VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 8024

Last change on this file since 8024 was 7996, checked in by vboxsync, 17 years ago

Relax tests for PAE (rem vs raw)

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 150.5 KB
Line 
1/* $Id: VBoxRecompiler.c 7996 2008-04-15 14:15:58Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 innotek GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_REM
23#include "vl.h"
24#include "exec-all.h"
25
26#include <VBox/rem.h>
27#include <VBox/vmapi.h>
28#include <VBox/tm.h>
29#include <VBox/ssm.h>
30#include <VBox/em.h>
31#include <VBox/trpm.h>
32#include <VBox/iom.h>
33#include <VBox/mm.h>
34#include <VBox/pgm.h>
35#include <VBox/pdm.h>
36#include <VBox/dbgf.h>
37#include <VBox/dbg.h>
38#include <VBox/hwaccm.h>
39#include <VBox/patm.h>
40#include <VBox/csam.h>
41#include "REMInternal.h"
42#include <VBox/vm.h>
43#include <VBox/param.h>
44#include <VBox/err.h>
45
46#include <VBox/log.h>
47#include <iprt/semaphore.h>
48#include <iprt/asm.h>
49#include <iprt/assert.h>
50#include <iprt/thread.h>
51#include <iprt/string.h>
52
53/* Don't wanna include everything. */
54extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
55extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
56extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
57extern void tlb_flush_page(CPUX86State *env, uint32_t addr);
58extern void tlb_flush(CPUState *env, int flush_global);
59extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
60extern void sync_ldtr(CPUX86State *env1, int selector);
61extern int sync_tr(CPUX86State *env1, int selector);
62
63#ifdef VBOX_STRICT
64unsigned long get_phys_page_offset(target_ulong addr);
65#endif
66
67
68/*******************************************************************************
69* Defined Constants And Macros *
70*******************************************************************************/
71
72/** Copy 80-bit fpu register at pSrc to pDst.
73 * This is probably faster than *calling* memcpy.
74 */
75#define REM_COPY_FPU_REG(pDst, pSrc) \
76 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
77
78
79/*******************************************************************************
80* Internal Functions *
81*******************************************************************************/
82static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
83static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
84static void remR3StateUpdate(PVM pVM);
85
86static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
87static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
88static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
89static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
90static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
91static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
92
93static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
94static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
95static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
96static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
97static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
98static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
99
100
101/*******************************************************************************
102* Global Variables *
103*******************************************************************************/
104
105/** @todo Move stats to REM::s some rainy day we have nothing do to. */
106#ifdef VBOX_WITH_STATISTICS
107static STAMPROFILEADV gStatExecuteSingleInstr;
108static STAMPROFILEADV gStatCompilationQEmu;
109static STAMPROFILEADV gStatRunCodeQEmu;
110static STAMPROFILEADV gStatTotalTimeQEmu;
111static STAMPROFILEADV gStatTimers;
112static STAMPROFILEADV gStatTBLookup;
113static STAMPROFILEADV gStatIRQ;
114static STAMPROFILEADV gStatRawCheck;
115static STAMPROFILEADV gStatMemRead;
116static STAMPROFILEADV gStatMemWrite;
117static STAMPROFILE gStatGCPhys2HCVirt;
118static STAMPROFILE gStatHCVirt2GCPhys;
119static STAMCOUNTER gStatCpuGetTSC;
120static STAMCOUNTER gStatRefuseTFInhibit;
121static STAMCOUNTER gStatRefuseVM86;
122static STAMCOUNTER gStatRefusePaging;
123static STAMCOUNTER gStatRefusePAE;
124static STAMCOUNTER gStatRefuseIOPLNot0;
125static STAMCOUNTER gStatRefuseIF0;
126static STAMCOUNTER gStatRefuseCode16;
127static STAMCOUNTER gStatRefuseWP0;
128static STAMCOUNTER gStatRefuseRing1or2;
129static STAMCOUNTER gStatRefuseCanExecute;
130static STAMCOUNTER gStatREMGDTChange;
131static STAMCOUNTER gStatREMIDTChange;
132static STAMCOUNTER gStatREMLDTRChange;
133static STAMCOUNTER gStatREMTRChange;
134static STAMCOUNTER gStatSelOutOfSync[6];
135static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
136#endif
137
138/*
139 * Global stuff.
140 */
141
142/** MMIO read callbacks. */
143CPUReadMemoryFunc *g_apfnMMIORead[3] =
144{
145 remR3MMIOReadU8,
146 remR3MMIOReadU16,
147 remR3MMIOReadU32
148};
149
150/** MMIO write callbacks. */
151CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
152{
153 remR3MMIOWriteU8,
154 remR3MMIOWriteU16,
155 remR3MMIOWriteU32
156};
157
158/** Handler read callbacks. */
159CPUReadMemoryFunc *g_apfnHandlerRead[3] =
160{
161 remR3HandlerReadU8,
162 remR3HandlerReadU16,
163 remR3HandlerReadU32
164};
165
166/** Handler write callbacks. */
167CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
168{
169 remR3HandlerWriteU8,
170 remR3HandlerWriteU16,
171 remR3HandlerWriteU32
172};
173
174
175#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDWS) && defined(RT_ARCH_AMD64))
176/*
177 * Debugger commands.
178 */
179static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
180
181/** '.remstep' arguments. */
182static const DBGCVARDESC g_aArgRemStep[] =
183{
184 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
185 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
186};
187
188/** Command descriptors. */
189static const DBGCCMD g_aCmds[] =
190{
191 {
192 .pszCmd ="remstep",
193 .cArgsMin = 0,
194 .cArgsMax = 1,
195 .paArgDescs = &g_aArgRemStep[0],
196 .cArgDescs = ELEMENTS(g_aArgRemStep),
197 .pResultDesc = NULL,
198 .fFlags = 0,
199 .pfnHandler = remR3CmdDisasEnableStepping,
200 .pszSyntax = "[on/off]",
201 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
202 "If no arguments show the current state."
203 }
204};
205#endif
206
207
208/* Instantiate the structure signatures. */
209#define REM_STRUCT_OP 0
210#include "InnoTek/structs.h"
211
212
213
214/*******************************************************************************
215* Internal Functions *
216*******************************************************************************/
217static void remAbort(int rc, const char *pszTip);
218extern int testmath(void);
219
220/* Put them here to avoid unused variable warning. */
221AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
222#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
223AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
224#else
225AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
226#endif
227
228
229/**
230 * Initializes the REM.
231 *
232 * @returns VBox status code.
233 * @param pVM The VM to operate on.
234 */
235REMR3DECL(int) REMR3Init(PVM pVM)
236{
237 uint32_t u32Dummy;
238 unsigned i;
239
240 /*
241 * Assert sanity.
242 */
243 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
244 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
245 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
246#if defined(DEBUG) && !defined(RT_OS_SOLARIS) /// @todo fix the solaris math stuff.
247 Assert(!testmath());
248#endif
249 ASSERT_STRUCT_TABLE(Misc);
250 ASSERT_STRUCT_TABLE(TLB);
251 ASSERT_STRUCT_TABLE(SegmentCache);
252 ASSERT_STRUCT_TABLE(XMMReg);
253 ASSERT_STRUCT_TABLE(MMXReg);
254 ASSERT_STRUCT_TABLE(float_status);
255 ASSERT_STRUCT_TABLE(float32u);
256 ASSERT_STRUCT_TABLE(float64u);
257 ASSERT_STRUCT_TABLE(floatx80u);
258 ASSERT_STRUCT_TABLE(CPUState);
259
260 /*
261 * Init some internal data members.
262 */
263 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
264 pVM->rem.s.Env.pVM = pVM;
265#ifdef CPU_RAW_MODE_INIT
266 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
267#endif
268
269 /* ctx. */
270 int rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
271 if (VBOX_FAILURE(rc))
272 {
273 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
274 return rc;
275 }
276 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
277
278 /* ignore all notifications */
279 pVM->rem.s.fIgnoreAll = true;
280
281 /*
282 * Init the recompiler.
283 */
284 if (!cpu_x86_init(&pVM->rem.s.Env))
285 {
286 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
287 return VERR_GENERAL_FAILURE;
288 }
289 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
290 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
291
292 /* allocate code buffer for single instruction emulation. */
293 pVM->rem.s.Env.cbCodeBuffer = 4096;
294 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
295 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
296
297 /* finally, set the cpu_single_env global. */
298 cpu_single_env = &pVM->rem.s.Env;
299
300 /* Nothing is pending by default */
301 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
302
303 /*
304 * Register ram types.
305 */
306 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
307 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
308 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
309 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
310 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
311
312 /* stop ignoring. */
313 pVM->rem.s.fIgnoreAll = false;
314
315 /*
316 * Register the saved state data unit.
317 */
318 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
319 NULL, remR3Save, NULL,
320 NULL, remR3Load, NULL);
321 if (VBOX_FAILURE(rc))
322 return rc;
323
324#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
325 /*
326 * Debugger commands.
327 */
328 static bool fRegisteredCmds = false;
329 if (!fRegisteredCmds)
330 {
331 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
332 if (VBOX_SUCCESS(rc))
333 fRegisteredCmds = true;
334 }
335#endif
336
337#ifdef VBOX_WITH_STATISTICS
338 /*
339 * Statistics.
340 */
341 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
342 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
343 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
344 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
345 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
346 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
347 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
348 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
349 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
350 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
351 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
352 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
353
354 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
355
356 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
357 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
358 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
359 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
360 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
361 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
362 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
363 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
364 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
365 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
366
367 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
368 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
369 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
370 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
371
372 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
373 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
374 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
375 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
376 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
377 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
378
379 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
380 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
381 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
382 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
383 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
384 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
385
386
387#endif
388
389#ifdef DEBUG_ALL_LOGGING
390 loglevel = ~0;
391#endif
392
393 return rc;
394}
395
396
397/**
398 * Terminates the REM.
399 *
400 * Termination means cleaning up and freeing all resources,
401 * the VM it self is at this point powered off or suspended.
402 *
403 * @returns VBox status code.
404 * @param pVM The VM to operate on.
405 */
406REMR3DECL(int) REMR3Term(PVM pVM)
407{
408 return VINF_SUCCESS;
409}
410
411
412/**
413 * The VM is being reset.
414 *
415 * For the REM component this means to call the cpu_reset() and
416 * reinitialize some state variables.
417 *
418 * @param pVM VM handle.
419 */
420REMR3DECL(void) REMR3Reset(PVM pVM)
421{
422 /*
423 * Reset the REM cpu.
424 */
425 pVM->rem.s.fIgnoreAll = true;
426 cpu_reset(&pVM->rem.s.Env);
427 pVM->rem.s.cInvalidatedPages = 0;
428 pVM->rem.s.fIgnoreAll = false;
429
430 /* Clear raw ring 0 init state */
431 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
432}
433
434
435/**
436 * Execute state save operation.
437 *
438 * @returns VBox status code.
439 * @param pVM VM Handle.
440 * @param pSSM SSM operation handle.
441 */
442static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
443{
444 LogFlow(("remR3Save:\n"));
445
446 /*
447 * Save the required CPU Env bits.
448 * (Not much because we're never in REM when doing the save.)
449 */
450 PREM pRem = &pVM->rem.s;
451 Assert(!pRem->fInREM);
452 SSMR3PutU32(pSSM, pRem->Env.hflags);
453 SSMR3PutMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
454 SSMR3PutU32(pSSM, ~0); /* separator */
455
456 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
457 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
458
459 /*
460 * Save the REM stuff.
461 */
462 SSMR3PutUInt(pSSM, pRem->cInvalidatedPages);
463 unsigned i;
464 for (i = 0; i < pRem->cInvalidatedPages; i++)
465 SSMR3PutGCPtr(pSSM, pRem->aGCPtrInvalidatedPages[i]);
466
467 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
468
469 return SSMR3PutU32(pSSM, ~0); /* terminator */
470}
471
472
473/**
474 * Execute state load operation.
475 *
476 * @returns VBox status code.
477 * @param pVM VM Handle.
478 * @param pSSM SSM operation handle.
479 * @param u32Version Data layout version.
480 */
481static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
482{
483 uint32_t u32Dummy;
484 uint32_t fRawRing0 = false;
485 LogFlow(("remR3Load:\n"));
486
487 /*
488 * Validate version.
489 */
490 if (u32Version != REM_SAVED_STATE_VERSION)
491 {
492 Log(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
493 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
494 }
495
496 /*
497 * Do a reset to be on the safe side...
498 */
499 REMR3Reset(pVM);
500
501 /*
502 * Ignore all ignorable notifications.
503 * (Not doing this will cause serious trouble.)
504 */
505 pVM->rem.s.fIgnoreAll = true;
506
507 /*
508 * Load the required CPU Env bits.
509 * (Not much because we're never in REM when doing the save.)
510 */
511 PREM pRem = &pVM->rem.s;
512 Assert(!pRem->fInREM);
513 SSMR3GetU32(pSSM, &pRem->Env.hflags);
514 SSMR3GetMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
515 uint32_t u32Sep;
516 int rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
517 if (VBOX_FAILURE(rc))
518 return rc;
519 if (u32Sep != ~0)
520 {
521 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
522 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
523 }
524
525 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
526 SSMR3GetUInt(pSSM, &fRawRing0);
527 if (fRawRing0)
528 pRem->Env.state |= CPU_RAW_RING0;
529
530 /*
531 * Load the REM stuff.
532 */
533 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
534 if (VBOX_FAILURE(rc))
535 return rc;
536 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
537 {
538 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
539 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
540 }
541 unsigned i;
542 for (i = 0; i < pRem->cInvalidatedPages; i++)
543 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
544
545 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
546 if (VBOX_FAILURE(rc))
547 return rc;
548
549 /* check the terminator. */
550 rc = SSMR3GetU32(pSSM, &u32Sep);
551 if (VBOX_FAILURE(rc))
552 return rc;
553 if (u32Sep != ~0)
554 {
555 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
556 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
557 }
558
559 /*
560 * Get the CPUID features.
561 */
562 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
563 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
564
565 /*
566 * Sync the Load Flush the TLB
567 */
568 tlb_flush(&pRem->Env, 1);
569
570#if 0 /** @todo r=bird: this doesn't make sense. WHY? */
571 /*
572 * Clear all lazy flags (only FPU sync for now).
573 */
574 CPUMGetAndClearFPUUsedREM(pVM);
575#endif
576
577 /*
578 * Stop ignoring ignornable notifications.
579 */
580 pVM->rem.s.fIgnoreAll = false;
581
582 return VINF_SUCCESS;
583}
584
585
586
587#undef LOG_GROUP
588#define LOG_GROUP LOG_GROUP_REM_RUN
589
590/**
591 * Single steps an instruction in recompiled mode.
592 *
593 * Before calling this function the REM state needs to be in sync with
594 * the VM. Call REMR3State() to perform the sync. It's only necessary
595 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
596 * and after calling REMR3StateBack().
597 *
598 * @returns VBox status code.
599 *
600 * @param pVM VM Handle.
601 */
602REMR3DECL(int) REMR3Step(PVM pVM)
603{
604 /*
605 * Lock the REM - we don't wanna have anyone interrupting us
606 * while stepping - and enabled single stepping. We also ignore
607 * pending interrupts and suchlike.
608 */
609 int interrupt_request = pVM->rem.s.Env.interrupt_request;
610 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
611 pVM->rem.s.Env.interrupt_request = 0;
612 cpu_single_step(&pVM->rem.s.Env, 1);
613
614 /*
615 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
616 */
617 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
618 bool fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
619
620 /*
621 * Execute and handle the return code.
622 * We execute without enabling the cpu tick, so on success we'll
623 * just flip it on and off to make sure it moves
624 */
625 int rc = cpu_exec(&pVM->rem.s.Env);
626 if (rc == EXCP_DEBUG)
627 {
628 TMCpuTickResume(pVM);
629 TMCpuTickPause(pVM);
630 TMVirtualResume(pVM);
631 TMVirtualPause(pVM);
632 rc = VINF_EM_DBG_STEPPED;
633 }
634 else
635 {
636 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
637 switch (rc)
638 {
639 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
640 case EXCP_HLT:
641 case EXCP_HALTED: rc = VINF_EM_HALT; break;
642 case EXCP_RC:
643 rc = pVM->rem.s.rc;
644 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
645 break;
646 default:
647 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
648 rc = VERR_INTERNAL_ERROR;
649 break;
650 }
651 }
652
653 /*
654 * Restore the stuff we changed to prevent interruption.
655 * Unlock the REM.
656 */
657 if (fBp)
658 {
659 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
660 Assert(rc2 == 0); NOREF(rc2);
661 }
662 cpu_single_step(&pVM->rem.s.Env, 0);
663 pVM->rem.s.Env.interrupt_request = interrupt_request;
664
665 return rc;
666}
667
668
669/**
670 * Set a breakpoint using the REM facilities.
671 *
672 * @returns VBox status code.
673 * @param pVM The VM handle.
674 * @param Address The breakpoint address.
675 * @thread The emulation thread.
676 */
677REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
678{
679 VM_ASSERT_EMT(pVM);
680 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
681 {
682 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
683 return VINF_SUCCESS;
684 }
685 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
686 return VERR_REM_NO_MORE_BP_SLOTS;
687}
688
689
690/**
691 * Clears a breakpoint set by REMR3BreakpointSet().
692 *
693 * @returns VBox status code.
694 * @param pVM The VM handle.
695 * @param Address The breakpoint address.
696 * @thread The emulation thread.
697 */
698REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
699{
700 VM_ASSERT_EMT(pVM);
701 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
702 {
703 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
704 return VINF_SUCCESS;
705 }
706 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
707 return VERR_REM_BP_NOT_FOUND;
708}
709
710
711/**
712 * Emulate an instruction.
713 *
714 * This function executes one instruction without letting anyone
715 * interrupt it. This is intended for being called while being in
716 * raw mode and thus will take care of all the state syncing between
717 * REM and the rest.
718 *
719 * @returns VBox status code.
720 * @param pVM VM handle.
721 */
722REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
723{
724 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", pVM->rem.s.pCtx->cs, pVM->rem.s.pCtx->eip));
725
726 /*
727 * Sync the state and enable single instruction / single stepping.
728 */
729 int rc = REMR3State(pVM);
730 if (VBOX_SUCCESS(rc))
731 {
732 int interrupt_request = pVM->rem.s.Env.interrupt_request;
733 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
734 Assert(!pVM->rem.s.Env.singlestep_enabled);
735#if 1
736
737 /*
738 * Now we set the execute single instruction flag and enter the cpu_exec loop.
739 */
740 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
741 rc = cpu_exec(&pVM->rem.s.Env);
742 switch (rc)
743 {
744 /*
745 * Executed without anything out of the way happening.
746 */
747 case EXCP_SINGLE_INSTR:
748 rc = VINF_EM_RESCHEDULE;
749 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
750 break;
751
752 /*
753 * If we take a trap or start servicing a pending interrupt, we might end up here.
754 * (Timer thread or some other thread wishing EMT's attention.)
755 */
756 case EXCP_INTERRUPT:
757 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
758 rc = VINF_EM_RESCHEDULE;
759 break;
760
761 /*
762 * Single step, we assume!
763 * If there was a breakpoint there we're fucked now.
764 */
765 case EXCP_DEBUG:
766 {
767 /* breakpoint or single step? */
768 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
769 int iBP;
770 rc = VINF_EM_DBG_STEPPED;
771 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
772 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
773 {
774 rc = VINF_EM_DBG_BREAKPOINT;
775 break;
776 }
777 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
778 break;
779 }
780
781 /*
782 * hlt instruction.
783 */
784 case EXCP_HLT:
785 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
786 rc = VINF_EM_HALT;
787 break;
788
789 /*
790 * The VM has halted.
791 */
792 case EXCP_HALTED:
793 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
794 rc = VINF_EM_HALT;
795 break;
796
797 /*
798 * Switch to RAW-mode.
799 */
800 case EXCP_EXECUTE_RAW:
801 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
802 rc = VINF_EM_RESCHEDULE_RAW;
803 break;
804
805 /*
806 * Switch to hardware accelerated RAW-mode.
807 */
808 case EXCP_EXECUTE_HWACC:
809 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
810 rc = VINF_EM_RESCHEDULE_HWACC;
811 break;
812
813 /*
814 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
815 */
816 case EXCP_RC:
817 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
818 rc = pVM->rem.s.rc;
819 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
820 break;
821
822 /*
823 * Figure out the rest when they arrive....
824 */
825 default:
826 AssertMsgFailed(("rc=%d\n", rc));
827 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
828 rc = VINF_EM_RESCHEDULE;
829 break;
830 }
831
832 /*
833 * Switch back the state.
834 */
835#else
836 pVM->rem.s.Env.interrupt_request = 0;
837 cpu_single_step(&pVM->rem.s.Env, 1);
838
839 /*
840 * Execute and handle the return code.
841 * We execute without enabling the cpu tick, so on success we'll
842 * just flip it on and off to make sure it moves.
843 *
844 * (We do not use emulate_single_instr() because that doesn't enter the
845 * right way in will cause serious trouble if a longjmp was attempted.)
846 */
847# ifdef DEBUG_bird
848 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
849# endif
850 int cTimesMax = 16384;
851 uint32_t eip = pVM->rem.s.Env.eip;
852 do
853 {
854 rc = cpu_exec(&pVM->rem.s.Env);
855
856 } while ( eip == pVM->rem.s.Env.eip
857 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
858 && --cTimesMax > 0);
859 switch (rc)
860 {
861 /*
862 * Single step, we assume!
863 * If there was a breakpoint there we're fucked now.
864 */
865 case EXCP_DEBUG:
866 {
867 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
868 rc = VINF_EM_RESCHEDULE;
869 break;
870 }
871
872 /*
873 * We cannot be interrupted!
874 */
875 case EXCP_INTERRUPT:
876 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
877 rc = VERR_INTERNAL_ERROR;
878 break;
879
880 /*
881 * hlt instruction.
882 */
883 case EXCP_HLT:
884 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
885 rc = VINF_EM_HALT;
886 break;
887
888 /*
889 * The VM has halted.
890 */
891 case EXCP_HALTED:
892 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
893 rc = VINF_EM_HALT;
894 break;
895
896 /*
897 * Switch to RAW-mode.
898 */
899 case EXCP_EXECUTE_RAW:
900 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
901 rc = VINF_EM_RESCHEDULE_RAW;
902 break;
903
904 /*
905 * Switch to hardware accelerated RAW-mode.
906 */
907 case EXCP_EXECUTE_HWACC:
908 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
909 rc = VINF_EM_RESCHEDULE_HWACC;
910 break;
911
912 /*
913 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
914 */
915 case EXCP_RC:
916 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
917 rc = pVM->rem.s.rc;
918 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
919 break;
920
921 /*
922 * Figure out the rest when they arrive....
923 */
924 default:
925 AssertMsgFailed(("rc=%d\n", rc));
926 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
927 rc = VINF_SUCCESS;
928 break;
929 }
930
931 /*
932 * Switch back the state.
933 */
934 cpu_single_step(&pVM->rem.s.Env, 0);
935#endif
936 pVM->rem.s.Env.interrupt_request = interrupt_request;
937 int rc2 = REMR3StateBack(pVM);
938 AssertRC(rc2);
939 }
940
941 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%08x)\n",
942 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
943 return rc;
944}
945
946
947/**
948 * Runs code in recompiled mode.
949 *
950 * Before calling this function the REM state needs to be in sync with
951 * the VM. Call REMR3State() to perform the sync. It's only necessary
952 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
953 * and after calling REMR3StateBack().
954 *
955 * @returns VBox status code.
956 *
957 * @param pVM VM Handle.
958 */
959REMR3DECL(int) REMR3Run(PVM pVM)
960{
961 Log2(("REMR3Run: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
962 Assert(pVM->rem.s.fInREM);
963////Keyboard / tb stuff:
964//if ( pVM->rem.s.Env.segs[R_CS].selector == 0xf000
965// && pVM->rem.s.Env.eip >= 0xe860
966// && pVM->rem.s.Env.eip <= 0xe880)
967// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
968////A20:
969//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x9020
970// && pVM->rem.s.Env.eip >= 0x970
971// && pVM->rem.s.Env.eip <= 0x9a0)
972// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
973////Speaker (port 61h)
974//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x0010
975// && ( (pVM->rem.s.Env.eip >= 0x90278c10 && pVM->rem.s.Env.eip <= 0x90278c30)
976// || (pVM->rem.s.Env.eip >= 0x9010e250 && pVM->rem.s.Env.eip <= 0x9010e260)
977// )
978// )
979// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
980//DBGFR3InfoLog(pVM, "timers", NULL);
981
982
983 int rc = cpu_exec(&pVM->rem.s.Env);
984 switch (rc)
985 {
986 /*
987 * This happens when the execution was interrupted
988 * by an external event, like pending timers.
989 */
990 case EXCP_INTERRUPT:
991 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
992 rc = VINF_SUCCESS;
993 break;
994
995 /*
996 * hlt instruction.
997 */
998 case EXCP_HLT:
999 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
1000 rc = VINF_EM_HALT;
1001 break;
1002
1003 /*
1004 * The VM has halted.
1005 */
1006 case EXCP_HALTED:
1007 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1008 rc = VINF_EM_HALT;
1009 break;
1010
1011 /*
1012 * Breakpoint/single step.
1013 */
1014 case EXCP_DEBUG:
1015 {
1016#if 0//def DEBUG_bird
1017 static int iBP = 0;
1018 printf("howdy, breakpoint! iBP=%d\n", iBP);
1019 switch (iBP)
1020 {
1021 case 0:
1022 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1023 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1024 //pVM->rem.s.Env.interrupt_request = 0;
1025 //pVM->rem.s.Env.exception_index = -1;
1026 //g_fInterruptDisabled = 1;
1027 rc = VINF_SUCCESS;
1028 asm("int3");
1029 break;
1030 default:
1031 asm("int3");
1032 break;
1033 }
1034 iBP++;
1035#else
1036 /* breakpoint or single step? */
1037 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1038 int iBP;
1039 rc = VINF_EM_DBG_STEPPED;
1040 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1041 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1042 {
1043 rc = VINF_EM_DBG_BREAKPOINT;
1044 break;
1045 }
1046 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1047#endif
1048 break;
1049 }
1050
1051 /*
1052 * Switch to RAW-mode.
1053 */
1054 case EXCP_EXECUTE_RAW:
1055 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1056 rc = VINF_EM_RESCHEDULE_RAW;
1057 break;
1058
1059 /*
1060 * Switch to hardware accelerated RAW-mode.
1061 */
1062 case EXCP_EXECUTE_HWACC:
1063 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1064 rc = VINF_EM_RESCHEDULE_HWACC;
1065 break;
1066
1067 /*
1068 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1069 */
1070 case EXCP_RC:
1071 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1072 rc = pVM->rem.s.rc;
1073 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1074 break;
1075
1076 /*
1077 * Figure out the rest when they arrive....
1078 */
1079 default:
1080 AssertMsgFailed(("rc=%d\n", rc));
1081 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1082 rc = VINF_SUCCESS;
1083 break;
1084 }
1085
1086 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%08x)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1087 return rc;
1088}
1089
1090
1091/**
1092 * Check if the cpu state is suitable for Raw execution.
1093 *
1094 * @returns boolean
1095 * @param env The CPU env struct.
1096 * @param eip The EIP to check this for (might differ from env->eip).
1097 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1098 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1099 *
1100 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1101 */
1102bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1103{
1104 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1105 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1106 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1107
1108 /* Update counter. */
1109 env->pVM->rem.s.cCanExecuteRaw++;
1110
1111 if (HWACCMIsEnabled(env->pVM))
1112 {
1113 env->state |= CPU_RAW_HWACC;
1114
1115 /*
1116 * Create partial context for HWACCMR3CanExecuteGuest
1117 */
1118 CPUMCTX Ctx;
1119 Ctx.cr0 = env->cr[0];
1120 Ctx.cr3 = env->cr[3];
1121 Ctx.cr4 = env->cr[4];
1122
1123 Ctx.tr = env->tr.selector;
1124 Ctx.trHid.u32Base = (uint32_t)env->tr.base;
1125 Ctx.trHid.u32Limit = env->tr.limit;
1126 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1127
1128 Ctx.idtr.cbIdt = env->idt.limit;
1129 Ctx.idtr.pIdt = (uint32_t)env->idt.base;
1130
1131 Ctx.eflags.u32 = env->eflags;
1132
1133 Ctx.cs = env->segs[R_CS].selector;
1134 Ctx.csHid.u32Base = (uint32_t)env->segs[R_CS].base;
1135 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1136 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1137
1138 Ctx.ss = env->segs[R_SS].selector;
1139 Ctx.ssHid.u32Base = (uint32_t)env->segs[R_SS].base;
1140 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1141 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1142
1143 /* Hardware accelerated raw-mode:
1144 *
1145 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1146 */
1147 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1148 {
1149 *piException = EXCP_EXECUTE_HWACC;
1150 return true;
1151 }
1152 return false;
1153 }
1154
1155 /*
1156 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1157 * or 32 bits protected mode ring 0 code
1158 *
1159 * The tests are ordered by the likelyhood of being true during normal execution.
1160 */
1161 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1162 {
1163 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1164 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1165 return false;
1166 }
1167
1168#ifndef VBOX_RAW_V86
1169 if (fFlags & VM_MASK) {
1170 STAM_COUNTER_INC(&gStatRefuseVM86);
1171 Log2(("raw mode refused: VM_MASK\n"));
1172 return false;
1173 }
1174#endif
1175
1176 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1177 {
1178#ifndef DEBUG_bird
1179 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1180#endif
1181 return false;
1182 }
1183
1184 if (env->singlestep_enabled)
1185 {
1186 //Log2(("raw mode refused: Single step\n"));
1187 return false;
1188 }
1189
1190 if (env->nb_breakpoints > 0)
1191 {
1192 //Log2(("raw mode refused: Breakpoints\n"));
1193 return false;
1194 }
1195
1196 uint32_t u32CR0 = env->cr[0];
1197 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1198 {
1199 STAM_COUNTER_INC(&gStatRefusePaging);
1200 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1201 return false;
1202 }
1203
1204 if (env->cr[4] & CR4_PAE_MASK)
1205 {
1206 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1207 {
1208 STAM_COUNTER_INC(&gStatRefusePAE);
1209 return false;
1210 }
1211 }
1212
1213 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1214 {
1215 if (!EMIsRawRing3Enabled(env->pVM))
1216 return false;
1217
1218 if (!(env->eflags & IF_MASK))
1219 {
1220 STAM_COUNTER_INC(&gStatRefuseIF0);
1221 Log2(("raw mode refused: IF (RawR3)\n"));
1222 return false;
1223 }
1224
1225 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1226 {
1227 STAM_COUNTER_INC(&gStatRefuseWP0);
1228 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1229 return false;
1230 }
1231 }
1232 else
1233 {
1234 if (!EMIsRawRing0Enabled(env->pVM))
1235 return false;
1236
1237 // Let's start with pure 32 bits ring 0 code first
1238 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1239 {
1240 STAM_COUNTER_INC(&gStatRefuseCode16);
1241 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1242 return false;
1243 }
1244
1245 // Only R0
1246 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1247 {
1248 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1249 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1250 return false;
1251 }
1252
1253 if (!(u32CR0 & CR0_WP_MASK))
1254 {
1255 STAM_COUNTER_INC(&gStatRefuseWP0);
1256 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1257 return false;
1258 }
1259
1260 if (PATMIsPatchGCAddr(env->pVM, eip))
1261 {
1262 Log2(("raw r0 mode forced: patch code\n"));
1263 *piException = EXCP_EXECUTE_RAW;
1264 return true;
1265 }
1266
1267#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1268 if (!(env->eflags & IF_MASK))
1269 {
1270 STAM_COUNTER_INC(&gStatRefuseIF0);
1271 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1272 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1273 return false;
1274 }
1275#endif
1276
1277 env->state |= CPU_RAW_RING0;
1278 }
1279
1280 /*
1281 * Don't reschedule the first time we're called, because there might be
1282 * special reasons why we're here that is not covered by the above checks.
1283 */
1284 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1285 {
1286 Log2(("raw mode refused: first scheduling\n"));
1287 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1288 return false;
1289 }
1290
1291 Assert(PGMPhysIsA20Enabled(env->pVM));
1292 *piException = EXCP_EXECUTE_RAW;
1293 return true;
1294}
1295
1296
1297/**
1298 * Fetches a code byte.
1299 *
1300 * @returns Success indicator (bool) for ease of use.
1301 * @param env The CPU environment structure.
1302 * @param GCPtrInstr Where to fetch code.
1303 * @param pu8Byte Where to store the byte on success
1304 */
1305bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1306{
1307 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1308 if (VBOX_SUCCESS(rc))
1309 return true;
1310 return false;
1311}
1312
1313
1314/**
1315 * Flush (or invalidate if you like) page table/dir entry.
1316 *
1317 * (invlpg instruction; tlb_flush_page)
1318 *
1319 * @param env Pointer to cpu environment.
1320 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1321 */
1322void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1323{
1324 PVM pVM = env->pVM;
1325
1326 /*
1327 * When we're replaying invlpg instructions or restoring a saved
1328 * state we disable this path.
1329 */
1330 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1331 return;
1332 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1333 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1334
1335 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1336
1337 /*
1338 * Update the control registers before calling PGMFlushPage.
1339 */
1340 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1341 pCtx->cr0 = env->cr[0];
1342 pCtx->cr3 = env->cr[3];
1343 pCtx->cr4 = env->cr[4];
1344
1345 /*
1346 * Let PGM do the rest.
1347 */
1348 int rc = PGMInvalidatePage(pVM, GCPtr);
1349 if (VBOX_FAILURE(rc))
1350 {
1351 AssertMsgFailed(("remR3FlushPage %x %x %x %d failed!!\n", GCPtr));
1352 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1353 }
1354 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1355}
1356
1357
1358/**
1359 * Called from tlb_protect_code in order to write monitor a code page.
1360 *
1361 * @param env Pointer to the CPU environment.
1362 * @param GCPtr Code page to monitor
1363 */
1364void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1365{
1366 Assert(env->pVM->rem.s.fInREM);
1367 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1368 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1369 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1370 && !(env->eflags & VM_MASK) /* no V86 mode */
1371 && !HWACCMIsEnabled(env->pVM))
1372 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1373}
1374
1375
1376/**
1377 * Called when the CPU is initialized, any of the CRx registers are changed or
1378 * when the A20 line is modified.
1379 *
1380 * @param env Pointer to the CPU environment.
1381 * @param fGlobal Set if the flush is global.
1382 */
1383void remR3FlushTLB(CPUState *env, bool fGlobal)
1384{
1385 PVM pVM = env->pVM;
1386
1387 /*
1388 * When we're replaying invlpg instructions or restoring a saved
1389 * state we disable this path.
1390 */
1391 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1392 return;
1393 Assert(pVM->rem.s.fInREM);
1394
1395 /*
1396 * The caller doesn't check cr4, so we have to do that for ourselves.
1397 */
1398 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1399 fGlobal = true;
1400 Log(("remR3FlushTLB: CR0=%VGp CR3=%VGp CR4=%VGp %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1401
1402 /*
1403 * Update the control registers before calling PGMR3FlushTLB.
1404 */
1405 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1406 pCtx->cr0 = env->cr[0];
1407 pCtx->cr3 = env->cr[3];
1408 pCtx->cr4 = env->cr[4];
1409
1410 /*
1411 * Let PGM do the rest.
1412 */
1413 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1414}
1415
1416
1417/**
1418 * Called when any of the cr0, cr4 or efer registers is updated.
1419 *
1420 * @param env Pointer to the CPU environment.
1421 */
1422void remR3ChangeCpuMode(CPUState *env)
1423{
1424 int rc;
1425 PVM pVM = env->pVM;
1426
1427 /*
1428 * When we're replaying loads or restoring a saved
1429 * state this path is disabled.
1430 */
1431 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1432 return;
1433 Assert(pVM->rem.s.fInREM);
1434
1435 /*
1436 * Update the control registers before calling PGMR3ChangeMode()
1437 * as it may need to map whatever cr3 is pointing to.
1438 */
1439 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1440 pCtx->cr0 = env->cr[0];
1441 pCtx->cr3 = env->cr[3];
1442 pCtx->cr4 = env->cr[4];
1443
1444#ifdef TARGET_X86_64
1445 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1446 if (rc != VINF_SUCCESS)
1447 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1448#else
1449 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1450 if (rc != VINF_SUCCESS)
1451 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1452#endif
1453}
1454
1455
1456/**
1457 * Called from compiled code to run dma.
1458 *
1459 * @param env Pointer to the CPU environment.
1460 */
1461void remR3DmaRun(CPUState *env)
1462{
1463 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1464 PDMR3DmaRun(env->pVM);
1465 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1466}
1467
1468
1469/**
1470 * Called from compiled code to schedule pending timers in VMM
1471 *
1472 * @param env Pointer to the CPU environment.
1473 */
1474void remR3TimersRun(CPUState *env)
1475{
1476 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1477 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1478 TMR3TimerQueuesDo(env->pVM);
1479 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1480 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1481}
1482
1483
1484/**
1485 * Record trap occurance
1486 *
1487 * @returns VBox status code
1488 * @param env Pointer to the CPU environment.
1489 * @param uTrap Trap nr
1490 * @param uErrorCode Error code
1491 * @param pvNextEIP Next EIP
1492 */
1493int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1494{
1495 PVM pVM = env->pVM;
1496#ifdef VBOX_WITH_STATISTICS
1497 static STAMCOUNTER s_aStatTrap[255];
1498 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1499#endif
1500
1501#ifdef VBOX_WITH_STATISTICS
1502 if (uTrap < 255)
1503 {
1504 if (!s_aRegisters[uTrap])
1505 {
1506 s_aRegisters[uTrap] = true;
1507 char szStatName[64];
1508 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1509 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1510 }
1511 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1512 }
1513#endif
1514 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1515 if( uTrap < 0x20
1516 && (env->cr[0] & X86_CR0_PE)
1517 && !(env->eflags & X86_EFL_VM))
1518 {
1519#ifdef DEBUG
1520 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1521#endif
1522 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1523 {
1524 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1525 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1526 return VERR_REM_TOO_MANY_TRAPS;
1527 }
1528 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1529 pVM->rem.s.cPendingExceptions = 1;
1530 pVM->rem.s.uPendingException = uTrap;
1531 pVM->rem.s.uPendingExcptEIP = env->eip;
1532 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1533 }
1534 else
1535 {
1536 pVM->rem.s.cPendingExceptions = 0;
1537 pVM->rem.s.uPendingException = uTrap;
1538 pVM->rem.s.uPendingExcptEIP = env->eip;
1539 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1540 }
1541 return VINF_SUCCESS;
1542}
1543
1544
1545/*
1546 * Clear current active trap
1547 *
1548 * @param pVM VM Handle.
1549 */
1550void remR3TrapClear(PVM pVM)
1551{
1552 pVM->rem.s.cPendingExceptions = 0;
1553 pVM->rem.s.uPendingException = 0;
1554 pVM->rem.s.uPendingExcptEIP = 0;
1555 pVM->rem.s.uPendingExcptCR2 = 0;
1556}
1557
1558
1559/*
1560 * Record previous call instruction addresses
1561 *
1562 * @param env Pointer to the CPU environment.
1563 */
1564void remR3RecordCall(CPUState *env)
1565{
1566 CSAMR3RecordCallAddress(env->pVM, env->eip);
1567}
1568
1569
1570/**
1571 * Syncs the internal REM state with the VM.
1572 *
1573 * This must be called before REMR3Run() is invoked whenever when the REM
1574 * state is not up to date. Calling it several times in a row is not
1575 * permitted.
1576 *
1577 * @returns VBox status code.
1578 *
1579 * @param pVM VM Handle.
1580 *
1581 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1582 * no do this since the majority of the callers don't want any unnecessary of events
1583 * pending that would immediatly interrupt execution.
1584 */
1585REMR3DECL(int) REMR3State(PVM pVM)
1586{
1587 Log2(("REMR3State:\n"));
1588 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1589 register const CPUMCTX *pCtx = pVM->rem.s.pCtx;
1590 register unsigned fFlags;
1591 bool fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1592
1593 Assert(!pVM->rem.s.fInREM);
1594 pVM->rem.s.fInStateSync = true;
1595
1596 /*
1597 * Copy the registers which requires no special handling.
1598 */
1599 Assert(R_EAX == 0);
1600 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1601 Assert(R_ECX == 1);
1602 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1603 Assert(R_EDX == 2);
1604 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1605 Assert(R_EBX == 3);
1606 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1607 Assert(R_ESP == 4);
1608 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1609 Assert(R_EBP == 5);
1610 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1611 Assert(R_ESI == 6);
1612 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1613 Assert(R_EDI == 7);
1614 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1615 pVM->rem.s.Env.eip = pCtx->eip;
1616
1617 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1618
1619 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1620
1621 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1622 pVM->rem.s.Env.dr[0] = pCtx->dr0;
1623 pVM->rem.s.Env.dr[1] = pCtx->dr1;
1624 pVM->rem.s.Env.dr[2] = pCtx->dr2;
1625 pVM->rem.s.Env.dr[3] = pCtx->dr3;
1626 pVM->rem.s.Env.dr[4] = pCtx->dr4;
1627 pVM->rem.s.Env.dr[5] = pCtx->dr5;
1628 pVM->rem.s.Env.dr[6] = pCtx->dr6;
1629 pVM->rem.s.Env.dr[7] = pCtx->dr7;
1630
1631 /*
1632 * Clear the halted hidden flag (the interrupt waking up the CPU can
1633 * have been dispatched in raw mode).
1634 */
1635 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1636
1637 /*
1638 * Replay invlpg?
1639 */
1640 if (pVM->rem.s.cInvalidatedPages)
1641 {
1642 pVM->rem.s.fIgnoreInvlPg = true;
1643 RTUINT i;
1644 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1645 {
1646 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1647 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1648 }
1649 pVM->rem.s.fIgnoreInvlPg = false;
1650 pVM->rem.s.cInvalidatedPages = 0;
1651 }
1652
1653 /*
1654 * Registers which are rarely changed and require special handling / order when changed.
1655 */
1656 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1657 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1658 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1659 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR))
1660 {
1661 if (fFlags & CPUM_CHANGED_FPU_REM)
1662 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1663
1664 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1665 {
1666 pVM->rem.s.fIgnoreCR3Load = true;
1667 tlb_flush(&pVM->rem.s.Env, true);
1668 pVM->rem.s.fIgnoreCR3Load = false;
1669 }
1670
1671 if (fFlags & CPUM_CHANGED_CR4)
1672 {
1673 pVM->rem.s.fIgnoreCR3Load = true;
1674 pVM->rem.s.fIgnoreCpuMode = true;
1675 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1676 pVM->rem.s.fIgnoreCpuMode = false;
1677 pVM->rem.s.fIgnoreCR3Load = false;
1678 }
1679
1680 if (fFlags & CPUM_CHANGED_CR0)
1681 {
1682 pVM->rem.s.fIgnoreCR3Load = true;
1683 pVM->rem.s.fIgnoreCpuMode = true;
1684 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1685 pVM->rem.s.fIgnoreCpuMode = false;
1686 pVM->rem.s.fIgnoreCR3Load = false;
1687 }
1688
1689 if (fFlags & CPUM_CHANGED_CR3)
1690 {
1691 pVM->rem.s.fIgnoreCR3Load = true;
1692 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1693 pVM->rem.s.fIgnoreCR3Load = false;
1694 }
1695
1696 if (fFlags & CPUM_CHANGED_GDTR)
1697 {
1698 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1699 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1700 }
1701
1702 if (fFlags & CPUM_CHANGED_IDTR)
1703 {
1704 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1705 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1706 }
1707
1708 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1709 {
1710 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1711 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1712 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1713 }
1714
1715 if (fFlags & CPUM_CHANGED_LDTR)
1716 {
1717 if (fHiddenSelRegsValid)
1718 {
1719 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1720 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u32Base;
1721 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1722 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1723 }
1724 else
1725 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1726 }
1727
1728 if (fFlags & CPUM_CHANGED_TR)
1729 {
1730 if (fHiddenSelRegsValid)
1731 {
1732 pVM->rem.s.Env.tr.selector = pCtx->tr;
1733 pVM->rem.s.Env.tr.base = pCtx->trHid.u32Base;
1734 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1735 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1736 }
1737 else
1738 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1739
1740 /** @note do_interrupt will fault if the busy flag is still set.... */
1741 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1742 }
1743 }
1744
1745 /*
1746 * Update selector registers.
1747 * This must be done *after* we've synced gdt, ldt and crX registers
1748 * since we're reading the GDT/LDT om sync_seg. This will happen with
1749 * saved state which takes a quick dip into rawmode for instance.
1750 */
1751 /*
1752 * Stack; Note first check this one as the CPL might have changed. The
1753 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1754 */
1755
1756 if (fHiddenSelRegsValid)
1757 {
1758 /* The hidden selector registers are valid in the CPU context. */
1759 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1760
1761 /* Set current CPL */
1762 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1763
1764 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u32Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1765 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u32Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1766 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u32Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1767 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u32Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1768 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u32Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1769 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u32Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1770 }
1771 else
1772 {
1773 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1774 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1775 {
1776 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1777
1778 cpu_x86_set_cpl(&pVM->rem.s.Env, (pCtx->eflags.Bits.u1VM) ? 3 : (pCtx->ss & 3));
1779 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1780#ifdef VBOX_WITH_STATISTICS
1781 if (pVM->rem.s.Env.segs[R_SS].newselector)
1782 {
1783 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1784 }
1785#endif
1786 }
1787 else
1788 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1789
1790 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1791 {
1792 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1793 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1794#ifdef VBOX_WITH_STATISTICS
1795 if (pVM->rem.s.Env.segs[R_ES].newselector)
1796 {
1797 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1798 }
1799#endif
1800 }
1801 else
1802 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1803
1804 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1805 {
1806 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1807 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1808#ifdef VBOX_WITH_STATISTICS
1809 if (pVM->rem.s.Env.segs[R_CS].newselector)
1810 {
1811 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1812 }
1813#endif
1814 }
1815 else
1816 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1817
1818 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1819 {
1820 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1821 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1822#ifdef VBOX_WITH_STATISTICS
1823 if (pVM->rem.s.Env.segs[R_DS].newselector)
1824 {
1825 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1826 }
1827#endif
1828 }
1829 else
1830 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1831
1832 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1833 * be the same but not the base/limit. */
1834 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1835 {
1836 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1837 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1838#ifdef VBOX_WITH_STATISTICS
1839 if (pVM->rem.s.Env.segs[R_FS].newselector)
1840 {
1841 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1842 }
1843#endif
1844 }
1845 else
1846 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1847
1848 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1849 {
1850 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1851 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1852#ifdef VBOX_WITH_STATISTICS
1853 if (pVM->rem.s.Env.segs[R_GS].newselector)
1854 {
1855 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1856 }
1857#endif
1858 }
1859 else
1860 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1861 }
1862
1863 /* Update MSRs. */
1864 pVM->rem.s.Env.efer = pCtx->msrEFER;
1865 pVM->rem.s.Env.star = pCtx->msrSTAR;
1866 pVM->rem.s.Env.pat = pCtx->msrPAT;
1867#ifdef TARGET_X86_64
1868 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1869 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1870 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1871 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1872#endif
1873 /* Note that FS_BASE & GS_BASE are already synced; QEmu keeps them in the hidden selector registers.
1874 * So we basically assume the hidden registers are in sync with these MSRs (vt-x & amd-v). Correct??
1875 */
1876
1877 /*
1878 * Check for traps.
1879 */
1880 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1881 TRPMEVENT enmType;
1882 uint8_t u8TrapNo;
1883 int rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
1884 if (VBOX_SUCCESS(rc))
1885 {
1886#ifdef DEBUG
1887 if (u8TrapNo == 0x80)
1888 {
1889 remR3DumpLnxSyscall(pVM);
1890 remR3DumpOBsdSyscall(pVM);
1891 }
1892#endif
1893
1894 pVM->rem.s.Env.exception_index = u8TrapNo;
1895 if (enmType != TRPM_SOFTWARE_INT)
1896 {
1897 pVM->rem.s.Env.exception_is_int = 0;
1898 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
1899 }
1900 else
1901 {
1902 /*
1903 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
1904 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
1905 * for int03 and into.
1906 */
1907 pVM->rem.s.Env.exception_is_int = 1;
1908 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 2;
1909 /* int 3 may be generated by one-byte 0xcc */
1910 if (u8TrapNo == 3)
1911 {
1912 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xcc)
1913 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1914 }
1915 /* int 4 may be generated by one-byte 0xce */
1916 else if (u8TrapNo == 4)
1917 {
1918 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xce)
1919 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1920 }
1921 }
1922
1923 /* get error code and cr2 if needed. */
1924 switch (u8TrapNo)
1925 {
1926 case 0x0e:
1927 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
1928 /* fallthru */
1929 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
1930 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
1931 break;
1932
1933 case 0x11: case 0x08:
1934 default:
1935 pVM->rem.s.Env.error_code = 0;
1936 break;
1937 }
1938
1939 /*
1940 * We can now reset the active trap since the recompiler is gonna have a go at it.
1941 */
1942 rc = TRPMResetTrap(pVM);
1943 AssertRC(rc);
1944 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
1945 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
1946 }
1947
1948 /*
1949 * Clear old interrupt request flags; Check for pending hardware interrupts.
1950 * (See @remark for why we don't check for other FFs.)
1951 */
1952 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
1953 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
1954 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
1955 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
1956
1957 /*
1958 * We're now in REM mode.
1959 */
1960 pVM->rem.s.fInREM = true;
1961 pVM->rem.s.fInStateSync = false;
1962 pVM->rem.s.cCanExecuteRaw = 0;
1963 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
1964 Log2(("REMR3State: returns VINF_SUCCESS\n"));
1965 return VINF_SUCCESS;
1966}
1967
1968
1969/**
1970 * Syncs back changes in the REM state to the the VM state.
1971 *
1972 * This must be called after invoking REMR3Run().
1973 * Calling it several times in a row is not permitted.
1974 *
1975 * @returns VBox status code.
1976 *
1977 * @param pVM VM Handle.
1978 */
1979REMR3DECL(int) REMR3StateBack(PVM pVM)
1980{
1981 Log2(("REMR3StateBack:\n"));
1982 Assert(pVM->rem.s.fInREM);
1983 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
1984 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
1985
1986 /*
1987 * Copy back the registers.
1988 * This is done in the order they are declared in the CPUMCTX structure.
1989 */
1990
1991 /** @todo FOP */
1992 /** @todo FPUIP */
1993 /** @todo CS */
1994 /** @todo FPUDP */
1995 /** @todo DS */
1996 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
1997 pCtx->fpu.MXCSR = 0;
1998 pCtx->fpu.MXCSR_MASK = 0;
1999
2000 /** @todo check if FPU/XMM was actually used in the recompiler */
2001 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2002//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2003
2004 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2005 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2006 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2007 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2008 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2009 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2010 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2011
2012 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2013 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2014
2015#ifdef VBOX_WITH_STATISTICS
2016 if (pVM->rem.s.Env.segs[R_SS].newselector)
2017 {
2018 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2019 }
2020 if (pVM->rem.s.Env.segs[R_GS].newselector)
2021 {
2022 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2023 }
2024 if (pVM->rem.s.Env.segs[R_FS].newselector)
2025 {
2026 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2027 }
2028 if (pVM->rem.s.Env.segs[R_ES].newselector)
2029 {
2030 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2031 }
2032 if (pVM->rem.s.Env.segs[R_DS].newselector)
2033 {
2034 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2035 }
2036 if (pVM->rem.s.Env.segs[R_CS].newselector)
2037 {
2038 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2039 }
2040#endif
2041 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2042 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2043 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2044 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2045 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2046
2047 pCtx->eip = pVM->rem.s.Env.eip;
2048 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2049
2050 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2051 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2052 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2053 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2054
2055 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2056 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2057 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2058 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2059 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2060 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2061 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2062 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2063
2064 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2065 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2066 {
2067 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2068 STAM_COUNTER_INC(&gStatREMGDTChange);
2069 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2070 }
2071
2072 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2073 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2074 {
2075 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2076 STAM_COUNTER_INC(&gStatREMIDTChange);
2077 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2078 }
2079
2080 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2081 {
2082 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2083 STAM_COUNTER_INC(&gStatREMLDTRChange);
2084 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2085 }
2086 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2087 {
2088 pCtx->tr = pVM->rem.s.Env.tr.selector;
2089 STAM_COUNTER_INC(&gStatREMTRChange);
2090 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2091 }
2092
2093 /** @todo These values could still be out of sync! */
2094 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2095 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2096 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2097 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2098
2099 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2100 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2101 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2102
2103 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2104 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2105 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2106
2107 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2108 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2109 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2110
2111 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2112 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2113 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2114
2115 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2116 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2117 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2118
2119 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2120 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2121 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2122
2123 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2124 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2125 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2126
2127 /* Sysenter MSR */
2128 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2129 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2130 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2131
2132 /* System MSRs. */
2133 pCtx->msrEFER = pVM->rem.s.Env.efer;
2134 pCtx->msrSTAR = pVM->rem.s.Env.star;
2135 pCtx->msrPAT = pVM->rem.s.Env.pat;
2136#ifdef TARGET_X86_64
2137 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2138 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2139 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2140 pCtx->msrFSBASE = pVM->rem.s.Env.segs[R_FS].base;
2141 pCtx->msrGSBASE = pVM->rem.s.Env.segs[R_GS].base;
2142 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2143#endif
2144
2145 remR3TrapClear(pVM);
2146
2147 /*
2148 * Check for traps.
2149 */
2150 if ( pVM->rem.s.Env.exception_index >= 0
2151 && pVM->rem.s.Env.exception_index < 256)
2152 {
2153 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2154 int rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2155 AssertRC(rc);
2156 switch (pVM->rem.s.Env.exception_index)
2157 {
2158 case 0x0e:
2159 TRPMSetFaultAddress(pVM, pCtx->cr2);
2160 /* fallthru */
2161 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2162 case 0x11: case 0x08: /* 0 */
2163 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2164 break;
2165 }
2166
2167 }
2168
2169 /*
2170 * We're not longer in REM mode.
2171 */
2172 pVM->rem.s.fInREM = false;
2173 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2174 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2175 return VINF_SUCCESS;
2176}
2177
2178
2179/**
2180 * This is called by the disassembler when it wants to update the cpu state
2181 * before for instance doing a register dump.
2182 */
2183static void remR3StateUpdate(PVM pVM)
2184{
2185 Assert(pVM->rem.s.fInREM);
2186 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2187
2188 /*
2189 * Copy back the registers.
2190 * This is done in the order they are declared in the CPUMCTX structure.
2191 */
2192
2193 /** @todo FOP */
2194 /** @todo FPUIP */
2195 /** @todo CS */
2196 /** @todo FPUDP */
2197 /** @todo DS */
2198 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2199 pCtx->fpu.MXCSR = 0;
2200 pCtx->fpu.MXCSR_MASK = 0;
2201
2202 /** @todo check if FPU/XMM was actually used in the recompiler */
2203 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2204//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2205
2206 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2207 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2208 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2209 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2210 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2211 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2212 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2213
2214 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2215 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2216
2217 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2218 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2219 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2220 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2221 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2222
2223 pCtx->eip = pVM->rem.s.Env.eip;
2224 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2225
2226 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2227 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2228 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2229 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2230
2231 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2232 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2233 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2234 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2235 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2236 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2237 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2238 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2239
2240 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2241 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2242 {
2243 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2244 STAM_COUNTER_INC(&gStatREMGDTChange);
2245 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2246 }
2247
2248 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2249 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2250 {
2251 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2252 STAM_COUNTER_INC(&gStatREMIDTChange);
2253 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2254 }
2255
2256 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2257 {
2258 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2259 STAM_COUNTER_INC(&gStatREMLDTRChange);
2260 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2261 }
2262 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2263 {
2264 pCtx->tr = pVM->rem.s.Env.tr.selector;
2265 STAM_COUNTER_INC(&gStatREMTRChange);
2266 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2267 }
2268
2269 /** @todo These values could still be out of sync! */
2270 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2271 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2272 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2273 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2274
2275 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2276 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2277 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2278
2279 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2280 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2281 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2282
2283 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2284 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2285 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2286
2287 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2288 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2289 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2290
2291 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2292 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2293 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2294
2295 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2296 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2297 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2298
2299 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2300 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2301 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2302
2303 /* Sysenter MSR */
2304 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2305 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2306 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2307}
2308
2309
2310/**
2311 * Update the VMM state information if we're currently in REM.
2312 *
2313 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2314 * we're currently executing in REM and the VMM state is invalid. This method will of
2315 * course check that we're executing in REM before syncing any data over to the VMM.
2316 *
2317 * @param pVM The VM handle.
2318 */
2319REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2320{
2321 if (pVM->rem.s.fInREM)
2322 remR3StateUpdate(pVM);
2323}
2324
2325
2326#undef LOG_GROUP
2327#define LOG_GROUP LOG_GROUP_REM
2328
2329
2330/**
2331 * Notify the recompiler about Address Gate 20 state change.
2332 *
2333 * This notification is required since A20 gate changes are
2334 * initialized from a device driver and the VM might just as
2335 * well be in REM mode as in RAW mode.
2336 *
2337 * @param pVM VM handle.
2338 * @param fEnable True if the gate should be enabled.
2339 * False if the gate should be disabled.
2340 */
2341REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2342{
2343 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2344 VM_ASSERT_EMT(pVM);
2345 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2346}
2347
2348
2349/**
2350 * Replays the invalidated recorded pages.
2351 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2352 *
2353 * @param pVM VM handle.
2354 */
2355REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2356{
2357 VM_ASSERT_EMT(pVM);
2358
2359 /*
2360 * Sync the required registers.
2361 */
2362 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2363 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2364 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2365 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2366
2367 /*
2368 * Replay the flushes.
2369 */
2370 pVM->rem.s.fIgnoreInvlPg = true;
2371 RTUINT i;
2372 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2373 {
2374 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2375 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2376 }
2377 pVM->rem.s.fIgnoreInvlPg = false;
2378 pVM->rem.s.cInvalidatedPages = 0;
2379}
2380
2381
2382/**
2383 * Replays the invalidated recorded pages.
2384 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2385 *
2386 * @param pVM VM handle.
2387 */
2388REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2389{
2390 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2391 VM_ASSERT_EMT(pVM);
2392
2393 /*
2394 * Replay the flushes.
2395 */
2396 RTUINT i;
2397 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2398 pVM->rem.s.cHandlerNotifications = 0;
2399 for (i = 0; i < c; i++)
2400 {
2401 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2402 switch (pRec->enmKind)
2403 {
2404 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2405 REMR3NotifyHandlerPhysicalRegister(pVM,
2406 pRec->u.PhysicalRegister.enmType,
2407 pRec->u.PhysicalRegister.GCPhys,
2408 pRec->u.PhysicalRegister.cb,
2409 pRec->u.PhysicalRegister.fHasHCHandler);
2410 break;
2411
2412 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2413 REMR3NotifyHandlerPhysicalDeregister(pVM,
2414 pRec->u.PhysicalDeregister.enmType,
2415 pRec->u.PhysicalDeregister.GCPhys,
2416 pRec->u.PhysicalDeregister.cb,
2417 pRec->u.PhysicalDeregister.fHasHCHandler,
2418 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2419 break;
2420
2421 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2422 REMR3NotifyHandlerPhysicalModify(pVM,
2423 pRec->u.PhysicalModify.enmType,
2424 pRec->u.PhysicalModify.GCPhysOld,
2425 pRec->u.PhysicalModify.GCPhysNew,
2426 pRec->u.PhysicalModify.cb,
2427 pRec->u.PhysicalModify.fHasHCHandler,
2428 pRec->u.PhysicalModify.fRestoreAsRAM);
2429 break;
2430
2431 default:
2432 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2433 break;
2434 }
2435 }
2436}
2437
2438
2439/**
2440 * Notify REM about changed code page.
2441 *
2442 * @returns VBox status code.
2443 * @param pVM VM handle.
2444 * @param pvCodePage Code page address
2445 */
2446REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2447{
2448 int rc;
2449 RTGCPHYS PhysGC;
2450 uint64_t flags;
2451
2452 VM_ASSERT_EMT(pVM);
2453
2454 /*
2455 * Get the physical page address.
2456 */
2457 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2458 if (rc == VINF_SUCCESS)
2459 {
2460 /*
2461 * Sync the required registers and flush the whole page.
2462 * (Easier to do the whole page than notifying it about each physical
2463 * byte that was changed.
2464 */
2465 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2466 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2467 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2468 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2469
2470 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2471 }
2472 return VINF_SUCCESS;
2473}
2474
2475
2476/**
2477 * Notification about a successful MMR3PhysRegister() call.
2478 *
2479 * @param pVM VM handle.
2480 * @param GCPhys The physical address the RAM.
2481 * @param cb Size of the memory.
2482 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2483 */
2484REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, unsigned fFlags)
2485{
2486 Log(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d fFlags=%d\n", GCPhys, cb, fFlags));
2487 VM_ASSERT_EMT(pVM);
2488
2489 /*
2490 * Validate input - we trust the caller.
2491 */
2492 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2493 Assert(cb);
2494 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2495
2496 /*
2497 * Base ram?
2498 */
2499 if (!GCPhys)
2500 {
2501 phys_ram_size = cb;
2502 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2503#ifndef VBOX_STRICT
2504 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2505 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2506#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2507 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2508 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2509 uint32_t cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2510 int rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2511 AssertRC(rc);
2512 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2513#endif
2514 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2515 }
2516
2517 /*
2518 * Register the ram.
2519 */
2520 Assert(!pVM->rem.s.fIgnoreAll);
2521 pVM->rem.s.fIgnoreAll = true;
2522
2523#ifdef VBOX_WITH_NEW_PHYS_CODE
2524 if (fFlags & MM_RAM_FLAGS_RESERVED)
2525 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2526 else
2527 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2528#else
2529 if (!GCPhys)
2530 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2531 else
2532 {
2533 if (fFlags & MM_RAM_FLAGS_RESERVED)
2534 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2535 else
2536 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2537 }
2538#endif
2539 Assert(pVM->rem.s.fIgnoreAll);
2540 pVM->rem.s.fIgnoreAll = false;
2541}
2542
2543#ifndef VBOX_WITH_NEW_PHYS_CODE
2544
2545/**
2546 * Notification about a successful PGMR3PhysRegisterChunk() call.
2547 *
2548 * @param pVM VM handle.
2549 * @param GCPhys The physical address the RAM.
2550 * @param cb Size of the memory.
2551 * @param pvRam The HC address of the RAM.
2552 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2553 */
2554REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2555{
2556 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2557 VM_ASSERT_EMT(pVM);
2558
2559 /*
2560 * Validate input - we trust the caller.
2561 */
2562 Assert(pvRam);
2563 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2564 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2565 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2566 Assert(fFlags == 0 /* normal RAM */);
2567 Assert(!pVM->rem.s.fIgnoreAll);
2568 pVM->rem.s.fIgnoreAll = true;
2569
2570 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2571
2572 Assert(pVM->rem.s.fIgnoreAll);
2573 pVM->rem.s.fIgnoreAll = false;
2574}
2575
2576
2577/**
2578 * Grows dynamically allocated guest RAM.
2579 * Will raise a fatal error if the operation fails.
2580 *
2581 * @param physaddr The physical address.
2582 */
2583void remR3GrowDynRange(unsigned long physaddr)
2584{
2585 int rc;
2586 PVM pVM = cpu_single_env->pVM;
2587
2588 Log(("remR3GrowDynRange %VGp\n", physaddr));
2589 const RTGCPHYS GCPhys = physaddr;
2590 rc = PGM3PhysGrowRange(pVM, &GCPhys);
2591 if (VBOX_SUCCESS(rc))
2592 return;
2593
2594 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2595 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2596 AssertFatalFailed();
2597}
2598
2599#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2600
2601/**
2602 * Notification about a successful MMR3PhysRomRegister() call.
2603 *
2604 * @param pVM VM handle.
2605 * @param GCPhys The physical address of the ROM.
2606 * @param cb The size of the ROM.
2607 * @param pvCopy Pointer to the ROM copy.
2608 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2609 * This function will be called when ever the protection of the
2610 * shadow ROM changes (at reset and end of POST).
2611 */
2612REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2613{
2614 Log(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p fShadow=%RTbool\n", GCPhys, cb, pvCopy, fShadow));
2615 VM_ASSERT_EMT(pVM);
2616
2617 /*
2618 * Validate input - we trust the caller.
2619 */
2620 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2621 Assert(cb);
2622 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2623 Assert(pvCopy);
2624 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2625
2626 /*
2627 * Register the rom.
2628 */
2629 Assert(!pVM->rem.s.fIgnoreAll);
2630 pVM->rem.s.fIgnoreAll = true;
2631
2632 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2633
2634 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2635
2636 Assert(pVM->rem.s.fIgnoreAll);
2637 pVM->rem.s.fIgnoreAll = false;
2638}
2639
2640
2641/**
2642 * Notification about a successful memory deregistration or reservation.
2643 *
2644 * @param pVM VM Handle.
2645 * @param GCPhys Start physical address.
2646 * @param cb The size of the range.
2647 * @todo Rename to REMR3NotifyPhysRamDeregister (for MMIO2) as we won't
2648 * reserve any memory soon.
2649 */
2650REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2651{
2652 Log(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2653 VM_ASSERT_EMT(pVM);
2654
2655 /*
2656 * Validate input - we trust the caller.
2657 */
2658 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2659 Assert(cb);
2660 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2661
2662 /*
2663 * Unassigning the memory.
2664 */
2665 Assert(!pVM->rem.s.fIgnoreAll);
2666 pVM->rem.s.fIgnoreAll = true;
2667
2668 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2669
2670 Assert(pVM->rem.s.fIgnoreAll);
2671 pVM->rem.s.fIgnoreAll = false;
2672}
2673
2674
2675/**
2676 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2677 *
2678 * @param pVM VM Handle.
2679 * @param enmType Handler type.
2680 * @param GCPhys Handler range address.
2681 * @param cb Size of the handler range.
2682 * @param fHasHCHandler Set if the handler has a HC callback function.
2683 *
2684 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2685 * Handler memory type to memory which has no HC handler.
2686 */
2687REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2688{
2689 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d\n",
2690 enmType, GCPhys, cb, fHasHCHandler));
2691 VM_ASSERT_EMT(pVM);
2692 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2693 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2694
2695 if (pVM->rem.s.cHandlerNotifications)
2696 REMR3ReplayHandlerNotifications(pVM);
2697
2698 Assert(!pVM->rem.s.fIgnoreAll);
2699 pVM->rem.s.fIgnoreAll = true;
2700
2701 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2702 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2703 else if (fHasHCHandler)
2704 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2705
2706 Assert(pVM->rem.s.fIgnoreAll);
2707 pVM->rem.s.fIgnoreAll = false;
2708}
2709
2710
2711/**
2712 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2713 *
2714 * @param pVM VM Handle.
2715 * @param enmType Handler type.
2716 * @param GCPhys Handler range address.
2717 * @param cb Size of the handler range.
2718 * @param fHasHCHandler Set if the handler has a HC callback function.
2719 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2720 */
2721REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2722{
2723 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%VGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2724 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2725 VM_ASSERT_EMT(pVM);
2726
2727 if (pVM->rem.s.cHandlerNotifications)
2728 REMR3ReplayHandlerNotifications(pVM);
2729
2730 Assert(!pVM->rem.s.fIgnoreAll);
2731 pVM->rem.s.fIgnoreAll = true;
2732
2733/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
2734 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2735 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2736 else if (fHasHCHandler)
2737 {
2738 if (!fRestoreAsRAM)
2739 {
2740 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2741 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2742 }
2743 else
2744 {
2745 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2746 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2747 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2748 }
2749 }
2750
2751 Assert(pVM->rem.s.fIgnoreAll);
2752 pVM->rem.s.fIgnoreAll = false;
2753}
2754
2755
2756/**
2757 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2758 *
2759 * @param pVM VM Handle.
2760 * @param enmType Handler type.
2761 * @param GCPhysOld Old handler range address.
2762 * @param GCPhysNew New handler range address.
2763 * @param cb Size of the handler range.
2764 * @param fHasHCHandler Set if the handler has a HC callback function.
2765 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2766 */
2767REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2768{
2769 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%d fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
2770 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
2771 VM_ASSERT_EMT(pVM);
2772 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2773
2774 if (pVM->rem.s.cHandlerNotifications)
2775 REMR3ReplayHandlerNotifications(pVM);
2776
2777 if (fHasHCHandler)
2778 {
2779 Assert(!pVM->rem.s.fIgnoreAll);
2780 pVM->rem.s.fIgnoreAll = true;
2781
2782 /*
2783 * Reset the old page.
2784 */
2785 if (!fRestoreAsRAM)
2786 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2787 else
2788 {
2789 /* This is not perfect, but it'll do for PD monitoring... */
2790 Assert(cb == PAGE_SIZE);
2791 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2792 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2793 }
2794
2795 /*
2796 * Update the new page.
2797 */
2798 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2799 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2800 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2801
2802 Assert(pVM->rem.s.fIgnoreAll);
2803 pVM->rem.s.fIgnoreAll = false;
2804 }
2805}
2806
2807
2808/**
2809 * Checks if we're handling access to this page or not.
2810 *
2811 * @returns true if we're trapping access.
2812 * @returns false if we aren't.
2813 * @param pVM The VM handle.
2814 * @param GCPhys The physical address.
2815 *
2816 * @remark This function will only work correctly in VBOX_STRICT builds!
2817 */
2818REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
2819{
2820#ifdef VBOX_STRICT
2821 if (pVM->rem.s.cHandlerNotifications)
2822 REMR3ReplayHandlerNotifications(pVM);
2823
2824 unsigned long off = get_phys_page_offset(GCPhys);
2825 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
2826 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
2827 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
2828#else
2829 return false;
2830#endif
2831}
2832
2833
2834/**
2835 * Deals with a rare case in get_phys_addr_code where the code
2836 * is being monitored.
2837 *
2838 * It could also be an MMIO page, in which case we will raise a fatal error.
2839 *
2840 * @returns The physical address corresponding to addr.
2841 * @param env The cpu environment.
2842 * @param addr The virtual address.
2843 * @param pTLBEntry The TLB entry.
2844 */
2845target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
2846{
2847 PVM pVM = env->pVM;
2848 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
2849 {
2850 target_ulong ret = pTLBEntry->addend + addr;
2851 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv addr_code=%VGv addend=%VGp ret=%VGp\n",
2852 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
2853 return ret;
2854 }
2855 LogRel(("\nTrying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
2856 "*** handlers\n",
2857 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
2858 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
2859 LogRel(("*** mmio\n"));
2860 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
2861 LogRel(("*** phys\n"));
2862 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
2863 cpu_abort(env, "Trying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
2864 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
2865 AssertFatalFailed();
2866}
2867
2868
2869/** Validate the physical address passed to the read functions.
2870 * Useful for finding non-guest-ram reads/writes. */
2871#if 1 /* disable if it becomes bothersome... */
2872# define VBOX_CHECK_ADDR(GCPhys) AssertMsg(PGMPhysIsGCPhysValid(cpu_single_env->pVM, (GCPhys)), ("%VGp\n", (GCPhys)))
2873#else
2874# define VBOX_CHECK_ADDR(GCPhys) do { } while (0)
2875#endif
2876
2877/**
2878 * Read guest RAM and ROM.
2879 *
2880 * @param SrcGCPhys The source address (guest physical).
2881 * @param pvDst The destination address.
2882 * @param cb Number of bytes
2883 */
2884void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
2885{
2886 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2887 VBOX_CHECK_ADDR(SrcGCPhys);
2888 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
2889 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2890}
2891
2892
2893/**
2894 * Read guest RAM and ROM, unsigned 8-bit.
2895 *
2896 * @param SrcGCPhys The source address (guest physical).
2897 */
2898uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
2899{
2900 uint8_t val;
2901 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2902 VBOX_CHECK_ADDR(SrcGCPhys);
2903 val = PGMR3PhysReadByte(cpu_single_env->pVM, SrcGCPhys);
2904 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2905 return val;
2906}
2907
2908
2909/**
2910 * Read guest RAM and ROM, signed 8-bit.
2911 *
2912 * @param SrcGCPhys The source address (guest physical).
2913 */
2914int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
2915{
2916 int8_t val;
2917 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2918 VBOX_CHECK_ADDR(SrcGCPhys);
2919 val = PGMR3PhysReadByte(cpu_single_env->pVM, SrcGCPhys);
2920 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2921 return val;
2922}
2923
2924
2925/**
2926 * Read guest RAM and ROM, unsigned 16-bit.
2927 *
2928 * @param SrcGCPhys The source address (guest physical).
2929 */
2930uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
2931{
2932 uint16_t val;
2933 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2934 VBOX_CHECK_ADDR(SrcGCPhys);
2935 val = PGMR3PhysReadWord(cpu_single_env->pVM, SrcGCPhys);
2936 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2937 return val;
2938}
2939
2940
2941/**
2942 * Read guest RAM and ROM, signed 16-bit.
2943 *
2944 * @param SrcGCPhys The source address (guest physical).
2945 */
2946int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
2947{
2948 uint16_t val;
2949 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2950 VBOX_CHECK_ADDR(SrcGCPhys);
2951 val = PGMR3PhysReadWord(cpu_single_env->pVM, SrcGCPhys);
2952 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2953 return val;
2954}
2955
2956
2957/**
2958 * Read guest RAM and ROM, unsigned 32-bit.
2959 *
2960 * @param SrcGCPhys The source address (guest physical).
2961 */
2962uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
2963{
2964 uint32_t val;
2965 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2966 VBOX_CHECK_ADDR(SrcGCPhys);
2967 val = PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys);
2968 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2969 return val;
2970}
2971
2972
2973/**
2974 * Read guest RAM and ROM, signed 32-bit.
2975 *
2976 * @param SrcGCPhys The source address (guest physical).
2977 */
2978int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
2979{
2980 int32_t val;
2981 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2982 VBOX_CHECK_ADDR(SrcGCPhys);
2983 val = PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys);
2984 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2985 return val;
2986}
2987
2988
2989/**
2990 * Read guest RAM and ROM, unsigned 64-bit.
2991 *
2992 * @param SrcGCPhys The source address (guest physical).
2993 */
2994uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
2995{
2996 uint64_t val;
2997 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2998 VBOX_CHECK_ADDR(SrcGCPhys);
2999 val = PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys)
3000 | ((uint64_t)PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys + 4) << 32); /** @todo fix me! */
3001 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3002 return val;
3003}
3004
3005
3006/**
3007 * Write guest RAM.
3008 *
3009 * @param DstGCPhys The destination address (guest physical).
3010 * @param pvSrc The source address.
3011 * @param cb Number of bytes to write
3012 */
3013void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3014{
3015 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3016 VBOX_CHECK_ADDR(DstGCPhys);
3017 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3018 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3019}
3020
3021
3022/**
3023 * Write guest RAM, unsigned 8-bit.
3024 *
3025 * @param DstGCPhys The destination address (guest physical).
3026 * @param val Value
3027 */
3028void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3029{
3030 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3031 VBOX_CHECK_ADDR(DstGCPhys);
3032 PGMR3PhysWriteByte(cpu_single_env->pVM, DstGCPhys, val);
3033 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3034}
3035
3036
3037/**
3038 * Write guest RAM, unsigned 8-bit.
3039 *
3040 * @param DstGCPhys The destination address (guest physical).
3041 * @param val Value
3042 */
3043void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3044{
3045 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3046 VBOX_CHECK_ADDR(DstGCPhys);
3047 PGMR3PhysWriteWord(cpu_single_env->pVM, DstGCPhys, val);
3048 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3049}
3050
3051
3052/**
3053 * Write guest RAM, unsigned 32-bit.
3054 *
3055 * @param DstGCPhys The destination address (guest physical).
3056 * @param val Value
3057 */
3058void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3059{
3060 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3061 VBOX_CHECK_ADDR(DstGCPhys);
3062 PGMR3PhysWriteDword(cpu_single_env->pVM, DstGCPhys, val);
3063 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3064}
3065
3066
3067/**
3068 * Write guest RAM, unsigned 64-bit.
3069 *
3070 * @param DstGCPhys The destination address (guest physical).
3071 * @param val Value
3072 */
3073void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3074{
3075 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3076 VBOX_CHECK_ADDR(DstGCPhys);
3077 PGMR3PhysWriteDword(cpu_single_env->pVM, DstGCPhys, (uint32_t)val); /** @todo add U64 interface. */
3078 PGMR3PhysWriteDword(cpu_single_env->pVM, DstGCPhys + 4, val >> 32);
3079 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3080}
3081
3082#undef LOG_GROUP
3083#define LOG_GROUP LOG_GROUP_REM_MMIO
3084
3085/** Read MMIO memory. */
3086static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3087{
3088 uint32_t u32 = 0;
3089 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3090 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3091 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3092 return u32;
3093}
3094
3095/** Read MMIO memory. */
3096static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3097{
3098 uint32_t u32 = 0;
3099 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3100 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3101 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3102 return u32;
3103}
3104
3105/** Read MMIO memory. */
3106static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3107{
3108 uint32_t u32 = 0;
3109 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3110 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3111 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3112 return u32;
3113}
3114
3115/** Write to MMIO memory. */
3116static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3117{
3118 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3119 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3120 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3121}
3122
3123/** Write to MMIO memory. */
3124static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3125{
3126 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3127 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3128 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3129}
3130
3131/** Write to MMIO memory. */
3132static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3133{
3134 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3135 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3136 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3137}
3138
3139
3140#undef LOG_GROUP
3141#define LOG_GROUP LOG_GROUP_REM_HANDLER
3142
3143/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3144
3145static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3146{
3147 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3148 uint8_t u8;
3149 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3150 return u8;
3151}
3152
3153static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3154{
3155 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3156 uint16_t u16;
3157 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3158 return u16;
3159}
3160
3161static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3162{
3163 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3164 uint32_t u32;
3165 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3166 return u32;
3167}
3168
3169static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3170{
3171 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3172 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3173}
3174
3175static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3176{
3177 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3178 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3179}
3180
3181static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3182{
3183 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3184 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3185}
3186
3187/* -+- disassembly -+- */
3188
3189#undef LOG_GROUP
3190#define LOG_GROUP LOG_GROUP_REM_DISAS
3191
3192
3193/**
3194 * Enables or disables singled stepped disassembly.
3195 *
3196 * @returns VBox status code.
3197 * @param pVM VM handle.
3198 * @param fEnable To enable set this flag, to disable clear it.
3199 */
3200static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3201{
3202 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3203 VM_ASSERT_EMT(pVM);
3204
3205 if (fEnable)
3206 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3207 else
3208 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3209 return VINF_SUCCESS;
3210}
3211
3212
3213/**
3214 * Enables or disables singled stepped disassembly.
3215 *
3216 * @returns VBox status code.
3217 * @param pVM VM handle.
3218 * @param fEnable To enable set this flag, to disable clear it.
3219 */
3220REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3221{
3222 PVMREQ pReq;
3223 int rc;
3224
3225 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3226 if (VM_IS_EMT(pVM))
3227 return remR3DisasEnableStepping(pVM, fEnable);
3228
3229 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3230 AssertRC(rc);
3231 if (VBOX_SUCCESS(rc))
3232 rc = pReq->iStatus;
3233 VMR3ReqFree(pReq);
3234 return rc;
3235}
3236
3237
3238#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3239/**
3240 * External Debugger Command: .remstep [on|off|1|0]
3241 */
3242static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3243{
3244 bool fEnable;
3245 int rc;
3246
3247 /* print status */
3248 if (cArgs == 0)
3249 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3250 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3251
3252 /* convert the argument and change the mode. */
3253 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3254 if (VBOX_FAILURE(rc))
3255 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3256 rc = REMR3DisasEnableStepping(pVM, fEnable);
3257 if (VBOX_FAILURE(rc))
3258 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3259 return rc;
3260}
3261#endif
3262
3263
3264/**
3265 * Disassembles n instructions and prints them to the log.
3266 *
3267 * @returns Success indicator.
3268 * @param env Pointer to the recompiler CPU structure.
3269 * @param f32BitCode Indicates that whether or not the code should
3270 * be disassembled as 16 or 32 bit. If -1 the CS
3271 * selector will be inspected.
3272 * @param nrInstructions Nr of instructions to disassemble
3273 * @param pszPrefix
3274 * @remark not currently used for anything but ad-hoc debugging.
3275 */
3276bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3277{
3278 int i;
3279
3280 /*
3281 * Determin 16/32 bit mode.
3282 */
3283 if (f32BitCode == -1)
3284 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3285
3286 /*
3287 * Convert cs:eip to host context address.
3288 * We don't care to much about cross page correctness presently.
3289 */
3290 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3291 void *pvPC;
3292 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3293 {
3294 Assert(PGMGetGuestMode(env->pVM) < PGMMODE_AMD64);
3295
3296 /* convert eip to physical address. */
3297 int rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3298 GCPtrPC,
3299 env->cr[3],
3300 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3301 &pvPC);
3302 if (VBOX_FAILURE(rc))
3303 {
3304 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3305 return false;
3306 pvPC = (char *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3307 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3308 }
3309 }
3310 else
3311 {
3312 /* physical address */
3313 int rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16, &pvPC);
3314 if (VBOX_FAILURE(rc))
3315 return false;
3316 }
3317
3318 /*
3319 * Disassemble.
3320 */
3321 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
3322 DISCPUSTATE Cpu;
3323 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3324 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3325 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3326 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3327 //Cpu.dwUserData[2] = GCPtrPC;
3328
3329 for (i=0;i<nrInstructions;i++)
3330 {
3331 char szOutput[256];
3332 uint32_t cbOp;
3333 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3334 return false;
3335 if (pszPrefix)
3336 Log(("%s: %s", pszPrefix, szOutput));
3337 else
3338 Log(("%s", szOutput));
3339
3340 pvPC += cbOp;
3341 }
3342 return true;
3343}
3344
3345
3346/** @todo need to test the new code, using the old code in the mean while. */
3347#define USE_OLD_DUMP_AND_DISASSEMBLY
3348
3349/**
3350 * Disassembles one instruction and prints it to the log.
3351 *
3352 * @returns Success indicator.
3353 * @param env Pointer to the recompiler CPU structure.
3354 * @param f32BitCode Indicates that whether or not the code should
3355 * be disassembled as 16 or 32 bit. If -1 the CS
3356 * selector will be inspected.
3357 * @param pszPrefix
3358 */
3359bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3360{
3361#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3362 PVM pVM = env->pVM;
3363
3364 /*
3365 * Determin 16/32 bit mode.
3366 */
3367 if (f32BitCode == -1)
3368 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3369
3370 /*
3371 * Log registers
3372 */
3373 if (LogIs2Enabled())
3374 {
3375 remR3StateUpdate(pVM);
3376 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3377 }
3378
3379 /*
3380 * Convert cs:eip to host context address.
3381 * We don't care to much about cross page correctness presently.
3382 */
3383 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3384 void *pvPC;
3385 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3386 {
3387 /* convert eip to physical address. */
3388 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
3389 GCPtrPC,
3390 env->cr[3],
3391 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3392 &pvPC);
3393 if (VBOX_FAILURE(rc))
3394 {
3395 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3396 return false;
3397 pvPC = (char *)PATMR3QueryPatchMemHC(pVM, NULL)
3398 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3399 }
3400 }
3401 else
3402 {
3403
3404 /* physical address */
3405 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, &pvPC);
3406 if (VBOX_FAILURE(rc))
3407 return false;
3408 }
3409
3410 /*
3411 * Disassemble.
3412 */
3413 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
3414 DISCPUSTATE Cpu;
3415 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3416 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3417 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3418 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3419 //Cpu.dwUserData[2] = GCPtrPC;
3420 char szOutput[256];
3421 uint32_t cbOp;
3422 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3423 return false;
3424
3425 if (!f32BitCode)
3426 {
3427 if (pszPrefix)
3428 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3429 else
3430 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3431 }
3432 else
3433 {
3434 if (pszPrefix)
3435 Log(("%s: %s", pszPrefix, szOutput));
3436 else
3437 Log(("%s", szOutput));
3438 }
3439 return true;
3440
3441#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3442 PVM pVM = env->pVM;
3443 const bool fLog = LogIsEnabled();
3444 const bool fLog2 = LogIs2Enabled();
3445 int rc = VINF_SUCCESS;
3446
3447 /*
3448 * Don't bother if there ain't any log output to do.
3449 */
3450 if (!fLog && !fLog2)
3451 return true;
3452
3453 /*
3454 * Update the state so DBGF reads the correct register values.
3455 */
3456 remR3StateUpdate(pVM);
3457
3458 /*
3459 * Log registers if requested.
3460 */
3461 if (!fLog2)
3462 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3463
3464 /*
3465 * Disassemble to log.
3466 */
3467 if (fLog)
3468 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3469
3470 return VBOX_SUCCESS(rc);
3471#endif
3472}
3473
3474
3475/**
3476 * Disassemble recompiled code.
3477 *
3478 * @param phFileIgnored Ignored, logfile usually.
3479 * @param pvCode Pointer to the code block.
3480 * @param cb Size of the code block.
3481 */
3482void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3483{
3484 if (LogIs2Enabled())
3485 {
3486 unsigned off = 0;
3487 char szOutput[256];
3488 DISCPUSTATE Cpu;
3489
3490 memset(&Cpu, 0, sizeof(Cpu));
3491#ifdef RT_ARCH_X86
3492 Cpu.mode = CPUMODE_32BIT;
3493#else
3494 Cpu.mode = CPUMODE_64BIT;
3495#endif
3496
3497 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3498 while (off < cb)
3499 {
3500 uint32_t cbInstr;
3501 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3502 RTLogPrintf("%s", szOutput);
3503 else
3504 {
3505 RTLogPrintf("disas error\n");
3506 cbInstr = 1;
3507#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3508 break;
3509#endif
3510 }
3511 off += cbInstr;
3512 }
3513 }
3514 NOREF(phFileIgnored);
3515}
3516
3517
3518/**
3519 * Disassemble guest code.
3520 *
3521 * @param phFileIgnored Ignored, logfile usually.
3522 * @param uCode The guest address of the code to disassemble. (flat?)
3523 * @param cb Number of bytes to disassemble.
3524 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3525 */
3526void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3527{
3528 if (LogIs2Enabled())
3529 {
3530 PVM pVM = cpu_single_env->pVM;
3531
3532 /*
3533 * Update the state so DBGF reads the correct register values (flags).
3534 */
3535 remR3StateUpdate(pVM);
3536
3537 /*
3538 * Do the disassembling.
3539 */
3540 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
3541 RTSEL cs = cpu_single_env->segs[R_CS].selector;
3542 RTGCUINTPTR eip = uCode - cpu_single_env->segs[R_CS].base;
3543 for (;;)
3544 {
3545 char szBuf[256];
3546 uint32_t cbInstr;
3547 int rc = DBGFR3DisasInstrEx(pVM,
3548 cs,
3549 eip,
3550 0,
3551 szBuf, sizeof(szBuf),
3552 &cbInstr);
3553 if (VBOX_SUCCESS(rc))
3554 RTLogPrintf("%VGp %s\n", uCode, szBuf);
3555 else
3556 {
3557 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
3558 cbInstr = 1;
3559 }
3560
3561 /* next */
3562 if (cb <= cbInstr)
3563 break;
3564 cb -= cbInstr;
3565 uCode += cbInstr;
3566 eip += cbInstr;
3567 }
3568 }
3569 NOREF(phFileIgnored);
3570}
3571
3572
3573/**
3574 * Looks up a guest symbol.
3575 *
3576 * @returns Pointer to symbol name. This is a static buffer.
3577 * @param orig_addr The address in question.
3578 */
3579const char *lookup_symbol(target_ulong orig_addr)
3580{
3581 RTGCINTPTR off = 0;
3582 DBGFSYMBOL Sym;
3583 PVM pVM = cpu_single_env->pVM;
3584 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3585 if (VBOX_SUCCESS(rc))
3586 {
3587 static char szSym[sizeof(Sym.szName) + 48];
3588 if (!off)
3589 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3590 else if (off > 0)
3591 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3592 else
3593 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3594 return szSym;
3595 }
3596 return "<N/A>";
3597}
3598
3599
3600#undef LOG_GROUP
3601#define LOG_GROUP LOG_GROUP_REM
3602
3603
3604/* -+- FF notifications -+- */
3605
3606
3607/**
3608 * Notification about a pending interrupt.
3609 *
3610 * @param pVM VM Handle.
3611 * @param u8Interrupt Interrupt
3612 * @thread The emulation thread.
3613 */
3614REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3615{
3616 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3617 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3618}
3619
3620/**
3621 * Notification about a pending interrupt.
3622 *
3623 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3624 * @param pVM VM Handle.
3625 * @thread The emulation thread.
3626 */
3627REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3628{
3629 return pVM->rem.s.u32PendingInterrupt;
3630}
3631
3632/**
3633 * Notification about the interrupt FF being set.
3634 *
3635 * @param pVM VM Handle.
3636 * @thread The emulation thread.
3637 */
3638REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3639{
3640 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3641 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3642 if (pVM->rem.s.fInREM)
3643 {
3644 if (VM_IS_EMT(pVM))
3645 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3646 else
3647 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_HARD);
3648 }
3649}
3650
3651
3652/**
3653 * Notification about the interrupt FF being set.
3654 *
3655 * @param pVM VM Handle.
3656 * @thread The emulation thread.
3657 */
3658REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3659{
3660 LogFlow(("REMR3NotifyInterruptClear:\n"));
3661 VM_ASSERT_EMT(pVM);
3662 if (pVM->rem.s.fInREM)
3663 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3664}
3665
3666
3667/**
3668 * Notification about pending timer(s).
3669 *
3670 * @param pVM VM Handle.
3671 * @thread Any.
3672 */
3673REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3674{
3675#ifndef DEBUG_bird
3676 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3677#endif
3678 if (pVM->rem.s.fInREM)
3679 {
3680 if (VM_IS_EMT(pVM))
3681 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3682 else
3683 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_TIMER);
3684 }
3685}
3686
3687
3688/**
3689 * Notification about pending DMA transfers.
3690 *
3691 * @param pVM VM Handle.
3692 * @thread Any.
3693 */
3694REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3695{
3696 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3697 if (pVM->rem.s.fInREM)
3698 {
3699 if (VM_IS_EMT(pVM))
3700 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3701 else
3702 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_DMA);
3703 }
3704}
3705
3706
3707/**
3708 * Notification about pending timer(s).
3709 *
3710 * @param pVM VM Handle.
3711 * @thread Any.
3712 */
3713REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3714{
3715 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3716 if (pVM->rem.s.fInREM)
3717 {
3718 if (VM_IS_EMT(pVM))
3719 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3720 else
3721 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3722 }
3723}
3724
3725
3726/**
3727 * Notification about pending FF set by an external thread.
3728 *
3729 * @param pVM VM handle.
3730 * @thread Any.
3731 */
3732REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3733{
3734 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3735 if (pVM->rem.s.fInREM)
3736 {
3737 if (VM_IS_EMT(pVM))
3738 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3739 else
3740 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3741 }
3742}
3743
3744
3745#ifdef VBOX_WITH_STATISTICS
3746void remR3ProfileStart(int statcode)
3747{
3748 STAMPROFILEADV *pStat;
3749 switch(statcode)
3750 {
3751 case STATS_EMULATE_SINGLE_INSTR:
3752 pStat = &gStatExecuteSingleInstr;
3753 break;
3754 case STATS_QEMU_COMPILATION:
3755 pStat = &gStatCompilationQEmu;
3756 break;
3757 case STATS_QEMU_RUN_EMULATED_CODE:
3758 pStat = &gStatRunCodeQEmu;
3759 break;
3760 case STATS_QEMU_TOTAL:
3761 pStat = &gStatTotalTimeQEmu;
3762 break;
3763 case STATS_QEMU_RUN_TIMERS:
3764 pStat = &gStatTimers;
3765 break;
3766 case STATS_TLB_LOOKUP:
3767 pStat= &gStatTBLookup;
3768 break;
3769 case STATS_IRQ_HANDLING:
3770 pStat= &gStatIRQ;
3771 break;
3772 case STATS_RAW_CHECK:
3773 pStat = &gStatRawCheck;
3774 break;
3775
3776 default:
3777 AssertMsgFailed(("unknown stat %d\n", statcode));
3778 return;
3779 }
3780 STAM_PROFILE_ADV_START(pStat, a);
3781}
3782
3783
3784void remR3ProfileStop(int statcode)
3785{
3786 STAMPROFILEADV *pStat;
3787 switch(statcode)
3788 {
3789 case STATS_EMULATE_SINGLE_INSTR:
3790 pStat = &gStatExecuteSingleInstr;
3791 break;
3792 case STATS_QEMU_COMPILATION:
3793 pStat = &gStatCompilationQEmu;
3794 break;
3795 case STATS_QEMU_RUN_EMULATED_CODE:
3796 pStat = &gStatRunCodeQEmu;
3797 break;
3798 case STATS_QEMU_TOTAL:
3799 pStat = &gStatTotalTimeQEmu;
3800 break;
3801 case STATS_QEMU_RUN_TIMERS:
3802 pStat = &gStatTimers;
3803 break;
3804 case STATS_TLB_LOOKUP:
3805 pStat= &gStatTBLookup;
3806 break;
3807 case STATS_IRQ_HANDLING:
3808 pStat= &gStatIRQ;
3809 break;
3810 case STATS_RAW_CHECK:
3811 pStat = &gStatRawCheck;
3812 break;
3813 default:
3814 AssertMsgFailed(("unknown stat %d\n", statcode));
3815 return;
3816 }
3817 STAM_PROFILE_ADV_STOP(pStat, a);
3818}
3819#endif
3820
3821/**
3822 * Raise an RC, force rem exit.
3823 *
3824 * @param pVM VM handle.
3825 * @param rc The rc.
3826 */
3827void remR3RaiseRC(PVM pVM, int rc)
3828{
3829 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
3830 Assert(pVM->rem.s.fInREM);
3831 VM_ASSERT_EMT(pVM);
3832 pVM->rem.s.rc = rc;
3833 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
3834}
3835
3836
3837/* -+- timers -+- */
3838
3839uint64_t cpu_get_tsc(CPUX86State *env)
3840{
3841 STAM_COUNTER_INC(&gStatCpuGetTSC);
3842 return TMCpuTickGet(env->pVM);
3843}
3844
3845
3846/* -+- interrupts -+- */
3847
3848void cpu_set_ferr(CPUX86State *env)
3849{
3850 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
3851 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
3852}
3853
3854int cpu_get_pic_interrupt(CPUState *env)
3855{
3856 uint8_t u8Interrupt;
3857 int rc;
3858
3859 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
3860 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
3861 * with the (a)pic.
3862 */
3863 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
3864 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
3865 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
3866 * remove this kludge. */
3867 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
3868 {
3869 rc = VINF_SUCCESS;
3870 Assert(env->pVM->rem.s.u32PendingInterrupt >= 0 && env->pVM->rem.s.u32PendingInterrupt <= 255);
3871 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
3872 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
3873 }
3874 else
3875 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
3876
3877 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
3878 if (VBOX_SUCCESS(rc))
3879 {
3880 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
3881 env->interrupt_request |= CPU_INTERRUPT_HARD;
3882 return u8Interrupt;
3883 }
3884 return -1;
3885}
3886
3887
3888/* -+- local apic -+- */
3889
3890void cpu_set_apic_base(CPUX86State *env, uint64_t val)
3891{
3892 int rc = PDMApicSetBase(env->pVM, val);
3893 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
3894}
3895
3896uint64_t cpu_get_apic_base(CPUX86State *env)
3897{
3898 uint64_t u64;
3899 int rc = PDMApicGetBase(env->pVM, &u64);
3900 if (VBOX_SUCCESS(rc))
3901 {
3902 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
3903 return u64;
3904 }
3905 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
3906 return 0;
3907}
3908
3909void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
3910{
3911 int rc = PDMApicSetTPR(env->pVM, val);
3912 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
3913}
3914
3915uint8_t cpu_get_apic_tpr(CPUX86State *env)
3916{
3917 uint8_t u8;
3918 int rc = PDMApicGetTPR(env->pVM, &u8);
3919 if (VBOX_SUCCESS(rc))
3920 {
3921 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
3922 return u8;
3923 }
3924 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
3925 return 0;
3926}
3927
3928
3929/* -+- I/O Ports -+- */
3930
3931#undef LOG_GROUP
3932#define LOG_GROUP LOG_GROUP_REM_IOPORT
3933
3934void cpu_outb(CPUState *env, int addr, int val)
3935{
3936 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
3937 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
3938
3939 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
3940 if (RT_LIKELY(rc == VINF_SUCCESS))
3941 return;
3942 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
3943 {
3944 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
3945 remR3RaiseRC(env->pVM, rc);
3946 return;
3947 }
3948 remAbort(rc, __FUNCTION__);
3949}
3950
3951void cpu_outw(CPUState *env, int addr, int val)
3952{
3953 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
3954 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
3955 if (RT_LIKELY(rc == VINF_SUCCESS))
3956 return;
3957 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
3958 {
3959 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
3960 remR3RaiseRC(env->pVM, rc);
3961 return;
3962 }
3963 remAbort(rc, __FUNCTION__);
3964}
3965
3966void cpu_outl(CPUState *env, int addr, int val)
3967{
3968 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
3969 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
3970 if (RT_LIKELY(rc == VINF_SUCCESS))
3971 return;
3972 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
3973 {
3974 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
3975 remR3RaiseRC(env->pVM, rc);
3976 return;
3977 }
3978 remAbort(rc, __FUNCTION__);
3979}
3980
3981int cpu_inb(CPUState *env, int addr)
3982{
3983 uint32_t u32 = 0;
3984 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
3985 if (RT_LIKELY(rc == VINF_SUCCESS))
3986 {
3987 if (/*addr != 0x61 && */addr != 0x71)
3988 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
3989 return (int)u32;
3990 }
3991 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
3992 {
3993 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
3994 remR3RaiseRC(env->pVM, rc);
3995 return (int)u32;
3996 }
3997 remAbort(rc, __FUNCTION__);
3998 return 0xff;
3999}
4000
4001int cpu_inw(CPUState *env, int addr)
4002{
4003 uint32_t u32 = 0;
4004 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4005 if (RT_LIKELY(rc == VINF_SUCCESS))
4006 {
4007 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4008 return (int)u32;
4009 }
4010 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4011 {
4012 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4013 remR3RaiseRC(env->pVM, rc);
4014 return (int)u32;
4015 }
4016 remAbort(rc, __FUNCTION__);
4017 return 0xffff;
4018}
4019
4020int cpu_inl(CPUState *env, int addr)
4021{
4022 uint32_t u32 = 0;
4023 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4024 if (RT_LIKELY(rc == VINF_SUCCESS))
4025 {
4026//if (addr==0x01f0 && u32 == 0x6b6d)
4027// loglevel = ~0;
4028 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4029 return (int)u32;
4030 }
4031 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4032 {
4033 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4034 remR3RaiseRC(env->pVM, rc);
4035 return (int)u32;
4036 }
4037 remAbort(rc, __FUNCTION__);
4038 return 0xffffffff;
4039}
4040
4041#undef LOG_GROUP
4042#define LOG_GROUP LOG_GROUP_REM
4043
4044
4045/* -+- helpers and misc other interfaces -+- */
4046
4047/**
4048 * Perform the CPUID instruction.
4049 *
4050 * ASMCpuId cannot be invoked from some source files where this is used because of global
4051 * register allocations.
4052 *
4053 * @param env Pointer to the recompiler CPU structure.
4054 * @param uOperator CPUID operation (eax).
4055 * @param pvEAX Where to store eax.
4056 * @param pvEBX Where to store ebx.
4057 * @param pvECX Where to store ecx.
4058 * @param pvEDX Where to store edx.
4059 */
4060void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4061{
4062 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4063}
4064
4065
4066#if 0 /* not used */
4067/**
4068 * Interface for qemu hardware to report back fatal errors.
4069 */
4070void hw_error(const char *pszFormat, ...)
4071{
4072 /*
4073 * Bitch about it.
4074 */
4075 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4076 * this in my Odin32 tree at home! */
4077 va_list args;
4078 va_start(args, pszFormat);
4079 RTLogPrintf("fatal error in virtual hardware:");
4080 RTLogPrintfV(pszFormat, args);
4081 va_end(args);
4082 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4083
4084 /*
4085 * If we're in REM context we'll sync back the state before 'jumping' to
4086 * the EMs failure handling.
4087 */
4088 PVM pVM = cpu_single_env->pVM;
4089 if (pVM->rem.s.fInREM)
4090 REMR3StateBack(pVM);
4091 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4092 AssertMsgFailed(("EMR3FatalError returned!\n"));
4093}
4094#endif
4095
4096/**
4097 * Interface for the qemu cpu to report unhandled situation
4098 * raising a fatal VM error.
4099 */
4100void cpu_abort(CPUState *env, const char *pszFormat, ...)
4101{
4102 /*
4103 * Bitch about it.
4104 */
4105 RTLogFlags(NULL, "nodisabled nobuffered");
4106 va_list args;
4107 va_start(args, pszFormat);
4108 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4109 va_end(args);
4110 va_start(args, pszFormat);
4111 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4112 va_end(args);
4113
4114 /*
4115 * If we're in REM context we'll sync back the state before 'jumping' to
4116 * the EMs failure handling.
4117 */
4118 PVM pVM = cpu_single_env->pVM;
4119 if (pVM->rem.s.fInREM)
4120 REMR3StateBack(pVM);
4121 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4122 AssertMsgFailed(("EMR3FatalError returned!\n"));
4123}
4124
4125
4126/**
4127 * Aborts the VM.
4128 *
4129 * @param rc VBox error code.
4130 * @param pszTip Hint about why/when this happend.
4131 */
4132static void remAbort(int rc, const char *pszTip)
4133{
4134 /*
4135 * Bitch about it.
4136 */
4137 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4138 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4139
4140 /*
4141 * Jump back to where we entered the recompiler.
4142 */
4143 PVM pVM = cpu_single_env->pVM;
4144 if (pVM->rem.s.fInREM)
4145 REMR3StateBack(pVM);
4146 EMR3FatalError(pVM, rc);
4147 AssertMsgFailed(("EMR3FatalError returned!\n"));
4148}
4149
4150
4151/**
4152 * Dumps a linux system call.
4153 * @param pVM VM handle.
4154 */
4155void remR3DumpLnxSyscall(PVM pVM)
4156{
4157 static const char *apsz[] =
4158 {
4159 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4160 "sys_exit",
4161 "sys_fork",
4162 "sys_read",
4163 "sys_write",
4164 "sys_open", /* 5 */
4165 "sys_close",
4166 "sys_waitpid",
4167 "sys_creat",
4168 "sys_link",
4169 "sys_unlink", /* 10 */
4170 "sys_execve",
4171 "sys_chdir",
4172 "sys_time",
4173 "sys_mknod",
4174 "sys_chmod", /* 15 */
4175 "sys_lchown16",
4176 "sys_ni_syscall", /* old break syscall holder */
4177 "sys_stat",
4178 "sys_lseek",
4179 "sys_getpid", /* 20 */
4180 "sys_mount",
4181 "sys_oldumount",
4182 "sys_setuid16",
4183 "sys_getuid16",
4184 "sys_stime", /* 25 */
4185 "sys_ptrace",
4186 "sys_alarm",
4187 "sys_fstat",
4188 "sys_pause",
4189 "sys_utime", /* 30 */
4190 "sys_ni_syscall", /* old stty syscall holder */
4191 "sys_ni_syscall", /* old gtty syscall holder */
4192 "sys_access",
4193 "sys_nice",
4194 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4195 "sys_sync",
4196 "sys_kill",
4197 "sys_rename",
4198 "sys_mkdir",
4199 "sys_rmdir", /* 40 */
4200 "sys_dup",
4201 "sys_pipe",
4202 "sys_times",
4203 "sys_ni_syscall", /* old prof syscall holder */
4204 "sys_brk", /* 45 */
4205 "sys_setgid16",
4206 "sys_getgid16",
4207 "sys_signal",
4208 "sys_geteuid16",
4209 "sys_getegid16", /* 50 */
4210 "sys_acct",
4211 "sys_umount", /* recycled never used phys() */
4212 "sys_ni_syscall", /* old lock syscall holder */
4213 "sys_ioctl",
4214 "sys_fcntl", /* 55 */
4215 "sys_ni_syscall", /* old mpx syscall holder */
4216 "sys_setpgid",
4217 "sys_ni_syscall", /* old ulimit syscall holder */
4218 "sys_olduname",
4219 "sys_umask", /* 60 */
4220 "sys_chroot",
4221 "sys_ustat",
4222 "sys_dup2",
4223 "sys_getppid",
4224 "sys_getpgrp", /* 65 */
4225 "sys_setsid",
4226 "sys_sigaction",
4227 "sys_sgetmask",
4228 "sys_ssetmask",
4229 "sys_setreuid16", /* 70 */
4230 "sys_setregid16",
4231 "sys_sigsuspend",
4232 "sys_sigpending",
4233 "sys_sethostname",
4234 "sys_setrlimit", /* 75 */
4235 "sys_old_getrlimit",
4236 "sys_getrusage",
4237 "sys_gettimeofday",
4238 "sys_settimeofday",
4239 "sys_getgroups16", /* 80 */
4240 "sys_setgroups16",
4241 "old_select",
4242 "sys_symlink",
4243 "sys_lstat",
4244 "sys_readlink", /* 85 */
4245 "sys_uselib",
4246 "sys_swapon",
4247 "sys_reboot",
4248 "old_readdir",
4249 "old_mmap", /* 90 */
4250 "sys_munmap",
4251 "sys_truncate",
4252 "sys_ftruncate",
4253 "sys_fchmod",
4254 "sys_fchown16", /* 95 */
4255 "sys_getpriority",
4256 "sys_setpriority",
4257 "sys_ni_syscall", /* old profil syscall holder */
4258 "sys_statfs",
4259 "sys_fstatfs", /* 100 */
4260 "sys_ioperm",
4261 "sys_socketcall",
4262 "sys_syslog",
4263 "sys_setitimer",
4264 "sys_getitimer", /* 105 */
4265 "sys_newstat",
4266 "sys_newlstat",
4267 "sys_newfstat",
4268 "sys_uname",
4269 "sys_iopl", /* 110 */
4270 "sys_vhangup",
4271 "sys_ni_syscall", /* old "idle" system call */
4272 "sys_vm86old",
4273 "sys_wait4",
4274 "sys_swapoff", /* 115 */
4275 "sys_sysinfo",
4276 "sys_ipc",
4277 "sys_fsync",
4278 "sys_sigreturn",
4279 "sys_clone", /* 120 */
4280 "sys_setdomainname",
4281 "sys_newuname",
4282 "sys_modify_ldt",
4283 "sys_adjtimex",
4284 "sys_mprotect", /* 125 */
4285 "sys_sigprocmask",
4286 "sys_ni_syscall", /* old "create_module" */
4287 "sys_init_module",
4288 "sys_delete_module",
4289 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4290 "sys_quotactl",
4291 "sys_getpgid",
4292 "sys_fchdir",
4293 "sys_bdflush",
4294 "sys_sysfs", /* 135 */
4295 "sys_personality",
4296 "sys_ni_syscall", /* reserved for afs_syscall */
4297 "sys_setfsuid16",
4298 "sys_setfsgid16",
4299 "sys_llseek", /* 140 */
4300 "sys_getdents",
4301 "sys_select",
4302 "sys_flock",
4303 "sys_msync",
4304 "sys_readv", /* 145 */
4305 "sys_writev",
4306 "sys_getsid",
4307 "sys_fdatasync",
4308 "sys_sysctl",
4309 "sys_mlock", /* 150 */
4310 "sys_munlock",
4311 "sys_mlockall",
4312 "sys_munlockall",
4313 "sys_sched_setparam",
4314 "sys_sched_getparam", /* 155 */
4315 "sys_sched_setscheduler",
4316 "sys_sched_getscheduler",
4317 "sys_sched_yield",
4318 "sys_sched_get_priority_max",
4319 "sys_sched_get_priority_min", /* 160 */
4320 "sys_sched_rr_get_interval",
4321 "sys_nanosleep",
4322 "sys_mremap",
4323 "sys_setresuid16",
4324 "sys_getresuid16", /* 165 */
4325 "sys_vm86",
4326 "sys_ni_syscall", /* Old sys_query_module */
4327 "sys_poll",
4328 "sys_nfsservctl",
4329 "sys_setresgid16", /* 170 */
4330 "sys_getresgid16",
4331 "sys_prctl",
4332 "sys_rt_sigreturn",
4333 "sys_rt_sigaction",
4334 "sys_rt_sigprocmask", /* 175 */
4335 "sys_rt_sigpending",
4336 "sys_rt_sigtimedwait",
4337 "sys_rt_sigqueueinfo",
4338 "sys_rt_sigsuspend",
4339 "sys_pread64", /* 180 */
4340 "sys_pwrite64",
4341 "sys_chown16",
4342 "sys_getcwd",
4343 "sys_capget",
4344 "sys_capset", /* 185 */
4345 "sys_sigaltstack",
4346 "sys_sendfile",
4347 "sys_ni_syscall", /* reserved for streams1 */
4348 "sys_ni_syscall", /* reserved for streams2 */
4349 "sys_vfork", /* 190 */
4350 "sys_getrlimit",
4351 "sys_mmap2",
4352 "sys_truncate64",
4353 "sys_ftruncate64",
4354 "sys_stat64", /* 195 */
4355 "sys_lstat64",
4356 "sys_fstat64",
4357 "sys_lchown",
4358 "sys_getuid",
4359 "sys_getgid", /* 200 */
4360 "sys_geteuid",
4361 "sys_getegid",
4362 "sys_setreuid",
4363 "sys_setregid",
4364 "sys_getgroups", /* 205 */
4365 "sys_setgroups",
4366 "sys_fchown",
4367 "sys_setresuid",
4368 "sys_getresuid",
4369 "sys_setresgid", /* 210 */
4370 "sys_getresgid",
4371 "sys_chown",
4372 "sys_setuid",
4373 "sys_setgid",
4374 "sys_setfsuid", /* 215 */
4375 "sys_setfsgid",
4376 "sys_pivot_root",
4377 "sys_mincore",
4378 "sys_madvise",
4379 "sys_getdents64", /* 220 */
4380 "sys_fcntl64",
4381 "sys_ni_syscall", /* reserved for TUX */
4382 "sys_ni_syscall",
4383 "sys_gettid",
4384 "sys_readahead", /* 225 */
4385 "sys_setxattr",
4386 "sys_lsetxattr",
4387 "sys_fsetxattr",
4388 "sys_getxattr",
4389 "sys_lgetxattr", /* 230 */
4390 "sys_fgetxattr",
4391 "sys_listxattr",
4392 "sys_llistxattr",
4393 "sys_flistxattr",
4394 "sys_removexattr", /* 235 */
4395 "sys_lremovexattr",
4396 "sys_fremovexattr",
4397 "sys_tkill",
4398 "sys_sendfile64",
4399 "sys_futex", /* 240 */
4400 "sys_sched_setaffinity",
4401 "sys_sched_getaffinity",
4402 "sys_set_thread_area",
4403 "sys_get_thread_area",
4404 "sys_io_setup", /* 245 */
4405 "sys_io_destroy",
4406 "sys_io_getevents",
4407 "sys_io_submit",
4408 "sys_io_cancel",
4409 "sys_fadvise64", /* 250 */
4410 "sys_ni_syscall",
4411 "sys_exit_group",
4412 "sys_lookup_dcookie",
4413 "sys_epoll_create",
4414 "sys_epoll_ctl", /* 255 */
4415 "sys_epoll_wait",
4416 "sys_remap_file_pages",
4417 "sys_set_tid_address",
4418 "sys_timer_create",
4419 "sys_timer_settime", /* 260 */
4420 "sys_timer_gettime",
4421 "sys_timer_getoverrun",
4422 "sys_timer_delete",
4423 "sys_clock_settime",
4424 "sys_clock_gettime", /* 265 */
4425 "sys_clock_getres",
4426 "sys_clock_nanosleep",
4427 "sys_statfs64",
4428 "sys_fstatfs64",
4429 "sys_tgkill", /* 270 */
4430 "sys_utimes",
4431 "sys_fadvise64_64",
4432 "sys_ni_syscall" /* sys_vserver */
4433 };
4434
4435 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4436 switch (uEAX)
4437 {
4438 default:
4439 if (uEAX < ELEMENTS(apsz))
4440 Log(("REM: linux syscall %3d: %s (eip=%VGv ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4441 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4442 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4443 else
4444 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4445 break;
4446
4447 }
4448}
4449
4450
4451/**
4452 * Dumps an OpenBSD system call.
4453 * @param pVM VM handle.
4454 */
4455void remR3DumpOBsdSyscall(PVM pVM)
4456{
4457 static const char *apsz[] =
4458 {
4459 "SYS_syscall", //0
4460 "SYS_exit", //1
4461 "SYS_fork", //2
4462 "SYS_read", //3
4463 "SYS_write", //4
4464 "SYS_open", //5
4465 "SYS_close", //6
4466 "SYS_wait4", //7
4467 "SYS_8",
4468 "SYS_link", //9
4469 "SYS_unlink", //10
4470 "SYS_11",
4471 "SYS_chdir", //12
4472 "SYS_fchdir", //13
4473 "SYS_mknod", //14
4474 "SYS_chmod", //15
4475 "SYS_chown", //16
4476 "SYS_break", //17
4477 "SYS_18",
4478 "SYS_19",
4479 "SYS_getpid", //20
4480 "SYS_mount", //21
4481 "SYS_unmount", //22
4482 "SYS_setuid", //23
4483 "SYS_getuid", //24
4484 "SYS_geteuid", //25
4485 "SYS_ptrace", //26
4486 "SYS_recvmsg", //27
4487 "SYS_sendmsg", //28
4488 "SYS_recvfrom", //29
4489 "SYS_accept", //30
4490 "SYS_getpeername", //31
4491 "SYS_getsockname", //32
4492 "SYS_access", //33
4493 "SYS_chflags", //34
4494 "SYS_fchflags", //35
4495 "SYS_sync", //36
4496 "SYS_kill", //37
4497 "SYS_38",
4498 "SYS_getppid", //39
4499 "SYS_40",
4500 "SYS_dup", //41
4501 "SYS_opipe", //42
4502 "SYS_getegid", //43
4503 "SYS_profil", //44
4504 "SYS_ktrace", //45
4505 "SYS_sigaction", //46
4506 "SYS_getgid", //47
4507 "SYS_sigprocmask", //48
4508 "SYS_getlogin", //49
4509 "SYS_setlogin", //50
4510 "SYS_acct", //51
4511 "SYS_sigpending", //52
4512 "SYS_osigaltstack", //53
4513 "SYS_ioctl", //54
4514 "SYS_reboot", //55
4515 "SYS_revoke", //56
4516 "SYS_symlink", //57
4517 "SYS_readlink", //58
4518 "SYS_execve", //59
4519 "SYS_umask", //60
4520 "SYS_chroot", //61
4521 "SYS_62",
4522 "SYS_63",
4523 "SYS_64",
4524 "SYS_65",
4525 "SYS_vfork", //66
4526 "SYS_67",
4527 "SYS_68",
4528 "SYS_sbrk", //69
4529 "SYS_sstk", //70
4530 "SYS_61",
4531 "SYS_vadvise", //72
4532 "SYS_munmap", //73
4533 "SYS_mprotect", //74
4534 "SYS_madvise", //75
4535 "SYS_76",
4536 "SYS_77",
4537 "SYS_mincore", //78
4538 "SYS_getgroups", //79
4539 "SYS_setgroups", //80
4540 "SYS_getpgrp", //81
4541 "SYS_setpgid", //82
4542 "SYS_setitimer", //83
4543 "SYS_84",
4544 "SYS_85",
4545 "SYS_getitimer", //86
4546 "SYS_87",
4547 "SYS_88",
4548 "SYS_89",
4549 "SYS_dup2", //90
4550 "SYS_91",
4551 "SYS_fcntl", //92
4552 "SYS_select", //93
4553 "SYS_94",
4554 "SYS_fsync", //95
4555 "SYS_setpriority", //96
4556 "SYS_socket", //97
4557 "SYS_connect", //98
4558 "SYS_99",
4559 "SYS_getpriority", //100
4560 "SYS_101",
4561 "SYS_102",
4562 "SYS_sigreturn", //103
4563 "SYS_bind", //104
4564 "SYS_setsockopt", //105
4565 "SYS_listen", //106
4566 "SYS_107",
4567 "SYS_108",
4568 "SYS_109",
4569 "SYS_110",
4570 "SYS_sigsuspend", //111
4571 "SYS_112",
4572 "SYS_113",
4573 "SYS_114",
4574 "SYS_115",
4575 "SYS_gettimeofday", //116
4576 "SYS_getrusage", //117
4577 "SYS_getsockopt", //118
4578 "SYS_119",
4579 "SYS_readv", //120
4580 "SYS_writev", //121
4581 "SYS_settimeofday", //122
4582 "SYS_fchown", //123
4583 "SYS_fchmod", //124
4584 "SYS_125",
4585 "SYS_setreuid", //126
4586 "SYS_setregid", //127
4587 "SYS_rename", //128
4588 "SYS_129",
4589 "SYS_130",
4590 "SYS_flock", //131
4591 "SYS_mkfifo", //132
4592 "SYS_sendto", //133
4593 "SYS_shutdown", //134
4594 "SYS_socketpair", //135
4595 "SYS_mkdir", //136
4596 "SYS_rmdir", //137
4597 "SYS_utimes", //138
4598 "SYS_139",
4599 "SYS_adjtime", //140
4600 "SYS_141",
4601 "SYS_142",
4602 "SYS_143",
4603 "SYS_144",
4604 "SYS_145",
4605 "SYS_146",
4606 "SYS_setsid", //147
4607 "SYS_quotactl", //148
4608 "SYS_149",
4609 "SYS_150",
4610 "SYS_151",
4611 "SYS_152",
4612 "SYS_153",
4613 "SYS_154",
4614 "SYS_nfssvc", //155
4615 "SYS_156",
4616 "SYS_157",
4617 "SYS_158",
4618 "SYS_159",
4619 "SYS_160",
4620 "SYS_getfh", //161
4621 "SYS_162",
4622 "SYS_163",
4623 "SYS_164",
4624 "SYS_sysarch", //165
4625 "SYS_166",
4626 "SYS_167",
4627 "SYS_168",
4628 "SYS_169",
4629 "SYS_170",
4630 "SYS_171",
4631 "SYS_172",
4632 "SYS_pread", //173
4633 "SYS_pwrite", //174
4634 "SYS_175",
4635 "SYS_176",
4636 "SYS_177",
4637 "SYS_178",
4638 "SYS_179",
4639 "SYS_180",
4640 "SYS_setgid", //181
4641 "SYS_setegid", //182
4642 "SYS_seteuid", //183
4643 "SYS_lfs_bmapv", //184
4644 "SYS_lfs_markv", //185
4645 "SYS_lfs_segclean", //186
4646 "SYS_lfs_segwait", //187
4647 "SYS_188",
4648 "SYS_189",
4649 "SYS_190",
4650 "SYS_pathconf", //191
4651 "SYS_fpathconf", //192
4652 "SYS_swapctl", //193
4653 "SYS_getrlimit", //194
4654 "SYS_setrlimit", //195
4655 "SYS_getdirentries", //196
4656 "SYS_mmap", //197
4657 "SYS___syscall", //198
4658 "SYS_lseek", //199
4659 "SYS_truncate", //200
4660 "SYS_ftruncate", //201
4661 "SYS___sysctl", //202
4662 "SYS_mlock", //203
4663 "SYS_munlock", //204
4664 "SYS_205",
4665 "SYS_futimes", //206
4666 "SYS_getpgid", //207
4667 "SYS_xfspioctl", //208
4668 "SYS_209",
4669 "SYS_210",
4670 "SYS_211",
4671 "SYS_212",
4672 "SYS_213",
4673 "SYS_214",
4674 "SYS_215",
4675 "SYS_216",
4676 "SYS_217",
4677 "SYS_218",
4678 "SYS_219",
4679 "SYS_220",
4680 "SYS_semget", //221
4681 "SYS_222",
4682 "SYS_223",
4683 "SYS_224",
4684 "SYS_msgget", //225
4685 "SYS_msgsnd", //226
4686 "SYS_msgrcv", //227
4687 "SYS_shmat", //228
4688 "SYS_229",
4689 "SYS_shmdt", //230
4690 "SYS_231",
4691 "SYS_clock_gettime", //232
4692 "SYS_clock_settime", //233
4693 "SYS_clock_getres", //234
4694 "SYS_235",
4695 "SYS_236",
4696 "SYS_237",
4697 "SYS_238",
4698 "SYS_239",
4699 "SYS_nanosleep", //240
4700 "SYS_241",
4701 "SYS_242",
4702 "SYS_243",
4703 "SYS_244",
4704 "SYS_245",
4705 "SYS_246",
4706 "SYS_247",
4707 "SYS_248",
4708 "SYS_249",
4709 "SYS_minherit", //250
4710 "SYS_rfork", //251
4711 "SYS_poll", //252
4712 "SYS_issetugid", //253
4713 "SYS_lchown", //254
4714 "SYS_getsid", //255
4715 "SYS_msync", //256
4716 "SYS_257",
4717 "SYS_258",
4718 "SYS_259",
4719 "SYS_getfsstat", //260
4720 "SYS_statfs", //261
4721 "SYS_fstatfs", //262
4722 "SYS_pipe", //263
4723 "SYS_fhopen", //264
4724 "SYS_265",
4725 "SYS_fhstatfs", //266
4726 "SYS_preadv", //267
4727 "SYS_pwritev", //268
4728 "SYS_kqueue", //269
4729 "SYS_kevent", //270
4730 "SYS_mlockall", //271
4731 "SYS_munlockall", //272
4732 "SYS_getpeereid", //273
4733 "SYS_274",
4734 "SYS_275",
4735 "SYS_276",
4736 "SYS_277",
4737 "SYS_278",
4738 "SYS_279",
4739 "SYS_280",
4740 "SYS_getresuid", //281
4741 "SYS_setresuid", //282
4742 "SYS_getresgid", //283
4743 "SYS_setresgid", //284
4744 "SYS_285",
4745 "SYS_mquery", //286
4746 "SYS_closefrom", //287
4747 "SYS_sigaltstack", //288
4748 "SYS_shmget", //289
4749 "SYS_semop", //290
4750 "SYS_stat", //291
4751 "SYS_fstat", //292
4752 "SYS_lstat", //293
4753 "SYS_fhstat", //294
4754 "SYS___semctl", //295
4755 "SYS_shmctl", //296
4756 "SYS_msgctl", //297
4757 "SYS_MAXSYSCALL", //298
4758 //299
4759 //300
4760 };
4761 uint32_t uEAX;
4762 if (!LogIsEnabled())
4763 return;
4764 uEAX = CPUMGetGuestEAX(pVM);
4765 switch (uEAX)
4766 {
4767 default:
4768 if (uEAX < ELEMENTS(apsz))
4769 {
4770 uint32_t au32Args[8] = {0};
4771 PGMPhysReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
4772 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
4773 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
4774 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
4775 }
4776 else
4777 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
4778 break;
4779 }
4780}
4781
4782
4783#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
4784/**
4785 * The Dll main entry point (stub).
4786 */
4787bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
4788{
4789 return true;
4790}
4791
4792void *memcpy(void *dst, const void *src, size_t size)
4793{
4794 uint8_t*pbDst = dst, *pbSrc = src;
4795 while (size-- > 0)
4796 *pbDst++ = *pbSrc++;
4797 return dst;
4798}
4799
4800#endif
4801
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette