VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 45701

Last change on this file since 45701 was 45701, checked in by vboxsync, 12 years ago

VMM: SELM and VMM early HM init changes.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 182.8 KB
Line 
1/* $Id: VBoxRecompiler.c 45701 2013-04-24 14:21:09Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_REM
23#include <stdio.h> /* FILE */
24#include "osdep.h"
25#include "config.h"
26#include "cpu.h"
27#include "exec-all.h"
28#include "ioport.h"
29
30#include <VBox/vmm/rem.h>
31#include <VBox/vmm/vmapi.h>
32#include <VBox/vmm/tm.h>
33#include <VBox/vmm/ssm.h>
34#include <VBox/vmm/em.h>
35#include <VBox/vmm/trpm.h>
36#include <VBox/vmm/iom.h>
37#include <VBox/vmm/mm.h>
38#include <VBox/vmm/pgm.h>
39#include <VBox/vmm/pdm.h>
40#include <VBox/vmm/dbgf.h>
41#include <VBox/dbg.h>
42#include <VBox/vmm/hm.h>
43#include <VBox/vmm/patm.h>
44#include <VBox/vmm/csam.h>
45#include "REMInternal.h"
46#include <VBox/vmm/vm.h>
47#include <VBox/vmm/uvm.h>
48#include <VBox/param.h>
49#include <VBox/err.h>
50
51#include <VBox/log.h>
52#include <iprt/semaphore.h>
53#include <iprt/asm.h>
54#include <iprt/assert.h>
55#include <iprt/thread.h>
56#include <iprt/string.h>
57
58/* Don't wanna include everything. */
59extern void cpu_exec_init_all(uintptr_t tb_size);
60extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
61extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
62extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
63extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
64extern void tlb_flush(CPUX86State *env, int flush_global);
65extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
66extern void sync_ldtr(CPUX86State *env1, int selector);
67
68#ifdef VBOX_STRICT
69ram_addr_t get_phys_page_offset(target_ulong addr);
70#endif
71
72
73/*******************************************************************************
74* Defined Constants And Macros *
75*******************************************************************************/
76
77/** Copy 80-bit fpu register at pSrc to pDst.
78 * This is probably faster than *calling* memcpy.
79 */
80#define REM_COPY_FPU_REG(pDst, pSrc) \
81 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
82
83/** How remR3RunLoggingStep operates. */
84#define REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
85
86
87/*******************************************************************************
88* Internal Functions *
89*******************************************************************************/
90static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
91static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
92static void remR3StateUpdate(PVM pVM, PVMCPU pVCpu);
93static int remR3InitPhysRamSizeAndDirtyMap(PVM pVM, bool fGuarded);
94
95static uint32_t remR3MMIOReadU8(void *pvEnv, target_phys_addr_t GCPhys);
96static uint32_t remR3MMIOReadU16(void *pvEnv, target_phys_addr_t GCPhys);
97static uint32_t remR3MMIOReadU32(void *pvEnv, target_phys_addr_t GCPhys);
98static void remR3MMIOWriteU8(void *pvEnv, target_phys_addr_t GCPhys, uint32_t u32);
99static void remR3MMIOWriteU16(void *pvEnv, target_phys_addr_t GCPhys, uint32_t u32);
100static void remR3MMIOWriteU32(void *pvEnv, target_phys_addr_t GCPhys, uint32_t u32);
101
102static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
103static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
104static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
105static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
106static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
107static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
108
109static void remR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM);
110static void remR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler);
111static void remR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM);
112
113/*******************************************************************************
114* Global Variables *
115*******************************************************************************/
116
117/** @todo Move stats to REM::s some rainy day we have nothing do to. */
118#ifdef VBOX_WITH_STATISTICS
119static STAMPROFILEADV gStatExecuteSingleInstr;
120static STAMPROFILEADV gStatCompilationQEmu;
121static STAMPROFILEADV gStatRunCodeQEmu;
122static STAMPROFILEADV gStatTotalTimeQEmu;
123static STAMPROFILEADV gStatTimers;
124static STAMPROFILEADV gStatTBLookup;
125static STAMPROFILEADV gStatIRQ;
126static STAMPROFILEADV gStatRawCheck;
127static STAMPROFILEADV gStatMemRead;
128static STAMPROFILEADV gStatMemWrite;
129static STAMPROFILE gStatGCPhys2HCVirt;
130static STAMCOUNTER gStatCpuGetTSC;
131static STAMCOUNTER gStatRefuseTFInhibit;
132static STAMCOUNTER gStatRefuseVM86;
133static STAMCOUNTER gStatRefusePaging;
134static STAMCOUNTER gStatRefusePAE;
135static STAMCOUNTER gStatRefuseIOPLNot0;
136static STAMCOUNTER gStatRefuseIF0;
137static STAMCOUNTER gStatRefuseCode16;
138static STAMCOUNTER gStatRefuseWP0;
139static STAMCOUNTER gStatRefuseRing1or2;
140static STAMCOUNTER gStatRefuseCanExecute;
141static STAMCOUNTER gaStatRefuseStale[6];
142static STAMCOUNTER gStatREMGDTChange;
143static STAMCOUNTER gStatREMIDTChange;
144static STAMCOUNTER gStatREMLDTRChange;
145static STAMCOUNTER gStatREMTRChange;
146static STAMCOUNTER gStatSelOutOfSync[6];
147static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
148static STAMCOUNTER gStatFlushTBs;
149#endif
150/* in exec.c */
151extern uint32_t tlb_flush_count;
152extern uint32_t tb_flush_count;
153extern uint32_t tb_phys_invalidate_count;
154
155/*
156 * Global stuff.
157 */
158
159/** MMIO read callbacks. */
160CPUReadMemoryFunc *g_apfnMMIORead[3] =
161{
162 remR3MMIOReadU8,
163 remR3MMIOReadU16,
164 remR3MMIOReadU32
165};
166
167/** MMIO write callbacks. */
168CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
169{
170 remR3MMIOWriteU8,
171 remR3MMIOWriteU16,
172 remR3MMIOWriteU32
173};
174
175/** Handler read callbacks. */
176CPUReadMemoryFunc *g_apfnHandlerRead[3] =
177{
178 remR3HandlerReadU8,
179 remR3HandlerReadU16,
180 remR3HandlerReadU32
181};
182
183/** Handler write callbacks. */
184CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
185{
186 remR3HandlerWriteU8,
187 remR3HandlerWriteU16,
188 remR3HandlerWriteU32
189};
190
191
192#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
193/*
194 * Debugger commands.
195 */
196static FNDBGCCMD remR3CmdDisasEnableStepping;;
197
198/** '.remstep' arguments. */
199static const DBGCVARDESC g_aArgRemStep[] =
200{
201 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
202 { 0, ~0U, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
203};
204
205/** Command descriptors. */
206static const DBGCCMD g_aCmds[] =
207{
208 {
209 .pszCmd ="remstep",
210 .cArgsMin = 0,
211 .cArgsMax = 1,
212 .paArgDescs = &g_aArgRemStep[0],
213 .cArgDescs = RT_ELEMENTS(g_aArgRemStep),
214 .fFlags = 0,
215 .pfnHandler = remR3CmdDisasEnableStepping,
216 .pszSyntax = "[on/off]",
217 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
218 "If no arguments show the current state."
219 }
220};
221#endif
222
223/** Prologue code, must be in lower 4G to simplify jumps to/from generated code.
224 * @todo huh??? That cannot be the case on the mac... So, this
225 * point is probably not valid any longer. */
226uint8_t *code_gen_prologue;
227
228
229/*******************************************************************************
230* Internal Functions *
231*******************************************************************************/
232void remAbort(int rc, const char *pszTip);
233extern int testmath(void);
234
235/* Put them here to avoid unused variable warning. */
236AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
237#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
238//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
239/* Why did this have to be identical?? */
240AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
241#else
242AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
243#endif
244
245
246/**
247 * Initializes the REM.
248 *
249 * @returns VBox status code.
250 * @param pVM The VM to operate on.
251 */
252REMR3DECL(int) REMR3Init(PVM pVM)
253{
254 PREMHANDLERNOTIFICATION pCur;
255 uint32_t u32Dummy;
256 int rc;
257 unsigned i;
258
259#ifdef VBOX_ENABLE_VBOXREM64
260 LogRel(("Using 64-bit aware REM\n"));
261#endif
262
263 /*
264 * Assert sanity.
265 */
266 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
267 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
268 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
269#if 0 /* just an annoyance at the moment. */
270#if defined(DEBUG) && !defined(RT_OS_SOLARIS) && !defined(RT_OS_FREEBSD) /// @todo fix the solaris and freebsd math stuff.
271 Assert(!testmath());
272#endif
273#endif
274
275 /*
276 * Init some internal data members.
277 */
278 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
279 pVM->rem.s.Env.pVM = pVM;
280#ifdef CPU_RAW_MODE_INIT
281 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
282#endif
283
284 /*
285 * Initialize the REM critical section.
286 *
287 * Note: This is not a 100% safe solution as updating the internal memory state while another VCPU
288 * is executing code could be dangerous. Taking the REM lock is not an option due to the danger of
289 * deadlocks. (mostly pgm vs rem locking)
290 */
291 rc = PDMR3CritSectInit(pVM, &pVM->rem.s.CritSectRegister, RT_SRC_POS, "REM-Register");
292 AssertRCReturn(rc, rc);
293
294 /* ctx. */
295 pVM->rem.s.pCtx = NULL; /* set when executing code. */
296 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order has changed! REM depends on notification about ALL physical memory registrations\n"));
297
298 /* ignore all notifications */
299 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
300
301 code_gen_prologue = RTMemExecAlloc(_1K);
302 AssertLogRelReturn(code_gen_prologue, VERR_NO_MEMORY);
303
304 cpu_exec_init_all(0);
305
306 /*
307 * Init the recompiler.
308 */
309 if (!cpu_x86_init(&pVM->rem.s.Env, "vbox"))
310 {
311 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
312 return VERR_GENERAL_FAILURE;
313 }
314 PVMCPU pVCpu = VMMGetCpu(pVM);
315 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
316 CPUMGetGuestCpuId(pVCpu, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
317
318 EMRemLock(pVM);
319 cpu_reset(&pVM->rem.s.Env);
320 EMRemUnlock(pVM);
321
322 /* allocate code buffer for single instruction emulation. */
323 pVM->rem.s.Env.cbCodeBuffer = 4096;
324 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
325 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
326
327 /* Finally, set the cpu_single_env global. */
328 cpu_single_env = &pVM->rem.s.Env;
329
330 /* Nothing is pending by default */
331 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
332
333 /*
334 * Register ram types.
335 */
336 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(g_apfnMMIORead, g_apfnMMIOWrite, &pVM->rem.s.Env);
337 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
338 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
339 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
340 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
341
342 /* stop ignoring. */
343 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
344
345 /*
346 * Register the saved state data unit.
347 */
348 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
349 NULL, NULL, NULL,
350 NULL, remR3Save, NULL,
351 NULL, remR3Load, NULL);
352 if (RT_FAILURE(rc))
353 return rc;
354
355#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
356 /*
357 * Debugger commands.
358 */
359 static bool fRegisteredCmds = false;
360 if (!fRegisteredCmds)
361 {
362 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
363 if (RT_SUCCESS(rc))
364 fRegisteredCmds = true;
365 }
366#endif
367
368#ifdef VBOX_WITH_STATISTICS
369 /*
370 * Statistics.
371 */
372 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
373 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
374 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
375 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
376 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer queue processing.");
377 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling translation block lookup.");
378 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling IRQ delivery.");
379 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling remR3CanExecuteRaw calls.");
380 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
381 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
382 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory conversion (PGMR3PhysTlbGCPhys2Ptr).");
383
384 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
385
386 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
387 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
388 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
389 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
390 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
391 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
392 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
393 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
394 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
395 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
396 STAM_REG(pVM, &gaStatRefuseStale[R_ES], STAMTYPE_COUNTER, "/REM/Refuse/StaleES", STAMUNIT_OCCURENCES, "Raw mode refused because of stale ES");
397 STAM_REG(pVM, &gaStatRefuseStale[R_CS], STAMTYPE_COUNTER, "/REM/Refuse/StaleCS", STAMUNIT_OCCURENCES, "Raw mode refused because of stale CS");
398 STAM_REG(pVM, &gaStatRefuseStale[R_SS], STAMTYPE_COUNTER, "/REM/Refuse/StaleSS", STAMUNIT_OCCURENCES, "Raw mode refused because of stale SS");
399 STAM_REG(pVM, &gaStatRefuseStale[R_DS], STAMTYPE_COUNTER, "/REM/Refuse/StaleDS", STAMUNIT_OCCURENCES, "Raw mode refused because of stale DS");
400 STAM_REG(pVM, &gaStatRefuseStale[R_FS], STAMTYPE_COUNTER, "/REM/Refuse/StaleFS", STAMUNIT_OCCURENCES, "Raw mode refused because of stale FS");
401 STAM_REG(pVM, &gaStatRefuseStale[R_GS], STAMTYPE_COUNTER, "/REM/Refuse/StaleGS", STAMUNIT_OCCURENCES, "Raw mode refused because of stale GS");
402 STAM_REG(pVM, &gStatFlushTBs, STAMTYPE_COUNTER, "/REM/FlushTB", STAMUNIT_OCCURENCES, "Number of TB flushes");
403
404 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
405 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
406 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
407 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
408
409 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
410 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
411 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
412 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
413 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
414 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
415
416 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
417 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
418 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
419 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
420 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
421 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
422
423 STAM_REG(pVM, &pVM->rem.s.Env.StatTbFlush, STAMTYPE_PROFILE, "/REM/TbFlush", STAMUNIT_TICKS_PER_CALL, "profiling tb_flush().");
424#endif /* VBOX_WITH_STATISTICS */
425 AssertCompileMemberAlignment(CPUX86State, StatTbFlush, 4);
426 AssertCompileMemberAlignment(CPUX86State, StatTbFlush, 8);
427
428 STAM_REL_REG(pVM, &tb_flush_count, STAMTYPE_U32_RESET, "/REM/TbFlushCount", STAMUNIT_OCCURENCES, "tb_flush() calls");
429 STAM_REL_REG(pVM, &tb_phys_invalidate_count, STAMTYPE_U32_RESET, "/REM/TbPhysInvldCount", STAMUNIT_OCCURENCES, "tb_phys_invalidate() calls");
430 STAM_REL_REG(pVM, &tlb_flush_count, STAMTYPE_U32_RESET, "/REM/TlbFlushCount", STAMUNIT_OCCURENCES, "tlb_flush() calls");
431
432
433#ifdef DEBUG_ALL_LOGGING
434 loglevel = ~0;
435#endif
436
437 /*
438 * Init the handler notification lists.
439 */
440 pVM->rem.s.idxPendingList = UINT32_MAX;
441 pVM->rem.s.idxFreeList = 0;
442
443 for (i = 0 ; i < RT_ELEMENTS(pVM->rem.s.aHandlerNotifications); i++)
444 {
445 pCur = &pVM->rem.s.aHandlerNotifications[i];
446 pCur->idxNext = i + 1;
447 pCur->idxSelf = i;
448 }
449 pCur->idxNext = UINT32_MAX; /* the last record. */
450
451 return rc;
452}
453
454
455/**
456 * Finalizes the REM initialization.
457 *
458 * This is called after all components, devices and drivers has
459 * been initialized. Its main purpose it to finish the RAM related
460 * initialization.
461 *
462 * @returns VBox status code.
463 *
464 * @param pVM The VM handle.
465 */
466REMR3DECL(int) REMR3InitFinalize(PVM pVM)
467{
468 int rc;
469
470 /*
471 * Ram size & dirty bit map.
472 */
473 Assert(!pVM->rem.s.fGCPhysLastRamFixed);
474 pVM->rem.s.fGCPhysLastRamFixed = true;
475#ifdef RT_STRICT
476 rc = remR3InitPhysRamSizeAndDirtyMap(pVM, true /* fGuarded */);
477#else
478 rc = remR3InitPhysRamSizeAndDirtyMap(pVM, false /* fGuarded */);
479#endif
480 return rc;
481}
482
483/**
484 * Initializes ram_list.phys_dirty and ram_list.phys_dirty_size.
485 *
486 * @returns VBox status code.
487 * @param pVM The VM handle.
488 * @param fGuarded Whether to guard the map.
489 */
490static int remR3InitPhysRamSizeAndDirtyMap(PVM pVM, bool fGuarded)
491{
492 int rc = VINF_SUCCESS;
493 RTGCPHYS cb;
494
495 AssertLogRelReturn(QLIST_EMPTY(&ram_list.blocks), VERR_INTERNAL_ERROR_2);
496
497 cb = pVM->rem.s.GCPhysLastRam + 1;
498 AssertLogRelMsgReturn(cb > pVM->rem.s.GCPhysLastRam,
499 ("GCPhysLastRam=%RGp - out of range\n", pVM->rem.s.GCPhysLastRam),
500 VERR_OUT_OF_RANGE);
501
502 ram_list.phys_dirty_size = cb >> PAGE_SHIFT;
503 AssertMsg(((RTGCPHYS)ram_list.phys_dirty_size << PAGE_SHIFT) == cb, ("%RGp\n", cb));
504
505 if (!fGuarded)
506 {
507 ram_list.phys_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, ram_list.phys_dirty_size);
508 AssertLogRelMsgReturn(ram_list.phys_dirty, ("Failed to allocate %u bytes of dirty page map bytes\n", ram_list.phys_dirty_size), VERR_NO_MEMORY);
509 }
510 else
511 {
512 /*
513 * Fill it up the nearest 4GB RAM and leave at least _64KB of guard after it.
514 */
515 uint32_t cbBitmapAligned = RT_ALIGN_32(ram_list.phys_dirty_size, PAGE_SIZE);
516 uint32_t cbBitmapFull = RT_ALIGN_32(ram_list.phys_dirty_size, (_4G >> PAGE_SHIFT));
517 if (cbBitmapFull == cbBitmapAligned)
518 cbBitmapFull += _4G >> PAGE_SHIFT;
519 else if (cbBitmapFull - cbBitmapAligned < _64K)
520 cbBitmapFull += _64K;
521
522 ram_list.phys_dirty = RTMemPageAlloc(cbBitmapFull);
523 AssertLogRelMsgReturn(ram_list.phys_dirty, ("Failed to allocate %u bytes of dirty page map bytes\n", cbBitmapFull), VERR_NO_MEMORY);
524
525 rc = RTMemProtect(ram_list.phys_dirty + cbBitmapAligned, cbBitmapFull - cbBitmapAligned, RTMEM_PROT_NONE);
526 if (RT_FAILURE(rc))
527 {
528 RTMemPageFree(ram_list.phys_dirty, cbBitmapFull);
529 AssertLogRelRCReturn(rc, rc);
530 }
531
532 ram_list.phys_dirty += cbBitmapAligned - ram_list.phys_dirty_size;
533 }
534
535 /* initialize it. */
536 memset(ram_list.phys_dirty, 0xff, ram_list.phys_dirty_size);
537 return rc;
538}
539
540
541/**
542 * Terminates the REM.
543 *
544 * Termination means cleaning up and freeing all resources,
545 * the VM it self is at this point powered off or suspended.
546 *
547 * @returns VBox status code.
548 * @param pVM The VM to operate on.
549 */
550REMR3DECL(int) REMR3Term(PVM pVM)
551{
552#ifdef VBOX_WITH_STATISTICS
553 /*
554 * Statistics.
555 */
556 STAM_DEREG(pVM, &gStatExecuteSingleInstr);
557 STAM_DEREG(pVM, &gStatCompilationQEmu);
558 STAM_DEREG(pVM, &gStatRunCodeQEmu);
559 STAM_DEREG(pVM, &gStatTotalTimeQEmu);
560 STAM_DEREG(pVM, &gStatTimers);
561 STAM_DEREG(pVM, &gStatTBLookup);
562 STAM_DEREG(pVM, &gStatIRQ);
563 STAM_DEREG(pVM, &gStatRawCheck);
564 STAM_DEREG(pVM, &gStatMemRead);
565 STAM_DEREG(pVM, &gStatMemWrite);
566 STAM_DEREG(pVM, &gStatGCPhys2HCVirt);
567
568 STAM_DEREG(pVM, &gStatCpuGetTSC);
569
570 STAM_DEREG(pVM, &gStatRefuseTFInhibit);
571 STAM_DEREG(pVM, &gStatRefuseVM86);
572 STAM_DEREG(pVM, &gStatRefusePaging);
573 STAM_DEREG(pVM, &gStatRefusePAE);
574 STAM_DEREG(pVM, &gStatRefuseIOPLNot0);
575 STAM_DEREG(pVM, &gStatRefuseIF0);
576 STAM_DEREG(pVM, &gStatRefuseCode16);
577 STAM_DEREG(pVM, &gStatRefuseWP0);
578 STAM_DEREG(pVM, &gStatRefuseRing1or2);
579 STAM_DEREG(pVM, &gStatRefuseCanExecute);
580 STAM_DEREG(pVM, &gaStatRefuseStale[0]);
581 STAM_DEREG(pVM, &gaStatRefuseStale[1]);
582 STAM_DEREG(pVM, &gaStatRefuseStale[2]);
583 STAM_DEREG(pVM, &gaStatRefuseStale[3]);
584 STAM_DEREG(pVM, &gaStatRefuseStale[4]);
585 STAM_DEREG(pVM, &gaStatRefuseStale[5]);
586 STAM_DEREG(pVM, &gStatFlushTBs);
587
588 STAM_DEREG(pVM, &gStatREMGDTChange);
589 STAM_DEREG(pVM, &gStatREMLDTRChange);
590 STAM_DEREG(pVM, &gStatREMIDTChange);
591 STAM_DEREG(pVM, &gStatREMTRChange);
592
593 STAM_DEREG(pVM, &gStatSelOutOfSync[0]);
594 STAM_DEREG(pVM, &gStatSelOutOfSync[1]);
595 STAM_DEREG(pVM, &gStatSelOutOfSync[2]);
596 STAM_DEREG(pVM, &gStatSelOutOfSync[3]);
597 STAM_DEREG(pVM, &gStatSelOutOfSync[4]);
598 STAM_DEREG(pVM, &gStatSelOutOfSync[5]);
599
600 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[0]);
601 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[1]);
602 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[2]);
603 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[3]);
604 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[4]);
605 STAM_DEREG(pVM, &gStatSelOutOfSyncStateBack[5]);
606
607 STAM_DEREG(pVM, &pVM->rem.s.Env.StatTbFlush);
608#endif /* VBOX_WITH_STATISTICS */
609
610 STAM_REL_DEREG(pVM, &tb_flush_count);
611 STAM_REL_DEREG(pVM, &tb_phys_invalidate_count);
612 STAM_REL_DEREG(pVM, &tlb_flush_count);
613
614 return VINF_SUCCESS;
615}
616
617
618/**
619 * The VM is being reset.
620 *
621 * For the REM component this means to call the cpu_reset() and
622 * reinitialize some state variables.
623 *
624 * @param pVM VM handle.
625 */
626REMR3DECL(void) REMR3Reset(PVM pVM)
627{
628 EMRemLock(pVM); /* Only pro forma, we're in a rendezvous. */
629
630 /*
631 * Reset the REM cpu.
632 */
633 Assert(pVM->rem.s.cIgnoreAll == 0);
634 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
635 cpu_reset(&pVM->rem.s.Env);
636 pVM->rem.s.cInvalidatedPages = 0;
637 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
638 Assert(pVM->rem.s.cIgnoreAll == 0);
639
640 /* Clear raw ring 0 init state */
641 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
642
643 /* Flush the TBs the next time we execute code here. */
644 pVM->rem.s.fFlushTBs = true;
645
646 EMRemUnlock(pVM);
647}
648
649
650/**
651 * Execute state save operation.
652 *
653 * @returns VBox status code.
654 * @param pVM VM Handle.
655 * @param pSSM SSM operation handle.
656 */
657static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
658{
659 PREM pRem = &pVM->rem.s;
660
661 /*
662 * Save the required CPU Env bits.
663 * (Not much because we're never in REM when doing the save.)
664 */
665 LogFlow(("remR3Save:\n"));
666 Assert(!pRem->fInREM);
667 SSMR3PutU32(pSSM, pRem->Env.hflags);
668 SSMR3PutU32(pSSM, ~0); /* separator */
669
670 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
671 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
672 SSMR3PutU32(pSSM, pVM->rem.s.u32PendingInterrupt);
673
674 return SSMR3PutU32(pSSM, ~0); /* terminator */
675}
676
677
678/**
679 * Execute state load operation.
680 *
681 * @returns VBox status code.
682 * @param pVM VM Handle.
683 * @param pSSM SSM operation handle.
684 * @param uVersion Data layout version.
685 * @param uPass The data pass.
686 */
687static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
688{
689 uint32_t u32Dummy;
690 uint32_t fRawRing0 = false;
691 uint32_t u32Sep;
692 uint32_t i;
693 int rc;
694 PREM pRem;
695
696 LogFlow(("remR3Load:\n"));
697 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
698
699 /*
700 * Validate version.
701 */
702 if ( uVersion != REM_SAVED_STATE_VERSION
703 && uVersion != REM_SAVED_STATE_VERSION_VER1_6)
704 {
705 AssertMsgFailed(("remR3Load: Invalid version uVersion=%d!\n", uVersion));
706 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
707 }
708
709 /*
710 * Do a reset to be on the safe side...
711 */
712 REMR3Reset(pVM);
713
714 /*
715 * Ignore all ignorable notifications.
716 * (Not doing this will cause serious trouble.)
717 */
718 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
719
720 /*
721 * Load the required CPU Env bits.
722 * (Not much because we're never in REM when doing the save.)
723 */
724 pRem = &pVM->rem.s;
725 Assert(!pRem->fInREM);
726 SSMR3GetU32(pSSM, &pRem->Env.hflags);
727 if (uVersion == REM_SAVED_STATE_VERSION_VER1_6)
728 {
729 /* Redundant REM CPU state has to be loaded, but can be ignored. */
730 CPUX86State_Ver16 temp;
731 SSMR3GetMem(pSSM, &temp, RT_OFFSETOF(CPUX86State_Ver16, jmp_env));
732 }
733
734 rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
735 if (RT_FAILURE(rc))
736 return rc;
737 if (u32Sep != ~0U)
738 {
739 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
740 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
741 }
742
743 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
744 SSMR3GetUInt(pSSM, &fRawRing0);
745 if (fRawRing0)
746 pRem->Env.state |= CPU_RAW_RING0;
747
748 if (uVersion == REM_SAVED_STATE_VERSION_VER1_6)
749 {
750 /*
751 * Load the REM stuff.
752 */
753 /** @todo r=bird: We should just drop all these items, restoring doesn't make
754 * sense. */
755 rc = SSMR3GetU32(pSSM, (uint32_t *)&pRem->cInvalidatedPages);
756 if (RT_FAILURE(rc))
757 return rc;
758 if (pRem->cInvalidatedPages > RT_ELEMENTS(pRem->aGCPtrInvalidatedPages))
759 {
760 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
761 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
762 }
763 for (i = 0; i < pRem->cInvalidatedPages; i++)
764 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
765 }
766
767 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
768 if (RT_FAILURE(rc))
769 return rc;
770
771 /* check the terminator. */
772 rc = SSMR3GetU32(pSSM, &u32Sep);
773 if (RT_FAILURE(rc))
774 return rc;
775 if (u32Sep != ~0U)
776 {
777 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
778 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
779 }
780
781 /*
782 * Get the CPUID features.
783 */
784 PVMCPU pVCpu = VMMGetCpu(pVM);
785 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
786 CPUMGetGuestCpuId(pVCpu, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
787
788 /*
789 * Stop ignoring ignorable notifications.
790 */
791 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
792
793 /*
794 * Sync the whole CPU state when executing code in the recompiler.
795 */
796 for (i = 0; i < pVM->cCpus; i++)
797 {
798 PVMCPU pVCpu = &pVM->aCpus[i];
799 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
800 }
801 return VINF_SUCCESS;
802}
803
804
805
806#undef LOG_GROUP
807#define LOG_GROUP LOG_GROUP_REM_RUN
808
809/**
810 * Single steps an instruction in recompiled mode.
811 *
812 * Before calling this function the REM state needs to be in sync with
813 * the VM. Call REMR3State() to perform the sync. It's only necessary
814 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
815 * and after calling REMR3StateBack().
816 *
817 * @returns VBox status code.
818 *
819 * @param pVM VM Handle.
820 * @param pVCpu VMCPU Handle.
821 */
822REMR3DECL(int) REMR3Step(PVM pVM, PVMCPU pVCpu)
823{
824 int rc, interrupt_request;
825 RTGCPTR GCPtrPC;
826 bool fBp;
827
828 /*
829 * Lock the REM - we don't wanna have anyone interrupting us
830 * while stepping - and enabled single stepping. We also ignore
831 * pending interrupts and suchlike.
832 */
833 interrupt_request = pVM->rem.s.Env.interrupt_request;
834 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_FLUSH_TLB | CPU_INTERRUPT_EXTERNAL_TIMER)));
835 pVM->rem.s.Env.interrupt_request = 0;
836 cpu_single_step(&pVM->rem.s.Env, 1);
837
838 /*
839 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
840 */
841 GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
842 fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC, BP_GDB);
843
844 /*
845 * Execute and handle the return code.
846 * We execute without enabling the cpu tick, so on success we'll
847 * just flip it on and off to make sure it moves
848 */
849 rc = cpu_exec(&pVM->rem.s.Env);
850 if (rc == EXCP_DEBUG)
851 {
852 TMR3NotifyResume(pVM, pVCpu);
853 TMR3NotifySuspend(pVM, pVCpu);
854 rc = VINF_EM_DBG_STEPPED;
855 }
856 else
857 {
858 switch (rc)
859 {
860 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
861 case EXCP_HLT:
862 case EXCP_HALTED: rc = VINF_EM_HALT; break;
863 case EXCP_RC:
864 rc = pVM->rem.s.rc;
865 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
866 break;
867 case EXCP_EXECUTE_RAW:
868 case EXCP_EXECUTE_HM:
869 /** @todo: is it correct? No! */
870 rc = VINF_SUCCESS;
871 break;
872 default:
873 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
874 rc = VERR_INTERNAL_ERROR;
875 break;
876 }
877 }
878
879 /*
880 * Restore the stuff we changed to prevent interruption.
881 * Unlock the REM.
882 */
883 if (fBp)
884 {
885 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC, BP_GDB, NULL);
886 Assert(rc2 == 0); NOREF(rc2);
887 }
888 cpu_single_step(&pVM->rem.s.Env, 0);
889 pVM->rem.s.Env.interrupt_request = interrupt_request;
890
891 return rc;
892}
893
894
895/**
896 * Set a breakpoint using the REM facilities.
897 *
898 * @returns VBox status code.
899 * @param pVM The VM handle.
900 * @param Address The breakpoint address.
901 * @thread The emulation thread.
902 */
903REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
904{
905 VM_ASSERT_EMT(pVM);
906 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address, BP_GDB, NULL))
907 {
908 LogFlow(("REMR3BreakpointSet: Address=%RGv\n", Address));
909 return VINF_SUCCESS;
910 }
911 LogFlow(("REMR3BreakpointSet: Address=%RGv - failed!\n", Address));
912 return VERR_REM_NO_MORE_BP_SLOTS;
913}
914
915
916/**
917 * Clears a breakpoint set by REMR3BreakpointSet().
918 *
919 * @returns VBox status code.
920 * @param pVM The VM handle.
921 * @param Address The breakpoint address.
922 * @thread The emulation thread.
923 */
924REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
925{
926 VM_ASSERT_EMT(pVM);
927 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address, BP_GDB))
928 {
929 LogFlow(("REMR3BreakpointClear: Address=%RGv\n", Address));
930 return VINF_SUCCESS;
931 }
932 LogFlow(("REMR3BreakpointClear: Address=%RGv - not found!\n", Address));
933 return VERR_REM_BP_NOT_FOUND;
934}
935
936
937/**
938 * Emulate an instruction.
939 *
940 * This function executes one instruction without letting anyone
941 * interrupt it. This is intended for being called while being in
942 * raw mode and thus will take care of all the state syncing between
943 * REM and the rest.
944 *
945 * @returns VBox status code.
946 * @param pVM VM handle.
947 * @param pVCpu VMCPU Handle.
948 */
949REMR3DECL(int) REMR3EmulateInstruction(PVM pVM, PVMCPU pVCpu)
950{
951 bool fFlushTBs;
952
953 int rc, rc2;
954 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
955
956 /* Make sure this flag is set; we might never execute remR3CanExecuteRaw in the AMD-V case.
957 * CPU_RAW_HM makes sure we never execute interrupt handlers in the recompiler.
958 */
959 if (HMIsEnabled(pVM))
960 pVM->rem.s.Env.state |= CPU_RAW_HM;
961
962 /* Skip the TB flush as that's rather expensive and not necessary for single instruction emulation. */
963 fFlushTBs = pVM->rem.s.fFlushTBs;
964 pVM->rem.s.fFlushTBs = false;
965
966 /*
967 * Sync the state and enable single instruction / single stepping.
968 */
969 rc = REMR3State(pVM, pVCpu);
970 pVM->rem.s.fFlushTBs = fFlushTBs;
971 if (RT_SUCCESS(rc))
972 {
973 int interrupt_request = pVM->rem.s.Env.interrupt_request;
974 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_FLUSH_TLB | CPU_INTERRUPT_EXTERNAL_TIMER)));
975#ifdef REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
976 cpu_single_step(&pVM->rem.s.Env, 0);
977#endif
978 Assert(!pVM->rem.s.Env.singlestep_enabled);
979
980 /*
981 * Now we set the execute single instruction flag and enter the cpu_exec loop.
982 */
983 TMNotifyStartOfExecution(pVCpu);
984 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
985 rc = cpu_exec(&pVM->rem.s.Env);
986 TMNotifyEndOfExecution(pVCpu);
987 switch (rc)
988 {
989 /*
990 * Executed without anything out of the way happening.
991 */
992 case EXCP_SINGLE_INSTR:
993 rc = VINF_EM_RESCHEDULE;
994 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
995 break;
996
997 /*
998 * If we take a trap or start servicing a pending interrupt, we might end up here.
999 * (Timer thread or some other thread wishing EMT's attention.)
1000 */
1001 case EXCP_INTERRUPT:
1002 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
1003 rc = VINF_EM_RESCHEDULE;
1004 break;
1005
1006 /*
1007 * Single step, we assume!
1008 * If there was a breakpoint there we're fucked now.
1009 */
1010 case EXCP_DEBUG:
1011 if (pVM->rem.s.Env.watchpoint_hit)
1012 {
1013 /** @todo deal with watchpoints */
1014 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Rrc !watchpoint_hit!\n", rc));
1015 rc = VINF_EM_DBG_BREAKPOINT;
1016 }
1017 else
1018 {
1019 CPUBreakpoint *pBP;
1020 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1021 QTAILQ_FOREACH(pBP, &pVM->rem.s.Env.breakpoints, entry)
1022 if (pBP->pc == GCPtrPC)
1023 break;
1024 rc = pBP ? VINF_EM_DBG_BREAKPOINT : VINF_EM_DBG_STEPPED;
1025 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Rrc pBP=%p GCPtrPC=%RGv\n", rc, pBP, GCPtrPC));
1026 }
1027 break;
1028
1029 /*
1030 * hlt instruction.
1031 */
1032 case EXCP_HLT:
1033 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
1034 rc = VINF_EM_HALT;
1035 break;
1036
1037 /*
1038 * The VM has halted.
1039 */
1040 case EXCP_HALTED:
1041 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
1042 rc = VINF_EM_HALT;
1043 break;
1044
1045 /*
1046 * Switch to RAW-mode.
1047 */
1048 case EXCP_EXECUTE_RAW:
1049 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1050 rc = VINF_EM_RESCHEDULE_RAW;
1051 break;
1052
1053 /*
1054 * Switch to hardware accelerated RAW-mode.
1055 */
1056 case EXCP_EXECUTE_HM:
1057 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HM\n"));
1058 rc = VINF_EM_RESCHEDULE_HM;
1059 break;
1060
1061 /*
1062 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1063 */
1064 case EXCP_RC:
1065 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
1066 rc = pVM->rem.s.rc;
1067 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1068 break;
1069
1070 /*
1071 * Figure out the rest when they arrive....
1072 */
1073 default:
1074 AssertMsgFailed(("rc=%d\n", rc));
1075 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
1076 rc = VINF_EM_RESCHEDULE;
1077 break;
1078 }
1079
1080 /*
1081 * Switch back the state.
1082 */
1083 pVM->rem.s.Env.interrupt_request = interrupt_request;
1084 rc2 = REMR3StateBack(pVM, pVCpu);
1085 AssertRC(rc2);
1086 }
1087
1088 Log2(("REMR3EmulateInstruction: returns %Rrc (cs:eip=%04x:%RGv)\n",
1089 rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
1090 return rc;
1091}
1092
1093
1094/**
1095 * Used by REMR3Run to handle the case where CPU_EMULATE_SINGLE_STEP is set.
1096 *
1097 * @returns VBox status code.
1098 *
1099 * @param pVM The VM handle.
1100 * @param pVCpu The Virtual CPU handle.
1101 */
1102static int remR3RunLoggingStep(PVM pVM, PVMCPU pVCpu)
1103{
1104 int rc;
1105
1106 Assert(pVM->rem.s.fInREM);
1107#ifdef REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
1108 cpu_single_step(&pVM->rem.s.Env, 1);
1109#else
1110 Assert(!pVM->rem.s.Env.singlestep_enabled);
1111#endif
1112
1113 /*
1114 * Now we set the execute single instruction flag and enter the cpu_exec loop.
1115 */
1116 for (;;)
1117 {
1118 char szBuf[256];
1119
1120 /*
1121 * Log the current registers state and instruction.
1122 */
1123 remR3StateUpdate(pVM, pVCpu);
1124 DBGFR3Info(pVM->pUVM, "cpumguest", NULL, NULL);
1125 szBuf[0] = '\0';
1126 rc = DBGFR3DisasInstrEx(pVM->pUVM,
1127 pVCpu->idCpu,
1128 0, /* Sel */
1129 0, /* GCPtr */
1130 DBGF_DISAS_FLAGS_CURRENT_GUEST
1131 | DBGF_DISAS_FLAGS_DEFAULT_MODE,
1132 szBuf,
1133 sizeof(szBuf),
1134 NULL);
1135 if (RT_FAILURE(rc))
1136 RTStrPrintf(szBuf, sizeof(szBuf), "DBGFR3DisasInstrEx failed with rc=%Rrc\n", rc);
1137 RTLogPrintf("CPU%d: %s\n", pVCpu->idCpu, szBuf);
1138
1139 /*
1140 * Execute the instruction.
1141 */
1142 TMNotifyStartOfExecution(pVCpu);
1143
1144 if ( pVM->rem.s.Env.exception_index < 0
1145 || pVM->rem.s.Env.exception_index > 256)
1146 pVM->rem.s.Env.exception_index = -1; /** @todo We need to do similar stuff elsewhere, I think. */
1147
1148#ifdef REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
1149 pVM->rem.s.Env.interrupt_request = 0;
1150#else
1151 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
1152#endif
1153 if ( VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
1154 || pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
1155 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
1156 RTLogPrintf("remR3RunLoggingStep: interrupt_request=%#x halted=%d exception_index=%#x\n", rc,
1157 pVM->rem.s.Env.interrupt_request,
1158 pVM->rem.s.Env.halted,
1159 pVM->rem.s.Env.exception_index
1160 );
1161
1162 rc = cpu_exec(&pVM->rem.s.Env);
1163
1164 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> %#x interrupt_request=%#x halted=%d exception_index=%#x\n", rc,
1165 pVM->rem.s.Env.interrupt_request,
1166 pVM->rem.s.Env.halted,
1167 pVM->rem.s.Env.exception_index
1168 );
1169
1170 TMNotifyEndOfExecution(pVCpu);
1171
1172 switch (rc)
1173 {
1174#ifndef REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
1175 /*
1176 * The normal exit.
1177 */
1178 case EXCP_SINGLE_INSTR:
1179 if ( !VM_FF_ISPENDING(pVM, VM_FF_ALL_REM_MASK)
1180 && !VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_ALL_REM_MASK))
1181 continue;
1182 RTLogPrintf("remR3RunLoggingStep: rc=VINF_SUCCESS w/ FFs (%#x/%#x)\n",
1183 pVM->fGlobalForcedActions, pVCpu->fLocalForcedActions);
1184 rc = VINF_SUCCESS;
1185 break;
1186
1187#else
1188 /*
1189 * The normal exit, check for breakpoints at PC just to be sure.
1190 */
1191#endif
1192 case EXCP_DEBUG:
1193 if (pVM->rem.s.Env.watchpoint_hit)
1194 {
1195 /** @todo deal with watchpoints */
1196 Log2(("remR3RunLoggingStep: cpu_exec -> EXCP_DEBUG rc=%Rrc !watchpoint_hit!\n", rc));
1197 rc = VINF_EM_DBG_BREAKPOINT;
1198 }
1199 else
1200 {
1201 CPUBreakpoint *pBP;
1202 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1203 QTAILQ_FOREACH(pBP, &pVM->rem.s.Env.breakpoints, entry)
1204 if (pBP->pc == GCPtrPC)
1205 break;
1206 rc = pBP ? VINF_EM_DBG_BREAKPOINT : VINF_EM_DBG_STEPPED;
1207 Log2(("remR3RunLoggingStep: cpu_exec -> EXCP_DEBUG rc=%Rrc pBP=%p GCPtrPC=%RGv\n", rc, pBP, GCPtrPC));
1208 }
1209#ifdef REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
1210 if (rc == VINF_EM_DBG_STEPPED)
1211 {
1212 if ( !VM_FF_ISPENDING(pVM, VM_FF_ALL_REM_MASK)
1213 && !VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_ALL_REM_MASK))
1214 continue;
1215
1216 RTLogPrintf("remR3RunLoggingStep: rc=VINF_SUCCESS w/ FFs (%#x/%#x)\n",
1217 pVM->fGlobalForcedActions, pVCpu->fLocalForcedActions);
1218 rc = VINF_SUCCESS;
1219 }
1220#endif
1221 break;
1222
1223 /*
1224 * If we take a trap or start servicing a pending interrupt, we might end up here.
1225 * (Timer thread or some other thread wishing EMT's attention.)
1226 */
1227 case EXCP_INTERRUPT:
1228 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> EXCP_INTERRUPT rc=VINF_SUCCESS\n");
1229 rc = VINF_SUCCESS;
1230 break;
1231
1232 /*
1233 * hlt instruction.
1234 */
1235 case EXCP_HLT:
1236 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> EXCP_HLT rc=VINF_EM_HALT\n");
1237 rc = VINF_EM_HALT;
1238 break;
1239
1240 /*
1241 * The VM has halted.
1242 */
1243 case EXCP_HALTED:
1244 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> EXCP_HALTED rc=VINF_EM_HALT\n");
1245 rc = VINF_EM_HALT;
1246 break;
1247
1248 /*
1249 * Switch to RAW-mode.
1250 */
1251 case EXCP_EXECUTE_RAW:
1252 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> EXCP_EXECUTE_RAW rc=VINF_EM_RESCHEDULE_RAW\n");
1253 rc = VINF_EM_RESCHEDULE_RAW;
1254 break;
1255
1256 /*
1257 * Switch to hardware accelerated RAW-mode.
1258 */
1259 case EXCP_EXECUTE_HM:
1260 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> EXCP_EXECUTE_HM rc=VINF_EM_RESCHEDULE_HM\n");
1261 rc = VINF_EM_RESCHEDULE_HM;
1262 break;
1263
1264 /*
1265 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1266 */
1267 case EXCP_RC:
1268 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> EXCP_RC rc=%Rrc\n", pVM->rem.s.rc);
1269 rc = pVM->rem.s.rc;
1270 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1271 break;
1272
1273 /*
1274 * Figure out the rest when they arrive....
1275 */
1276 default:
1277 AssertMsgFailed(("rc=%d\n", rc));
1278 RTLogPrintf("remR3RunLoggingStep: cpu_exec -> %d rc=VINF_EM_RESCHEDULE\n", rc);
1279 rc = VINF_EM_RESCHEDULE;
1280 break;
1281 }
1282 break;
1283 }
1284
1285#ifdef REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
1286// cpu_single_step(&pVM->rem.s.Env, 0);
1287#else
1288 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_SINGLE_INSTR | CPU_INTERRUPT_SINGLE_INSTR_IN_FLIGHT);
1289#endif
1290 return rc;
1291}
1292
1293
1294/**
1295 * Runs code in recompiled mode.
1296 *
1297 * Before calling this function the REM state needs to be in sync with
1298 * the VM. Call REMR3State() to perform the sync. It's only necessary
1299 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
1300 * and after calling REMR3StateBack().
1301 *
1302 * @returns VBox status code.
1303 *
1304 * @param pVM VM Handle.
1305 * @param pVCpu VMCPU Handle.
1306 */
1307REMR3DECL(int) REMR3Run(PVM pVM, PVMCPU pVCpu)
1308{
1309 int rc;
1310
1311 if (RT_UNLIKELY(pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP))
1312 return remR3RunLoggingStep(pVM, pVCpu);
1313
1314 Assert(pVM->rem.s.fInREM);
1315 Log2(("REMR3Run: (cs:eip=%04x:%RGv)\n", pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
1316
1317 TMNotifyStartOfExecution(pVCpu);
1318 rc = cpu_exec(&pVM->rem.s.Env);
1319 TMNotifyEndOfExecution(pVCpu);
1320 switch (rc)
1321 {
1322 /*
1323 * This happens when the execution was interrupted
1324 * by an external event, like pending timers.
1325 */
1326 case EXCP_INTERRUPT:
1327 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
1328 rc = VINF_SUCCESS;
1329 break;
1330
1331 /*
1332 * hlt instruction.
1333 */
1334 case EXCP_HLT:
1335 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
1336 rc = VINF_EM_HALT;
1337 break;
1338
1339 /*
1340 * The VM has halted.
1341 */
1342 case EXCP_HALTED:
1343 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1344 rc = VINF_EM_HALT;
1345 break;
1346
1347 /*
1348 * Breakpoint/single step.
1349 */
1350 case EXCP_DEBUG:
1351 if (pVM->rem.s.Env.watchpoint_hit)
1352 {
1353 /** @todo deal with watchpoints */
1354 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Rrc !watchpoint_hit!\n", rc));
1355 rc = VINF_EM_DBG_BREAKPOINT;
1356 }
1357 else
1358 {
1359 CPUBreakpoint *pBP;
1360 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1361 QTAILQ_FOREACH(pBP, &pVM->rem.s.Env.breakpoints, entry)
1362 if (pBP->pc == GCPtrPC)
1363 break;
1364 rc = pBP ? VINF_EM_DBG_BREAKPOINT : VINF_EM_DBG_STEPPED;
1365 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Rrc pBP=%p GCPtrPC=%RGv\n", rc, pBP, GCPtrPC));
1366 }
1367 break;
1368
1369 /*
1370 * Switch to RAW-mode.
1371 */
1372 case EXCP_EXECUTE_RAW:
1373 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW pc=%RGv\n", pVM->rem.s.Env.eip));
1374 rc = VINF_EM_RESCHEDULE_RAW;
1375 break;
1376
1377 /*
1378 * Switch to hardware accelerated RAW-mode.
1379 */
1380 case EXCP_EXECUTE_HM:
1381 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HM\n"));
1382 rc = VINF_EM_RESCHEDULE_HM;
1383 break;
1384
1385 /*
1386 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1387 */
1388 case EXCP_RC:
1389 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Rrc\n", pVM->rem.s.rc));
1390 rc = pVM->rem.s.rc;
1391 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1392 break;
1393
1394 /*
1395 * Figure out the rest when they arrive....
1396 */
1397 default:
1398 AssertMsgFailed(("rc=%d\n", rc));
1399 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1400 rc = VINF_SUCCESS;
1401 break;
1402 }
1403
1404 Log2(("REMR3Run: returns %Rrc (cs:eip=%04x:%RGv)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
1405 return rc;
1406}
1407
1408
1409/**
1410 * Check if the cpu state is suitable for Raw execution.
1411 *
1412 * @returns true if RAW/HWACC mode is ok, false if we should stay in REM.
1413 *
1414 * @param env The CPU env struct.
1415 * @param eip The EIP to check this for (might differ from env->eip).
1416 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1417 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1418 *
1419 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1420 */
1421bool remR3CanExecuteRaw(CPUX86State *env, RTGCPTR eip, unsigned fFlags, int *piException)
1422{
1423 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1424 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1425 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1426 uint32_t u32CR0;
1427
1428#ifdef IEM_VERIFICATION_MODE
1429 return false;
1430#endif
1431
1432 /* Update counter. */
1433 env->pVM->rem.s.cCanExecuteRaw++;
1434
1435 /* Never when single stepping+logging guest code. */
1436 if (env->state & CPU_EMULATE_SINGLE_STEP)
1437 return false;
1438
1439 if (HMIsEnabled(env->pVM))
1440 {
1441 CPUMCTX Ctx;
1442
1443 env->state |= CPU_RAW_HM;
1444
1445 /*
1446 * The simple check first...
1447 */
1448 if (!EMIsHwVirtExecutionEnabled(env->pVM))
1449 return false;
1450
1451 /*
1452 * Create partial context for HMR3CanExecuteGuest
1453 */
1454 Ctx.cr0 = env->cr[0];
1455 Ctx.cr3 = env->cr[3];
1456 Ctx.cr4 = env->cr[4];
1457
1458 Ctx.tr.Sel = env->tr.selector;
1459 Ctx.tr.ValidSel = env->tr.selector;
1460 Ctx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
1461 Ctx.tr.u64Base = env->tr.base;
1462 Ctx.tr.u32Limit = env->tr.limit;
1463 Ctx.tr.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1464
1465 Ctx.ldtr.Sel = env->ldt.selector;
1466 Ctx.ldtr.ValidSel = env->ldt.selector;
1467 Ctx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
1468 Ctx.ldtr.u64Base = env->ldt.base;
1469 Ctx.ldtr.u32Limit = env->ldt.limit;
1470 Ctx.ldtr.Attr.u = (env->ldt.flags >> 8) & 0xF0FF;
1471
1472 Ctx.idtr.cbIdt = env->idt.limit;
1473 Ctx.idtr.pIdt = env->idt.base;
1474
1475 Ctx.gdtr.cbGdt = env->gdt.limit;
1476 Ctx.gdtr.pGdt = env->gdt.base;
1477
1478 Ctx.rsp = env->regs[R_ESP];
1479 Ctx.rip = env->eip;
1480
1481 Ctx.eflags.u32 = env->eflags;
1482
1483 Ctx.cs.Sel = env->segs[R_CS].selector;
1484 Ctx.cs.ValidSel = env->segs[R_CS].selector;
1485 Ctx.cs.fFlags = CPUMSELREG_FLAGS_VALID;
1486 Ctx.cs.u64Base = env->segs[R_CS].base;
1487 Ctx.cs.u32Limit = env->segs[R_CS].limit;
1488 Ctx.cs.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1489
1490 Ctx.ds.Sel = env->segs[R_DS].selector;
1491 Ctx.ds.ValidSel = env->segs[R_DS].selector;
1492 Ctx.ds.fFlags = CPUMSELREG_FLAGS_VALID;
1493 Ctx.ds.u64Base = env->segs[R_DS].base;
1494 Ctx.ds.u32Limit = env->segs[R_DS].limit;
1495 Ctx.ds.Attr.u = (env->segs[R_DS].flags >> 8) & 0xF0FF;
1496
1497 Ctx.es.Sel = env->segs[R_ES].selector;
1498 Ctx.es.ValidSel = env->segs[R_ES].selector;
1499 Ctx.es.fFlags = CPUMSELREG_FLAGS_VALID;
1500 Ctx.es.u64Base = env->segs[R_ES].base;
1501 Ctx.es.u32Limit = env->segs[R_ES].limit;
1502 Ctx.es.Attr.u = (env->segs[R_ES].flags >> 8) & 0xF0FF;
1503
1504 Ctx.fs.Sel = env->segs[R_FS].selector;
1505 Ctx.fs.ValidSel = env->segs[R_FS].selector;
1506 Ctx.fs.fFlags = CPUMSELREG_FLAGS_VALID;
1507 Ctx.fs.u64Base = env->segs[R_FS].base;
1508 Ctx.fs.u32Limit = env->segs[R_FS].limit;
1509 Ctx.fs.Attr.u = (env->segs[R_FS].flags >> 8) & 0xF0FF;
1510
1511 Ctx.gs.Sel = env->segs[R_GS].selector;
1512 Ctx.gs.ValidSel = env->segs[R_GS].selector;
1513 Ctx.gs.fFlags = CPUMSELREG_FLAGS_VALID;
1514 Ctx.gs.u64Base = env->segs[R_GS].base;
1515 Ctx.gs.u32Limit = env->segs[R_GS].limit;
1516 Ctx.gs.Attr.u = (env->segs[R_GS].flags >> 8) & 0xF0FF;
1517
1518 Ctx.ss.Sel = env->segs[R_SS].selector;
1519 Ctx.ss.ValidSel = env->segs[R_SS].selector;
1520 Ctx.ss.fFlags = CPUMSELREG_FLAGS_VALID;
1521 Ctx.ss.u64Base = env->segs[R_SS].base;
1522 Ctx.ss.u32Limit = env->segs[R_SS].limit;
1523 Ctx.ss.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1524
1525 Ctx.msrEFER = env->efer;
1526
1527 /* Hardware accelerated raw-mode:
1528 *
1529 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1530 */
1531 if (HMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1532 {
1533 *piException = EXCP_EXECUTE_HM;
1534 return true;
1535 }
1536 return false;
1537 }
1538
1539 /*
1540 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1541 * or 32 bits protected mode ring 0 code
1542 *
1543 * The tests are ordered by the likelihood of being true during normal execution.
1544 */
1545 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1546 {
1547 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1548 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1549 return false;
1550 }
1551
1552#ifndef VBOX_RAW_V86
1553 if (fFlags & VM_MASK) {
1554 STAM_COUNTER_INC(&gStatRefuseVM86);
1555 Log2(("raw mode refused: VM_MASK\n"));
1556 return false;
1557 }
1558#endif
1559
1560 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1561 {
1562#ifndef DEBUG_bird
1563 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1564#endif
1565 return false;
1566 }
1567
1568 if (env->singlestep_enabled)
1569 {
1570 //Log2(("raw mode refused: Single step\n"));
1571 return false;
1572 }
1573
1574 if (!QTAILQ_EMPTY(&env->breakpoints))
1575 {
1576 //Log2(("raw mode refused: Breakpoints\n"));
1577 return false;
1578 }
1579
1580 if (!QTAILQ_EMPTY(&env->watchpoints))
1581 {
1582 //Log2(("raw mode refused: Watchpoints\n"));
1583 return false;
1584 }
1585
1586 u32CR0 = env->cr[0];
1587 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1588 {
1589 STAM_COUNTER_INC(&gStatRefusePaging);
1590 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1591 return false;
1592 }
1593
1594 if (env->cr[4] & CR4_PAE_MASK)
1595 {
1596 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1597 {
1598 STAM_COUNTER_INC(&gStatRefusePAE);
1599 return false;
1600 }
1601 }
1602
1603 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1604 {
1605 if (!EMIsRawRing3Enabled(env->pVM))
1606 return false;
1607
1608 if (!(env->eflags & IF_MASK))
1609 {
1610 STAM_COUNTER_INC(&gStatRefuseIF0);
1611 Log2(("raw mode refused: IF (RawR3)\n"));
1612 return false;
1613 }
1614
1615 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1616 {
1617 STAM_COUNTER_INC(&gStatRefuseWP0);
1618 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1619 return false;
1620 }
1621 }
1622 else
1623 {
1624 if (!EMIsRawRing0Enabled(env->pVM))
1625 return false;
1626
1627 // Let's start with pure 32 bits ring 0 code first
1628 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1629 {
1630 STAM_COUNTER_INC(&gStatRefuseCode16);
1631 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1632 return false;
1633 }
1634
1635 if (EMIsRawRing1Enabled(env->pVM))
1636 {
1637 /* Only ring 0 and 1 supervisor code. */
1638 if (((fFlags >> HF_CPL_SHIFT) & 3) == 2) /* ring 1 code is moved into ring 2, so we can't support ring-2 in that case. */
1639 {
1640 Log2(("raw r0 mode refused: CPL %d\n", (fFlags >> HF_CPL_SHIFT) & 3));
1641 return false;
1642 }
1643 }
1644 /* Only R0. */
1645 else if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1646 {
1647 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1648 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1649 return false;
1650 }
1651
1652 if (!(u32CR0 & CR0_WP_MASK))
1653 {
1654 STAM_COUNTER_INC(&gStatRefuseWP0);
1655 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1656 return false;
1657 }
1658
1659#ifdef VBOX_WITH_RAW_MODE
1660 if (PATMIsPatchGCAddr(env->pVM, eip))
1661 {
1662 Log2(("raw r0 mode forced: patch code\n"));
1663 *piException = EXCP_EXECUTE_RAW;
1664 return true;
1665 }
1666#endif
1667
1668#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1669 if (!(env->eflags & IF_MASK))
1670 {
1671 STAM_COUNTER_INC(&gStatRefuseIF0);
1672 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1673 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1674 return false;
1675 }
1676#endif
1677
1678#ifndef VBOX_WITH_RAW_RING1
1679 if (((env->eflags >> IOPL_SHIFT) & 3) != 0)
1680 {
1681 Log2(("raw r0 mode refused: IOPL %d\n", ((env->eflags >> IOPL_SHIFT) & 3)));
1682 return false;
1683 }
1684#endif
1685 env->state |= CPU_RAW_RING0;
1686 }
1687
1688 /*
1689 * Don't reschedule the first time we're called, because there might be
1690 * special reasons why we're here that is not covered by the above checks.
1691 */
1692 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1693 {
1694 Log2(("raw mode refused: first scheduling\n"));
1695 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1696 return false;
1697 }
1698
1699 /*
1700 * Stale hidden selectors means raw-mode is unsafe (being very careful).
1701 */
1702 if (env->segs[R_CS].fVBoxFlags & CPUMSELREG_FLAGS_STALE)
1703 {
1704 Log2(("raw mode refused: stale CS (%#x)\n", env->segs[R_CS].selector));
1705 STAM_COUNTER_INC(&gaStatRefuseStale[R_CS]);
1706 return false;
1707 }
1708 if (env->segs[R_SS].fVBoxFlags & CPUMSELREG_FLAGS_STALE)
1709 {
1710 Log2(("raw mode refused: stale SS (%#x)\n", env->segs[R_SS].selector));
1711 STAM_COUNTER_INC(&gaStatRefuseStale[R_SS]);
1712 return false;
1713 }
1714 if (env->segs[R_DS].fVBoxFlags & CPUMSELREG_FLAGS_STALE)
1715 {
1716 Log2(("raw mode refused: stale DS (%#x)\n", env->segs[R_DS].selector));
1717 STAM_COUNTER_INC(&gaStatRefuseStale[R_DS]);
1718 return false;
1719 }
1720 if (env->segs[R_ES].fVBoxFlags & CPUMSELREG_FLAGS_STALE)
1721 {
1722 Log2(("raw mode refused: stale ES (%#x)\n", env->segs[R_ES].selector));
1723 STAM_COUNTER_INC(&gaStatRefuseStale[R_ES]);
1724 return false;
1725 }
1726 if (env->segs[R_FS].fVBoxFlags & CPUMSELREG_FLAGS_STALE)
1727 {
1728 Log2(("raw mode refused: stale FS (%#x)\n", env->segs[R_FS].selector));
1729 STAM_COUNTER_INC(&gaStatRefuseStale[R_FS]);
1730 return false;
1731 }
1732 if (env->segs[R_GS].fVBoxFlags & CPUMSELREG_FLAGS_STALE)
1733 {
1734 Log2(("raw mode refused: stale GS (%#x)\n", env->segs[R_GS].selector));
1735 STAM_COUNTER_INC(&gaStatRefuseStale[R_GS]);
1736 return false;
1737 }
1738
1739/* Assert(env->pVCpu && PGMPhysIsA20Enabled(env->pVCpu));*/
1740 *piException = EXCP_EXECUTE_RAW;
1741 return true;
1742}
1743
1744
1745#ifdef VBOX_WITH_RAW_MODE
1746/**
1747 * Fetches a code byte.
1748 *
1749 * @returns Success indicator (bool) for ease of use.
1750 * @param env The CPU environment structure.
1751 * @param GCPtrInstr Where to fetch code.
1752 * @param pu8Byte Where to store the byte on success
1753 */
1754bool remR3GetOpcode(CPUX86State *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1755{
1756 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1757 if (RT_SUCCESS(rc))
1758 return true;
1759 return false;
1760}
1761#endif /* VBOX_WITH_RAW_MODE */
1762
1763
1764/**
1765 * Flush (or invalidate if you like) page table/dir entry.
1766 *
1767 * (invlpg instruction; tlb_flush_page)
1768 *
1769 * @param env Pointer to cpu environment.
1770 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1771 */
1772void remR3FlushPage(CPUX86State *env, RTGCPTR GCPtr)
1773{
1774 PVM pVM = env->pVM;
1775 PCPUMCTX pCtx;
1776 int rc;
1777
1778 Assert(EMRemIsLockOwner(env->pVM));
1779
1780 /*
1781 * When we're replaying invlpg instructions or restoring a saved
1782 * state we disable this path.
1783 */
1784 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.cIgnoreAll)
1785 return;
1786 LogFlow(("remR3FlushPage: GCPtr=%RGv\n", GCPtr));
1787 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1788
1789 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1790
1791 /*
1792 * Update the control registers before calling PGMFlushPage.
1793 */
1794 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1795 Assert(pCtx);
1796 pCtx->cr0 = env->cr[0];
1797 pCtx->cr3 = env->cr[3];
1798#ifdef VBOX_WITH_RAW_MODE
1799 if (((env->cr[4] ^ pCtx->cr4) & X86_CR4_VME) && !HMIsEnabled(pVM))
1800 VMCPU_FF_SET(env->pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1801#endif
1802 pCtx->cr4 = env->cr[4];
1803
1804 /*
1805 * Let PGM do the rest.
1806 */
1807 Assert(env->pVCpu);
1808 rc = PGMInvalidatePage(env->pVCpu, GCPtr);
1809 if (RT_FAILURE(rc))
1810 {
1811 AssertMsgFailed(("remR3FlushPage %RGv failed with %d!!\n", GCPtr, rc));
1812 VMCPU_FF_SET(env->pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1813 }
1814 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1815}
1816
1817
1818#ifndef REM_PHYS_ADDR_IN_TLB
1819/** Wrapper for PGMR3PhysTlbGCPhys2Ptr. */
1820void *remR3TlbGCPhys2Ptr(CPUX86State *env1, target_ulong physAddr, int fWritable)
1821{
1822 void *pv;
1823 int rc;
1824
1825
1826 /* Address must be aligned enough to fiddle with lower bits */
1827 Assert((physAddr & 0x3) == 0);
1828 /*AssertMsg((env1->a20_mask & physAddr) == physAddr, ("%llx\n", (uint64_t)physAddr));*/
1829
1830 STAM_PROFILE_START(&gStatGCPhys2HCVirt, a);
1831 rc = PGMR3PhysTlbGCPhys2Ptr(env1->pVM, physAddr, true /*fWritable*/, &pv);
1832 STAM_PROFILE_STOP(&gStatGCPhys2HCVirt, a);
1833 Assert( rc == VINF_SUCCESS
1834 || rc == VINF_PGM_PHYS_TLB_CATCH_WRITE
1835 || rc == VERR_PGM_PHYS_TLB_CATCH_ALL
1836 || rc == VERR_PGM_PHYS_TLB_UNASSIGNED);
1837 if (RT_FAILURE(rc))
1838 return (void *)1;
1839 if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE)
1840 return (void *)((uintptr_t)pv | 2);
1841 return pv;
1842}
1843#endif /* REM_PHYS_ADDR_IN_TLB */
1844
1845
1846/**
1847 * Called from tlb_protect_code in order to write monitor a code page.
1848 *
1849 * @param env Pointer to the CPU environment.
1850 * @param GCPtr Code page to monitor
1851 */
1852void remR3ProtectCode(CPUX86State *env, RTGCPTR GCPtr)
1853{
1854#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1855 Assert(env->pVM->rem.s.fInREM);
1856 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1857 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1858 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1859 && !(env->eflags & VM_MASK) /* no V86 mode */
1860 && !HMIsEnabled(env->pVM))
1861 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1862#endif
1863}
1864
1865
1866/**
1867 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1868 *
1869 * @param env Pointer to the CPU environment.
1870 * @param GCPtr Code page to monitor
1871 */
1872void remR3UnprotectCode(CPUX86State *env, RTGCPTR GCPtr)
1873{
1874 Assert(env->pVM->rem.s.fInREM);
1875#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1876 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1877 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1878 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1879 && !(env->eflags & VM_MASK) /* no V86 mode */
1880 && !HMIsEnabled(env->pVM))
1881 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1882#endif
1883}
1884
1885
1886/**
1887 * Called when the CPU is initialized, any of the CRx registers are changed or
1888 * when the A20 line is modified.
1889 *
1890 * @param env Pointer to the CPU environment.
1891 * @param fGlobal Set if the flush is global.
1892 */
1893void remR3FlushTLB(CPUX86State *env, bool fGlobal)
1894{
1895 PVM pVM = env->pVM;
1896 PCPUMCTX pCtx;
1897 Assert(EMRemIsLockOwner(pVM));
1898
1899 /*
1900 * When we're replaying invlpg instructions or restoring a saved
1901 * state we disable this path.
1902 */
1903 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.cIgnoreAll)
1904 return;
1905 Assert(pVM->rem.s.fInREM);
1906
1907 /*
1908 * The caller doesn't check cr4, so we have to do that for ourselves.
1909 */
1910 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1911 fGlobal = true;
1912 Log(("remR3FlushTLB: CR0=%08RX64 CR3=%08RX64 CR4=%08RX64 %s\n", (uint64_t)env->cr[0], (uint64_t)env->cr[3], (uint64_t)env->cr[4], fGlobal ? " global" : ""));
1913
1914 /*
1915 * Update the control registers before calling PGMR3FlushTLB.
1916 */
1917 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1918 Assert(pCtx);
1919 pCtx->cr0 = env->cr[0];
1920 pCtx->cr3 = env->cr[3];
1921#ifdef VBOX_WITH_RAW_MODE
1922 if (((env->cr[4] ^ pCtx->cr4) & X86_CR4_VME) && !HMIsEnabled(pVM))
1923 VMCPU_FF_SET(env->pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1924#endif
1925 pCtx->cr4 = env->cr[4];
1926
1927 /*
1928 * Let PGM do the rest.
1929 */
1930 Assert(env->pVCpu);
1931 PGMFlushTLB(env->pVCpu, env->cr[3], fGlobal);
1932}
1933
1934
1935/**
1936 * Called when any of the cr0, cr4 or efer registers is updated.
1937 *
1938 * @param env Pointer to the CPU environment.
1939 */
1940void remR3ChangeCpuMode(CPUX86State *env)
1941{
1942 PVM pVM = env->pVM;
1943 uint64_t efer;
1944 PCPUMCTX pCtx;
1945 int rc;
1946
1947 /*
1948 * When we're replaying loads or restoring a saved
1949 * state this path is disabled.
1950 */
1951 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.cIgnoreAll)
1952 return;
1953 Assert(pVM->rem.s.fInREM);
1954
1955 /*
1956 * Update the control registers before calling PGMChangeMode()
1957 * as it may need to map whatever cr3 is pointing to.
1958 */
1959 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1960 Assert(pCtx);
1961 pCtx->cr0 = env->cr[0];
1962 pCtx->cr3 = env->cr[3];
1963#ifdef VBOX_WITH_RAW_MODE
1964 if (((env->cr[4] ^ pCtx->cr4) & X86_CR4_VME) && !HMIsEnabled(pVM))
1965 VMCPU_FF_SET(env->pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1966#endif
1967 pCtx->cr4 = env->cr[4];
1968#ifdef TARGET_X86_64
1969 efer = env->efer;
1970 pCtx->msrEFER = efer;
1971#else
1972 efer = 0;
1973#endif
1974 Assert(env->pVCpu);
1975 rc = PGMChangeMode(env->pVCpu, env->cr[0], env->cr[4], efer);
1976 if (rc != VINF_SUCCESS)
1977 {
1978 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
1979 {
1980 Log(("PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc -> remR3RaiseRC\n", env->cr[0], env->cr[4], efer, rc));
1981 remR3RaiseRC(env->pVM, rc);
1982 }
1983 else
1984 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc\n", env->cr[0], env->cr[4], efer, rc);
1985 }
1986}
1987
1988
1989/**
1990 * Called from compiled code to run dma.
1991 *
1992 * @param env Pointer to the CPU environment.
1993 */
1994void remR3DmaRun(CPUX86State *env)
1995{
1996 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1997 PDMR3DmaRun(env->pVM);
1998 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1999}
2000
2001
2002/**
2003 * Called from compiled code to schedule pending timers in VMM
2004 *
2005 * @param env Pointer to the CPU environment.
2006 */
2007void remR3TimersRun(CPUX86State *env)
2008{
2009 LogFlow(("remR3TimersRun:\n"));
2010 LogIt(LOG_INSTANCE, RTLOGGRPFLAGS_LEVEL_5, LOG_GROUP_TM, ("remR3TimersRun\n"));
2011 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
2012 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
2013 TMR3TimerQueuesDo(env->pVM);
2014 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
2015 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
2016}
2017
2018
2019/**
2020 * Record trap occurrence
2021 *
2022 * @returns VBox status code
2023 * @param env Pointer to the CPU environment.
2024 * @param uTrap Trap nr
2025 * @param uErrorCode Error code
2026 * @param pvNextEIP Next EIP
2027 */
2028int remR3NotifyTrap(CPUX86State *env, uint32_t uTrap, uint32_t uErrorCode, RTGCPTR pvNextEIP)
2029{
2030 PVM pVM = env->pVM;
2031#ifdef VBOX_WITH_STATISTICS
2032 static STAMCOUNTER s_aStatTrap[255];
2033 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
2034#endif
2035
2036#ifdef VBOX_WITH_STATISTICS
2037 if (uTrap < 255)
2038 {
2039 if (!s_aRegisters[uTrap])
2040 {
2041 char szStatName[64];
2042 s_aRegisters[uTrap] = true;
2043 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
2044 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
2045 }
2046 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
2047 }
2048#endif
2049 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
2050 if( uTrap < 0x20
2051 && (env->cr[0] & X86_CR0_PE)
2052 && !(env->eflags & X86_EFL_VM))
2053 {
2054#ifdef DEBUG
2055 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
2056#endif
2057 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
2058 {
2059 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
2060 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
2061 return VERR_REM_TOO_MANY_TRAPS;
2062 }
2063 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
2064 {
2065 Log(("remR3NotifyTrap: uTrap=%#x set as pending\n", uTrap));
2066 pVM->rem.s.cPendingExceptions = 1;
2067 }
2068 pVM->rem.s.uPendingException = uTrap;
2069 pVM->rem.s.uPendingExcptEIP = env->eip;
2070 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
2071 }
2072 else
2073 {
2074 pVM->rem.s.cPendingExceptions = 0;
2075 pVM->rem.s.uPendingException = uTrap;
2076 pVM->rem.s.uPendingExcptEIP = env->eip;
2077 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
2078 }
2079 return VINF_SUCCESS;
2080}
2081
2082
2083/*
2084 * Clear current active trap
2085 *
2086 * @param pVM VM Handle.
2087 */
2088void remR3TrapClear(PVM pVM)
2089{
2090 pVM->rem.s.cPendingExceptions = 0;
2091 pVM->rem.s.uPendingException = 0;
2092 pVM->rem.s.uPendingExcptEIP = 0;
2093 pVM->rem.s.uPendingExcptCR2 = 0;
2094}
2095
2096
2097/*
2098 * Record previous call instruction addresses
2099 *
2100 * @param env Pointer to the CPU environment.
2101 */
2102void remR3RecordCall(CPUX86State *env)
2103{
2104#ifdef VBOX_WITH_RAW_MODE
2105 CSAMR3RecordCallAddress(env->pVM, env->eip);
2106#endif
2107}
2108
2109
2110/**
2111 * Syncs the internal REM state with the VM.
2112 *
2113 * This must be called before REMR3Run() is invoked whenever when the REM
2114 * state is not up to date. Calling it several times in a row is not
2115 * permitted.
2116 *
2117 * @returns VBox status code.
2118 *
2119 * @param pVM VM Handle.
2120 * @param pVCpu VMCPU Handle.
2121 *
2122 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
2123 * no do this since the majority of the callers don't want any unnecessary of events
2124 * pending that would immediately interrupt execution.
2125 */
2126REMR3DECL(int) REMR3State(PVM pVM, PVMCPU pVCpu)
2127{
2128 register const CPUMCTX *pCtx;
2129 register unsigned fFlags;
2130 unsigned i;
2131 TRPMEVENT enmType;
2132 uint8_t u8TrapNo;
2133 uint32_t uCpl;
2134 int rc;
2135
2136 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
2137 Log2(("REMR3State:\n"));
2138
2139 pVM->rem.s.Env.pVCpu = pVCpu;
2140 pCtx = pVM->rem.s.pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2141
2142 Assert(!pVM->rem.s.fInREM);
2143 pVM->rem.s.fInStateSync = true;
2144
2145 /*
2146 * If we have to flush TBs, do that immediately.
2147 */
2148 if (pVM->rem.s.fFlushTBs)
2149 {
2150 STAM_COUNTER_INC(&gStatFlushTBs);
2151 tb_flush(&pVM->rem.s.Env);
2152 pVM->rem.s.fFlushTBs = false;
2153 }
2154
2155 /*
2156 * Copy the registers which require no special handling.
2157 */
2158#ifdef TARGET_X86_64
2159 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2160 Assert(R_EAX == 0);
2161 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
2162 Assert(R_ECX == 1);
2163 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
2164 Assert(R_EDX == 2);
2165 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
2166 Assert(R_EBX == 3);
2167 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
2168 Assert(R_ESP == 4);
2169 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
2170 Assert(R_EBP == 5);
2171 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
2172 Assert(R_ESI == 6);
2173 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
2174 Assert(R_EDI == 7);
2175 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
2176 pVM->rem.s.Env.regs[8] = pCtx->r8;
2177 pVM->rem.s.Env.regs[9] = pCtx->r9;
2178 pVM->rem.s.Env.regs[10] = pCtx->r10;
2179 pVM->rem.s.Env.regs[11] = pCtx->r11;
2180 pVM->rem.s.Env.regs[12] = pCtx->r12;
2181 pVM->rem.s.Env.regs[13] = pCtx->r13;
2182 pVM->rem.s.Env.regs[14] = pCtx->r14;
2183 pVM->rem.s.Env.regs[15] = pCtx->r15;
2184
2185 pVM->rem.s.Env.eip = pCtx->rip;
2186
2187 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
2188#else
2189 Assert(R_EAX == 0);
2190 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
2191 Assert(R_ECX == 1);
2192 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
2193 Assert(R_EDX == 2);
2194 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
2195 Assert(R_EBX == 3);
2196 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
2197 Assert(R_ESP == 4);
2198 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
2199 Assert(R_EBP == 5);
2200 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
2201 Assert(R_ESI == 6);
2202 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
2203 Assert(R_EDI == 7);
2204 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
2205 pVM->rem.s.Env.eip = pCtx->eip;
2206
2207 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
2208#endif
2209
2210 pVM->rem.s.Env.cr[2] = pCtx->cr2;
2211
2212 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
2213 for (i=0;i<8;i++)
2214 pVM->rem.s.Env.dr[i] = pCtx->dr[i];
2215
2216#ifdef HF_HALTED_MASK /** @todo remove me when we're up to date again. */
2217 /*
2218 * Clear the halted hidden flag (the interrupt waking up the CPU can
2219 * have been dispatched in raw mode).
2220 */
2221 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
2222#endif
2223
2224 /*
2225 * Replay invlpg? Only if we're not flushing the TLB.
2226 */
2227 fFlags = CPUMR3RemEnter(pVCpu, &uCpl);
2228 LogFlow(("CPUMR3RemEnter %x %x\n", fFlags, uCpl));
2229 if (pVM->rem.s.cInvalidatedPages)
2230 {
2231 if (!(fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH))
2232 {
2233 RTUINT i;
2234
2235 pVM->rem.s.fIgnoreCR3Load = true;
2236 pVM->rem.s.fIgnoreInvlPg = true;
2237 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2238 {
2239 Log2(("REMR3State: invlpg %RGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2240 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2241 }
2242 pVM->rem.s.fIgnoreInvlPg = false;
2243 pVM->rem.s.fIgnoreCR3Load = false;
2244 }
2245 pVM->rem.s.cInvalidatedPages = 0;
2246 }
2247
2248 /* Replay notification changes. */
2249 REMR3ReplayHandlerNotifications(pVM);
2250
2251 /* Update MSRs; before CRx registers! */
2252 pVM->rem.s.Env.efer = pCtx->msrEFER;
2253 pVM->rem.s.Env.star = pCtx->msrSTAR;
2254 pVM->rem.s.Env.pat = pCtx->msrPAT;
2255#ifdef TARGET_X86_64
2256 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
2257 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
2258 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
2259 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
2260
2261 /* Update the internal long mode activate flag according to the new EFER value. */
2262 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
2263 pVM->rem.s.Env.hflags |= HF_LMA_MASK;
2264 else
2265 pVM->rem.s.Env.hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
2266#endif
2267
2268 /* Update the inhibit IRQ mask. */
2269 pVM->rem.s.Env.hflags &= ~HF_INHIBIT_IRQ_MASK;
2270 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2271 {
2272 RTGCPTR InhibitPC = EMGetInhibitInterruptsPC(pVCpu);
2273 if (InhibitPC == pCtx->rip)
2274 pVM->rem.s.Env.hflags |= HF_INHIBIT_IRQ_MASK;
2275 else
2276 {
2277 Log(("Clearing VMCPU_FF_INHIBIT_INTERRUPTS at %RGv - successor %RGv (REM#1)\n", (RTGCPTR)pCtx->rip, InhibitPC));
2278 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2279 }
2280 }
2281
2282 /*
2283 * Sync the A20 gate.
2284 */
2285 bool fA20State = PGMPhysIsA20Enabled(pVCpu);
2286 if (fA20State != RT_BOOL(pVM->rem.s.Env.a20_mask & RT_BIT(20)))
2287 {
2288 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
2289 cpu_x86_set_a20(&pVM->rem.s.Env, fA20State);
2290 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
2291 }
2292
2293 /*
2294 * Registers which are rarely changed and require special handling / order when changed.
2295 */
2296 if (fFlags & ( CPUM_CHANGED_GLOBAL_TLB_FLUSH
2297 | CPUM_CHANGED_CR4
2298 | CPUM_CHANGED_CR0
2299 | CPUM_CHANGED_CR3
2300 | CPUM_CHANGED_GDTR
2301 | CPUM_CHANGED_IDTR
2302 | CPUM_CHANGED_SYSENTER_MSR
2303 | CPUM_CHANGED_LDTR
2304 | CPUM_CHANGED_CPUID
2305 | CPUM_CHANGED_FPU_REM
2306 )
2307 )
2308 {
2309 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
2310 {
2311 pVM->rem.s.fIgnoreCR3Load = true;
2312 tlb_flush(&pVM->rem.s.Env, true);
2313 pVM->rem.s.fIgnoreCR3Load = false;
2314 }
2315
2316 /* CR4 before CR0! */
2317 if (fFlags & CPUM_CHANGED_CR4)
2318 {
2319 pVM->rem.s.fIgnoreCR3Load = true;
2320 pVM->rem.s.fIgnoreCpuMode = true;
2321 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
2322 pVM->rem.s.fIgnoreCpuMode = false;
2323 pVM->rem.s.fIgnoreCR3Load = false;
2324 }
2325
2326 if (fFlags & CPUM_CHANGED_CR0)
2327 {
2328 pVM->rem.s.fIgnoreCR3Load = true;
2329 pVM->rem.s.fIgnoreCpuMode = true;
2330 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
2331 pVM->rem.s.fIgnoreCpuMode = false;
2332 pVM->rem.s.fIgnoreCR3Load = false;
2333 }
2334
2335 if (fFlags & CPUM_CHANGED_CR3)
2336 {
2337 pVM->rem.s.fIgnoreCR3Load = true;
2338 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
2339 pVM->rem.s.fIgnoreCR3Load = false;
2340 }
2341
2342 if (fFlags & CPUM_CHANGED_GDTR)
2343 {
2344 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
2345 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
2346 }
2347
2348 if (fFlags & CPUM_CHANGED_IDTR)
2349 {
2350 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
2351 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
2352 }
2353
2354 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
2355 {
2356 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
2357 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
2358 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
2359 }
2360
2361 if (fFlags & CPUM_CHANGED_LDTR)
2362 {
2363 if (pCtx->ldtr.fFlags & CPUMSELREG_FLAGS_VALID)
2364 {
2365 pVM->rem.s.Env.ldt.selector = pCtx->ldtr.Sel;
2366 pVM->rem.s.Env.ldt.newselector = 0;
2367 pVM->rem.s.Env.ldt.fVBoxFlags = pCtx->ldtr.fFlags;
2368 pVM->rem.s.Env.ldt.base = pCtx->ldtr.u64Base;
2369 pVM->rem.s.Env.ldt.limit = pCtx->ldtr.u32Limit;
2370 pVM->rem.s.Env.ldt.flags = (pCtx->ldtr.Attr.u << 8) & 0xFFFFFF;
2371 }
2372 else
2373 {
2374 AssertFailed(); /* Shouldn't happen, see cpumR3LoadExec. */
2375 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr.Sel);
2376 }
2377 }
2378
2379 if (fFlags & CPUM_CHANGED_CPUID)
2380 {
2381 uint32_t u32Dummy;
2382
2383 /*
2384 * Get the CPUID features.
2385 */
2386 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
2387 CPUMGetGuestCpuId(pVCpu, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
2388 }
2389
2390 /* Sync FPU state after CR4, CPUID and EFER (!). */
2391 if (fFlags & CPUM_CHANGED_FPU_REM)
2392 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
2393 }
2394
2395 /*
2396 * Sync TR unconditionally to make life simpler.
2397 */
2398 pVM->rem.s.Env.tr.selector = pCtx->tr.Sel;
2399 pVM->rem.s.Env.tr.newselector = 0;
2400 pVM->rem.s.Env.tr.fVBoxFlags = pCtx->tr.fFlags;
2401 pVM->rem.s.Env.tr.base = pCtx->tr.u64Base;
2402 pVM->rem.s.Env.tr.limit = pCtx->tr.u32Limit;
2403 pVM->rem.s.Env.tr.flags = (pCtx->tr.Attr.u << 8) & 0xFFFFFF;
2404 /* Note! do_interrupt will fault if the busy flag is still set... */
2405 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
2406
2407 /*
2408 * Update selector registers.
2409 *
2410 * This must be done *after* we've synced gdt, ldt and crX registers
2411 * since we're reading the GDT/LDT om sync_seg. This will happen with
2412 * saved state which takes a quick dip into rawmode for instance.
2413 *
2414 * CPL/Stack; Note first check this one as the CPL might have changed.
2415 * The wrong CPL can cause QEmu to raise an exception in sync_seg!!
2416 */
2417 cpu_x86_set_cpl(&pVM->rem.s.Env, uCpl);
2418 /* Note! QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
2419#define SYNC_IN_SREG(a_pEnv, a_SReg, a_pRemSReg, a_pVBoxSReg) \
2420 do \
2421 { \
2422 if (CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, a_pVBoxSReg)) \
2423 { \
2424 cpu_x86_load_seg_cache(a_pEnv, R_##a_SReg, \
2425 (a_pVBoxSReg)->Sel, \
2426 (a_pVBoxSReg)->u64Base, \
2427 (a_pVBoxSReg)->u32Limit, \
2428 ((a_pVBoxSReg)->Attr.u << 8) & 0xFFFFFF); \
2429 (a_pRemSReg)->fVBoxFlags = (a_pVBoxSReg)->fFlags; \
2430 } \
2431 /* This only-reload-if-changed stuff is the old approach, we should ditch it. */ \
2432 else if ((a_pRemSReg)->selector != (a_pVBoxSReg)->Sel) \
2433 { \
2434 Log2(("REMR3State: " #a_SReg " changed from %04x to %04x!\n", \
2435 (a_pRemSReg)->selector, (a_pVBoxSReg)->Sel)); \
2436 sync_seg(a_pEnv, R_##a_SReg, (a_pVBoxSReg)->Sel); \
2437 if ((a_pRemSReg)->newselector) \
2438 STAM_COUNTER_INC(&gStatSelOutOfSync[R_##a_SReg]); \
2439 } \
2440 else \
2441 (a_pRemSReg)->newselector = 0; \
2442 } while (0)
2443
2444 SYNC_IN_SREG(&pVM->rem.s.Env, CS, &pVM->rem.s.Env.segs[R_CS], &pCtx->cs);
2445 SYNC_IN_SREG(&pVM->rem.s.Env, SS, &pVM->rem.s.Env.segs[R_SS], &pCtx->ss);
2446 SYNC_IN_SREG(&pVM->rem.s.Env, DS, &pVM->rem.s.Env.segs[R_DS], &pCtx->ds);
2447 SYNC_IN_SREG(&pVM->rem.s.Env, ES, &pVM->rem.s.Env.segs[R_ES], &pCtx->es);
2448 SYNC_IN_SREG(&pVM->rem.s.Env, FS, &pVM->rem.s.Env.segs[R_FS], &pCtx->fs);
2449 SYNC_IN_SREG(&pVM->rem.s.Env, GS, &pVM->rem.s.Env.segs[R_GS], &pCtx->gs);
2450 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
2451 * be the same but not the base/limit. */
2452
2453 /*
2454 * Check for traps.
2455 */
2456 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
2457 rc = TRPMQueryTrap(pVCpu, &u8TrapNo, &enmType);
2458 if (RT_SUCCESS(rc))
2459 {
2460#ifdef DEBUG
2461 if (u8TrapNo == 0x80)
2462 {
2463 remR3DumpLnxSyscall(pVCpu);
2464 remR3DumpOBsdSyscall(pVCpu);
2465 }
2466#endif
2467
2468 pVM->rem.s.Env.exception_index = u8TrapNo;
2469 if (enmType != TRPM_SOFTWARE_INT)
2470 {
2471 pVM->rem.s.Env.exception_is_int = 0;
2472 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
2473 }
2474 else
2475 {
2476 /*
2477 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
2478 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
2479 * for int03 and into.
2480 */
2481 pVM->rem.s.Env.exception_is_int = 1;
2482 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 2;
2483 /* int 3 may be generated by one-byte 0xcc */
2484 if (u8TrapNo == 3)
2485 {
2486 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xcc)
2487 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2488 }
2489 /* int 4 may be generated by one-byte 0xce */
2490 else if (u8TrapNo == 4)
2491 {
2492 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xce)
2493 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2494 }
2495 }
2496
2497 /* get error code and cr2 if needed. */
2498 if (enmType == TRPM_TRAP)
2499 {
2500 switch (u8TrapNo)
2501 {
2502 case X86_XCPT_PF:
2503 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVCpu);
2504 /* fallthru */
2505 case X86_XCPT_TS: case X86_XCPT_NP: case X86_XCPT_SS: case X86_XCPT_GP:
2506 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVCpu);
2507 break;
2508
2509 case X86_XCPT_AC: case X86_XCPT_DF:
2510 default:
2511 pVM->rem.s.Env.error_code = 0;
2512 break;
2513 }
2514 }
2515 else
2516 pVM->rem.s.Env.error_code = 0;
2517
2518 /*
2519 * We can now reset the active trap since the recompiler is gonna have a go at it.
2520 */
2521 rc = TRPMResetTrap(pVCpu);
2522 AssertRC(rc);
2523 Log2(("REMR3State: trap=%02x errcd=%RGv cr2=%RGv nexteip=%RGv%s\n", pVM->rem.s.Env.exception_index, (RTGCPTR)pVM->rem.s.Env.error_code,
2524 (RTGCPTR)pVM->rem.s.Env.cr[2], (RTGCPTR)pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
2525 }
2526
2527 /*
2528 * Clear old interrupt request flags; Check for pending hardware interrupts.
2529 * (See @remark for why we don't check for other FFs.)
2530 */
2531 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2532 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2533 || VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
2534 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2535
2536 /*
2537 * We're now in REM mode.
2538 */
2539 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_REM);
2540 pVM->rem.s.fInREM = true;
2541 pVM->rem.s.fInStateSync = false;
2542 pVM->rem.s.cCanExecuteRaw = 0;
2543 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2544 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2545 return VINF_SUCCESS;
2546}
2547
2548
2549/**
2550 * Syncs back changes in the REM state to the the VM state.
2551 *
2552 * This must be called after invoking REMR3Run().
2553 * Calling it several times in a row is not permitted.
2554 *
2555 * @returns VBox status code.
2556 *
2557 * @param pVM VM Handle.
2558 * @param pVCpu VMCPU Handle.
2559 */
2560REMR3DECL(int) REMR3StateBack(PVM pVM, PVMCPU pVCpu)
2561{
2562 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2563 Assert(pCtx);
2564 unsigned i;
2565
2566 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2567 Log2(("REMR3StateBack:\n"));
2568 Assert(pVM->rem.s.fInREM);
2569
2570 /*
2571 * Copy back the registers.
2572 * This is done in the order they are declared in the CPUMCTX structure.
2573 */
2574
2575 /** @todo FOP */
2576 /** @todo FPUIP */
2577 /** @todo CS */
2578 /** @todo FPUDP */
2579 /** @todo DS */
2580
2581 /** @todo check if FPU/XMM was actually used in the recompiler */
2582 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2583//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2584
2585#ifdef TARGET_X86_64
2586 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2587 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2588 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2589 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2590 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2591 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2592 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2593 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2594 pCtx->r8 = pVM->rem.s.Env.regs[8];
2595 pCtx->r9 = pVM->rem.s.Env.regs[9];
2596 pCtx->r10 = pVM->rem.s.Env.regs[10];
2597 pCtx->r11 = pVM->rem.s.Env.regs[11];
2598 pCtx->r12 = pVM->rem.s.Env.regs[12];
2599 pCtx->r13 = pVM->rem.s.Env.regs[13];
2600 pCtx->r14 = pVM->rem.s.Env.regs[14];
2601 pCtx->r15 = pVM->rem.s.Env.regs[15];
2602
2603 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2604
2605#else
2606 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2607 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2608 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2609 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2610 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2611 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2612 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2613
2614 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2615#endif
2616
2617#define SYNC_BACK_SREG(a_sreg, a_SREG) \
2618 do \
2619 { \
2620 pCtx->a_sreg.Sel = pVM->rem.s.Env.segs[R_##a_SREG].selector; \
2621 if (!pVM->rem.s.Env.segs[R_SS].newselector) \
2622 { \
2623 pCtx->a_sreg.ValidSel = pVM->rem.s.Env.segs[R_##a_SREG].selector; \
2624 pCtx->a_sreg.fFlags = CPUMSELREG_FLAGS_VALID; \
2625 pCtx->a_sreg.u64Base = pVM->rem.s.Env.segs[R_##a_SREG].base; \
2626 pCtx->a_sreg.u32Limit = pVM->rem.s.Env.segs[R_##a_SREG].limit; \
2627 /* Note! QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */ \
2628 pCtx->a_sreg.Attr.u = (pVM->rem.s.Env.segs[R_##a_SREG].flags >> 8) & 0xF0FF; \
2629 } \
2630 else \
2631 { \
2632 pCtx->a_sreg.fFlags = 0; \
2633 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_##a_SREG]); \
2634 } \
2635 } while (0)
2636
2637 SYNC_BACK_SREG(es, ES);
2638 SYNC_BACK_SREG(cs, CS);
2639 SYNC_BACK_SREG(ss, SS);
2640 SYNC_BACK_SREG(ds, DS);
2641 SYNC_BACK_SREG(fs, FS);
2642 SYNC_BACK_SREG(gs, GS);
2643
2644#ifdef TARGET_X86_64
2645 pCtx->rip = pVM->rem.s.Env.eip;
2646 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2647#else
2648 pCtx->eip = pVM->rem.s.Env.eip;
2649 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2650#endif
2651
2652 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2653 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2654 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2655#ifdef VBOX_WITH_RAW_MODE
2656 if (((pVM->rem.s.Env.cr[4] ^ pCtx->cr4) & X86_CR4_VME) && !HMIsEnabled(pVM))
2657 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2658#endif
2659 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2660
2661 for (i = 0; i < 8; i++)
2662 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2663
2664 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2665 if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
2666 {
2667 pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
2668 STAM_COUNTER_INC(&gStatREMGDTChange);
2669#ifdef VBOX_WITH_RAW_MODE
2670 if (!HMIsEnabled(pVM))
2671 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
2672#endif
2673 }
2674
2675 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2676 if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
2677 {
2678 pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
2679 STAM_COUNTER_INC(&gStatREMIDTChange);
2680#ifdef VBOX_WITH_RAW_MODE
2681 VMCPU_FF_SET(pVCpu, VMCPU_FF_TRPM_SYNC_IDT);
2682#endif
2683 }
2684
2685 if ( pCtx->ldtr.Sel != pVM->rem.s.Env.ldt.selector
2686 || pCtx->ldtr.ValidSel != pVM->rem.s.Env.ldt.selector
2687 || pCtx->ldtr.u64Base != pVM->rem.s.Env.ldt.base
2688 || pCtx->ldtr.u32Limit != pVM->rem.s.Env.ldt.limit
2689 || pCtx->ldtr.Attr.u != ((pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF)
2690 || !(pCtx->ldtr.fFlags & CPUMSELREG_FLAGS_VALID)
2691 )
2692 {
2693 pCtx->ldtr.Sel = pVM->rem.s.Env.ldt.selector;
2694 pCtx->ldtr.ValidSel = pVM->rem.s.Env.ldt.selector;
2695 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2696 pCtx->ldtr.u64Base = pVM->rem.s.Env.ldt.base;
2697 pCtx->ldtr.u32Limit = pVM->rem.s.Env.ldt.limit;
2698 pCtx->ldtr.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2699 STAM_COUNTER_INC(&gStatREMLDTRChange);
2700#ifdef VBOX_WITH_RAW_MODE
2701 if (!HMIsEnabled(pVM))
2702 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
2703#endif
2704 }
2705
2706 if ( pCtx->tr.Sel != pVM->rem.s.Env.tr.selector
2707 || pCtx->tr.ValidSel != pVM->rem.s.Env.tr.selector
2708 || pCtx->tr.u64Base != pVM->rem.s.Env.tr.base
2709 || pCtx->tr.u32Limit != pVM->rem.s.Env.tr.limit
2710 /* Qemu and AMD/Intel have different ideas about the busy flag ... */
2711 || pCtx->tr.Attr.u != ( (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF
2712 ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8
2713 : 0)
2714 || !(pCtx->tr.fFlags & CPUMSELREG_FLAGS_VALID)
2715 )
2716 {
2717 Log(("REM: TR changed! %#x{%#llx,%#x,%#x} -> %#x{%llx,%#x,%#x}\n",
2718 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2719 pVM->rem.s.Env.tr.selector, (uint64_t)pVM->rem.s.Env.tr.base, pVM->rem.s.Env.tr.limit,
2720 (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8 : 0));
2721 pCtx->tr.Sel = pVM->rem.s.Env.tr.selector;
2722 pCtx->tr.ValidSel = pVM->rem.s.Env.tr.selector;
2723 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
2724 pCtx->tr.u64Base = pVM->rem.s.Env.tr.base;
2725 pCtx->tr.u32Limit = pVM->rem.s.Env.tr.limit;
2726 pCtx->tr.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2727 if (pCtx->tr.Attr.u)
2728 pCtx->tr.Attr.u |= DESC_TSS_BUSY_MASK >> 8;
2729 STAM_COUNTER_INC(&gStatREMTRChange);
2730#ifdef VBOX_WITH_RAW_MODE
2731 if (!HMIsEnabled(pVM))
2732 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2733#endif
2734 }
2735
2736 /* Sysenter MSR */
2737 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2738 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2739 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2740
2741 /* System MSRs. */
2742 pCtx->msrEFER = pVM->rem.s.Env.efer;
2743 pCtx->msrSTAR = pVM->rem.s.Env.star;
2744 pCtx->msrPAT = pVM->rem.s.Env.pat;
2745#ifdef TARGET_X86_64
2746 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2747 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2748 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2749 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2750#endif
2751
2752 /* Inhibit interrupt flag. */
2753 if (pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK)
2754 {
2755 Log(("Settings VMCPU_FF_INHIBIT_INTERRUPTS at %RGv (REM)\n", (RTGCPTR)pCtx->rip));
2756 EMSetInhibitInterruptsPC(pVCpu, pCtx->rip);
2757 VMCPU_FF_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2758 }
2759 else if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
2760 {
2761 Log(("Clearing VMCPU_FF_INHIBIT_INTERRUPTS at %RGv - successor %RGv (REM#2)\n", (RTGCPTR)pCtx->rip, EMGetInhibitInterruptsPC(pVCpu)));
2762 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
2763 }
2764
2765 remR3TrapClear(pVM);
2766
2767 /*
2768 * Check for traps.
2769 */
2770 if ( pVM->rem.s.Env.exception_index >= 0
2771 && pVM->rem.s.Env.exception_index < 256)
2772 {
2773 int rc;
2774
2775 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2776 rc = TRPMAssertTrap(pVCpu, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2777 AssertRC(rc);
2778 switch (pVM->rem.s.Env.exception_index)
2779 {
2780 case X86_XCPT_PF:
2781 TRPMSetFaultAddress(pVCpu, pCtx->cr2);
2782 /* fallthru */
2783 case X86_XCPT_TS: case X86_XCPT_NP: case X86_XCPT_SS: case X86_XCPT_GP:
2784 case X86_XCPT_AC: case X86_XCPT_DF: /* 0 */
2785 TRPMSetErrorCode(pVCpu, pVM->rem.s.Env.error_code);
2786 break;
2787 }
2788
2789 }
2790
2791 /*
2792 * We're not longer in REM mode.
2793 */
2794 CPUMR3RemLeave(pVCpu,
2795 HMIsEnabled(pVM)
2796 || ( pVM->rem.s.Env.segs[R_SS].newselector
2797 | pVM->rem.s.Env.segs[R_GS].newselector
2798 | pVM->rem.s.Env.segs[R_FS].newselector
2799 | pVM->rem.s.Env.segs[R_ES].newselector
2800 | pVM->rem.s.Env.segs[R_DS].newselector
2801 | pVM->rem.s.Env.segs[R_CS].newselector) == 0
2802 );
2803 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_REM);
2804 pVM->rem.s.fInREM = false;
2805 pVM->rem.s.pCtx = NULL;
2806 pVM->rem.s.Env.pVCpu = NULL;
2807 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2808 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2809 return VINF_SUCCESS;
2810}
2811
2812
2813/**
2814 * This is called by the disassembler when it wants to update the cpu state
2815 * before for instance doing a register dump.
2816 */
2817static void remR3StateUpdate(PVM pVM, PVMCPU pVCpu)
2818{
2819 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2820 unsigned i;
2821
2822 Assert(pVM->rem.s.fInREM);
2823
2824 /*
2825 * Copy back the registers.
2826 * This is done in the order they are declared in the CPUMCTX structure.
2827 */
2828
2829 /** @todo FOP */
2830 /** @todo FPUIP */
2831 /** @todo CS */
2832 /** @todo FPUDP */
2833 /** @todo DS */
2834 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2835 pCtx->fpu.MXCSR = 0;
2836 pCtx->fpu.MXCSR_MASK = 0;
2837
2838 /** @todo check if FPU/XMM was actually used in the recompiler */
2839 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2840//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2841
2842#ifdef TARGET_X86_64
2843 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2844 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2845 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2846 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2847 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2848 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2849 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2850 pCtx->r8 = pVM->rem.s.Env.regs[8];
2851 pCtx->r9 = pVM->rem.s.Env.regs[9];
2852 pCtx->r10 = pVM->rem.s.Env.regs[10];
2853 pCtx->r11 = pVM->rem.s.Env.regs[11];
2854 pCtx->r12 = pVM->rem.s.Env.regs[12];
2855 pCtx->r13 = pVM->rem.s.Env.regs[13];
2856 pCtx->r14 = pVM->rem.s.Env.regs[14];
2857 pCtx->r15 = pVM->rem.s.Env.regs[15];
2858
2859 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2860#else
2861 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2862 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2863 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2864 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2865 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2866 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2867 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2868
2869 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2870#endif
2871
2872 SYNC_BACK_SREG(es, ES);
2873 SYNC_BACK_SREG(cs, CS);
2874 SYNC_BACK_SREG(ss, SS);
2875 SYNC_BACK_SREG(ds, DS);
2876 SYNC_BACK_SREG(fs, FS);
2877 SYNC_BACK_SREG(gs, GS);
2878
2879#ifdef TARGET_X86_64
2880 pCtx->rip = pVM->rem.s.Env.eip;
2881 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2882#else
2883 pCtx->eip = pVM->rem.s.Env.eip;
2884 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2885#endif
2886
2887 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2888 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2889 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2890#ifdef VBOX_WITH_RAW_MODE
2891 if (((pVM->rem.s.Env.cr[4] ^ pCtx->cr4) & X86_CR4_VME) && !HMIsEnabled(pVM))
2892 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2893#endif
2894 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2895
2896 for (i = 0; i < 8; i++)
2897 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2898
2899 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2900 if (pCtx->gdtr.pGdt != (RTGCPTR)pVM->rem.s.Env.gdt.base)
2901 {
2902 pCtx->gdtr.pGdt = (RTGCPTR)pVM->rem.s.Env.gdt.base;
2903 STAM_COUNTER_INC(&gStatREMGDTChange);
2904#ifdef VBOX_WITH_RAW_MODE
2905 if (!HMIsEnabled(pVM))
2906 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
2907#endif
2908 }
2909
2910 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2911 if (pCtx->idtr.pIdt != (RTGCPTR)pVM->rem.s.Env.idt.base)
2912 {
2913 pCtx->idtr.pIdt = (RTGCPTR)pVM->rem.s.Env.idt.base;
2914 STAM_COUNTER_INC(&gStatREMIDTChange);
2915#ifdef VBOX_WITH_RAW_MODE
2916 VMCPU_FF_SET(pVCpu, VMCPU_FF_TRPM_SYNC_IDT);
2917#endif
2918 }
2919
2920 if ( pCtx->ldtr.Sel != pVM->rem.s.Env.ldt.selector
2921 || pCtx->ldtr.ValidSel != pVM->rem.s.Env.ldt.selector
2922 || pCtx->ldtr.u64Base != pVM->rem.s.Env.ldt.base
2923 || pCtx->ldtr.u32Limit != pVM->rem.s.Env.ldt.limit
2924 || pCtx->ldtr.Attr.u != ((pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF)
2925 || !(pCtx->ldtr.fFlags & CPUMSELREG_FLAGS_VALID)
2926 )
2927 {
2928 pCtx->ldtr.Sel = pVM->rem.s.Env.ldt.selector;
2929 pCtx->ldtr.ValidSel = pVM->rem.s.Env.ldt.selector;
2930 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2931 pCtx->ldtr.u64Base = pVM->rem.s.Env.ldt.base;
2932 pCtx->ldtr.u32Limit = pVM->rem.s.Env.ldt.limit;
2933 pCtx->ldtr.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2934 STAM_COUNTER_INC(&gStatREMLDTRChange);
2935#ifdef VBOX_WITH_RAW_MODE
2936 if (!HMIsEnabled(pVM))
2937 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
2938#endif
2939 }
2940
2941 if ( pCtx->tr.Sel != pVM->rem.s.Env.tr.selector
2942 || pCtx->tr.ValidSel != pVM->rem.s.Env.tr.selector
2943 || pCtx->tr.u64Base != pVM->rem.s.Env.tr.base
2944 || pCtx->tr.u32Limit != pVM->rem.s.Env.tr.limit
2945 /* Qemu and AMD/Intel have different ideas about the busy flag ... */
2946 || pCtx->tr.Attr.u != ( (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF
2947 ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8
2948 : 0)
2949 || !(pCtx->tr.fFlags & CPUMSELREG_FLAGS_VALID)
2950 )
2951 {
2952 Log(("REM: TR changed! %#x{%#llx,%#x,%#x} -> %#x{%llx,%#x,%#x}\n",
2953 pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2954 pVM->rem.s.Env.tr.selector, (uint64_t)pVM->rem.s.Env.tr.base, pVM->rem.s.Env.tr.limit,
2955 (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF ? (pVM->rem.s.Env.tr.flags | DESC_TSS_BUSY_MASK) >> 8 : 0));
2956 pCtx->tr.Sel = pVM->rem.s.Env.tr.selector;
2957 pCtx->tr.ValidSel = pVM->rem.s.Env.tr.selector;
2958 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
2959 pCtx->tr.u64Base = pVM->rem.s.Env.tr.base;
2960 pCtx->tr.u32Limit = pVM->rem.s.Env.tr.limit;
2961 pCtx->tr.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2962 if (pCtx->tr.Attr.u)
2963 pCtx->tr.Attr.u |= DESC_TSS_BUSY_MASK >> 8;
2964 STAM_COUNTER_INC(&gStatREMTRChange);
2965#ifdef VBOX_WITH_RAW_MODE
2966 if (!HMIsEnabled(pVM))
2967 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
2968#endif
2969 }
2970
2971 /* Sysenter MSR */
2972 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2973 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2974 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2975
2976 /* System MSRs. */
2977 pCtx->msrEFER = pVM->rem.s.Env.efer;
2978 pCtx->msrSTAR = pVM->rem.s.Env.star;
2979 pCtx->msrPAT = pVM->rem.s.Env.pat;
2980#ifdef TARGET_X86_64
2981 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2982 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2983 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2984 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2985#endif
2986
2987}
2988
2989
2990/**
2991 * Update the VMM state information if we're currently in REM.
2992 *
2993 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2994 * we're currently executing in REM and the VMM state is invalid. This method will of
2995 * course check that we're executing in REM before syncing any data over to the VMM.
2996 *
2997 * @param pVM The VM handle.
2998 * @param pVCpu The VMCPU handle.
2999 */
3000REMR3DECL(void) REMR3StateUpdate(PVM pVM, PVMCPU pVCpu)
3001{
3002 if (pVM->rem.s.fInREM)
3003 remR3StateUpdate(pVM, pVCpu);
3004}
3005
3006
3007#undef LOG_GROUP
3008#define LOG_GROUP LOG_GROUP_REM
3009
3010
3011/**
3012 * Notify the recompiler about Address Gate 20 state change.
3013 *
3014 * This notification is required since A20 gate changes are
3015 * initialized from a device driver and the VM might just as
3016 * well be in REM mode as in RAW mode.
3017 *
3018 * @param pVM VM handle.
3019 * @param pVCpu VMCPU handle.
3020 * @param fEnable True if the gate should be enabled.
3021 * False if the gate should be disabled.
3022 */
3023REMR3DECL(void) REMR3A20Set(PVM pVM, PVMCPU pVCpu, bool fEnable)
3024{
3025 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
3026 VM_ASSERT_EMT(pVM);
3027
3028 /** @todo SMP and the A20 gate... */
3029 if (pVM->rem.s.Env.pVCpu == pVCpu)
3030 {
3031 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
3032 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
3033 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
3034 }
3035}
3036
3037
3038/**
3039 * Replays the handler notification changes
3040 * Called in response to VM_FF_REM_HANDLER_NOTIFY from the RAW execution loop.
3041 *
3042 * @param pVM VM handle.
3043 */
3044REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
3045{
3046 /*
3047 * Replay the flushes.
3048 */
3049 LogFlow(("REMR3ReplayHandlerNotifications:\n"));
3050 VM_ASSERT_EMT(pVM);
3051
3052 /** @todo this isn't ensuring correct replay order. */
3053 if (VM_FF_TESTANDCLEAR(pVM, VM_FF_REM_HANDLER_NOTIFY))
3054 {
3055 uint32_t idxNext;
3056 uint32_t idxRevHead;
3057 uint32_t idxHead;
3058#ifdef VBOX_STRICT
3059 int32_t c = 0;
3060#endif
3061
3062 /* Lockless purging of pending notifications. */
3063 idxHead = ASMAtomicXchgU32(&pVM->rem.s.idxPendingList, UINT32_MAX);
3064 if (idxHead == UINT32_MAX)
3065 return;
3066 Assert(idxHead < RT_ELEMENTS(pVM->rem.s.aHandlerNotifications));
3067
3068 /*
3069 * Reverse the list to process it in FIFO order.
3070 */
3071 idxRevHead = UINT32_MAX;
3072 do
3073 {
3074 /* Save the index of the next rec. */
3075 idxNext = pVM->rem.s.aHandlerNotifications[idxHead].idxNext;
3076 Assert(idxNext < RT_ELEMENTS(pVM->rem.s.aHandlerNotifications) || idxNext == UINT32_MAX);
3077 /* Push the record onto the reversed list. */
3078 pVM->rem.s.aHandlerNotifications[idxHead].idxNext = idxRevHead;
3079 idxRevHead = idxHead;
3080 Assert(++c <= RT_ELEMENTS(pVM->rem.s.aHandlerNotifications));
3081 /* Advance. */
3082 idxHead = idxNext;
3083 } while (idxHead != UINT32_MAX);
3084
3085 /*
3086 * Loop thru the list, reinserting the record into the free list as they are
3087 * processed to avoid having other EMTs running out of entries while we're flushing.
3088 */
3089 idxHead = idxRevHead;
3090 do
3091 {
3092 PREMHANDLERNOTIFICATION pCur = &pVM->rem.s.aHandlerNotifications[idxHead];
3093 uint32_t idxCur;
3094 Assert(--c >= 0);
3095
3096 switch (pCur->enmKind)
3097 {
3098 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
3099 remR3NotifyHandlerPhysicalRegister(pVM,
3100 pCur->u.PhysicalRegister.enmType,
3101 pCur->u.PhysicalRegister.GCPhys,
3102 pCur->u.PhysicalRegister.cb,
3103 pCur->u.PhysicalRegister.fHasHCHandler);
3104 break;
3105
3106 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
3107 remR3NotifyHandlerPhysicalDeregister(pVM,
3108 pCur->u.PhysicalDeregister.enmType,
3109 pCur->u.PhysicalDeregister.GCPhys,
3110 pCur->u.PhysicalDeregister.cb,
3111 pCur->u.PhysicalDeregister.fHasHCHandler,
3112 pCur->u.PhysicalDeregister.fRestoreAsRAM);
3113 break;
3114
3115 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
3116 remR3NotifyHandlerPhysicalModify(pVM,
3117 pCur->u.PhysicalModify.enmType,
3118 pCur->u.PhysicalModify.GCPhysOld,
3119 pCur->u.PhysicalModify.GCPhysNew,
3120 pCur->u.PhysicalModify.cb,
3121 pCur->u.PhysicalModify.fHasHCHandler,
3122 pCur->u.PhysicalModify.fRestoreAsRAM);
3123 break;
3124
3125 default:
3126 AssertReleaseMsgFailed(("enmKind=%d\n", pCur->enmKind));
3127 break;
3128 }
3129
3130 /*
3131 * Advance idxHead.
3132 */
3133 idxCur = idxHead;
3134 idxHead = pCur->idxNext;
3135 Assert(idxHead < RT_ELEMENTS(pVM->rem.s.aHandlerNotifications) || (idxHead == UINT32_MAX && c == 0));
3136
3137 /*
3138 * Put the record back into the free list.
3139 */
3140 do
3141 {
3142 idxNext = ASMAtomicUoReadU32(&pVM->rem.s.idxFreeList);
3143 ASMAtomicWriteU32(&pCur->idxNext, idxNext);
3144 ASMCompilerBarrier();
3145 } while (!ASMAtomicCmpXchgU32(&pVM->rem.s.idxFreeList, idxCur, idxNext));
3146 } while (idxHead != UINT32_MAX);
3147
3148#ifdef VBOX_STRICT
3149 if (pVM->cCpus == 1)
3150 {
3151 unsigned c;
3152 /* Check that all records are now on the free list. */
3153 for (c = 0, idxNext = pVM->rem.s.idxFreeList; idxNext != UINT32_MAX;
3154 idxNext = pVM->rem.s.aHandlerNotifications[idxNext].idxNext)
3155 c++;
3156 AssertReleaseMsg(c == RT_ELEMENTS(pVM->rem.s.aHandlerNotifications), ("%#x != %#x, idxFreeList=%#x\n", c, RT_ELEMENTS(pVM->rem.s.aHandlerNotifications), pVM->rem.s.idxFreeList));
3157 }
3158#endif
3159 }
3160}
3161
3162
3163/**
3164 * Notify REM about changed code page.
3165 *
3166 * @returns VBox status code.
3167 * @param pVM VM handle.
3168 * @param pVCpu VMCPU handle.
3169 * @param pvCodePage Code page address
3170 */
3171REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, PVMCPU pVCpu, RTGCPTR pvCodePage)
3172{
3173#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
3174 int rc;
3175 RTGCPHYS PhysGC;
3176 uint64_t flags;
3177
3178 VM_ASSERT_EMT(pVM);
3179
3180 /*
3181 * Get the physical page address.
3182 */
3183 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
3184 if (rc == VINF_SUCCESS)
3185 {
3186 /*
3187 * Sync the required registers and flush the whole page.
3188 * (Easier to do the whole page than notifying it about each physical
3189 * byte that was changed.
3190 */
3191 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
3192 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
3193 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
3194 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
3195
3196 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
3197 }
3198#endif
3199 return VINF_SUCCESS;
3200}
3201
3202
3203/**
3204 * Notification about a successful MMR3PhysRegister() call.
3205 *
3206 * @param pVM VM handle.
3207 * @param GCPhys The physical address the RAM.
3208 * @param cb Size of the memory.
3209 * @param fFlags Flags of the REM_NOTIFY_PHYS_RAM_FLAGS_* defines.
3210 */
3211REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, unsigned fFlags)
3212{
3213 Log(("REMR3NotifyPhysRamRegister: GCPhys=%RGp cb=%RGp fFlags=%#x\n", GCPhys, cb, fFlags));
3214 VM_ASSERT_EMT(pVM);
3215
3216 /*
3217 * Validate input - we trust the caller.
3218 */
3219 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
3220 Assert(cb);
3221 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
3222 AssertMsg(fFlags == REM_NOTIFY_PHYS_RAM_FLAGS_RAM || fFlags == REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2, ("#x\n", fFlags));
3223
3224 /*
3225 * Base ram? Update GCPhysLastRam.
3226 */
3227 if (fFlags & REM_NOTIFY_PHYS_RAM_FLAGS_RAM)
3228 {
3229 if (GCPhys + (cb - 1) > pVM->rem.s.GCPhysLastRam)
3230 {
3231 AssertReleaseMsg(!pVM->rem.s.fGCPhysLastRamFixed, ("GCPhys=%RGp cb=%RGp\n", GCPhys, cb));
3232 pVM->rem.s.GCPhysLastRam = GCPhys + (cb - 1);
3233 }
3234 }
3235
3236 /*
3237 * Register the ram.
3238 */
3239 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
3240
3241 PDMCritSectEnter(&pVM->rem.s.CritSectRegister, VERR_SEM_BUSY);
3242 cpu_register_physical_memory_offset(GCPhys, cb, GCPhys, GCPhys);
3243 PDMCritSectLeave(&pVM->rem.s.CritSectRegister);
3244
3245 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
3246}
3247
3248
3249/**
3250 * Notification about a successful MMR3PhysRomRegister() call.
3251 *
3252 * @param pVM VM handle.
3253 * @param GCPhys The physical address of the ROM.
3254 * @param cb The size of the ROM.
3255 * @param pvCopy Pointer to the ROM copy.
3256 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
3257 * This function will be called when ever the protection of the
3258 * shadow ROM changes (at reset and end of POST).
3259 */
3260REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
3261{
3262 Log(("REMR3NotifyPhysRomRegister: GCPhys=%RGp cb=%d fShadow=%RTbool\n", GCPhys, cb, fShadow));
3263 VM_ASSERT_EMT(pVM);
3264
3265 /*
3266 * Validate input - we trust the caller.
3267 */
3268 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
3269 Assert(cb);
3270 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
3271
3272 /*
3273 * Register the rom.
3274 */
3275 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
3276
3277 PDMCritSectEnter(&pVM->rem.s.CritSectRegister, VERR_SEM_BUSY);
3278 cpu_register_physical_memory_offset(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM), GCPhys);
3279 PDMCritSectLeave(&pVM->rem.s.CritSectRegister);
3280
3281 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
3282}
3283
3284
3285/**
3286 * Notification about a successful memory deregistration or reservation.
3287 *
3288 * @param pVM VM Handle.
3289 * @param GCPhys Start physical address.
3290 * @param cb The size of the range.
3291 */
3292REMR3DECL(void) REMR3NotifyPhysRamDeregister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
3293{
3294 Log(("REMR3NotifyPhysRamDeregister: GCPhys=%RGp cb=%d\n", GCPhys, cb));
3295 VM_ASSERT_EMT(pVM);
3296
3297 /*
3298 * Validate input - we trust the caller.
3299 */
3300 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
3301 Assert(cb);
3302 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
3303
3304 /*
3305 * Unassigning the memory.
3306 */
3307 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
3308
3309 PDMCritSectEnter(&pVM->rem.s.CritSectRegister, VERR_SEM_BUSY);
3310 cpu_register_physical_memory_offset(GCPhys, cb, IO_MEM_UNASSIGNED, GCPhys);
3311 PDMCritSectLeave(&pVM->rem.s.CritSectRegister);
3312
3313 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
3314}
3315
3316
3317/**
3318 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
3319 *
3320 * @param pVM VM Handle.
3321 * @param enmType Handler type.
3322 * @param GCPhys Handler range address.
3323 * @param cb Size of the handler range.
3324 * @param fHasHCHandler Set if the handler has a HC callback function.
3325 *
3326 * @remark MMR3PhysRomRegister assumes that this function will not apply the
3327 * Handler memory type to memory which has no HC handler.
3328 */
3329static void remR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
3330{
3331 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%d\n",
3332 enmType, GCPhys, cb, fHasHCHandler));
3333
3334 VM_ASSERT_EMT(pVM);
3335 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
3336 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
3337
3338
3339 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
3340
3341 PDMCritSectEnter(&pVM->rem.s.CritSectRegister, VERR_SEM_BUSY);
3342 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
3343 cpu_register_physical_memory_offset(GCPhys, cb, pVM->rem.s.iMMIOMemType, GCPhys);
3344 else if (fHasHCHandler)
3345 cpu_register_physical_memory_offset(GCPhys, cb, pVM->rem.s.iHandlerMemType, GCPhys);
3346 PDMCritSectLeave(&pVM->rem.s.CritSectRegister);
3347
3348 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
3349}
3350
3351/**
3352 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
3353 *
3354 * @param pVM VM Handle.
3355 * @param enmType Handler type.
3356 * @param GCPhys Handler range address.
3357 * @param cb Size of the handler range.
3358 * @param fHasHCHandler Set if the handler has a HC callback function.
3359 *
3360 * @remark MMR3PhysRomRegister assumes that this function will not apply the
3361 * Handler memory type to memory which has no HC handler.
3362 */
3363REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
3364{
3365 REMR3ReplayHandlerNotifications(pVM);
3366
3367 remR3NotifyHandlerPhysicalRegister(pVM, enmType, GCPhys, cb, fHasHCHandler);
3368}
3369
3370/**
3371 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
3372 *
3373 * @param pVM VM Handle.
3374 * @param enmType Handler type.
3375 * @param GCPhys Handler range address.
3376 * @param cb Size of the handler range.
3377 * @param fHasHCHandler Set if the handler has a HC callback function.
3378 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
3379 */
3380static void remR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
3381{
3382 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
3383 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
3384 VM_ASSERT_EMT(pVM);
3385
3386
3387 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
3388
3389 PDMCritSectEnter(&pVM->rem.s.CritSectRegister, VERR_SEM_BUSY);
3390 /** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
3391 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
3392 cpu_register_physical_memory_offset(GCPhys, cb, IO_MEM_UNASSIGNED, GCPhys);
3393 else if (fHasHCHandler)
3394 {
3395 if (!fRestoreAsRAM)
3396 {
3397 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
3398 cpu_register_physical_memory_offset(GCPhys, cb, IO_MEM_UNASSIGNED, GCPhys);
3399 }
3400 else
3401 {
3402 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
3403 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
3404 cpu_register_physical_memory_offset(GCPhys, cb, GCPhys, GCPhys);
3405 }
3406 }
3407 PDMCritSectLeave(&pVM->rem.s.CritSectRegister);
3408
3409 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
3410}
3411
3412/**
3413 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
3414 *
3415 * @param pVM VM Handle.
3416 * @param enmType Handler type.
3417 * @param GCPhys Handler range address.
3418 * @param cb Size of the handler range.
3419 * @param fHasHCHandler Set if the handler has a HC callback function.
3420 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
3421 */
3422REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
3423{
3424 REMR3ReplayHandlerNotifications(pVM);
3425 remR3NotifyHandlerPhysicalDeregister(pVM, enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM);
3426}
3427
3428
3429/**
3430 * Notification about a successful PGMR3HandlerPhysicalModify() call.
3431 *
3432 * @param pVM VM Handle.
3433 * @param enmType Handler type.
3434 * @param GCPhysOld Old handler range address.
3435 * @param GCPhysNew New handler range address.
3436 * @param cb Size of the handler range.
3437 * @param fHasHCHandler Set if the handler has a HC callback function.
3438 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
3439 */
3440static void remR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
3441{
3442 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%RGp GCPhysNew=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
3443 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
3444 VM_ASSERT_EMT(pVM);
3445 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
3446
3447 if (fHasHCHandler)
3448 {
3449 ASMAtomicIncU32(&pVM->rem.s.cIgnoreAll);
3450
3451 /*
3452 * Reset the old page.
3453 */
3454 PDMCritSectEnter(&pVM->rem.s.CritSectRegister, VERR_SEM_BUSY);
3455 if (!fRestoreAsRAM)
3456 cpu_register_physical_memory_offset(GCPhysOld, cb, IO_MEM_UNASSIGNED, GCPhysOld);
3457 else
3458 {
3459 /* This is not perfect, but it'll do for PD monitoring... */
3460 Assert(cb == PAGE_SIZE);
3461 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
3462 cpu_register_physical_memory_offset(GCPhysOld, cb, GCPhysOld, GCPhysOld);
3463 }
3464
3465 /*
3466 * Update the new page.
3467 */
3468 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
3469 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
3470 cpu_register_physical_memory_offset(GCPhysNew, cb, pVM->rem.s.iHandlerMemType, GCPhysNew);
3471 PDMCritSectLeave(&pVM->rem.s.CritSectRegister);
3472
3473 ASMAtomicDecU32(&pVM->rem.s.cIgnoreAll);
3474 }
3475}
3476
3477/**
3478 * Notification about a successful PGMR3HandlerPhysicalModify() call.
3479 *
3480 * @param pVM VM Handle.
3481 * @param enmType Handler type.
3482 * @param GCPhysOld Old handler range address.
3483 * @param GCPhysNew New handler range address.
3484 * @param cb Size of the handler range.
3485 * @param fHasHCHandler Set if the handler has a HC callback function.
3486 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
3487 */
3488REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
3489{
3490 REMR3ReplayHandlerNotifications(pVM);
3491
3492 remR3NotifyHandlerPhysicalModify(pVM, enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM);
3493}
3494
3495/**
3496 * Checks if we're handling access to this page or not.
3497 *
3498 * @returns true if we're trapping access.
3499 * @returns false if we aren't.
3500 * @param pVM The VM handle.
3501 * @param GCPhys The physical address.
3502 *
3503 * @remark This function will only work correctly in VBOX_STRICT builds!
3504 */
3505REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
3506{
3507#ifdef VBOX_STRICT
3508 ram_addr_t off;
3509 REMR3ReplayHandlerNotifications(pVM);
3510
3511 off = get_phys_page_offset(GCPhys);
3512 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
3513 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
3514 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
3515#else
3516 return false;
3517#endif
3518}
3519
3520
3521/**
3522 * Deals with a rare case in get_phys_addr_code where the code
3523 * is being monitored.
3524 *
3525 * It could also be an MMIO page, in which case we will raise a fatal error.
3526 *
3527 * @returns The physical address corresponding to addr.
3528 * @param env The cpu environment.
3529 * @param addr The virtual address.
3530 * @param pTLBEntry The TLB entry.
3531 */
3532target_ulong remR3PhysGetPhysicalAddressCode(CPUX86State *env,
3533 target_ulong addr,
3534 CPUTLBEntry *pTLBEntry,
3535 target_phys_addr_t ioTLBEntry)
3536{
3537 PVM pVM = env->pVM;
3538
3539 if ((ioTLBEntry & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
3540 {
3541 /* If code memory is being monitored, appropriate IOTLB entry will have
3542 handler IO type, and addend will provide real physical address, no
3543 matter if we store VA in TLB or not, as handlers are always passed PA */
3544 target_ulong ret = (ioTLBEntry & TARGET_PAGE_MASK) + addr;
3545 return ret;
3546 }
3547 LogRel(("\nTrying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv! (iHandlerMemType=%#x iMMIOMemType=%#x IOTLB=%RGp)\n"
3548 "*** handlers\n",
3549 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType, (RTGCPHYS)ioTLBEntry));
3550 DBGFR3Info(pVM->pUVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
3551 LogRel(("*** mmio\n"));
3552 DBGFR3Info(pVM->pUVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
3553 LogRel(("*** phys\n"));
3554 DBGFR3Info(pVM->pUVM, "phys", NULL, DBGFR3InfoLogRelHlp());
3555 cpu_abort(env, "Trying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
3556 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
3557 AssertFatalFailed();
3558}
3559
3560/**
3561 * Read guest RAM and ROM.
3562 *
3563 * @param SrcGCPhys The source address (guest physical).
3564 * @param pvDst The destination address.
3565 * @param cb Number of bytes
3566 */
3567void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3568{
3569 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3570 VBOX_CHECK_ADDR(SrcGCPhys);
3571 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3572#ifdef VBOX_DEBUG_PHYS
3573 LogRel(("read(%d): %08x\n", cb, (uint32_t)SrcGCPhys));
3574#endif
3575 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3576}
3577
3578
3579/**
3580 * Read guest RAM and ROM, unsigned 8-bit.
3581 *
3582 * @param SrcGCPhys The source address (guest physical).
3583 */
3584RTCCUINTREG remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3585{
3586 uint8_t val;
3587 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3588 VBOX_CHECK_ADDR(SrcGCPhys);
3589 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3590 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3591#ifdef VBOX_DEBUG_PHYS
3592 LogRel(("readu8: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3593#endif
3594 return val;
3595}
3596
3597
3598/**
3599 * Read guest RAM and ROM, signed 8-bit.
3600 *
3601 * @param SrcGCPhys The source address (guest physical).
3602 */
3603RTCCINTREG remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3604{
3605 int8_t val;
3606 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3607 VBOX_CHECK_ADDR(SrcGCPhys);
3608 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3609 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3610#ifdef VBOX_DEBUG_PHYS
3611 LogRel(("reads8: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3612#endif
3613 return val;
3614}
3615
3616
3617/**
3618 * Read guest RAM and ROM, unsigned 16-bit.
3619 *
3620 * @param SrcGCPhys The source address (guest physical).
3621 */
3622RTCCUINTREG remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3623{
3624 uint16_t val;
3625 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3626 VBOX_CHECK_ADDR(SrcGCPhys);
3627 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3628 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3629#ifdef VBOX_DEBUG_PHYS
3630 LogRel(("readu16: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3631#endif
3632 return val;
3633}
3634
3635
3636/**
3637 * Read guest RAM and ROM, signed 16-bit.
3638 *
3639 * @param SrcGCPhys The source address (guest physical).
3640 */
3641RTCCINTREG remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3642{
3643 int16_t val;
3644 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3645 VBOX_CHECK_ADDR(SrcGCPhys);
3646 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3647 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3648#ifdef VBOX_DEBUG_PHYS
3649 LogRel(("reads16: %x <- %08x\n", (uint16_t)val, (uint32_t)SrcGCPhys));
3650#endif
3651 return val;
3652}
3653
3654
3655/**
3656 * Read guest RAM and ROM, unsigned 32-bit.
3657 *
3658 * @param SrcGCPhys The source address (guest physical).
3659 */
3660RTCCUINTREG remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3661{
3662 uint32_t val;
3663 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3664 VBOX_CHECK_ADDR(SrcGCPhys);
3665 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3666 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3667#ifdef VBOX_DEBUG_PHYS
3668 LogRel(("readu32: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3669#endif
3670 return val;
3671}
3672
3673
3674/**
3675 * Read guest RAM and ROM, signed 32-bit.
3676 *
3677 * @param SrcGCPhys The source address (guest physical).
3678 */
3679RTCCINTREG remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3680{
3681 int32_t val;
3682 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3683 VBOX_CHECK_ADDR(SrcGCPhys);
3684 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3685 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3686#ifdef VBOX_DEBUG_PHYS
3687 LogRel(("reads32: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3688#endif
3689 return val;
3690}
3691
3692
3693/**
3694 * Read guest RAM and ROM, unsigned 64-bit.
3695 *
3696 * @param SrcGCPhys The source address (guest physical).
3697 */
3698uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3699{
3700 uint64_t val;
3701 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3702 VBOX_CHECK_ADDR(SrcGCPhys);
3703 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3704 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3705#ifdef VBOX_DEBUG_PHYS
3706 LogRel(("readu64: %llx <- %08x\n", val, (uint32_t)SrcGCPhys));
3707#endif
3708 return val;
3709}
3710
3711
3712/**
3713 * Read guest RAM and ROM, signed 64-bit.
3714 *
3715 * @param SrcGCPhys The source address (guest physical).
3716 */
3717int64_t remR3PhysReadS64(RTGCPHYS SrcGCPhys)
3718{
3719 int64_t val;
3720 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3721 VBOX_CHECK_ADDR(SrcGCPhys);
3722 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3723 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3724#ifdef VBOX_DEBUG_PHYS
3725 LogRel(("reads64: %llx <- %08x\n", val, (uint32_t)SrcGCPhys));
3726#endif
3727 return val;
3728}
3729
3730
3731/**
3732 * Write guest RAM.
3733 *
3734 * @param DstGCPhys The destination address (guest physical).
3735 * @param pvSrc The source address.
3736 * @param cb Number of bytes to write
3737 */
3738void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3739{
3740 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3741 VBOX_CHECK_ADDR(DstGCPhys);
3742 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3743 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3744#ifdef VBOX_DEBUG_PHYS
3745 LogRel(("write(%d): %08x\n", cb, (uint32_t)DstGCPhys));
3746#endif
3747}
3748
3749
3750/**
3751 * Write guest RAM, unsigned 8-bit.
3752 *
3753 * @param DstGCPhys The destination address (guest physical).
3754 * @param val Value
3755 */
3756void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3757{
3758 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3759 VBOX_CHECK_ADDR(DstGCPhys);
3760 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3761 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3762#ifdef VBOX_DEBUG_PHYS
3763 LogRel(("writeu8: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3764#endif
3765}
3766
3767
3768/**
3769 * Write guest RAM, unsigned 8-bit.
3770 *
3771 * @param DstGCPhys The destination address (guest physical).
3772 * @param val Value
3773 */
3774void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3775{
3776 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3777 VBOX_CHECK_ADDR(DstGCPhys);
3778 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3779 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3780#ifdef VBOX_DEBUG_PHYS
3781 LogRel(("writeu16: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3782#endif
3783}
3784
3785
3786/**
3787 * Write guest RAM, unsigned 32-bit.
3788 *
3789 * @param DstGCPhys The destination address (guest physical).
3790 * @param val Value
3791 */
3792void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3793{
3794 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3795 VBOX_CHECK_ADDR(DstGCPhys);
3796 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3797 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3798#ifdef VBOX_DEBUG_PHYS
3799 LogRel(("writeu32: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3800#endif
3801}
3802
3803
3804/**
3805 * Write guest RAM, unsigned 64-bit.
3806 *
3807 * @param DstGCPhys The destination address (guest physical).
3808 * @param val Value
3809 */
3810void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3811{
3812 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3813 VBOX_CHECK_ADDR(DstGCPhys);
3814 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3815 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3816#ifdef VBOX_DEBUG_PHYS
3817 LogRel(("writeu64: %llx -> %08x\n", val, (uint32_t)DstGCPhys));
3818#endif
3819}
3820
3821#undef LOG_GROUP
3822#define LOG_GROUP LOG_GROUP_REM_MMIO
3823
3824/** Read MMIO memory. */
3825static uint32_t remR3MMIOReadU8(void *pvEnv, target_phys_addr_t GCPhys)
3826{
3827 CPUX86State *env = (CPUX86State *)pvEnv;
3828 uint32_t u32 = 0;
3829 int rc = IOMMMIORead(env->pVM, env->pVCpu, GCPhys, &u32, 1);
3830 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3831 Log2(("remR3MMIOReadU8: GCPhys=%RGp -> %02x\n", (RTGCPHYS)GCPhys, u32));
3832 return u32;
3833}
3834
3835/** Read MMIO memory. */
3836static uint32_t remR3MMIOReadU16(void *pvEnv, target_phys_addr_t GCPhys)
3837{
3838 CPUX86State *env = (CPUX86State *)pvEnv;
3839 uint32_t u32 = 0;
3840 int rc = IOMMMIORead(env->pVM, env->pVCpu, GCPhys, &u32, 2);
3841 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3842 Log2(("remR3MMIOReadU16: GCPhys=%RGp -> %04x\n", (RTGCPHYS)GCPhys, u32));
3843 return u32;
3844}
3845
3846/** Read MMIO memory. */
3847static uint32_t remR3MMIOReadU32(void *pvEnv, target_phys_addr_t GCPhys)
3848{
3849 CPUX86State *env = (CPUX86State *)pvEnv;
3850 uint32_t u32 = 0;
3851 int rc = IOMMMIORead(env->pVM, env->pVCpu, GCPhys, &u32, 4);
3852 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3853 Log2(("remR3MMIOReadU32: GCPhys=%RGp -> %08x\n", (RTGCPHYS)GCPhys, u32));
3854 return u32;
3855}
3856
3857/** Write to MMIO memory. */
3858static void remR3MMIOWriteU8(void *pvEnv, target_phys_addr_t GCPhys, uint32_t u32)
3859{
3860 CPUX86State *env = (CPUX86State *)pvEnv;
3861 int rc;
3862 Log2(("remR3MMIOWriteU8: GCPhys=%RGp u32=%#x\n", (RTGCPHYS)GCPhys, u32));
3863 rc = IOMMMIOWrite(env->pVM, env->pVCpu, GCPhys, u32, 1);
3864 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3865}
3866
3867/** Write to MMIO memory. */
3868static void remR3MMIOWriteU16(void *pvEnv, target_phys_addr_t GCPhys, uint32_t u32)
3869{
3870 CPUX86State *env = (CPUX86State *)pvEnv;
3871 int rc;
3872 Log2(("remR3MMIOWriteU16: GCPhys=%RGp u32=%#x\n", (RTGCPHYS)GCPhys, u32));
3873 rc = IOMMMIOWrite(env->pVM, env->pVCpu, GCPhys, u32, 2);
3874 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3875}
3876
3877/** Write to MMIO memory. */
3878static void remR3MMIOWriteU32(void *pvEnv, target_phys_addr_t GCPhys, uint32_t u32)
3879{
3880 CPUX86State *env = (CPUX86State *)pvEnv;
3881 int rc;
3882 Log2(("remR3MMIOWriteU32: GCPhys=%RGp u32=%#x\n", (RTGCPHYS)GCPhys, u32));
3883 rc = IOMMMIOWrite(env->pVM, env->pVCpu, GCPhys, u32, 4);
3884 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3885}
3886
3887
3888#undef LOG_GROUP
3889#define LOG_GROUP LOG_GROUP_REM_HANDLER
3890
3891/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3892
3893static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3894{
3895 uint8_t u8;
3896 Log2(("remR3HandlerReadU8: GCPhys=%RGp\n", (RTGCPHYS)GCPhys));
3897 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3898 return u8;
3899}
3900
3901static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3902{
3903 uint16_t u16;
3904 Log2(("remR3HandlerReadU16: GCPhys=%RGp\n", (RTGCPHYS)GCPhys));
3905 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3906 return u16;
3907}
3908
3909static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3910{
3911 uint32_t u32;
3912 Log2(("remR3HandlerReadU32: GCPhys=%RGp\n", (RTGCPHYS)GCPhys));
3913 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3914 return u32;
3915}
3916
3917static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3918{
3919 Log2(("remR3HandlerWriteU8: GCPhys=%RGp u32=%#x\n", (RTGCPHYS)GCPhys, u32));
3920 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3921}
3922
3923static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3924{
3925 Log2(("remR3HandlerWriteU16: GCPhys=%RGp u32=%#x\n", (RTGCPHYS)GCPhys, u32));
3926 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3927}
3928
3929static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3930{
3931 Log2(("remR3HandlerWriteU32: GCPhys=%RGp u32=%#x\n", (RTGCPHYS)GCPhys, u32));
3932 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3933}
3934
3935/* -+- disassembly -+- */
3936
3937#undef LOG_GROUP
3938#define LOG_GROUP LOG_GROUP_REM_DISAS
3939
3940
3941/**
3942 * Enables or disables singled stepped disassembly.
3943 *
3944 * @returns VBox status code.
3945 * @param pVM VM handle.
3946 * @param fEnable To enable set this flag, to disable clear it.
3947 */
3948static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3949{
3950 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3951 VM_ASSERT_EMT(pVM);
3952
3953 if (fEnable)
3954 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3955 else
3956 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3957#ifdef REM_USE_QEMU_SINGLE_STEP_FOR_LOGGING
3958 cpu_single_step(&pVM->rem.s.Env, fEnable);
3959#endif
3960 return VINF_SUCCESS;
3961}
3962
3963
3964/**
3965 * Enables or disables singled stepped disassembly.
3966 *
3967 * @returns VBox status code.
3968 * @param pVM VM handle.
3969 * @param fEnable To enable set this flag, to disable clear it.
3970 */
3971REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3972{
3973 int rc;
3974
3975 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3976 if (VM_IS_EMT(pVM))
3977 return remR3DisasEnableStepping(pVM, fEnable);
3978
3979 rc = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3980 AssertRC(rc);
3981 return rc;
3982}
3983
3984
3985#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3986/**
3987 * External Debugger Command: .remstep [on|off|1|0]
3988 */
3989static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3990{
3991 int rc;
3992 PVM pVM = pUVM->pVM;
3993
3994 if (cArgs == 0)
3995 /*
3996 * Print the current status.
3997 */
3998 rc = DBGCCmdHlpPrintf(pCmdHlp, "DisasStepping is %s\n",
3999 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
4000 else
4001 {
4002 /*
4003 * Convert the argument and change the mode.
4004 */
4005 bool fEnable;
4006 rc = DBGCCmdHlpVarToBool(pCmdHlp, &paArgs[0], &fEnable);
4007 if (RT_SUCCESS(rc))
4008 {
4009 rc = REMR3DisasEnableStepping(pVM, fEnable);
4010 if (RT_SUCCESS(rc))
4011 rc = DBGCCmdHlpPrintf(pCmdHlp, "DisasStepping was %s\n", fEnable ? "enabled" : "disabled");
4012 else
4013 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "REMR3DisasEnableStepping");
4014 }
4015 else
4016 rc = DBGCCmdHlpFailRc(pCmdHlp, pCmd, rc, "DBGCCmdHlpVarToBool");
4017 }
4018 return rc;
4019}
4020#endif /* VBOX_WITH_DEBUGGER && !win.amd64 */
4021
4022
4023/**
4024 * Disassembles one instruction and prints it to the log.
4025 *
4026 * @returns Success indicator.
4027 * @param env Pointer to the recompiler CPU structure.
4028 * @param f32BitCode Indicates that whether or not the code should
4029 * be disassembled as 16 or 32 bit. If -1 the CS
4030 * selector will be inspected.
4031 * @param pszPrefix
4032 */
4033bool remR3DisasInstr(CPUX86State *env, int f32BitCode, char *pszPrefix)
4034{
4035 PVM pVM = env->pVM;
4036 const bool fLog = LogIsEnabled();
4037 const bool fLog2 = LogIs2Enabled();
4038 int rc = VINF_SUCCESS;
4039
4040 /*
4041 * Don't bother if there ain't any log output to do.
4042 */
4043 if (!fLog && !fLog2)
4044 return true;
4045
4046 /*
4047 * Update the state so DBGF reads the correct register values.
4048 */
4049 remR3StateUpdate(pVM, env->pVCpu);
4050
4051 /*
4052 * Log registers if requested.
4053 */
4054 if (fLog2)
4055 DBGFR3_INFO_LOG(pVM, "cpumguest", pszPrefix);
4056
4057 /*
4058 * Disassemble to log.
4059 */
4060 if (fLog)
4061 {
4062 PVMCPU pVCpu = VMMGetCpu(pVM);
4063 char szBuf[256];
4064 szBuf[0] = '\0';
4065 int rc = DBGFR3DisasInstrEx(pVCpu->pVMR3->pUVM,
4066 pVCpu->idCpu,
4067 0, /* Sel */
4068 0, /* GCPtr */
4069 DBGF_DISAS_FLAGS_CURRENT_GUEST
4070 | DBGF_DISAS_FLAGS_DEFAULT_MODE,
4071 szBuf,
4072 sizeof(szBuf),
4073 NULL);
4074 if (RT_FAILURE(rc))
4075 RTStrPrintf(szBuf, sizeof(szBuf), "DBGFR3DisasInstrEx failed with rc=%Rrc\n", rc);
4076 if (pszPrefix && *pszPrefix)
4077 RTLogPrintf("%s-CPU%d: %s\n", pszPrefix, pVCpu->idCpu, szBuf);
4078 else
4079 RTLogPrintf("CPU%d: %s\n", pVCpu->idCpu, szBuf);
4080 }
4081
4082 return RT_SUCCESS(rc);
4083}
4084
4085
4086/**
4087 * Disassemble recompiled code.
4088 *
4089 * @param phFileIgnored Ignored, logfile usually.
4090 * @param pvCode Pointer to the code block.
4091 * @param cb Size of the code block.
4092 */
4093void disas(FILE *phFile, void *pvCode, unsigned long cb)
4094{
4095 if (LogIs2Enabled())
4096 {
4097 unsigned off = 0;
4098 char szOutput[256];
4099 DISCPUSTATE Cpu;
4100#ifdef RT_ARCH_X86
4101 DISCPUMODE enmCpuMode = DISCPUMODE_32BIT;
4102#else
4103 DISCPUMODE enmCpuMode = DISCPUMODE_64BIT;
4104#endif
4105
4106 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
4107 while (off < cb)
4108 {
4109 uint32_t cbInstr;
4110 int rc = DISInstrToStr((uint8_t const *)pvCode + off, enmCpuMode,
4111 &Cpu, &cbInstr, szOutput, sizeof(szOutput));
4112 if (RT_SUCCESS(rc))
4113 RTLogPrintf("%s", szOutput);
4114 else
4115 {
4116 RTLogPrintf("disas error %Rrc\n", rc);
4117 cbInstr = 1;
4118 }
4119 off += cbInstr;
4120 }
4121 }
4122}
4123
4124
4125/**
4126 * Disassemble guest code.
4127 *
4128 * @param phFileIgnored Ignored, logfile usually.
4129 * @param uCode The guest address of the code to disassemble. (flat?)
4130 * @param cb Number of bytes to disassemble.
4131 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
4132 */
4133void target_disas(FILE *phFile, target_ulong uCode, target_ulong cb, int fFlags)
4134{
4135 if (LogIs2Enabled())
4136 {
4137 PVM pVM = cpu_single_env->pVM;
4138 PVMCPU pVCpu = cpu_single_env->pVCpu;
4139 RTSEL cs;
4140 RTGCUINTPTR eip;
4141
4142 Assert(pVCpu);
4143
4144 /*
4145 * Update the state so DBGF reads the correct register values (flags).
4146 */
4147 remR3StateUpdate(pVM, pVCpu);
4148
4149 /*
4150 * Do the disassembling.
4151 */
4152 RTLogPrintf("Guest Code: PC=%llx %llx bytes fFlags=%d\n", (uint64_t)uCode, (uint64_t)cb, fFlags);
4153 cs = cpu_single_env->segs[R_CS].selector;
4154 eip = uCode - cpu_single_env->segs[R_CS].base;
4155 for (;;)
4156 {
4157 char szBuf[256];
4158 uint32_t cbInstr;
4159 int rc = DBGFR3DisasInstrEx(pVM->pUVM,
4160 pVCpu->idCpu,
4161 cs,
4162 eip,
4163 DBGF_DISAS_FLAGS_DEFAULT_MODE,
4164 szBuf, sizeof(szBuf),
4165 &cbInstr);
4166 if (RT_SUCCESS(rc))
4167 RTLogPrintf("%llx %s\n", (uint64_t)uCode, szBuf);
4168 else
4169 {
4170 RTLogPrintf("%llx %04x:%llx: %s\n", (uint64_t)uCode, cs, (uint64_t)eip, szBuf);
4171 cbInstr = 1;
4172 }
4173
4174 /* next */
4175 if (cb <= cbInstr)
4176 break;
4177 cb -= cbInstr;
4178 uCode += cbInstr;
4179 eip += cbInstr;
4180 }
4181 }
4182}
4183
4184
4185/**
4186 * Looks up a guest symbol.
4187 *
4188 * @returns Pointer to symbol name. This is a static buffer.
4189 * @param orig_addr The address in question.
4190 */
4191const char *lookup_symbol(target_ulong orig_addr)
4192{
4193 PVM pVM = cpu_single_env->pVM;
4194 RTGCINTPTR off = 0;
4195 RTDBGSYMBOL Sym;
4196 DBGFADDRESS Addr;
4197
4198 int rc = DBGFR3AsSymbolByAddr(pVM->pUVM, DBGF_AS_GLOBAL, DBGFR3AddrFromFlat(pVM->pUVM, &Addr, orig_addr),
4199 &off, &Sym, NULL /*phMod*/);
4200 if (RT_SUCCESS(rc))
4201 {
4202 static char szSym[sizeof(Sym.szName) + 48];
4203 if (!off)
4204 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
4205 else if (off > 0)
4206 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
4207 else
4208 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
4209 return szSym;
4210 }
4211 return "<N/A>";
4212}
4213
4214
4215#undef LOG_GROUP
4216#define LOG_GROUP LOG_GROUP_REM
4217
4218
4219/* -+- FF notifications -+- */
4220
4221
4222/**
4223 * Notification about a pending interrupt.
4224 *
4225 * @param pVM VM Handle.
4226 * @param pVCpu VMCPU Handle.
4227 * @param u8Interrupt Interrupt
4228 * @thread The emulation thread.
4229 */
4230REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, PVMCPU pVCpu, uint8_t u8Interrupt)
4231{
4232 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
4233 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
4234}
4235
4236/**
4237 * Notification about a pending interrupt.
4238 *
4239 * @returns Pending interrupt or REM_NO_PENDING_IRQ
4240 * @param pVM VM Handle.
4241 * @param pVCpu VMCPU Handle.
4242 * @thread The emulation thread.
4243 */
4244REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM, PVMCPU pVCpu)
4245{
4246 return pVM->rem.s.u32PendingInterrupt;
4247}
4248
4249/**
4250 * Notification about the interrupt FF being set.
4251 *
4252 * @param pVM VM Handle.
4253 * @param pVCpu VMCPU Handle.
4254 * @thread The emulation thread.
4255 */
4256REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM, PVMCPU pVCpu)
4257{
4258#ifndef IEM_VERIFICATION_MODE
4259 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
4260 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
4261 if (pVM->rem.s.fInREM)
4262 {
4263 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
4264 CPU_INTERRUPT_EXTERNAL_HARD);
4265 }
4266#endif
4267}
4268
4269
4270/**
4271 * Notification about the interrupt FF being set.
4272 *
4273 * @param pVM VM Handle.
4274 * @param pVCpu VMCPU Handle.
4275 * @thread Any.
4276 */
4277REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM, PVMCPU pVCpu)
4278{
4279 LogFlow(("REMR3NotifyInterruptClear:\n"));
4280 if (pVM->rem.s.fInREM)
4281 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
4282}
4283
4284
4285/**
4286 * Notification about pending timer(s).
4287 *
4288 * @param pVM VM Handle.
4289 * @param pVCpuDst The target cpu for this notification.
4290 * TM will not broadcast pending timer events, but use
4291 * a dedicated EMT for them. So, only interrupt REM
4292 * execution if the given CPU is executing in REM.
4293 * @thread Any.
4294 */
4295REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM, PVMCPU pVCpuDst)
4296{
4297#ifndef IEM_VERIFICATION_MODE
4298#ifndef DEBUG_bird
4299 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
4300#endif
4301 if (pVM->rem.s.fInREM)
4302 {
4303 if (pVM->rem.s.Env.pVCpu == pVCpuDst)
4304 {
4305 LogIt(LOG_INSTANCE, RTLOGGRPFLAGS_LEVEL_5, LOG_GROUP_TM, ("REMR3NotifyTimerPending: setting\n"));
4306 ASMAtomicOrS32((int32_t volatile *)&pVM->rem.s.Env.interrupt_request,
4307 CPU_INTERRUPT_EXTERNAL_TIMER);
4308 }
4309 else
4310 LogIt(LOG_INSTANCE, RTLOGGRPFLAGS_LEVEL_5, LOG_GROUP_TM, ("REMR3NotifyTimerPending: pVCpu:%p != pVCpuDst:%p\n", pVM->rem.s.Env.pVCpu, pVCpuDst));
4311 }
4312 else
4313 LogIt(LOG_INSTANCE, RTLOGGRPFLAGS_LEVEL_5, LOG_GROUP_TM, ("REMR3NotifyTimerPending: !fInREM; cpu state=%d\n", VMCPU_GET_STATE(pVCpuDst)));
4314#endif
4315}
4316
4317
4318/**
4319 * Notification about pending DMA transfers.
4320 *
4321 * @param pVM VM Handle.
4322 * @thread Any.
4323 */
4324REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
4325{
4326#ifndef IEM_VERIFICATION_MODE
4327 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
4328 if (pVM->rem.s.fInREM)
4329 {
4330 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
4331 CPU_INTERRUPT_EXTERNAL_DMA);
4332 }
4333#endif
4334}
4335
4336
4337/**
4338 * Notification about pending timer(s).
4339 *
4340 * @param pVM VM Handle.
4341 * @thread Any.
4342 */
4343REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
4344{
4345#ifndef IEM_VERIFICATION_MODE
4346 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
4347 if (pVM->rem.s.fInREM)
4348 {
4349 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
4350 CPU_INTERRUPT_EXTERNAL_EXIT);
4351 }
4352#endif
4353}
4354
4355
4356/**
4357 * Notification about pending FF set by an external thread.
4358 *
4359 * @param pVM VM handle.
4360 * @thread Any.
4361 */
4362REMR3DECL(void) REMR3NotifyFF(PVM pVM)
4363{
4364#ifndef IEM_VERIFICATION_MODE
4365 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
4366 if (pVM->rem.s.fInREM)
4367 {
4368 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
4369 CPU_INTERRUPT_EXTERNAL_EXIT);
4370 }
4371#endif
4372}
4373
4374
4375#ifdef VBOX_WITH_STATISTICS
4376void remR3ProfileStart(int statcode)
4377{
4378 STAMPROFILEADV *pStat;
4379 switch(statcode)
4380 {
4381 case STATS_EMULATE_SINGLE_INSTR:
4382 pStat = &gStatExecuteSingleInstr;
4383 break;
4384 case STATS_QEMU_COMPILATION:
4385 pStat = &gStatCompilationQEmu;
4386 break;
4387 case STATS_QEMU_RUN_EMULATED_CODE:
4388 pStat = &gStatRunCodeQEmu;
4389 break;
4390 case STATS_QEMU_TOTAL:
4391 pStat = &gStatTotalTimeQEmu;
4392 break;
4393 case STATS_QEMU_RUN_TIMERS:
4394 pStat = &gStatTimers;
4395 break;
4396 case STATS_TLB_LOOKUP:
4397 pStat= &gStatTBLookup;
4398 break;
4399 case STATS_IRQ_HANDLING:
4400 pStat= &gStatIRQ;
4401 break;
4402 case STATS_RAW_CHECK:
4403 pStat = &gStatRawCheck;
4404 break;
4405
4406 default:
4407 AssertMsgFailed(("unknown stat %d\n", statcode));
4408 return;
4409 }
4410 STAM_PROFILE_ADV_START(pStat, a);
4411}
4412
4413
4414void remR3ProfileStop(int statcode)
4415{
4416 STAMPROFILEADV *pStat;
4417 switch(statcode)
4418 {
4419 case STATS_EMULATE_SINGLE_INSTR:
4420 pStat = &gStatExecuteSingleInstr;
4421 break;
4422 case STATS_QEMU_COMPILATION:
4423 pStat = &gStatCompilationQEmu;
4424 break;
4425 case STATS_QEMU_RUN_EMULATED_CODE:
4426 pStat = &gStatRunCodeQEmu;
4427 break;
4428 case STATS_QEMU_TOTAL:
4429 pStat = &gStatTotalTimeQEmu;
4430 break;
4431 case STATS_QEMU_RUN_TIMERS:
4432 pStat = &gStatTimers;
4433 break;
4434 case STATS_TLB_LOOKUP:
4435 pStat= &gStatTBLookup;
4436 break;
4437 case STATS_IRQ_HANDLING:
4438 pStat= &gStatIRQ;
4439 break;
4440 case STATS_RAW_CHECK:
4441 pStat = &gStatRawCheck;
4442 break;
4443 default:
4444 AssertMsgFailed(("unknown stat %d\n", statcode));
4445 return;
4446 }
4447 STAM_PROFILE_ADV_STOP(pStat, a);
4448}
4449#endif
4450
4451/**
4452 * Raise an RC, force rem exit.
4453 *
4454 * @param pVM VM handle.
4455 * @param rc The rc.
4456 */
4457void remR3RaiseRC(PVM pVM, int rc)
4458{
4459 Log(("remR3RaiseRC: rc=%Rrc\n", rc));
4460 Assert(pVM->rem.s.fInREM);
4461 VM_ASSERT_EMT(pVM);
4462 pVM->rem.s.rc = rc;
4463 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
4464}
4465
4466
4467/* -+- timers -+- */
4468
4469uint64_t cpu_get_tsc(CPUX86State *env)
4470{
4471 STAM_COUNTER_INC(&gStatCpuGetTSC);
4472 return TMCpuTickGet(env->pVCpu);
4473}
4474
4475
4476/* -+- interrupts -+- */
4477
4478void cpu_set_ferr(CPUX86State *env)
4479{
4480 int rc = PDMIsaSetIrq(env->pVM, 13, 1, 0 /*uTagSrc*/);
4481 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4482}
4483
4484int cpu_get_pic_interrupt(CPUX86State *env)
4485{
4486 uint8_t u8Interrupt;
4487 int rc;
4488
4489 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4490 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4491 * with the (a)pic.
4492 */
4493 /* Note! We assume we will go directly to the recompiler to handle the pending interrupt! */
4494 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4495 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4496 * remove this kludge. */
4497 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4498 {
4499 rc = VINF_SUCCESS;
4500 Assert(env->pVM->rem.s.u32PendingInterrupt <= 255);
4501 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4502 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4503 }
4504 else
4505 rc = PDMGetInterrupt(env->pVCpu, &u8Interrupt);
4506
4507 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Rrc pc=%04x:%08llx ~flags=%08llx\n",
4508 u8Interrupt, rc, env->segs[R_CS].selector, (uint64_t)env->eip, (uint64_t)env->eflags));
4509 if (RT_SUCCESS(rc))
4510 {
4511 if (VMCPU_FF_ISPENDING(env->pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
4512 env->interrupt_request |= CPU_INTERRUPT_HARD;
4513 return u8Interrupt;
4514 }
4515 return -1;
4516}
4517
4518
4519/* -+- local apic -+- */
4520
4521#if 0 /* CPUMSetGuestMsr does this now. */
4522void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4523{
4524 int rc = PDMApicSetBase(env->pVM, val);
4525 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Rrc\n", val, rc)); NOREF(rc);
4526}
4527#endif
4528
4529uint64_t cpu_get_apic_base(CPUX86State *env)
4530{
4531 uint64_t u64;
4532 int rc = CPUMQueryGuestMsr(env->pVCpu, MSR_IA32_APICBASE, &u64);
4533 if (RT_SUCCESS(rc))
4534 {
4535 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4536 return u64;
4537 }
4538 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Rrc)\n", rc));
4539 return 0;
4540}
4541
4542void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4543{
4544 int rc = PDMApicSetTPR(env->pVCpu, val << 4); /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
4545 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Rrc\n", val, rc)); NOREF(rc);
4546}
4547
4548uint8_t cpu_get_apic_tpr(CPUX86State *env)
4549{
4550 uint8_t u8;
4551 int rc = PDMApicGetTPR(env->pVCpu, &u8, NULL);
4552 if (RT_SUCCESS(rc))
4553 {
4554 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4555 return u8 >> 4; /* cr8 bits 3-0 correspond to bits 7-4 of the task priority mmio register. */
4556 }
4557 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Rrc)\n", rc));
4558 return 0;
4559}
4560
4561/**
4562 * Read an MSR.
4563 *
4564 * @retval 0 success.
4565 * @retval -1 failure, raise \#GP(0).
4566 * @param env The cpu state.
4567 * @param idMsr The MSR to read.
4568 * @param puValue Where to return the value.
4569 */
4570int cpu_rdmsr(CPUX86State *env, uint32_t idMsr, uint64_t *puValue)
4571{
4572 Assert(env->pVCpu);
4573 return CPUMQueryGuestMsr(env->pVCpu, idMsr, puValue) == VINF_SUCCESS ? 0 : -1;
4574}
4575
4576/**
4577 * Write to an MSR.
4578 *
4579 * @retval 0 success.
4580 * @retval -1 failure, raise \#GP(0).
4581 * @param env The cpu state.
4582 * @param idMsr The MSR to read.
4583 * @param puValue Where to return the value.
4584 */
4585int cpu_wrmsr(CPUX86State *env, uint32_t idMsr, uint64_t uValue)
4586{
4587 Assert(env->pVCpu);
4588 return CPUMSetGuestMsr(env->pVCpu, idMsr, uValue) == VINF_SUCCESS ? 0 : -1;
4589}
4590
4591/* -+- I/O Ports -+- */
4592
4593#undef LOG_GROUP
4594#define LOG_GROUP LOG_GROUP_REM_IOPORT
4595
4596void cpu_outb(CPUX86State *env, pio_addr_t addr, uint8_t val)
4597{
4598 int rc;
4599
4600 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4601 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4602
4603 rc = IOMIOPortWrite(env->pVM, env->pVCpu, (RTIOPORT)addr, val, 1);
4604 if (RT_LIKELY(rc == VINF_SUCCESS))
4605 return;
4606 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4607 {
4608 Log(("cpu_outb: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4609 remR3RaiseRC(env->pVM, rc);
4610 return;
4611 }
4612 remAbort(rc, __FUNCTION__);
4613}
4614
4615void cpu_outw(CPUX86State *env, pio_addr_t addr, uint16_t val)
4616{
4617 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4618 int rc = IOMIOPortWrite(env->pVM, env->pVCpu, (RTIOPORT)addr, val, 2);
4619 if (RT_LIKELY(rc == VINF_SUCCESS))
4620 return;
4621 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4622 {
4623 Log(("cpu_outw: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4624 remR3RaiseRC(env->pVM, rc);
4625 return;
4626 }
4627 remAbort(rc, __FUNCTION__);
4628}
4629
4630void cpu_outl(CPUX86State *env, pio_addr_t addr, uint32_t val)
4631{
4632 int rc;
4633 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4634 rc = IOMIOPortWrite(env->pVM, env->pVCpu, (RTIOPORT)addr, val, 4);
4635 if (RT_LIKELY(rc == VINF_SUCCESS))
4636 return;
4637 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4638 {
4639 Log(("cpu_outl: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4640 remR3RaiseRC(env->pVM, rc);
4641 return;
4642 }
4643 remAbort(rc, __FUNCTION__);
4644}
4645
4646uint8_t cpu_inb(CPUX86State *env, pio_addr_t addr)
4647{
4648 uint32_t u32 = 0;
4649 int rc = IOMIOPortRead(env->pVM, env->pVCpu, (RTIOPORT)addr, &u32, 1);
4650 if (RT_LIKELY(rc == VINF_SUCCESS))
4651 {
4652 if (/*addr != 0x61 && */addr != 0x71)
4653 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4654 return (uint8_t)u32;
4655 }
4656 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4657 {
4658 Log(("cpu_inb: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4659 remR3RaiseRC(env->pVM, rc);
4660 return (uint8_t)u32;
4661 }
4662 remAbort(rc, __FUNCTION__);
4663 return UINT8_C(0xff);
4664}
4665
4666uint16_t cpu_inw(CPUX86State *env, pio_addr_t addr)
4667{
4668 uint32_t u32 = 0;
4669 int rc = IOMIOPortRead(env->pVM, env->pVCpu, (RTIOPORT)addr, &u32, 2);
4670 if (RT_LIKELY(rc == VINF_SUCCESS))
4671 {
4672 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4673 return (uint16_t)u32;
4674 }
4675 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4676 {
4677 Log(("cpu_inw: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4678 remR3RaiseRC(env->pVM, rc);
4679 return (uint16_t)u32;
4680 }
4681 remAbort(rc, __FUNCTION__);
4682 return UINT16_C(0xffff);
4683}
4684
4685uint32_t cpu_inl(CPUX86State *env, pio_addr_t addr)
4686{
4687 uint32_t u32 = 0;
4688 int rc = IOMIOPortRead(env->pVM, env->pVCpu, (RTIOPORT)addr, &u32, 4);
4689 if (RT_LIKELY(rc == VINF_SUCCESS))
4690 {
4691//if (addr==0x01f0 && u32 == 0x6b6d)
4692// loglevel = ~0;
4693 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4694 return u32;
4695 }
4696 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4697 {
4698 Log(("cpu_inl: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4699 remR3RaiseRC(env->pVM, rc);
4700 return u32;
4701 }
4702 remAbort(rc, __FUNCTION__);
4703 return UINT32_C(0xffffffff);
4704}
4705
4706#undef LOG_GROUP
4707#define LOG_GROUP LOG_GROUP_REM
4708
4709
4710/* -+- helpers and misc other interfaces -+- */
4711
4712/**
4713 * Perform the CPUID instruction.
4714 *
4715 * @param env Pointer to the recompiler CPU structure.
4716 * @param idx The CPUID leaf (eax).
4717 * @param idxSub The CPUID sub-leaf (ecx) where applicable.
4718 * @param pvEAX Where to store eax.
4719 * @param pvEBX Where to store ebx.
4720 * @param pvECX Where to store ecx.
4721 * @param pvEDX Where to store edx.
4722 */
4723void cpu_x86_cpuid(CPUX86State *env, uint32_t idx, uint32_t idxSub,
4724 uint32_t *pEAX, uint32_t *pEBX, uint32_t *pECX, uint32_t *pEDX)
4725{
4726 NOREF(idxSub);
4727 CPUMGetGuestCpuId(env->pVCpu, idx, pEAX, pEBX, pECX, pEDX);
4728}
4729
4730
4731#if 0 /* not used */
4732/**
4733 * Interface for qemu hardware to report back fatal errors.
4734 */
4735void hw_error(const char *pszFormat, ...)
4736{
4737 /*
4738 * Bitch about it.
4739 */
4740 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4741 * this in my Odin32 tree at home! */
4742 va_list args;
4743 va_start(args, pszFormat);
4744 RTLogPrintf("fatal error in virtual hardware:");
4745 RTLogPrintfV(pszFormat, args);
4746 va_end(args);
4747 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4748
4749 /*
4750 * If we're in REM context we'll sync back the state before 'jumping' to
4751 * the EMs failure handling.
4752 */
4753 PVM pVM = cpu_single_env->pVM;
4754 if (pVM->rem.s.fInREM)
4755 REMR3StateBack(pVM);
4756 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4757 AssertMsgFailed(("EMR3FatalError returned!\n"));
4758}
4759#endif
4760
4761/**
4762 * Interface for the qemu cpu to report unhandled situation
4763 * raising a fatal VM error.
4764 */
4765void cpu_abort(CPUX86State *env, const char *pszFormat, ...)
4766{
4767 va_list va;
4768 PVM pVM;
4769 PVMCPU pVCpu;
4770 char szMsg[256];
4771
4772 /*
4773 * Bitch about it.
4774 */
4775 RTLogFlags(NULL, "nodisabled nobuffered");
4776 RTLogFlush(NULL);
4777
4778 va_start(va, pszFormat);
4779#if defined(RT_OS_WINDOWS) && ARCH_BITS == 64
4780 /* It's a bit complicated when mixing MSC and GCC on AMD64. This is a bit ugly, but it works. */
4781 unsigned cArgs = 0;
4782 uintptr_t auArgs[6] = {0,0,0,0,0,0};
4783 const char *psz = strchr(pszFormat, '%');
4784 while (psz && cArgs < 6)
4785 {
4786 auArgs[cArgs++] = va_arg(va, uintptr_t);
4787 psz = strchr(psz + 1, '%');
4788 }
4789 switch (cArgs)
4790 {
4791 case 1: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0]); break;
4792 case 2: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0], auArgs[1]); break;
4793 case 3: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0], auArgs[1], auArgs[2]); break;
4794 case 4: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0], auArgs[1], auArgs[2], auArgs[3]); break;
4795 case 5: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0], auArgs[1], auArgs[2], auArgs[3], auArgs[4]); break;
4796 case 6: RTStrPrintf(szMsg, sizeof(szMsg), pszFormat, auArgs[0], auArgs[1], auArgs[2], auArgs[3], auArgs[4], auArgs[5]); break;
4797 default:
4798 case 0: RTStrPrintf(szMsg, sizeof(szMsg), "%s", pszFormat); break;
4799 }
4800#else
4801 RTStrPrintfV(szMsg, sizeof(szMsg), pszFormat, va);
4802#endif
4803 va_end(va);
4804
4805 RTLogPrintf("fatal error in recompiler cpu: %s\n", szMsg);
4806 RTLogRelPrintf("fatal error in recompiler cpu: %s\n", szMsg);
4807
4808 /*
4809 * If we're in REM context we'll sync back the state before 'jumping' to
4810 * the EMs failure handling.
4811 */
4812 pVM = cpu_single_env->pVM;
4813 pVCpu = cpu_single_env->pVCpu;
4814 Assert(pVCpu);
4815
4816 if (pVM->rem.s.fInREM)
4817 REMR3StateBack(pVM, pVCpu);
4818 EMR3FatalError(pVCpu, VERR_REM_VIRTUAL_CPU_ERROR);
4819 AssertMsgFailed(("EMR3FatalError returned!\n"));
4820}
4821
4822
4823/**
4824 * Aborts the VM.
4825 *
4826 * @param rc VBox error code.
4827 * @param pszTip Hint about why/when this happened.
4828 */
4829void remAbort(int rc, const char *pszTip)
4830{
4831 PVM pVM;
4832 PVMCPU pVCpu;
4833
4834 /*
4835 * Bitch about it.
4836 */
4837 RTLogPrintf("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip);
4838 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip));
4839
4840 /*
4841 * Jump back to where we entered the recompiler.
4842 */
4843 pVM = cpu_single_env->pVM;
4844 pVCpu = cpu_single_env->pVCpu;
4845 Assert(pVCpu);
4846
4847 if (pVM->rem.s.fInREM)
4848 REMR3StateBack(pVM, pVCpu);
4849
4850 EMR3FatalError(pVCpu, rc);
4851 AssertMsgFailed(("EMR3FatalError returned!\n"));
4852}
4853
4854
4855/**
4856 * Dumps a linux system call.
4857 * @param pVCpu VMCPU handle.
4858 */
4859void remR3DumpLnxSyscall(PVMCPU pVCpu)
4860{
4861 static const char *apsz[] =
4862 {
4863 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4864 "sys_exit",
4865 "sys_fork",
4866 "sys_read",
4867 "sys_write",
4868 "sys_open", /* 5 */
4869 "sys_close",
4870 "sys_waitpid",
4871 "sys_creat",
4872 "sys_link",
4873 "sys_unlink", /* 10 */
4874 "sys_execve",
4875 "sys_chdir",
4876 "sys_time",
4877 "sys_mknod",
4878 "sys_chmod", /* 15 */
4879 "sys_lchown16",
4880 "sys_ni_syscall", /* old break syscall holder */
4881 "sys_stat",
4882 "sys_lseek",
4883 "sys_getpid", /* 20 */
4884 "sys_mount",
4885 "sys_oldumount",
4886 "sys_setuid16",
4887 "sys_getuid16",
4888 "sys_stime", /* 25 */
4889 "sys_ptrace",
4890 "sys_alarm",
4891 "sys_fstat",
4892 "sys_pause",
4893 "sys_utime", /* 30 */
4894 "sys_ni_syscall", /* old stty syscall holder */
4895 "sys_ni_syscall", /* old gtty syscall holder */
4896 "sys_access",
4897 "sys_nice",
4898 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4899 "sys_sync",
4900 "sys_kill",
4901 "sys_rename",
4902 "sys_mkdir",
4903 "sys_rmdir", /* 40 */
4904 "sys_dup",
4905 "sys_pipe",
4906 "sys_times",
4907 "sys_ni_syscall", /* old prof syscall holder */
4908 "sys_brk", /* 45 */
4909 "sys_setgid16",
4910 "sys_getgid16",
4911 "sys_signal",
4912 "sys_geteuid16",
4913 "sys_getegid16", /* 50 */
4914 "sys_acct",
4915 "sys_umount", /* recycled never used phys() */
4916 "sys_ni_syscall", /* old lock syscall holder */
4917 "sys_ioctl",
4918 "sys_fcntl", /* 55 */
4919 "sys_ni_syscall", /* old mpx syscall holder */
4920 "sys_setpgid",
4921 "sys_ni_syscall", /* old ulimit syscall holder */
4922 "sys_olduname",
4923 "sys_umask", /* 60 */
4924 "sys_chroot",
4925 "sys_ustat",
4926 "sys_dup2",
4927 "sys_getppid",
4928 "sys_getpgrp", /* 65 */
4929 "sys_setsid",
4930 "sys_sigaction",
4931 "sys_sgetmask",
4932 "sys_ssetmask",
4933 "sys_setreuid16", /* 70 */
4934 "sys_setregid16",
4935 "sys_sigsuspend",
4936 "sys_sigpending",
4937 "sys_sethostname",
4938 "sys_setrlimit", /* 75 */
4939 "sys_old_getrlimit",
4940 "sys_getrusage",
4941 "sys_gettimeofday",
4942 "sys_settimeofday",
4943 "sys_getgroups16", /* 80 */
4944 "sys_setgroups16",
4945 "old_select",
4946 "sys_symlink",
4947 "sys_lstat",
4948 "sys_readlink", /* 85 */
4949 "sys_uselib",
4950 "sys_swapon",
4951 "sys_reboot",
4952 "old_readdir",
4953 "old_mmap", /* 90 */
4954 "sys_munmap",
4955 "sys_truncate",
4956 "sys_ftruncate",
4957 "sys_fchmod",
4958 "sys_fchown16", /* 95 */
4959 "sys_getpriority",
4960 "sys_setpriority",
4961 "sys_ni_syscall", /* old profil syscall holder */
4962 "sys_statfs",
4963 "sys_fstatfs", /* 100 */
4964 "sys_ioperm",
4965 "sys_socketcall",
4966 "sys_syslog",
4967 "sys_setitimer",
4968 "sys_getitimer", /* 105 */
4969 "sys_newstat",
4970 "sys_newlstat",
4971 "sys_newfstat",
4972 "sys_uname",
4973 "sys_iopl", /* 110 */
4974 "sys_vhangup",
4975 "sys_ni_syscall", /* old "idle" system call */
4976 "sys_vm86old",
4977 "sys_wait4",
4978 "sys_swapoff", /* 115 */
4979 "sys_sysinfo",
4980 "sys_ipc",
4981 "sys_fsync",
4982 "sys_sigreturn",
4983 "sys_clone", /* 120 */
4984 "sys_setdomainname",
4985 "sys_newuname",
4986 "sys_modify_ldt",
4987 "sys_adjtimex",
4988 "sys_mprotect", /* 125 */
4989 "sys_sigprocmask",
4990 "sys_ni_syscall", /* old "create_module" */
4991 "sys_init_module",
4992 "sys_delete_module",
4993 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4994 "sys_quotactl",
4995 "sys_getpgid",
4996 "sys_fchdir",
4997 "sys_bdflush",
4998 "sys_sysfs", /* 135 */
4999 "sys_personality",
5000 "sys_ni_syscall", /* reserved for afs_syscall */
5001 "sys_setfsuid16",
5002 "sys_setfsgid16",
5003 "sys_llseek", /* 140 */
5004 "sys_getdents",
5005 "sys_select",
5006 "sys_flock",
5007 "sys_msync",
5008 "sys_readv", /* 145 */
5009 "sys_writev",
5010 "sys_getsid",
5011 "sys_fdatasync",
5012 "sys_sysctl",
5013 "sys_mlock", /* 150 */
5014 "sys_munlock",
5015 "sys_mlockall",
5016 "sys_munlockall",
5017 "sys_sched_setparam",
5018 "sys_sched_getparam", /* 155 */
5019 "sys_sched_setscheduler",
5020 "sys_sched_getscheduler",
5021 "sys_sched_yield",
5022 "sys_sched_get_priority_max",
5023 "sys_sched_get_priority_min", /* 160 */
5024 "sys_sched_rr_get_interval",
5025 "sys_nanosleep",
5026 "sys_mremap",
5027 "sys_setresuid16",
5028 "sys_getresuid16", /* 165 */
5029 "sys_vm86",
5030 "sys_ni_syscall", /* Old sys_query_module */
5031 "sys_poll",
5032 "sys_nfsservctl",
5033 "sys_setresgid16", /* 170 */
5034 "sys_getresgid16",
5035 "sys_prctl",
5036 "sys_rt_sigreturn",
5037 "sys_rt_sigaction",
5038 "sys_rt_sigprocmask", /* 175 */
5039 "sys_rt_sigpending",
5040 "sys_rt_sigtimedwait",
5041 "sys_rt_sigqueueinfo",
5042 "sys_rt_sigsuspend",
5043 "sys_pread64", /* 180 */
5044 "sys_pwrite64",
5045 "sys_chown16",
5046 "sys_getcwd",
5047 "sys_capget",
5048 "sys_capset", /* 185 */
5049 "sys_sigaltstack",
5050 "sys_sendfile",
5051 "sys_ni_syscall", /* reserved for streams1 */
5052 "sys_ni_syscall", /* reserved for streams2 */
5053 "sys_vfork", /* 190 */
5054 "sys_getrlimit",
5055 "sys_mmap2",
5056 "sys_truncate64",
5057 "sys_ftruncate64",
5058 "sys_stat64", /* 195 */
5059 "sys_lstat64",
5060 "sys_fstat64",
5061 "sys_lchown",
5062 "sys_getuid",
5063 "sys_getgid", /* 200 */
5064 "sys_geteuid",
5065 "sys_getegid",
5066 "sys_setreuid",
5067 "sys_setregid",
5068 "sys_getgroups", /* 205 */
5069 "sys_setgroups",
5070 "sys_fchown",
5071 "sys_setresuid",
5072 "sys_getresuid",
5073 "sys_setresgid", /* 210 */
5074 "sys_getresgid",
5075 "sys_chown",
5076 "sys_setuid",
5077 "sys_setgid",
5078 "sys_setfsuid", /* 215 */
5079 "sys_setfsgid",
5080 "sys_pivot_root",
5081 "sys_mincore",
5082 "sys_madvise",
5083 "sys_getdents64", /* 220 */
5084 "sys_fcntl64",
5085 "sys_ni_syscall", /* reserved for TUX */
5086 "sys_ni_syscall",
5087 "sys_gettid",
5088 "sys_readahead", /* 225 */
5089 "sys_setxattr",
5090 "sys_lsetxattr",
5091 "sys_fsetxattr",
5092 "sys_getxattr",
5093 "sys_lgetxattr", /* 230 */
5094 "sys_fgetxattr",
5095 "sys_listxattr",
5096 "sys_llistxattr",
5097 "sys_flistxattr",
5098 "sys_removexattr", /* 235 */
5099 "sys_lremovexattr",
5100 "sys_fremovexattr",
5101 "sys_tkill",
5102 "sys_sendfile64",
5103 "sys_futex", /* 240 */
5104 "sys_sched_setaffinity",
5105 "sys_sched_getaffinity",
5106 "sys_set_thread_area",
5107 "sys_get_thread_area",
5108 "sys_io_setup", /* 245 */
5109 "sys_io_destroy",
5110 "sys_io_getevents",
5111 "sys_io_submit",
5112 "sys_io_cancel",
5113 "sys_fadvise64", /* 250 */
5114 "sys_ni_syscall",
5115 "sys_exit_group",
5116 "sys_lookup_dcookie",
5117 "sys_epoll_create",
5118 "sys_epoll_ctl", /* 255 */
5119 "sys_epoll_wait",
5120 "sys_remap_file_pages",
5121 "sys_set_tid_address",
5122 "sys_timer_create",
5123 "sys_timer_settime", /* 260 */
5124 "sys_timer_gettime",
5125 "sys_timer_getoverrun",
5126 "sys_timer_delete",
5127 "sys_clock_settime",
5128 "sys_clock_gettime", /* 265 */
5129 "sys_clock_getres",
5130 "sys_clock_nanosleep",
5131 "sys_statfs64",
5132 "sys_fstatfs64",
5133 "sys_tgkill", /* 270 */
5134 "sys_utimes",
5135 "sys_fadvise64_64",
5136 "sys_ni_syscall" /* sys_vserver */
5137 };
5138
5139 uint32_t uEAX = CPUMGetGuestEAX(pVCpu);
5140 switch (uEAX)
5141 {
5142 default:
5143 if (uEAX < RT_ELEMENTS(apsz))
5144 Log(("REM: linux syscall %3d: %s (eip=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
5145 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVCpu), CPUMGetGuestEBX(pVCpu), CPUMGetGuestECX(pVCpu),
5146 CPUMGetGuestEDX(pVCpu), CPUMGetGuestESI(pVCpu), CPUMGetGuestEDI(pVCpu), CPUMGetGuestEBP(pVCpu)));
5147 else
5148 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVCpu), uEAX, uEAX));
5149 break;
5150
5151 }
5152}
5153
5154
5155/**
5156 * Dumps an OpenBSD system call.
5157 * @param pVCpu VMCPU handle.
5158 */
5159void remR3DumpOBsdSyscall(PVMCPU pVCpu)
5160{
5161 static const char *apsz[] =
5162 {
5163 "SYS_syscall", //0
5164 "SYS_exit", //1
5165 "SYS_fork", //2
5166 "SYS_read", //3
5167 "SYS_write", //4
5168 "SYS_open", //5
5169 "SYS_close", //6
5170 "SYS_wait4", //7
5171 "SYS_8",
5172 "SYS_link", //9
5173 "SYS_unlink", //10
5174 "SYS_11",
5175 "SYS_chdir", //12
5176 "SYS_fchdir", //13
5177 "SYS_mknod", //14
5178 "SYS_chmod", //15
5179 "SYS_chown", //16
5180 "SYS_break", //17
5181 "SYS_18",
5182 "SYS_19",
5183 "SYS_getpid", //20
5184 "SYS_mount", //21
5185 "SYS_unmount", //22
5186 "SYS_setuid", //23
5187 "SYS_getuid", //24
5188 "SYS_geteuid", //25
5189 "SYS_ptrace", //26
5190 "SYS_recvmsg", //27
5191 "SYS_sendmsg", //28
5192 "SYS_recvfrom", //29
5193 "SYS_accept", //30
5194 "SYS_getpeername", //31
5195 "SYS_getsockname", //32
5196 "SYS_access", //33
5197 "SYS_chflags", //34
5198 "SYS_fchflags", //35
5199 "SYS_sync", //36
5200 "SYS_kill", //37
5201 "SYS_38",
5202 "SYS_getppid", //39
5203 "SYS_40",
5204 "SYS_dup", //41
5205 "SYS_opipe", //42
5206 "SYS_getegid", //43
5207 "SYS_profil", //44
5208 "SYS_ktrace", //45
5209 "SYS_sigaction", //46
5210 "SYS_getgid", //47
5211 "SYS_sigprocmask", //48
5212 "SYS_getlogin", //49
5213 "SYS_setlogin", //50
5214 "SYS_acct", //51
5215 "SYS_sigpending", //52
5216 "SYS_osigaltstack", //53
5217 "SYS_ioctl", //54
5218 "SYS_reboot", //55
5219 "SYS_revoke", //56
5220 "SYS_symlink", //57
5221 "SYS_readlink", //58
5222 "SYS_execve", //59
5223 "SYS_umask", //60
5224 "SYS_chroot", //61
5225 "SYS_62",
5226 "SYS_63",
5227 "SYS_64",
5228 "SYS_65",
5229 "SYS_vfork", //66
5230 "SYS_67",
5231 "SYS_68",
5232 "SYS_sbrk", //69
5233 "SYS_sstk", //70
5234 "SYS_61",
5235 "SYS_vadvise", //72
5236 "SYS_munmap", //73
5237 "SYS_mprotect", //74
5238 "SYS_madvise", //75
5239 "SYS_76",
5240 "SYS_77",
5241 "SYS_mincore", //78
5242 "SYS_getgroups", //79
5243 "SYS_setgroups", //80
5244 "SYS_getpgrp", //81
5245 "SYS_setpgid", //82
5246 "SYS_setitimer", //83
5247 "SYS_84",
5248 "SYS_85",
5249 "SYS_getitimer", //86
5250 "SYS_87",
5251 "SYS_88",
5252 "SYS_89",
5253 "SYS_dup2", //90
5254 "SYS_91",
5255 "SYS_fcntl", //92
5256 "SYS_select", //93
5257 "SYS_94",
5258 "SYS_fsync", //95
5259 "SYS_setpriority", //96
5260 "SYS_socket", //97
5261 "SYS_connect", //98
5262 "SYS_99",
5263 "SYS_getpriority", //100
5264 "SYS_101",
5265 "SYS_102",
5266 "SYS_sigreturn", //103
5267 "SYS_bind", //104
5268 "SYS_setsockopt", //105
5269 "SYS_listen", //106
5270 "SYS_107",
5271 "SYS_108",
5272 "SYS_109",
5273 "SYS_110",
5274 "SYS_sigsuspend", //111
5275 "SYS_112",
5276 "SYS_113",
5277 "SYS_114",
5278 "SYS_115",
5279 "SYS_gettimeofday", //116
5280 "SYS_getrusage", //117
5281 "SYS_getsockopt", //118
5282 "SYS_119",
5283 "SYS_readv", //120
5284 "SYS_writev", //121
5285 "SYS_settimeofday", //122
5286 "SYS_fchown", //123
5287 "SYS_fchmod", //124
5288 "SYS_125",
5289 "SYS_setreuid", //126
5290 "SYS_setregid", //127
5291 "SYS_rename", //128
5292 "SYS_129",
5293 "SYS_130",
5294 "SYS_flock", //131
5295 "SYS_mkfifo", //132
5296 "SYS_sendto", //133
5297 "SYS_shutdown", //134
5298 "SYS_socketpair", //135
5299 "SYS_mkdir", //136
5300 "SYS_rmdir", //137
5301 "SYS_utimes", //138
5302 "SYS_139",
5303 "SYS_adjtime", //140
5304 "SYS_141",
5305 "SYS_142",
5306 "SYS_143",
5307 "SYS_144",
5308 "SYS_145",
5309 "SYS_146",
5310 "SYS_setsid", //147
5311 "SYS_quotactl", //148
5312 "SYS_149",
5313 "SYS_150",
5314 "SYS_151",
5315 "SYS_152",
5316 "SYS_153",
5317 "SYS_154",
5318 "SYS_nfssvc", //155
5319 "SYS_156",
5320 "SYS_157",
5321 "SYS_158",
5322 "SYS_159",
5323 "SYS_160",
5324 "SYS_getfh", //161
5325 "SYS_162",
5326 "SYS_163",
5327 "SYS_164",
5328 "SYS_sysarch", //165
5329 "SYS_166",
5330 "SYS_167",
5331 "SYS_168",
5332 "SYS_169",
5333 "SYS_170",
5334 "SYS_171",
5335 "SYS_172",
5336 "SYS_pread", //173
5337 "SYS_pwrite", //174
5338 "SYS_175",
5339 "SYS_176",
5340 "SYS_177",
5341 "SYS_178",
5342 "SYS_179",
5343 "SYS_180",
5344 "SYS_setgid", //181
5345 "SYS_setegid", //182
5346 "SYS_seteuid", //183
5347 "SYS_lfs_bmapv", //184
5348 "SYS_lfs_markv", //185
5349 "SYS_lfs_segclean", //186
5350 "SYS_lfs_segwait", //187
5351 "SYS_188",
5352 "SYS_189",
5353 "SYS_190",
5354 "SYS_pathconf", //191
5355 "SYS_fpathconf", //192
5356 "SYS_swapctl", //193
5357 "SYS_getrlimit", //194
5358 "SYS_setrlimit", //195
5359 "SYS_getdirentries", //196
5360 "SYS_mmap", //197
5361 "SYS___syscall", //198
5362 "SYS_lseek", //199
5363 "SYS_truncate", //200
5364 "SYS_ftruncate", //201
5365 "SYS___sysctl", //202
5366 "SYS_mlock", //203
5367 "SYS_munlock", //204
5368 "SYS_205",
5369 "SYS_futimes", //206
5370 "SYS_getpgid", //207
5371 "SYS_xfspioctl", //208
5372 "SYS_209",
5373 "SYS_210",
5374 "SYS_211",
5375 "SYS_212",
5376 "SYS_213",
5377 "SYS_214",
5378 "SYS_215",
5379 "SYS_216",
5380 "SYS_217",
5381 "SYS_218",
5382 "SYS_219",
5383 "SYS_220",
5384 "SYS_semget", //221
5385 "SYS_222",
5386 "SYS_223",
5387 "SYS_224",
5388 "SYS_msgget", //225
5389 "SYS_msgsnd", //226
5390 "SYS_msgrcv", //227
5391 "SYS_shmat", //228
5392 "SYS_229",
5393 "SYS_shmdt", //230
5394 "SYS_231",
5395 "SYS_clock_gettime", //232
5396 "SYS_clock_settime", //233
5397 "SYS_clock_getres", //234
5398 "SYS_235",
5399 "SYS_236",
5400 "SYS_237",
5401 "SYS_238",
5402 "SYS_239",
5403 "SYS_nanosleep", //240
5404 "SYS_241",
5405 "SYS_242",
5406 "SYS_243",
5407 "SYS_244",
5408 "SYS_245",
5409 "SYS_246",
5410 "SYS_247",
5411 "SYS_248",
5412 "SYS_249",
5413 "SYS_minherit", //250
5414 "SYS_rfork", //251
5415 "SYS_poll", //252
5416 "SYS_issetugid", //253
5417 "SYS_lchown", //254
5418 "SYS_getsid", //255
5419 "SYS_msync", //256
5420 "SYS_257",
5421 "SYS_258",
5422 "SYS_259",
5423 "SYS_getfsstat", //260
5424 "SYS_statfs", //261
5425 "SYS_fstatfs", //262
5426 "SYS_pipe", //263
5427 "SYS_fhopen", //264
5428 "SYS_265",
5429 "SYS_fhstatfs", //266
5430 "SYS_preadv", //267
5431 "SYS_pwritev", //268
5432 "SYS_kqueue", //269
5433 "SYS_kevent", //270
5434 "SYS_mlockall", //271
5435 "SYS_munlockall", //272
5436 "SYS_getpeereid", //273
5437 "SYS_274",
5438 "SYS_275",
5439 "SYS_276",
5440 "SYS_277",
5441 "SYS_278",
5442 "SYS_279",
5443 "SYS_280",
5444 "SYS_getresuid", //281
5445 "SYS_setresuid", //282
5446 "SYS_getresgid", //283
5447 "SYS_setresgid", //284
5448 "SYS_285",
5449 "SYS_mquery", //286
5450 "SYS_closefrom", //287
5451 "SYS_sigaltstack", //288
5452 "SYS_shmget", //289
5453 "SYS_semop", //290
5454 "SYS_stat", //291
5455 "SYS_fstat", //292
5456 "SYS_lstat", //293
5457 "SYS_fhstat", //294
5458 "SYS___semctl", //295
5459 "SYS_shmctl", //296
5460 "SYS_msgctl", //297
5461 "SYS_MAXSYSCALL", //298
5462 //299
5463 //300
5464 };
5465 uint32_t uEAX;
5466 if (!LogIsEnabled())
5467 return;
5468 uEAX = CPUMGetGuestEAX(pVCpu);
5469 switch (uEAX)
5470 {
5471 default:
5472 if (uEAX < RT_ELEMENTS(apsz))
5473 {
5474 uint32_t au32Args[8] = {0};
5475 PGMPhysSimpleReadGCPtr(pVCpu, au32Args, CPUMGetGuestESP(pVCpu), sizeof(au32Args));
5476 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
5477 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVCpu), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
5478 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
5479 }
5480 else
5481 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVCpu), uEAX, uEAX);
5482 break;
5483 }
5484}
5485
5486
5487#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
5488/**
5489 * The Dll main entry point (stub).
5490 */
5491bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
5492{
5493 return true;
5494}
5495
5496void *memcpy(void *dst, const void *src, size_t size)
5497{
5498 uint8_t*pbDst = dst, *pbSrc = src;
5499 while (size-- > 0)
5500 *pbDst++ = *pbSrc++;
5501 return dst;
5502}
5503
5504#endif
5505
5506void cpu_smm_update(CPUX86State *env)
5507{
5508}
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette