState *env, int addr)
4631{
4632 uint32_t u32 = 0;
4633 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4634 if (rc == VINF_SUCCESS)
4635 {
4636//if (addr==0x01f0 && u32 == 0x6b6d)
4637// loglevel = ~0;
4638 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4639 return (int)u32;
4640 }
4641 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4642 {
4643 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4644 remR3RaiseRC(env->pVM, rc);
4645 return (int)u32;
4646 }
4647 remAbort(rc, __FUNCTION__);
4648 return 0xffffffff;
4649}
4650
4651#undef LOG_GROUP
4652#define LOG_GROUP LOG_GROUP_REM
4653
4654
4655/* -+- helpers and misc other interfaces -+- */
4656
4657/**
4658 * Perform the CPUID instruction.
4659 *
4660 * ASMCpuId cannot be invoked from some source files where this is used because of global
4661 * register allocations.
4662 *
4663 * @param env Pointer to the recompiler CPU structure.
4664 * @param uOperator CPUID operation (eax).
4665 * @param pvEAX Where to store eax.
4666 * @param pvEBX Where to store ebx.
4667 * @param pvECX Where to store ecx.
4668 * @param pvEDX Where to store edx.
4669 */
4670void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4671{
4672 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4673}
4674
4675
4676#if 0 /* not used */
4677/**
4678 * Interface for qemu hardware to report back fatal errors.
4679 */
4680void hw_error(const char *pszFormat, ...)
4681{
4682 /*
4683 * Bitch about it.
4684 */
4685 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4686 * this in my Odin32 tree at home! */
4687 va_list args;
4688 va_start(args, pszFormat);
4689 RTLogPrintf("fatal error in virtual hardware:");
4690 RTLogPrintfV(pszFormat, args);
4691 va_end(args);
4692 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4693
4694 /*
4695 * If we're in REM context we'll sync back the state before 'jumping' to
4696 * the EMs failure handling.
4697 */
4698 PVM pVM = cpu_single_env->pVM;
4699 if (pVM->rem.s.fInREM)
4700 REMR3StateBack(pVM);
4701 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4702 AssertMsgFailed(("EMR3FatalError returned!\n"));
4703}
4704#endif
4705
4706/**
4707 * Interface for the qemu cpu to report unhandled situation
4708 * raising a fatal VM error.
4709 */
4710void cpu_abort(CPUState *env, const char *pszFormat, ...)
4711{
4712 /*
4713 * Bitch about it.
4714 */
4715 RTLogFlags(NULL, "nodisabled nobuffered");
4716 va_list args;
4717 va_start(args, pszFormat);
4718 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4719 va_end(args);
4720 va_start(args, pszFormat);
4721 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4722 va_end(args);
4723
4724 /*
4725 * If we're in REM context we'll sync back the state before 'jumping' to
4726 * the EMs failure handling.
4727 */
4728 PVM pVM = cpu_single_env->pVM;
4729 if (pVM->rem.s.fInREM)
4730 REMR3StateBack(pVM);
4731 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4732 AssertMsgFailed(("EMR3FatalError returned!\n"));
4733}
4734
4735
4736/**
4737 * Aborts the VM.
4738 *
4739 * @param rc VBox error code.
4740 * @param pszTip Hint about why/when this happend.
4741 */
4742static void remAbort(int rc, const char *pszTip)
4743{
4744 /*
4745 * Bitch about it.
4746 */
4747 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4748 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4749
4750 /*
4751 * Jump back to where we entered the recompiler.
4752 */
4753 PVM pVM = cpu_single_env->pVM;
4754 if (pVM->rem.s.fInREM)
4755 REMR3StateBack(pVM);
4756 EMR3FatalError(pVM, rc);
4757 AssertMsgFailed(("EMR3FatalError returned!\n"));
4758}
4759
4760
4761/**
4762 * Dumps a linux system call.
4763 * @param pVM VM handle.
4764 */
4765void remR3DumpLnxSyscall(PVM pVM)
4766{
4767 static const char *apsz[] =
4768 {
4769 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4770 "sys_exit",
4771 "sys_fork",
4772 "sys_read",
4773 "sys_write",
4774 "sys_open", /* 5 */
4775 "sys_close",
4776 "sys_waitpid",
4777 "sys_creat",
4778 "sys_link",
4779 "sys_unlink", /* 10 */
4780 "sys_execve",
4781 "sys_chdir",
4782 "sys_time",
4783 "sys_mknod",
4784 "sys_chmod", /* 15 */
4785 "sys_lchown16",
4786 "sys_ni_syscall", /* old break syscall holder */
4787 "sys_stat",
4788 "sys_lseek",
4789 "sys_getpid", /* 20 */
4790 "sys_mount",
4791 "sys_oldumount",
4792 "sys_setuid16",
4793 "sys_getuid16",
4794 "sys_stime", /* 25 */
4795 "sys_ptrace",
4796 "sys_alarm",
4797 "sys_fstat",
4798 "sys_pause",
4799 "sys_utime", /* 30 */
4800 "sys_ni_syscall", /* old stty syscall holder */
4801 "sys_ni_syscall", /* old gtty syscall holder */
4802 "sys_access",
4803 "sys_nice",
4804 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4805 "sys_sync",
4806 "sys_kill",
4807 "sys_rename",
4808 "sys_mkdir",
4809 "sys_rmdir", /* 40 */
4810 "sys_dup",
4811 "sys_pipe",
4812 "sys_times",
4813 "sys_ni_syscall", /* old prof syscall holder */
4814 "sys_brk", /* 45 */
4815 "sys_setgid16",
4816 "sys_getgid16",
4817 "sys_signal",
4818 "sys_geteuid16",
4819 "sys_getegid16", /* 50 */
4820 "sys_acct",
4821 "sys_umount", /* recycled never used phys() */
4822 "sys_ni_syscall", /* old lock syscall holder */
4823 "sys_ioctl",
4824 "sys_fcntl", /* 55 */
4825 "sys_ni_syscall", /* old mpx syscall holder */
4826 "sys_setpgid",
4827 "sys_ni_syscall", /* old ulimit syscall holder */
4828 "sys_olduname",
4829 "sys_umask", /* 60 */
4830 "sys_chroot",
4831 "sys_ustat",
4832 "sys_dup2",
4833 "sys_getppid",
4834 "sys_getpgrp", /* 65 */
4835 "sys_setsid",
4836 "sys_sigaction",
4837 "sys_sgetmask",
4838 "sys_ssetmask",
4839 "sys_setreuid16", /* 70 */
4840 "sys_setregid16",
4841 "sys_sigsuspend",
4842 "sys_sigpending",
4843 "sys_sethostname",
4844 "sys_setrlimit", /* 75 */
4845 "sys_old_getrlimit",
4846 "sys_getrusage",
4847 "sys_gettimeofday",
4848 "sys_settimeofday",
4849 "sys_getgroups16", /* 80 */
4850 "sys_setgroups16",
4851 "old_select",
4852 "sys_symlink",
4853 "sys_lstat",
4854 "sys_readlink", /* 85 */
4855 "sys_uselib",
4856 "sys_swapon",
4857 "sys_reboot",
4858 "old_readdir",
4859 "old_mmap", /* 90 */
4860 "sys_munmap",
4861 "sys_truncate",
4862 "sys_ftruncate",
4863 "sys_fchmod",
4864 "sys_fchown16", /* 95 */
4865 "sys_getpriority",
4866 "sys_setpriority",
4867 "sys_ni_syscall", /* old profil syscall holder */
4868 "sys_statfs",
4869 "sys_fstatfs", /* 100 */
4870 "sys_ioperm",
4871 "sys_socketcall",
4872 "sys_syslog",
4873 "sys_setitimer",
4874 "sys_getitimer", /* 105 */
4875 "sys_newstat",
4876 "sys_newlstat",
4877 "sys_newfstat",
4878 "sys_uname",
4879 "sys_iopl", /* 110 */
4880 "sys_vhangup",
4881 "sys_ni_syscall", /* old "idle" system call */
4882 "sys_vm86old",
4883 "sys_wait4",
4884 "sys_swapoff", /* 115 */
4885 "sys_sysinfo",
4886 "sys_ipc",
4887 "sys_fsync",
4888 "sys_sigreturn",
4889 "sys_clone", /* 120 */
4890 "sys_setdomainname",
4891 "sys_newuname",
4892 "sys_modify_ldt",
4893 "sys_adjtimex",
4894 "sys_mprotect", /* 125 */
4895 "sys_sigprocmask",
4896 "sys_ni_syscall", /* old "create_module" */
4897 "sys_init_module",
4898 "sys_delete_module",
4899 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4900 "sys_quotactl",
4901 "sys_getpgid",
4902 "sys_fchdir",
4903 "sys_bdflush",
4904 "sys_sysfs", /* 135 */
4905 "sys_personality",
4906 "sys_ni_syscall", /* reserved for afs_syscall */
4907 "sys_setfsuid16",
4908 "sys_setfsgid16",
4909 "sys_llseek", /* 140 */
4910 "sys_getdents",
4911 "sys_select",
4912 "sys_flock",
4913 "sys_msync",
4914 "sys_readv", /* 145 */
4915 "sys_writev",
4916 "sys_getsid",
4917 "sys_fdatasync",
4918 "sys_sysctl",
4919 "sys_mlock", /* 150 */
4920 "sys_munlock",
4921 "sys_mlockall",
4922 "sys_munlockall",
4923 "sys_sched_setparam",
4924 "sys_sched_getparam", /* 155 */
4925 "sys_sched_setscheduler",
4926 "sys_sched_getscheduler",
4927 "sys_sched_yield",
4928 "sys_sched_get_priority_max",
4929 "sys_sched_get_priority_min", /* 160 */
4930 "sys_sched_rr_get_interval",
4931 "sys_nanosleep",
4932 "sys_mremap",
4933 "sys_setresuid16",
4934 "sys_getresuid16", /* 165 */
4935 "sys_vm86",
4936 "sys_ni_syscall", /* Old sys_query_module */
4937 "sys_poll",
4938 "sys_nfsservctl",
4939 "sys_setresgid16", /* 170 */
4940 "sys_getresgid16",
4941 "sys_prctl",
4942 "sys_rt_sigreturn",
4943 "sys_rt_sigaction",
4944 "sys_rt_sigprocmask", /* 175 */
4945 "sys_rt_sigpending",
4946 "sys_rt_sigtimedwait",
4947 "sys_rt_sigqueueinfo",
4948 "sys_rt_sigsuspend",
4949 "sys_pread64", /* 180 */
4950 "sys_pwrite64",
4951 "sys_chown16",
4952 "sys_getcwd",
4953 "sys_capget",
4954 "sys_capset", /* 185 */
4955 "sys_sigaltstack",
4956 "sys_sendfile",
4957 "sys_ni_syscall", /* reserved for streams1 */
4958 "sys_ni_syscall", /* reserved for streams2 */
4959 "sys_vfork", /* 190 */
4960 "sys_getrlimit",
4961 "sys_mmap2",
4962 "sys_truncate64",
4963 "sys_ftruncate64",
4964 "sys_stat64", /* 195 */
4965 "sys_lstat64",
4966 "sys_fstat64",
4967 "sys_lchown",
4968 "sys_getuid",
4969 "sys_getgid", /* 200 */
4970 "sys_geteuid",
4971 "sys_getegid",
4972 "sys_setreuid",
4973 "sys_setregid",
4974 "sys_getgroups", /* 205 */
4975 "sys_setgroups",
4976 "sys_fchown",
4977 "sys_setresuid",
4978 "sys_getresuid",
4979 "sys_setresgid", /* 210 */
4980 "sys_getresgid",
4981 "sys_chown",
4982 "sys_setuid",
4983 "sys_setgid",
4984 "sys_setfsuid", /* 215 */
4985 "sys_setfsgid",
4986 "sys_pivot_root",
4987 "sys_mincore",
4988 "sys_madvise",
4989 "sys_getdents64", /* 220 */
4990 "sys_fcntl64",
4991 "sys_ni_syscall", /* reserved for TUX */
4992 "sys_ni_syscall",
4993 "sys_gettid",
4994 "sys_readahead", /* 225 */
4995 "sys_setxattr",
4996 "sys_lsetxattr",
4997 "sys_fsetxattr",
4998 "sys_getxattr",
4999 "sys_lgetxattr", /* 230 */
5000 "sys_fgetxattr",
5001 "sys_listxattr",
5002 "sys_llistxattr",
5003 "sys_flistxattr",
5004 "sys_removexattr", /* 235 */
5005 "sys_lremovexattr",
5006 "sys_fremovexattr",
5007 "sys_tkill",
5008 "sys_sendfile64",
5009 "sys_futex", /* 240 */
5010 "sys_sched_setaffinity",
5011 "sys_sched_getaffinity",
5012 "sys_set_thread_area",
5013 "sys_get_thread_area",
5014 "sys_io_setup", /* 245 */
5015 "sys_io_destroy",
5016 "sys_io_getevents",
5017 "sys_io_submit",
5018 "sys_io_cancel",
5019 "sys_fadvise64", /* 250 */
5020 "sys_ni_syscall",
5021 "sys_exit_group",
5022 "sys_lookup_dcookie",
5023 "sys_epoll_create",
5024 "sys_epoll_ctl", /* 255 */
5025 "sys_epoll_wait",
5026 "sys_remap_file_pages",
5027 "sys_set_tid_address",
5028 "sys_timer_create",
5029 "sys_timer_settime", /* 260 */
5030 "sys_timer_gettime",
5031 "sys_timer_getoverrun",
5032 "sys_timer_delete",
5033 "sys_clock_settime",
5034 "sys_clock_gettime", /* 265 */
5035 "sys_clock_getres",
5036 "sys_clock_nanosleep",
5037 "sys_statfs64",
5038 "sys_fstatfs64",
5039 "sys_tgkill", /* 270 */
5040 "sys_utimes",
5041 "sys_fadvise64_64",
5042 "sys_ni_syscall" /* sys_vserver */
5043 };
5044
5045 uint32_t uEAX = CPUMGetGuestEAX(pVM);
5046 switch (uEAX)
5047 {
5048 default:
5049 if (uEAX < ELEMENTS(apsz))
5050 Log(("REM: linux syscall %3d: %s (eip=%VGv ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
5051 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
5052 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
5053 else
5054 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
5055 break;
5056
5057 }
5058}
5059
5060
5061/**
5062 * Dumps an OpenBSD system call.
5063 * @param pVM VM handle.
5064 */
5065void remR3DumpOBsdSyscall(PVM pVM)
5066{
5067 static const char *apsz[] =
5068 {
5069 "SYS_syscall", //0
5070 "SYS_exit", //1
5071 "SYS_fork", //2
5072 "SYS_read", //3
5073 "SYS_write", //4
5074 "SYS_open", //5
5075 "SYS_close", //6
5076 "SYS_wait4", //7
5077 "SYS_8",
5078 "SYS_link", //9
5079 "SYS_unlink", //10
5080 "SYS_11",
5081 "SYS_chdir", //12
5082 "SYS_fchdir", //13
5083 "SYS_mknod", //14
5084 "SYS_chmod", //15
5085 "SYS_chown", //16
5086 "SYS_break", //17
5087 "SYS_18",
5088 "SYS_19",
5089 "SYS_getpid", //20
5090 "SYS_mount", //21
5091 "SYS_unmount", //22
5092 "SYS_setuid", //23
5093 "SYS_getuid", //24
5094 "SYS_geteuid", //25
5095 "SYS_ptrace", //26
5096 "SYS_recvmsg", //27
5097 "SYS_sendmsg", //28
5098 "SYS_recvfrom", //29
5099 "SYS_accept", //30
5100 "SYS_getpeername", //31
5101 "SYS_getsockname", //32
5102 "SYS_access", //33
5103 "SYS_chflags", //34
5104 "SYS_fchflags", //35
5105 "SYS_sync", //36
5106 "SYS_kill", //37
5107 "SYS_38",
5108 "SYS_getppid", //39
5109 "SYS_40",
5110 "SYS_dup", //41
5111 "SYS_opipe", //42
5112 "SYS_getegid", //43
5113 "SYS_profil", //44
5114 "SYS_ktrace", //45
5115 "SYS_sigaction", //46
5116 "SYS_getgid", //47
5117 "SYS_sigprocmask", //48
5118 "SYS_getlogin", //49
5119 "SYS_setlogin", //50
5120 "SYS_acct", //51
5121 "SYS_sigpending", //52
5122 "SYS_osigaltstack", //53
5123 "SYS_ioctl", //54
5124 "SYS_reboot", //55
5125 "SYS_revoke", //56
5126 "SYS_symlink", //57
5127 "SYS_readlink", //58
5128 "SYS_execve", //59
5129 "SYS_umask", //60
5130 "SYS_chroot", //61
5131 "SYS_62",
5132 "SYS_63",
5133 "SYS_64",
5134 "SYS_65",
5135 "SYS_vfork", //66
5136 "SYS_67",
5137 "SYS_68",
5138 "SYS_sbrk", //69
5139 "SYS_sstk", //70
5140 "SYS_61",
5141 "SYS_vadvise", //72
5142 "SYS_munmap", //73
5143 "SYS_mprotect", //74
5144 "SYS_madvise", //75
5145 "SYS_76",
5146 "SYS_77",
5147 "SYS_mincore", //78
5148 "SYS_getgroups", //79
5149 "SYS_setgroups", //80
5150 "SYS_getpgrp", //81
5151 "SYS_setpgid", //82
5152 "SYS_setitimer", //83
5153 "SYS_84",
5154 "SYS_85",
5155 "SYS_getitimer", //86
5156 "SYS_87",
5157 "SYS_88",
5158 "SYS_89",
5159 "SYS_dup2", //90
5160 "SYS_91",
5161 "SYS_fcntl", //92
5162 "SYS_select", //93
5163 "SYS_94",
5164 "SYS_fsync", //95
5165 "SYS_setpriority", //96
5166 "SYS_socket", //97
5167 "SYS_connect", //98
5168 "SYS_99",
5169 "SYS_getpriority", //100
5170 "SYS_101",
5171 "SYS_102",
5172 "SYS_sigreturn", //103
5173 "SYS_bind", //104
5174 "SYS_setsockopt", //105
5175 "SYS_listen", //106
5176 "SYS_107",
5177 "SYS_108",
5178 "SYS_109",
5179 "SYS_110",
5180 "SYS_sigsuspend", //111
5181 "SYS_112",
5182 "SYS_113",
5183 "SYS_114",
5184 "SYS_115",
5185 "SYS_gettimeofday", //116
5186 "SYS_getrusage", //117
5187 "SYS_getsockopt", //118
5188 "SYS_119",
5189 "SYS_readv", //120
5190 "SYS_writev", //121
5191 "SYS_settimeofday", //122
5192 "SYS_fchown", //123
5193 "SYS_fchmod", //124
5194 "SYS_125",
5195 "SYS_setreuid", //126
5196 "SYS_setregid", //127
5197 "SYS_rename", //128
5198 "SYS_129",
5199 "SYS_130",
5200 "SYS_flock", //131
5201 "SYS_mkfifo", //132
5202 "SYS_sendto", //133
5203 "SYS_shutdown", //134
5204 "SYS_socketpair", //135
5205 "SYS_mkdir", //136
5206 "SYS_rmdir", //137
5207 "SYS_utimes", //138
5208 "SYS_139",
5209 "SYS_adjtime", //140
5210 "SYS_141",
5211 "SYS_142",
5212 "SYS_143",
5213 "SYS_144",
5214 "SYS_145",
5215 "SYS_146",
5216 "SYS_setsid", //147
5217 "SYS_quotactl", //148
5218 "SYS_149",
5219 "SYS_150",
5220 "SYS_151",
5221 "SYS_152",
5222 "SYS_153",
5223 "SYS_154",
5224 "SYS_nfssvc", //155
5225 "SYS_156",
5226 "SYS_157",
5227 "SYS_158",
5228 "SYS_159",
5229 "SYS_160",
5230 "SYS_getfh", //161
5231 "SYS_162",
5232 "SYS_163",
5233 "SYS_164",
5234 "SYS_sysarch", //165
5235 "SYS_166",
5236 "SYS_167",
5237 "SYS_168",
5238 "SYS_169",
5239 "SYS_170",
5240 "SYS_171",
5241 "SYS_172",
5242 "SYS_pread", //173
5243 "SYS_pwrite", //174
5244 "SYS_175",
5245 "SYS_176",
5246 "SYS_177",
5247 "SYS_178",
5248 "SYS_179",
5249 "SYS_180",
5250 "SYS_setgid", //181
5251 "SYS_setegid", //182
5252 "SYS_seteuid", //183
5253 "SYS_lfs_bmapv", //184
5254 "SYS_lfs_markv", //185
5255 "SYS_lfs_segclean", //186
5256 "SYS_lfs_segwait", //187
5257 "SYS_188",
5258 "SYS_189",
5259 "SYS_190",
5260 "SYS_pathconf", //191
5261 "SYS_fpathconf", //192
5262 "SYS_swapctl", //193
5263 "SYS_getrlimit", //194
5264 "SYS_setrlimit", //195
5265 "SYS_getdirentries", //196
5266 "SYS_mmap", //197
5267 "SYS___syscall", //198
5268 "SYS_lseek", //199
5269 "SYS_truncate", //200
5270 "SYS_ftruncate", //201
5271 "SYS___sysctl", //202
5272 "SYS_mlock", //203
5273 "SYS_munlock", //204
5274 "SYS_205",
5275 "SYS_futimes", //206
5276 "SYS_getpgid", //207
5277 "SYS_xfspioctl", //208
5278 "SYS_209",
5279 "SYS_210",
5280 "SYS_211",
5281 "SYS_212",
5282 "SYS_213",
5283 "SYS_214",
5284 "SYS_215",
5285 "SYS_216",
5286 "SYS_217",
5287 "SYS_218",
5288 "SYS_219",
5289 "SYS_220",
5290 "SYS_semget", //221
5291 "SYS_222",
5292 "SYS_223",
5293 "SYS_224",
5294 "SYS_msgget", //225
5295 "SYS_msgsnd", //226
5296 "SYS_msgrcv", //227
5297 "SYS_shmat", //228
5298 "SYS_229",
5299 "SYS_shmdt", //230
5300 "SYS_231",
5301 "SYS_clock_gettime", //232
5302 "SYS_clock_settime", //233
5303 "SYS_clock_getres", //234
5304 "SYS_235",
5305 "SYS_236",
5306 "SYS_237",
5307 "SYS_238",
5308 "SYS_239",
5309 "SYS_nanosleep", //240
5310 "SYS_241",
5311 "SYS_242",
5312 "SYS_243",
5313 "SYS_244",
5314 "SYS_245",
5315 "SYS_246",
5316 "SYS_247",
5317 "SYS_248",
5318 "SYS_249",
5319 "SYS_minherit", //250
5320 "SYS_rfork", //251
5321 "SYS_poll", //252
5322 "SYS_issetugid", //253
5323 "SYS_lchown", //254
5324 "SYS_getsid", //255
5325 "SYS_msync", //256
5326 "SYS_257",
5327 "SYS_258",
5328 "SYS_259",
5329 "SYS_getfsstat", //260
5330 "SYS_statfs", //261
5331 "SYS_fstatfs", //262
5332 "SYS_pipe", //263
5333 "SYS_fhopen", //264
5334 "SYS_265",
5335 "SYS_fhstatfs", //266
5336 "SYS_preadv", //267
5337 "SYS_pwritev", //268
5338 "SYS_kqueue", //269
5339 "SYS_kevent", //270
5340 "SYS_mlockall", //271
5341 "SYS_munlockall", //272
5342 "SYS_getpeereid", //273
5343 "SYS_274",
5344 "SYS_275",
5345 "SYS_276",
5346 "SYS_277",
5347 "SYS_278",
5348 "SYS_279",
5349 "SYS_280",
5350 "SYS_getresuid", //281
5351 "SYS_setresuid", //282
5352 "SYS_getresgid", //283
5353 "SYS_setresgid", //284
5354 "SYS_285",
5355 "SYS_mquery", //286
5356 "SYS_closefrom", //287
5357 "SYS_sigaltstack", //288
5358 "SYS_shmget", //289
5359 "SYS_semop", //290
5360 "SYS_stat", //291
5361 "SYS_fstat", //292
5362 "SYS_lstat", //293
5363 "SYS_fhstat", //294
5364 "SYS___semctl", //295
5365 "SYS_shmctl", //296
5366 "SYS_msgctl", //297
5367 "SYS_MAXSYSCALL", //298
5368 //299
5369 //300
5370 };
5371 uint32_t uEAX;
5372 if (!LogIsEnabled())
5373 return;
5374 uEAX = CPUMGetGuestEAX(pVM);
5375 switch (uEAX)
5376 {
5377 default:
5378 if (uEAX < ELEMENTS(apsz))
5379 {
5380 uint32_t au32Args[8] = {0};
5381 PGMPhysReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
5382 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
5383 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
5384 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
5385 }
5386 else
5387 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
5388 break;
5389 }
5390}
5391
5392
5393#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
5394/**
5395 * The Dll main entry point (stub).
5396 */
5397bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
5398{
5399 return true;
5400}
5401
5402void *memcpy(void *dst, const void *src, size_t size)
5403{
5404 uint8_t*pbDst = dst, *pbSrc = src;
5405 while (size-- > 0)
5406 *pbDst++ = *pbSrc++;
5407 return dst;
5408}
5409
5410#endif
5411
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette