VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 4986

Last change on this file since 4986 was 4986, checked in by vboxsync, 17 years ago

work around a nocrt build problem.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 148.5 KB
Line 
1/* $Id: VBoxRecompiler.c 4986 2007-09-24 02:32:58Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 innotek GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License as published by the Free Software Foundation,
13 * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
14 * distribution. VirtualBox OSE is distributed in the hope that it will
15 * be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_REM
23#include "vl.h"
24#include "exec-all.h"
25
26#include <VBox/rem.h>
27#include <VBox/vmapi.h>
28#include <VBox/tm.h>
29#include <VBox/ssm.h>
30#include <VBox/em.h>
31#include <VBox/trpm.h>
32#include <VBox/iom.h>
33#include <VBox/mm.h>
34#include <VBox/pgm.h>
35#include <VBox/pdm.h>
36#include <VBox/dbgf.h>
37#include <VBox/dbg.h>
38#include <VBox/hwaccm.h>
39#include <VBox/patm.h>
40#include <VBox/csam.h>
41#include "REMInternal.h"
42#include <VBox/vm.h>
43#include <VBox/param.h>
44#include <VBox/err.h>
45
46#include <VBox/log.h>
47#include <iprt/semaphore.h>
48#include <iprt/asm.h>
49#include <iprt/assert.h>
50#include <iprt/thread.h>
51#include <iprt/string.h>
52
53/* Don't wanna include everything. */
54extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
55extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
56extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
57extern void tlb_flush_page(CPUX86State *env, uint32_t addr);
58extern void tlb_flush(CPUState *env, int flush_global);
59extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
60extern void sync_ldtr(CPUX86State *env1, int selector);
61extern int sync_tr(CPUX86State *env1, int selector);
62
63#ifdef VBOX_STRICT
64unsigned long get_phys_page_offset(target_ulong addr);
65#endif
66
67
68/*******************************************************************************
69* Defined Constants And Macros *
70*******************************************************************************/
71
72/** Copy 80-bit fpu register at pSrc to pDst.
73 * This is probably faster than *calling* memcpy.
74 */
75#define REM_COPY_FPU_REG(pDst, pSrc) \
76 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
77
78
79/*******************************************************************************
80* Internal Functions *
81*******************************************************************************/
82static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
83static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
84static void remR3StateUpdate(PVM pVM);
85
86static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
87static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
88static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
89static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
90static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
91static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
92
93static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
94static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
95static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
96static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
97static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
98static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
99
100
101/*******************************************************************************
102* Global Variables *
103*******************************************************************************/
104
105/** @todo Move stats to REM::s some rainy day we have nothing do to. */
106#ifdef VBOX_WITH_STATISTICS
107static STAMPROFILEADV gStatExecuteSingleInstr;
108static STAMPROFILEADV gStatCompilationQEmu;
109static STAMPROFILEADV gStatRunCodeQEmu;
110static STAMPROFILEADV gStatTotalTimeQEmu;
111static STAMPROFILEADV gStatTimers;
112static STAMPROFILEADV gStatTBLookup;
113static STAMPROFILEADV gStatIRQ;
114static STAMPROFILEADV gStatRawCheck;
115static STAMPROFILEADV gStatMemRead;
116static STAMPROFILEADV gStatMemWrite;
117static STAMPROFILE gStatGCPhys2HCVirt;
118static STAMPROFILE gStatHCVirt2GCPhys;
119static STAMCOUNTER gStatCpuGetTSC;
120static STAMCOUNTER gStatRefuseTFInhibit;
121static STAMCOUNTER gStatRefuseVM86;
122static STAMCOUNTER gStatRefusePaging;
123static STAMCOUNTER gStatRefusePAE;
124static STAMCOUNTER gStatRefuseIOPLNot0;
125static STAMCOUNTER gStatRefuseIF0;
126static STAMCOUNTER gStatRefuseCode16;
127static STAMCOUNTER gStatRefuseWP0;
128static STAMCOUNTER gStatRefuseRing1or2;
129static STAMCOUNTER gStatRefuseCanExecute;
130static STAMCOUNTER gStatREMGDTChange;
131static STAMCOUNTER gStatREMIDTChange;
132static STAMCOUNTER gStatREMLDTRChange;
133static STAMCOUNTER gStatREMTRChange;
134static STAMCOUNTER gStatSelOutOfSync[6];
135static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
136#endif
137
138/*
139 * Global stuff.
140 */
141
142/** MMIO read callbacks. */
143CPUReadMemoryFunc *g_apfnMMIORead[3] =
144{
145 remR3MMIOReadU8,
146 remR3MMIOReadU16,
147 remR3MMIOReadU32
148};
149
150/** MMIO write callbacks. */
151CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
152{
153 remR3MMIOWriteU8,
154 remR3MMIOWriteU16,
155 remR3MMIOWriteU32
156};
157
158/** Handler read callbacks. */
159CPUReadMemoryFunc *g_apfnHandlerRead[3] =
160{
161 remR3HandlerReadU8,
162 remR3HandlerReadU16,
163 remR3HandlerReadU32
164};
165
166/** Handler write callbacks. */
167CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
168{
169 remR3HandlerWriteU8,
170 remR3HandlerWriteU16,
171 remR3HandlerWriteU32
172};
173
174
175#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDWS) && defined(RT_ARCH_AMD64))
176/*
177 * Debugger commands.
178 */
179static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
180
181/** '.remstep' arguments. */
182static const DBGCVARDESC g_aArgRemStep[] =
183{
184 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
185 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
186};
187
188/** Command descriptors. */
189static const DBGCCMD g_aCmds[] =
190{
191 {
192 .pszCmd ="remstep",
193 .cArgsMin = 0,
194 .cArgsMax = 1,
195 .paArgDescs = &g_aArgRemStep[0],
196 .cArgDescs = ELEMENTS(g_aArgRemStep),
197 .pResultDesc = NULL,
198 .fFlags = 0,
199 .pfnHandler = remR3CmdDisasEnableStepping,
200 .pszSyntax = "[on/off]",
201 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
202 "If no arguments show the current state."
203 }
204};
205#endif
206
207
208/* Instantiate the structure signatures. */
209#define REM_STRUCT_OP 0
210#include "InnoTek/structs.h"
211
212
213
214/*******************************************************************************
215* Internal Functions *
216*******************************************************************************/
217static void remAbort(int rc, const char *pszTip);
218extern int testmath(void);
219
220/* Put them here to avoid unused variable warning. */
221AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
222#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
223AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
224#else
225AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
226#endif
227
228
229/**
230 * Initializes the REM.
231 *
232 * @returns VBox status code.
233 * @param pVM The VM to operate on.
234 */
235REMR3DECL(int) REMR3Init(PVM pVM)
236{
237 uint32_t u32Dummy;
238 unsigned i;
239
240 /*
241 * Assert sanity.
242 */
243 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
244 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
245 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
246#if defined(DEBUG) && !defined(RT_OS_SOLARIS) /// @todo fix the solaris math stuff.
247 Assert(!testmath());
248#endif
249 ASSERT_STRUCT_TABLE(Misc);
250 ASSERT_STRUCT_TABLE(TLB);
251 ASSERT_STRUCT_TABLE(SegmentCache);
252 ASSERT_STRUCT_TABLE(XMMReg);
253 ASSERT_STRUCT_TABLE(MMXReg);
254 ASSERT_STRUCT_TABLE(float_status);
255 ASSERT_STRUCT_TABLE(float32u);
256 ASSERT_STRUCT_TABLE(float64u);
257 ASSERT_STRUCT_TABLE(floatx80u);
258 ASSERT_STRUCT_TABLE(CPUState);
259
260 /*
261 * Init some internal data members.
262 */
263 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
264 pVM->rem.s.Env.pVM = pVM;
265#ifdef CPU_RAW_MODE_INIT
266 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
267#endif
268
269 /* ctx. */
270 int rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
271 if (VBOX_FAILURE(rc))
272 {
273 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
274 return rc;
275 }
276 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
277
278 /* ignore all notifications */
279 pVM->rem.s.fIgnoreAll = true;
280
281 /*
282 * Init the recompiler.
283 */
284 if (!cpu_x86_init(&pVM->rem.s.Env))
285 {
286 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
287 return VERR_GENERAL_FAILURE;
288 }
289 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
290 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
291
292 /* allocate code buffer for single instruction emulation. */
293 pVM->rem.s.Env.cbCodeBuffer = 4096;
294 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
295 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
296
297 /* finally, set the cpu_single_env global. */
298 cpu_single_env = &pVM->rem.s.Env;
299
300 /* Nothing is pending by default */
301 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
302
303 /*
304 * Register ram types.
305 */
306 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
307 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
308 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
309 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
310 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
311
312 /* stop ignoring. */
313 pVM->rem.s.fIgnoreAll = false;
314
315 /*
316 * Register the saved state data unit.
317 */
318 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
319 NULL, remR3Save, NULL,
320 NULL, remR3Load, NULL);
321 if (VBOX_FAILURE(rc))
322 return rc;
323
324#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
325 /*
326 * Debugger commands.
327 */
328 static bool fRegisteredCmds = false;
329 if (!fRegisteredCmds)
330 {
331 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
332 if (VBOX_SUCCESS(rc))
333 fRegisteredCmds = true;
334 }
335#endif
336
337#ifdef VBOX_WITH_STATISTICS
338 /*
339 * Statistics.
340 */
341 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
342 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
343 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
344 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
345 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
346 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
347 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
348 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
349 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
350 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
351 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
352 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
353
354 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
355
356 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
357 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
358 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
359 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
360 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
361 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
362 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
363 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
364 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
365 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
366
367 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
368 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
369 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
370 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
371
372 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
373 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
374 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
375 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
376 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
377 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
378
379 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
380 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
381 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
382 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
383 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
384 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
385
386
387#endif
388
389#ifdef DEBUG_ALL_LOGGING
390 loglevel = ~0;
391#endif
392
393 return rc;
394}
395
396
397/**
398 * Terminates the REM.
399 *
400 * Termination means cleaning up and freeing all resources,
401 * the VM it self is at this point powered off or suspended.
402 *
403 * @returns VBox status code.
404 * @param pVM The VM to operate on.
405 */
406REMR3DECL(int) REMR3Term(PVM pVM)
407{
408 return VINF_SUCCESS;
409}
410
411
412/**
413 * The VM is being reset.
414 *
415 * For the REM component this means to call the cpu_reset() and
416 * reinitialize some state variables.
417 *
418 * @param pVM VM handle.
419 */
420REMR3DECL(void) REMR3Reset(PVM pVM)
421{
422 /*
423 * Reset the REM cpu.
424 */
425 pVM->rem.s.fIgnoreAll = true;
426 cpu_reset(&pVM->rem.s.Env);
427 pVM->rem.s.cInvalidatedPages = 0;
428 pVM->rem.s.fIgnoreAll = false;
429}
430
431
432/**
433 * Execute state save operation.
434 *
435 * @returns VBox status code.
436 * @param pVM VM Handle.
437 * @param pSSM SSM operation handle.
438 */
439static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
440{
441 LogFlow(("remR3Save:\n"));
442
443 /*
444 * Save the required CPU Env bits.
445 * (Not much because we're never in REM when doing the save.)
446 */
447 PREM pRem = &pVM->rem.s;
448 Assert(!pRem->fInREM);
449 SSMR3PutU32(pSSM, pRem->Env.hflags);
450 SSMR3PutMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
451 SSMR3PutU32(pSSM, ~0); /* separator */
452
453 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
454 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
455
456 /*
457 * Save the REM stuff.
458 */
459 SSMR3PutUInt(pSSM, pRem->cInvalidatedPages);
460 unsigned i;
461 for (i = 0; i < pRem->cInvalidatedPages; i++)
462 SSMR3PutGCPtr(pSSM, pRem->aGCPtrInvalidatedPages[i]);
463
464 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
465
466 return SSMR3PutU32(pSSM, ~0); /* terminator */
467}
468
469
470/**
471 * Execute state load operation.
472 *
473 * @returns VBox status code.
474 * @param pVM VM Handle.
475 * @param pSSM SSM operation handle.
476 * @param u32Version Data layout version.
477 */
478static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
479{
480 uint32_t u32Dummy;
481 uint32_t fRawRing0 = false;
482 LogFlow(("remR3Load:\n"));
483
484 /*
485 * Validate version.
486 */
487 if (u32Version != REM_SAVED_STATE_VERSION)
488 {
489 Log(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
490 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
491 }
492
493 /*
494 * Do a reset to be on the safe side...
495 */
496 REMR3Reset(pVM);
497
498 /*
499 * Ignore all ignorable notifications.
500 * (Not doing this will cause serious trouble.)
501 */
502 pVM->rem.s.fIgnoreAll = true;
503
504 /*
505 * Load the required CPU Env bits.
506 * (Not much because we're never in REM when doing the save.)
507 */
508 PREM pRem = &pVM->rem.s;
509 Assert(!pRem->fInREM);
510 SSMR3GetU32(pSSM, &pRem->Env.hflags);
511 SSMR3GetMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
512 uint32_t u32Sep;
513 int rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
514 if (VBOX_FAILURE(rc))
515 return rc;
516 if (u32Sep != ~0)
517 {
518 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
519 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
520 }
521
522 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
523 SSMR3GetUInt(pSSM, &fRawRing0);
524 if (fRawRing0)
525 pRem->Env.state |= CPU_RAW_RING0;
526
527 /*
528 * Load the REM stuff.
529 */
530 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
531 if (VBOX_FAILURE(rc))
532 return rc;
533 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
534 {
535 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
536 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
537 }
538 unsigned i;
539 for (i = 0; i < pRem->cInvalidatedPages; i++)
540 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
541
542 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
543 if (VBOX_FAILURE(rc))
544 return rc;
545
546 /* check the terminator. */
547 rc = SSMR3GetU32(pSSM, &u32Sep);
548 if (VBOX_FAILURE(rc))
549 return rc;
550 if (u32Sep != ~0)
551 {
552 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
553 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
554 }
555
556 /*
557 * Get the CPUID features.
558 */
559 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
560 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
561
562 /*
563 * Sync the Load Flush the TLB
564 */
565 tlb_flush(&pRem->Env, 1);
566
567#if 0 /** @todo r=bird: this doesn't make sense. WHY? */
568 /*
569 * Clear all lazy flags (only FPU sync for now).
570 */
571 CPUMGetAndClearFPUUsedREM(pVM);
572#endif
573
574 /*
575 * Stop ignoring ignornable notifications.
576 */
577 pVM->rem.s.fIgnoreAll = false;
578
579 return VINF_SUCCESS;
580}
581
582
583
584#undef LOG_GROUP
585#define LOG_GROUP LOG_GROUP_REM_RUN
586
587/**
588 * Single steps an instruction in recompiled mode.
589 *
590 * Before calling this function the REM state needs to be in sync with
591 * the VM. Call REMR3State() to perform the sync. It's only necessary
592 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
593 * and after calling REMR3StateBack().
594 *
595 * @returns VBox status code.
596 *
597 * @param pVM VM Handle.
598 */
599REMR3DECL(int) REMR3Step(PVM pVM)
600{
601 /*
602 * Lock the REM - we don't wanna have anyone interrupting us
603 * while stepping - and enabled single stepping. We also ignore
604 * pending interrupts and suchlike.
605 */
606 int interrupt_request = pVM->rem.s.Env.interrupt_request;
607 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
608 pVM->rem.s.Env.interrupt_request = 0;
609 cpu_single_step(&pVM->rem.s.Env, 1);
610
611 /*
612 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
613 */
614 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
615 bool fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
616
617 /*
618 * Execute and handle the return code.
619 * We execute without enabling the cpu tick, so on success we'll
620 * just flip it on and off to make sure it moves
621 */
622 int rc = cpu_exec(&pVM->rem.s.Env);
623 if (rc == EXCP_DEBUG)
624 {
625 TMCpuTickResume(pVM);
626 TMCpuTickPause(pVM);
627 TMVirtualResume(pVM);
628 TMVirtualPause(pVM);
629 rc = VINF_EM_DBG_STEPPED;
630 }
631 else
632 {
633 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
634 switch (rc)
635 {
636 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
637 case EXCP_HLT:
638 case EXCP_HALTED: rc = VINF_EM_HALT; break;
639 case EXCP_RC:
640 rc = pVM->rem.s.rc;
641 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
642 break;
643 default:
644 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
645 rc = VERR_INTERNAL_ERROR;
646 break;
647 }
648 }
649
650 /*
651 * Restore the stuff we changed to prevent interruption.
652 * Unlock the REM.
653 */
654 if (fBp)
655 {
656 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
657 Assert(rc2 == 0); NOREF(rc2);
658 }
659 cpu_single_step(&pVM->rem.s.Env, 0);
660 pVM->rem.s.Env.interrupt_request = interrupt_request;
661
662 return rc;
663}
664
665
666/**
667 * Set a breakpoint using the REM facilities.
668 *
669 * @returns VBox status code.
670 * @param pVM The VM handle.
671 * @param Address The breakpoint address.
672 * @thread The emulation thread.
673 */
674REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
675{
676 VM_ASSERT_EMT(pVM);
677 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
678 {
679 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
680 return VINF_SUCCESS;
681 }
682 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
683 return VERR_REM_NO_MORE_BP_SLOTS;
684}
685
686
687/**
688 * Clears a breakpoint set by REMR3BreakpointSet().
689 *
690 * @returns VBox status code.
691 * @param pVM The VM handle.
692 * @param Address The breakpoint address.
693 * @thread The emulation thread.
694 */
695REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
696{
697 VM_ASSERT_EMT(pVM);
698 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
699 {
700 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
701 return VINF_SUCCESS;
702 }
703 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
704 return VERR_REM_BP_NOT_FOUND;
705}
706
707
708/**
709 * Emulate an instruction.
710 *
711 * This function executes one instruction without letting anyone
712 * interrupt it. This is intended for being called while being in
713 * raw mode and thus will take care of all the state syncing between
714 * REM and the rest.
715 *
716 * @returns VBox status code.
717 * @param pVM VM handle.
718 */
719REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
720{
721 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", pVM->rem.s.pCtx->cs, pVM->rem.s.pCtx->eip));
722
723 /*
724 * Sync the state and enable single instruction / single stepping.
725 */
726 int rc = REMR3State(pVM);
727 if (VBOX_SUCCESS(rc))
728 {
729 int interrupt_request = pVM->rem.s.Env.interrupt_request;
730 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
731 Assert(!pVM->rem.s.Env.singlestep_enabled);
732#if 1
733
734 /*
735 * Now we set the execute single instruction flag and enter the cpu_exec loop.
736 */
737 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
738 rc = cpu_exec(&pVM->rem.s.Env);
739 switch (rc)
740 {
741 /*
742 * Executed without anything out of the way happening.
743 */
744 case EXCP_SINGLE_INSTR:
745 rc = VINF_EM_RESCHEDULE;
746 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
747 break;
748
749 /*
750 * If we take a trap or start servicing a pending interrupt, we might end up here.
751 * (Timer thread or some other thread wishing EMT's attention.)
752 */
753 case EXCP_INTERRUPT:
754 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
755 rc = VINF_EM_RESCHEDULE;
756 break;
757
758 /*
759 * Single step, we assume!
760 * If there was a breakpoint there we're fucked now.
761 */
762 case EXCP_DEBUG:
763 {
764 /* breakpoint or single step? */
765 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
766 int iBP;
767 rc = VINF_EM_DBG_STEPPED;
768 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
769 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
770 {
771 rc = VINF_EM_DBG_BREAKPOINT;
772 break;
773 }
774 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
775 break;
776 }
777
778 /*
779 * hlt instruction.
780 */
781 case EXCP_HLT:
782 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
783 rc = VINF_EM_HALT;
784 break;
785
786 /*
787 * The VM has halted.
788 */
789 case EXCP_HALTED:
790 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
791 rc = VINF_EM_HALT;
792 break;
793
794 /*
795 * Switch to RAW-mode.
796 */
797 case EXCP_EXECUTE_RAW:
798 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
799 rc = VINF_EM_RESCHEDULE_RAW;
800 break;
801
802 /*
803 * Switch to hardware accelerated RAW-mode.
804 */
805 case EXCP_EXECUTE_HWACC:
806 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
807 rc = VINF_EM_RESCHEDULE_HWACC;
808 break;
809
810 /*
811 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
812 */
813 case EXCP_RC:
814 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
815 rc = pVM->rem.s.rc;
816 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
817 break;
818
819 /*
820 * Figure out the rest when they arrive....
821 */
822 default:
823 AssertMsgFailed(("rc=%d\n", rc));
824 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
825 rc = VINF_EM_RESCHEDULE;
826 break;
827 }
828
829 /*
830 * Switch back the state.
831 */
832#else
833 pVM->rem.s.Env.interrupt_request = 0;
834 cpu_single_step(&pVM->rem.s.Env, 1);
835
836 /*
837 * Execute and handle the return code.
838 * We execute without enabling the cpu tick, so on success we'll
839 * just flip it on and off to make sure it moves.
840 *
841 * (We do not use emulate_single_instr() because that doesn't enter the
842 * right way in will cause serious trouble if a longjmp was attempted.)
843 */
844# ifdef DEBUG_bird
845 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
846# endif
847 int cTimesMax = 16384;
848 uint32_t eip = pVM->rem.s.Env.eip;
849 do
850 {
851 rc = cpu_exec(&pVM->rem.s.Env);
852
853 } while ( eip == pVM->rem.s.Env.eip
854 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
855 && --cTimesMax > 0);
856 switch (rc)
857 {
858 /*
859 * Single step, we assume!
860 * If there was a breakpoint there we're fucked now.
861 */
862 case EXCP_DEBUG:
863 {
864 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
865 rc = VINF_EM_RESCHEDULE;
866 break;
867 }
868
869 /*
870 * We cannot be interrupted!
871 */
872 case EXCP_INTERRUPT:
873 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
874 rc = VERR_INTERNAL_ERROR;
875 break;
876
877 /*
878 * hlt instruction.
879 */
880 case EXCP_HLT:
881 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
882 rc = VINF_EM_HALT;
883 break;
884
885 /*
886 * The VM has halted.
887 */
888 case EXCP_HALTED:
889 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
890 rc = VINF_EM_HALT;
891 break;
892
893 /*
894 * Switch to RAW-mode.
895 */
896 case EXCP_EXECUTE_RAW:
897 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
898 rc = VINF_EM_RESCHEDULE_RAW;
899 break;
900
901 /*
902 * Switch to hardware accelerated RAW-mode.
903 */
904 case EXCP_EXECUTE_HWACC:
905 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
906 rc = VINF_EM_RESCHEDULE_HWACC;
907 break;
908
909 /*
910 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
911 */
912 case EXCP_RC:
913 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
914 rc = pVM->rem.s.rc;
915 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
916 break;
917
918 /*
919 * Figure out the rest when they arrive....
920 */
921 default:
922 AssertMsgFailed(("rc=%d\n", rc));
923 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
924 rc = VINF_SUCCESS;
925 break;
926 }
927
928 /*
929 * Switch back the state.
930 */
931 cpu_single_step(&pVM->rem.s.Env, 0);
932#endif
933 pVM->rem.s.Env.interrupt_request = interrupt_request;
934 int rc2 = REMR3StateBack(pVM);
935 AssertRC(rc2);
936 }
937
938 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%08x)\n",
939 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
940 return rc;
941}
942
943
944/**
945 * Runs code in recompiled mode.
946 *
947 * Before calling this function the REM state needs to be in sync with
948 * the VM. Call REMR3State() to perform the sync. It's only necessary
949 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
950 * and after calling REMR3StateBack().
951 *
952 * @returns VBox status code.
953 *
954 * @param pVM VM Handle.
955 */
956REMR3DECL(int) REMR3Run(PVM pVM)
957{
958 Log2(("REMR3Run: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
959 Assert(pVM->rem.s.fInREM);
960////Keyboard / tb stuff:
961//if ( pVM->rem.s.Env.segs[R_CS].selector == 0xf000
962// && pVM->rem.s.Env.eip >= 0xe860
963// && pVM->rem.s.Env.eip <= 0xe880)
964// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
965////A20:
966//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x9020
967// && pVM->rem.s.Env.eip >= 0x970
968// && pVM->rem.s.Env.eip <= 0x9a0)
969// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
970////Speaker (port 61h)
971//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x0010
972// && ( (pVM->rem.s.Env.eip >= 0x90278c10 && pVM->rem.s.Env.eip <= 0x90278c30)
973// || (pVM->rem.s.Env.eip >= 0x9010e250 && pVM->rem.s.Env.eip <= 0x9010e260)
974// )
975// )
976// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
977//DBGFR3InfoLog(pVM, "timers", NULL);
978
979
980 int rc = cpu_exec(&pVM->rem.s.Env);
981 switch (rc)
982 {
983 /*
984 * This happens when the execution was interrupted
985 * by an external event, like pending timers.
986 */
987 case EXCP_INTERRUPT:
988 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
989 rc = VINF_SUCCESS;
990 break;
991
992 /*
993 * hlt instruction.
994 */
995 case EXCP_HLT:
996 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
997 rc = VINF_EM_HALT;
998 break;
999
1000 /*
1001 * The VM has halted.
1002 */
1003 case EXCP_HALTED:
1004 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1005 rc = VINF_EM_HALT;
1006 break;
1007
1008 /*
1009 * Breakpoint/single step.
1010 */
1011 case EXCP_DEBUG:
1012 {
1013#if 0//def DEBUG_bird
1014 static int iBP = 0;
1015 printf("howdy, breakpoint! iBP=%d\n", iBP);
1016 switch (iBP)
1017 {
1018 case 0:
1019 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1020 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1021 //pVM->rem.s.Env.interrupt_request = 0;
1022 //pVM->rem.s.Env.exception_index = -1;
1023 //g_fInterruptDisabled = 1;
1024 rc = VINF_SUCCESS;
1025 asm("int3");
1026 break;
1027 default:
1028 asm("int3");
1029 break;
1030 }
1031 iBP++;
1032#else
1033 /* breakpoint or single step? */
1034 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1035 int iBP;
1036 rc = VINF_EM_DBG_STEPPED;
1037 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1038 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1039 {
1040 rc = VINF_EM_DBG_BREAKPOINT;
1041 break;
1042 }
1043 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1044#endif
1045 break;
1046 }
1047
1048 /*
1049 * Switch to RAW-mode.
1050 */
1051 case EXCP_EXECUTE_RAW:
1052 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1053 rc = VINF_EM_RESCHEDULE_RAW;
1054 break;
1055
1056 /*
1057 * Switch to hardware accelerated RAW-mode.
1058 */
1059 case EXCP_EXECUTE_HWACC:
1060 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1061 rc = VINF_EM_RESCHEDULE_HWACC;
1062 break;
1063
1064 /*
1065 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1066 */
1067 case EXCP_RC:
1068 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1069 rc = pVM->rem.s.rc;
1070 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1071 break;
1072
1073 /*
1074 * Figure out the rest when they arrive....
1075 */
1076 default:
1077 AssertMsgFailed(("rc=%d\n", rc));
1078 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1079 rc = VINF_SUCCESS;
1080 break;
1081 }
1082
1083 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%08x)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1084 return rc;
1085}
1086
1087
1088/**
1089 * Check if the cpu state is suitable for Raw execution.
1090 *
1091 * @returns boolean
1092 * @param env The CPU env struct.
1093 * @param eip The EIP to check this for (might differ from env->eip).
1094 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1095 * @param pExceptionIndex Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1096 *
1097 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1098 */
1099bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, uint32_t *pExceptionIndex)
1100{
1101 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1102 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1103 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1104
1105 /* Update counter. */
1106 env->pVM->rem.s.cCanExecuteRaw++;
1107
1108 if (HWACCMIsEnabled(env->pVM))
1109 {
1110 env->state |= CPU_RAW_HWACC;
1111
1112 /*
1113 * Create partial context for HWACCMR3CanExecuteGuest
1114 */
1115 CPUMCTX Ctx;
1116 Ctx.cr0 = env->cr[0];
1117 Ctx.cr3 = env->cr[3];
1118 Ctx.cr4 = env->cr[4];
1119
1120 Ctx.tr = env->tr.selector;
1121 Ctx.trHid.u32Base = (uint32_t)env->tr.base;
1122 Ctx.trHid.u32Limit = env->tr.limit;
1123 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1124
1125 Ctx.idtr.cbIdt = env->idt.limit;
1126 Ctx.idtr.pIdt = (uint32_t)env->idt.base;
1127
1128 Ctx.eflags.u32 = env->eflags;
1129
1130 Ctx.cs = env->segs[R_CS].selector;
1131 Ctx.csHid.u32Base = (uint32_t)env->segs[R_CS].base;
1132 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1133 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1134
1135 Ctx.ss = env->segs[R_SS].selector;
1136 Ctx.ssHid.u32Base = (uint32_t)env->segs[R_SS].base;
1137 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1138 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1139
1140 /* Hardware accelerated raw-mode:
1141 *
1142 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1143 */
1144 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1145 {
1146 *pExceptionIndex = EXCP_EXECUTE_HWACC;
1147 return true;
1148 }
1149 return false;
1150 }
1151
1152 /*
1153 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1154 * or 32 bits protected mode ring 0 code
1155 *
1156 * The tests are ordered by the likelyhood of being true during normal execution.
1157 */
1158 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1159 {
1160 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1161 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1162 return false;
1163 }
1164
1165#ifndef VBOX_RAW_V86
1166 if (fFlags & VM_MASK) {
1167 STAM_COUNTER_INC(&gStatRefuseVM86);
1168 Log2(("raw mode refused: VM_MASK\n"));
1169 return false;
1170 }
1171#endif
1172
1173 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1174 {
1175#ifndef DEBUG_bird
1176 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1177#endif
1178 return false;
1179 }
1180
1181 if (env->singlestep_enabled)
1182 {
1183 //Log2(("raw mode refused: Single step\n"));
1184 return false;
1185 }
1186
1187 if (env->nb_breakpoints > 0)
1188 {
1189 //Log2(("raw mode refused: Breakpoints\n"));
1190 return false;
1191 }
1192
1193 uint32_t u32CR0 = env->cr[0];
1194 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1195 {
1196 STAM_COUNTER_INC(&gStatRefusePaging);
1197 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1198 return false;
1199 }
1200
1201 if (env->cr[4] & CR4_PAE_MASK)
1202 {
1203 STAM_COUNTER_INC(&gStatRefusePAE);
1204 //Log2(("raw mode refused: PAE\n"));
1205 return false;
1206 }
1207
1208 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1209 {
1210 if (!EMIsRawRing3Enabled(env->pVM))
1211 return false;
1212
1213 if (!(env->eflags & IF_MASK))
1214 {
1215 STAM_COUNTER_INC(&gStatRefuseIF0);
1216 Log2(("raw mode refused: IF (RawR3)\n"));
1217 return false;
1218 }
1219
1220 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1221 {
1222 STAM_COUNTER_INC(&gStatRefuseWP0);
1223 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1224 return false;
1225 }
1226 }
1227 else
1228 {
1229 if (!EMIsRawRing0Enabled(env->pVM))
1230 return false;
1231
1232 // Let's start with pure 32 bits ring 0 code first
1233 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1234 {
1235 STAM_COUNTER_INC(&gStatRefuseCode16);
1236 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1237 return false;
1238 }
1239
1240 // Only R0
1241 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1242 {
1243 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1244 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1245 return false;
1246 }
1247
1248 if (!(u32CR0 & CR0_WP_MASK))
1249 {
1250 STAM_COUNTER_INC(&gStatRefuseWP0);
1251 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1252 return false;
1253 }
1254
1255 if (PATMIsPatchGCAddr(env->pVM, eip))
1256 {
1257 Log2(("raw r0 mode forced: patch code\n"));
1258 *pExceptionIndex = EXCP_EXECUTE_RAW;
1259 return true;
1260 }
1261
1262#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1263 if (!(env->eflags & IF_MASK))
1264 {
1265 STAM_COUNTER_INC(&gStatRefuseIF0);
1266 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1267 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1268 return false;
1269 }
1270#endif
1271
1272 env->state |= CPU_RAW_RING0;
1273 }
1274
1275 /*
1276 * Don't reschedule the first time we're called, because there might be
1277 * special reasons why we're here that is not covered by the above checks.
1278 */
1279 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1280 {
1281 Log2(("raw mode refused: first scheduling\n"));
1282 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1283 return false;
1284 }
1285
1286 Assert(PGMPhysIsA20Enabled(env->pVM));
1287 *pExceptionIndex = EXCP_EXECUTE_RAW;
1288 return true;
1289}
1290
1291
1292/**
1293 * Fetches a code byte.
1294 *
1295 * @returns Success indicator (bool) for ease of use.
1296 * @param env The CPU environment structure.
1297 * @param GCPtrInstr Where to fetch code.
1298 * @param pu8Byte Where to store the byte on success
1299 */
1300bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1301{
1302 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1303 if (VBOX_SUCCESS(rc))
1304 return true;
1305 return false;
1306}
1307
1308
1309/**
1310 * Flush (or invalidate if you like) page table/dir entry.
1311 *
1312 * (invlpg instruction; tlb_flush_page)
1313 *
1314 * @param env Pointer to cpu environment.
1315 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1316 */
1317void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1318{
1319 PVM pVM = env->pVM;
1320
1321 /*
1322 * When we're replaying invlpg instructions or restoring a saved
1323 * state we disable this path.
1324 */
1325 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1326 return;
1327 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1328 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1329
1330 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1331
1332 /*
1333 * Update the control registers before calling PGMFlushPage.
1334 */
1335 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1336 pCtx->cr0 = env->cr[0];
1337 pCtx->cr3 = env->cr[3];
1338 pCtx->cr4 = env->cr[4];
1339
1340 /*
1341 * Let PGM do the rest.
1342 */
1343 int rc = PGMInvalidatePage(pVM, GCPtr);
1344 if (VBOX_FAILURE(rc))
1345 {
1346 AssertMsgFailed(("remR3FlushPage %x %x %x %d failed!!\n", GCPtr));
1347 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1348 }
1349 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1350}
1351
1352/**
1353 * Called from tlb_protect_code in order to write monitor a code page.
1354 *
1355 * @param env Pointer to the CPU environment.
1356 * @param GCPtr Code page to monitor
1357 */
1358void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1359{
1360 Assert(env->pVM->rem.s.fInREM);
1361 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1362 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1363 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1364 && !(env->eflags & VM_MASK) /* no V86 mode */
1365 && !HWACCMIsEnabled(env->pVM))
1366 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1367}
1368
1369/**
1370 * Called when the CPU is initialized, any of the CRx registers are changed or
1371 * when the A20 line is modified.
1372 *
1373 * @param env Pointer to the CPU environment.
1374 * @param fGlobal Set if the flush is global.
1375 */
1376void remR3FlushTLB(CPUState *env, bool fGlobal)
1377{
1378 PVM pVM = env->pVM;
1379
1380 /*
1381 * When we're replaying invlpg instructions or restoring a saved
1382 * state we disable this path.
1383 */
1384 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1385 return;
1386 Assert(pVM->rem.s.fInREM);
1387
1388 /*
1389 * The caller doesn't check cr4, so we have to do that for ourselves.
1390 */
1391 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1392 fGlobal = true;
1393 Log(("remR3FlushTLB: CR0=%VGp CR3=%VGp CR4=%VGp %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1394
1395 /*
1396 * Update the control registers before calling PGMR3FlushTLB.
1397 */
1398 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1399 pCtx->cr0 = env->cr[0];
1400 pCtx->cr3 = env->cr[3];
1401 pCtx->cr4 = env->cr[4];
1402
1403 /*
1404 * Let PGM do the rest.
1405 */
1406 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1407}
1408
1409
1410/**
1411 * Called when any of the cr0, cr4 or efer registers is updated.
1412 *
1413 * @param env Pointer to the CPU environment.
1414 */
1415void remR3ChangeCpuMode(CPUState *env)
1416{
1417 int rc;
1418 PVM pVM = env->pVM;
1419
1420 /*
1421 * When we're replaying loads or restoring a saved
1422 * state this path is disabled.
1423 */
1424 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1425 return;
1426 Assert(pVM->rem.s.fInREM);
1427
1428 /*
1429 * Update the control registers before calling PGMR3ChangeMode()
1430 * as it may need to map whatever cr3 is pointing to.
1431 */
1432 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1433 pCtx->cr0 = env->cr[0];
1434 pCtx->cr3 = env->cr[3];
1435 pCtx->cr4 = env->cr[4];
1436
1437#ifdef TARGET_X86_64
1438 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1439 if (rc != VINF_SUCCESS)
1440 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1441#else
1442 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1443 if (rc != VINF_SUCCESS)
1444 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1445#endif
1446}
1447
1448
1449/**
1450 * Called from compiled code to run dma.
1451 *
1452 * @param env Pointer to the CPU environment.
1453 */
1454void remR3DmaRun(CPUState *env)
1455{
1456 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1457 PDMR3DmaRun(env->pVM);
1458 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1459}
1460
1461/**
1462 * Called from compiled code to schedule pending timers in VMM
1463 *
1464 * @param env Pointer to the CPU environment.
1465 */
1466void remR3TimersRun(CPUState *env)
1467{
1468 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1469 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1470 TMR3TimerQueuesDo(env->pVM);
1471 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1472 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1473}
1474
1475/**
1476 * Record trap occurance
1477 *
1478 * @returns VBox status code
1479 * @param env Pointer to the CPU environment.
1480 * @param uTrap Trap nr
1481 * @param uErrorCode Error code
1482 * @param pvNextEIP Next EIP
1483 */
1484int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1485{
1486 PVM pVM = (PVM)env->pVM;
1487#ifdef VBOX_WITH_STATISTICS
1488 static STAMCOUNTER aStatTrap[255];
1489 static bool aRegisters[ELEMENTS(aStatTrap)];
1490#endif
1491
1492#ifdef VBOX_WITH_STATISTICS
1493 if (uTrap < 255)
1494 {
1495 if (!aRegisters[uTrap])
1496 {
1497 aRegisters[uTrap] = true;
1498 char szStatName[64];
1499 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1500 STAM_REG(env->pVM, &aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1501 }
1502 STAM_COUNTER_INC(&aStatTrap[uTrap]);
1503 }
1504#endif
1505 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1506 if( uTrap < 0x20
1507 && (env->cr[0] & X86_CR0_PE)
1508 && !(env->eflags & X86_EFL_VM))
1509 {
1510#ifdef DEBUG
1511 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1512#endif
1513 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1514 {
1515 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1516 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1517 return VERR_REM_TOO_MANY_TRAPS;
1518 }
1519 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1520 pVM->rem.s.cPendingExceptions = 1;
1521 pVM->rem.s.uPendingException = uTrap;
1522 pVM->rem.s.uPendingExcptEIP = env->eip;
1523 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1524 }
1525 else
1526 {
1527 pVM->rem.s.cPendingExceptions = 0;
1528 pVM->rem.s.uPendingException = uTrap;
1529 pVM->rem.s.uPendingExcptEIP = env->eip;
1530 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1531 }
1532 return VINF_SUCCESS;
1533}
1534
1535/*
1536 * Clear current active trap
1537 *
1538 * @param pVM VM Handle.
1539 */
1540void remR3TrapClear(PVM pVM)
1541{
1542 pVM->rem.s.cPendingExceptions = 0;
1543 pVM->rem.s.uPendingException = 0;
1544 pVM->rem.s.uPendingExcptEIP = 0;
1545 pVM->rem.s.uPendingExcptCR2 = 0;
1546}
1547
1548
1549/**
1550 * Syncs the internal REM state with the VM.
1551 *
1552 * This must be called before REMR3Run() is invoked whenever when the REM
1553 * state is not up to date. Calling it several times in a row is not
1554 * permitted.
1555 *
1556 * @returns VBox status code.
1557 *
1558 * @param pVM VM Handle.
1559 *
1560 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1561 * no do this since the majority of the callers don't want any unnecessary of events
1562 * pending that would immediatly interrupt execution.
1563 */
1564REMR3DECL(int) REMR3State(PVM pVM)
1565{
1566 Log2(("REMR3State:\n"));
1567 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1568 register const CPUMCTX *pCtx = pVM->rem.s.pCtx;
1569 register unsigned fFlags;
1570 bool fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1571
1572 Assert(!pVM->rem.s.fInREM);
1573 pVM->rem.s.fInStateSync = true;
1574
1575 /*
1576 * Copy the registers which requires no special handling.
1577 */
1578 Assert(R_EAX == 0);
1579 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1580 Assert(R_ECX == 1);
1581 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1582 Assert(R_EDX == 2);
1583 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1584 Assert(R_EBX == 3);
1585 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1586 Assert(R_ESP == 4);
1587 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1588 Assert(R_EBP == 5);
1589 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1590 Assert(R_ESI == 6);
1591 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1592 Assert(R_EDI == 7);
1593 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1594 pVM->rem.s.Env.eip = pCtx->eip;
1595
1596 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1597
1598 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1599
1600 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1601 pVM->rem.s.Env.dr[0] = pCtx->dr0;
1602 pVM->rem.s.Env.dr[1] = pCtx->dr1;
1603 pVM->rem.s.Env.dr[2] = pCtx->dr2;
1604 pVM->rem.s.Env.dr[3] = pCtx->dr3;
1605 pVM->rem.s.Env.dr[4] = pCtx->dr4;
1606 pVM->rem.s.Env.dr[5] = pCtx->dr5;
1607 pVM->rem.s.Env.dr[6] = pCtx->dr6;
1608 pVM->rem.s.Env.dr[7] = pCtx->dr7;
1609
1610 /*
1611 * Clear the halted hidden flag (the interrupt waking up the CPU can
1612 * have been dispatched in raw mode).
1613 */
1614 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1615
1616 /*
1617 * Replay invlpg?
1618 */
1619 if (pVM->rem.s.cInvalidatedPages)
1620 {
1621 pVM->rem.s.fIgnoreInvlPg = true;
1622 RTUINT i;
1623 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1624 {
1625 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1626 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1627 }
1628 pVM->rem.s.fIgnoreInvlPg = false;
1629 pVM->rem.s.cInvalidatedPages = 0;
1630 }
1631
1632 /*
1633 * Registers which are rarely changed and require special handling / order when changed.
1634 */
1635 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1636 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1637 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1638 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR))
1639 {
1640 if (fFlags & CPUM_CHANGED_FPU_REM)
1641 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1642
1643 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1644 {
1645 pVM->rem.s.fIgnoreCR3Load = true;
1646 tlb_flush(&pVM->rem.s.Env, true);
1647 pVM->rem.s.fIgnoreCR3Load = false;
1648 }
1649
1650 if (fFlags & CPUM_CHANGED_CR4)
1651 {
1652 pVM->rem.s.fIgnoreCR3Load = true;
1653 pVM->rem.s.fIgnoreCpuMode = true;
1654 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1655 pVM->rem.s.fIgnoreCpuMode = false;
1656 pVM->rem.s.fIgnoreCR3Load = false;
1657 }
1658
1659 if (fFlags & CPUM_CHANGED_CR0)
1660 {
1661 pVM->rem.s.fIgnoreCR3Load = true;
1662 pVM->rem.s.fIgnoreCpuMode = true;
1663 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1664 pVM->rem.s.fIgnoreCpuMode = false;
1665 pVM->rem.s.fIgnoreCR3Load = false;
1666 }
1667
1668 if (fFlags & CPUM_CHANGED_CR3)
1669 {
1670 pVM->rem.s.fIgnoreCR3Load = true;
1671 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1672 pVM->rem.s.fIgnoreCR3Load = false;
1673 }
1674
1675 if (fFlags & CPUM_CHANGED_GDTR)
1676 {
1677 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1678 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1679 }
1680
1681 if (fFlags & CPUM_CHANGED_IDTR)
1682 {
1683 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1684 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1685 }
1686
1687 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1688 {
1689 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1690 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1691 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1692 }
1693
1694 if (fFlags & CPUM_CHANGED_LDTR)
1695 {
1696 if (fHiddenSelRegsValid)
1697 {
1698 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1699 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u32Base;
1700 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1701 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1702 }
1703 else
1704 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1705 }
1706
1707 if (fFlags & CPUM_CHANGED_TR)
1708 {
1709 if (fHiddenSelRegsValid)
1710 {
1711 pVM->rem.s.Env.tr.selector = pCtx->tr;
1712 pVM->rem.s.Env.tr.base = pCtx->trHid.u32Base;
1713 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1714 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1715 }
1716 else
1717 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1718
1719 /** @note do_interrupt will fault if the busy flag is still set.... */
1720 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1721 }
1722 }
1723
1724 /*
1725 * Update selector registers.
1726 * This must be done *after* we've synced gdt, ldt and crX registers
1727 * since we're reading the GDT/LDT om sync_seg. This will happen with
1728 * saved state which takes a quick dip into rawmode for instance.
1729 */
1730 /*
1731 * Stack; Note first check this one as the CPL might have changed. The
1732 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1733 */
1734
1735 if (fHiddenSelRegsValid)
1736 {
1737 /* The hidden selector registers are valid in the CPU context. */
1738 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1739
1740 /* Set current CPL */
1741 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1742
1743 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u32Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1744 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u32Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1745 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u32Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1746 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u32Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1747 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u32Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1748 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u32Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1749 }
1750 else
1751 {
1752 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1753 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1754 {
1755 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1756
1757 cpu_x86_set_cpl(&pVM->rem.s.Env, (pCtx->eflags.Bits.u1VM) ? 3 : (pCtx->ss & 3));
1758 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1759#ifdef VBOX_WITH_STATISTICS
1760 if (pVM->rem.s.Env.segs[R_SS].newselector)
1761 {
1762 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1763 }
1764#endif
1765 }
1766 else
1767 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1768
1769 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1770 {
1771 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1772 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1773#ifdef VBOX_WITH_STATISTICS
1774 if (pVM->rem.s.Env.segs[R_ES].newselector)
1775 {
1776 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1777 }
1778#endif
1779 }
1780 else
1781 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1782
1783 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1784 {
1785 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1786 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1787#ifdef VBOX_WITH_STATISTICS
1788 if (pVM->rem.s.Env.segs[R_CS].newselector)
1789 {
1790 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1791 }
1792#endif
1793 }
1794 else
1795 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1796
1797 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1798 {
1799 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1800 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1801#ifdef VBOX_WITH_STATISTICS
1802 if (pVM->rem.s.Env.segs[R_DS].newselector)
1803 {
1804 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1805 }
1806#endif
1807 }
1808 else
1809 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1810
1811 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1812 * be the same but not the base/limit. */
1813 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1814 {
1815 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1816 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1817#ifdef VBOX_WITH_STATISTICS
1818 if (pVM->rem.s.Env.segs[R_FS].newselector)
1819 {
1820 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1821 }
1822#endif
1823 }
1824 else
1825 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1826
1827 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1828 {
1829 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1830 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1831#ifdef VBOX_WITH_STATISTICS
1832 if (pVM->rem.s.Env.segs[R_GS].newselector)
1833 {
1834 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1835 }
1836#endif
1837 }
1838 else
1839 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1840 }
1841
1842 /*
1843 * Check for traps.
1844 */
1845 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1846 TRPMEVENT enmType;
1847 uint8_t u8TrapNo;
1848 int rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
1849 if (VBOX_SUCCESS(rc))
1850 {
1851 #ifdef DEBUG
1852 if (u8TrapNo == 0x80)
1853 {
1854 remR3DumpLnxSyscall(pVM);
1855 remR3DumpOBsdSyscall(pVM);
1856 }
1857 #endif
1858
1859 pVM->rem.s.Env.exception_index = u8TrapNo;
1860 if (enmType != TRPM_SOFTWARE_INT)
1861 {
1862 pVM->rem.s.Env.exception_is_int = 0;
1863 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
1864 }
1865 else
1866 {
1867 /*
1868 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
1869 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
1870 * for int03 and into.
1871 */
1872 pVM->rem.s.Env.exception_is_int = 1;
1873 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 2;
1874 /* int 3 may be generated by one-byte 0xcc */
1875 if (u8TrapNo == 3)
1876 {
1877 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xcc)
1878 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1879 }
1880 /* int 4 may be generated by one-byte 0xce */
1881 else if (u8TrapNo == 4)
1882 {
1883 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xce)
1884 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1885 }
1886 }
1887
1888 /* get error code and cr2 if needed. */
1889 switch (u8TrapNo)
1890 {
1891 case 0x0e:
1892 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
1893 /* fallthru */
1894 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
1895 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
1896 break;
1897
1898 case 0x11: case 0x08:
1899 default:
1900 pVM->rem.s.Env.error_code = 0;
1901 break;
1902 }
1903
1904 /*
1905 * We can now reset the active trap since the recompiler is gonna have a go at it.
1906 */
1907 rc = TRPMResetTrap(pVM);
1908 AssertRC(rc);
1909 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
1910 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
1911 }
1912
1913 /*
1914 * Clear old interrupt request flags; Check for pending hardware interrupts.
1915 * (See @remark for why we don't check for other FFs.)
1916 */
1917 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
1918 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
1919 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
1920 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
1921
1922 /*
1923 * We're now in REM mode.
1924 */
1925 pVM->rem.s.fInREM = true;
1926 pVM->rem.s.fInStateSync = false;
1927 pVM->rem.s.cCanExecuteRaw = 0;
1928 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
1929 Log2(("REMR3State: returns VINF_SUCCESS\n"));
1930 return VINF_SUCCESS;
1931}
1932
1933
1934/**
1935 * Syncs back changes in the REM state to the the VM state.
1936 *
1937 * This must be called after invoking REMR3Run().
1938 * Calling it several times in a row is not permitted.
1939 *
1940 * @returns VBox status code.
1941 *
1942 * @param pVM VM Handle.
1943 */
1944REMR3DECL(int) REMR3StateBack(PVM pVM)
1945{
1946 Log2(("REMR3StateBack:\n"));
1947 Assert(pVM->rem.s.fInREM);
1948 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
1949 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
1950
1951 /*
1952 * Copy back the registers.
1953 * This is done in the order they are declared in the CPUMCTX structure.
1954 */
1955
1956 /** @todo FOP */
1957 /** @todo FPUIP */
1958 /** @todo CS */
1959 /** @todo FPUDP */
1960 /** @todo DS */
1961 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
1962 pCtx->fpu.MXCSR = 0;
1963 pCtx->fpu.MXCSR_MASK = 0;
1964
1965 /** @todo check if FPU/XMM was actually used in the recompiler */
1966 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
1967//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
1968
1969 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
1970 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
1971 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
1972 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
1973 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
1974 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
1975 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
1976
1977 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
1978 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
1979
1980#ifdef VBOX_WITH_STATISTICS
1981 if (pVM->rem.s.Env.segs[R_SS].newselector)
1982 {
1983 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
1984 }
1985 if (pVM->rem.s.Env.segs[R_GS].newselector)
1986 {
1987 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
1988 }
1989 if (pVM->rem.s.Env.segs[R_FS].newselector)
1990 {
1991 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
1992 }
1993 if (pVM->rem.s.Env.segs[R_ES].newselector)
1994 {
1995 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
1996 }
1997 if (pVM->rem.s.Env.segs[R_DS].newselector)
1998 {
1999 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2000 }
2001 if (pVM->rem.s.Env.segs[R_CS].newselector)
2002 {
2003 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2004 }
2005#endif
2006 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2007 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2008 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2009 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2010 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2011
2012 pCtx->eip = pVM->rem.s.Env.eip;
2013 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2014
2015 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2016 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2017 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2018 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2019
2020 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2021 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2022 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2023 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2024 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2025 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2026 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2027 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2028
2029 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2030 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2031 {
2032 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2033 STAM_COUNTER_INC(&gStatREMGDTChange);
2034 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2035 }
2036
2037 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2038 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2039 {
2040 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2041 STAM_COUNTER_INC(&gStatREMIDTChange);
2042 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2043 }
2044
2045 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2046 {
2047 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2048 STAM_COUNTER_INC(&gStatREMLDTRChange);
2049 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2050 }
2051 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2052 {
2053 pCtx->tr = pVM->rem.s.Env.tr.selector;
2054 STAM_COUNTER_INC(&gStatREMTRChange);
2055 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2056 }
2057
2058 /** @todo These values could still be out of sync! */
2059 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2060 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2061 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2062 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2063
2064 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2065 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2066 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2067
2068 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2069 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2070 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2071
2072 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2073 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2074 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2075
2076 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2077 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2078 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2079
2080 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2081 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2082 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2083
2084 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2085 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2086 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2087
2088 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2089 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2090 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2091
2092 /* Sysenter MSR */
2093 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2094 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2095 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2096
2097 remR3TrapClear(pVM);
2098
2099 /*
2100 * Check for traps.
2101 */
2102 if ( pVM->rem.s.Env.exception_index >= 0
2103 && pVM->rem.s.Env.exception_index < 256)
2104 {
2105 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2106 int rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2107 AssertRC(rc);
2108 switch (pVM->rem.s.Env.exception_index)
2109 {
2110 case 0x0e:
2111 TRPMSetFaultAddress(pVM, pCtx->cr2);
2112 /* fallthru */
2113 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2114 case 0x11: case 0x08: /* 0 */
2115 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2116 break;
2117 }
2118
2119 }
2120
2121 /*
2122 * We're not longer in REM mode.
2123 */
2124 pVM->rem.s.fInREM = false;
2125 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2126 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2127 return VINF_SUCCESS;
2128}
2129
2130
2131/**
2132 * This is called by the disassembler when it wants to update the cpu state
2133 * before for instance doing a register dump.
2134 */
2135static void remR3StateUpdate(PVM pVM)
2136{
2137 Assert(pVM->rem.s.fInREM);
2138 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2139
2140 /*
2141 * Copy back the registers.
2142 * This is done in the order they are declared in the CPUMCTX structure.
2143 */
2144
2145 /** @todo FOP */
2146 /** @todo FPUIP */
2147 /** @todo CS */
2148 /** @todo FPUDP */
2149 /** @todo DS */
2150 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2151 pCtx->fpu.MXCSR = 0;
2152 pCtx->fpu.MXCSR_MASK = 0;
2153
2154 /** @todo check if FPU/XMM was actually used in the recompiler */
2155 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2156//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2157
2158 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2159 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2160 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2161 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2162 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2163 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2164 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2165
2166 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2167 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2168
2169 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2170 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2171 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2172 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2173 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2174
2175 pCtx->eip = pVM->rem.s.Env.eip;
2176 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2177
2178 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2179 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2180 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2181 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2182
2183 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2184 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2185 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2186 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2187 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2188 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2189 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2190 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2191
2192 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2193 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2194 {
2195 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2196 STAM_COUNTER_INC(&gStatREMGDTChange);
2197 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2198 }
2199
2200 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2201 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2202 {
2203 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2204 STAM_COUNTER_INC(&gStatREMIDTChange);
2205 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2206 }
2207
2208 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2209 {
2210 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2211 STAM_COUNTER_INC(&gStatREMLDTRChange);
2212 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2213 }
2214 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2215 {
2216 pCtx->tr = pVM->rem.s.Env.tr.selector;
2217 STAM_COUNTER_INC(&gStatREMTRChange);
2218 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2219 }
2220
2221 /** @todo These values could still be out of sync! */
2222 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2223 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2224 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2225 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2226
2227 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2228 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2229 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2230
2231 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2232 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2233 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2234
2235 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2236 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2237 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2238
2239 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2240 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2241 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2242
2243 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2244 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2245 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2246
2247 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2248 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2249 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2250
2251 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2252 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2253 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2254
2255 /* Sysenter MSR */
2256 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2257 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2258 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2259}
2260
2261
2262/**
2263 * Update the VMM state information if we're currently in REM.
2264 *
2265 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2266 * we're currently executing in REM and the VMM state is invalid. This method will of
2267 * course check that we're executing in REM before syncing any data over to the VMM.
2268 *
2269 * @param pVM The VM handle.
2270 */
2271REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2272{
2273 if (pVM->rem.s.fInREM)
2274 remR3StateUpdate(pVM);
2275}
2276
2277
2278#undef LOG_GROUP
2279#define LOG_GROUP LOG_GROUP_REM
2280
2281
2282/**
2283 * Notify the recompiler about Address Gate 20 state change.
2284 *
2285 * This notification is required since A20 gate changes are
2286 * initialized from a device driver and the VM might just as
2287 * well be in REM mode as in RAW mode.
2288 *
2289 * @param pVM VM handle.
2290 * @param fEnable True if the gate should be enabled.
2291 * False if the gate should be disabled.
2292 */
2293REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2294{
2295 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2296 VM_ASSERT_EMT(pVM);
2297 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2298}
2299
2300
2301/**
2302 * Replays the invalidated recorded pages.
2303 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2304 *
2305 * @param pVM VM handle.
2306 */
2307REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2308{
2309 VM_ASSERT_EMT(pVM);
2310
2311 /*
2312 * Sync the required registers.
2313 */
2314 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2315 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2316 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2317 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2318
2319 /*
2320 * Replay the flushes.
2321 */
2322 pVM->rem.s.fIgnoreInvlPg = true;
2323 RTUINT i;
2324 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2325 {
2326 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2327 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2328 }
2329 pVM->rem.s.fIgnoreInvlPg = false;
2330 pVM->rem.s.cInvalidatedPages = 0;
2331}
2332
2333
2334/**
2335 * Replays the invalidated recorded pages.
2336 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2337 *
2338 * @param pVM VM handle.
2339 */
2340REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2341{
2342 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2343 VM_ASSERT_EMT(pVM);
2344
2345 /*
2346 * Replay the flushes.
2347 */
2348 RTUINT i;
2349 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2350 pVM->rem.s.cHandlerNotifications = 0;
2351 for (i = 0; i < c; i++)
2352 {
2353 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2354 switch (pRec->enmKind)
2355 {
2356 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2357 REMR3NotifyHandlerPhysicalRegister(pVM,
2358 pRec->u.PhysicalRegister.enmType,
2359 pRec->u.PhysicalRegister.GCPhys,
2360 pRec->u.PhysicalRegister.cb,
2361 pRec->u.PhysicalRegister.fHasHCHandler);
2362 break;
2363
2364 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2365 REMR3NotifyHandlerPhysicalDeregister(pVM,
2366 pRec->u.PhysicalDeregister.enmType,
2367 pRec->u.PhysicalDeregister.GCPhys,
2368 pRec->u.PhysicalDeregister.cb,
2369 pRec->u.PhysicalDeregister.fHasHCHandler,
2370 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2371 break;
2372
2373 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2374 REMR3NotifyHandlerPhysicalModify(pVM,
2375 pRec->u.PhysicalModify.enmType,
2376 pRec->u.PhysicalModify.GCPhysOld,
2377 pRec->u.PhysicalModify.GCPhysNew,
2378 pRec->u.PhysicalModify.cb,
2379 pRec->u.PhysicalModify.fHasHCHandler,
2380 pRec->u.PhysicalModify.fRestoreAsRAM);
2381 break;
2382
2383 default:
2384 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2385 break;
2386 }
2387 }
2388}
2389
2390
2391/**
2392 * Notify REM about changed code page.
2393 *
2394 * @returns VBox status code.
2395 * @param pVM VM handle.
2396 * @param pvCodePage Code page address
2397 */
2398REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2399{
2400 int rc;
2401 RTGCPHYS PhysGC;
2402 uint64_t flags;
2403
2404 VM_ASSERT_EMT(pVM);
2405
2406 /*
2407 * Get the physical page address.
2408 */
2409 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2410 if (rc == VINF_SUCCESS)
2411 {
2412 /*
2413 * Sync the required registers and flush the whole page.
2414 * (Easier to do the whole page than notifying it about each physical
2415 * byte that was changed.
2416 */
2417 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2418 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2419 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2420 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2421
2422 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2423 }
2424 return VINF_SUCCESS;
2425}
2426
2427/**
2428 * Notification about a successful MMR3PhysRegister() call.
2429 *
2430 * @param pVM VM handle.
2431 * @param GCPhys The physical address the RAM.
2432 * @param cb Size of the memory.
2433 * @param pvRam The HC address of the RAM.
2434 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2435 */
2436REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvRam, unsigned fFlags)
2437{
2438 Log(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2439 VM_ASSERT_EMT(pVM);
2440
2441 /*
2442 * Validate input - we trust the caller.
2443 */
2444 Assert(!GCPhys || pvRam);
2445 Assert(RT_ALIGN_P(pvRam, PAGE_SIZE) == pvRam);
2446 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2447 Assert(cb);
2448 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2449
2450 /*
2451 * Base ram?
2452 */
2453 if (!GCPhys)
2454 {
2455 phys_ram_size = cb;
2456 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2457#ifndef VBOX_STRICT
2458 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2459 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2460#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2461 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2462 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2463 uint32_t cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2464 int rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2465 AssertRC(rc);
2466 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2467#endif
2468 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2469 }
2470
2471 /*
2472 * Register the ram.
2473 */
2474 Assert(!pVM->rem.s.fIgnoreAll);
2475 pVM->rem.s.fIgnoreAll = true;
2476
2477 if (!GCPhys)
2478 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2479 else
2480 {
2481 if (fFlags & MM_RAM_FLAGS_RESERVED)
2482 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2483 else
2484 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2485 }
2486 Assert(pVM->rem.s.fIgnoreAll);
2487 pVM->rem.s.fIgnoreAll = false;
2488}
2489
2490
2491/**
2492 * Notification about a successful PGMR3PhysRegisterChunk() call.
2493 *
2494 * @param pVM VM handle.
2495 * @param GCPhys The physical address the RAM.
2496 * @param cb Size of the memory.
2497 * @param pvRam The HC address of the RAM.
2498 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2499 */
2500REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2501{
2502 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2503 VM_ASSERT_EMT(pVM);
2504
2505 /*
2506 * Validate input - we trust the caller.
2507 */
2508 Assert(pvRam);
2509 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2510 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2511 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2512 Assert(fFlags == 0 /* normal RAM */);
2513 Assert(!pVM->rem.s.fIgnoreAll);
2514 pVM->rem.s.fIgnoreAll = true;
2515
2516 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2517
2518 Assert(pVM->rem.s.fIgnoreAll);
2519 pVM->rem.s.fIgnoreAll = false;
2520}
2521
2522
2523/**
2524 * Grows dynamically allocated guest RAM.
2525 * Will raise a fatal error if the operation fails.
2526 *
2527 * @param physaddr The physical address.
2528 */
2529void remR3GrowDynRange(unsigned long physaddr)
2530{
2531 int rc;
2532 PVM pVM = cpu_single_env->pVM;
2533
2534 Log(("remR3GrowDynRange %VGp\n", physaddr));
2535 rc = PGM3PhysGrowRange(pVM, (RTGCPHYS)physaddr);
2536 if (VBOX_SUCCESS(rc))
2537 return;
2538
2539 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2540 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2541 AssertFatalFailed();
2542}
2543
2544
2545/**
2546 * Notification about a successful MMR3PhysRomRegister() call.
2547 *
2548 * @param pVM VM handle.
2549 * @param GCPhys The physical address of the ROM.
2550 * @param cb The size of the ROM.
2551 * @param pvCopy Pointer to the ROM copy.
2552 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2553 * This function will be called when ever the protection of the
2554 * shadow ROM changes (at reset and end of POST).
2555 */
2556REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2557{
2558 Log(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p fShadow=%RTbool\n", GCPhys, cb, pvCopy, fShadow));
2559 VM_ASSERT_EMT(pVM);
2560
2561 /*
2562 * Validate input - we trust the caller.
2563 */
2564 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2565 Assert(cb);
2566 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2567 Assert(pvCopy);
2568 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2569
2570 /*
2571 * Register the rom.
2572 */
2573 Assert(!pVM->rem.s.fIgnoreAll);
2574 pVM->rem.s.fIgnoreAll = true;
2575
2576 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2577
2578 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2579
2580 Assert(pVM->rem.s.fIgnoreAll);
2581 pVM->rem.s.fIgnoreAll = false;
2582}
2583
2584
2585/**
2586 * Notification about a successful MMR3PhysRegister() call.
2587 *
2588 * @param pVM VM Handle.
2589 * @param GCPhys Start physical address.
2590 * @param cb The size of the range.
2591 */
2592REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2593{
2594 Log(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2595 VM_ASSERT_EMT(pVM);
2596
2597 /*
2598 * Validate input - we trust the caller.
2599 */
2600 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2601 Assert(cb);
2602 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2603
2604 /*
2605 * Unassigning the memory.
2606 */
2607 Assert(!pVM->rem.s.fIgnoreAll);
2608 pVM->rem.s.fIgnoreAll = true;
2609
2610 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2611
2612 Assert(pVM->rem.s.fIgnoreAll);
2613 pVM->rem.s.fIgnoreAll = false;
2614}
2615
2616
2617/**
2618 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2619 *
2620 * @param pVM VM Handle.
2621 * @param enmType Handler type.
2622 * @param GCPhys Handler range address.
2623 * @param cb Size of the handler range.
2624 * @param fHasHCHandler Set if the handler has a HC callback function.
2625 *
2626 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2627 * Handler memory type to memory which has no HC handler.
2628 */
2629REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2630{
2631 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d\n",
2632 enmType, GCPhys, cb, fHasHCHandler));
2633 VM_ASSERT_EMT(pVM);
2634 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2635 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2636
2637 if (pVM->rem.s.cHandlerNotifications)
2638 REMR3ReplayHandlerNotifications(pVM);
2639
2640 Assert(!pVM->rem.s.fIgnoreAll);
2641 pVM->rem.s.fIgnoreAll = true;
2642
2643 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2644 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2645 else if (fHasHCHandler)
2646 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2647
2648 Assert(pVM->rem.s.fIgnoreAll);
2649 pVM->rem.s.fIgnoreAll = false;
2650}
2651
2652
2653/**
2654 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2655 *
2656 * @param pVM VM Handle.
2657 * @param enmType Handler type.
2658 * @param GCPhys Handler range address.
2659 * @param cb Size of the handler range.
2660 * @param fHasHCHandler Set if the handler has a HC callback function.
2661 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2662 */
2663REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2664{
2665 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%VGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2666 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2667 VM_ASSERT_EMT(pVM);
2668
2669 if (pVM->rem.s.cHandlerNotifications)
2670 REMR3ReplayHandlerNotifications(pVM);
2671
2672 Assert(!pVM->rem.s.fIgnoreAll);
2673 pVM->rem.s.fIgnoreAll = true;
2674
2675 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2676 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2677 else if (fHasHCHandler)
2678 {
2679 if (!fRestoreAsRAM)
2680 {
2681 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2682 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2683 }
2684 else
2685 {
2686 /* This is not perfect, but it'll do for PD monitoring... */
2687 Assert(cb == PAGE_SIZE);
2688 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2689 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2690 }
2691 }
2692
2693 Assert(pVM->rem.s.fIgnoreAll);
2694 pVM->rem.s.fIgnoreAll = false;
2695}
2696
2697
2698/**
2699 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2700 *
2701 * @param pVM VM Handle.
2702 * @param enmType Handler type.
2703 * @param GCPhysOld Old handler range address.
2704 * @param GCPhysNew New handler range address.
2705 * @param cb Size of the handler range.
2706 * @param fHasHCHandler Set if the handler has a HC callback function.
2707 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2708 */
2709REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2710{
2711 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%d fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
2712 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
2713 VM_ASSERT_EMT(pVM);
2714 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2715
2716 if (pVM->rem.s.cHandlerNotifications)
2717 REMR3ReplayHandlerNotifications(pVM);
2718
2719 if (fHasHCHandler)
2720 {
2721 Assert(!pVM->rem.s.fIgnoreAll);
2722 pVM->rem.s.fIgnoreAll = true;
2723
2724 /*
2725 * Reset the old page.
2726 */
2727 if (!fRestoreAsRAM)
2728 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2729 else
2730 {
2731 /* This is not perfect, but it'll do for PD monitoring... */
2732 Assert(cb == PAGE_SIZE);
2733 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2734 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2735 }
2736
2737 /*
2738 * Update the new page.
2739 */
2740 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2741 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2742 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2743
2744 Assert(pVM->rem.s.fIgnoreAll);
2745 pVM->rem.s.fIgnoreAll = false;
2746 }
2747}
2748
2749
2750/**
2751 * Checks if we're handling access to this page or not.
2752 *
2753 * @returns true if we're trapping access.
2754 * @returns false if we aren't.
2755 * @param pVM The VM handle.
2756 * @param GCPhys The physical address.
2757 *
2758 * @remark This function will only work correctly in VBOX_STRICT builds!
2759 */
2760REMDECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
2761{
2762#ifdef VBOX_STRICT
2763 if (pVM->rem.s.cHandlerNotifications)
2764 REMR3ReplayHandlerNotifications(pVM);
2765
2766 unsigned long off = get_phys_page_offset(GCPhys);
2767 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
2768 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
2769 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
2770#else
2771 return false;
2772#endif
2773}
2774
2775
2776/**
2777 * Deals with a rare case in get_phys_addr_code where the code
2778 * is being monitored.
2779 *
2780 * It could also be an MMIO page, in which case we will raise a fatal error.
2781 *
2782 * @returns The physical address corresponding to addr.
2783 * @param env The cpu environment.
2784 * @param addr The virtual address.
2785 * @param pTLBEntry The TLB entry.
2786 */
2787target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
2788{
2789 PVM pVM = env->pVM;
2790 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
2791 {
2792 target_ulong ret = pTLBEntry->addend + addr;
2793 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv addr_code=%VGv addend=%VGp ret=%VGp\n",
2794 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
2795 return ret;
2796 }
2797 LogRel(("\nTrying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
2798 "*** handlers\n",
2799 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
2800 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
2801 LogRel(("*** mmio\n"));
2802 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
2803 LogRel(("*** phys\n"));
2804 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
2805 cpu_abort(env, "Trying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
2806 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
2807 AssertFatalFailed();
2808}
2809
2810
2811/** Validate the physical address passed to the read functions.
2812 * Useful for finding non-guest-ram reads/writes. */
2813#if 1 /* disable if it becomes bothersome... */
2814# define VBOX_CHECK_ADDR(GCPhys) AssertMsg(PGMPhysIsGCPhysValid(cpu_single_env->pVM, (GCPhys)), ("%VGp\n", (GCPhys)))
2815#else
2816# define VBOX_CHECK_ADDR(GCPhys) do { } while (0)
2817#endif
2818
2819/**
2820 * Read guest RAM and ROM.
2821 *
2822 * @param SrcGCPhys The source address (guest physical).
2823 * @param pvDst The destination address.
2824 * @param cb Number of bytes
2825 */
2826void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
2827{
2828 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2829 VBOX_CHECK_ADDR(SrcGCPhys);
2830 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
2831 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2832}
2833
2834
2835/**
2836 * Read guest RAM and ROM, unsigned 8-bit.
2837 *
2838 * @param SrcGCPhys The source address (guest physical).
2839 */
2840uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
2841{
2842 uint8_t val;
2843 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2844 VBOX_CHECK_ADDR(SrcGCPhys);
2845 val = PGMR3PhysReadByte(cpu_single_env->pVM, SrcGCPhys);
2846 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2847 return val;
2848}
2849
2850
2851/**
2852 * Read guest RAM and ROM, signed 8-bit.
2853 *
2854 * @param SrcGCPhys The source address (guest physical).
2855 */
2856int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
2857{
2858 int8_t val;
2859 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2860 VBOX_CHECK_ADDR(SrcGCPhys);
2861 val = PGMR3PhysReadByte(cpu_single_env->pVM, SrcGCPhys);
2862 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2863 return val;
2864}
2865
2866
2867/**
2868 * Read guest RAM and ROM, unsigned 16-bit.
2869 *
2870 * @param SrcGCPhys The source address (guest physical).
2871 */
2872uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
2873{
2874 uint16_t val;
2875 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2876 VBOX_CHECK_ADDR(SrcGCPhys);
2877 val = PGMR3PhysReadWord(cpu_single_env->pVM, SrcGCPhys);
2878 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2879 return val;
2880}
2881
2882
2883/**
2884 * Read guest RAM and ROM, signed 16-bit.
2885 *
2886 * @param SrcGCPhys The source address (guest physical).
2887 */
2888int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
2889{
2890 uint16_t val;
2891 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2892 VBOX_CHECK_ADDR(SrcGCPhys);
2893 val = PGMR3PhysReadWord(cpu_single_env->pVM, SrcGCPhys);
2894 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2895 return val;
2896}
2897
2898
2899/**
2900 * Read guest RAM and ROM, unsigned 32-bit.
2901 *
2902 * @param SrcGCPhys The source address (guest physical).
2903 */
2904uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
2905{
2906 uint32_t val;
2907 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2908 VBOX_CHECK_ADDR(SrcGCPhys);
2909 val = PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys);
2910 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2911 return val;
2912}
2913
2914
2915/**
2916 * Read guest RAM and ROM, signed 32-bit.
2917 *
2918 * @param SrcGCPhys The source address (guest physical).
2919 */
2920int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
2921{
2922 int32_t val;
2923 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2924 VBOX_CHECK_ADDR(SrcGCPhys);
2925 val = PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys);
2926 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2927 return val;
2928}
2929
2930
2931/**
2932 * Read guest RAM and ROM, unsigned 64-bit.
2933 *
2934 * @param SrcGCPhys The source address (guest physical).
2935 */
2936uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
2937{
2938 uint64_t val;
2939 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2940 VBOX_CHECK_ADDR(SrcGCPhys);
2941 val = PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys)
2942 | ((uint64_t)PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys + 4) << 32); /** @todo fix me! */
2943 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2944 return val;
2945}
2946
2947
2948/**
2949 * Write guest RAM.
2950 *
2951 * @param DstGCPhys The destination address (guest physical).
2952 * @param pvSrc The source address.
2953 * @param cb Number of bytes to write
2954 */
2955void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
2956{
2957 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
2958 VBOX_CHECK_ADDR(DstGCPhys);
2959 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
2960 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
2961}
2962
2963
2964/**
2965 * Write guest RAM, unsigned 8-bit.
2966 *
2967 * @param DstGCPhys The destination address (guest physical).
2968 * @param val Value
2969 */
2970void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
2971{
2972 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
2973 VBOX_CHECK_ADDR(DstGCPhys);
2974 PGMR3PhysWriteByte(cpu_single_env->pVM, DstGCPhys, val);
2975 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
2976}
2977
2978
2979/**
2980 * Write guest RAM, unsigned 8-bit.
2981 *
2982 * @param DstGCPhys The destination address (guest physical).
2983 * @param val Value
2984 */
2985void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
2986{
2987 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
2988 VBOX_CHECK_ADDR(DstGCPhys);
2989 PGMR3PhysWriteWord(cpu_single_env->pVM, DstGCPhys, val);
2990 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
2991}
2992
2993
2994/**
2995 * Write guest RAM, unsigned 32-bit.
2996 *
2997 * @param DstGCPhys The destination address (guest physical).
2998 * @param val Value
2999 */
3000void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3001{
3002 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3003 VBOX_CHECK_ADDR(DstGCPhys);
3004 PGMR3PhysWriteDword(cpu_single_env->pVM, DstGCPhys, val);
3005 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3006}
3007
3008
3009/**
3010 * Write guest RAM, unsigned 64-bit.
3011 *
3012 * @param DstGCPhys The destination address (guest physical).
3013 * @param val Value
3014 */
3015void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3016{
3017 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3018 VBOX_CHECK_ADDR(DstGCPhys);
3019 PGMR3PhysWriteDword(cpu_single_env->pVM, DstGCPhys, (uint32_t)val); /** @todo add U64 interface. */
3020 PGMR3PhysWriteDword(cpu_single_env->pVM, DstGCPhys + 4, val >> 32);
3021 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3022}
3023
3024#undef LOG_GROUP
3025#define LOG_GROUP LOG_GROUP_REM_MMIO
3026
3027/** Read MMIO memory. */
3028static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3029{
3030 uint32_t u32 = 0;
3031 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3032 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3033 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3034 return u32;
3035}
3036
3037/** Read MMIO memory. */
3038static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3039{
3040 uint32_t u32 = 0;
3041 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3042 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3043 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3044 return u32;
3045}
3046
3047/** Read MMIO memory. */
3048static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3049{
3050 uint32_t u32 = 0;
3051 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3052 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3053 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3054 return u32;
3055}
3056
3057/** Write to MMIO memory. */
3058static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3059{
3060 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3061 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3062 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3063}
3064
3065/** Write to MMIO memory. */
3066static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3067{
3068 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3069 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3070 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3071}
3072
3073/** Write to MMIO memory. */
3074static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3075{
3076 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3077 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3078 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3079}
3080
3081
3082#undef LOG_GROUP
3083#define LOG_GROUP LOG_GROUP_REM_HANDLER
3084
3085/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3086
3087static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3088{
3089 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3090 uint8_t u8;
3091 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3092 return u8;
3093}
3094
3095static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3096{
3097 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3098 uint16_t u16;
3099 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3100 return u16;
3101}
3102
3103static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3104{
3105 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3106 uint32_t u32;
3107 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3108 return u32;
3109}
3110
3111static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3112{
3113 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3114 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3115}
3116
3117static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3118{
3119 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3120 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3121}
3122
3123static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3124{
3125 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3126 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3127}
3128
3129/* -+- disassembly -+- */
3130
3131#undef LOG_GROUP
3132#define LOG_GROUP LOG_GROUP_REM_DISAS
3133
3134
3135/**
3136 * Enables or disables singled stepped disassembly.
3137 *
3138 * @returns VBox status code.
3139 * @param pVM VM handle.
3140 * @param fEnable To enable set this flag, to disable clear it.
3141 */
3142static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3143{
3144 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3145 VM_ASSERT_EMT(pVM);
3146
3147 if (fEnable)
3148 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3149 else
3150 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3151 return VINF_SUCCESS;
3152}
3153
3154
3155/**
3156 * Enables or disables singled stepped disassembly.
3157 *
3158 * @returns VBox status code.
3159 * @param pVM VM handle.
3160 * @param fEnable To enable set this flag, to disable clear it.
3161 */
3162REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3163{
3164 PVMREQ pReq;
3165 int rc;
3166
3167 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3168 if (VM_IS_EMT(pVM))
3169 return remR3DisasEnableStepping(pVM, fEnable);
3170
3171 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3172 AssertRC(rc);
3173 if (VBOX_SUCCESS(rc))
3174 rc = pReq->iStatus;
3175 VMR3ReqFree(pReq);
3176 return rc;
3177}
3178
3179
3180#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3181/**
3182 * External Debugger Command: .remstep [on|off|1|0]
3183 */
3184static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3185{
3186 bool fEnable;
3187 int rc;
3188
3189 /* print status */
3190 if (cArgs == 0)
3191 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3192 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3193
3194 /* convert the argument and change the mode. */
3195 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3196 if (VBOX_FAILURE(rc))
3197 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3198 rc = REMR3DisasEnableStepping(pVM, fEnable);
3199 if (VBOX_FAILURE(rc))
3200 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3201 return rc;
3202}
3203#endif
3204
3205
3206/**
3207 * Disassembles n instructions and prints them to the log.
3208 *
3209 * @returns Success indicator.
3210 * @param env Pointer to the recompiler CPU structure.
3211 * @param f32BitCode Indicates that whether or not the code should
3212 * be disassembled as 16 or 32 bit. If -1 the CS
3213 * selector will be inspected.
3214 * @param nrInstructions Nr of instructions to disassemble
3215 * @param pszPrefix
3216 * @remark not currently used for anything but ad-hoc debugging.
3217 */
3218bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3219{
3220 int i;
3221
3222 /*
3223 * Determin 16/32 bit mode.
3224 */
3225 if (f32BitCode == -1)
3226 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3227
3228 /*
3229 * Convert cs:eip to host context address.
3230 * We don't care to much about cross page correctness presently.
3231 */
3232 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3233 void *pvPC;
3234 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3235 {
3236 /* convert eip to physical address. */
3237 int rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3238 GCPtrPC,
3239 env->cr[3],
3240 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3241 &pvPC);
3242 if (VBOX_FAILURE(rc))
3243 {
3244 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3245 return false;
3246 pvPC = (char *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3247 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3248 }
3249 }
3250 else
3251 {
3252 /* physical address */
3253 int rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16, &pvPC);
3254 if (VBOX_FAILURE(rc))
3255 return false;
3256 }
3257
3258 /*
3259 * Disassemble.
3260 */
3261 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
3262 DISCPUSTATE Cpu;
3263 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3264 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3265 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3266 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3267 //Cpu.dwUserData[2] = GCPtrPC;
3268
3269 for (i=0;i<nrInstructions;i++)
3270 {
3271 char szOutput[256];
3272 uint32_t cbOp;
3273 if (!DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0]))
3274 return false;
3275 if (pszPrefix)
3276 Log(("%s: %s", pszPrefix, szOutput));
3277 else
3278 Log(("%s", szOutput));
3279
3280 pvPC += cbOp;
3281 }
3282 return true;
3283}
3284
3285
3286/** @todo need to test the new code, using the old code in the mean while. */
3287#define USE_OLD_DUMP_AND_DISASSEMBLY
3288
3289/**
3290 * Disassembles one instruction and prints it to the log.
3291 *
3292 * @returns Success indicator.
3293 * @param env Pointer to the recompiler CPU structure.
3294 * @param f32BitCode Indicates that whether or not the code should
3295 * be disassembled as 16 or 32 bit. If -1 the CS
3296 * selector will be inspected.
3297 * @param pszPrefix
3298 */
3299bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3300{
3301#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3302 PVM pVM = env->pVM;
3303
3304 /*
3305 * Determin 16/32 bit mode.
3306 */
3307 if (f32BitCode == -1)
3308 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3309
3310 /*
3311 * Log registers
3312 */
3313 if (LogIs2Enabled())
3314 {
3315 remR3StateUpdate(pVM);
3316 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3317 }
3318
3319 /*
3320 * Convert cs:eip to host context address.
3321 * We don't care to much about cross page correctness presently.
3322 */
3323 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3324 void *pvPC;
3325 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3326 {
3327 /* convert eip to physical address. */
3328 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
3329 GCPtrPC,
3330 env->cr[3],
3331 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3332 &pvPC);
3333 if (VBOX_FAILURE(rc))
3334 {
3335 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3336 return false;
3337 pvPC = (char *)PATMR3QueryPatchMemHC(pVM, NULL)
3338 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3339 }
3340 }
3341 else
3342 {
3343
3344 /* physical address */
3345 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, &pvPC);
3346 if (VBOX_FAILURE(rc))
3347 return false;
3348 }
3349
3350 /*
3351 * Disassemble.
3352 */
3353 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
3354 DISCPUSTATE Cpu;
3355 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3356 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3357 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3358 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3359 //Cpu.dwUserData[2] = GCPtrPC;
3360 char szOutput[256];
3361 uint32_t cbOp;
3362 if (!DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0]))
3363 return false;
3364
3365 if (!f32BitCode)
3366 {
3367 if (pszPrefix)
3368 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3369 else
3370 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3371 }
3372 else
3373 {
3374 if (pszPrefix)
3375 Log(("%s: %s", pszPrefix, szOutput));
3376 else
3377 Log(("%s", szOutput));
3378 }
3379 return true;
3380
3381#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3382 PVM pVM = env->pVM;
3383 const bool fLog = LogIsEnabled();
3384 const bool fLog2 = LogIs2Enabled();
3385 int rc = VINF_SUCCESS;
3386
3387 /*
3388 * Don't bother if there ain't any log output to do.
3389 */
3390 if (!fLog && !fLog2)
3391 return true;
3392
3393 /*
3394 * Update the state so DBGF reads the correct register values.
3395 */
3396 remR3StateUpdate(pVM);
3397
3398 /*
3399 * Log registers if requested.
3400 */
3401 if (!fLog2)
3402 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3403
3404 /*
3405 * Disassemble to log.
3406 */
3407 if (fLog)
3408 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3409
3410 return VBOX_SUCCESS(rc);
3411#endif
3412}
3413
3414
3415/**
3416 * Disassemble recompiled code.
3417 *
3418 * @param phFileIgnored Ignored, logfile usually.
3419 * @param pvCode Pointer to the code block.
3420 * @param cb Size of the code block.
3421 */
3422void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3423{
3424 if (LogIs2Enabled())
3425 {
3426 unsigned off = 0;
3427 char szOutput[256];
3428 DISCPUSTATE Cpu;
3429
3430 memset(&Cpu, 0, sizeof(Cpu));
3431 Cpu.mode = CPUMODE_32BIT;
3432
3433 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3434 while (off < cb)
3435 {
3436 uint32_t cbInstr;
3437 if (DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput))
3438 RTLogPrintf("%s", szOutput);
3439 else
3440 {
3441 RTLogPrintf("disas error\n");
3442 cbInstr = 1;
3443 }
3444 off += cbInstr;
3445 }
3446 }
3447 NOREF(phFileIgnored);
3448}
3449
3450
3451/**
3452 * Disassemble guest code.
3453 *
3454 * @param phFileIgnored Ignored, logfile usually.
3455 * @param uCode The guest address of the code to disassemble. (flat?)
3456 * @param cb Number of bytes to disassemble.
3457 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3458 */
3459void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3460{
3461 if (LogIs2Enabled())
3462 {
3463 PVM pVM = cpu_single_env->pVM;
3464
3465 /*
3466 * Update the state so DBGF reads the correct register values (flags).
3467 */
3468 remR3StateUpdate(pVM);
3469
3470 /*
3471 * Do the disassembling.
3472 */
3473 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
3474 RTSEL cs = cpu_single_env->segs[R_CS].selector;
3475 RTGCUINTPTR eip = uCode - cpu_single_env->segs[R_CS].base;
3476 for (;;)
3477 {
3478 char szBuf[256];
3479 uint32_t cbInstr;
3480 int rc = DBGFR3DisasInstrEx(pVM,
3481 cs,
3482 eip,
3483 0,
3484 szBuf, sizeof(szBuf),
3485 &cbInstr);
3486 if (VBOX_SUCCESS(rc))
3487 RTLogPrintf("%VGp %s\n", uCode, szBuf);
3488 else
3489 {
3490 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
3491 cbInstr = 1;
3492 }
3493
3494 /* next */
3495 if (cb <= cbInstr)
3496 break;
3497 cb -= cbInstr;
3498 uCode += cbInstr;
3499 eip += cbInstr;
3500 }
3501 }
3502 NOREF(phFileIgnored);
3503}
3504
3505
3506/**
3507 * Looks up a guest symbol.
3508 *
3509 * @returns Pointer to symbol name. This is a static buffer.
3510 * @param orig_addr The address in question.
3511 */
3512const char *lookup_symbol(target_ulong orig_addr)
3513{
3514 RTGCINTPTR off = 0;
3515 DBGFSYMBOL Sym;
3516 PVM pVM = cpu_single_env->pVM;
3517 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3518 if (VBOX_SUCCESS(rc))
3519 {
3520 static char szSym[sizeof(Sym.szName) + 48];
3521 if (!off)
3522 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3523 else if (off > 0)
3524 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3525 else
3526 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3527 return szSym;
3528 }
3529 return "<N/A>";
3530}
3531
3532
3533#undef LOG_GROUP
3534#define LOG_GROUP LOG_GROUP_REM
3535
3536
3537/* -+- FF notifications -+- */
3538
3539
3540/**
3541 * Notification about a pending interrupt.
3542 *
3543 * @param pVM VM Handle.
3544 * @param u8Interrupt Interrupt
3545 * @thread The emulation thread.
3546 */
3547REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3548{
3549 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3550 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3551}
3552
3553/**
3554 * Notification about a pending interrupt.
3555 *
3556 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3557 * @param pVM VM Handle.
3558 * @thread The emulation thread.
3559 */
3560REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3561{
3562 return pVM->rem.s.u32PendingInterrupt;
3563}
3564
3565/**
3566 * Notification about the interrupt FF being set.
3567 *
3568 * @param pVM VM Handle.
3569 * @thread The emulation thread.
3570 */
3571REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3572{
3573 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3574 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3575 if (pVM->rem.s.fInREM)
3576 {
3577 if (VM_IS_EMT(pVM))
3578 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3579 else
3580 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_HARD);
3581 }
3582}
3583
3584
3585/**
3586 * Notification about the interrupt FF being set.
3587 *
3588 * @param pVM VM Handle.
3589 * @thread The emulation thread.
3590 */
3591REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3592{
3593 LogFlow(("REMR3NotifyInterruptClear:\n"));
3594 VM_ASSERT_EMT(pVM);
3595 if (pVM->rem.s.fInREM)
3596 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3597}
3598
3599
3600/**
3601 * Notification about pending timer(s).
3602 *
3603 * @param pVM VM Handle.
3604 * @thread Any.
3605 */
3606REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3607{
3608#ifndef DEBUG_bird
3609 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3610#endif
3611 if (pVM->rem.s.fInREM)
3612 {
3613 if (VM_IS_EMT(pVM))
3614 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3615 else
3616 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_TIMER);
3617 }
3618}
3619
3620
3621/**
3622 * Notification about pending DMA transfers.
3623 *
3624 * @param pVM VM Handle.
3625 * @thread Any.
3626 */
3627REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3628{
3629 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3630 if (pVM->rem.s.fInREM)
3631 {
3632 if (VM_IS_EMT(pVM))
3633 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3634 else
3635 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_DMA);
3636 }
3637}
3638
3639
3640/**
3641 * Notification about pending timer(s).
3642 *
3643 * @param pVM VM Handle.
3644 * @thread Any.
3645 */
3646REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3647{
3648 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3649 if (pVM->rem.s.fInREM)
3650 {
3651 if (VM_IS_EMT(pVM))
3652 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3653 else
3654 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3655 }
3656}
3657
3658
3659/**
3660 * Notification about pending FF set by an external thread.
3661 *
3662 * @param pVM VM handle.
3663 * @thread Any.
3664 */
3665REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3666{
3667 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3668 if (pVM->rem.s.fInREM)
3669 {
3670 if (VM_IS_EMT(pVM))
3671 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3672 else
3673 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3674 }
3675}
3676
3677
3678#ifdef VBOX_WITH_STATISTICS
3679void remR3ProfileStart(int statcode)
3680{
3681 STAMPROFILEADV *pStat;
3682 switch(statcode)
3683 {
3684 case STATS_EMULATE_SINGLE_INSTR:
3685 pStat = &gStatExecuteSingleInstr;
3686 break;
3687 case STATS_QEMU_COMPILATION:
3688 pStat = &gStatCompilationQEmu;
3689 break;
3690 case STATS_QEMU_RUN_EMULATED_CODE:
3691 pStat = &gStatRunCodeQEmu;
3692 break;
3693 case STATS_QEMU_TOTAL:
3694 pStat = &gStatTotalTimeQEmu;
3695 break;
3696 case STATS_QEMU_RUN_TIMERS:
3697 pStat = &gStatTimers;
3698 break;
3699 case STATS_TLB_LOOKUP:
3700 pStat= &gStatTBLookup;
3701 break;
3702 case STATS_IRQ_HANDLING:
3703 pStat= &gStatIRQ;
3704 break;
3705 case STATS_RAW_CHECK:
3706 pStat = &gStatRawCheck;
3707 break;
3708
3709 default:
3710 AssertMsgFailed(("unknown stat %d\n", statcode));
3711 return;
3712 }
3713 STAM_PROFILE_ADV_START(pStat, a);
3714}
3715
3716
3717void remR3ProfileStop(int statcode)
3718{
3719 STAMPROFILEADV *pStat;
3720 switch(statcode)
3721 {
3722 case STATS_EMULATE_SINGLE_INSTR:
3723 pStat = &gStatExecuteSingleInstr;
3724 break;
3725 case STATS_QEMU_COMPILATION:
3726 pStat = &gStatCompilationQEmu;
3727 break;
3728 case STATS_QEMU_RUN_EMULATED_CODE:
3729 pStat = &gStatRunCodeQEmu;
3730 break;
3731 case STATS_QEMU_TOTAL:
3732 pStat = &gStatTotalTimeQEmu;
3733 break;
3734 case STATS_QEMU_RUN_TIMERS:
3735 pStat = &gStatTimers;
3736 break;
3737 case STATS_TLB_LOOKUP:
3738 pStat= &gStatTBLookup;
3739 break;
3740 case STATS_IRQ_HANDLING:
3741 pStat= &gStatIRQ;
3742 break;
3743 case STATS_RAW_CHECK:
3744 pStat = &gStatRawCheck;
3745 break;
3746 default:
3747 AssertMsgFailed(("unknown stat %d\n", statcode));
3748 return;
3749 }
3750 STAM_PROFILE_ADV_STOP(pStat, a);
3751}
3752#endif
3753
3754/**
3755 * Raise an RC, force rem exit.
3756 *
3757 * @param pVM VM handle.
3758 * @param rc The rc.
3759 */
3760void remR3RaiseRC(PVM pVM, int rc)
3761{
3762 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
3763 Assert(pVM->rem.s.fInREM);
3764 VM_ASSERT_EMT(pVM);
3765 pVM->rem.s.rc = rc;
3766 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
3767}
3768
3769
3770/* -+- timers -+- */
3771
3772uint64_t cpu_get_tsc(CPUX86State *env)
3773{
3774 STAM_COUNTER_INC(&gStatCpuGetTSC);
3775 return TMCpuTickGet(env->pVM);
3776}
3777
3778
3779/* -+- interrupts -+- */
3780
3781void cpu_set_ferr(CPUX86State *env)
3782{
3783 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
3784 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
3785}
3786
3787int cpu_get_pic_interrupt(CPUState *env)
3788{
3789 uint8_t u8Interrupt;
3790 int rc;
3791
3792 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
3793 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
3794 * with the (a)pic.
3795 */
3796 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
3797 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
3798 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
3799 * remove this kludge. */
3800 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
3801 {
3802 rc = VINF_SUCCESS;
3803 Assert(env->pVM->rem.s.u32PendingInterrupt >= 0 && env->pVM->rem.s.u32PendingInterrupt <= 255);
3804 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
3805 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
3806 }
3807 else
3808 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
3809
3810 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
3811 if (VBOX_SUCCESS(rc))
3812 {
3813 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
3814 env->interrupt_request |= CPU_INTERRUPT_HARD;
3815 return u8Interrupt;
3816 }
3817 return -1;
3818}
3819
3820
3821/* -+- local apic -+- */
3822
3823void cpu_set_apic_base(CPUX86State *env, uint64_t val)
3824{
3825 int rc = PDMApicSetBase(env->pVM, val);
3826 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
3827}
3828
3829uint64_t cpu_get_apic_base(CPUX86State *env)
3830{
3831 uint64_t u64;
3832 int rc = PDMApicGetBase(env->pVM, &u64);
3833 if (VBOX_SUCCESS(rc))
3834 {
3835 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
3836 return u64;
3837 }
3838 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
3839 return 0;
3840}
3841
3842void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
3843{
3844 int rc = PDMApicSetTPR(env->pVM, val);
3845 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
3846}
3847
3848uint8_t cpu_get_apic_tpr(CPUX86State *env)
3849{
3850 uint8_t u8;
3851 int rc = PDMApicGetTPR(env->pVM, &u8);
3852 if (VBOX_SUCCESS(rc))
3853 {
3854 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
3855 return u8;
3856 }
3857 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
3858 return 0;
3859}
3860
3861
3862/* -+- I/O Ports -+- */
3863
3864#undef LOG_GROUP
3865#define LOG_GROUP LOG_GROUP_REM_IOPORT
3866
3867void cpu_outb(CPUState *env, int addr, int val)
3868{
3869 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
3870 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
3871
3872 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
3873 if (RT_LIKELY(rc == VINF_SUCCESS))
3874 return;
3875 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
3876 {
3877 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
3878 remR3RaiseRC(env->pVM, rc);
3879 return;
3880 }
3881 remAbort(rc, __FUNCTION__);
3882}
3883
3884void cpu_outw(CPUState *env, int addr, int val)
3885{
3886 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
3887 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
3888 if (RT_LIKELY(rc == VINF_SUCCESS))
3889 return;
3890 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
3891 {
3892 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
3893 remR3RaiseRC(env->pVM, rc);
3894 return;
3895 }
3896 remAbort(rc, __FUNCTION__);
3897}
3898
3899void cpu_outl(CPUState *env, int addr, int val)
3900{
3901 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
3902 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
3903 if (RT_LIKELY(rc == VINF_SUCCESS))
3904 return;
3905 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
3906 {
3907 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
3908 remR3RaiseRC(env->pVM, rc);
3909 return;
3910 }
3911 remAbort(rc, __FUNCTION__);
3912}
3913
3914int cpu_inb(CPUState *env, int addr)
3915{
3916 uint32_t u32 = 0;
3917 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
3918 if (RT_LIKELY(rc == VINF_SUCCESS))
3919 {
3920 if (/*addr != 0x61 && */addr != 0x71)
3921 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
3922 return (int)u32;
3923 }
3924 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
3925 {
3926 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
3927 remR3RaiseRC(env->pVM, rc);
3928 return (int)u32;
3929 }
3930 remAbort(rc, __FUNCTION__);
3931 return 0xff;
3932}
3933
3934int cpu_inw(CPUState *env, int addr)
3935{
3936 uint32_t u32 = 0;
3937 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
3938 if (RT_LIKELY(rc == VINF_SUCCESS))
3939 {
3940 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
3941 return (int)u32;
3942 }
3943 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
3944 {
3945 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
3946 remR3RaiseRC(env->pVM, rc);
3947 return (int)u32;
3948 }
3949 remAbort(rc, __FUNCTION__);
3950 return 0xffff;
3951}
3952
3953int cpu_inl(CPUState *env, int addr)
3954{
3955 uint32_t u32 = 0;
3956 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
3957 if (RT_LIKELY(rc == VINF_SUCCESS))
3958 {
3959//if (addr==0x01f0 && u32 == 0x6b6d)
3960// loglevel = ~0;
3961 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
3962 return (int)u32;
3963 }
3964 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
3965 {
3966 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
3967 remR3RaiseRC(env->pVM, rc);
3968 return (int)u32;
3969 }
3970 remAbort(rc, __FUNCTION__);
3971 return 0xffffffff;
3972}
3973
3974#undef LOG_GROUP
3975#define LOG_GROUP LOG_GROUP_REM
3976
3977
3978/* -+- helpers and misc other interfaces -+- */
3979
3980/**
3981 * Perform the CPUID instruction.
3982 *
3983 * ASMCpuId cannot be invoked from some source files where this is used because of global
3984 * register allocations.
3985 *
3986 * @param env Pointer to the recompiler CPU structure.
3987 * @param uOperator CPUID operation (eax).
3988 * @param pvEAX Where to store eax.
3989 * @param pvEBX Where to store ebx.
3990 * @param pvECX Where to store ecx.
3991 * @param pvEDX Where to store edx.
3992 */
3993void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
3994{
3995 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
3996}
3997
3998
3999#if 0 /* not used */
4000/**
4001 * Interface for qemu hardware to report back fatal errors.
4002 */
4003void hw_error(const char *pszFormat, ...)
4004{
4005 /*
4006 * Bitch about it.
4007 */
4008 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4009 * this in my Odin32 tree at home! */
4010 va_list args;
4011 va_start(args, pszFormat);
4012 RTLogPrintf("fatal error in virtual hardware:");
4013 RTLogPrintfV(pszFormat, args);
4014 va_end(args);
4015 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4016
4017 /*
4018 * If we're in REM context we'll sync back the state before 'jumping' to
4019 * the EMs failure handling.
4020 */
4021 PVM pVM = cpu_single_env->pVM;
4022 if (pVM->rem.s.fInREM)
4023 REMR3StateBack(pVM);
4024 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4025 AssertMsgFailed(("EMR3FatalError returned!\n"));
4026}
4027#endif
4028
4029/**
4030 * Interface for the qemu cpu to report unhandled situation
4031 * raising a fatal VM error.
4032 */
4033void cpu_abort(CPUState *env, const char *pszFormat, ...)
4034{
4035 /*
4036 * Bitch about it.
4037 */
4038 RTLogFlags(NULL, "nodisabled nobuffered");
4039 va_list args;
4040 va_start(args, pszFormat);
4041 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4042 va_end(args);
4043 va_start(args, pszFormat);
4044 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4045 va_end(args);
4046
4047 /*
4048 * If we're in REM context we'll sync back the state before 'jumping' to
4049 * the EMs failure handling.
4050 */
4051 PVM pVM = cpu_single_env->pVM;
4052 if (pVM->rem.s.fInREM)
4053 REMR3StateBack(pVM);
4054 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4055 AssertMsgFailed(("EMR3FatalError returned!\n"));
4056}
4057
4058
4059/**
4060 * Aborts the VM.
4061 *
4062 * @param rc VBox error code.
4063 * @param pszTip Hint about why/when this happend.
4064 */
4065static void remAbort(int rc, const char *pszTip)
4066{
4067 /*
4068 * Bitch about it.
4069 */
4070 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4071 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4072
4073 /*
4074 * Jump back to where we entered the recompiler.
4075 */
4076 PVM pVM = cpu_single_env->pVM;
4077 if (pVM->rem.s.fInREM)
4078 REMR3StateBack(pVM);
4079 EMR3FatalError(pVM, rc);
4080 AssertMsgFailed(("EMR3FatalError returned!\n"));
4081}
4082
4083
4084/**
4085 * Dumps a linux system call.
4086 * @param pVM VM handle.
4087 */
4088void remR3DumpLnxSyscall(PVM pVM)
4089{
4090 static const char *apsz[] =
4091 {
4092 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4093 "sys_exit",
4094 "sys_fork",
4095 "sys_read",
4096 "sys_write",
4097 "sys_open", /* 5 */
4098 "sys_close",
4099 "sys_waitpid",
4100 "sys_creat",
4101 "sys_link",
4102 "sys_unlink", /* 10 */
4103 "sys_execve",
4104 "sys_chdir",
4105 "sys_time",
4106 "sys_mknod",
4107 "sys_chmod", /* 15 */
4108 "sys_lchown16",
4109 "sys_ni_syscall", /* old break syscall holder */
4110 "sys_stat",
4111 "sys_lseek",
4112 "sys_getpid", /* 20 */
4113 "sys_mount",
4114 "sys_oldumount",
4115 "sys_setuid16",
4116 "sys_getuid16",
4117 "sys_stime", /* 25 */
4118 "sys_ptrace",
4119 "sys_alarm",
4120 "sys_fstat",
4121 "sys_pause",
4122 "sys_utime", /* 30 */
4123 "sys_ni_syscall", /* old stty syscall holder */
4124 "sys_ni_syscall", /* old gtty syscall holder */
4125 "sys_access",
4126 "sys_nice",
4127 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4128 "sys_sync",
4129 "sys_kill",
4130 "sys_rename",
4131 "sys_mkdir",
4132 "sys_rmdir", /* 40 */
4133 "sys_dup",
4134 "sys_pipe",
4135 "sys_times",
4136 "sys_ni_syscall", /* old prof syscall holder */
4137 "sys_brk", /* 45 */
4138 "sys_setgid16",
4139 "sys_getgid16",
4140 "sys_signal",
4141 "sys_geteuid16",
4142 "sys_getegid16", /* 50 */
4143 "sys_acct",
4144 "sys_umount", /* recycled never used phys() */
4145 "sys_ni_syscall", /* old lock syscall holder */
4146 "sys_ioctl",
4147 "sys_fcntl", /* 55 */
4148 "sys_ni_syscall", /* old mpx syscall holder */
4149 "sys_setpgid",
4150 "sys_ni_syscall", /* old ulimit syscall holder */
4151 "sys_olduname",
4152 "sys_umask", /* 60 */
4153 "sys_chroot",
4154 "sys_ustat",
4155 "sys_dup2",
4156 "sys_getppid",
4157 "sys_getpgrp", /* 65 */
4158 "sys_setsid",
4159 "sys_sigaction",
4160 "sys_sgetmask",
4161 "sys_ssetmask",
4162 "sys_setreuid16", /* 70 */
4163 "sys_setregid16",
4164 "sys_sigsuspend",
4165 "sys_sigpending",
4166 "sys_sethostname",
4167 "sys_setrlimit", /* 75 */
4168 "sys_old_getrlimit",
4169 "sys_getrusage",
4170 "sys_gettimeofday",
4171 "sys_settimeofday",
4172 "sys_getgroups16", /* 80 */
4173 "sys_setgroups16",
4174 "old_select",
4175 "sys_symlink",
4176 "sys_lstat",
4177 "sys_readlink", /* 85 */
4178 "sys_uselib",
4179 "sys_swapon",
4180 "sys_reboot",
4181 "old_readdir",
4182 "old_mmap", /* 90 */
4183 "sys_munmap",
4184 "sys_truncate",
4185 "sys_ftruncate",
4186 "sys_fchmod",
4187 "sys_fchown16", /* 95 */
4188 "sys_getpriority",
4189 "sys_setpriority",
4190 "sys_ni_syscall", /* old profil syscall holder */
4191 "sys_statfs",
4192 "sys_fstatfs", /* 100 */
4193 "sys_ioperm",
4194 "sys_socketcall",
4195 "sys_syslog",
4196 "sys_setitimer",
4197 "sys_getitimer", /* 105 */
4198 "sys_newstat",
4199 "sys_newlstat",
4200 "sys_newfstat",
4201 "sys_uname",
4202 "sys_iopl", /* 110 */
4203 "sys_vhangup",
4204 "sys_ni_syscall", /* old "idle" system call */
4205 "sys_vm86old",
4206 "sys_wait4",
4207 "sys_swapoff", /* 115 */
4208 "sys_sysinfo",
4209 "sys_ipc",
4210 "sys_fsync",
4211 "sys_sigreturn",
4212 "sys_clone", /* 120 */
4213 "sys_setdomainname",
4214 "sys_newuname",
4215 "sys_modify_ldt",
4216 "sys_adjtimex",
4217 "sys_mprotect", /* 125 */
4218 "sys_sigprocmask",
4219 "sys_ni_syscall", /* old "create_module" */
4220 "sys_init_module",
4221 "sys_delete_module",
4222 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4223 "sys_quotactl",
4224 "sys_getpgid",
4225 "sys_fchdir",
4226 "sys_bdflush",
4227 "sys_sysfs", /* 135 */
4228 "sys_personality",
4229 "sys_ni_syscall", /* reserved for afs_syscall */
4230 "sys_setfsuid16",
4231 "sys_setfsgid16",
4232 "sys_llseek", /* 140 */
4233 "sys_getdents",
4234 "sys_select",
4235 "sys_flock",
4236 "sys_msync",
4237 "sys_readv", /* 145 */
4238 "sys_writev",
4239 "sys_getsid",
4240 "sys_fdatasync",
4241 "sys_sysctl",
4242 "sys_mlock", /* 150 */
4243 "sys_munlock",
4244 "sys_mlockall",
4245 "sys_munlockall",
4246 "sys_sched_setparam",
4247 "sys_sched_getparam", /* 155 */
4248 "sys_sched_setscheduler",
4249 "sys_sched_getscheduler",
4250 "sys_sched_yield",
4251 "sys_sched_get_priority_max",
4252 "sys_sched_get_priority_min", /* 160 */
4253 "sys_sched_rr_get_interval",
4254 "sys_nanosleep",
4255 "sys_mremap",
4256 "sys_setresuid16",
4257 "sys_getresuid16", /* 165 */
4258 "sys_vm86",
4259 "sys_ni_syscall", /* Old sys_query_module */
4260 "sys_poll",
4261 "sys_nfsservctl",
4262 "sys_setresgid16", /* 170 */
4263 "sys_getresgid16",
4264 "sys_prctl",
4265 "sys_rt_sigreturn",
4266 "sys_rt_sigaction",
4267 "sys_rt_sigprocmask", /* 175 */
4268 "sys_rt_sigpending",
4269 "sys_rt_sigtimedwait",
4270 "sys_rt_sigqueueinfo",
4271 "sys_rt_sigsuspend",
4272 "sys_pread64", /* 180 */
4273 "sys_pwrite64",
4274 "sys_chown16",
4275 "sys_getcwd",
4276 "sys_capget",
4277 "sys_capset", /* 185 */
4278 "sys_sigaltstack",
4279 "sys_sendfile",
4280 "sys_ni_syscall", /* reserved for streams1 */
4281 "sys_ni_syscall", /* reserved for streams2 */
4282 "sys_vfork", /* 190 */
4283 "sys_getrlimit",
4284 "sys_mmap2",
4285 "sys_truncate64",
4286 "sys_ftruncate64",
4287 "sys_stat64", /* 195 */
4288 "sys_lstat64",
4289 "sys_fstat64",
4290 "sys_lchown",
4291 "sys_getuid",
4292 "sys_getgid", /* 200 */
4293 "sys_geteuid",
4294 "sys_getegid",
4295 "sys_setreuid",
4296 "sys_setregid",
4297 "sys_getgroups", /* 205 */
4298 "sys_setgroups",
4299 "sys_fchown",
4300 "sys_setresuid",
4301 "sys_getresuid",
4302 "sys_setresgid", /* 210 */
4303 "sys_getresgid",
4304 "sys_chown",
4305 "sys_setuid",
4306 "sys_setgid",
4307 "sys_setfsuid", /* 215 */
4308 "sys_setfsgid",
4309 "sys_pivot_root",
4310 "sys_mincore",
4311 "sys_madvise",
4312 "sys_getdents64", /* 220 */
4313 "sys_fcntl64",
4314 "sys_ni_syscall", /* reserved for TUX */
4315 "sys_ni_syscall",
4316 "sys_gettid",
4317 "sys_readahead", /* 225 */
4318 "sys_setxattr",
4319 "sys_lsetxattr",
4320 "sys_fsetxattr",
4321 "sys_getxattr",
4322 "sys_lgetxattr", /* 230 */
4323 "sys_fgetxattr",
4324 "sys_listxattr",
4325 "sys_llistxattr",
4326 "sys_flistxattr",
4327 "sys_removexattr", /* 235 */
4328 "sys_lremovexattr",
4329 "sys_fremovexattr",
4330 "sys_tkill",
4331 "sys_sendfile64",
4332 "sys_futex", /* 240 */
4333 "sys_sched_setaffinity",
4334 "sys_sched_getaffinity",
4335 "sys_set_thread_area",
4336 "sys_get_thread_area",
4337 "sys_io_setup", /* 245 */
4338 "sys_io_destroy",
4339 "sys_io_getevents",
4340 "sys_io_submit",
4341 "sys_io_cancel",
4342 "sys_fadvise64", /* 250 */
4343 "sys_ni_syscall",
4344 "sys_exit_group",
4345 "sys_lookup_dcookie",
4346 "sys_epoll_create",
4347 "sys_epoll_ctl", /* 255 */
4348 "sys_epoll_wait",
4349 "sys_remap_file_pages",
4350 "sys_set_tid_address",
4351 "sys_timer_create",
4352 "sys_timer_settime", /* 260 */
4353 "sys_timer_gettime",
4354 "sys_timer_getoverrun",
4355 "sys_timer_delete",
4356 "sys_clock_settime",
4357 "sys_clock_gettime", /* 265 */
4358 "sys_clock_getres",
4359 "sys_clock_nanosleep",
4360 "sys_statfs64",
4361 "sys_fstatfs64",
4362 "sys_tgkill", /* 270 */
4363 "sys_utimes",
4364 "sys_fadvise64_64",
4365 "sys_ni_syscall" /* sys_vserver */
4366 };
4367
4368 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4369 switch (uEAX)
4370 {
4371 default:
4372 if (uEAX < ELEMENTS(apsz))
4373 Log(("REM: linux syscall %3d: %s (eip=%VGv ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4374 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4375 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4376 else
4377 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4378 break;
4379
4380 }
4381}
4382
4383
4384/**
4385 * Dumps an OpenBSD system call.
4386 * @param pVM VM handle.
4387 */
4388void remR3DumpOBsdSyscall(PVM pVM)
4389{
4390 static const char *apsz[] =
4391 {
4392 "SYS_syscall", //0
4393 "SYS_exit", //1
4394 "SYS_fork", //2
4395 "SYS_read", //3
4396 "SYS_write", //4
4397 "SYS_open", //5
4398 "SYS_close", //6
4399 "SYS_wait4", //7
4400 "SYS_8",
4401 "SYS_link", //9
4402 "SYS_unlink", //10
4403 "SYS_11",
4404 "SYS_chdir", //12
4405 "SYS_fchdir", //13
4406 "SYS_mknod", //14
4407 "SYS_chmod", //15
4408 "SYS_chown", //16
4409 "SYS_break", //17
4410 "SYS_18",
4411 "SYS_19",
4412 "SYS_getpid", //20
4413 "SYS_mount", //21
4414 "SYS_unmount", //22
4415 "SYS_setuid", //23
4416 "SYS_getuid", //24
4417 "SYS_geteuid", //25
4418 "SYS_ptrace", //26
4419 "SYS_recvmsg", //27
4420 "SYS_sendmsg", //28
4421 "SYS_recvfrom", //29
4422 "SYS_accept", //30
4423 "SYS_getpeername", //31
4424 "SYS_getsockname", //32
4425 "SYS_access", //33
4426 "SYS_chflags", //34
4427 "SYS_fchflags", //35
4428 "SYS_sync", //36
4429 "SYS_kill", //37
4430 "SYS_38",
4431 "SYS_getppid", //39
4432 "SYS_40",
4433 "SYS_dup", //41
4434 "SYS_opipe", //42
4435 "SYS_getegid", //43
4436 "SYS_profil", //44
4437 "SYS_ktrace", //45
4438 "SYS_sigaction", //46
4439 "SYS_getgid", //47
4440 "SYS_sigprocmask", //48
4441 "SYS_getlogin", //49
4442 "SYS_setlogin", //50
4443 "SYS_acct", //51
4444 "SYS_sigpending", //52
4445 "SYS_osigaltstack", //53
4446 "SYS_ioctl", //54
4447 "SYS_reboot", //55
4448 "SYS_revoke", //56
4449 "SYS_symlink", //57
4450 "SYS_readlink", //58
4451 "SYS_execve", //59
4452 "SYS_umask", //60
4453 "SYS_chroot", //61
4454 "SYS_62",
4455 "SYS_63",
4456 "SYS_64",
4457 "SYS_65",
4458 "SYS_vfork", //66
4459 "SYS_67",
4460 "SYS_68",
4461 "SYS_sbrk", //69
4462 "SYS_sstk", //70
4463 "SYS_61",
4464 "SYS_vadvise", //72
4465 "SYS_munmap", //73
4466 "SYS_mprotect", //74
4467 "SYS_madvise", //75
4468 "SYS_76",
4469 "SYS_77",
4470 "SYS_mincore", //78
4471 "SYS_getgroups", //79
4472 "SYS_setgroups", //80
4473 "SYS_getpgrp", //81
4474 "SYS_setpgid", //82
4475 "SYS_setitimer", //83
4476 "SYS_84",
4477 "SYS_85",
4478 "SYS_getitimer", //86
4479 "SYS_87",
4480 "SYS_88",
4481 "SYS_89",
4482 "SYS_dup2", //90
4483 "SYS_91",
4484 "SYS_fcntl", //92
4485 "SYS_select", //93
4486 "SYS_94",
4487 "SYS_fsync", //95
4488 "SYS_setpriority", //96
4489 "SYS_socket", //97
4490 "SYS_connect", //98
4491 "SYS_99",
4492 "SYS_getpriority", //100
4493 "SYS_101",
4494 "SYS_102",
4495 "SYS_sigreturn", //103
4496 "SYS_bind", //104
4497 "SYS_setsockopt", //105
4498 "SYS_listen", //106
4499 "SYS_107",
4500 "SYS_108",
4501 "SYS_109",
4502 "SYS_110",
4503 "SYS_sigsuspend", //111
4504 "SYS_112",
4505 "SYS_113",
4506 "SYS_114",
4507 "SYS_115",
4508 "SYS_gettimeofday", //116
4509 "SYS_getrusage", //117
4510 "SYS_getsockopt", //118
4511 "SYS_119",
4512 "SYS_readv", //120
4513 "SYS_writev", //121
4514 "SYS_settimeofday", //122
4515 "SYS_fchown", //123
4516 "SYS_fchmod", //124
4517 "SYS_125",
4518 "SYS_setreuid", //126
4519 "SYS_setregid", //127
4520 "SYS_rename", //128
4521 "SYS_129",
4522 "SYS_130",
4523 "SYS_flock", //131
4524 "SYS_mkfifo", //132
4525 "SYS_sendto", //133
4526 "SYS_shutdown", //134
4527 "SYS_socketpair", //135
4528 "SYS_mkdir", //136
4529 "SYS_rmdir", //137
4530 "SYS_utimes", //138
4531 "SYS_139",
4532 "SYS_adjtime", //140
4533 "SYS_141",
4534 "SYS_142",
4535 "SYS_143",
4536 "SYS_144",
4537 "SYS_145",
4538 "SYS_146",
4539 "SYS_setsid", //147
4540 "SYS_quotactl", //148
4541 "SYS_149",
4542 "SYS_150",
4543 "SYS_151",
4544 "SYS_152",
4545 "SYS_153",
4546 "SYS_154",
4547 "SYS_nfssvc", //155
4548 "SYS_156",
4549 "SYS_157",
4550 "SYS_158",
4551 "SYS_159",
4552 "SYS_160",
4553 "SYS_getfh", //161
4554 "SYS_162",
4555 "SYS_163",
4556 "SYS_164",
4557 "SYS_sysarch", //165
4558 "SYS_166",
4559 "SYS_167",
4560 "SYS_168",
4561 "SYS_169",
4562 "SYS_170",
4563 "SYS_171",
4564 "SYS_172",
4565 "SYS_pread", //173
4566 "SYS_pwrite", //174
4567 "SYS_175",
4568 "SYS_176",
4569 "SYS_177",
4570 "SYS_178",
4571 "SYS_179",
4572 "SYS_180",
4573 "SYS_setgid", //181
4574 "SYS_setegid", //182
4575 "SYS_seteuid", //183
4576 "SYS_lfs_bmapv", //184
4577 "SYS_lfs_markv", //185
4578 "SYS_lfs_segclean", //186
4579 "SYS_lfs_segwait", //187
4580 "SYS_188",
4581 "SYS_189",
4582 "SYS_190",
4583 "SYS_pathconf", //191
4584 "SYS_fpathconf", //192
4585 "SYS_swapctl", //193
4586 "SYS_getrlimit", //194
4587 "SYS_setrlimit", //195
4588 "SYS_getdirentries", //196
4589 "SYS_mmap", //197
4590 "SYS___syscall", //198
4591 "SYS_lseek", //199
4592 "SYS_truncate", //200
4593 "SYS_ftruncate", //201
4594 "SYS___sysctl", //202
4595 "SYS_mlock", //203
4596 "SYS_munlock", //204
4597 "SYS_205",
4598 "SYS_futimes", //206
4599 "SYS_getpgid", //207
4600 "SYS_xfspioctl", //208
4601 "SYS_209",
4602 "SYS_210",
4603 "SYS_211",
4604 "SYS_212",
4605 "SYS_213",
4606 "SYS_214",
4607 "SYS_215",
4608 "SYS_216",
4609 "SYS_217",
4610 "SYS_218",
4611 "SYS_219",
4612 "SYS_220",
4613 "SYS_semget", //221
4614 "SYS_222",
4615 "SYS_223",
4616 "SYS_224",
4617 "SYS_msgget", //225
4618 "SYS_msgsnd", //226
4619 "SYS_msgrcv", //227
4620 "SYS_shmat", //228
4621 "SYS_229",
4622 "SYS_shmdt", //230
4623 "SYS_231",
4624 "SYS_clock_gettime", //232
4625 "SYS_clock_settime", //233
4626 "SYS_clock_getres", //234
4627 "SYS_235",
4628 "SYS_236",
4629 "SYS_237",
4630 "SYS_238",
4631 "SYS_239",
4632 "SYS_nanosleep", //240
4633 "SYS_241",
4634 "SYS_242",
4635 "SYS_243",
4636 "SYS_244",
4637 "SYS_245",
4638 "SYS_246",
4639 "SYS_247",
4640 "SYS_248",
4641 "SYS_249",
4642 "SYS_minherit", //250
4643 "SYS_rfork", //251
4644 "SYS_poll", //252
4645 "SYS_issetugid", //253
4646 "SYS_lchown", //254
4647 "SYS_getsid", //255
4648 "SYS_msync", //256
4649 "SYS_257",
4650 "SYS_258",
4651 "SYS_259",
4652 "SYS_getfsstat", //260
4653 "SYS_statfs", //261
4654 "SYS_fstatfs", //262
4655 "SYS_pipe", //263
4656 "SYS_fhopen", //264
4657 "SYS_265",
4658 "SYS_fhstatfs", //266
4659 "SYS_preadv", //267
4660 "SYS_pwritev", //268
4661 "SYS_kqueue", //269
4662 "SYS_kevent", //270
4663 "SYS_mlockall", //271
4664 "SYS_munlockall", //272
4665 "SYS_getpeereid", //273
4666 "SYS_274",
4667 "SYS_275",
4668 "SYS_276",
4669 "SYS_277",
4670 "SYS_278",
4671 "SYS_279",
4672 "SYS_280",
4673 "SYS_getresuid", //281
4674 "SYS_setresuid", //282
4675 "SYS_getresgid", //283
4676 "SYS_setresgid", //284
4677 "SYS_285",
4678 "SYS_mquery", //286
4679 "SYS_closefrom", //287
4680 "SYS_sigaltstack", //288
4681 "SYS_shmget", //289
4682 "SYS_semop", //290
4683 "SYS_stat", //291
4684 "SYS_fstat", //292
4685 "SYS_lstat", //293
4686 "SYS_fhstat", //294
4687 "SYS___semctl", //295
4688 "SYS_shmctl", //296
4689 "SYS_msgctl", //297
4690 "SYS_MAXSYSCALL", //298
4691 //299
4692 //300
4693 };
4694 uint32_t uEAX;
4695 if (!LogIsEnabled())
4696 return;
4697 uEAX = CPUMGetGuestEAX(pVM);
4698 switch (uEAX)
4699 {
4700 default:
4701 if (uEAX < ELEMENTS(apsz))
4702 {
4703 uint32_t au32Args[8] = {0};
4704 PGMPhysReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
4705 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
4706 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
4707 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
4708 }
4709 else
4710 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
4711 break;
4712 }
4713}
4714
4715
4716#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
4717/**
4718 * The Dll main entry point (stub).
4719 */
4720bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
4721{
4722 return true;
4723}
4724
4725void *memcpy(void *dst, const void *src, size_t size)
4726{
4727 uint8_t*pbDst = dst, *pbSrc = src;
4728 while (size-- > 0)
4729 *pbDst++ = *pbSrc++;
4730 return dst;
4731}
4732
4733#endif
4734
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette