VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 45579

Last change on this file since 45579 was 45533, checked in by vboxsync, 12 years ago

#ifdef the raw-mode force flags to find more code to #ifdef out.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 182.3 KB
Line 
1/* $Id: VBoxRecompiler.c 45533 2013-04-13 16:13:22Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_REM
23#include <stdio.h> /* FILE */
24#include "osdep.h"
25#include "config.h"
26#include "cpu.h"
27#include "exec-all.h"
28#include "ioport.h"
29
30#include <VBox/vmm/rem.h>
31#include <VBox/vmm/vmapi.h>
32#include <VBox/vmm/tm.h>
33#include <VBox/vmm/ssm.h>
34#include <VBox/vmm/em.h>
35#include <VBox/vmm/trpm.h>
36#include <VBox/vmm/iom.h>
37#include <VBox/vmm/mm.h>
38#include <VBox/vmm/pgm.h>
39#include <VBox/vmm/pdm.h>
40#include <VBox/vmm/dbgf.h>
41#include <VBox/dbg.h>
42#include <VBox/vmm/hm.h>
43#include <VBox/vmm/patm.h>
44#include <VBox/vmm/csam.h>
45#include "REMInternal.h"
46#include <VBox/vmm/vm.h>
47#include <VBox/vmm/uvm.h>
48#include <VBox/param.h>
49#include <VBox/err.h>
50
51#include <VBox/log.h>
52#include <iprt/semaphore.h>
53#include <iprt/asm.h>
54#include <iprt/assert.h>
55#include <iprt/thread.h>
56#include <iprt/string.h>
57
58/* Don't wanna include everything. */
59extern void cpu_exec_init_all(uintptr_t tb_size);
60extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
61extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
62extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
63extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
64extern void tlb_flush(CPUX86State *env, int flush_global);
65extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
66extern void sync_ldtr(CPUX86State *env1, int selector);
67
68#ifdef VBOX_STRICT
69ram_addr_t get_phys_page_offset(target_ulong addr);
70#endif
71
72
73/*******************************************************************************
74* Defined Constants And Macros *
75*******************************************************************************/
76
77/** Copy 80-bit fpu register at pSrc to pDst.
78 * This is probably faster than *calling* memcpy.
79 */
80#define REM_COPY_FPU_REG(pDst, pSrc) \
81 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
82
83/** How remR3RunLoggingStep operates. */
84#define REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
85
86
87/*******************************************************************************
88* Internal Functions *
89*******************************************************************************/
90static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
91static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
92static void remR3StateUpdate(PVM pVM, PVMCPU pVCpu);
93static int remR3InitPhysRamSizeAndDirtyMap(PVM pVM, bool fGuarded);
94
95static uint32_t remR3MMIOReadU8(void *pvEnv, target_phys_addr_t GCPhys);
96static uint32_t remR3MMIOReadU16(void *pvEnv, target_phys_addr_t GCPhys);
97static uint32_t remR3MMIOReadU32(void *pvEnv, target_phys_addr_t GCPhys);
98static void remR3MMIOWriteU8(void *pvEnv, target_phys_addr_t GCPhys, uint32_t u32);
99static void remR3MMIOWriteU16(void *pvEnv, target_phys_addr_t GCPhys, uint32_t u32);
100static void remR3MMIOWriteU32(void *pvEnv, target_phys_addr_t GCPhys, uint32_t u32);
101
102static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
103static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
104static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
105static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
106static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
107static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
108
109static void remR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM);
110static void remR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler);
111static void remR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM);
112
113/*******************************************************************************
114* Global Variables *
115*******************************************************************************/
116
117/** @todo Move stats to REM::s some rainy day we have nothing do to. */
118#ifdef VBOX_WITH_STATISTICS
119static STAMPROFILEADV gStatExecuteSingleInstr;
120static STAMPROFILEADV gStatCompilationQEmu;
121static STAMPROFILEADV gStatRunCodeQEmu;
122static STAMPROFILEADV gStatTotalTimeQEmu;
123static STAMPROFILEADV gStatTimers;
124static STAMPROFILEADV gStatTBLookup;
125static STAMPROFILEADV gStatIRQ;
126static STAMPROFILEADV gStatRawCheck;
127static STAMPROFILEADV gStatMemRead;
128static STAMPROFILEADV gStatMemWrite;
129static STAMPROFILE gStatGCPhys2HCVirt;
130static STAMCOUNTER gStatCpuGetTSC;
131static STAMCOUNTER gStatRefuseTFInhibit;
132static STAMCOUNTER gStatRefuseVM86;
133static STAMCOUNTER gStatRefusePaging;
134static STAMCOUNTER gStatRefusePAE;
135static STAMCOUNTER gStatRefuseIOPLNot0;
136static STAMCOUNTER gStatRefuseIF0;
137static STAMCOUNTER gStatRefuseCode16;
138static STAMCOUNTER gStatRefuseWP0;
139static STAMCOUNTER gStatRefuseRing1or2;
140static STAMCOUNTER gStatRefuseCanExecute;
141static STAMCOUNTER gaStatRefuseStale[6];
142static STAMCOUNTER gStatREMGDTChange;
143static STAMCOUNTER gStatREMIDTChange;
144static STAMCOUNTER gStatREMLDTRChange;
145static STAMCOUNTER gStatREMTRChange;
146static STAMCOUNTER gStatSelOutOfSync[6];
147static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
148static STAMCOUNTER gStatFlushTBs;
149#endif
150/* in exec.c */
151extern uint32_t tlb_flush_count;
152extern uint32_t tb_flush_count;
153extern uint32_t tb_phys_invalidate_count;
154
155/*
156 * Global stuff.
157 */
158
159/** MMIO read callbacks. */
160CPUReadMemoryFunc *g_apfnMMIORead[3] =
161{
162 remR3MMIOReadU8,
163 remR3MMIOReadU16,
164 remR3MMIOReadU32
165};
166
167/** MMIO write callbacks. */
168CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
169{
170 remR3MMIOWriteU8,
171 remR3MMIOWriteU16,
172 remR3MMIOWriteU32
173};
174
175/** Handler read callbacks. */
176CPUReadMemoryFunc *g_apfnHandlerRead[3] =
177{
178 remR3HandlerReadU8,
179 remR3HandlerReadU16,
180 remR3HandlerReadU32
181};
182
183/** Handler write callbacks. */
184CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
185{
186 remR3HandlerWriteU8,
187 remR3HandlerWriteU16,
188 remR3HandlerWriteU32
189};
190
191
192#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
193/*
194 * Debugger commands.
195 */
196static FNDBGCCMD remR3CmdDisasEnableStepping;;
197
198/** '.remstep' arguments. */
199static const DBGCVARDESC g_aArgRemStep[] =
200{
201 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
202 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
203};
204
205/** Command descriptors. */
206static const DBGCCMD g_aCmds[] =
207{
208 {
209 .pszCmd ="remstep",
210 .cArgsMin = 0,
211 .cArgsMax = 1,
212 .paArgDescs = &g_aArgRemStep[0],
213 .cArgDescs = RT_ELEMENTS(g_aArgRemStep),
214 .fFlags = 0,
215 .pfnHandler = remR3CmdDisasEnableStepping,
216 .pszSyntax = "[on/off]",
217 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
218 "If no arguments show the current state."
219 }
220};
221#endif
222
223/** Prologue code, must be in lower 4G to simplify jumps to/from generated code.
224 * @todo huh??? That cannot be the case on the mac... So, this
225 * point is probably not valid any longer. */
226uint8_t *code_gen_prologue;
227
228
229/*******************************************************************************
230* Internal Functions *
231*******************************************************************************/
232void remAbort(int rc, const char *pszTip);
233extern int testmath(void);
234
235/* Put them here to avoid unused variable warning. */
236AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
237#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
238//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
239/* Why did this have to be identical?? */
240AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
241#else
242AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
243#endif
244
245
246/**
247 * Initializes the REM.
248 *
249 * @returns VBox status code.
250 * @param pVM The VM to operate on.
251 */
252REMR3DECL(int) REMR3Init(PVM pVM)
253{
254 PREMHANDLERNOTIFICATION pCur;
255 uint32_t u32Dummy;
256 int rc;
257 unsigned i;
258
259#ifdef VBOX_ENABLE_VBOXREM64
260 LogRel(("Using 64-bit aware REM\n"));
261#endif
262
263 /*
264 * Assert sanity.
265 */
266 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
267 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
268 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
269#if 0 /* just an annoyance at the moment. */
270#if defined(DEBUG) && !defined(RT_OS_SOLARIS) && !defined(RT_OS_FREEBSD) /// @todo fix the solaris and freebsd math stuff.
271 Assert(!testmath());
272#endif
273#endif
274
275 /*
276 * Init some internal data members.
277 */
278 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
279 pVM->rem.s.Env.pVM = pVM;
280#ifdef CPU_RAW_MODE_INIT
281 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
282#endif
283
284 /*
285 * Initialize the REM critical section.
286 *
287 * Note: This is not a 100% safe solution as updating the internal memory state while another VCPU
288 * is executing code could be dangerous. Taking the REM lock is not an option due to the danger of
289 * deadlocks. (mostly pgm vs rem locking)
290 */
291 rc = PDMR3CritSectInit(pVM, &pVM->rem.s.CritSectRegister, RT_SRC_POS, "REM-Register");
292 AssertRCReturn(rc, rc);
293
294 /* ctx. */
295 pVM->rem.s.pCtx = NULL; /* set when executing code. */
296 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order has changed! REM depends on notification about ALL physical memory registrations\n"));
297
298 /* ignore all notifications */
299 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
300
301 code_gen_prologue = RTMemExecAlloc(_1K);
302 AssertLogRelReturn(code_gen_prologue, VERR_NO_MEMORY);
303
304 cpu_exec_init_all(0);
305
306 /*
307 * Init the recompiler.
308 */
309 if (!cpu_x86_init(&pVM->rem.s.Env, "vbox"))
310 {
311 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
312 return VERR_GENERAL_FAILURE;
313 }
314 PVMCPU pVCpu = VMMGetCpu(pVM);
315 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
316 CPUMGetGuestCpuId(pVCpu, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
317
318 EMRemLock(pVM);
319 cpu_reset(&pVM->rem.s.Env);
320 EMRemUnlock(pVM);
321
322 /* allocate code buffer for single instruction emulation. */
323 pVM->rem.s.Env.cbCodeBuffer = 4096;
324 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
325 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
326
327 /* Finally, set the cpu_single_env global. */
328 cpu_single_env = &pVM->rem.s.Env;
329
330 /* Nothing is pending by default */
331 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
332
333 /*
334 * Register ram types.
335 */
336 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(g_apfnMMIORead, g_apfnMMIOWrite, &pVM->rem.s.Env);
337 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
338 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
339 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
340 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
341
342 /* stop ignoring. */
343 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
344
345 /*
346 * Register the saved state data unit.
347 */
348 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
349 NULL, NULL, NULL,
350 NULL, remR3Save, NULL,
351 NULL, remR3Load, NULL);
352 if (RT_FAILURE(rc))
353 return rc;
354
355#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
356 /*
357 * Debugger commands.
358 */
359 static bool fRegisteredCmds = false;
360 if (!fRegisteredCmds)
361 {
362 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
363 if (RT_SUCCESS(rc))
364 fRegisteredCmds = true;
365 }
366#endif
367
368#ifdef VBOX_WITH_STATISTICS
369 /*
370 * Statistics.
371 */
372 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
373 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
374 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
375 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
376 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer queue processing.");
377 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling translation block lookup.");
378 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling IRQ delivery.");
379 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling remR3CanExecuteRaw calls.");
380 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
381 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
382 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory conversion (PGMR3PhysTlbGCPhys2Ptr).");
383
384 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
385
386 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
387 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
388 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
389 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
390 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
391 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
392 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
393 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
394 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
395 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
396 STAM_REG(pVM, &gaStatRefuseStale[R_ES], STAMTYPE_COUNTER, "/REM/Refuse/StaleES", STAMUNIT_OCCURENCES, "Raw mode refused because of stale ES");
397 STAM_REG(pVM, &gaStatRefuseStale[R_CS], STAMTYPE_COUNTER, "/REM/Refuse/StaleCS", STAMUNIT_OCCURENCES, "Raw mode refused because of stale CS");
398 STAM_REG(pVM, &gaStatRefuseStale[R_SS], STAMTYPE_COUNTER, "/REM/Refuse/StaleSS", STAMUNIT_OCCURENCES, "Raw mode refused because of stale SS");
399 STAM_REG(pVM, &gaStatRefuseStale[R_DS], STAMTYPE_COUNTER, "/REM/Refuse/StaleDS", STAMUNIT_OCCURENCES, "Raw mode refused because of stale DS");
400 STAM_REG(pVM, &gaStatRefuseStale[R_FS], STAMTYPE_COUNTER, "/REM/Refuse/StaleFS", STAMUNIT_OCCURENCES, "Raw mode refused because of stale FS");
401 STAM_REG(pVM, &gaStatRefuseStale[R_GS], STAMTYPE_COUNTER, "/REM/Refuse/StaleGS", STAMUNIT_OCCURENCES, "Raw mode refused because of stale GS");
402 STAM_REG(pVM, &gStatFlushTBs, STAMTYPE_COUNTER, "/REM/FlushTB", STAMUNIT_OCCURENCES, "Number of TB flushes");
403
404 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
405 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
406 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
407 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
408
409 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
410 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
411 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
412 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
413 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
414 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
415
416 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
417 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
418 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
419 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
420 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
421 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
422
423 STAM_REG(pVM, &pVM->rem.s.Env.StatTbFlush, STAMTYPE_PROFILE, "/REM/TbFlush", STAMUNIT_TICKS_PER_CALL, "profiling tb_flush().");
424#endif /* VBOX_WITH_STATISTICS */
425 AssertCompileMemberAlignment(CPUX86State, StatTbFlush, 4);
426 AssertCompileMemberAlignment(CPUX86State, StatTbFlush, 8);
427
428 STAM_REL_REG(pVM, &tb_flush_count, STAMTYPE_U32_RESET, "/REM/TbFlushCount", STAMUNIT_OCCURENCES, "tb_flush() calls");
429 STAM_REL_REG(pVM, &tb_phys_invalidate_count, STAMTYPE_U32_RESET, "/REM/TbPhysInvldCount", STAMUNIT_OCCURENCES, "tb_phys_invalidate() calls");
430 STAM_REL_REG(pVM, &tlb_flush_count, STAMTYPE_U32_RESET, "/REM/TlbFlushCount", STAMUNIT_OCCURENCES, "tlb_flush() calls");
431
432
433#ifdef DEBUG_ALL_LOGGING
434 loglevel = ~0;
435#endif
436
437 /*
438 * Init the handler notification lists.
439 */
440 pVM->rem.s.idxPendingList = UINT32_MAX;
441 pVM->rem.s.idxFreeList = 0;
442
443 for (i = 0 ; i < RT_ELEMENTS(pVM->rem.s.aHandlerNotifications); i++)
444 {
445 pCur = &pVM->rem.s.aHandlerNotifications[i];
446 pCur->idxNext = i + 1;
447 pCur->idxSelf = i;
448 }
449 pCur->idxNext = UINT32_MAX; /* the last record. */
450
451 return rc;
452}
453
454
455/**
456 * Finalizes the REM initialization.
457 *
458 * This is called after all components, devices and drivers has
459 * been initialized. Its main purpose it to finish the RAM related
460 * initialization.
461 *
462 * @returns VBox status code.
463 *
464 * @param pVM The VM handle.
465 */
466REMR3DECL(int) REMR3InitFinalize(PVM pVM)
467{
468 int rc;
469
470 /*
471 * Ram size & dirty bit map.
472 */
473 Assert(!pVM->rem.s.fGCPhysLastRamFixed);
474 pVM->rem.s.fGCPhysLastRamFixed = true;
475#ifdef RT_STRICT
476 rc = remR3InitPhysRamSizeAndDirtyMap(pVM, true /* fGuarded */);
477#else
478 rc = remR3InitPhysRamSizeAndDirtyMap(pVM, false /* fGuarded */);
479#endif
480 return rc;
481}
482
483/**
484 * Initializes ram_list.phys_dirty and ram_list.phys_dirty_size.
485 *
486 * @returns VBox status code.
487 * @param pVM The VM handle.
488 * @param fGuarded Whether to guard the map.
489 */
490static int remR3InitPhysRamSizeAndDirtyMap(PVM pVM, bool fGuarded)
491{
492 int rc = VINF_SUCCESS;
493 RTGCPHYS cb;
494
495 AssertLogRelReturn(QLIST_EMPTY(&ram_list.blocks), VERR_INTERNAL_ERROR_2);
496
497 cb = pVM->rem.s.GCPhysLastRam + 1;
498 AssertLogRelMsgReturn(cb > pVM->rem.s.GCPhysLastRam,
499 ("GCPhysLastRam=%RGp - out of range\n", pVM->rem.s.GCPhysLastRam),
500 VERR_OUT_OF_RANGE);
501
502 ram_list.phys_dirty_size = cb >> PAGE_SHIFT;
503 AssertMsg(((RTGCPHYS)ram_list.phys_dirty_size << PAGE_SHIFT) == cb, ("%RGp\n", cb));
504
505 if (!fGuarded)
506 {
507 ram_list.phys_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, ram_list.phys_dirty_size);
508 AssertLogRelMsgReturn(ram_list.phys_dirty, ("Failed to allocate %u bytes of dirty page map bytes\n", ram_list.phys_dirty_size), VERR_NO_MEMORY);
509 }
510 else
511 {
512 /*
513 * Fill it up the nearest 4GB RAM and leave at least _64KB of guard after it.
514 */
515 uint32_t cbBitmapAligned = RT_ALIGN_32(ram_list.phys_dirty_size, PAGE_SIZE);
516 uint32_t cbBitmapFull = RT_ALIGN_32(ram_list.phys_dirty_size, (_4G >> PAGE_SHIFT));
517 if (cbBitmapFull == cbBitmapAligned)
518 cbBitmapFull += _4G >> PAGE_SHIFT;
519 else if (cbBitmapFull - cbBitmapAligned < _64K)
520 cbBitmapFull += _64K;
521
522 ram_list.phys_dirty = RTMemPageAlloc(cbBitmapFull);
523 AssertLogRelMsgReturn(ram_list.phys_dirty, ("Failed to allocate %u bytes of dirty page map bytes\n", cbBitmapFull), VERR_NO_MEMORY);
524
525 rc = RTMemProtect(ram_list.phys_dirty + cbBitmapAligned, cbBitmapFull - cbBitmapAligned, RTMEM_PROT_NONE);
526 if (RT_FAILURE(rc))
527 {
528 RTMemPageFree(ram_list.phys_dirty, cbBitmapFull);
529 AssertLogRelRCReturn(rc, rc);
530 }
531
532 ram_list.phys_dirty += cbBitmapAligned - ram_list.phys_dirty_size;
533 }
534
535 /* initialize it. */
536 memset(ram_list.phys_dirty, 0xff, ram_list.phys_dirty_size);
537 return rc;
538}
539
540
541/**
542 * Terminates the REM.
543 *
544 * Termination means cleaning up and freeing all resources,
545 * the VM it self is at this point powered off or suspended.
546 *
547 * @returns VBox status code.
548 * @param pVM The VM to operate on.
549 */
550REMR3DECL(int) REMR3Term(PVM pVM)
551{
552#ifdef VBOX_WITH_STATISTICS
553 /*
554 * Statistics.
555 */
556 STAM_DEREG(pVM, &gStatExecuteSingleInstr);
557 STAM_DEREG(pVM, &gStatCompilationQEmu);
558 STAM_DEREG(pVM, &gStatRunCodeQEmu);
559 STAM_DEREG(pVM, &gStatTotalTimeQEmu);
560 STAM_DEREG(pVM, &gStatTimers);
561 STAM_DEREG(pVM, &gStatTBLookup);
562 STAM_DEREG(pVM, &gStatIRQ);
563 STAM_DEREG(pVM, &gStatRawCheck);
564 STAM_DEREG(pVM, &gStatMemRead);
565 STAM_DEREG(pVM, &gStatMemWrite);
566 STAM_DEREG(pVM, &gStatGCPhys2HCVirt);
567
568 STAM_DEREG(pVM, &gStatCpuGetTSC);
569
570 STAM_DEREG(pVM, &gStatRefuseTFInhibit);
571 STAM_DEREG(pVM, &gStatRefuseVM86);
572 STAM_DEREG(pVM, &gStatRefusePaging);
573 STAM_DEREG(pVM, &gStatRefusePAE);
574 STAM_DEREG(pVM, &gStatRefuseIOPLNot0);
575 STAM_DEREG(pVM, &gStatRefuseIF0);
576 STAM_DEREG(pVM, &gStatRefuseCode16);
577 STAM_DEREG(pVM, &gStatRefuseWP0);
578 STAM_DEREG(pVM, &gStatRefuseRing1or2);
579 STAM_DEREG(pVM, &gStatRefuseCanExecute);
580 STAM_DEREG(pVM, &gaStatRefuseStale[0]);
581 STAM_DEREG(pVM, &gaStatRefuseStale[1]);
582 STAM_DEREG(pVM, &gaStatRefuseStale[2]);
583 STAM_DEREG(pVM, &gaStatRefuseStale[3]);
584 STAM_DEREG(pVM, &gaStatRefuseStale[4]);
585 STAM_DEREG(pVM, &gaStatRefuseStale[5]);
586 STAM_DEREG(pVM, &gStatFlushTBs);
587
588 STAM_DEREG(pVM, &gStatREMGDTChange);
589 STAM_DEREG(pVM, &gStatREMLDTRChange);
590 STAM_DEREG(pVM, &gStatREMIDTChange);
591 STAM_DEREG(pVM, &gStatREMTRChange);
592
593 STAM_DEREG(pVM, &gStatSelOutOfSync[0]);
594 STAM_DEREG(pVM, &gStatSelOutOfSync[1]);
595 STAM_DEREG(pVM, &gStatSelOutOfSync[2]);
596 STAM_DEREG(pVM, &gStatSelOutOfSync[3]);
597 STAM_DEREG(pVM, &gStatSelOutOfSync[4]);
598 STAM_DEREG(pVM, &gStatSelOutOfSync[5]);
599
600 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[0]);
601 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[1]);
602 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[2]);
603 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[3]);
604 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[4]);
605 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[5]);
606
607 STAM_DEREG(pVM, &pVM->rem.s.Env.StatTbFlush);
608#endif /* VBOX_WITH_STATISTICS */
609
610 STAM_REL_DEREG(pVM, &tb_flush_count);
611 STAM_REL_DEREG(pVM, &tb_phys_invalidate_count);
612 STAM_REL_DEREG(pVM, &tlb_flush_count);
613
614 return VINF_SUCCESS;
615}
616
617
618/**
619 * The VM is being reset.
620 *
621 * For the REM component this means to call the cpu_reset() and
622 * reinitialize some state variables.
623 *
624 * @param pVM VM handle.
625 */
626REMR3DECL(void) REMR3Reset(PVM pVM)
627{
628 EMRemLock(pVM); /* Only pro forma, we're in a rendezvous. */
629
630 /*
631 * Reset the REM cpu.
632 */
633 Assert(pVM->rem.s.cIgnoreAll == 0);
634 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
635 cpu_reset(&pVM->rem.s.Env);
636 pVM->rem.s.cInvalidatedPages = 0;
637 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
638 Assert(pVM->rem.s.cIgnoreAll == 0);
639
640 /* Clear raw ring 0 init state */
641 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
642
643 /* Flush the TBs the next time we execute code here. */
644 pVM->rem.s.fFlushTBs = true;
645
646 EMRemUnlock(pVM);
647}
648
649
650/**
651 * Execute state save operation.
652 *
653 * @returns VBox status code.
654 * @param pVM VM Handle.
655 * @param pSSM SSM operation handle.
656 */
657static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
658{
659 PREM pRem = &pVM->rem.s;
660
661 /*
662 * Save the required CPU Env bits.
663 * (Not much because we're never in REM when doing the save.)
664 */
665 LogFlow(("remR3Save:\n"));
666 Assert(!pRem->fInREM);
667 SSMR3PutU32(pSSM, pRem->Env.hflags);
668 SSMR3PutU32(pSSM, ~0); /* separator */
669
670 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
671 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
672 SSMR3PutU32(pSSM, pVM->rem.s.u32PendingInterrupt);
673
674 return SSMR3PutU32(pSSM, ~0); /* terminator */
675}
676
677
678/**
679 * Execute state load operation.
680 *
681 * @returns VBox status code.
682 * @param pVM VM Handle.
683 * @param pSSM SSM operation handle.
684 * @param uVersion Data layout version.
685 * @param uPass The data pass.
686 */
687static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
688{
689 uint32_t u32Dummy;
690 uint32_t fRawRing0 = false;
691 uint32_t u32Sep;
692 uint32_t i;
693 int rc;
694 PREM pRem;
695
696 LogFlow(("remR3Load:\n"));
697 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
698
699 /*
700 * Validate version.
701 */
702 if ( uVersion != REM_SAVED_STATE_VERSION
703 && uVersion != REM_SAVED_STATE_VERSION_VER1_6)
704 {
705 AssertMsgFailed(("remR3Load: Invalid version uVersion=%d!\n", uVersion));
706 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
707 }
708
709 /*
710 * Do a reset to be on the safe side...
711 */
712 REMR3Reset(pVM);
713
714 /*
715 * Ignore all ignorable notifications.
716 * (Not doing this will cause serious trouble.)
717 */
718 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
719
720 /*
721 * Load the required CPU Env bits.
722 * (Not much because we're never in REM when doing the save.)
723 */
724 pRem = &pVM->rem.s;
725 Assert(!pRem->fInREM);
726 SSMR3GetU32(pSSM, &pRem->Env.hflags);
727 if (uVersion == REM_SAVED_STATE_VERSION_VER1_6)
728 {
729 /* Redundant REM CPU state has to be loaded, but can be ignored. */
730 CPUX86State_Ver16 temp;
731 SSMR3GetMem(pSSM, &temp, RT_OFFSETOF(CPUX86State_Ver16, jmp_env));
732 }
733
734 rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
735 if (RT_FAILURE(rc))
736 return rc;
737 if (u32Sep != ~0U)
738 {
739 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
740 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
741 }
742
743 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
744 SSMR3GetUInt(pSSM, &fRawRing0);
745 if (fRawRing0)
746 pRem->Env.state |= CPU_RAW_RING0;
747
748 if (uVersion == REM_SAVED_STATE_VERSION_VER1_6)
749 {
750 /*
751 * Load the REM stuff.
752 */
753 /** @todo r=bird: We should just drop all these items, restoring doesn't make
754 * sense. */
755 rc = SSMR3GetU32(pSSM, (uint32_t *)&pRem->cInvalidatedPages);
756 if (RT_FAILURE(rc))
757 return rc;
758 if (pRem->cInvalidatedPages > RT_ELEMENTS(pRem->aGCPtrInvalidatedPages))
759 {
760 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
761 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
762 }
763 for (i = 0; i < pRem->cInvalidatedPages; i++)
764 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
765 }
766
767 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
768 if (RT_FAILURE(rc))
769 return rc;
770
771 /* check the terminator. */
772 rc = SSMR3GetU32(pSSM, &u32Sep);
773 if (RT_FAILURE(rc))
774 return rc;
775 if (u32Sep != ~0U)
776 {
777 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
778 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
779 }
780
781 /*
782 * Get the CPUID features.
783 */
784 PVMCPU pVCpu = VMMGetCpu(pVM);
785 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
786 CPUMGetGuestCpuId(pVCpu, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
787
788 /*
789 * Stop ignoring ignorable notifications.
790 */
791 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
792
793 /*
794 * Sync the whole CPU state when executing code in the recompiler.
795 */
796 for (i = 0; i < pVM->cCpus; i++)
797 {
798 PVMCPU pVCpu = &pVM->aCpus[i];
799 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
800 }
801 return VINF_SUCCESS;
802}
803
804
805
806#undef LOG_GROUP
807#define LOG_GROUP LOG_GROUP_REM_RUN
808
809/**
810 * Single steps an instruction in recompiled mode.
811 *
812 * Before calling this function the REM state needs to be in sync with
813 * the VM. Call REMR3State() to perform the sync. It's only necessary
814 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
815 * and after calling REMR3StateBack().
816 *
817 * @returns VBox status code.
818 *
819 * @param pVM VM Handle.
820 * @param pVCpu VMCPU Handle.
821 */
822REMR3DECL(int) REMR3Step(PVM pVM, PVMCPU pVCpu)
823{
824 int rc, interrupt_request;
825 RTGCPTR GCPtrPC;
826 bool fBp;
827
828 /*
829 * Lock the REM - we don't wanna have anyone interrupting us
830 * while stepping - and enabled single stepping. We also ignore
831 * pending interrupts and suchlike.
832 */
833 interrupt_request = pVM->rem.s.Env.interrupt_request;
834 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_FLUSH_TLB | CPU_INTERRUPT_EXTERNAL_TIMER)));
835 pVM->rem.s.Env.interrupt_request = 0;
836 cpu_single_step(&pVM->rem.s.Env, 1);
837
838 /*
839 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
840 */
841 GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
842 fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC, BP_GDB);
843
844 /*
845 * Execute and handle the return code.
846 * We execute without enabling the cpu tick, so on success we'll
847 * just flip it on and off to make sure it moves
848 */
849 rc = cpu_exec(&pVM->rem.s.Env);
850 if (rc == EXCP_DEBUG)
851 {
852 TMR3NotifyResume(pVM, pVCpu);
853 TMR3NotifySuspend(pVM, pVCpu);
854 rc = VINF_EM_DBG_STEPPED;
855 }
856 else
857 {
858 switch (rc)
859 {
860 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
861 case EXCP_HLT:
862 case EXCP_HALTED: rc = VINF_EM_HALT; break;
863 case EXCP_RC:
864 rc = pVM->rem.s.rc;
865 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
866 break;
867 case EXCP_EXECUTE_RAW:
868 case EXCP_EXECUTE_HM:
869 /** @todo: is it correct? No! */
870 rc = VINF_SUCCESS;
871 break;
872 default:
873 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
874 rc = VERR_INTERNAL_ERROR;
875 break;
876 }
877 }
878
879 /*
880 * Restore the stuff we changed to prevent interruption.
881 * Unlock the REM.
882 */
883 if (fBp)
884 {
885 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC, BP_GDB, NULL);
886 Assert(rc2 == 0); NOREF(rc2);
887 }
888 cpu_single_step(&pVM->rem.s.Env, 0);
889 pVM->rem.s.Env.interrupt_request = interrupt_request;
890
891 return rc;
892}
893
894
895/**
896 * Set a breakpoint using the REM facilities.
897 *
898 * @returns VBox status code.
899 * @param pVM The VM handle.
900 * @param Address The breakpoint address.
901 * @thread The emulation thread.
902 */
903REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
904{
905 VM_ASSERT_EMT(pVM);
906 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address, BP_GDB, NULL))
907 {
908 LogFlow(("REMR3BreakpointSet: Address=%RGv\n", Address));
909 return VINF_SUCCESS;
910 }
911 LogFlow(("REMR3BreakpointSet: Address=%RGv - failed!\n", Address));
912 return VERR_REM_NO_MORE_BP_SLOTS;
913}
914
915
916/**
917 * Clears a breakpoint set by REMR3BreakpointSet().
918 *
919 * @returns VBox status code.
920 * @param pVM The VM handle.
921 * @param Address The breakpoint address.
922 * @thread The emulation thread.
923 */
924REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
925{
926 VM_ASSERT_EMT(pVM);
927 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address, BP_GDB))
928 {
929 LogFlow(("REMR3BreakpointClear: Address=%RGv\n", Address));
930 return VINF_SUCCESS;
931 }
932 LogFlow(("REMR3BreakpointClear: Address=%RGv - not found!\n", Address));
933 return VERR_REM_BP_NOT_FOUND;
934}
935
936
937/**
938 * Emulate an instruction.
939 *
940 * This function executes one instruction without letting anyone
941 * interrupt it. This is intended for being called while being in
942 * raw mode and thus will take care of all the state syncing between
943 * REM and the rest.
944 *
945 * @returns VBox status code.
946 * @param pVM VM handle.
947 * @param pVCpu VMCPU Handle.
948 */
949REMR3DECL(int) REMR3EmulateInstruction(PVM pVM, PVMCPU pVCpu)
950{
951 bool fFlushTBs;
952
953 int rc, rc2;
954 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
955
956 /* Make sure this flag is set; we might never execute remR3CanExecuteRaw in the AMD-V case.
957 * CPU_RAW_HM makes sure we never execute interrupt handlers in the recompiler.
958 */
959 if (HMIsEnabled(pVM))
960 pVM->rem.s.Env.state |= CPU_RAW_HM;
961
962 /* Skip the TB flush as that's rather expensive and not necessary for single instruction emulation. */
963 fFlushTBs = pVM->rem.s.fFlushTBs;
964 pVM->rem.s.fFlushTBs = false;
965
966 /*
967 * Sync the state and enable single instruction / single stepping.
968 */
969 rc = REMR3State(pVM, pVCpu);
970 pVM->rem.s.fFlushTBs = fFlushTBs;
971 if (RT_SUCCESS(rc))
972 {
973 int interrupt_request = pVM->rem.s.Env.interrupt_request;
974 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_FLUSH_TLB | CPU_INTERRUPT_EXTERNAL_TIMER)));
975#ifdef REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
976 cpu_single_step(&pVM->rem.s.Env, 0);
977#endif
978 Assert(!pVM->rem.s.Env.singlestep_enabled);
979
980 /*
981 * Now we set the execute single instruction flag and enter the cpu_exec loop.
982 */
983 TMNotifyStartOfExecution(pVCpu);
984 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
985 rc = cpu_exec(&pVM->rem.s.Env);
986 TMNotifyEndOfExecution(pVCpu);
987 switch (rc)
988 {
989 /*
990 * Executed without anything out of the way happening.
991 */
992 case EXCP_SINGLE_INSTR:
993 rc = VINF_EM_RESCHEDULE;
994 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
995 break;
996
997 /*
998 * If we take a trap or start servicing a pending interrupt, we might end up here.
999 * (Timer thread or some other thread wishing EMT's attention.)
1000 */
1001 case EXCP_INTERRUPT:
1002 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
1003 rc = VINF_EM_RESCHEDULE;
1004 break;
1005
1006 /*
1007 * Single step, we assume!
1008 * If there was a breakpoint there we're fucked now.
1009 */
1010 case EXCP_DEBUG:
1011 if (pVM->rem.s.Env.watchpoint_hit)
1012 {
1013 /** @todo deal with watchpoints */
1014 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Rrc !watchpoint_hit!\n", rc));
1015 rc = VINF_EM_DBG_BREAKPOINT;
1016 }
1017 else
1018 {
1019 CPUBreakpoint *pBP;
1020 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1021 QTAILQ_FOREACH(pBP, &pVM->rem.s.Env.breakpoints, entry)
1022 if (pBP->pc == GCPtrPC)
1023 break;
1024 rc = pBP ? VINF_EM_DBG_BREAKPOINT : VINF_EM_DBG_STEPPED;
1025 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Rrc pBP=%p GCPtrPC=%RGv\n", rc, pBP, GCPtrPC));
1026 }
1027 break;
1028
1029 /*
1030 * hlt instruction.
1031 */
1032 case EXCP_HLT:
1033 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
1034 rc = VINF_EM_HALT;
1035 break;
1036
1037 /*
1038 * The VM has halted.
1039 */
1040 case EXCP_HALTED:
1041 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
1042 rc = VINF_EM_HALT;
1043 break;
1044
1045 /*
1046 * Switch to RAW-mode.
1047 */
1048 case EXCP_EXECUTE_RAW:
1049 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1050 rc = VINF_EM_RESCHEDULE_RAW;
1051 break;
1052
1053 /*
1054 * Switch to hardware accelerated RAW-mode.
1055 */
1056 case EXCP_EXECUTE_HM:
1057 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HM\n"));
1058 rc = VINF_EM_RESCHEDULE_HM;
1059 break;
1060
1061 /*
1062 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1063 */
1064 case EXCP_RC:
1065 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
1066 rc = pVM->rem.s.rc;
1067 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1068 break;
1069
1070 /*
1071 * Figure out the rest when they arrive....
1072 */
1073 default:
1074 AssertMsgFailed(("rc=%d\n", rc));
1075 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
1076 rc = VINF_EM_RESCHEDULE;
1077 break;
1078 }
1079
1080 /*
1081 * Switch back the state.
1082 */
1083 pVM->rem.s.Env.interrupt_request = interrupt_request;
1084 rc2 = REMR3StateBack(pVM, pVCpu);
1085 AssertRC(rc2);
1086 }
1087
1088 Log2(("REMR3EmulateInstruction: returns %Rrc (cs:eip=%04x:%RGv)\n",
1089 rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
1090 return rc;
1091}
1092
1093
1094/**
1095 * Used by REMR3Run to handle the case where CPU_EMULATE_SINGLE_STEP is set.
1096 *
1097 * @returns VBox status code.
1098 *
1099 * @param pVM The VM handle.
1100 * @param pVCpu The Virtual CPU handle.
1101 */
1102static int remR3RunLoggingStep(PVM pVM, PVMCPU pVCpu)
1103{
1104 int rc;
1105
1106 Assert(pVM->rem.s.fInREM);
1107#ifdef REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
1108 cpu_single_step(&pVM->rem.s.Env, 1);
1109#else
1110 Assert(!pVM->rem.s.Env.singlestep_enabled);
1111#endif
1112
1113 /*
1114 * Now we set the execute single instruction flag and enter the cpu_exec loop.
1115 */
1116 for (;;)
1117 {
1118 char szBuf[256];
1119
1120 /*
1121 * Log the current registers state and instruction.
1122 */
1123 remR3StateUpdate(pVM, pVCpu);
1124 DBGFR3Info(pVM->pUVM, "cpumguest", NULL, NULL);
1125 szBuf[0] = '\0';
1126 rc = DBGFR3DisasInstrEx(pVM->pUVM,
1127 pVCpu->idCpu,
1128 0, /* Sel */
1129 0, /* GCPtr */
1130 DBGF_DISAS_FLAGS_CURRENT_GUEST
1131 | DBGF_DISAS_FLAGS_DEFAULT_MODE,
1132 szBuf,
1133 sizeof(szBuf),
1134 NULL);
1135 if (RT_FAILURE(rc))
1136 RTStrPrintf(szBuf, sizeof(szBuf), "DBGFR3DisasInstrEx failed with rc=%Rrc\n", rc);
1137 RTLogPrintf("CPU%d: %s\n", pVCpu->idCpu, szBuf);
1138
1139 /*
1140 * Execute the instruction.
1141 */
1142 TMNotifyStartOfExecution(pVCpu);
1143
1144 if ( pVM->rem.s.Env.exception_index < 0
1145 || pVM->rem.s.Env.exception_index > 256)
1146 pVM->rem.s.Env.exception_index = -1; /** @todo We need to do similar stuff elsewhere, I think. */
1147
1148#ifdef REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
1149 pVM->rem.s.Env.interrupt_request = 0;
1150#else
1151 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
1152#endif
1153 if ( VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
1154 || pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
1155 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
1156 RTLogPrintf("remR3RunLoggingStep: interrupt_request=%#x halted=%d exception_index=%#x\n", rc,
1157 pVM->rem.s.Env.interrupt_request,
1158 pVM->rem.s.Env.halted,
1159 pVM->rem.s.Env.exception_index
1160 );
1161
1162 rc = cpu_exec(&pVM->rem.s.Env);
1163
1164 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> %#x interrupt_request=%#x halted=%d exception_index=%#x\n", rc,
1165 pVM->rem.s.Env.interrupt_request,
1166 pVM->rem.s.Env.halted,
1167 pVM->rem.s.Env.exception_index
1168 );
1169
1170 TMNotifyEndOfExecution(pVCpu);
1171
1172 switch (rc)
1173 {
1174#ifndef REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
1175 /*
1176 * The normal exit.
1177 */
1178 case EXCP_SINGLE_INSTR:
1179 if ( !VM_FF_ISPENDING(pVM, VM_FF_ALL_REM_MASK)
1180 && !VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_ALL_REM_MASK))
1181 continue;
1182 RTLogPrintf("remR3RunLoggingStep: rc=VINF_SUCCESS w/ FFs (%#x/%#x)\n",
1183 pVM->fGlobalForcedActions, pVCpu->fLocalForcedActions);
1184 rc = VINF_SUCCESS;
1185 break;
1186
1187#else
1188 /*
1189 * The normal exit, check for breakpoints at PC just to be sure.
1190 */
1191#endif
1192 case EXCP_DEBUG:
1193 if (pVM->rem.s.Env.watchpoint_hit)
1194 {
1195 /** @todo deal with watchpoints */
1196 Log2(("remR3RunLoggingStep: cpu_exec -> EXCP_DEBUG rc=%Rrc !watchpoint_hit!\n", rc));
1197 rc = VINF_EM_DBG_BREAKPOINT;
1198 }
1199 else
1200 {
1201 CPUBreakpoint *pBP;
1202 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1203 QTAILQ_FOREACH(pBP, &pVM->rem.s.Env.breakpoints, entry)
1204 if (pBP->pc == GCPtrPC)
1205 break;
1206 rc = pBP ? VINF_EM_DBG_BREAKPOINT : VINF_EM_DBG_STEPPED;
1207 Log2(("remR3RunLoggingStep: cpu_exec -> EXCP_DEBUG rc=%Rrc pBP=%p GCPtrPC=%RGv\n", rc, pBP, GCPtrPC));
1208 }
1209#ifdef REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
1210 if (rc == VINF_EM_DBG_STEPPED)
1211 {
1212 if ( !VM_FF_ISPENDING(pVM, VM_FF_ALL_REM_MASK)
1213 && !VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_ALL_REM_MASK))
1214 continue;
1215
1216 RTLogPrintf("remR3RunLoggingStep: rc=VINF_SUCCESS w/ FFs (%#x/%#x)\n",
1217 pVM->fGlobalForcedActions, pVCpu->fLocalForcedActions);
1218 rc = VINF_SUCCESS;
1219 }
1220#endif
1221 break;
1222
1223 /*
1224 * If we take a trap or start servicing a pending interrupt, we might end up here.
1225 * (Timer thread or some other thread wishing EMT's attention.)
1226 */
1227 case EXCP_INTERRUPT:
1228 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> EXCP_INTERRUPT rc=VINF_SUCCESS\n");
1229 rc = VINF_SUCCESS;
1230 break;
1231
1232 /*
1233 * hlt instruction.
1234 */
1235 case EXCP_HLT:
1236 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> EXCP_HLT rc=VINF_EM_HALT\n");
1237 rc = VINF_EM_HALT;
1238 break;
1239
1240 /*
1241 * The VM has halted.
1242 */
1243 case EXCP_HALTED:
1244 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> EXCP_HALTED rc=VINF_EM_HALT\n");
1245 rc = VINF_EM_HALT;
1246 break;
1247
1248 /*
1249 * Switch to RAW-mode.
1250 */
1251 case EXCP_EXECUTE_RAW:
1252 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> EXCP_EXECUTE_RAW rc=VINF_EM_RESCHEDULE_RAW\n");
1253 rc = VINF_EM_RESCHEDULE_RAW;
1254 break;
1255
1256 /*
1257 * Switch to hardware accelerated RAW-mode.
1258 */
1259 case EXCP_EXECUTE_HM:
1260 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> EXCP_EXECUTE_HM rc=VINF_EM_RESCHEDULE_HM\n");
1261 rc = VINF_EM_RESCHEDULE_HM;
1262 break;
1263
1264 /*
1265 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1266 */
1267 case EXCP_RC:
1268 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> EXCP_RC rc=%Rrc\n", pVM->rem.s.rc);
1269 rc = pVM->rem.s.rc;
1270 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1271 break;
1272
1273 /*
1274 * Figure out the rest when they arrive....
1275 */
1276 default:
1277 AssertMsgFailed(("rc=%d\n", rc));
1278 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> %d rc=VINF_EM_RESCHEDULE\n", rc);
1279 rc = VINF_EM_RESCHEDULE;
1280 break;
1281 }
1282 break;
1283 }
1284
1285#ifdef REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
1286// cpu_single_step(&pVM->rem.s.Env, 0);
1287#else
1288 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_SINGLE_INSTR | CPU_INTERRUPT_SINGLE_INSTR_IN_FLIGHT);
1289#endif
1290 return rc;
1291}
1292
1293
1294/**
1295 * Runs code in recompiled mode.
1296 *
1297 * Before calling this function the REM state needs to be in sync with
1298 * the VM. Call REMR3State() to perform the sync. It's only necessary
1299 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
1300 * and after calling REMR3StateBack().
1301 *
1302 * @returns VBox status code.
1303 *
1304 * @param pVM VM Handle.
1305 * @param pVCpu VMCPU Handle.
1306 */
1307REMR3DECL(int) REMR3Run(PVM pVM, PVMCPU pVCpu)
1308{
1309 int rc;
1310
1311 if (RT_UNLIKELY(pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP))
1312 return remR3RunLoggingStep(pVM, pVCpu);
1313
1314 Assert(pVM->rem.s.fInREM);
1315 Log2(("REMR3Run: (cs:eip=%04x:%RGv)\n", pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
1316
1317 TMNotifyStartOfExecution(pVCpu);
1318 rc = cpu_exec(&pVM->rem.s.Env);
1319 TMNotifyEndOfExecution(pVCpu);
1320 switch (rc)
1321 {
1322 /*
1323 * This happens when the execution was interrupted
1324 * by an external event, like pending timers.
1325 */
1326 case EXCP_INTERRUPT:
1327 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
1328 rc = VINF_SUCCESS;
1329 break;
1330
1331 /*
1332 * hlt instruction.
1333 */
1334 case EXCP_HLT:
1335 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
1336 rc = VINF_EM_HALT;
1337 break;
1338
1339 /*
1340 * The VM has halted.
1341 */
1342 case EXCP_HALTED:
1343 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1344 rc = VINF_EM_HALT;
1345 break;
1346
1347 /*
1348 * Breakpoint/single step.
1349 */
1350 case EXCP_DEBUG:
1351 if (pVM->rem.s.Env.watchpoint_hit)
1352 {
1353 /** @todo deal with watchpoints */
1354 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Rrc !watchpoint_hit!\n", rc));
1355 rc = VINF_EM_DBG_BREAKPOINT;
1356 }
1357 else
1358 {
1359 CPUBreakpoint *pBP;
1360 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1361 QTAILQ_FOREACH(pBP, &pVM->rem.s.Env.breakpoints, entry)
1362 if (pBP->pc == GCPtrPC)
1363 break;
1364 rc = pBP ? VINF_EM_DBG_BREAKPOINT : VINF_EM_DBG_STEPPED;
1365 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Rrc pBP=%p GCPtrPC=%RGv\n", rc, pBP, GCPtrPC));
1366 }
1367 break;
1368
1369 /*
1370 * Switch to RAW-mode.
1371 */
1372 case EXCP_EXECUTE_RAW:
1373 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW pc=%RGv\n", pVM->rem.s.Env.eip));
1374 rc = VINF_EM_RESCHEDULE_RAW;
1375 break;
1376
1377 /*
1378 * Switch to hardware accelerated RAW-mode.
1379 */
1380 case EXCP_EXECUTE_HM:
1381 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HM\n"));
1382 rc = VINF_EM_RESCHEDULE_HM;
1383 break;
1384
1385 /*
1386 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1387 */
1388 case EXCP_RC:
1389 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Rrc\n", pVM->rem.s.rc));
1390 rc = pVM->rem.s.rc;
1391 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1392 break;
1393
1394 /*
1395 * Figure out the rest when they arrive....
1396 */
1397 default:
1398 AssertMsgFailed(("rc=%d\n", rc));
1399 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1400 rc = VINF_SUCCESS;
1401 break;
1402 }
1403
1404 Log2(("REMR3Run: returns %Rrc (cs:eip=%04x:%RGv)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
1405 return rc;
1406}
1407
1408
1409/**
1410 * Check if the cpu state is suitable for Raw execution.
1411 *
1412 * @returns true if RAW/HWACC mode is ok, false if we should stay in REM.
1413 *
1414 * @param env The CPU env struct.
1415 * @param eip The EIP to check this for (might differ from env->eip).
1416 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1417 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1418 *
1419 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1420 */
1421bool remR3CanExecuteRaw(CPUX86State *env, RTGCPTR eip, unsigned fFlags, int *piException)
1422{
1423 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1424 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1425 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1426 uint32_t u32CR0;
1427
1428#ifdef IEM_VERIFICATION_MODE
1429 return false;
1430#endif
1431
1432 /* Update counter. */
1433 env->pVM->rem.s.cCanExecuteRaw++;
1434
1435 /* Never when single stepping+logging guest code. */
1436 if (env->state & CPU_EMULATE_SINGLE_STEP)
1437 return false;
1438
1439 if (HMIsEnabled(env->pVM))
1440 {
1441 CPUMCTX Ctx;
1442
1443 env->state |= CPU_RAW_HM;
1444
1445 /*
1446 * The simple check first...
1447 */
1448 if (!EMIsHwVirtExecutionEnabled(env->pVM))
1449 return false;
1450
1451 /*
1452 * Create partial context for HMR3CanExecuteGuest
1453 */
1454 Ctx.cr0 = env->cr[0];
1455 Ctx.cr3 = env->cr[3];
1456 Ctx.cr4 = env->cr[4];
1457
1458 Ctx.tr.Sel = env->tr.selector;
1459 Ctx.tr.ValidSel = env->tr.selector;
1460 Ctx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
1461 Ctx.tr.u64Base = env->tr.base;
1462 Ctx.tr.u32Limit = env->tr.limit;
1463 Ctx.tr.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1464
1465 Ctx.ldtr.Sel = env->ldt.selector;
1466 Ctx.ldtr.ValidSel = env->ldt.selector;
1467 Ctx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
1468 Ctx.ldtr.u64Base = env->ldt.base;
1469 Ctx.ldtr.u32Limit = env->ldt.limit;
1470 Ctx.ldtr.Attr.u = (env->ldt.flags >> 8) & 0xF0FF;
1471
1472 Ctx.idtr.cbIdt = env->idt.limit;
1473 Ctx.idtr.pIdt = env->idt.base;
1474
1475 Ctx.gdtr.cbGdt = env->gdt.limit;
1476 Ctx.gdtr.pGdt = env->gdt.base;
1477
1478 Ctx.rsp = env->regs[R_ESP];
1479 Ctx.rip = env->eip;
1480
1481 Ctx.eflags.u32 = env->eflags;
1482
1483 Ctx.cs.Sel = env->segs[R_CS].selector;
1484 Ctx.cs.ValidSel = env->segs[R_CS].selector;
1485 Ctx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1486 Ctx.cs.u64Base = env->segs[R_CS].base;
1487 Ctx.cs.u32Limit = env->segs[R_CS].limit;
1488 Ctx.cs.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1489
1490 Ctx.ds.Sel = env->segs[R_DS].selector;
1491 Ctx.ds.ValidSel = env->segs[R_DS].selector;
1492 Ctx.ds.fFlags = CPUMSELREG_FLAGS_VALID;
1493 Ctx.ds.u64Base = env->segs[R_DS].base;
1494 Ctx.ds.u32Limit = env->segs[R_DS].limit;
1495 Ctx.ds.Attr.u = (env->segs[R_DS].flags >> 8) & 0xF0FF;
1496
1497 Ctx.es.Sel = env->segs[R_ES].selector;
1498 Ctx.es.ValidSel = env->segs[R_ES].selector;
1499 Ctx.es.fFlags = CPUMSELREG_FLAGS_VALID;
1500 Ctx.es.u64Base = env->segs[R_ES].base;
1501 Ctx.es.u32Limit = env->segs[R_ES].limit;
1502 Ctx.es.Attr.u = (env->segs[R_ES].flags >> 8) & 0xF0FF;
1503
1504 Ctx.fs.Sel = env->segs[R_FS].selector;
1505 Ctx.fs.ValidSel = env->segs[R_FS].selector;
1506 Ctx.fs.fFlags = CPUMSELREG_FLAGS_VALID;
1507 Ctx.fs.u64Base = env->segs[R_FS].base;
1508 Ctx.fs.u32Limit = env->segs[R_FS].limit;
1509 Ctx.fs.Attr.u = (env->segs[R_FS].flags >> 8) & 0xF0FF;
1510
1511 Ctx.gs.Sel = env->segs[R_GS].selector;
1512 Ctx.gs.ValidSel = env->segs[R_GS].selector;
1513 Ctx.gs.fFlags = CPUMSELREG_FLAGS_VALID;
1514 Ctx.gs.u64Base = env->segs[R_GS].base;
1515 Ctx.gs.u32Limit = env->segs[R_GS].limit;
1516 Ctx.gs.Attr.u = (env->segs[R_GS].flags >> 8) & 0xF0FF;
1517
1518 Ctx.ss.Sel = env->segs[R_SS].selector;
1519 Ctx.ss.ValidSel = env->segs[R_SS].selector;
1520 Ctx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
1521 Ctx.ss.u64Base = env->segs[R_SS].base;
1522 Ctx.ss.u32Limit = env->segs[R_SS].limit;
1523 Ctx.ss.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1524
1525 Ctx.msrEFER = env->efer;
1526
1527 /* Hardware accelerated raw-mode:
1528 *
1529 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1530 */
1531 if (HMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1532 {
1533 *piException = EXCP_EXECUTE_HM;
1534 return true;
1535 }
1536 return false;
1537 }
1538
1539 /*
1540 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1541 * or 32 bits protected mode ring 0 code
1542 *
1543 * The tests are ordered by the likelihood of being true during normal execution.
1544 */
1545 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1546 {
1547 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1548 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1549 return false;
1550 }
1551
1552#ifndef VBOX_RAW_V86
1553 if (fFlags & VM_MASK) {
1554 STAM_COUNTER_INC(&gStatRefuseVM86);
1555 Log2(("raw mode refused: VM_MASK\n"));
1556 return false;
1557 }
1558#endif
1559
1560 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1561 {
1562#ifndef DEBUG_bird
1563 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1564#endif
1565 return false;
1566 }
1567
1568 if (env->singlestep_enabled)
1569 {
1570 //Log2(("raw mode refused: Single step\n"));
1571 return false;
1572 }
1573
1574 if (!QTAILQ_EMPTY(&env->breakpoints))
1575 {
1576 //Log2(("raw mode refused: Breakpoints\n"));
1577 return false;
1578 }
1579
1580 if (!QTAILQ_EMPTY(&env->watchpoints))
1581 {
1582 //Log2(("raw mode refused: Watchpoints\n"));
1583 return false;
1584 }
1585
1586 u32CR0 = env->cr[0];
1587 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1588 {
1589 STAM_COUNTER_INC(&gStatRefusePaging);
1590 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1591 return false;
1592 }
1593
1594 if (env->cr[4] & CR4_PAE_MASK)
1595 {
1596 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1597 {
1598 STAM_COUNTER_INC(&gStatRefusePAE);
1599 return false;
1600 }
1601 }
1602
1603 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1604 {
1605 if (!EMIsRawRing3Enabled(env->pVM))
1606 return false;
1607
1608 if (!(env->eflags & IF_MASK))
1609 {
1610 STAM_COUNTER_INC(&gStatRefuseIF0);
1611 Log2(("raw mode refused: IF (RawR3)\n"));
1612 return false;
1613 }
1614
1615 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1616 {
1617 STAM_COUNTER_INC(&gStatRefuseWP0);
1618 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1619 return false;
1620 }
1621 }
1622 else
1623 {
1624 if (!EMIsRawRing0Enabled(env->pVM))
1625 return false;
1626
1627 // Let's start with pure 32 bits ring 0 code first
1628 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1629 {
1630 STAM_COUNTER_INC(&gStatRefuseCode16);
1631 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1632 return false;
1633 }
1634
1635 if (EMIsRawRing1Enabled(env->pVM))
1636 {
1637 /* Only ring 0 and 1 supervisor code. */
1638 if (((fFlags >> HF_CPL_SHIFT) & 3) == 2) /* ring 1 code is moved into ring 2, so we can't support ring-2 in that case. */
1639 {
1640 Log2(("raw r0 mode refused: CPL %d\n", (fFlags >> HF_CPL_SHIFT) & 3));
1641 return false;
1642 }
1643 }
1644 /* Only R0. */
1645 else if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1646 {
1647 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1648 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1649 return false;
1650 }
1651
1652 if (!(u32CR0 & CR0_WP_MASK))
1653 {
1654 STAM_COUNTER_INC(&gStatRefuseWP0);
1655 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1656 return false;
1657 }
1658
1659#ifdef VBOX_WITH_RAW_MODE
1660 if (PATMIsPatchGCAddr(env->pVM, eip))
1661 {
1662 Log2(("raw r0 mode forced: patch code\n"));
1663 *piException = EXCP_EXECUTE_RAW;
1664 return true;
1665 }
1666#endif
1667
1668#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1669 if (!(env->eflags & IF_MASK))
1670 {
1671 STAM_COUNTER_INC(&gStatRefuseIF0);
1672 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1673 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1674 return false;
1675 }
1676#endif
1677
1678#ifndef VBOX_WITH_RAW_RING1
1679 if (((env->eflags >> IOPL_SHIFT) & 3) != 0)
1680 {
1681 Log2(("raw r0 mode refused: IOPL %d\n", ((env->eflags >> IOPL_SHIFT) & 3)));
1682 return false;
1683 }
1684#endif
1685 env->state |= CPU_RAW_RING0;
1686 }
1687
1688 /*
1689 * Don't reschedule the first time we're called, because there might be
1690 * special reasons why we're here that is not covered by the above checks.
1691 */
1692 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1693 {
1694 Log2(("raw mode refused: first scheduling\n"));
1695 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1696 return false;
1697 }
1698
1699 /*
1700 * Stale hidden selectors means raw-mode is unsafe (being very careful).
1701 */
1702 if (env->segs[R_CS].fVBoxFlags & CPUMSELREG_FLAGS_STALE)
1703 {
1704 Log2(("raw mode refused: stale CS (%#x)\n", env->segs[R_CS].selector));
1705 STAM_COUNTER_INC(&gaStatRefuseStale[R_CS]);
1706 return false;
1707 }
1708 if (env->segs[R_SS].fVBoxFlags & CPUMSELREG_FLAGS_STALE)
1709 {
1710 Log2(("raw mode refused: stale SS (%#x)\n", env->segs[R_SS].selector));
1711 STAM_COUNTER_INC(&gaStatRefuseStale[R_SS]);
1712 return false;
1713 }
1714 if (env->segs[R_DS].fVBoxFlags & CPUMSELREG_FLAGS_STALE)
1715 {
1716 Log2(("raw mode refused: stale DS (%#x)\n", env->segs[R_DS].selector));
1717 STAM_COUNTER_INC(&gaStatRefuseStale[R_DS]);
1718 return false;
1719 }
1720 if (env->segs[R_ES].fVBoxFlags & CPUMSELREG_FLAGS_STALE)
1721 {
1722 Log2(("raw mode refused: stale ES (%#x)\n", env->segs[R_ES].selector));
1723 STAM_COUNTER_INC(&gaStatRefuseStale[R_ES]);
1724 return false;
1725 }
1726 if (env->segs[R_FS].fVBoxFlags & CPUMSELREG_FLAGS_STALE)
1727 {
1728 Log2(("raw mode refused: stale FS (%#x)\n", env->segs[R_FS].selector));
1729 STAM_COUNTER_INC(&gaStatRefuseStale[R_FS]);
1730 return false;
1731 }
1732 if (env->segs[R_GS].fVBoxFlags & CPUMSELREG_FLAGS_STALE)
1733 {
1734 Log2(("raw mode refused: stale GS (%#x)\n", env->segs[R_GS].selector));
1735 STAM_COUNTER_INC(&gaStatRefuseStale[R_GS]);
1736 return false;
1737 }
1738
1739/* Assert(env->pVCpu && PGMPhysIsA20Enabled(env->pVCpu));*/
1740 *piException = EXCP_EXECUTE_RAW;
1741 return true;
1742}
1743
1744
1745#ifdef VBOX_WITH_RAW_MODE
1746/**
1747 * Fetches a code byte.
1748 *
1749 * @returns Success indicator (bool) for ease of use.
1750 * @param env The CPU environment structure.
1751 * @param GCPtrInstr Where to fetch code.
1752 * @param pu8Byte Where to store the byte on success
1753 */
1754bool remR3GetOpcode(CPUX86State *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1755{
1756 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1757 if (RT_SUCCESS(rc))
1758 return true;
1759 return false;
1760}
1761#endif /* VBOX_WITH_RAW_MODE */
1762
1763
1764/**
1765 * Flush (or invalidate if you like) page table/dir entry.
1766 *
1767 * (invlpg instruction; tlb_flush_page)
1768 *
1769 * @param env Pointer to cpu environment.
1770 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1771 */
1772void remR3FlushPage(CPUX86State *env, RTGCPTR GCPtr)
1773{
1774 PVM pVM = env->pVM;
1775 PCPUMCTX pCtx;
1776 int rc;
1777
1778 Assert(EMRemIsLockOwner(env->pVM));
1779
1780 /*
1781 * When we're replaying invlpg instructions or restoring a saved
1782 * state we disable this path.
1783 */
1784 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.cIgnoreAll)
1785 return;
1786 LogFlow(("remR3FlushPage: GCPtr=%RGv\n", GCPtr));
1787 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1788
1789 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1790
1791 /*
1792 * Update the control registers before calling PGMFlushPage.
1793 */
1794 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1795 Assert(pCtx);
1796 pCtx->cr0 = env->cr[0];
1797 pCtx->cr3 = env->cr[3];
1798#ifdef VBOX_WITH_RAW_MODE
1799 if ((env->cr[4] ^ pCtx->cr4) & X86_CR4_VME)
1800 VMCPU_FF_SET(env->pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1801#endif
1802 pCtx->cr4 = env->cr[4];
1803
1804 /*
1805 * Let PGM do the rest.
1806 */
1807 Assert(env->pVCpu);
1808 rc = PGMInvalidatePage(env->pVCpu, GCPtr);
1809 if (RT_FAILURE(rc))
1810 {
1811 AssertMsgFailed(("remR3FlushPage %RGv failed with %d!!\n", GCPtr, rc));
1812 VMCPU_FF_SET(env->pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1813 }
1814 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1815}
1816
1817
1818#ifndef REM_PHYS_ADDR_IN_TLB
1819/** Wrapper for PGMR3PhysTlbGCPhys2Ptr. */
1820void *remR3TlbGCPhys2Ptr(CPUX86State *env1, target_ulong physAddr, int fWritable)
1821{
1822 void *pv;
1823 int rc;
1824
1825
1826 /* Address must be aligned enough to fiddle with lower bits */
1827 Assert((physAddr & 0x3) == 0);
1828 /*AssertMsg((env1->a20_mask & physAddr) == physAddr, ("%llx\n", (uint64_t)physAddr));*/
1829
1830 STAM_PROFILE_START(&gStatGCPhys2HCVirt, a);
1831 rc = PGMR3PhysTlbGCPhys2Ptr(env1->pVM, physAddr, true /*fWritable*/, &pv);
1832 STAM_PROFILE_STOP(&gStatGCPhys2HCVirt, a);
1833 Assert( rc == VINF_SUCCESS
1834 || rc == VINF_PGM_PHYS_TLB_CATCH_WRITE
1835 || rc == VERR_PGM_PHYS_TLB_CATCH_ALL
1836 || rc == VERR_PGM_PHYS_TLB_UNASSIGNED);
1837 if (RT_FAILURE(rc))
1838 return (void *)1;
1839 if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE)
1840 return (void *)((uintptr_t)pv | 2);
1841 return pv;
1842}
1843#endif /* REM_PHYS_ADDR_IN_TLB */
1844
1845
1846/**
1847 * Called from tlb_protect_code in order to write monitor a code page.
1848 *
1849 * @param env Pointer to the CPU environment.
1850 * @param GCPtr Code page to monitor
1851 */
1852void remR3ProtectCode(CPUX86State *env, RTGCPTR GCPtr)
1853{
1854#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1855 Assert(env->pVM->rem.s.fInREM);
1856 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1857 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1858 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1859 && !(env->eflags & VM_MASK) /* no V86 mode */
1860 && !HMIsEnabled(env->pVM))
1861 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1862#endif
1863}
1864
1865
1866/**
1867 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1868 *
1869 * @param env Pointer to the CPU environment.
1870 * @param GCPtr Code page to monitor
1871 */
1872void remR3UnprotectCode(CPUX86State *env, RTGCPTR GCPtr)
1873{
1874 Assert(env->pVM->rem.s.fInREM);
1875#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1876 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1877 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1878 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1879 && !(env->eflags & VM_MASK) /* no V86 mode */
1880 && !HMIsEnabled(env->pVM))
1881 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1882#endif
1883}
1884
1885
1886/**
1887 * Called when the CPU is initialized, any of the CRx registers are changed or
1888 * when the A20 line is modified.
1889 *
1890 * @param env Pointer to the CPU environment.
1891 * @param fGlobal Set if the flush is global.
1892 */
1893void remR3FlushTLB(CPUX86State *env, bool fGlobal)
1894{
1895 PVM pVM = env->pVM;
1896 PCPUMCTX pCtx;
1897 Assert(EMRemIsLockOwner(pVM));
1898
1899 /*
1900 * When we're replaying invlpg instructions or restoring a saved
1901 * state we disable this path.
1902 */
1903 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.cIgnoreAll)
1904 return;
1905 Assert(pVM->rem.s.fInREM);
1906
1907 /*
1908 * The caller doesn't check cr4, so we have to do that for ourselves.
1909 */
1910 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1911 fGlobal = true;
1912 Log(("remR3FlushTLB: CR0=%08RX64 CR3=%08RX64 CR4=%08RX64 %s\n", (uint64_t)env->cr[0], (uint64_t)env->cr[3], (uint64_t)env->cr[4], fGlobal ? " global" : ""));
1913
1914 /*
1915 * Update the control registers before calling PGMR3FlushTLB.
1916 */
1917 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1918 Assert(pCtx);
1919 pCtx->cr0 = env->cr[0];
1920 pCtx->cr3 = env->cr[3];
1921#ifdef VBOX_WITH_RAW_MODE
1922 if ((env->cr[4] ^ pCtx->cr4) & X86_CR4_VME)
1923 VMCPU_FF_SET(env->pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1924#endif
1925 pCtx->cr4 = env->cr[4];
1926
1927 /*
1928 * Let PGM do the rest.
1929 */
1930 Assert(env->pVCpu);
1931 PGMFlushTLB(env->pVCpu, env->cr[3], fGlobal);
1932}
1933
1934
1935/**
1936 * Called when any of the cr0, cr4 or efer registers is updated.
1937 *
1938 * @param env Pointer to the CPU environment.
1939 */
1940void remR3ChangeCpuMode(CPUX86State *env)
1941{
1942 PVM pVM = env->pVM;
1943 uint64_t efer;
1944 PCPUMCTX pCtx;
1945 int rc;
1946
1947 /*
1948 * When we're replaying loads or restoring a saved
1949 * state this path is disabled.
1950 */
1951 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.cIgnoreAll)
1952 return;
1953 Assert(pVM->rem.s.fInREM);
1954
1955 /*
1956 * Update the control registers before calling PGMChangeMode()
1957 * as it may need to map whatever cr3 is pointing to.
1958 */
1959 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1960 Assert(pCtx);
1961 pCtx->cr0 = env->cr[0];
1962 pCtx->cr3 = env->cr[3];
1963#ifdef VBOX_WITH_RAW_MODE
1964 if ((env->cr[4] ^ pCtx->cr4) & X86_CR4_VME)
1965 VMCPU_FF_SET(env->pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1966#endif
1967 pCtx->cr4 = env->cr[4];
1968#ifdef TARGET_X86_64
1969 efer = env->efer;
1970 pCtx->msrEFER = efer;
1971#else
1972 efer = 0;
1973#endif
1974 Assert(env->pVCpu);
1975 rc = PGMChangeMode(env->pVCpu, env->cr[0], env->cr[4], efer);
1976 if (rc != VINF_SUCCESS)
1977 {
1978 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
1979 {
1980 Log(("PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc -> remR3RaiseRC\n", env->cr[0], env->cr[4], efer, rc));
1981 remR3RaiseRC(env->pVM, rc);
1982 }
1983 else
1984 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc\n", env->cr[0], env->cr[4], efer, rc);
1985 }
1986}
1987
1988
1989/**
1990 * Called from compiled code to run dma.
1991 *
1992 * @param env Pointer to the CPU environment.
1993 */
1994void remR3DmaRun(CPUX86State *env)
1995{
1996 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1997 PDMR3DmaRun(env->pVM);
1998 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1999}
2000
2001
2002/**
2003 * Called from compiled code to schedule pending timers in VMM
2004 *
2005 * @param env Pointer to the CPU environment.
2006 */
2007void remR3TimersRun(CPUX86State *env)
2008{
2009 LogFlow(("remR3TimersRun:\n"));
2010 LogIt(LOG_INSTANCE, RTLOGGRPFLAGS_LEVEL_5, LOG_GROUP_TM, ("remR3TimersRun\n"));
2011 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
2012 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
2013 TMR3TimerQueuesDo(env->pVM);
2014 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
2015 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
2016}
2017
2018
2019/**
2020 * Record trap occurrence
2021 *
2022 * @returns VBox status code
2023 * @param env Pointer to the CPU environment.
2024 * @param uTrap Trap nr
2025 * @param uErrorCode Error code
2026 * @param pvNextEIP Next EIP
2027 */
2028int remR3NotifyTrap(CPUX86State *env, uint32_t uTrap, uint32_t uErrorCode, RTGCPTR pvNextEIP)
2029{
2030 PVM pVM = env->pVM;
2031#ifdef VBOX_WITH_STATISTICS
2032 static STAMCOUNTER s_aStatTrap[255];
2033 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
2034#endif
2035
2036#ifdef VBOX_WITH_STATISTICS
2037 if (uTrap < 255)
2038 {
2039 if (!s_aRegisters[uTrap])
2040 {
2041 char szStatName[64];
2042 s_aRegisters[uTrap] = true;
2043 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
2044 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
2045 }
2046 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
2047 }
2048#endif
2049 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
2050 if( uTrap < 0x20
2051 && (env->cr[0] & X86_CR0_PE)
2052 && !(env->eflags & X86_EFL_VM))
2053 {
2054#ifdef DEBUG
2055 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
2056#endif
2057 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
2058 {
2059 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
2060 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
2061 return VERR_REM_TOO_MANY_TRAPS;
2062 }
2063 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
2064 pVM->rem.s.cPendingExceptions = 1;
2065 pVM->rem.s.uPendingException = uTrap;
2066 pVM->rem.s.uPendingExcptEIP = env->eip;
2067 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
2068 }
2069 else
2070 {
2071 pVM->rem.s.cPendingExceptions = 0;
2072 pVM->rem.s.uPendingException = uTrap;
2073 pVM->rem.s.uPendingExcptEIP = env->eip;
2074 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
2075 }
2076 return VINF_SUCCESS;
2077}
2078
2079
2080/*
2081 * Clear current active trap
2082 *
2083 * @param pVM VM Handle.
2084 */
2085void remR3TrapClear(PVM pVM)
2086{
2087 pVM->rem.s.cPendingExceptions = 0;
2088 pVM->rem.s.uPendingException = 0;
2089 pVM->rem.s.uPendingExcptEIP = 0;
2090 pVM->rem.s.uPendingExcptCR2 = 0;
2091}
2092
2093
2094/*
2095 * Record previous call instruction addresses
2096 *
2097 * @param env Pointer to the CPU environment.
2098 */
2099void remR3RecordCall(CPUX86State *env)
2100{
2101#ifdef VBOX_WITH_RAW_MODE
2102 CSAMR3RecordCallAddress(env->pVM, env->eip);
2103#endif
2104}
2105
2106
2107/**
2108 * Syncs the internal REM state with the VM.
2109 *
2110 * This must be called before REMR3Run() is invoked whenever when the REM
2111 * state is not up to date. Calling it several times in a row is not
2112 * permitted.
2113 *
2114 * @returns VBox status code.
2115 *
2116 * @param pVM VM Handle.
2117 * @param pVCpu VMCPU Handle.
2118 *
2119 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
2120 * no do this since the majority of the callers don't want any unnecessary of events
2121 * pending that would immediately interrupt execution.
2122 */
2123REMR3DECL(int) REMR3State(PVM pVM, PVMCPU pVCpu)
2124{
2125 register const CPUMCTX *pCtx;
2126 register unsigned fFlags;
2127 unsigned i;
2128 TRPMEVENT enmType;
2129 uint8_t u8TrapNo;
2130 uint32_t uCpl;
2131 int rc;
2132
2133 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
2134 Log2(("REMR3State:\n"));
2135
2136 pVM->rem.s.Env.pVCpu = pVCpu;
2137 pCtx = pVM->rem.s.pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2138
2139 Assert(!pVM->rem.s.fInREM);
2140 pVM->rem.s.fInStateSync = true;
2141
2142 /*
2143 * If we have to flush TBs, do that immediately.
2144 */
2145 if (pVM->rem.s.fFlushTBs)
2146 {
2147 STAM_COUNTER_INC(&gStatFlushTBs);
2148 tb_flush(&pVM->rem.s.Env);
2149 pVM->rem.s.fFlushTBs = false;
2150 }
2151
2152 /*
2153 * Copy the registers which require no special handling.
2154 */
2155#ifdef TARGET_X86_64
2156 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2157 Assert(R_EAX == 0);
2158 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
2159 Assert(R_ECX == 1);
2160 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
2161 Assert(R_EDX == 2);
2162 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
2163 Assert(R_EBX == 3);
2164 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
2165 Assert(R_ESP == 4);
2166 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
2167 Assert(R_EBP == 5);
2168 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
2169 Assert(R_ESI == 6);
2170 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
2171 Assert(R_EDI == 7);
2172 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
2173 pVM->rem.s.Env.regs[8] = pCtx->r8;
2174 pVM->rem.s.Env.regs[9] = pCtx->r9;
2175 pVM->rem.s.Env.regs[10] = pCtx->r10;
2176 pVM->rem.s.Env.regs[11] = pCtx->r11;
2177 pVM->rem.s.Env.regs[12] = pCtx->r12;
2178 pVM->rem.s.Env.regs[13] = pCtx->r13;
2179 pVM->rem.s.Env.regs[14] = pCtx->r14;
2180 pVM->rem.s.Env.regs[15] = pCtx->r15;
2181
2182 pVM->rem.s.Env.eip = pCtx->rip;
2183
2184 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
2185#else
2186 Assert(R_EAX == 0);
2187 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
2188 Assert(R_ECX == 1);
2189 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
2190 Assert(R_EDX == 2);
2191 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
2192 Assert(R_EBX == 3);
2193 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
2194 Assert(R_ESP == 4);
2195 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
2196 Assert(R_EBP == 5);
2197 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
2198 Assert(R_ESI == 6);
2199 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
2200 Assert(R_EDI == 7);
2201 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
2202 pVM->rem.s.Env.eip = pCtx->eip;
2203
2204 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
2205#endif
2206
2207 pVM->rem.s.Env.cr[2] = pCtx->cr2;
2208
2209 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
2210 for (i=0;i<8;i++)
2211 pVM->rem.s.Env.dr[i] = pCtx->dr[i];
2212
2213#ifdef HF_HALTED_MASK /** @todo remove me when we're up to date again. */
2214 /*
2215 * Clear the halted hidden flag (the interrupt waking up the CPU can
2216 * have been dispatched in raw mode).
2217 */
2218 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
2219#endif
2220
2221 /*
2222 * Replay invlpg? Only if we're not flushing the TLB.
2223 */
2224 fFlags = CPUMR3RemEnter(pVCpu, &uCpl);
2225 LogFlow(("CPUMR3RemEnter %x %x\n", fFlags, uCpl));
2226 if (pVM->rem.s.cInvalidatedPages)
2227 {
2228 if (!(fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH))
2229 {
2230 RTUINT i;
2231
2232 pVM->rem.s.fIgnoreCR3Load = true;
2233 pVM->rem.s.fIgnoreInvlPg = true;
2234 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2235 {
2236 Log2(("REMR3State: invlpg %RGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2237 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2238 }
2239 pVM->rem.s.fIgnoreInvlPg = false;
2240 pVM->rem.s.fIgnoreCR3Load = false;
2241 }
2242 pVM->rem.s.cInvalidatedPages = 0;
2243 }
2244
2245 /* Replay notification changes. */
2246 REMR3ReplayHandlerNotifications(pVM);
2247
2248 /* Update MSRs; before CRx registers! */
2249 pVM->rem.s.Env.efer = pCtx->msrEFER;
2250 pVM->rem.s.Env.star = pCtx->msrSTAR;
2251 pVM->rem.s.Env.pat = pCtx->msrPAT;
2252#ifdef TARGET_X86_64
2253 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
2254 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
2255 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
2256 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
2257
2258 /* Update the internal long mode activate flag according to the new EFER value. */
2259 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
2260 pVM->rem.s.Env.hflags |= HF_LMA_MASK;
2261 else
2262 pVM->rem.s.Env.hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
2263#endif
2264
2265 /* Update the inhibit IRQ mask. */
2266 pVM->rem.s.Env.hflags &= ~HF_INHIBIT_IRQ_MASK;
2267 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2268 {
2269 RTGCPTR InhibitPC = EMGetInhibitInterruptsPC(pVCpu);
2270 if (InhibitPC == pCtx->rip)
2271 pVM->rem.s.Env.hflags |= HF_INHIBIT_IRQ_MASK;
2272 else
2273 {
2274 Log(("Clearing VMCPU_FF_INHIBIT_INTERRUPTS at %RGv - successor %RGv (REM#1)\n", (RTGCPTR)pCtx->rip, InhibitPC));
2275 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2276 }
2277 }
2278
2279 /*
2280 * Sync the A20 gate.
2281 */
2282 bool fA20State = PGMPhysIsA20Enabled(pVCpu);
2283 if (fA20State != RT_BOOL(pVM->rem.s.Env.a20_mask & RT_BIT(20)))
2284 {
2285 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
2286 cpu_x86_set_a20(&pVM->rem.s.Env, fA20State);
2287 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
2288 }
2289
2290 /*
2291 * Registers which are rarely changed and require special handling / order when changed.
2292 */
2293 if (fFlags & ( CPUM_CHANGED_GLOBAL_TLB_FLUSH
2294 | CPUM_CHANGED_CR4
2295 | CPUM_CHANGED_CR0
2296 | CPUM_CHANGED_CR3
2297 | CPUM_CHANGED_GDTR
2298 | CPUM_CHANGED_IDTR
2299 | CPUM_CHANGED_SYSENTER_MSR
2300 | CPUM_CHANGED_LDTR
2301 | CPUM_CHANGED_CPUID
2302 | CPUM_CHANGED_FPU_REM
2303 )
2304 )
2305 {
2306 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
2307 {
2308 pVM->rem.s.fIgnoreCR3Load = true;
2309 tlb_flush(&pVM->rem.s.Env, true);
2310 pVM->rem.s.fIgnoreCR3Load = false;
2311 }
2312
2313 /* CR4 before CR0! */
2314 if (fFlags & CPUM_CHANGED_CR4)
2315 {
2316 pVM->rem.s.fIgnoreCR3Load = true;
2317 pVM->rem.s.fIgnoreCpuMode = true;
2318 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
2319 pVM->rem.s.fIgnoreCpuMode = false;
2320 pVM->rem.s.fIgnoreCR3Load = false;
2321 }
2322
2323 if (fFlags & CPUM_CHANGED_CR0)
2324 {
2325 pVM->rem.s.fIgnoreCR3Load = true;
2326 pVM->rem.s.fIgnoreCpuMode = true;
2327 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
2328 pVM->rem.s.fIgnoreCpuMode = false;
2329 pVM->rem.s.fIgnoreCR3Load = false;
2330 }
2331
2332 if (fFlags & CPUM_CHANGED_CR3)
2333 {
2334 pVM->rem.s.fIgnoreCR3Load = true;
2335 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
2336 pVM->rem.s.fIgnoreCR3Load = false;
2337 }
2338
2339 if (fFlags & CPUM_CHANGED_GDTR)
2340 {
2341 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
2342 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
2343 }
2344
2345 if (fFlags & CPUM_CHANGED_IDTR)
2346 {
2347 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
2348 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
2349 }
2350
2351 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
2352 {
2353 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
2354 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
2355 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
2356 }
2357
2358 if (fFlags & CPUM_CHANGED_LDTR)
2359 {
2360 if (pCtx->ldtr.fFlags & CPUMSELREG_FLAGS_VALID)
2361 {
2362 pVM->rem.s.Env.ldt.selector = pCtx->ldtr.Sel;
2363 pVM->rem.s.Env.ldt.newselector = 0;
2364 pVM->rem.s.Env.ldt.fVBoxFlags = pCtx->ldtr.fFlags;
2365 pVM->rem.s.Env.ldt.base = pCtx->ldtr.u64Base;
2366 pVM->rem.s.Env.ldt.limit = pCtx->ldtr.u32Limit;
2367 pVM->rem.s.Env.ldt.flags = (pCtx->ldtr.Attr.u << 8) & 0xFFFFFF;
2368 }
2369 else
2370 {
2371 AssertFailed(); /* Shouldn't happen, see cpumR3LoadExec. */
2372 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr.Sel);
2373 }
2374 }
2375
2376 if (fFlags & CPUM_CHANGED_CPUID)
2377 {
2378 uint32_t u32Dummy;
2379
2380 /*
2381 * Get the CPUID features.
2382 */
2383 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
2384 CPUMGetGuestCpuId(pVCpu, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
2385 }
2386
2387 /* Sync FPU state after CR4, CPUID and EFER (!). */
2388 if (fFlags & CPUM_CHANGED_FPU_REM)
2389 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
2390 }
2391
2392 /*
2393 * Sync TR unconditionally to make life simpler.
2394 */
2395 pVM->rem.s.Env.tr.selector = pCtx->tr.Sel;
2396 pVM->rem.s.Env.tr.newselector = 0;
2397 pVM->rem.s.Env.tr.fVBoxFlags = pCtx->tr.fFlags;
2398 pVM->rem.s.Env.tr.base = pCtx->tr.u64Base;
2399 pVM->rem.s.Env.tr.limit = pCtx->tr.u32Limit;
2400 pVM->rem.s.Env.tr.flags = (pCtx->tr.Attr.u << 8) & 0xFFFFFF;
2401 /* Note! do_interrupt will fault if the busy flag is still set... */
2402 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
2403
2404 /*
2405 * Update selector registers.
2406 *
2407 * This must be done *after* we've synced gdt, ldt and crX registers
2408 * since we're reading the GDT/LDT om sync_seg. This will happen with
2409 * saved state which takes a quick dip into rawmode for instance.
2410 *
2411 * CPL/Stack; Note first check this one as the CPL might have changed.
2412 * The wrong CPL can cause QEmu to raise an exception in sync_seg!!
2413 */
2414 cpu_x86_set_cpl(&pVM->rem.s.Env, uCpl);
2415 /* Note! QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
2416#define SYNC_IN_SREG(a_pEnv, a_SReg, a_pRemSReg, a_pVBoxSReg) \
2417 do \
2418 { \
2419 if (CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, a_pVBoxSReg)) \
2420 { \
2421 cpu_x86_load_seg_cache(a_pEnv, R_##a_SReg, \
2422 (a_pVBoxSReg)->Sel, \
2423 (a_pVBoxSReg)->u64Base, \
2424 (a_pVBoxSReg)->u32Limit, \
2425 ((a_pVBoxSReg)->Attr.u << 8) & 0xFFFFFF); \
2426 (a_pRemSReg)->fVBoxFlags = (a_pVBoxSReg)->fFlags; \
2427 } \
2428 /* This only-reload-if-changed stuff is the old approach, we should ditch it. */ \
2429 else if ((a_pRemSReg)->selector != (a_pVBoxSReg)->Sel) \
2430 { \
2431 Log2(("REMR3State: " #a_SReg " changed from %04x to %04x!\n", \
2432 (a_pRemSReg)->selector, (a_pVBoxSReg)->Sel)); \
2433 sync_seg(a_pEnv, R_##a_SReg, (a_pVBoxSReg)->Sel); \
2434 if ((a_pRemSReg)->newselector) \
2435 STAM_COUNTER_INC(&gStatSelOutOfSync[R_##a_SReg]); \
2436 } \
2437 else \
2438 (a_pRemSReg)->newselector = 0; \
2439 } while (0)
2440
2441 SYNC_IN_SREG(&pVM->rem.s.Env, CS, &pVM->rem.s.Env.segs[R_CS], &pCtx->cs);
2442 SYNC_IN_SREG(&pVM->rem.s.Env, SS, &pVM->rem.s.Env.segs[R_SS], &pCtx->ss);
2443 SYNC_IN_SREG(&pVM->rem.s.Env, DS, &pVM->rem.s.Env.segs[R_DS], &pCtx->ds);
2444 SYNC_IN_SREG(&pVM->rem.s.Env, ES, &pVM->rem.s.Env.segs[R_ES], &pCtx->es);
2445 SYNC_IN_SREG(&pVM->rem.s.Env, FS, &pVM->rem.s.Env.segs[R_FS], &pCtx->fs);
2446 SYNC_IN_SREG(&pVM->rem.s.Env, GS, &pVM->rem.s.Env.segs[R_GS], &pCtx->gs);
2447 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
2448 * be the same but not the base/limit. */
2449
2450 /*
2451 * Check for traps.
2452 */
2453 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
2454 rc = TRPMQueryTrap(pVCpu, &u8TrapNo, &enmType);
2455 if (RT_SUCCESS(rc))
2456 {
2457#ifdef DEBUG
2458 if (u8TrapNo == 0x80)
2459 {
2460 remR3DumpLnxSyscall(pVCpu);
2461 remR3DumpOBsdSyscall(pVCpu);
2462 }
2463#endif
2464
2465 pVM->rem.s.Env.exception_index = u8TrapNo;
2466 if (enmType != TRPM_SOFTWARE_INT)
2467 {
2468 pVM->rem.s.Env.exception_is_int = 0;
2469 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
2470 }
2471 else
2472 {
2473 /*
2474 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
2475 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
2476 * for int03 and into.
2477 */
2478 pVM->rem.s.Env.exception_is_int = 1;
2479 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 2;
2480 /* int 3 may be generated by one-byte 0xcc */
2481 if (u8TrapNo == 3)
2482 {
2483 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xcc)
2484 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2485 }
2486 /* int 4 may be generated by one-byte 0xce */
2487 else if (u8TrapNo == 4)
2488 {
2489 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xce)
2490 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2491 }
2492 }
2493
2494 /* get error code and cr2 if needed. */
2495 if (enmType == TRPM_TRAP)
2496 {
2497 switch (u8TrapNo)
2498 {
2499 case 0x0e:
2500 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVCpu);
2501 /* fallthru */
2502 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2503 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVCpu);
2504 break;
2505
2506 case 0x11: case 0x08:
2507 default:
2508 pVM->rem.s.Env.error_code = 0;
2509 break;
2510 }
2511 }
2512 else
2513 pVM->rem.s.Env.error_code = 0;
2514
2515 /*
2516 * We can now reset the active trap since the recompiler is gonna have a go at it.
2517 */
2518 rc = TRPMResetTrap(pVCpu);
2519 AssertRC(rc);
2520 Log2(("REMR3State: trap=%02x errcd=%RGv cr2=%RGv nexteip=%RGv%s\n", pVM->rem.s.Env.exception_index, (RTGCPTR)pVM->rem.s.Env.error_code,
2521 (RTGCPTR)pVM->rem.s.Env.cr[2], (RTGCPTR)pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
2522 }
2523
2524 /*
2525 * Clear old interrupt request flags; Check for pending hardware interrupts.
2526 * (See @remark for why we don't check for other FFs.)
2527 */
2528 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2529 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2530 || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
2531 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2532
2533 /*
2534 * We're now in REM mode.
2535 */
2536 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_REM);
2537 pVM->rem.s.fInREM = true;
2538 pVM->rem.s.fInStateSync = false;
2539 pVM->rem.s.cCanExecuteRaw = 0;
2540 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2541 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2542 return VINF_SUCCESS;
2543}
2544
2545
2546/**
2547 * Syncs back changes in the REM state to the the VM state.
2548 *
2549 * This must be called after invoking REMR3Run().
2550 * Calling it several times in a row is not permitted.
2551 *
2552 * @returns VBox status code.
2553 *
2554 * @param pVM VM Handle.
2555 * @param pVCpu VMCPU Handle.
2556 */
2557REMR3DECL(int) REMR3StateBack(PVM pVM, PVMCPU pVCpu)
2558{
2559 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2560 Assert(pCtx);
2561 unsigned i;
2562
2563 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2564 Log2(("REMR3StateBack:\n"));
2565 Assert(pVM->rem.s.fInREM);
2566
2567 /*
2568 * Copy back the registers.
2569 * This is done in the order they are declared in the CPUMCTX structure.
2570 */
2571
2572 /** @todo FOP */
2573 /** @todo FPUIP */
2574 /** @todo CS */
2575 /** @todo FPUDP */
2576 /** @todo DS */
2577
2578 /** @todo check if FPU/XMM was actually used in the recompiler */
2579 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2580//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2581
2582#ifdef TARGET_X86_64
2583 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2584 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2585 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2586 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2587 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2588 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2589 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2590 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2591 pCtx->r8 = pVM->rem.s.Env.regs[8];
2592 pCtx->r9 = pVM->rem.s.Env.regs[9];
2593 pCtx->r10 = pVM->rem.s.Env.regs[10];
2594 pCtx->r11 = pVM->rem.s.Env.regs[11];
2595 pCtx->r12 = pVM->rem.s.Env.regs[12];
2596 pCtx->r13 = pVM->rem.s.Env.regs[13];
2597 pCtx->r14 = pVM->rem.s.Env.regs[14];
2598 pCtx->r15 = pVM->rem.s.Env.regs[15];
2599
2600 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2601
2602#else
2603 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2604 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2605 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2606 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2607 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2608 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2609 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2610
2611 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2612#endif
2613
2614#define SYNC_BACK_SREG(a_sreg, a_SREG) \
2615 do \
2616 { \
2617 pCtx->a_sreg.Sel = pVM->rem.s.Env.segs[R_##a_SREG].selector; \
2618 if (!pVM->rem.s.Env.segs[R_SS].newselector) \
2619 { \
2620 pCtx->a_sreg.ValidSel = pVM->rem.s.Env.segs[R_##a_SREG].selector; \
2621 pCtx->a_sreg.fFlags = CPUMSELREG_FLAGS_VALID; \
2622 pCtx->a_sreg.u64Base = pVM->rem.s.Env.segs[R_##a_SREG].base; \
2623 pCtx->a_sreg.u32Limit = pVM->rem.s.Env.segs[R_##a_SREG].limit; \
2624 /* Note! QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */ \
2625 pCtx->a_sreg.Attr.u = (pVM->rem.s.Env.segs[R_##a_SREG].flags >> 8) & 0xF0FF; \
2626 } \
2627 else \
2628 { \
2629 pCtx->a_sreg.fFlags = 0; \
2630 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_##a_SREG]); \
2631 } \
2632 } while (0)
2633
2634 SYNC_BACK_SREG(es, ES);
2635 SYNC_BACK_SREG(cs, CS);
2636 SYNC_BACK_SREG(ss, SS);
2637 SYNC_BACK_SREG(ds, DS);
2638 SYNC_BACK_SREG(fs, FS);
2639 SYNC_BACK_SREG(gs, GS);
2640
2641#ifdef TARGET_X86_64
2642 pCtx->rip = pVM->rem.s.Env.eip;
2643 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2644#else
2645 pCtx->eip = pVM->rem.s.Env.eip;
2646 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2647#endif
2648
2649 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2650 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2651 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2652#ifdef VBOX_WITH_RAW_MODE
2653 if ((pVM->rem.s.Env.cr[4] ^ pCtx->cr4) & X86_CR4_VME)
2654 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2655#endif
2656 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2657
2658 for (i = 0; i < 8; i++)
2659 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2660
2661 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2662 if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
2663 {
2664 pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
2665 STAM_COUNTER_INC(&gStatREMGDTChange);
2666#ifdef VBOX_WITH_RAW_MODE
2667 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
2668#endif
2669 }
2670
2671 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2672 if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
2673 {
2674 pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
2675 STAM_COUNTER_INC(&gStatREMIDTChange);
2676#ifdef VBOX_WITH_RAW_MODE
2677 VMCPU_FF_SET(pVCpu, VMCPU_FF_TRPM_SYNC_IDT);
2678#endif
2679 }
2680
2681 if ( pCtx->ldtr.Sel != pVM->rem.s.Env.ldt.selector
2682 || pCtx->ldtr.ValidSel != pVM->rem.s.Env.ldt.selector
2683 || pCtx->ldtr.u64Base != pVM->rem.s.Env.ldt.base
2684 || pCtx->ldtr.u32Limit != pVM->rem.s.Env.ldt.limit
2685 || pCtx->ldtr.Attr.u != ((pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF)
2686 || !(pCtx->ldtr.fFlags & CPUMSELREG_FLAGS_VALID)
2687 )
2688 {
2689 pCtx->ldtr.Sel = pVM->rem.s.Env.ldt.selector;
2690 pCtx->ldtr.ValidSel = pVM->rem.s.Env.ldt.selector;
2691 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2692 pCtx->ldtr.u64Base = pVM->rem.s.Env.ldt.base;
2693 pCtx->ldtr.u32Limit = pVM->rem.s.Env.ldt.limit;
2694 pCtx->ldtr.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2695 STAM_COUNTER_INC(&gStatREMLDTRChange);
2696#ifdef VBOX_WITH_RAW_MODE
2697 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
2698#endif
2699 }
2700
2701 if ( pCtx->tr.Sel != pVM->rem.s.Env.tr.selector
2702 || pCtx->tr.ValidSel != pVM->rem.s.Env.tr.selector
2703 || pCtx->tr.u64Base != pVM->rem.s.Env.tr.base
2704 || pCtx->tr.u32Limit != pVM->rem.s.Env.tr.limit
2705 /* Qemu and AMD/Intel have different ideas about the busy flag ... */
2706 || pCtx->tr.Attr.u != ( (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF
2707 ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8
2708 : 0)
2709 || !(pCtx->tr.fFlags & CPUMSELREG_FLAGS_VALID)
2710 )
2711 {
2712 Log(("REM: TR changed! %#x{%#llx,%#x,%#x} -> %#x{%llx,%#x,%#x}\n",
2713 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2714 pVM->rem.s.Env.tr.selector, (uint64_t)pVM->rem.s.Env.tr.base, pVM->rem.s.Env.tr.limit,
2715 (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8 : 0));
2716 pCtx->tr.Sel = pVM->rem.s.Env.tr.selector;
2717 pCtx->tr.ValidSel = pVM->rem.s.Env.tr.selector;
2718 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
2719 pCtx->tr.u64Base = pVM->rem.s.Env.tr.base;
2720 pCtx->tr.u32Limit = pVM->rem.s.Env.tr.limit;
2721 pCtx->tr.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2722 if (pCtx->tr.Attr.u)
2723 pCtx->tr.Attr.u |= DESC_TSS_BUSY_MASK >> 8;
2724 STAM_COUNTER_INC(&gStatREMTRChange);
2725#ifdef VBOX_WITH_RAW_MODE
2726 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2727#endif
2728 }
2729
2730 /* Sysenter MSR */
2731 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2732 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2733 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2734
2735 /* System MSRs. */
2736 pCtx->msrEFER = pVM->rem.s.Env.efer;
2737 pCtx->msrSTAR = pVM->rem.s.Env.star;
2738 pCtx->msrPAT = pVM->rem.s.Env.pat;
2739#ifdef TARGET_X86_64
2740 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2741 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2742 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2743 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2744#endif
2745
2746 /* Inhibit interrupt flag. */
2747 if (pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK)
2748 {
2749 Log(("Settings VMCPU_FF_INHIBIT_INTERRUPTS at %RGv (REM)\n", (RTGCPTR)pCtx->rip));
2750 EMSetInhibitInterruptsPC(pVCpu, pCtx->rip);
2751 VMCPU_FF_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2752 }
2753 else if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2754 {
2755 Log(("Clearing VMCPU_FF_INHIBIT_INTERRUPTS at %RGv - successor %RGv (REM#2)\n", (RTGCPTR)pCtx->rip, EMGetInhibitInterruptsPC(pVCpu)));
2756 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2757 }
2758
2759 remR3TrapClear(pVM);
2760
2761 /*
2762 * Check for traps.
2763 */
2764 if ( pVM->rem.s.Env.exception_index >= 0
2765 && pVM->rem.s.Env.exception_index < 256)
2766 {
2767 int rc;
2768
2769 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2770 rc = TRPMAssertTrap(pVCpu, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2771 AssertRC(rc);
2772 switch (pVM->rem.s.Env.exception_index)
2773 {
2774 case 0x0e:
2775 TRPMSetFaultAddress(pVCpu, pCtx->cr2);
2776 /* fallthru */
2777 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2778 case 0x11: case 0x08: /* 0 */
2779 TRPMSetErrorCode(pVCpu, pVM->rem.s.Env.error_code);
2780 break;
2781 }
2782
2783 }
2784
2785 /*
2786 * We're not longer in REM mode.
2787 */
2788 CPUMR3RemLeave(pVCpu,
2789 HMIsEnabled(pVM)
2790 || ( pVM->rem.s.Env.segs[R_SS].newselector
2791 | pVM->rem.s.Env.segs[R_GS].newselector
2792 | pVM->rem.s.Env.segs[R_FS].newselector
2793 | pVM->rem.s.Env.segs[R_ES].newselector
2794 | pVM->rem.s.Env.segs[R_DS].newselector
2795 | pVM->rem.s.Env.segs[R_CS].newselector) == 0
2796 );
2797 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_REM);
2798 pVM->rem.s.fInREM = false;
2799 pVM->rem.s.pCtx = NULL;
2800 pVM->rem.s.Env.pVCpu = NULL;
2801 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2802 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2803 return VINF_SUCCESS;
2804}
2805
2806
2807/**
2808 * This is called by the disassembler when it wants to update the cpu state
2809 * before for instance doing a register dump.
2810 */
2811static void remR3StateUpdate(PVM pVM, PVMCPU pVCpu)
2812{
2813 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2814 unsigned i;
2815
2816 Assert(pVM->rem.s.fInREM);
2817
2818 /*
2819 * Copy back the registers.
2820 * This is done in the order they are declared in the CPUMCTX structure.
2821 */
2822
2823 /** @todo FOP */
2824 /** @todo FPUIP */
2825 /** @todo CS */
2826 /** @todo FPUDP */
2827 /** @todo DS */
2828 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2829 pCtx->fpu.MXCSR = 0;
2830 pCtx->fpu.MXCSR_MASK = 0;
2831
2832 /** @todo check if FPU/XMM was actually used in the recompiler */
2833 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2834//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2835
2836#ifdef TARGET_X86_64
2837 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2838 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2839 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2840 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2841 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2842 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2843 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2844 pCtx->r8 = pVM->rem.s.Env.regs[8];
2845 pCtx->r9 = pVM->rem.s.Env.regs[9];
2846 pCtx->r10 = pVM->rem.s.Env.regs[10];
2847 pCtx->r11 = pVM->rem.s.Env.regs[11];
2848 pCtx->r12 = pVM->rem.s.Env.regs[12];
2849 pCtx->r13 = pVM->rem.s.Env.regs[13];
2850 pCtx->r14 = pVM->rem.s.Env.regs[14];
2851 pCtx->r15 = pVM->rem.s.Env.regs[15];
2852
2853 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2854#else
2855 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2856 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2857 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2858 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2859 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2860 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2861 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2862
2863 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2864#endif
2865
2866 SYNC_BACK_SREG(es, ES);
2867 SYNC_BACK_SREG(cs, CS);
2868 SYNC_BACK_SREG(ss, SS);
2869 SYNC_BACK_SREG(ds, DS);
2870 SYNC_BACK_SREG(fs, FS);
2871 SYNC_BACK_SREG(gs, GS);
2872
2873#ifdef TARGET_X86_64
2874 pCtx->rip = pVM->rem.s.Env.eip;
2875 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2876#else
2877 pCtx->eip = pVM->rem.s.Env.eip;
2878 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2879#endif
2880
2881 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2882 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2883 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2884#ifdef VBOX_WITH_RAW_MODE
2885 if ((pVM->rem.s.Env.cr[4] ^ pCtx->cr4) & X86_CR4_VME)
2886 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2887#endif
2888 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2889
2890 for (i = 0; i < 8; i++)
2891 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2892
2893 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2894 if (pCtx->gdtr.pGdt != (RTGCPTR)pVM->rem.s.Env.gdt.base)
2895 {
2896 pCtx->gdtr.pGdt = (RTGCPTR)pVM->rem.s.Env.gdt.base;
2897 STAM_COUNTER_INC(&gStatREMGDTChange);
2898#ifdef VBOX_WITH_RAW_MODE
2899 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
2900#endif
2901 }
2902
2903 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2904 if (pCtx->idtr.pIdt != (RTGCPTR)pVM->rem.s.Env.idt.base)
2905 {
2906 pCtx->idtr.pIdt = (RTGCPTR)pVM->rem.s.Env.idt.base;
2907 STAM_COUNTER_INC(&gStatREMIDTChange);
2908#ifdef VBOX_WITH_RAW_MODE
2909 VMCPU_FF_SET(pVCpu, VMCPU_FF_TRPM_SYNC_IDT);
2910#endif
2911 }
2912
2913 if ( pCtx->ldtr.Sel != pVM->rem.s.Env.ldt.selector
2914 || pCtx->ldtr.ValidSel != pVM->rem.s.Env.ldt.selector
2915 || pCtx->ldtr.u64Base != pVM->rem.s.Env.ldt.base
2916 || pCtx->ldtr.u32Limit != pVM->rem.s.Env.ldt.limit
2917 || pCtx->ldtr.Attr.u != ((pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF)
2918 || !(pCtx->ldtr.fFlags & CPUMSELREG_FLAGS_VALID)
2919 )
2920 {
2921 pCtx->ldtr.Sel = pVM->rem.s.Env.ldt.selector;
2922 pCtx->ldtr.ValidSel = pVM->rem.s.Env.ldt.selector;
2923 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2924 pCtx->ldtr.u64Base = pVM->rem.s.Env.ldt.base;
2925 pCtx->ldtr.u32Limit = pVM->rem.s.Env.ldt.limit;
2926 pCtx->ldtr.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2927 STAM_COUNTER_INC(&gStatREMLDTRChange);
2928#ifdef VBOX_WITH_RAW_MODE
2929 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
2930#endif
2931 }
2932
2933 if ( pCtx->tr.Sel != pVM->rem.s.Env.tr.selector
2934 || pCtx->tr.ValidSel != pVM->rem.s.Env.tr.selector
2935 || pCtx->tr.u64Base != pVM->rem.s.Env.tr.base
2936 || pCtx->tr.u32Limit != pVM->rem.s.Env.tr.limit
2937 /* Qemu and AMD/Intel have different ideas about the busy flag ... */
2938 || pCtx->tr.Attr.u != ( (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF
2939 ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8
2940 : 0)
2941 || !(pCtx->tr.fFlags & CPUMSELREG_FLAGS_VALID)
2942 )
2943 {
2944 Log(("REM: TR changed! %#x{%#llx,%#x,%#x} -> %#x{%llx,%#x,%#x}\n",
2945 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2946 pVM->rem.s.Env.tr.selector, (uint64_t)pVM->rem.s.Env.tr.base, pVM->rem.s.Env.tr.limit,
2947 (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8 : 0));
2948 pCtx->tr.Sel = pVM->rem.s.Env.tr.selector;
2949 pCtx->tr.ValidSel = pVM->rem.s.Env.tr.selector;
2950 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
2951 pCtx->tr.u64Base = pVM->rem.s.Env.tr.base;
2952 pCtx->tr.u32Limit = pVM->rem.s.Env.tr.limit;
2953 pCtx->tr.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2954 if (pCtx->tr.Attr.u)
2955 pCtx->tr.Attr.u |= DESC_TSS_BUSY_MASK >> 8;
2956 STAM_COUNTER_INC(&gStatREMTRChange);
2957#ifdef VBOX_WITH_RAW_MODE
2958 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2959#endif
2960 }
2961
2962 /* Sysenter MSR */
2963 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2964 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2965 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2966
2967 /* System MSRs. */
2968 pCtx->msrEFER = pVM->rem.s.Env.efer;
2969 pCtx->msrSTAR = pVM->rem.s.Env.star;
2970 pCtx->msrPAT = pVM->rem.s.Env.pat;
2971#ifdef TARGET_X86_64
2972 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2973 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2974 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2975 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2976#endif
2977
2978}
2979
2980
2981/**
2982 * Update the VMM state information if we're currently in REM.
2983 *
2984 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2985 * we're currently executing in REM and the VMM state is invalid. This method will of
2986 * course check that we're executing in REM before syncing any data over to the VMM.
2987 *
2988 * @param pVM The VM handle.
2989 * @param pVCpu The VMCPU handle.
2990 */
2991REMR3DECL(void) REMR3StateUpdate(PVM pVM, PVMCPU pVCpu)
2992{
2993 if (pVM->rem.s.fInREM)
2994 remR3StateUpdate(pVM, pVCpu);
2995}
2996
2997
2998#undef LOG_GROUP
2999#define LOG_GROUP LOG_GROUP_REM
3000
3001
3002/**
3003 * Notify the recompiler about Address Gate 20 state change.
3004 *
3005 * This notification is required since A20 gate changes are
3006 * initialized from a device driver and the VM might just as
3007 * well be in REM mode as in RAW mode.
3008 *
3009 * @param pVM VM handle.
3010 * @param pVCpu VMCPU handle.
3011 * @param fEnable True if the gate should be enabled.
3012 * False if the gate should be disabled.
3013 */
3014REMR3DECL(void) REMR3A20Set(PVM pVM, PVMCPU pVCpu, bool fEnable)
3015{
3016 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
3017 VM_ASSERT_EMT(pVM);
3018
3019 /** @todo SMP and the A20 gate... */
3020 if (pVM->rem.s.Env.pVCpu == pVCpu)
3021 {
3022 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
3023 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
3024 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
3025 }
3026}
3027
3028
3029/**
3030 * Replays the handler notification changes
3031 * Called in response to VM_FF_REM_HANDLER_NOTIFY from the RAW execution loop.
3032 *
3033 * @param pVM VM handle.
3034 */
3035REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
3036{
3037 /*
3038 * Replay the flushes.
3039 */
3040 LogFlow(("REMR3ReplayHandlerNotifications:\n"));
3041 VM_ASSERT_EMT(pVM);
3042
3043 /** @todo this isn't ensuring correct replay order. */
3044 if (VM_FF_TESTANDCLEAR(pVM, VM_FF_REM_HANDLER_NOTIFY))
3045 {
3046 uint32_t idxNext;
3047 uint32_t idxRevHead;
3048 uint32_t idxHead;
3049#ifdef VBOX_STRICT
3050 int32_t c = 0;
3051#endif
3052
3053 /* Lockless purging of pending notifications. */
3054 idxHead = ASMAtomicXchgU32(&pVM->rem.s.idxPendingList, UINT32_MAX);
3055 if (idxHead == UINT32_MAX)
3056 return;
3057 Assert(idxHead < RT_ELEMENTS(pVM->rem.s.aHandlerNotifications));
3058
3059 /*
3060 * Reverse the list to process it in FIFO order.
3061 */
3062 idxRevHead = UINT32_MAX;
3063 do
3064 {
3065 /* Save the index of the next rec. */
3066 idxNext = pVM->rem.s.aHandlerNotifications[idxHead].idxNext;
3067 Assert(idxNext < RT_ELEMENTS(pVM->rem.s.aHandlerNotifications) || idxNext == UINT32_MAX);
3068 /* Push the record onto the reversed list. */
3069 pVM->rem.s.aHandlerNotifications[idxHead].idxNext = idxRevHead;
3070 idxRevHead = idxHead;
3071 Assert(++c <= RT_ELEMENTS(pVM->rem.s.aHandlerNotifications));
3072 /* Advance. */
3073 idxHead = idxNext;
3074 } while (idxHead != UINT32_MAX);
3075
3076 /*
3077 * Loop thru the list, reinserting the record into the free list as they are
3078 * processed to avoid having other EMTs running out of entries while we're flushing.
3079 */
3080 idxHead = idxRevHead;
3081 do
3082 {
3083 PREMHANDLERNOTIFICATION pCur = &pVM->rem.s.aHandlerNotifications[idxHead];
3084 uint32_t idxCur;
3085 Assert(--c >= 0);
3086
3087 switch (pCur->enmKind)
3088 {
3089 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
3090 remR3NotifyHandlerPhysicalRegister(pVM,
3091 pCur->u.PhysicalRegister.enmType,
3092 pCur->u.PhysicalRegister.GCPhys,
3093 pCur->u.PhysicalRegister.cb,
3094 pCur->u.PhysicalRegister.fHasHCHandler);
3095 break;
3096
3097 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
3098 remR3NotifyHandlerPhysicalDeregister(pVM,
3099 pCur->u.PhysicalDeregister.enmType,
3100 pCur->u.PhysicalDeregister.GCPhys,
3101 pCur->u.PhysicalDeregister.cb,
3102 pCur->u.PhysicalDeregister.fHasHCHandler,
3103 pCur->u.PhysicalDeregister.fRestoreAsRAM);
3104 break;
3105
3106 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
3107 remR3NotifyHandlerPhysicalModify(pVM,
3108 pCur->u.PhysicalModify.enmType,
3109 pCur->u.PhysicalModify.GCPhysOld,
3110 pCur->u.PhysicalModify.GCPhysNew,
3111 pCur->u.PhysicalModify.cb,
3112 pCur->u.PhysicalModify.fHasHCHandler,
3113 pCur->u.PhysicalModify.fRestoreAsRAM);
3114 break;
3115
3116 default:
3117 AssertReleaseMsgFailed(("enmKind=%d\n", pCur->enmKind));
3118 break;
3119 }
3120
3121 /*
3122 * Advance idxHead.
3123 */
3124 idxCur = idxHead;
3125 idxHead = pCur->idxNext;
3126 Assert(idxHead < RT_ELEMENTS(pVM->rem.s.aHandlerNotifications) || (idxHead == UINT32_MAX && c == 0));
3127
3128 /*
3129 * Put the record back into the free list.
3130 */
3131 do
3132 {
3133 idxNext = ASMAtomicUoReadU32(&pVM->rem.s.idxFreeList);
3134 ASMAtomicWriteU32(&pCur->idxNext, idxNext);
3135 ASMCompilerBarrier();
3136 } while (!ASMAtomicCmpXchgU32(&pVM->rem.s.idxFreeList, idxCur, idxNext));
3137 } while (idxHead != UINT32_MAX);
3138
3139#ifdef VBOX_STRICT
3140 if (pVM->cCpus == 1)
3141 {
3142 unsigned c;
3143 /* Check that all records are now on the free list. */
3144 for (c = 0, idxNext = pVM->rem.s.idxFreeList; idxNext != UINT32_MAX;
3145 idxNext = pVM->rem.s.aHandlerNotifications[idxNext].idxNext)
3146 c++;
3147 AssertReleaseMsg(c == RT_ELEMENTS(pVM->rem.s.aHandlerNotifications), ("%#x != %#x, idxFreeList=%#x\n", c, RT_ELEMENTS(pVM->rem.s.aHandlerNotifications), pVM->rem.s.idxFreeList));
3148 }
3149#endif
3150 }
3151}
3152
3153
3154/**
3155 * Notify REM about changed code page.
3156 *
3157 * @returns VBox status code.
3158 * @param pVM VM handle.
3159 * @param pVCpu VMCPU handle.
3160 * @param pvCodePage Code page address
3161 */
3162REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, PVMCPU pVCpu, RTGCPTR pvCodePage)
3163{
3164#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
3165 int rc;
3166 RTGCPHYS PhysGC;
3167 uint64_t flags;
3168
3169 VM_ASSERT_EMT(pVM);
3170
3171 /*
3172 * Get the physical page address.
3173 */
3174 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
3175 if (rc == VINF_SUCCESS)
3176 {
3177 /*
3178 * Sync the required registers and flush the whole page.
3179 * (Easier to do the whole page than notifying it about each physical
3180 * byte that was changed.
3181 */
3182 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
3183 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
3184 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
3185 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
3186
3187 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
3188 }
3189#endif
3190 return VINF_SUCCESS;
3191}
3192
3193
3194/**
3195 * Notification about a successful MMR3PhysRegister() call.
3196 *
3197 * @param pVM VM handle.
3198 * @param GCPhys The physical address the RAM.
3199 * @param cb Size of the memory.
3200 * @param fFlags Flags of the REM_NOTIFY_PHYS_RAM_FLAGS_* defines.
3201 */
3202REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, unsigned fFlags)
3203{
3204 Log(("REMR3NotifyPhysRamRegister: GCPhys=%RGp cb=%RGp fFlags=%#x\n", GCPhys, cb, fFlags));
3205 VM_ASSERT_EMT(pVM);
3206
3207 /*
3208 * Validate input - we trust the caller.
3209 */
3210 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
3211 Assert(cb);
3212 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
3213 AssertMsg(fFlags == REM_NOTIFY_PHYS_RAM_FLAGS_RAM || fFlags == REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2, ("#x\n", fFlags));
3214
3215 /*
3216 * Base ram? Update GCPhysLastRam.
3217 */
3218 if (fFlags & REM_NOTIFY_PHYS_RAM_FLAGS_RAM)
3219 {
3220 if (GCPhys + (cb - 1) > pVM->rem.s.GCPhysLastRam)
3221 {
3222 AssertReleaseMsg(!pVM->rem.s.fGCPhysLastRamFixed, ("GCPhys=%RGp cb=%RGp\n", GCPhys, cb));
3223 pVM->rem.s.GCPhysLastRam = GCPhys + (cb - 1);
3224 }
3225 }
3226
3227 /*
3228 * Register the ram.
3229 */
3230 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
3231
3232 PDMCritSectEnter(&pVM->rem.s.CritSectRegister, VERR_SEM_BUSY);
3233 cpu_register_physical_memory_offset(GCPhys, cb, GCPhys, GCPhys);
3234 PDMCritSectLeave(&pVM->rem.s.CritSectRegister);
3235
3236 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
3237}
3238
3239
3240/**
3241 * Notification about a successful MMR3PhysRomRegister() call.
3242 *
3243 * @param pVM VM handle.
3244 * @param GCPhys The physical address of the ROM.
3245 * @param cb The size of the ROM.
3246 * @param pvCopy Pointer to the ROM copy.
3247 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
3248 * This function will be called when ever the protection of the
3249 * shadow ROM changes (at reset and end of POST).
3250 */
3251REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
3252{
3253 Log(("REMR3NotifyPhysRomRegister: GCPhys=%RGp cb=%d fShadow=%RTbool\n", GCPhys, cb, fShadow));
3254 VM_ASSERT_EMT(pVM);
3255
3256 /*
3257 * Validate input - we trust the caller.
3258 */
3259 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
3260 Assert(cb);
3261 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
3262
3263 /*
3264 * Register the rom.
3265 */
3266 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
3267
3268 PDMCritSectEnter(&pVM->rem.s.CritSectRegister, VERR_SEM_BUSY);
3269 cpu_register_physical_memory_offset(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM), GCPhys);
3270 PDMCritSectLeave(&pVM->rem.s.CritSectRegister);
3271
3272 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
3273}
3274
3275
3276/**
3277 * Notification about a successful memory deregistration or reservation.
3278 *
3279 * @param pVM VM Handle.
3280 * @param GCPhys Start physical address.
3281 * @param cb The size of the range.
3282 */
3283REMR3DECL(void) REMR3NotifyPhysRamDeregister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
3284{
3285 Log(("REMR3NotifyPhysRamDeregister: GCPhys=%RGp cb=%d\n", GCPhys, cb));
3286 VM_ASSERT_EMT(pVM);
3287
3288 /*
3289 * Validate input - we trust the caller.
3290 */
3291 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
3292 Assert(cb);
3293 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
3294
3295 /*
3296 * Unassigning the memory.
3297 */
3298 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
3299
3300 PDMCritSectEnter(&pVM->rem.s.CritSectRegister, VERR_SEM_BUSY);
3301 cpu_register_physical_memory_offset(GCPhys, cb, IO_MEM_UNASSIGNED, GCPhys);
3302 PDMCritSectLeave(&pVM->rem.s.CritSectRegister);
3303
3304 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
3305}
3306
3307
3308/**
3309 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
3310 *
3311 * @param pVM VM Handle.
3312 * @param enmType Handler type.
3313 * @param GCPhys Handler range address.
3314 * @param cb Size of the handler range.
3315 * @param fHasHCHandler Set if the handler has a HC callback function.
3316 *
3317 * @remark MMR3PhysRomRegister assumes that this function will not apply the
3318 * Handler memory type to memory which has no HC handler.
3319 */
3320static void remR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
3321{
3322 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%d\n",
3323 enmType, GCPhys, cb, fHasHCHandler));
3324
3325 VM_ASSERT_EMT(pVM);
3326 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
3327 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
3328
3329
3330 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
3331
3332 PDMCritSectEnter(&pVM->rem.s.CritSectRegister, VERR_SEM_BUSY);
3333 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
3334 cpu_register_physical_memory_offset(GCPhys, cb, pVM->rem.s.iMMIOMemType, GCPhys);
3335 else if (fHasHCHandler)
3336 cpu_register_physical_memory_offset(GCPhys, cb, pVM->rem.s.iHandlerMemType, GCPhys);
3337 PDMCritSectLeave(&pVM->rem.s.CritSectRegister);
3338
3339 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
3340}
3341
3342/**
3343 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
3344 *
3345 * @param pVM VM Handle.
3346 * @param enmType Handler type.
3347 * @param GCPhys Handler range address.
3348 * @param cb Size of the handler range.
3349 * @param fHasHCHandler Set if the handler has a HC callback function.
3350 *
3351 * @remark MMR3PhysRomRegister assumes that this function will not apply the
3352 * Handler memory type to memory which has no HC handler.
3353 */
3354REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
3355{
3356 REMR3ReplayHandlerNotifications(pVM);
3357
3358 remR3NotifyHandlerPhysicalRegister(pVM, enmType, GCPhys, cb, fHasHCHandler);
3359}
3360
3361/**
3362 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
3363 *
3364 * @param pVM VM Handle.
3365 * @param enmType Handler type.
3366 * @param GCPhys Handler range address.
3367 * @param cb Size of the handler range.
3368 * @param fHasHCHandler Set if the handler has a HC callback function.
3369 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
3370 */
3371static void remR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
3372{
3373 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
3374 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
3375 VM_ASSERT_EMT(pVM);
3376
3377
3378 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
3379
3380 PDMCritSectEnter(&pVM->rem.s.CritSectRegister, VERR_SEM_BUSY);
3381 /** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
3382 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
3383 cpu_register_physical_memory_offset(GCPhys, cb, IO_MEM_UNASSIGNED, GCPhys);
3384 else if (fHasHCHandler)
3385 {
3386 if (!fRestoreAsRAM)
3387 {
3388 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
3389 cpu_register_physical_memory_offset(GCPhys, cb, IO_MEM_UNASSIGNED, GCPhys);
3390 }
3391 else
3392 {
3393 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
3394 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
3395 cpu_register_physical_memory_offset(GCPhys, cb, GCPhys, GCPhys);
3396 }
3397 }
3398 PDMCritSectLeave(&pVM->rem.s.CritSectRegister);
3399
3400 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
3401}
3402
3403/**
3404 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
3405 *
3406 * @param pVM VM Handle.
3407 * @param enmType Handler type.
3408 * @param GCPhys Handler range address.
3409 * @param cb Size of the handler range.
3410 * @param fHasHCHandler Set if the handler has a HC callback function.
3411 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
3412 */
3413REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
3414{
3415 REMR3ReplayHandlerNotifications(pVM);
3416 remR3NotifyHandlerPhysicalDeregister(pVM, enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM);
3417}
3418
3419
3420/**
3421 * Notification about a successful PGMR3HandlerPhysicalModify() call.
3422 *
3423 * @param pVM VM Handle.
3424 * @param enmType Handler type.
3425 * @param GCPhysOld Old handler range address.
3426 * @param GCPhysNew New handler range address.
3427 * @param cb Size of the handler range.
3428 * @param fHasHCHandler Set if the handler has a HC callback function.
3429 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
3430 */
3431static void remR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
3432{
3433 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%RGp GCPhysNew=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
3434 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
3435 VM_ASSERT_EMT(pVM);
3436 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
3437
3438 if (fHasHCHandler)
3439 {
3440 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
3441
3442 /*
3443 * Reset the old page.
3444 */
3445 PDMCritSectEnter(&pVM->rem.s.CritSectRegister, VERR_SEM_BUSY);
3446 if (!fRestoreAsRAM)
3447 cpu_register_physical_memory_offset(GCPhysOld, cb, IO_MEM_UNASSIGNED, GCPhysOld);
3448 else
3449 {
3450 /* This is not perfect, but it'll do for PD monitoring... */
3451 Assert(cb == PAGE_SIZE);
3452 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
3453 cpu_register_physical_memory_offset(GCPhysOld, cb, GCPhysOld, GCPhysOld);
3454 }
3455
3456 /*
3457 * Update the new page.
3458 */
3459 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
3460 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
3461 cpu_register_physical_memory_offset(GCPhysNew, cb, pVM->rem.s.iHandlerMemType, GCPhysNew);
3462 PDMCritSectLeave(&pVM->rem.s.CritSectRegister);
3463
3464 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
3465 }
3466}
3467
3468/**
3469 * Notification about a successful PGMR3HandlerPhysicalModify() call.
3470 *
3471 * @param pVM VM Handle.
3472 * @param enmType Handler type.
3473 * @param GCPhysOld Old handler range address.
3474 * @param GCPhysNew New handler range address.
3475 * @param cb Size of the handler range.
3476 * @param fHasHCHandler Set if the handler has a HC callback function.
3477 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
3478 */
3479REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
3480{
3481 REMR3ReplayHandlerNotifications(pVM);
3482
3483 remR3NotifyHandlerPhysicalModify(pVM, enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM);
3484}
3485
3486/**
3487 * Checks if we're handling access to this page or not.
3488 *
3489 * @returns true if we're trapping access.
3490 * @returns false if we aren't.
3491 * @param pVM The VM handle.
3492 * @param GCPhys The physical address.
3493 *
3494 * @remark This function will only work correctly in VBOX_STRICT builds!
3495 */
3496REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
3497{
3498#ifdef VBOX_STRICT
3499 ram_addr_t off;
3500 REMR3ReplayHandlerNotifications(pVM);
3501
3502 off = get_phys_page_offset(GCPhys);
3503 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
3504 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
3505 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
3506#else
3507 return false;
3508#endif
3509}
3510
3511
3512/**
3513 * Deals with a rare case in get_phys_addr_code where the code
3514 * is being monitored.
3515 *
3516 * It could also be an MMIO page, in which case we will raise a fatal error.
3517 *
3518 * @returns The physical address corresponding to addr.
3519 * @param env The cpu environment.
3520 * @param addr The virtual address.
3521 * @param pTLBEntry The TLB entry.
3522 */
3523target_ulong remR3PhysGetPhysicalAddressCode(CPUX86State *env,
3524 target_ulong addr,
3525 CPUTLBEntry *pTLBEntry,
3526 target_phys_addr_t ioTLBEntry)
3527{
3528 PVM pVM = env->pVM;
3529
3530 if ((ioTLBEntry & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
3531 {
3532 /* If code memory is being monitored, appropriate IOTLB entry will have
3533 handler IO type, and addend will provide real physical address, no
3534 matter if we store VA in TLB or not, as handlers are always passed PA */
3535 target_ulong ret = (ioTLBEntry & TARGET_PAGE_MASK) + addr;
3536 return ret;
3537 }
3538 LogRel(("\nTrying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv! (iHandlerMemType=%#x iMMIOMemType=%#x IOTLB=%RGp)\n"
3539 "*** handlers\n",
3540 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType, (RTGCPHYS)ioTLBEntry));
3541 DBGFR3Info(pVM->pUVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
3542 LogRel(("*** mmio\n"));
3543 DBGFR3Info(pVM->pUVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
3544 LogRel(("*** phys\n"));
3545 DBGFR3Info(pVM->pUVM, "phys", NULL, DBGFR3InfoLogRelHlp());
3546 cpu_abort(env, "Trying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
3547 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
3548 AssertFatalFailed();
3549}
3550
3551/**
3552 * Read guest RAM and ROM.
3553 *
3554 * @param SrcGCPhys The source address (guest physical).
3555 * @param pvDst The destination address.
3556 * @param cb Number of bytes
3557 */
3558void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3559{
3560 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3561 VBOX_CHECK_ADDR(SrcGCPhys);
3562 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3563#ifdef VBOX_DEBUG_PHYS
3564 LogRel(("read(%d): %08x\n", cb, (uint32_t)SrcGCPhys));
3565#endif
3566 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3567}
3568
3569
3570/**
3571 * Read guest RAM and ROM, unsigned 8-bit.
3572 *
3573 * @param SrcGCPhys The source address (guest physical).
3574 */
3575RTCCUINTREG remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3576{
3577 uint8_t val;
3578 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3579 VBOX_CHECK_ADDR(SrcGCPhys);
3580 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3581 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3582#ifdef VBOX_DEBUG_PHYS
3583 LogRel(("readu8: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3584#endif
3585 return val;
3586}
3587
3588
3589/**
3590 * Read guest RAM and ROM, signed 8-bit.
3591 *
3592 * @param SrcGCPhys The source address (guest physical).
3593 */
3594RTCCINTREG remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3595{
3596 int8_t val;
3597 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3598 VBOX_CHECK_ADDR(SrcGCPhys);
3599 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3600 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3601#ifdef VBOX_DEBUG_PHYS
3602 LogRel(("reads8: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3603#endif
3604 return val;
3605}
3606
3607
3608/**
3609 * Read guest RAM and ROM, unsigned 16-bit.
3610 *
3611 * @param SrcGCPhys The source address (guest physical).
3612 */
3613RTCCUINTREG remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3614{
3615 uint16_t val;
3616 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3617 VBOX_CHECK_ADDR(SrcGCPhys);
3618 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3619 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3620#ifdef VBOX_DEBUG_PHYS
3621 LogRel(("readu16: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3622#endif
3623 return val;
3624}
3625
3626
3627/**
3628 * Read guest RAM and ROM, signed 16-bit.
3629 *
3630 * @param SrcGCPhys The source address (guest physical).
3631 */
3632RTCCINTREG remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3633{
3634 int16_t val;
3635 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3636 VBOX_CHECK_ADDR(SrcGCPhys);
3637 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3638 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3639#ifdef VBOX_DEBUG_PHYS
3640 LogRel(("reads16: %x <- %08x\n", (uint16_t)val, (uint32_t)SrcGCPhys));
3641#endif
3642 return val;
3643}
3644
3645
3646/**
3647 * Read guest RAM and ROM, unsigned 32-bit.
3648 *
3649 * @param SrcGCPhys The source address (guest physical).
3650 */
3651RTCCUINTREG remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3652{
3653 uint32_t val;
3654 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3655 VBOX_CHECK_ADDR(SrcGCPhys);
3656 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3657 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3658#ifdef VBOX_DEBUG_PHYS
3659 LogRel(("readu32: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3660#endif
3661 return val;
3662}
3663
3664
3665/**
3666 * Read guest RAM and ROM, signed 32-bit.
3667 *
3668 * @param SrcGCPhys The source address (guest physical).
3669 */
3670RTCCINTREG remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3671{
3672 int32_t val;
3673 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3674 VBOX_CHECK_ADDR(SrcGCPhys);
3675 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3676 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3677#ifdef VBOX_DEBUG_PHYS
3678 LogRel(("reads32: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3679#endif
3680 return val;
3681}
3682
3683
3684/**
3685 * Read guest RAM and ROM, unsigned 64-bit.
3686 *
3687 * @param SrcGCPhys The source address (guest physical).
3688 */
3689uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3690{
3691 uint64_t val;
3692 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3693 VBOX_CHECK_ADDR(SrcGCPhys);
3694 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3695 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3696#ifdef VBOX_DEBUG_PHYS
3697 LogRel(("readu64: %llx <- %08x\n", val, (uint32_t)SrcGCPhys));
3698#endif
3699 return val;
3700}
3701
3702
3703/**
3704 * Read guest RAM and ROM, signed 64-bit.
3705 *
3706 * @param SrcGCPhys The source address (guest physical).
3707 */
3708int64_t remR3PhysReadS64(RTGCPHYS SrcGCPhys)
3709{
3710 int64_t val;
3711 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3712 VBOX_CHECK_ADDR(SrcGCPhys);
3713 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3714 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3715#ifdef VBOX_DEBUG_PHYS
3716 LogRel(("reads64: %llx <- %08x\n", val, (uint32_t)SrcGCPhys));
3717#endif
3718 return val;
3719}
3720
3721
3722/**
3723 * Write guest RAM.
3724 *
3725 * @param DstGCPhys The destination address (guest physical).
3726 * @param pvSrc The source address.
3727 * @param cb Number of bytes to write
3728 */
3729void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3730{
3731 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3732 VBOX_CHECK_ADDR(DstGCPhys);
3733 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3734 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3735#ifdef VBOX_DEBUG_PHYS
3736 LogRel(("write(%d): %08x\n", cb, (uint32_t)DstGCPhys));
3737#endif
3738}
3739
3740
3741/**
3742 * Write guest RAM, unsigned 8-bit.
3743 *
3744 * @param DstGCPhys The destination address (guest physical).
3745 * @param val Value
3746 */
3747void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3748{
3749 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3750 VBOX_CHECK_ADDR(DstGCPhys);
3751 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3752 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3753#ifdef VBOX_DEBUG_PHYS
3754 LogRel(("writeu8: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3755#endif
3756}
3757
3758
3759/**
3760 * Write guest RAM, unsigned 8-bit.
3761 *
3762 * @param DstGCPhys The destination address (guest physical).
3763 * @param val Value
3764 */
3765void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3766{
3767 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3768 VBOX_CHECK_ADDR(DstGCPhys);
3769 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3770 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3771#ifdef VBOX_DEBUG_PHYS
3772 LogRel(("writeu16: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3773#endif
3774}
3775
3776
3777/**
3778 * Write guest RAM, unsigned 32-bit.
3779 *
3780 * @param DstGCPhys The destination address (guest physical).
3781 * @param val Value
3782 */
3783void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3784{
3785 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3786 VBOX_CHECK_ADDR(DstGCPhys);
3787 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3788 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3789#ifdef VBOX_DEBUG_PHYS
3790 LogRel(("writeu32: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3791#endif
3792}
3793
3794
3795/**
3796 * Write guest RAM, unsigned 64-bit.
3797 *
3798 * @param DstGCPhys The destination address (guest physical).
3799 * @param val Value
3800 */
3801void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3802{
3803 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3804 VBOX_CHECK_ADDR(DstGCPhys);
3805 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3806 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3807#ifdef VBOX_DEBUG_PHYS
3808 LogRel(("writeu64: %llx -> %08x\n", val, (uint32_t)DstGCPhys));
3809#endif
3810}
3811
3812#undef LOG_GROUP
3813#define LOG_GROUP LOG_GROUP_REM_MMIO
3814
3815/** Read MMIO memory. */
3816static uint32_t remR3MMIOReadU8(void *pvEnv, target_phys_addr_t GCPhys)
3817{
3818 CPUX86State *env = (CPUX86State *)pvEnv;
3819 uint32_t u32 = 0;
3820 int rc = IOMMMIORead(env->pVM, env->pVCpu, GCPhys, &u32, 1);
3821 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3822 Log2(("remR3MMIOReadU8: GCPhys=%RGp -> %02x\n", (RTGCPHYS)GCPhys, u32));
3823 return u32;
3824}
3825
3826/** Read MMIO memory. */
3827static uint32_t remR3MMIOReadU16(void *pvEnv, target_phys_addr_t GCPhys)
3828{
3829 CPUX86State *env = (CPUX86State *)pvEnv;
3830 uint32_t u32 = 0;
3831 int rc = IOMMMIORead(env->pVM, env->pVCpu, GCPhys, &u32, 2);
3832 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3833 Log2(("remR3MMIOReadU16: GCPhys=%RGp -> %04x\n", (RTGCPHYS)GCPhys, u32));
3834 return u32;
3835}
3836
3837/** Read MMIO memory. */
3838static uint32_t remR3MMIOReadU32(void *pvEnv, target_phys_addr_t GCPhys)
3839{
3840 CPUX86State *env = (CPUX86State *)pvEnv;
3841 uint32_t u32 = 0;
3842 int rc = IOMMMIORead(env->pVM, env->pVCpu, GCPhys, &u32, 4);
3843 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3844 Log2(("remR3MMIOReadU32: GCPhys=%RGp -> %08x\n", (RTGCPHYS)GCPhys, u32));
3845 return u32;
3846}
3847
3848/** Write to MMIO memory. */
3849static void remR3MMIOWriteU8(void *pvEnv, target_phys_addr_t GCPhys, uint32_t u32)
3850{
3851 CPUX86State *env = (CPUX86State *)pvEnv;
3852 int rc;
3853 Log2(("remR3MMIOWriteU8: GCPhys=%RGp u32=%#x\n", (RTGCPHYS)GCPhys, u32));
3854 rc = IOMMMIOWrite(env->pVM, env->pVCpu, GCPhys, u32, 1);
3855 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3856}
3857
3858/** Write to MMIO memory. */
3859static void remR3MMIOWriteU16(void *pvEnv, target_phys_addr_t GCPhys, uint32_t u32)
3860{
3861 CPUX86State *env = (CPUX86State *)pvEnv;
3862 int rc;
3863 Log2(("remR3MMIOWriteU16: GCPhys=%RGp u32=%#x\n", (RTGCPHYS)GCPhys, u32));
3864 rc = IOMMMIOWrite(env->pVM, env->pVCpu, GCPhys, u32, 2);
3865 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3866}
3867
3868/** Write to MMIO memory. */
3869static void remR3MMIOWriteU32(void *pvEnv, target_phys_addr_t GCPhys, uint32_t u32)
3870{
3871 CPUX86State *env = (CPUX86State *)pvEnv;
3872 int rc;
3873 Log2(("remR3MMIOWriteU32: GCPhys=%RGp u32=%#x\n", (RTGCPHYS)GCPhys, u32));
3874 rc = IOMMMIOWrite(env->pVM, env->pVCpu, GCPhys, u32, 4);
3875 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3876}
3877
3878
3879#undef LOG_GROUP
3880#define LOG_GROUP LOG_GROUP_REM_HANDLER
3881
3882/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3883
3884static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3885{
3886 uint8_t u8;
3887 Log2(("remR3HandlerReadU8: GCPhys=%RGp\n", (RTGCPHYS)GCPhys));
3888 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3889 return u8;
3890}
3891
3892static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3893{
3894 uint16_t u16;
3895 Log2(("remR3HandlerReadU16: GCPhys=%RGp\n", (RTGCPHYS)GCPhys));
3896 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3897 return u16;
3898}
3899
3900static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3901{
3902 uint32_t u32;
3903 Log2(("remR3HandlerReadU32: GCPhys=%RGp\n", (RTGCPHYS)GCPhys));
3904 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3905 return u32;
3906}
3907
3908static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3909{
3910 Log2(("remR3HandlerWriteU8: GCPhys=%RGp u32=%#x\n", (RTGCPHYS)GCPhys, u32));
3911 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3912}
3913
3914static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3915{
3916 Log2(("remR3HandlerWriteU16: GCPhys=%RGp u32=%#x\n", (RTGCPHYS)GCPhys, u32));
3917 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3918}
3919
3920static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3921{
3922 Log2(("remR3HandlerWriteU32: GCPhys=%RGp u32=%#x\n", (RTGCPHYS)GCPhys, u32));
3923 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3924}
3925
3926/* -+- disassembly -+- */
3927
3928#undef LOG_GROUP
3929#define LOG_GROUP LOG_GROUP_REM_DISAS
3930
3931
3932/**
3933 * Enables or disables singled stepped disassembly.
3934 *
3935 * @returns VBox status code.
3936 * @param pVM VM handle.
3937 * @param fEnable To enable set this flag, to disable clear it.
3938 */
3939static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3940{
3941 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3942 VM_ASSERT_EMT(pVM);
3943
3944 if (fEnable)
3945 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3946 else
3947 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3948#ifdef REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
3949 cpu_single_step(&pVM->rem.s.Env, fEnable);
3950#endif
3951 return VINF_SUCCESS;
3952}
3953
3954
3955/**
3956 * Enables or disables singled stepped disassembly.
3957 *
3958 * @returns VBox status code.
3959 * @param pVM VM handle.
3960 * @param fEnable To enable set this flag, to disable clear it.
3961 */
3962REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3963{
3964 int rc;
3965
3966 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3967 if (VM_IS_EMT(pVM))
3968 return remR3DisasEnableStepping(pVM, fEnable);
3969
3970 rc = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3971 AssertRC(rc);
3972 return rc;
3973}
3974
3975
3976#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3977/**
3978 * External Debugger Command: .remstep [on|off|1|0]
3979 */
3980static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3981{
3982 int rc;
3983 PVM pVM = pUVM->pVM;
3984
3985 if (cArgs == 0)
3986 /*
3987 * Print the current status.
3988 */
3989 rc = DBGCCmdHlpPrintf(pCmdHlp, "DisasStepping is %s\n",
3990 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3991 else
3992 {
3993 /*
3994 * Convert the argument and change the mode.
3995 */
3996 bool fEnable;
3997 rc = DBGCCmdHlpVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3998 if (RT_SUCCESS(rc))
3999 {
4000 rc = REMR3DisasEnableStepping(pVM, fEnable);
4001 if (RT_SUCCESS(rc))
4002 rc = DBGCCmdHlpPrintf(pCmdHlp, "DisasStepping was %s\n", fEnable ? "enabled" : "disabled");
4003 else
4004 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "REMR3DisasEnableStepping");
4005 }
4006 else
4007 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToBool");
4008 }
4009 return rc;
4010}
4011#endif /* VBOX_WITH_DEBUGGER && !win.amd64 */
4012
4013
4014/**
4015 * Disassembles one instruction and prints it to the log.
4016 *
4017 * @returns Success indicator.
4018 * @param env Pointer to the recompiler CPU structure.
4019 * @param f32BitCode Indicates that whether or not the code should
4020 * be disassembled as 16 or 32 bit. If -1 the CS
4021 * selector will be inspected.
4022 * @param pszPrefix
4023 */
4024bool remR3DisasInstr(CPUX86State *env, int f32BitCode, char *pszPrefix)
4025{
4026 PVM pVM = env->pVM;
4027 const bool fLog = LogIsEnabled();
4028 const bool fLog2 = LogIs2Enabled();
4029 int rc = VINF_SUCCESS;
4030
4031 /*
4032 * Don't bother if there ain't any log output to do.
4033 */
4034 if (!fLog && !fLog2)
4035 return true;
4036
4037 /*
4038 * Update the state so DBGF reads the correct register values.
4039 */
4040 remR3StateUpdate(pVM, env->pVCpu);
4041
4042 /*
4043 * Log registers if requested.
4044 */
4045 if (fLog2)
4046 DBGFR3_INFO_LOG(pVM, "cpumguest", pszPrefix);
4047
4048 /*
4049 * Disassemble to log.
4050 */
4051 if (fLog)
4052 {
4053 PVMCPU pVCpu = VMMGetCpu(pVM);
4054 char szBuf[256];
4055 szBuf[0] = '\0';
4056 int rc = DBGFR3DisasInstrEx(pVCpu->pVMR3->pUVM,
4057 pVCpu->idCpu,
4058 0, /* Sel */
4059 0, /* GCPtr */
4060 DBGF_DISAS_FLAGS_CURRENT_GUEST
4061 | DBGF_DISAS_FLAGS_DEFAULT_MODE,
4062 szBuf,
4063 sizeof(szBuf),
4064 NULL);
4065 if (RT_FAILURE(rc))
4066 RTStrPrintf(szBuf, sizeof(szBuf), "DBGFR3DisasInstrEx failed with rc=%Rrc\n", rc);
4067 if (pszPrefix && *pszPrefix)
4068 RTLogPrintf("%s-CPU%d: %s\n", pszPrefix, pVCpu->idCpu, szBuf);
4069 else
4070 RTLogPrintf("CPU%d: %s\n", pVCpu->idCpu, szBuf);
4071 }
4072
4073 return RT_SUCCESS(rc);
4074}
4075
4076
4077/**
4078 * Disassemble recompiled code.
4079 *
4080 * @param phFileIgnored Ignored, logfile usually.
4081 * @param pvCode Pointer to the code block.
4082 * @param cb Size of the code block.
4083 */
4084void disas(FILE *phFile, void *pvCode, unsigned long cb)
4085{
4086 if (LogIs2Enabled())
4087 {
4088 unsigned off = 0;
4089 char szOutput[256];
4090 DISCPUSTATE Cpu;
4091#ifdef RT_ARCH_X86
4092 DISCPUMODE enmCpuMode = DISCPUMODE_32BIT;
4093#else
4094 DISCPUMODE enmCpuMode = DISCPUMODE_64BIT;
4095#endif
4096
4097 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
4098 while (off < cb)
4099 {
4100 uint32_t cbInstr;
4101 int rc = DISInstrToStr((uint8_t const *)pvCode + off, enmCpuMode,
4102 &Cpu, &cbInstr, szOutput, sizeof(szOutput));
4103 if (RT_SUCCESS(rc))
4104 RTLogPrintf("%s", szOutput);
4105 else
4106 {
4107 RTLogPrintf("disas error %Rrc\n", rc);
4108 cbInstr = 1;
4109 }
4110 off += cbInstr;
4111 }
4112 }
4113}
4114
4115
4116/**
4117 * Disassemble guest code.
4118 *
4119 * @param phFileIgnored Ignored, logfile usually.
4120 * @param uCode The guest address of the code to disassemble. (flat?)
4121 * @param cb Number of bytes to disassemble.
4122 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
4123 */
4124void target_disas(FILE *phFile, target_ulong uCode, target_ulong cb, int fFlags)
4125{
4126 if (LogIs2Enabled())
4127 {
4128 PVM pVM = cpu_single_env->pVM;
4129 PVMCPU pVCpu = cpu_single_env->pVCpu;
4130 RTSEL cs;
4131 RTGCUINTPTR eip;
4132
4133 Assert(pVCpu);
4134
4135 /*
4136 * Update the state so DBGF reads the correct register values (flags).
4137 */
4138 remR3StateUpdate(pVM, pVCpu);
4139
4140 /*
4141 * Do the disassembling.
4142 */
4143 RTLogPrintf("Guest Code: PC=%llx %llx bytes fFlags=%d\n", (uint64_t)uCode, (uint64_t)cb, fFlags);
4144 cs = cpu_single_env->segs[R_CS].selector;
4145 eip = uCode - cpu_single_env->segs[R_CS].base;
4146 for (;;)
4147 {
4148 char szBuf[256];
4149 uint32_t cbInstr;
4150 int rc = DBGFR3DisasInstrEx(pVM->pUVM,
4151 pVCpu->idCpu,
4152 cs,
4153 eip,
4154 DBGF_DISAS_FLAGS_DEFAULT_MODE,
4155 szBuf, sizeof(szBuf),
4156 &cbInstr);
4157 if (RT_SUCCESS(rc))
4158 RTLogPrintf("%llx %s\n", (uint64_t)uCode, szBuf);
4159 else
4160 {
4161 RTLogPrintf("%llx %04x:%llx: %s\n", (uint64_t)uCode, cs, (uint64_t)eip, szBuf);
4162 cbInstr = 1;
4163 }
4164
4165 /* next */
4166 if (cb <= cbInstr)
4167 break;
4168 cb -= cbInstr;
4169 uCode += cbInstr;
4170 eip += cbInstr;
4171 }
4172 }
4173}
4174
4175
4176/**
4177 * Looks up a guest symbol.
4178 *
4179 * @returns Pointer to symbol name. This is a static buffer.
4180 * @param orig_addr The address in question.
4181 */
4182const char *lookup_symbol(target_ulong orig_addr)
4183{
4184 PVM pVM = cpu_single_env->pVM;
4185 RTGCINTPTR off = 0;
4186 RTDBGSYMBOL Sym;
4187 DBGFADDRESS Addr;
4188
4189 int rc = DBGFR3AsSymbolByAddr(pVM->pUVM, DBGF_AS_GLOBAL, DBGFR3AddrFromFlat(pVM->pUVM, &Addr, orig_addr),
4190 &off, &Sym, NULL /*phMod*/);
4191 if (RT_SUCCESS(rc))
4192 {
4193 static char szSym[sizeof(Sym.szName) + 48];
4194 if (!off)
4195 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
4196 else if (off > 0)
4197 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
4198 else
4199 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
4200 return szSym;
4201 }
4202 return "<N/A>";
4203}
4204
4205
4206#undef LOG_GROUP
4207#define LOG_GROUP LOG_GROUP_REM
4208
4209
4210/* -+- FF notifications -+- */
4211
4212
4213/**
4214 * Notification about a pending interrupt.
4215 *
4216 * @param pVM VM Handle.
4217 * @param pVCpu VMCPU Handle.
4218 * @param u8Interrupt Interrupt
4219 * @thread The emulation thread.
4220 */
4221REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, PVMCPU pVCpu, uint8_t u8Interrupt)
4222{
4223 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
4224 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
4225}
4226
4227/**
4228 * Notification about a pending interrupt.
4229 *
4230 * @returns Pending interrupt or REM_NO_PENDING_IRQ
4231 * @param pVM VM Handle.
4232 * @param pVCpu VMCPU Handle.
4233 * @thread The emulation thread.
4234 */
4235REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM, PVMCPU pVCpu)
4236{
4237 return pVM->rem.s.u32PendingInterrupt;
4238}
4239
4240/**
4241 * Notification about the interrupt FF being set.
4242 *
4243 * @param pVM VM Handle.
4244 * @param pVCpu VMCPU Handle.
4245 * @thread The emulation thread.
4246 */
4247REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM, PVMCPU pVCpu)
4248{
4249#ifndef IEM_VERIFICATION_MODE
4250 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
4251 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
4252 if (pVM->rem.s.fInREM)
4253 {
4254 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
4255 CPU_INTERRUPT_EXTERNAL_HARD);
4256 }
4257#endif
4258}
4259
4260
4261/**
4262 * Notification about the interrupt FF being set.
4263 *
4264 * @param pVM VM Handle.
4265 * @param pVCpu VMCPU Handle.
4266 * @thread Any.
4267 */
4268REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM, PVMCPU pVCpu)
4269{
4270 LogFlow(("REMR3NotifyInterruptClear:\n"));
4271 if (pVM->rem.s.fInREM)
4272 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
4273}
4274
4275
4276/**
4277 * Notification about pending timer(s).
4278 *
4279 * @param pVM VM Handle.
4280 * @param pVCpuDst The target cpu for this notification.
4281 * TM will not broadcast pending timer events, but use
4282 * a dedicated EMT for them. So, only interrupt REM
4283 * execution if the given CPU is executing in REM.
4284 * @thread Any.
4285 */
4286REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM, PVMCPU pVCpuDst)
4287{
4288#ifndef IEM_VERIFICATION_MODE
4289#ifndef DEBUG_bird
4290 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
4291#endif
4292 if (pVM->rem.s.fInREM)
4293 {
4294 if (pVM->rem.s.Env.pVCpu == pVCpuDst)
4295 {
4296 LogIt(LOG_INSTANCE, RTLOGGRPFLAGS_LEVEL_5, LOG_GROUP_TM, ("REMR3NotifyTimerPending: setting\n"));
4297 ASMAtomicOrS32((int32_t volatile *)&pVM->rem.s.Env.interrupt_request,
4298 CPU_INTERRUPT_EXTERNAL_TIMER);
4299 }
4300 else
4301 LogIt(LOG_INSTANCE, RTLOGGRPFLAGS_LEVEL_5, LOG_GROUP_TM, ("REMR3NotifyTimerPending: pVCpu:%p != pVCpuDst:%p\n", pVM->rem.s.Env.pVCpu, pVCpuDst));
4302 }
4303 else
4304 LogIt(LOG_INSTANCE, RTLOGGRPFLAGS_LEVEL_5, LOG_GROUP_TM, ("REMR3NotifyTimerPending: !fInREM; cpu state=%d\n", VMCPU_GET_STATE(pVCpuDst)));
4305#endif
4306}
4307
4308
4309/**
4310 * Notification about pending DMA transfers.
4311 *
4312 * @param pVM VM Handle.
4313 * @thread Any.
4314 */
4315REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
4316{
4317#ifndef IEM_VERIFICATION_MODE
4318 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
4319 if (pVM->rem.s.fInREM)
4320 {
4321 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
4322 CPU_INTERRUPT_EXTERNAL_DMA);
4323 }
4324#endif
4325}
4326
4327
4328/**
4329 * Notification about pending timer(s).
4330 *
4331 * @param pVM VM Handle.
4332 * @thread Any.
4333 */
4334REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
4335{
4336#ifndef IEM_VERIFICATION_MODE
4337 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
4338 if (pVM->rem.s.fInREM)
4339 {
4340 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
4341 CPU_INTERRUPT_EXTERNAL_EXIT);
4342 }
4343#endif
4344}
4345
4346
4347/**
4348 * Notification about pending FF set by an external thread.
4349 *
4350 * @param pVM VM handle.
4351 * @thread Any.
4352 */
4353REMR3DECL(void) REMR3NotifyFF(PVM pVM)
4354{
4355#ifndef IEM_VERIFICATION_MODE
4356 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
4357 if (pVM->rem.s.fInREM)
4358 {
4359 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
4360 CPU_INTERRUPT_EXTERNAL_EXIT);
4361 }
4362#endif
4363}
4364
4365
4366#ifdef VBOX_WITH_STATISTICS
4367void remR3ProfileStart(int statcode)
4368{
4369 STAMPROFILEADV *pStat;
4370 switch(statcode)
4371 {
4372 case STATS_EMULATE_SINGLE_INSTR:
4373 pStat = &gStatExecuteSingleInstr;
4374 break;
4375 case STATS_QEMU_COMPILATION:
4376 pStat = &gStatCompilationQEmu;
4377 break;
4378 case STATS_QEMU_RUN_EMULATED_CODE:
4379 pStat = &gStatRunCodeQEmu;
4380 break;
4381 case STATS_QEMU_TOTAL:
4382 pStat = &gStatTotalTimeQEmu;
4383 break;
4384 case STATS_QEMU_RUN_TIMERS:
4385 pStat = &gStatTimers;
4386 break;
4387 case STATS_TLB_LOOKUP:
4388 pStat= &gStatTBLookup;
4389 break;
4390 case STATS_IRQ_HANDLING:
4391 pStat= &gStatIRQ;
4392 break;
4393 case STATS_RAW_CHECK:
4394 pStat = &gStatRawCheck;
4395 break;
4396
4397 default:
4398 AssertMsgFailed(("unknown stat %d\n", statcode));
4399 return;
4400 }
4401 STAM_PROFILE_ADV_START(pStat, a);
4402}
4403
4404
4405void remR3ProfileStop(int statcode)
4406{
4407 STAMPROFILEADV *pStat;
4408 switch(statcode)
4409 {
4410 case STATS_EMULATE_SINGLE_INSTR:
4411 pStat = &gStatExecuteSingleInstr;
4412 break;
4413 case STATS_QEMU_COMPILATION:
4414 pStat = &gStatCompilationQEmu;
4415 break;
4416 case STATS_QEMU_RUN_EMULATED_CODE:
4417 pStat = &gStatRunCodeQEmu;
4418 break;
4419 case STATS_QEMU_TOTAL:
4420 pStat = &gStatTotalTimeQEmu;
4421 break;
4422 case STATS_QEMU_RUN_TIMERS:
4423 pStat = &gStatTimers;
4424 break;
4425 case STATS_TLB_LOOKUP:
4426 pStat= &gStatTBLookup;
4427 break;
4428 case STATS_IRQ_HANDLING:
4429 pStat= &gStatIRQ;
4430 break;
4431 case STATS_RAW_CHECK:
4432 pStat = &gStatRawCheck;
4433 break;
4434 default:
4435 AssertMsgFailed(("unknown stat %d\n", statcode));
4436 return;
4437 }
4438 STAM_PROFILE_ADV_STOP(pStat, a);
4439}
4440#endif
4441
4442/**
4443 * Raise an RC, force rem exit.
4444 *
4445 * @param pVM VM handle.
4446 * @param rc The rc.
4447 */
4448void remR3RaiseRC(PVM pVM, int rc)
4449{
4450 Log(("remR3RaiseRC: rc=%Rrc\n", rc));
4451 Assert(pVM->rem.s.fInREM);
4452 VM_ASSERT_EMT(pVM);
4453 pVM->rem.s.rc = rc;
4454 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
4455}
4456
4457
4458/* -+- timers -+- */
4459
4460uint64_t cpu_get_tsc(CPUX86State *env)
4461{
4462 STAM_COUNTER_INC(&gStatCpuGetTSC);
4463 return TMCpuTickGet(env->pVCpu);
4464}
4465
4466
4467/* -+- interrupts -+- */
4468
4469void cpu_set_ferr(CPUX86State *env)
4470{
4471 int rc = PDMIsaSetIrq(env->pVM, 13, 1, 0 /*uTagSrc*/);
4472 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4473}
4474
4475int cpu_get_pic_interrupt(CPUX86State *env)
4476{
4477 uint8_t u8Interrupt;
4478 int rc;
4479
4480 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4481 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4482 * with the (a)pic.
4483 */
4484 /* Note! We assume we will go directly to the recompiler to handle the pending interrupt! */
4485 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4486 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4487 * remove this kludge. */
4488 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4489 {
4490 rc = VINF_SUCCESS;
4491 Assert(env->pVM->rem.s.u32PendingInterrupt <= 255);
4492 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4493 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4494 }
4495 else
4496 rc = PDMGetInterrupt(env->pVCpu, &u8Interrupt);
4497
4498 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Rrc pc=%04x:%08llx ~flags=%08llx\n",
4499 u8Interrupt, rc, env->segs[R_CS].selector, (uint64_t)env->eip, (uint64_t)env->eflags));
4500 if (RT_SUCCESS(rc))
4501 {
4502 if (VMCPU_FF_ISPENDING(env->pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
4503 env->interrupt_request |= CPU_INTERRUPT_HARD;
4504 return u8Interrupt;
4505 }
4506 return -1;
4507}
4508
4509
4510/* -+- local apic -+- */
4511
4512#if 0 /* CPUMSetGuestMsr does this now. */
4513void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4514{
4515 int rc = PDMApicSetBase(env->pVM, val);
4516 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Rrc\n", val, rc)); NOREF(rc);
4517}
4518#endif
4519
4520uint64_t cpu_get_apic_base(CPUX86State *env)
4521{
4522 uint64_t u64;
4523 int rc = CPUMQueryGuestMsr(env->pVCpu, MSR_IA32_APICBASE, &u64);
4524 if (RT_SUCCESS(rc))
4525 {
4526 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4527 return u64;
4528 }
4529 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Rrc)\n", rc));
4530 return 0;
4531}
4532
4533void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4534{
4535 int rc = PDMApicSetTPR(env->pVCpu, val << 4); /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
4536 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Rrc\n", val, rc)); NOREF(rc);
4537}
4538
4539uint8_t cpu_get_apic_tpr(CPUX86State *env)
4540{
4541 uint8_t u8;
4542 int rc = PDMApicGetTPR(env->pVCpu, &u8, NULL);
4543 if (RT_SUCCESS(rc))
4544 {
4545 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4546 return u8 >> 4; /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
4547 }
4548 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Rrc)\n", rc));
4549 return 0;
4550}
4551
4552/**
4553 * Read an MSR.
4554 *
4555 * @retval 0 success.
4556 * @retval -1 failure, raise \#GP(0).
4557 * @param env The cpu state.
4558 * @param idMsr The MSR to read.
4559 * @param puValue Where to return the value.
4560 */
4561int cpu_rdmsr(CPUX86State *env, uint32_t idMsr, uint64_t *puValue)
4562{
4563 Assert(env->pVCpu);
4564 return CPUMQueryGuestMsr(env->pVCpu, idMsr, puValue) == VINF_SUCCESS ? 0 : -1;
4565}
4566
4567/**
4568 * Write to an MSR.
4569 *
4570 * @retval 0 success.
4571 * @retval -1 failure, raise \#GP(0).
4572 * @param env The cpu state.
4573 * @param idMsr The MSR to read.
4574 * @param puValue Where to return the value.
4575 */
4576int cpu_wrmsr(CPUX86State *env, uint32_t idMsr, uint64_t uValue)
4577{
4578 Assert(env->pVCpu);
4579 return CPUMSetGuestMsr(env->pVCpu, idMsr, uValue) == VINF_SUCCESS ? 0 : -1;
4580}
4581
4582/* -+- I/O Ports -+- */
4583
4584#undef LOG_GROUP
4585#define LOG_GROUP LOG_GROUP_REM_IOPORT
4586
4587void cpu_outb(CPUX86State *env, pio_addr_t addr, uint8_t val)
4588{
4589 int rc;
4590
4591 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4592 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4593
4594 rc = IOMIOPortWrite(env->pVM, env->pVCpu, (RTIOPORT)addr, val, 1);
4595 if (RT_LIKELY(rc == VINF_SUCCESS))
4596 return;
4597 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4598 {
4599 Log(("cpu_outb: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4600 remR3RaiseRC(env->pVM, rc);
4601 return;
4602 }
4603 remAbort(rc, __FUNCTION__);
4604}
4605
4606void cpu_outw(CPUX86State *env, pio_addr_t addr, uint16_t val)
4607{
4608 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4609 int rc = IOMIOPortWrite(env->pVM, env->pVCpu, (RTIOPORT)addr, val, 2);
4610 if (RT_LIKELY(rc == VINF_SUCCESS))
4611 return;
4612 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4613 {
4614 Log(("cpu_outw: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4615 remR3RaiseRC(env->pVM, rc);
4616 return;
4617 }
4618 remAbort(rc, __FUNCTION__);
4619}
4620
4621void cpu_outl(CPUX86State *env, pio_addr_t addr, uint32_t val)
4622{
4623 int rc;
4624 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4625 rc = IOMIOPortWrite(env->pVM, env->pVCpu, (RTIOPORT)addr, val, 4);
4626 if (RT_LIKELY(rc == VINF_SUCCESS))
4627 return;
4628 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4629 {
4630 Log(("cpu_outl: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4631 remR3RaiseRC(env->pVM, rc);
4632 return;
4633 }
4634 remAbort(rc, __FUNCTION__);
4635}
4636
4637uint8_t cpu_inb(CPUX86State *env, pio_addr_t addr)
4638{
4639 uint32_t u32 = 0;
4640 int rc = IOMIOPortRead(env->pVM, env->pVCpu, (RTIOPORT)addr, &u32, 1);
4641 if (RT_LIKELY(rc == VINF_SUCCESS))
4642 {
4643 if (/*addr != 0x61 && */addr != 0x71)
4644 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4645 return (uint8_t)u32;
4646 }
4647 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4648 {
4649 Log(("cpu_inb: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4650 remR3RaiseRC(env->pVM, rc);
4651 return (uint8_t)u32;
4652 }
4653 remAbort(rc, __FUNCTION__);
4654 return UINT8_C(0xff);
4655}
4656
4657uint16_t cpu_inw(CPUX86State *env, pio_addr_t addr)
4658{
4659 uint32_t u32 = 0;
4660 int rc = IOMIOPortRead(env->pVM, env->pVCpu, (RTIOPORT)addr, &u32, 2);
4661 if (RT_LIKELY(rc == VINF_SUCCESS))
4662 {
4663 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4664 return (uint16_t)u32;
4665 }
4666 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4667 {
4668 Log(("cpu_inw: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4669 remR3RaiseRC(env->pVM, rc);
4670 return (uint16_t)u32;
4671 }
4672 remAbort(rc, __FUNCTION__);
4673 return UINT16_C(0xffff);
4674}
4675
4676uint32_t cpu_inl(CPUX86State *env, pio_addr_t addr)
4677{
4678 uint32_t u32 = 0;
4679 int rc = IOMIOPortRead(env->pVM, env->pVCpu, (RTIOPORT)addr, &u32, 4);
4680 if (RT_LIKELY(rc == VINF_SUCCESS))
4681 {
4682//if (addr==0x01f0 && u32 == 0x6b6d)
4683// loglevel = ~0;
4684 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4685 return u32;
4686 }
4687 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4688 {
4689 Log(("cpu_inl: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4690 remR3RaiseRC(env->pVM, rc);
4691 return u32;
4692 }
4693 remAbort(rc, __FUNCTION__);
4694 return UINT32_C(0xffffffff);
4695}
4696
4697#undef LOG_GROUP
4698#define LOG_GROUP LOG_GROUP_REM
4699
4700
4701/* -+- helpers and misc other interfaces -+- */
4702
4703/**
4704 * Perform the CPUID instruction.
4705 *
4706 * @param env Pointer to the recompiler CPU structure.
4707 * @param idx The CPUID leaf (eax).
4708 * @param idxSub The CPUID sub-leaf (ecx) where applicable.
4709 * @param pvEAX Where to store eax.
4710 * @param pvEBX Where to store ebx.
4711 * @param pvECX Where to store ecx.
4712 * @param pvEDX Where to store edx.
4713 */
4714void cpu_x86_cpuid(CPUX86State *env, uint32_t idx, uint32_t idxSub,
4715 uint32_t *pEAX, uint32_t *pEBX, uint32_t *pECX, uint32_t *pEDX)
4716{
4717 NOREF(idxSub);
4718 CPUMGetGuestCpuId(env->pVCpu, idx, pEAX, pEBX, pECX, pEDX);
4719}
4720
4721
4722#if 0 /* not used */
4723/**
4724 * Interface for qemu hardware to report back fatal errors.
4725 */
4726void hw_error(const char *pszFormat, ...)
4727{
4728 /*
4729 * Bitch about it.
4730 */
4731 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4732 * this in my Odin32 tree at home! */
4733 va_list args;
4734 va_start(args, pszFormat);
4735 RTLogPrintf("fatal error in virtual hardware:");
4736 RTLogPrintfV(pszFormat, args);
4737 va_end(args);
4738 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4739
4740 /*
4741 * If we're in REM context we'll sync back the state before 'jumping' to
4742 * the EMs failure handling.
4743 */
4744 PVM pVM = cpu_single_env->pVM;
4745 if (pVM->rem.s.fInREM)
4746 REMR3StateBack(pVM);
4747 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4748 AssertMsgFailed(("EMR3FatalError returned!\n"));
4749}
4750#endif
4751
4752/**
4753 * Interface for the qemu cpu to report unhandled situation
4754 * raising a fatal VM error.
4755 */
4756void cpu_abort(CPUX86State *env, const char *pszFormat, ...)
4757{
4758 va_list va;
4759 PVM pVM;
4760 PVMCPU pVCpu;
4761 char szMsg[256];
4762
4763 /*
4764 * Bitch about it.
4765 */
4766 RTLogFlags(NULL, "nodisabled nobuffered");
4767 RTLogFlush(NULL);
4768
4769 va_start(va, pszFormat);
4770#if defined(RT_OS_WINDOWS) && ARCH_BITS == 64
4771 /* It's a bit complicated when mixing MSC and GCC on AMD64. This is a bit ugly, but it works. */
4772 unsigned cArgs = 0;
4773 uintptr_t auArgs[6] = {0,0,0,0,0,0};
4774 const char *psz = strchr(pszFormat, '%');
4775 while (psz && cArgs < 6)
4776 {
4777 auArgs[cArgs++] = va_arg(va, uintptr_t);
4778 psz = strchr(psz + 1, '%');
4779 }
4780 switch (cArgs)
4781 {
4782 case 1: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0]); break;
4783 case 2: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0], auArgs[1]); break;
4784 case 3: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0], auArgs[1], auArgs[2]); break;
4785 case 4: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0], auArgs[1], auArgs[2], auArgs[3]); break;
4786 case 5: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0], auArgs[1], auArgs[2], auArgs[3], auArgs[4]); break;
4787 case 6: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0], auArgs[1], auArgs[2], auArgs[3], auArgs[4], auArgs[5]); break;
4788 default:
4789 case 0: RTStrPrintf(szMsg, sizeof(szMsg), "%s", pszFormat); break;
4790 }
4791#else
4792 RTStrPrintfV(szMsg, sizeof(szMsg), pszFormat, va);
4793#endif
4794 va_end(va);
4795
4796 RTLogPrintf("fatal error in recompiler cpu: %s\n", szMsg);
4797 RTLogRelPrintf("fatal error in recompiler cpu: %s\n", szMsg);
4798
4799 /*
4800 * If we're in REM context we'll sync back the state before 'jumping' to
4801 * the EMs failure handling.
4802 */
4803 pVM = cpu_single_env->pVM;
4804 pVCpu = cpu_single_env->pVCpu;
4805 Assert(pVCpu);
4806
4807 if (pVM->rem.s.fInREM)
4808 REMR3StateBack(pVM, pVCpu);
4809 EMR3FatalError(pVCpu, VERR_REM_VIRTUAL_CPU_ERROR);
4810 AssertMsgFailed(("EMR3FatalError returned!\n"));
4811}
4812
4813
4814/**
4815 * Aborts the VM.
4816 *
4817 * @param rc VBox error code.
4818 * @param pszTip Hint about why/when this happened.
4819 */
4820void remAbort(int rc, const char *pszTip)
4821{
4822 PVM pVM;
4823 PVMCPU pVCpu;
4824
4825 /*
4826 * Bitch about it.
4827 */
4828 RTLogPrintf("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip);
4829 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip));
4830
4831 /*
4832 * Jump back to where we entered the recompiler.
4833 */
4834 pVM = cpu_single_env->pVM;
4835 pVCpu = cpu_single_env->pVCpu;
4836 Assert(pVCpu);
4837
4838 if (pVM->rem.s.fInREM)
4839 REMR3StateBack(pVM, pVCpu);
4840
4841 EMR3FatalError(pVCpu, rc);
4842 AssertMsgFailed(("EMR3FatalError returned!\n"));
4843}
4844
4845
4846/**
4847 * Dumps a linux system call.
4848 * @param pVCpu VMCPU handle.
4849 */
4850void remR3DumpLnxSyscall(PVMCPU pVCpu)
4851{
4852 static const char *apsz[] =
4853 {
4854 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4855 "sys_exit",
4856 "sys_fork",
4857 "sys_read",
4858 "sys_write",
4859 "sys_open", /* 5 */
4860 "sys_close",
4861 "sys_waitpid",
4862 "sys_creat",
4863 "sys_link",
4864 "sys_unlink", /* 10 */
4865 "sys_execve",
4866 "sys_chdir",
4867 "sys_time",
4868 "sys_mknod",
4869 "sys_chmod", /* 15 */
4870 "sys_lchown16",
4871 "sys_ni_syscall", /* old break syscall holder */
4872 "sys_stat",
4873 "sys_lseek",
4874 "sys_getpid", /* 20 */
4875 "sys_mount",
4876 "sys_oldumount",
4877 "sys_setuid16",
4878 "sys_getuid16",
4879 "sys_stime", /* 25 */
4880 "sys_ptrace",
4881 "sys_alarm",
4882 "sys_fstat",
4883 "sys_pause",
4884 "sys_utime", /* 30 */
4885 "sys_ni_syscall", /* old stty syscall holder */
4886 "sys_ni_syscall", /* old gtty syscall holder */
4887 "sys_access",
4888 "sys_nice",
4889 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4890 "sys_sync",
4891 "sys_kill",
4892 "sys_rename",
4893 "sys_mkdir",
4894 "sys_rmdir", /* 40 */
4895 "sys_dup",
4896 "sys_pipe",
4897 "sys_times",
4898 "sys_ni_syscall", /* old prof syscall holder */
4899 "sys_brk", /* 45 */
4900 "sys_setgid16",
4901 "sys_getgid16",
4902 "sys_signal",
4903 "sys_geteuid16",
4904 "sys_getegid16", /* 50 */
4905 "sys_acct",
4906 "sys_umount", /* recycled never used phys() */
4907 "sys_ni_syscall", /* old lock syscall holder */
4908 "sys_ioctl",
4909 "sys_fcntl", /* 55 */
4910 "sys_ni_syscall", /* old mpx syscall holder */
4911 "sys_setpgid",
4912 "sys_ni_syscall", /* old ulimit syscall holder */
4913 "sys_olduname",
4914 "sys_umask", /* 60 */
4915 "sys_chroot",
4916 "sys_ustat",
4917 "sys_dup2",
4918 "sys_getppid",
4919 "sys_getpgrp", /* 65 */
4920 "sys_setsid",
4921 "sys_sigaction",
4922 "sys_sgetmask",
4923 "sys_ssetmask",
4924 "sys_setreuid16", /* 70 */
4925 "sys_setregid16",
4926 "sys_sigsuspend",
4927 "sys_sigpending",
4928 "sys_sethostname",
4929 "sys_setrlimit", /* 75 */
4930 "sys_old_getrlimit",
4931 "sys_getrusage",
4932 "sys_gettimeofday",
4933 "sys_settimeofday",
4934 "sys_getgroups16", /* 80 */
4935 "sys_setgroups16",
4936 "old_select",
4937 "sys_symlink",
4938 "sys_lstat",
4939 "sys_readlink", /* 85 */
4940 "sys_uselib",
4941 "sys_swapon",
4942 "sys_reboot",
4943 "old_readdir",
4944 "old_mmap", /* 90 */
4945 "sys_munmap",
4946 "sys_truncate",
4947 "sys_ftruncate",
4948 "sys_fchmod",
4949 "sys_fchown16", /* 95 */
4950 "sys_getpriority",
4951 "sys_setpriority",
4952 "sys_ni_syscall", /* old profil syscall holder */
4953 "sys_statfs",
4954 "sys_fstatfs", /* 100 */
4955 "sys_ioperm",
4956 "sys_socketcall",
4957 "sys_syslog",
4958 "sys_setitimer",
4959 "sys_getitimer", /* 105 */
4960 "sys_newstat",
4961 "sys_newlstat",
4962 "sys_newfstat",
4963 "sys_uname",
4964 "sys_iopl", /* 110 */
4965 "sys_vhangup",
4966 "sys_ni_syscall", /* old "idle" system call */
4967 "sys_vm86old",
4968 "sys_wait4",
4969 "sys_swapoff", /* 115 */
4970 "sys_sysinfo",
4971 "sys_ipc",
4972 "sys_fsync",
4973 "sys_sigreturn",
4974 "sys_clone", /* 120 */
4975 "sys_setdomainname",
4976 "sys_newuname",
4977 "sys_modify_ldt",
4978 "sys_adjtimex",
4979 "sys_mprotect", /* 125 */
4980 "sys_sigprocmask",
4981 "sys_ni_syscall", /* old "create_module" */
4982 "sys_init_module",
4983 "sys_delete_module",
4984 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4985 "sys_quotactl",
4986 "sys_getpgid",
4987 "sys_fchdir",
4988 "sys_bdflush",
4989 "sys_sysfs", /* 135 */
4990 "sys_personality",
4991 "sys_ni_syscall", /* reserved for afs_syscall */
4992 "sys_setfsuid16",
4993 "sys_setfsgid16",
4994 "sys_llseek", /* 140 */
4995 "sys_getdents",
4996 "sys_select",
4997 "sys_flock",
4998 "sys_msync",
4999 "sys_readv", /* 145 */
5000 "sys_writev",
5001 "sys_getsid",
5002 "sys_fdatasync",
5003 "sys_sysctl",
5004 "sys_mlock", /* 150 */
5005 "sys_munlock",
5006 "sys_mlockall",
5007 "sys_munlockall",
5008 "sys_sched_setparam",
5009 "sys_sched_getparam", /* 155 */
5010 "sys_sched_setscheduler",
5011 "sys_sched_getscheduler",
5012 "sys_sched_yield",
5013 "sys_sched_get_priority_max",
5014 "sys_sched_get_priority_min", /* 160 */
5015 "sys_sched_rr_get_interval",
5016 "sys_nanosleep",
5017 "sys_mremap",
5018 "sys_setresuid16",
5019 "sys_getresuid16", /* 165 */
5020 "sys_vm86",
5021 "sys_ni_syscall", /* Old sys_query_module */
5022 "sys_poll",
5023 "sys_nfsservctl",
5024 "sys_setresgid16", /* 170 */
5025 "sys_getresgid16",
5026 "sys_prctl",
5027 "sys_rt_sigreturn",
5028 "sys_rt_sigaction",
5029 "sys_rt_sigprocmask", /* 175 */
5030 "sys_rt_sigpending",
5031 "sys_rt_sigtimedwait",
5032 "sys_rt_sigqueueinfo",
5033 "sys_rt_sigsuspend",
5034 "sys_pread64", /* 180 */
5035 "sys_pwrite64",
5036 "sys_chown16",
5037 "sys_getcwd",
5038 "sys_capget",
5039 "sys_capset", /* 185 */
5040 "sys_sigaltstack",
5041 "sys_sendfile",
5042 "sys_ni_syscall", /* reserved for streams1 */
5043 "sys_ni_syscall", /* reserved for streams2 */
5044 "sys_vfork", /* 190 */
5045 "sys_getrlimit",
5046 "sys_mmap2",
5047 "sys_truncate64",
5048 "sys_ftruncate64",
5049 "sys_stat64", /* 195 */
5050 "sys_lstat64",
5051 "sys_fstat64",
5052 "sys_lchown",
5053 "sys_getuid",
5054 "sys_getgid", /* 200 */
5055 "sys_geteuid",
5056 "sys_getegid",
5057 "sys_setreuid",
5058 "sys_setregid",
5059 "sys_getgroups", /* 205 */
5060 "sys_setgroups",
5061 "sys_fchown",
5062 "sys_setresuid",
5063 "sys_getresuid",
5064 "sys_setresgid", /* 210 */
5065 "sys_getresgid",
5066 "sys_chown",
5067 "sys_setuid",
5068 "sys_setgid",
5069 "sys_setfsuid", /* 215 */
5070 "sys_setfsgid",
5071 "sys_pivot_root",
5072 "sys_mincore",
5073 "sys_madvise",
5074 "sys_getdents64", /* 220 */
5075 "sys_fcntl64",
5076 "sys_ni_syscall", /* reserved for TUX */
5077 "sys_ni_syscall",
5078 "sys_gettid",
5079 "sys_readahead", /* 225 */
5080 "sys_setxattr",
5081 "sys_lsetxattr",
5082 "sys_fsetxattr",
5083 "sys_getxattr",
5084 "sys_lgetxattr", /* 230 */
5085 "sys_fgetxattr",
5086 "sys_listxattr",
5087 "sys_llistxattr",
5088 "sys_flistxattr",
5089 "sys_removexattr", /* 235 */
5090 "sys_lremovexattr",
5091 "sys_fremovexattr",
5092 "sys_tkill",
5093 "sys_sendfile64",
5094 "sys_futex", /* 240 */
5095 "sys_sched_setaffinity",
5096 "sys_sched_getaffinity",
5097 "sys_set_thread_area",
5098 "sys_get_thread_area",
5099 "sys_io_setup", /* 245 */
5100 "sys_io_destroy",
5101 "sys_io_getevents",
5102 "sys_io_submit",
5103 "sys_io_cancel",
5104 "sys_fadvise64", /* 250 */
5105 "sys_ni_syscall",
5106 "sys_exit_group",
5107 "sys_lookup_dcookie",
5108 "sys_epoll_create",
5109 "sys_epoll_ctl", /* 255 */
5110 "sys_epoll_wait",
5111 "sys_remap_file_pages",
5112 "sys_set_tid_address",
5113 "sys_timer_create",
5114 "sys_timer_settime", /* 260 */
5115 "sys_timer_gettime",
5116 "sys_timer_getoverrun",
5117 "sys_timer_delete",
5118 "sys_clock_settime",
5119 "sys_clock_gettime", /* 265 */
5120 "sys_clock_getres",
5121 "sys_clock_nanosleep",
5122 "sys_statfs64",
5123 "sys_fstatfs64",
5124 "sys_tgkill", /* 270 */
5125 "sys_utimes",
5126 "sys_fadvise64_64",
5127 "sys_ni_syscall" /* sys_vserver */
5128 };
5129
5130 uint32_t uEAX = CPUMGetGuestEAX(pVCpu);
5131 switch (uEAX)
5132 {
5133 default:
5134 if (uEAX < RT_ELEMENTS(apsz))
5135 Log(("REM: linux syscall %3d: %s (eip=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
5136 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVCpu), CPUMGetGuestEBX(pVCpu), CPUMGetGuestECX(pVCpu),
5137 CPUMGetGuestEDX(pVCpu), CPUMGetGuestESI(pVCpu), CPUMGetGuestEDI(pVCpu), CPUMGetGuestEBP(pVCpu)));
5138 else
5139 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVCpu), uEAX, uEAX));
5140 break;
5141
5142 }
5143}
5144
5145
5146/**
5147 * Dumps an OpenBSD system call.
5148 * @param pVCpu VMCPU handle.
5149 */
5150void remR3DumpOBsdSyscall(PVMCPU pVCpu)
5151{
5152 static const char *apsz[] =
5153 {
5154 "SYS_syscall", //0
5155 "SYS_exit", //1
5156 "SYS_fork", //2
5157 "SYS_read", //3
5158 "SYS_write", //4
5159 "SYS_open", //5
5160 "SYS_close", //6
5161 "SYS_wait4", //7
5162 "SYS_8",
5163 "SYS_link", //9
5164 "SYS_unlink", //10
5165 "SYS_11",
5166 "SYS_chdir", //12
5167 "SYS_fchdir", //13
5168 "SYS_mknod", //14
5169 "SYS_chmod", //15
5170 "SYS_chown", //16
5171 "SYS_break", //17
5172 "SYS_18",
5173 "SYS_19",
5174 "SYS_getpid", //20
5175 "SYS_mount", //21
5176 "SYS_unmount", //22
5177 "SYS_setuid", //23
5178 "SYS_getuid", //24
5179 "SYS_geteuid", //25
5180 "SYS_ptrace", //26
5181 "SYS_recvmsg", //27
5182 "SYS_sendmsg", //28
5183 "SYS_recvfrom", //29
5184 "SYS_accept", //30
5185 "SYS_getpeername", //31
5186 "SYS_getsockname", //32
5187 "SYS_access", //33
5188 "SYS_chflags", //34
5189 "SYS_fchflags", //35
5190 "SYS_sync", //36
5191 "SYS_kill", //37
5192 "SYS_38",
5193 "SYS_getppid", //39
5194 "SYS_40",
5195 "SYS_dup", //41
5196 "SYS_opipe", //42
5197 "SYS_getegid", //43
5198 "SYS_profil", //44
5199 "SYS_ktrace", //45
5200 "SYS_sigaction", //46
5201 "SYS_getgid", //47
5202 "SYS_sigprocmask", //48
5203 "SYS_getlogin", //49
5204 "SYS_setlogin", //50
5205 "SYS_acct", //51
5206 "SYS_sigpending", //52
5207 "SYS_osigaltstack", //53
5208 "SYS_ioctl", //54
5209 "SYS_reboot", //55
5210 "SYS_revoke", //56
5211 "SYS_symlink", //57
5212 "SYS_readlink", //58
5213 "SYS_execve", //59
5214 "SYS_umask", //60
5215 "SYS_chroot", //61
5216 "SYS_62",
5217 "SYS_63",
5218 "SYS_64",
5219 "SYS_65",
5220 "SYS_vfork", //66
5221 "SYS_67",
5222 "SYS_68",
5223 "SYS_sbrk", //69
5224 "SYS_sstk", //70
5225 "SYS_61",
5226 "SYS_vadvise", //72
5227 "SYS_munmap", //73
5228 "SYS_mprotect", //74
5229 "SYS_madvise", //75
5230 "SYS_76",
5231 "SYS_77",
5232 "SYS_mincore", //78
5233 "SYS_getgroups", //79
5234 "SYS_setgroups", //80
5235 "SYS_getpgrp", //81
5236 "SYS_setpgid", //82
5237 "SYS_setitimer", //83
5238 "SYS_84",
5239 "SYS_85",
5240 "SYS_getitimer", //86
5241 "SYS_87",
5242 "SYS_88",
5243 "SYS_89",
5244 "SYS_dup2", //90
5245 "SYS_91",
5246 "SYS_fcntl", //92
5247 "SYS_select", //93
5248 "SYS_94",
5249 "SYS_fsync", //95
5250 "SYS_setpriority", //96
5251 "SYS_socket", //97
5252 "SYS_connect", //98
5253 "SYS_99",
5254 "SYS_getpriority", //100
5255 "SYS_101",
5256 "SYS_102",
5257 "SYS_sigreturn", //103
5258 "SYS_bind", //104
5259 "SYS_setsockopt", //105
5260 "SYS_listen", //106
5261 "SYS_107",
5262 "SYS_108",
5263 "SYS_109",
5264 "SYS_110",
5265 "SYS_sigsuspend", //111
5266 "SYS_112",
5267 "SYS_113",
5268 "SYS_114",
5269 "SYS_115",
5270 "SYS_gettimeofday", //116
5271 "SYS_getrusage", //117
5272 "SYS_getsockopt", //118
5273 "SYS_119",
5274 "SYS_readv", //120
5275 "SYS_writev", //121
5276 "SYS_settimeofday", //122
5277 "SYS_fchown", //123
5278 "SYS_fchmod", //124
5279 "SYS_125",
5280 "SYS_setreuid", //126
5281 "SYS_setregid", //127
5282 "SYS_rename", //128
5283 "SYS_129",
5284 "SYS_130",
5285 "SYS_flock", //131
5286 "SYS_mkfifo", //132
5287 "SYS_sendto", //133
5288 "SYS_shutdown", //134
5289 "SYS_socketpair", //135
5290 "SYS_mkdir", //136
5291 "SYS_rmdir", //137
5292 "SYS_utimes", //138
5293 "SYS_139",
5294 "SYS_adjtime", //140
5295 "SYS_141",
5296 "SYS_142",
5297 "SYS_143",
5298 "SYS_144",
5299 "SYS_145",
5300 "SYS_146",
5301 "SYS_setsid", //147
5302 "SYS_quotactl", //148
5303 "SYS_149",
5304 "SYS_150",
5305 "SYS_151",
5306 "SYS_152",
5307 "SYS_153",
5308 "SYS_154",
5309 "SYS_nfssvc", //155
5310 "SYS_156",
5311 "SYS_157",
5312 "SYS_158",
5313 "SYS_159",
5314 "SYS_160",
5315 "SYS_getfh", //161
5316 "SYS_162",
5317 "SYS_163",
5318 "SYS_164",
5319 "SYS_sysarch", //165
5320 "SYS_166",
5321 "SYS_167",
5322 "SYS_168",
5323 "SYS_169",
5324 "SYS_170",
5325 "SYS_171",
5326 "SYS_172",
5327 "SYS_pread", //173
5328 "SYS_pwrite", //174
5329 "SYS_175",
5330 "SYS_176",
5331 "SYS_177",
5332 "SYS_178",
5333 "SYS_179",
5334 "SYS_180",
5335 "SYS_setgid", //181
5336 "SYS_setegid", //182
5337 "SYS_seteuid", //183
5338 "SYS_lfs_bmapv", //184
5339 "SYS_lfs_markv", //185
5340 "SYS_lfs_segclean", //186
5341 "SYS_lfs_segwait", //187
5342 "SYS_188",
5343 "SYS_189",
5344 "SYS_190",
5345 "SYS_pathconf", //191
5346 "SYS_fpathconf", //192
5347 "SYS_swapctl", //193
5348 "SYS_getrlimit", //194
5349 "SYS_setrlimit", //195
5350 "SYS_getdirentries", //196
5351 "SYS_mmap", //197
5352 "SYS___syscall", //198
5353 "SYS_lseek", //199
5354 "SYS_truncate", //200
5355 "SYS_ftruncate", //201
5356 "SYS___sysctl", //202
5357 "SYS_mlock", //203
5358 "SYS_munlock", //204
5359 "SYS_205",
5360 "SYS_futimes", //206
5361 "SYS_getpgid", //207
5362 "SYS_xfspioctl", //208
5363 "SYS_209",
5364 "SYS_210",
5365 "SYS_211",
5366 "SYS_212",
5367 "SYS_213",
5368 "SYS_214",
5369 "SYS_215",
5370 "SYS_216",
5371 "SYS_217",
5372 "SYS_218",
5373 "SYS_219",
5374 "SYS_220",
5375 "SYS_semget", //221
5376 "SYS_222",
5377 "SYS_223",
5378 "SYS_224",
5379 "SYS_msgget", //225
5380 "SYS_msgsnd", //226
5381 "SYS_msgrcv", //227
5382 "SYS_shmat", //228
5383 "SYS_229",
5384 "SYS_shmdt", //230
5385 "SYS_231",
5386 "SYS_clock_gettime", //232
5387 "SYS_clock_settime", //233
5388 "SYS_clock_getres", //234
5389 "SYS_235",
5390 "SYS_236",
5391 "SYS_237",
5392 "SYS_238",
5393 "SYS_239",
5394 "SYS_nanosleep", //240
5395 "SYS_241",
5396 "SYS_242",
5397 "SYS_243",
5398 "SYS_244",
5399 "SYS_245",
5400 "SYS_246",
5401 "SYS_247",
5402 "SYS_248",
5403 "SYS_249",
5404 "SYS_minherit", //250
5405 "SYS_rfork", //251
5406 "SYS_poll", //252
5407 "SYS_issetugid", //253
5408 "SYS_lchown", //254
5409 "SYS_getsid", //255
5410 "SYS_msync", //256
5411 "SYS_257",
5412 "SYS_258",
5413 "SYS_259",
5414 "SYS_getfsstat", //260
5415 "SYS_statfs", //261
5416 "SYS_fstatfs", //262
5417 "SYS_pipe", //263
5418 "SYS_fhopen", //264
5419 "SYS_265",
5420 "SYS_fhstatfs", //266
5421 "SYS_preadv", //267
5422 "SYS_pwritev", //268
5423 "SYS_kqueue", //269
5424 "SYS_kevent", //270
5425 "SYS_mlockall", //271
5426 "SYS_munlockall", //272
5427 "SYS_getpeereid", //273
5428 "SYS_274",
5429 "SYS_275",
5430 "SYS_276",
5431 "SYS_277",
5432 "SYS_278",
5433 "SYS_279",
5434 "SYS_280",
5435 "SYS_getresuid", //281
5436 "SYS_setresuid", //282
5437 "SYS_getresgid", //283
5438 "SYS_setresgid", //284
5439 "SYS_285",
5440 "SYS_mquery", //286
5441 "SYS_closefrom", //287
5442 "SYS_sigaltstack", //288
5443 "SYS_shmget", //289
5444 "SYS_semop", //290
5445 "SYS_stat", //291
5446 "SYS_fstat", //292
5447 "SYS_lstat", //293
5448 "SYS_fhstat", //294
5449 "SYS___semctl", //295
5450 "SYS_shmctl", //296
5451 "SYS_msgctl", //297
5452 "SYS_MAXSYSCALL", //298
5453 //299
5454 //300
5455 };
5456 uint32_t uEAX;
5457 if (!LogIsEnabled())
5458 return;
5459 uEAX = CPUMGetGuestEAX(pVCpu);
5460 switch (uEAX)
5461 {
5462 default:
5463 if (uEAX < RT_ELEMENTS(apsz))
5464 {
5465 uint32_t au32Args[8] = {0};
5466 PGMPhysSimpleReadGCPtr(pVCpu, au32Args, CPUMGetGuestESP(pVCpu), sizeof(au32Args));
5467 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
5468 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVCpu), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
5469 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
5470 }
5471 else
5472 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVCpu), uEAX, uEAX);
5473 break;
5474 }
5475}
5476
5477
5478#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
5479/**
5480 * The Dll main entry point (stub).
5481 */
5482bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
5483{
5484 return true;
5485}
5486
5487void *memcpy(void *dst, const void *src, size_t size)
5488{
5489 uint8_t*pbDst = dst, *pbSrc = src;
5490 while (size-- > 0)
5491 *pbDst++ = *pbSrc++;
5492 return dst;
5493}
5494
5495#endif
5496
5497void cpu_smm_update(CPUX86State *env)
5498{
5499}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette