VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 843

Last change on this file since 843 was 835, checked in by vboxsync, 18 years ago

GC Phys to HC virt conversion changes for dynamic RAM allocation.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 154.9 KB
Line 
1/** @file
2 *
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006 InnoTek Systemberatung GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License as published by the Free Software Foundation,
13 * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
14 * distribution. VirtualBox OSE is distributed in the hope that it will
15 * be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * If you received this file as part of a commercial VirtualBox
18 * distribution, then only the terms of your commercial VirtualBox
19 * license agreement apply instead of the previous paragraph.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#include "vl.h"
27#include "exec-all.h"
28
29#include <VBox/rem.h>
30#include <VBox/vmapi.h>
31#include <VBox/tm.h>
32#include <VBox/ssm.h>
33#include <VBox/em.h>
34#include <VBox/trpm.h>
35#include <VBox/iom.h>
36#include <VBox/mm.h>
37#include <VBox/pgm.h>
38#include <VBox/pdm.h>
39#include <VBox/dbgf.h>
40#include <VBox/dbg.h>
41#include <VBox/hwaccm.h>
42#include <VBox/patm.h>
43#include <VBox/csam.h>
44#include "REMInternal.h"
45#include <VBox/vm.h>
46#include <VBox/param.h>
47#include <VBox/err.h>
48
49#define LOG_GROUP LOG_GROUP_REM
50#include <VBox/log.h>
51#include <iprt/semaphore.h>
52#include <iprt/asm.h>
53#include <iprt/assert.h>
54#include <iprt/thread.h>
55#include <iprt/string.h>
56
57////#define VBOX_RAW_V86
58
59/* Don't wanna include everything. */
60extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
61extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
62extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
63extern void tlb_flush_page(CPUX86State *env, uint32_t addr);
64extern void tlb_flush(CPUState *env, int flush_global);
65extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
66extern void sync_ldtr(CPUX86State *env1, int selector);
67extern int sync_tr(CPUX86State *env1, int selector);
68
69#ifdef VBOX_STRICT
70unsigned long get_phys_page_offset(target_ulong addr);
71#endif
72
73
74/*******************************************************************************
75* Defined Constants And Macros *
76*******************************************************************************/
77
78/** Copy 80-bit fpu register at pSrc to pDst.
79 * This is probably faster than *calling* memcpy.
80 */
81#define REM_COPY_FPU_REG(pDst, pSrc) \
82 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
83
84
85/*******************************************************************************
86* Internal Functions *
87*******************************************************************************/
88static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
89static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
90static void remR3StateUpdate(PVM pVM);
91static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
92static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
93static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
94static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
95static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
96static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
97
98static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
99static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
100static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
101static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
102static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
103static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
104
105
106/*******************************************************************************
107* Global Variables *
108*******************************************************************************/
109
110/** The log level of the recompiler. */
111#if 1
112extern int loglevel;
113#else
114int loglevel = ~0;
115FILE *logfile = NULL;
116#endif
117
118
119/** @todo Move stats to REM::s some rainy day we have nothing do to. */
120#ifdef VBOX_WITH_STATISTICS
121static STAMPROFILEADV gStatExecuteSingleInstr;
122static STAMPROFILEADV gStatCompilationQEmu;
123static STAMPROFILEADV gStatRunCodeQEmu;
124static STAMPROFILEADV gStatTotalTimeQEmu;
125static STAMPROFILEADV gStatTimers;
126static STAMPROFILEADV gStatTBLookup;
127static STAMPROFILEADV gStatIRQ;
128static STAMPROFILEADV gStatRawCheck;
129static STAMPROFILEADV gStatMemRead;
130static STAMPROFILEADV gStatMemWrite;
131static STAMCOUNTER gStatRefuseTFInhibit;
132static STAMCOUNTER gStatRefuseVM86;
133static STAMCOUNTER gStatRefusePaging;
134static STAMCOUNTER gStatRefusePAE;
135static STAMCOUNTER gStatRefuseIOPLNot0;
136static STAMCOUNTER gStatRefuseIF0;
137static STAMCOUNTER gStatRefuseCode16;
138static STAMCOUNTER gStatRefuseWP0;
139static STAMCOUNTER gStatRefuseRing1or2;
140static STAMCOUNTER gStatRefuseCanExecute;
141static STAMCOUNTER gStatREMGDTChange;
142static STAMCOUNTER gStatREMIDTChange;
143static STAMCOUNTER gStatREMLDTRChange;
144static STAMCOUNTER gStatREMTRChange;
145static STAMCOUNTER gStatSelOutOfSync[6];
146static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
147#endif
148
149/*
150 * Global stuff.
151 */
152
153/** MMIO read callbacks. */
154CPUReadMemoryFunc *g_apfnMMIORead[3] =
155{
156 remR3MMIOReadU8,
157 remR3MMIOReadU16,
158 remR3MMIOReadU32
159};
160
161/** MMIO write callbacks. */
162CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
163{
164 remR3MMIOWriteU8,
165 remR3MMIOWriteU16,
166 remR3MMIOWriteU32
167};
168
169/** Handler read callbacks. */
170CPUReadMemoryFunc *g_apfnHandlerRead[3] =
171{
172 remR3HandlerReadU8,
173 remR3HandlerReadU16,
174 remR3HandlerReadU32
175};
176
177/** Handler write callbacks. */
178CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
179{
180 remR3HandlerWriteU8,
181 remR3HandlerWriteU16,
182 remR3HandlerWriteU32
183};
184
185#ifndef PGM_DYNAMIC_RAM_ALLOC
186/* Guest physical RAM base. Not to be used in external code. */
187static uint8_t *phys_ram_base;
188#endif
189
190/*
191 * Instance stuff.
192 */
193/** Pointer to the cpu state. */
194CPUState *cpu_single_env;
195
196
197#ifdef VBOX_WITH_DEBUGGER
198/*
199 * Debugger commands.
200 */
201static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
202
203/** '.remstep' arguments. */
204static const DBGCVARDESC g_aArgRemStep[] =
205{
206 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
207 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
208};
209
210/** Command descriptors. */
211static const DBGCCMD g_aCmds[] =
212{
213 {
214 .pszCmd ="remstep",
215 .cArgsMin = 0,
216 .cArgsMax = 1,
217 .paArgDescs = &g_aArgRemStep[0],
218 .cArgDescs = ELEMENTS(g_aArgRemStep),
219 .pResultDesc = NULL,
220 .fFlags = 0,
221 .pfnHandler = remR3CmdDisasEnableStepping,
222 .pszSyntax = "[on/off]",
223 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
224 "If no arguments show the current state."
225 }
226};
227#endif
228
229
230/*******************************************************************************
231* Internal Functions *
232*******************************************************************************/
233static void remAbort(int rc, const char *pszTip);
234
235
236/* Put them here to avoid unused variable warning. */
237AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
238//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
239//AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
240
241/**
242 * Initializes the REM.
243 *
244 * @returns VBox status code.
245 * @param pVM The VM to operate on.
246 */
247REMR3DECL(int) REMR3Init(PVM pVM)
248{
249 uint32_t u32Dummy;
250 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
251 //AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
252 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
253#if 0 /* not merged yet */
254 Assert(!testmath());
255#endif
256
257 /*
258 * Init some internal data members.
259 */
260 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
261 pVM->rem.s.Env.pVM = pVM;
262#ifdef CPU_RAW_MODE_INIT
263 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
264#endif
265
266 /* ctx. */
267 int rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
268 if (VBOX_FAILURE(rc))
269 {
270 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
271 return rc;
272 }
273 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
274
275 /*
276 * Init the recompiler.
277 */
278 if (!cpu_x86_init(&pVM->rem.s.Env))
279 {
280 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
281 return VERR_GENERAL_FAILURE;
282 }
283 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
284
285 /* allocate code buffer for single instruction emulation. */
286 pVM->rem.s.Env.cbCodeBuffer = 4096;
287 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
288 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
289
290 /* finally, set the cpu_single_env global. */
291 cpu_single_env = &pVM->rem.s.Env;
292
293 /* Nothing is pending by default */
294 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
295
296#ifdef DEBUG_bird
297 //cpu_breakpoint_insert(&pVM->rem.s.Env, some-address);
298#endif
299
300 /*
301 * Register ram types.
302 */
303 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(0, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
304 AssertReleaseMsg(pVM->rem.s.iMMIOMemType > 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
305 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(0, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
306 AssertReleaseMsg(pVM->rem.s.iHandlerMemType > 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
307 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
308
309 /*
310 * Register the saved state data unit.
311 */
312 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
313 NULL, remR3Save, NULL,
314 NULL, remR3Load, NULL);
315 if (VBOX_FAILURE(rc))
316 return rc;
317
318#ifdef VBOX_WITH_DEBUGGER
319 /*
320 * Debugger commands.
321 */
322 static bool fRegisteredCmds = false;
323 if (!fRegisteredCmds)
324 {
325 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
326 if (VBOX_SUCCESS(rc))
327 fRegisteredCmds = true;
328 }
329#endif
330
331#ifdef VBOX_WITH_STATISTICS
332 /*
333 * Statistics.
334 */
335 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
336 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
337 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
338 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
339 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
340 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
341 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
342 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
343 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
344 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
345
346 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
347 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
348 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
349 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
350 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
351 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
352 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
353 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
354 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
355 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
356
357 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
358 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
359 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
360 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
361
362 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
363 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
364 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
365 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
366 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
367 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
368
369 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
370 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
371 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
372 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
373 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
374 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
375
376#endif
377 return rc;
378}
379
380
381/**
382 * Terminates the REM.
383 *
384 * Termination means cleaning up and freeing all resources,
385 * the VM it self is at this point powered off or suspended.
386 *
387 * @returns VBox status code.
388 * @param pVM The VM to operate on.
389 */
390REMR3DECL(int) REMR3Term(PVM pVM)
391{
392 return VINF_SUCCESS;
393}
394
395
396/**
397 * The VM is being reset.
398 *
399 * For the REM component this means to call the cpu_reset() and
400 * reinitialize some state variables.
401 *
402 * @param pVM VM handle.
403 */
404REMR3DECL(void) REMR3Reset(PVM pVM)
405{
406 pVM->rem.s.fIgnoreCR3Load = true;
407 pVM->rem.s.fIgnoreInvlPg = true;
408 pVM->rem.s.fIgnoreCpuMode = true;
409
410 /*
411 * Reset the REM cpu.
412 */
413 cpu_reset(&pVM->rem.s.Env);
414 pVM->rem.s.cInvalidatedPages = 0;
415
416 pVM->rem.s.fIgnoreCR3Load = false;
417 pVM->rem.s.fIgnoreInvlPg = false;
418 pVM->rem.s.fIgnoreCpuMode = false;
419
420#ifdef PGM_DYNAMIC_RAM_ALLOC
421 pVM->rem.s.cPhysRegistrations = 0;
422#endif
423}
424
425
426/**
427 * Execute state save operation.
428 *
429 * @returns VBox status code.
430 * @param pVM VM Handle.
431 * @param pSSM SSM operation handle.
432 */
433static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
434{
435 LogFlow(("remR3Save:\n"));
436
437 /*
438 * Save the required CPU Env bits.
439 * (Not much because we're never in REM when doing the save.)
440 */
441 PREM pRem = &pVM->rem.s;
442 Assert(!pRem->fInREM);
443 SSMR3PutU32(pSSM, pRem->Env.hflags);
444 SSMR3PutMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
445 SSMR3PutU32(pSSM, ~0); /* separator */
446
447 /*
448 * Save the REM stuff.
449 */
450 SSMR3PutUInt(pSSM, pRem->cInvalidatedPages);
451 unsigned i;
452 for (i = 0; i < pRem->cInvalidatedPages; i++)
453 SSMR3PutGCPtr(pSSM, pRem->aGCPtrInvalidatedPages[i]);
454
455 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
456
457 return SSMR3PutU32(pSSM, ~0); /* terminator */
458}
459
460
461/**
462 * Execute state load operation.
463 *
464 * @returns VBox status code.
465 * @param pVM VM Handle.
466 * @param pSSM SSM operation handle.
467 * @param u32Version Data layout version.
468 */
469static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
470{
471 uint32_t u32Dummy;
472 LogFlow(("remR3Load:\n"));
473
474 /*
475 * Validate version.
476 */
477 if (u32Version != REM_SAVED_STATE_VERSION)
478 {
479 Log(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
480 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
481 }
482
483 /*
484 * Do a reset to be on the safe side...
485 */
486 REMR3Reset(pVM);
487
488 /*
489 * Ignore all ignorable notifications.
490 * Not doing this will cause big trouble.
491 */
492 pVM->rem.s.fIgnoreCR3Load = true;
493 pVM->rem.s.fIgnoreInvlPg = true;
494 pVM->rem.s.fIgnoreCpuMode = true;
495
496 /*
497 * Load the required CPU Env bits.
498 * (Not much because we're never in REM when doing the save.)
499 */
500 PREM pRem = &pVM->rem.s;
501 Assert(!pRem->fInREM);
502 SSMR3GetU32(pSSM, &pRem->Env.hflags);
503 SSMR3GetMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
504 uint32_t u32Sep;
505 int rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
506 if (VBOX_FAILURE(rc))
507 return rc;
508 if (u32Sep != ~0)
509 {
510 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
511 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
512 }
513
514 /*
515 * Load the REM stuff.
516 */
517 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
518 if (VBOX_FAILURE(rc))
519 return rc;
520 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
521 {
522 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
523 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
524 }
525 unsigned i;
526 for (i = 0; i < pRem->cInvalidatedPages; i++)
527 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
528
529 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
530 if (VBOX_FAILURE(rc))
531 return rc;
532
533 /* check the terminator. */
534 rc = SSMR3GetU32(pSSM, &u32Sep);
535 if (VBOX_FAILURE(rc))
536 return rc;
537 if (u32Sep != ~0)
538 {
539 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
540 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
541 }
542
543 /*
544 * Get the CPUID features.
545 */
546 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
547
548 /*
549 * Sync the Load Flush the TLB
550 */
551 tlb_flush(&pRem->Env, 1);
552
553#if 0 /** @todo r=bird: this doesn't make sense. WHY? */
554 /*
555 * Clear all lazy flags (only FPU sync for now).
556 */
557 CPUMGetAndClearFPUUsedREM(pVM);
558#endif
559
560 /*
561 * Stop ignoring ignornable notifications.
562 */
563 pVM->rem.s.fIgnoreCpuMode = false;
564 pVM->rem.s.fIgnoreInvlPg = false;
565 pVM->rem.s.fIgnoreCR3Load = false;
566
567 return VINF_SUCCESS;
568}
569
570
571
572#undef LOG_GROUP
573#define LOG_GROUP LOG_GROUP_REM_RUN
574
575/**
576 * Single steps an instruction in recompiled mode.
577 *
578 * Before calling this function the REM state needs to be in sync with
579 * the VM. Call REMR3State() to perform the sync. It's only necessary
580 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
581 * and after calling REMR3StateBack().
582 *
583 * @returns VBox status code.
584 *
585 * @param pVM VM Handle.
586 */
587REMR3DECL(int) REMR3Step(PVM pVM)
588{
589 /*
590 * Lock the REM - we don't wanna have anyone interrupting us
591 * while stepping - and enabled single stepping. We also ignore
592 * pending interrupts and suchlike.
593 */
594 int interrupt_request = pVM->rem.s.Env.interrupt_request;
595 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
596 pVM->rem.s.Env.interrupt_request = 0;
597 cpu_single_step(&pVM->rem.s.Env, 1);
598
599 /*
600 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
601 */
602 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
603 bool fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
604
605 /*
606 * Execute and handle the return code.
607 * We execute without enabling the cpu tick, so on success we'll
608 * just flip it on and off to make sure it moves
609 */
610 int rc = cpu_exec(&pVM->rem.s.Env);
611 if (rc == EXCP_DEBUG)
612 {
613 TMCpuTickResume(pVM);
614 TMCpuTickPause(pVM);
615 TMVirtualResume(pVM);
616 TMVirtualPause(pVM);
617 rc = VINF_EM_DBG_STEPPED;
618 }
619 else
620 {
621 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
622 switch (rc)
623 {
624 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
625 case EXCP_HLT: rc = VINF_EM_HALT; break;
626 case EXCP_RC:
627 rc = pVM->rem.s.rc;
628 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
629 break;
630 default:
631 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
632 rc = VERR_INTERNAL_ERROR;
633 break;
634 }
635 }
636
637 /*
638 * Restore the stuff we changed to prevent interruption.
639 * Unlock the REM.
640 */
641 if (fBp)
642 {
643 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
644 Assert(rc2 == 0); NOREF(rc2);
645 }
646 cpu_single_step(&pVM->rem.s.Env, 0);
647 pVM->rem.s.Env.interrupt_request = interrupt_request;
648
649 return rc;
650}
651
652
653/**
654 * Set a breakpoint using the REM facilities.
655 *
656 * @returns VBox status code.
657 * @param pVM The VM handle.
658 * @param Address The breakpoint address.
659 * @thread The emulation thread.
660 */
661REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
662{
663 VM_ASSERT_EMT(pVM);
664 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
665 {
666 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
667 return VINF_SUCCESS;
668 }
669 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
670 return VERR_REM_NO_MORE_BP_SLOTS;
671}
672
673
674/**
675 * Clears a breakpoint set by REMR3BreakpointSet().
676 *
677 * @returns VBox status code.
678 * @param pVM The VM handle.
679 * @param Address The breakpoint address.
680 * @thread The emulation thread.
681 */
682REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
683{
684 VM_ASSERT_EMT(pVM);
685 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
686 {
687 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
688 return VINF_SUCCESS;
689 }
690 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
691 return VERR_REM_BP_NOT_FOUND;
692}
693
694
695/**
696 * Emulate an instruction.
697 *
698 * This function executes one instruction without letting anyone
699 * interrupt it. This is intended for being called while being in
700 * raw mode and thus will take care of all the state syncing between
701 * REM and the rest.
702 *
703 * @returns VBox status code.
704 * @param pVM VM handle.
705 */
706REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
707{
708 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
709
710 /*
711 * Sync the state and enable single instruction / single stepping.
712 */
713 int rc = REMR3State(pVM);
714 if (VBOX_SUCCESS(rc))
715 {
716 int interrupt_request = pVM->rem.s.Env.interrupt_request;
717 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
718 Assert(!pVM->rem.s.Env.singlestep_enabled);
719#if 1
720
721 /*
722 * Now we set the execute single instruction flag and enter the cpu_exec loop.
723 */
724 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
725 TMCpuTickResume(pVM);
726 rc = cpu_exec(&pVM->rem.s.Env);
727 TMCpuTickPause(pVM);
728 switch (rc)
729 {
730 /*
731 * Executed without anything out of the way happening.
732 */
733 case EXCP_SINGLE_INSTR:
734 rc = VINF_EM_RESCHEDULE;
735 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
736 break;
737
738 /*
739 * If we take a trap or start servicing a pending interrupt, we might end up here.
740 * (Timer thread or some other thread wishing EMT's attention.)
741 */
742 case EXCP_INTERRUPT:
743 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
744 rc = VINF_EM_RESCHEDULE;
745 break;
746
747 /*
748 * Single step, we assume!
749 * If there was a breakpoint there we're fucked now.
750 */
751 case EXCP_DEBUG:
752 {
753 /* breakpoint or single step? */
754 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
755 int iBP;
756 rc = VINF_EM_DBG_STEPPED;
757 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
758 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
759 {
760 rc = VINF_EM_DBG_BREAKPOINT;
761 break;
762 }
763 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
764 break;
765 }
766
767 /*
768 * hlt instruction.
769 */
770 case EXCP_HLT:
771 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
772 rc = VINF_EM_HALT;
773 break;
774
775 /*
776 * Switch to RAW-mode.
777 */
778 case EXCP_EXECUTE_RAW:
779 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
780 rc = VINF_EM_RESCHEDULE_RAW;
781 break;
782
783 /*
784 * Switch to hardware accelerated RAW-mode.
785 */
786 case EXCP_EXECUTE_HWACC:
787 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
788 rc = VINF_EM_RESCHEDULE_HWACC;
789 break;
790
791 /*
792 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
793 */
794 case EXCP_RC:
795 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
796 rc = pVM->rem.s.rc;
797 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
798 break;
799
800 /*
801 * Figure out the rest when they arrive....
802 */
803 default:
804 AssertMsgFailed(("rc=%d\n", rc));
805 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
806 rc = VINF_EM_RESCHEDULE;
807 break;
808 }
809
810 /*
811 * Switch back the state.
812 */
813#else
814 pVM->rem.s.Env.interrupt_request = 0;
815 cpu_single_step(&pVM->rem.s.Env, 1);
816
817 /*
818 * Execute and handle the return code.
819 * We execute without enabling the cpu tick, so on success we'll
820 * just flip it on and off to make sure it moves.
821 *
822 * (We do not use emulate_single_instr() because that doesn't enter the
823 * right way in will cause serious trouble if a longjmp was attempted.)
824 */
825 #ifdef DEBUG_bird
826 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
827 #endif
828 int cTimesMax = 16384;
829 uint32_t eip = pVM->rem.s.Env.eip;
830 do
831 {
832 TMCpuTickResume(pVM);
833 rc = cpu_exec(&pVM->rem.s.Env);
834 TMCpuTickPause(pVM);
835
836 } while ( eip == pVM->rem.s.Env.eip
837 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
838 && --cTimesMax > 0);
839 switch (rc)
840 {
841 /*
842 * Single step, we assume!
843 * If there was a breakpoint there we're fucked now.
844 */
845 case EXCP_DEBUG:
846 {
847 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
848 rc = VINF_EM_RESCHEDULE;
849 break;
850 }
851
852 /*
853 * We cannot be interrupted!
854 */
855 case EXCP_INTERRUPT:
856 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
857 rc = VERR_INTERNAL_ERROR;
858 break;
859
860 /*
861 * hlt instruction.
862 */
863 case EXCP_HLT:
864 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
865 rc = VINF_EM_HALT;
866 break;
867
868 /*
869 * Switch to RAW-mode.
870 */
871 case EXCP_EXECUTE_RAW:
872 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
873 rc = VINF_EM_RESCHEDULE_RAW;
874 break;
875
876 /*
877 * Switch to hardware accelerated RAW-mode.
878 */
879 case EXCP_EXECUTE_HWACC:
880 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
881 rc = VINF_EM_RESCHEDULE_HWACC;
882 break;
883
884 /*
885 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
886 */
887 case EXCP_RC:
888 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
889 rc = pVM->rem.s.rc;
890 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
891 break;
892
893 /*
894 * Figure out the rest when they arrive....
895 */
896 default:
897 AssertMsgFailed(("rc=%d\n", rc));
898 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
899 rc = VINF_SUCCESS;
900 break;
901 }
902
903 /*
904 * Switch back the state.
905 */
906 cpu_single_step(&pVM->rem.s.Env, 0);
907#endif
908 pVM->rem.s.Env.interrupt_request = interrupt_request;
909 int rc2 = REMR3StateBack(pVM);
910 AssertRC(rc2);
911 }
912
913 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%08x)\n",
914 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
915 return rc;
916}
917
918
919/**
920 * Runs code in recompiled mode.
921 *
922 * Before calling this function the REM state needs to be in sync with
923 * the VM. Call REMR3State() to perform the sync. It's only necessary
924 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
925 * and after calling REMR3StateBack().
926 *
927 * @returns VBox status code.
928 *
929 * @param pVM VM Handle.
930 */
931REMR3DECL(int) REMR3Run(PVM pVM)
932{
933 Log2(("REMR3Run: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
934 Assert(pVM->rem.s.fInREM);
935////Keyboard / tb stuff:
936//if ( pVM->rem.s.Env.segs[R_CS].selector == 0xf000
937// && pVM->rem.s.Env.eip >= 0xe860
938// && pVM->rem.s.Env.eip <= 0xe880)
939// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
940////A20:
941//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x9020
942// && pVM->rem.s.Env.eip >= 0x970
943// && pVM->rem.s.Env.eip <= 0x9a0)
944// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
945////Speaker (port 61h)
946//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x0010
947// && ( (pVM->rem.s.Env.eip >= 0x90278c10 && pVM->rem.s.Env.eip <= 0x90278c30)
948// || (pVM->rem.s.Env.eip >= 0x9010e250 && pVM->rem.s.Env.eip <= 0x9010e260)
949// )
950// )
951// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
952//DBGFR3InfoLog(pVM, "timers", NULL);
953
954
955 TMCpuTickResume(pVM);
956 int rc = cpu_exec(&pVM->rem.s.Env);
957 TMCpuTickPause(pVM);
958 switch (rc)
959 {
960 /*
961 * This happens when the execution was interrupted
962 * by an external event, like pending timers.
963 */
964 case EXCP_INTERRUPT:
965 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
966 rc = VINF_SUCCESS;
967 break;
968
969 /*
970 * hlt instruction.
971 */
972 case EXCP_HLT:
973 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
974 rc = VINF_EM_HALT;
975 break;
976
977 /*
978 * Breakpoint/single step.
979 */
980 case EXCP_DEBUG:
981 {
982#if 0//def DEBUG_bird
983 static int iBP = 0;
984 printf("howdy, breakpoint! iBP=%d\n", iBP);
985 switch (iBP)
986 {
987 case 0:
988 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
989 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
990 //pVM->rem.s.Env.interrupt_request = 0;
991 //pVM->rem.s.Env.exception_index = -1;
992 //g_fInterruptDisabled = 1;
993 rc = VINF_SUCCESS;
994 asm("int3");
995 break;
996 default:
997 asm("int3");
998 break;
999 }
1000 iBP++;
1001#else
1002 /* breakpoint or single step? */
1003 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1004 int iBP;
1005 rc = VINF_EM_DBG_STEPPED;
1006 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1007 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1008 {
1009 rc = VINF_EM_DBG_BREAKPOINT;
1010 break;
1011 }
1012 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1013#endif
1014 break;
1015 }
1016
1017 /*
1018 * Switch to RAW-mode.
1019 */
1020 case EXCP_EXECUTE_RAW:
1021 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1022 rc = VINF_EM_RESCHEDULE_RAW;
1023 break;
1024
1025 /*
1026 * Switch to hardware accelerated RAW-mode.
1027 */
1028 case EXCP_EXECUTE_HWACC:
1029 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1030 rc = VINF_EM_RESCHEDULE_HWACC;
1031 break;
1032
1033 /*
1034 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
1035 */
1036 case EXCP_RC:
1037 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1038 rc = pVM->rem.s.rc;
1039 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1040 break;
1041
1042 /*
1043 * Figure out the rest when they arrive....
1044 */
1045 default:
1046 AssertMsgFailed(("rc=%d\n", rc));
1047 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1048 rc = VINF_SUCCESS;
1049 break;
1050 }
1051
1052 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%08x)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1053 return rc;
1054}
1055
1056
1057/**
1058 * Check if the cpu state is suitable for Raw execution.
1059 *
1060 * @returns boolean
1061 * @param env The CPU env struct.
1062 * @param eip The EIP to check this for (might differ from env->eip).
1063 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1064 * @param pExceptionIndex Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1065 *
1066 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1067 */
1068bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, uint32_t *pExceptionIndex)
1069{
1070 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1071 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1072 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1073
1074 /* Update counter. */
1075 env->pVM->rem.s.cCanExecuteRaw++;
1076
1077 if (HWACCMIsEnabled(env->pVM))
1078 {
1079 env->state |= CPU_RAW_HWACC;
1080
1081 /*
1082 * Create partial context for HWACCMR3CanExecuteGuest
1083 */
1084 CPUMCTX Ctx;
1085 Ctx.cr0 = env->cr[0];
1086 Ctx.cr3 = env->cr[3];
1087 Ctx.cr4 = env->cr[4];
1088
1089 Ctx.tr = env->tr.selector;
1090 Ctx.trHid.u32Base = (uint32_t)env->tr.base;
1091 Ctx.trHid.u32Limit = env->tr.limit;
1092 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1093
1094 Ctx.idtr.cbIdt = env->idt.limit;
1095 Ctx.idtr.pIdt = (uint32_t)env->idt.base;
1096
1097 Ctx.eflags.u32 = env->eflags;
1098
1099 Ctx.cs = env->segs[R_CS].selector;
1100 Ctx.csHid.u32Base = (uint32_t)env->segs[R_CS].base;
1101 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1102 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1103
1104 Ctx.ss = env->segs[R_SS].selector;
1105 Ctx.ssHid.u32Base = (uint32_t)env->segs[R_SS].base;
1106 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1107 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1108
1109 /* Hardware accelerated raw-mode:
1110 *
1111 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1112 */
1113 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1114 {
1115 *pExceptionIndex = EXCP_EXECUTE_HWACC;
1116 return true;
1117 }
1118 return false;
1119 }
1120
1121 /*
1122 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1123 * or 32 bits protected mode ring 0 code
1124 *
1125 * The tests are ordered by the likelyhood of being true during normal execution.
1126 */
1127 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1128 {
1129 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1130 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1131 return false;
1132 }
1133
1134#ifndef VBOX_RAW_V86
1135 if (fFlags & VM_MASK) {
1136 STAM_COUNTER_INC(&gStatRefuseVM86);
1137 Log2(("raw mode refused: VM_MASK\n"));
1138 return false;
1139 }
1140#endif
1141
1142 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1143 {
1144#ifndef DEBUG_bird
1145 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1146#endif
1147 return false;
1148 }
1149
1150 if (env->singlestep_enabled)
1151 {
1152 //Log2(("raw mode refused: Single step\n"));
1153 return false;
1154 }
1155
1156 if (env->nb_breakpoints > 0)
1157 {
1158 //Log2(("raw mode refused: Breakpoints\n"));
1159 return false;
1160 }
1161
1162 uint32_t u32CR0 = env->cr[0];
1163 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1164 {
1165 STAM_COUNTER_INC(&gStatRefusePaging);
1166 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1167 return false;
1168 }
1169
1170 if (env->cr[4] & CR4_PAE_MASK)
1171 {
1172 STAM_COUNTER_INC(&gStatRefusePAE);
1173 //Log2(("raw mode refused: PAE\n"));
1174 return false;
1175 }
1176
1177 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1178 {
1179 if (!EMIsRawRing3Enabled(env->pVM))
1180 return false;
1181
1182 if (!(env->eflags & IF_MASK))
1183 {
1184#ifdef VBOX_RAW_V86
1185 if(!(fFlags & VM_MASK))
1186 return false;
1187#else
1188 STAM_COUNTER_INC(&gStatRefuseIF0);
1189 Log2(("raw mode refused: IF (RawR3)\n"));
1190 return false;
1191#endif
1192 }
1193
1194 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1195 {
1196 STAM_COUNTER_INC(&gStatRefuseWP0);
1197 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1198 return false;
1199 }
1200 }
1201 else
1202 {
1203 if (!EMIsRawRing0Enabled(env->pVM))
1204 return false;
1205
1206 // Let's start with pure 32 bits ring 0 code first
1207 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1208 {
1209 STAM_COUNTER_INC(&gStatRefuseCode16);
1210 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1211 return false;
1212 }
1213
1214 // Only R0
1215 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1216 {
1217 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1218 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1219 return false;
1220 }
1221
1222 if (!(u32CR0 & CR0_WP_MASK))
1223 {
1224 STAM_COUNTER_INC(&gStatRefuseWP0);
1225 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1226 return false;
1227 }
1228
1229 if (PATMIsPatchGCAddr(env->pVM, eip))
1230 {
1231 Log2(("raw r0 mode forced: patch code\n"));
1232 *pExceptionIndex = EXCP_EXECUTE_RAW;
1233 return true;
1234 }
1235
1236#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1237 if (!(env->eflags & IF_MASK))
1238 {
1239 STAM_COUNTER_INC(&gStatRefuseIF0);
1240 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1241 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1242 return false;
1243 }
1244#endif
1245
1246 env->state |= CPU_RAW_RING0;
1247 }
1248
1249 /*
1250 * Don't reschedule the first time we're called, because there might be
1251 * special reasons why we're here that is not covered by the above checks.
1252 */
1253 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1254 {
1255 Log2(("raw mode refused: first scheduling\n"));
1256 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1257 return false;
1258 }
1259
1260 Assert(PGMPhysIsA20Enabled(env->pVM));
1261 *pExceptionIndex = EXCP_EXECUTE_RAW;
1262 return true;
1263}
1264
1265
1266/**
1267 * Fetches a code byte.
1268 *
1269 * @returns Success indicator (bool) for ease of use.
1270 * @param env The CPU environment structure.
1271 * @param GCPtrInstr Where to fetch code.
1272 * @param pu8Byte Where to store the byte on success
1273 */
1274bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1275{
1276 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1277 if (VBOX_SUCCESS(rc))
1278 return true;
1279 return false;
1280}
1281
1282
1283/**
1284 * Flush (or invalidate if you like) page table/dir entry.
1285 *
1286 * (invlpg instruction; tlb_flush_page)
1287 *
1288 * @param env Pointer to cpu environment.
1289 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1290 */
1291void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1292{
1293 PVM pVM = env->pVM;
1294
1295 /*
1296 * When we're replaying invlpg instructions or restoring a saved
1297 * state we disable this path.
1298 */
1299 if (pVM->rem.s.fIgnoreInvlPg)
1300 return;
1301 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1302
1303 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1304
1305 /*
1306 * Update the control registers before calling PGMFlushPage.
1307 */
1308 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1309 pCtx->cr0 = env->cr[0];
1310 pCtx->cr3 = env->cr[3];
1311 pCtx->cr4 = env->cr[4];
1312
1313 /*
1314 * Let PGM do the rest.
1315 */
1316 int rc = PGMInvalidatePage(pVM, GCPtr);
1317 if (VBOX_FAILURE(rc))
1318 {
1319 AssertMsgFailed(("remR3FlushPage %x %x %x %d failed!!\n", GCPtr));
1320 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1321 }
1322 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1323}
1324
1325/**
1326 * Set page table/dir entry. (called from tlb_set_page)
1327 *
1328 * @param env Pointer to cpu environment.
1329 */
1330void remR3SetPage(CPUState *env, CPUTLBEntry *pRead, CPUTLBEntry *pWrite, int prot, int is_user)
1331{
1332 uint32_t virt_addr, addend;
1333
1334 Log2(("tlb_set_page_raw read (%x-%x) write (%x-%x) prot %x is_user %d\n", pRead->address, pRead->addend, pWrite->address, pWrite->addend, prot, is_user));
1335
1336 if (prot & PAGE_WRITE)
1337 {
1338 addend = pWrite->addend;
1339 virt_addr = pWrite->address;
1340 }
1341 else
1342 if (prot & PAGE_READ)
1343 {
1344 addend = pRead->addend;
1345 virt_addr = pRead->address;
1346 }
1347 else
1348 {
1349 // Should never happen!
1350 AssertMsgFailed(("tlb_set_page_raw unexpected protection flags %x\n", prot));
1351 return;
1352 }
1353
1354 // Clear IO_* flags (TODO: are they actually useful for us??)
1355 virt_addr &= ~0xFFF;
1356
1357 /*
1358 * Update the control registers before calling PGMFlushPage.
1359 */
1360 PCPUMCTX pCtx = (PCPUMCTX)env->pVM->rem.s.pCtx;
1361 pCtx->cr0 = env->cr[0];
1362 pCtx->cr3 = env->cr[3];
1363 pCtx->cr4 = env->cr[4];
1364
1365 /*
1366 * Let PGM do the rest.
1367 */
1368 int rc = PGMInvalidatePage(env->pVM, (RTGCPTR)virt_addr);
1369 if (VBOX_FAILURE(rc))
1370 {
1371 AssertMsgFailed(("RAWEx_SetPageEntry %x %x %d failed!!\n", virt_addr, prot, is_user));
1372 VM_FF_SET(env->pVM, VM_FF_PGM_SYNC_CR3);
1373 }
1374}
1375
1376/**
1377 * Called from tlb_protect_code in order to write monitor a code page.
1378 *
1379 * @param env Pointer to the CPU environment.
1380 * @param GCPtr Code page to monitor
1381 */
1382void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1383{
1384 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1385 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1386 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1387 && !(env->eflags & VM_MASK) /* no V86 mode */
1388 && !HWACCMIsEnabled(env->pVM))
1389 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1390}
1391
1392/**
1393 * Called when the CPU is initialized, any of the CRx registers are changed or
1394 * when the A20 line is modified.
1395 *
1396 * @param env Pointer to the CPU environment.
1397 * @param fGlobal Set if the flush is global.
1398 */
1399void remR3FlushTLB(CPUState *env, bool fGlobal)
1400{
1401 PVM pVM = env->pVM;
1402
1403 /*
1404 * When we're replaying invlpg instructions or restoring a saved
1405 * state we disable this path.
1406 */
1407 if (pVM->rem.s.fIgnoreCR3Load)
1408 return;
1409
1410 /*
1411 * The caller doesn't check cr4, so we have to do that for ourselves.
1412 */
1413 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1414 fGlobal = true;
1415 Log(("remR3FlushTLB: CR0=%VGp CR3=%VGp CR4=%VGp %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1416
1417 /*
1418 * Update the control registers before calling PGMR3FlushTLB.
1419 */
1420 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1421 pCtx->cr0 = env->cr[0];
1422 pCtx->cr3 = env->cr[3];
1423 pCtx->cr4 = env->cr[4];
1424
1425 /*
1426 * Let PGM do the rest.
1427 */
1428 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1429}
1430
1431
1432/**
1433 * Called when any of the cr0, cr4 or efer registers is updated.
1434 *
1435 * @param env Pointer to the CPU environment.
1436 */
1437void remR3ChangeCpuMode(CPUState *env)
1438{
1439 int rc;
1440 PVM pVM = env->pVM;
1441
1442 /*
1443 * When we're replaying loads or restoring a saved
1444 * state this path is disabled.
1445 */
1446 if (pVM->rem.s.fIgnoreCpuMode)
1447 return;
1448
1449 /*
1450 * Update the control registers before calling PGMR3ChangeMode()
1451 * as it may need to map whatever cr3 is pointing to.
1452 */
1453 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1454 pCtx->cr0 = env->cr[0];
1455 pCtx->cr3 = env->cr[3];
1456 pCtx->cr4 = env->cr[4];
1457
1458#ifdef TARGET_X86_64
1459 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1460 if (rc != VINF_SUCCESS)
1461 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1462#else
1463 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1464 if (rc != VINF_SUCCESS)
1465 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1466#endif
1467}
1468
1469
1470/**
1471 * Called from compiled code to run dma.
1472 *
1473 * @param env Pointer to the CPU environment.
1474 */
1475void remR3DmaRun(CPUState *env)
1476{
1477 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1478 PDMR3DmaRun(env->pVM);
1479 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1480}
1481
1482/**
1483 * Called from compiled code to schedule pending timers in VMM
1484 *
1485 * @param env Pointer to the CPU environment.
1486 */
1487void remR3TimersRun(CPUState *env)
1488{
1489 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1490 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1491 TMR3TimerQueuesDo(env->pVM);
1492 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1493 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1494}
1495
1496/**
1497 * Record trap occurance
1498 *
1499 * @returns VBox status code
1500 * @param env Pointer to the CPU environment.
1501 * @param uTrap Trap nr
1502 * @param uErrorCode Error code
1503 * @param pvNextEIP Next EIP
1504 */
1505int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1506{
1507 PVM pVM = (PVM)env->pVM;
1508#ifdef VBOX_WITH_STATISTICS
1509 static STAMCOUNTER aStatTrap[255];
1510 static bool aRegisters[ELEMENTS(aStatTrap)];
1511#endif
1512
1513#ifdef VBOX_WITH_STATISTICS
1514 if (uTrap < 255)
1515 {
1516 if (!aRegisters[uTrap])
1517 {
1518 aRegisters[uTrap] = true;
1519 char szStatName[64];
1520 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1521 STAM_REG(env->pVM, &aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1522 }
1523 STAM_COUNTER_INC(&aStatTrap[uTrap]);
1524 }
1525#endif
1526 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1527 if(uTrap < 0x20)
1528 {
1529 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1530
1531 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 128)
1532 {
1533 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1534 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1535 return VERR_REM_TOO_MANY_TRAPS;
1536 }
1537 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1538 pVM->rem.s.cPendingExceptions = 1;
1539 pVM->rem.s.uPendingException = uTrap;
1540 pVM->rem.s.uPendingExcptEIP = env->eip;
1541 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1542 }
1543 else
1544 {
1545 pVM->rem.s.cPendingExceptions = 0;
1546 pVM->rem.s.uPendingException = uTrap;
1547 pVM->rem.s.uPendingExcptEIP = env->eip;
1548 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1549 }
1550 return VINF_SUCCESS;
1551}
1552
1553/*
1554 * Clear current active trap
1555 *
1556 * @param pVM VM Handle.
1557 */
1558void remR3TrapClear(PVM pVM)
1559{
1560 pVM->rem.s.cPendingExceptions = 0;
1561 pVM->rem.s.uPendingException = 0;
1562 pVM->rem.s.uPendingExcptEIP = 0;
1563 pVM->rem.s.uPendingExcptCR2 = 0;
1564}
1565
1566
1567/**
1568 * Syncs the internal REM state with the VM.
1569 *
1570 * This must be called before REMR3Run() is invoked whenever when the REM
1571 * state is not up to date. Calling it several times in a row is not
1572 * permitted.
1573 *
1574 * @returns VBox status code.
1575 *
1576 * @param pVM VM Handle.
1577 *
1578 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1579 * no do this since the majority of the callers don't want any unnecessary of events
1580 * pending that would immediatly interrupt execution.
1581 */
1582REMR3DECL(int) REMR3State(PVM pVM)
1583{
1584 Assert(!pVM->rem.s.fInREM);
1585 Log2(("REMR3State:\n"));
1586 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1587 register const CPUMCTX *pCtx = pVM->rem.s.pCtx;
1588 register unsigned fFlags;
1589
1590 /*
1591 * Copy the registers which requires no special handling.
1592 */
1593 Assert(R_EAX == 0);
1594 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1595 Assert(R_ECX == 1);
1596 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1597 Assert(R_EDX == 2);
1598 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1599 Assert(R_EBX == 3);
1600 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1601 Assert(R_ESP == 4);
1602 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1603 Assert(R_EBP == 5);
1604 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1605 Assert(R_ESI == 6);
1606 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1607 Assert(R_EDI == 7);
1608 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1609 pVM->rem.s.Env.eip = pCtx->eip;
1610
1611 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1612
1613 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1614
1615 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1616 pVM->rem.s.Env.dr[0] = pCtx->dr0;
1617 pVM->rem.s.Env.dr[1] = pCtx->dr1;
1618 pVM->rem.s.Env.dr[2] = pCtx->dr2;
1619 pVM->rem.s.Env.dr[3] = pCtx->dr3;
1620 pVM->rem.s.Env.dr[4] = pCtx->dr4;
1621 pVM->rem.s.Env.dr[5] = pCtx->dr5;
1622 pVM->rem.s.Env.dr[6] = pCtx->dr6;
1623 pVM->rem.s.Env.dr[7] = pCtx->dr7;
1624
1625 /*
1626 * Replay invlpg?
1627 */
1628 if (pVM->rem.s.cInvalidatedPages)
1629 {
1630 pVM->rem.s.fIgnoreInvlPg = true;
1631 RTUINT i;
1632 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1633 {
1634 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1635 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1636 }
1637 pVM->rem.s.fIgnoreInvlPg = false;
1638 pVM->rem.s.cInvalidatedPages = 0;
1639 }
1640
1641 /*
1642 * Registers which are seldomly changed and require special handling / order when changed.
1643 */
1644 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1645 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1646 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1647 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR))
1648 {
1649 if (fFlags & CPUM_CHANGED_FPU_REM)
1650 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1651
1652 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1653 {
1654 pVM->rem.s.fIgnoreCR3Load = true;
1655 tlb_flush(&pVM->rem.s.Env, true);
1656 pVM->rem.s.fIgnoreCR3Load = false;
1657 }
1658
1659 if (fFlags & CPUM_CHANGED_CR4)
1660 {
1661 pVM->rem.s.fIgnoreCR3Load = true;
1662 pVM->rem.s.fIgnoreCpuMode = true;
1663 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1664 pVM->rem.s.fIgnoreCpuMode = false;
1665 pVM->rem.s.fIgnoreCR3Load = false;
1666 }
1667
1668 if (fFlags & CPUM_CHANGED_CR0)
1669 {
1670 pVM->rem.s.fIgnoreCR3Load = true;
1671 pVM->rem.s.fIgnoreCpuMode = true;
1672 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1673 pVM->rem.s.fIgnoreCpuMode = false;
1674 pVM->rem.s.fIgnoreCR3Load = false;
1675 }
1676
1677 if (fFlags & CPUM_CHANGED_CR3)
1678 {
1679 pVM->rem.s.fIgnoreCR3Load = true;
1680 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1681 pVM->rem.s.fIgnoreCR3Load = false;
1682 }
1683
1684 if (fFlags & CPUM_CHANGED_GDTR)
1685 {
1686 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1687 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1688 }
1689
1690 if (fFlags & CPUM_CHANGED_IDTR)
1691 {
1692 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1693 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1694 }
1695
1696 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1697 {
1698 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1699 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1700 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1701 }
1702
1703 if (fFlags & CPUM_CHANGED_LDTR)
1704 {
1705 if (fFlags & CPUM_CHANGED_HIDDEN_SEL_REGS)
1706 {
1707 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1708 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u32Base;
1709 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1710 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1711 }
1712 else
1713 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1714 }
1715
1716 if (fFlags & CPUM_CHANGED_TR)
1717 {
1718 if (fFlags & CPUM_CHANGED_HIDDEN_SEL_REGS)
1719 {
1720 pVM->rem.s.Env.tr.selector = pCtx->tr;
1721 pVM->rem.s.Env.tr.base = pCtx->trHid.u32Base;
1722 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1723 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1724 }
1725 else
1726 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1727
1728 /** @note do_interrupt will fault if the busy flag is still set.... */
1729 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1730 }
1731 }
1732
1733 /*
1734 * Update selector registers.
1735 * This must be done *after* we've synced gdt, ldt and crX registers
1736 * since we're reading the GDT/LDT om sync_seg. This will happen with
1737 * saved state which takes a quick dip into rawmode for instance.
1738 */
1739 /*
1740 * Stack; Note first check this one as the CPL might have changed. The
1741 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1742 */
1743
1744 if (fFlags & CPUM_CHANGED_HIDDEN_SEL_REGS)
1745 {
1746 /* The hidden selector registers are valid in the CPU context. */
1747 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1748
1749 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u32Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1750 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u32Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1751 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u32Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1752 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u32Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1753 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u32Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1754 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u32Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1755
1756 /* Set current CPL. */
1757 if (pCtx->eflags.Bits.u1VM == 1)
1758 cpu_x86_set_cpl(&pVM->rem.s.Env, 3);
1759 else
1760 cpu_x86_set_cpl(&pVM->rem.s.Env, pCtx->ss & 3);
1761 }
1762 else
1763 {
1764 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1765 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1766 {
1767 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1768 if (pCtx->eflags.Bits.u1VM == 1)
1769 {
1770 cpu_x86_set_cpl(&pVM->rem.s.Env, 3);
1771 pVM->rem.s.Env.segs[R_SS].selector = (uint16_t)pCtx->ss;
1772 }
1773 else
1774 {
1775 cpu_x86_set_cpl(&pVM->rem.s.Env, pCtx->ss & 3);
1776 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1777#ifdef VBOX_WITH_STATISTICS
1778 if (pVM->rem.s.Env.segs[R_SS].newselector)
1779 {
1780 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1781 }
1782#endif
1783 }
1784 }
1785 else
1786 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1787
1788 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1789 {
1790 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1791 if (pCtx->eflags.Bits.u1VM == 1)
1792 {
1793 pVM->rem.s.Env.segs[R_ES].selector = (uint16_t)pCtx->es;
1794 }
1795 else
1796 {
1797 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1798#ifdef VBOX_WITH_STATISTICS
1799 if (pVM->rem.s.Env.segs[R_ES].newselector)
1800 {
1801 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1802 }
1803#endif
1804 }
1805 }
1806 else
1807 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1808
1809 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1810 {
1811 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1812 if (pCtx->eflags.Bits.u1VM == 1)
1813 {
1814 pVM->rem.s.Env.segs[R_CS].selector = (uint16_t)pCtx->cs;
1815 }
1816 else
1817 {
1818 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1819#ifdef VBOX_WITH_STATISTICS
1820 if (pVM->rem.s.Env.segs[R_CS].newselector)
1821 {
1822 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1823 }
1824#endif
1825 }
1826 }
1827 else
1828 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1829
1830 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1831 {
1832 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1833 if (pCtx->eflags.Bits.u1VM == 1)
1834 {
1835 pVM->rem.s.Env.segs[R_DS].selector = (uint16_t)pCtx->ds;
1836 }
1837 else
1838 {
1839 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1840#ifdef VBOX_WITH_STATISTICS
1841 if (pVM->rem.s.Env.segs[R_DS].newselector)
1842 {
1843 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1844 }
1845#endif
1846 }
1847 }
1848 else
1849 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1850
1851 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1852 * be the same but not the base/limit. */
1853 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1854 {
1855 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1856 if (pCtx->eflags.Bits.u1VM == 1)
1857 {
1858 pVM->rem.s.Env.segs[R_FS].selector = (uint16_t)pCtx->fs;
1859 }
1860 else
1861 {
1862 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1863#ifdef VBOX_WITH_STATISTICS
1864 if (pVM->rem.s.Env.segs[R_FS].newselector)
1865 {
1866 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1867 }
1868#endif
1869 }
1870 }
1871 else
1872 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1873
1874 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1875 {
1876 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1877 if (pCtx->eflags.Bits.u1VM == 1)
1878 {
1879 pVM->rem.s.Env.segs[R_GS].selector = (uint16_t)pCtx->gs;
1880 }
1881 else
1882 {
1883 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1884#ifdef VBOX_WITH_STATISTICS
1885 if (pVM->rem.s.Env.segs[R_GS].newselector)
1886 {
1887 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1888 }
1889#endif
1890 }
1891 }
1892 else
1893 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1894 }
1895
1896 /*
1897 * Check for traps.
1898 */
1899 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1900 bool fIsSoftwareInterrupt;
1901 uint8_t u8TrapNo;
1902 int rc = TRPMQueryTrap(pVM, &u8TrapNo, &fIsSoftwareInterrupt);
1903 if (VBOX_SUCCESS(rc))
1904 {
1905 #ifdef DEBUG
1906 if (u8TrapNo == 0x80)
1907 {
1908 remR3DumpLnxSyscall(pVM);
1909 remR3DumpOBsdSyscall(pVM);
1910 }
1911 #endif
1912
1913 pVM->rem.s.Env.exception_index = u8TrapNo;
1914 if (!fIsSoftwareInterrupt)
1915 {
1916 pVM->rem.s.Env.exception_is_int = 0;
1917 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
1918 }
1919 else
1920 {
1921 /*
1922 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
1923 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
1924 * for int03 and into.
1925 */
1926 pVM->rem.s.Env.exception_is_int = 1;
1927 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 2;
1928 /* int 3 may be generated by one-byte 0xcc */
1929 if (u8TrapNo == 3)
1930 {
1931 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xcc)
1932 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1933 }
1934 /* int 4 may be generated by one-byte 0xce */
1935 else if (u8TrapNo == 4)
1936 {
1937 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xce)
1938 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1939 }
1940 }
1941
1942 /* get error code and cr2 if needed. */
1943 switch (u8TrapNo)
1944 {
1945 case 0x0e:
1946 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
1947 /* fallthru */
1948 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
1949 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
1950 break;
1951
1952 case 0x11: case 0x08:
1953 default:
1954 pVM->rem.s.Env.error_code = 0;
1955 break;
1956 }
1957
1958 /*
1959 * We can now reset the active trap since the recompiler is gonna have a go at it.
1960 */
1961 rc = TRPMResetTrap(pVM);
1962 AssertRC(rc);
1963 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
1964 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
1965//if (pVM->rem.s.Env.eip == 0x40005a2f)
1966// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP | CPU_RAW_MODE_DISABLED | CPU_RAWR0_MODE_DISABLED;
1967 }
1968
1969 /*
1970 * Clear old interrupt request flags; Check for pending hardware interrupts.
1971 * (See @remark for why we don't check for other FFs.)
1972 */
1973 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
1974 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
1975 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
1976 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
1977
1978 /*
1979 * We're now in REM mode.
1980 */
1981 pVM->rem.s.fInREM = true;
1982 pVM->rem.s.cCanExecuteRaw = 0;
1983 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
1984 Log2(("REMR3State: returns VINF_SUCCESS\n"));
1985 return VINF_SUCCESS;
1986}
1987
1988
1989/**
1990 * Syncs back changes in the REM state to the the VM state.
1991 *
1992 * This must be called after invoking REMR3Run().
1993 * Calling it several times in a row is not permitted.
1994 *
1995 * @returns VBox status code.
1996 *
1997 * @param pVM VM Handle.
1998 */
1999REMR3DECL(int) REMR3StateBack(PVM pVM)
2000{
2001 Log2(("REMR3StateBack:\n"));
2002 Assert(pVM->rem.s.fInREM);
2003 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2004 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2005
2006 /*
2007 * Copy back the registers.
2008 * This is done in the order they are declared in the CPUMCTX structure.
2009 */
2010
2011 /** @todo FOP */
2012 /** @todo FPUIP */
2013 /** @todo CS */
2014 /** @todo FPUDP */
2015 /** @todo DS */
2016 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2017 pCtx->fpu.MXCSR = 0;
2018 pCtx->fpu.MXCSR_MASK = 0;
2019
2020 /** @todo check if FPU/XMM was actually used in the recompiler */
2021 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2022//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2023
2024 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2025 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2026 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2027 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2028 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2029 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2030 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2031
2032 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2033 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2034
2035#ifdef VBOX_WITH_STATISTICS
2036 if (pVM->rem.s.Env.segs[R_SS].newselector)
2037 {
2038 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2039 }
2040 if (pVM->rem.s.Env.segs[R_GS].newselector)
2041 {
2042 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2043 }
2044 if (pVM->rem.s.Env.segs[R_FS].newselector)
2045 {
2046 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2047 }
2048 if (pVM->rem.s.Env.segs[R_ES].newselector)
2049 {
2050 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2051 }
2052 if (pVM->rem.s.Env.segs[R_DS].newselector)
2053 {
2054 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2055 }
2056 if (pVM->rem.s.Env.segs[R_CS].newselector)
2057 {
2058 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2059 }
2060#endif
2061 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2062 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2063 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2064 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2065 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2066
2067 pCtx->eip = pVM->rem.s.Env.eip;
2068 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2069
2070 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2071 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2072 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2073 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2074
2075 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2076 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2077 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2078 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2079 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2080 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2081 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2082 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2083
2084 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2085 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2086 {
2087 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2088 STAM_COUNTER_INC(&gStatREMGDTChange);
2089 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2090 }
2091
2092 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2093 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2094 {
2095 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2096 STAM_COUNTER_INC(&gStatREMIDTChange);
2097 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2098 }
2099
2100 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2101 {
2102 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2103 STAM_COUNTER_INC(&gStatREMLDTRChange);
2104 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2105 }
2106 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2107 {
2108 pCtx->tr = pVM->rem.s.Env.tr.selector;
2109 STAM_COUNTER_INC(&gStatREMTRChange);
2110 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2111 }
2112
2113 /** @todo These values could still be out of sync! */
2114 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2115 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2116 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2117 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2118
2119 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2120 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2121 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2122
2123 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2124 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2125 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2126
2127 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2128 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2129 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2130
2131 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2132 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2133 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2134
2135 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2136 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2137 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2138
2139 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2140 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2141 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2142
2143 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2144 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2145 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2146
2147 /* Sysenter MSR */
2148 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2149 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2150 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2151
2152 remR3TrapClear(pVM);
2153
2154 /*
2155 * Check for traps.
2156 */
2157 if ( pVM->rem.s.Env.exception_index >= 0
2158 && pVM->rem.s.Env.exception_index < 256)
2159 {
2160 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2161 int rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int);
2162 AssertRC(rc);
2163 switch (pVM->rem.s.Env.exception_index)
2164 {
2165 case 0x0e:
2166 TRPMSetFaultAddress(pVM, pCtx->cr2);
2167 /* fallthru */
2168 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2169 case 0x11: case 0x08: /* 0 */
2170 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2171 break;
2172 }
2173
2174 }
2175
2176 /*
2177 * We're not longer in REM mode.
2178 */
2179 pVM->rem.s.fInREM = false;
2180 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2181 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2182 return VINF_SUCCESS;
2183}
2184
2185
2186/**
2187 * This is called by the disassembler when it wants to update the cpu state
2188 * before for instance doing a register dump.
2189 */
2190static void remR3StateUpdate(PVM pVM)
2191{
2192 Assert(pVM->rem.s.fInREM);
2193 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2194
2195 /*
2196 * Copy back the registers.
2197 * This is done in the order they are declared in the CPUMCTX structure.
2198 */
2199
2200 /** @todo FOP */
2201 /** @todo FPUIP */
2202 /** @todo CS */
2203 /** @todo FPUDP */
2204 /** @todo DS */
2205 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2206 pCtx->fpu.MXCSR = 0;
2207 pCtx->fpu.MXCSR_MASK = 0;
2208
2209 /** @todo check if FPU/XMM was actually used in the recompiler */
2210 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2211//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2212
2213 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2214 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2215 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2216 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2217 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2218 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2219 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2220
2221 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2222 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2223
2224 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2225 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2226 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2227 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2228 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2229
2230 pCtx->eip = pVM->rem.s.Env.eip;
2231 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2232
2233 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2234 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2235 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2236 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2237
2238 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2239 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2240 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2241 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2242 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2243 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2244 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2245 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2246
2247 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2248 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2249 {
2250 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2251 STAM_COUNTER_INC(&gStatREMGDTChange);
2252 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2253 }
2254
2255 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2256 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2257 {
2258 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2259 STAM_COUNTER_INC(&gStatREMIDTChange);
2260 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2261 }
2262
2263 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2264 {
2265 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2266 STAM_COUNTER_INC(&gStatREMLDTRChange);
2267 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2268 }
2269 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2270 {
2271 pCtx->tr = pVM->rem.s.Env.tr.selector;
2272 STAM_COUNTER_INC(&gStatREMTRChange);
2273 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2274 }
2275
2276 /** @todo These values could still be out of sync! */
2277 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2278 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2279 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2280 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2281
2282 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2283 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2284 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2285
2286 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2287 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2288 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2289
2290 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2291 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2292 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2293
2294 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2295 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2296 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2297
2298 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2299 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2300 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2301
2302 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2303 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2304 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2305
2306 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2307 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2308 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2309
2310 /* Sysenter MSR */
2311 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2312 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2313 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2314}
2315
2316
2317/**
2318 * Update the VMM state information if we're currently in REM.
2319 *
2320 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2321 * we're currently executing in REM and the VMM state is invalid. This method will of
2322 * course check that we're executing in REM before syncing any data over to the VMM.
2323 *
2324 * @param pVM The VM handle.
2325 */
2326REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2327{
2328 if (pVM->rem.s.fInREM)
2329 remR3StateUpdate(pVM);
2330}
2331
2332
2333#undef LOG_GROUP
2334#define LOG_GROUP LOG_GROUP_REM
2335
2336
2337/**
2338 * Notify the recompiler about Address Gate 20 state change.
2339 *
2340 * This notification is required since A20 gate changes are
2341 * initialized from a device driver and the VM might just as
2342 * well be in REM mode as in RAW mode.
2343 *
2344 * @param pVM VM handle.
2345 * @param fEnable True if the gate should be enabled.
2346 * False if the gate should be disabled.
2347 */
2348REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2349{
2350 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2351 VM_ASSERT_EMT(pVM);
2352 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2353}
2354
2355
2356/**
2357 * Replays the invalidated recorded pages.
2358 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2359 *
2360 * @param pVM VM handle.
2361 */
2362REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2363{
2364 VM_ASSERT_EMT(pVM);
2365
2366 /*
2367 * Sync the required registers.
2368 */
2369 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2370 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2371 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2372 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2373
2374 /*
2375 * Replay the flushes.
2376 */
2377 pVM->rem.s.fIgnoreInvlPg = true;
2378 RTUINT i;
2379 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2380 {
2381 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2382 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2383 }
2384 pVM->rem.s.fIgnoreInvlPg = false;
2385 pVM->rem.s.cInvalidatedPages = 0;
2386}
2387
2388
2389/**
2390 * Replays the invalidated recorded pages.
2391 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2392 *
2393 * @param pVM VM handle.
2394 */
2395REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2396{
2397 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2398 VM_ASSERT_EMT(pVM);
2399
2400 /*
2401 * Replay the flushes.
2402 */
2403 RTUINT i;
2404 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2405 pVM->rem.s.cHandlerNotifications = 0;
2406 for (i = 0; i < c; i++)
2407 {
2408 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2409 switch (pRec->enmKind)
2410 {
2411 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2412 REMR3NotifyHandlerPhysicalRegister(pVM,
2413 pRec->u.PhysicalRegister.enmType,
2414 pRec->u.PhysicalRegister.GCPhys,
2415 pRec->u.PhysicalRegister.cb,
2416 pRec->u.PhysicalRegister.fHasHCHandler);
2417 break;
2418
2419 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2420 REMR3NotifyHandlerPhysicalDeregister(pVM,
2421 pRec->u.PhysicalDeregister.enmType,
2422 pRec->u.PhysicalDeregister.GCPhys,
2423 pRec->u.PhysicalDeregister.cb,
2424 pRec->u.PhysicalDeregister.fHasHCHandler,
2425 pRec->u.PhysicalDeregister.pvHCPtr);
2426 break;
2427
2428 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2429 REMR3NotifyHandlerPhysicalModify(pVM,
2430 pRec->u.PhysicalModify.enmType,
2431 pRec->u.PhysicalModify.GCPhysOld,
2432 pRec->u.PhysicalModify.GCPhysNew,
2433 pRec->u.PhysicalModify.cb,
2434 pRec->u.PhysicalModify.fHasHCHandler,
2435 pRec->u.PhysicalModify.pvHCPtr);
2436 break;
2437
2438 default:
2439 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2440 break;
2441 }
2442 }
2443}
2444
2445
2446/**
2447 * Notify REM about changed code page.
2448 *
2449 * @returns VBox status code.
2450 * @param pVM VM handle.
2451 * @param pvCodePage Code page address
2452 */
2453REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2454{
2455 int rc;
2456 RTGCPHYS PhysGC;
2457 uint64_t flags;
2458
2459 VM_ASSERT_EMT(pVM);
2460
2461 /*
2462 * Get the physical page address.
2463 */
2464 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2465 if (rc == VINF_SUCCESS)
2466 {
2467 /*
2468 * Sync the required registers and flush the whole page.
2469 * (Easier to do the whole page than notifying it about each physical
2470 * byte that was changed.
2471 */
2472 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2473 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2474 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2475 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2476
2477 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2478 }
2479 return VINF_SUCCESS;
2480}
2481
2482/**
2483 * Notification about a successful MMR3PhysRegister() call.
2484 *
2485 * @param pVM VM handle.
2486 * @param GCPhys The physical address the RAM.
2487 * @param cb Size of the memory.
2488 * @param pvRam The HC address of the RAM.
2489 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2490 */
2491REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvRam, unsigned fFlags)
2492{
2493 Log(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2494 VM_ASSERT_EMT(pVM);
2495
2496 /*
2497 * Validate input - we trust the caller.
2498 */
2499 Assert(!GCPhys || pvRam);
2500 Assert(RT_ALIGN_P(pvRam, PAGE_SIZE) == pvRam);
2501 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2502 Assert(cb);
2503 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2504
2505 /*
2506 * Base ram?
2507 */
2508 if (!GCPhys)
2509 {
2510#ifndef PGM_DYNAMIC_RAM_ALLOC
2511 AssertRelease(!phys_ram_base);
2512 phys_ram_base = pvRam;
2513#endif
2514 phys_ram_size = cb;
2515 phys_ram_dirty = MMR3HeapAllocZ(pVM, MM_TAG_REM, cb >> PAGE_SHIFT);
2516 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", cb >> PAGE_SHIFT));
2517 }
2518#ifndef PGM_DYNAMIC_RAM_ALLOC
2519 AssertRelease(phys_ram_base);
2520#endif
2521
2522 /*
2523 * Register the ram.
2524 */
2525#ifdef PGM_DYNAMIC_RAM_ALLOC
2526 if (!GCPhys)
2527 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2528 else
2529 {
2530 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2531
2532 AssertRelease(pVM->rem.s.cPhysRegistrations < REM_MAX_PHYS_REGISTRATIONS);
2533 pVM->rem.s.aPhysReg[pVM->rem.s.cPhysRegistrations].GCPhys = GCPhys;
2534 pVM->rem.s.aPhysReg[pVM->rem.s.cPhysRegistrations].HCVirt = (RTHCUINTPTR)pvRam;
2535 pVM->rem.s.aPhysReg[pVM->rem.s.cPhysRegistrations].cb = cb;
2536 pVM->rem.s.cPhysRegistrations++;
2537 }
2538#else
2539 cpu_register_physical_memory(GCPhys, cb, ((uintptr_t)pvRam - (uintptr_t)phys_ram_base)
2540 | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2541#endif
2542}
2543
2544
2545/**
2546 * Notification about a successful PGMR3PhysRegisterChunk() call.
2547 *
2548 * @param pVM VM handle.
2549 * @param GCPhys The physical address the RAM.
2550 * @param cb Size of the memory.
2551 * @param pvRam The HC address of the RAM.
2552 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2553 */
2554REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2555{
2556 uint32_t idx;
2557
2558 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2559 VM_ASSERT_EMT(pVM);
2560
2561 /*
2562 * Validate input - we trust the caller.
2563 */
2564 Assert(pvRam);
2565 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2566 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2567 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2568 Assert(fFlags == 0 /* normal RAM */);
2569
2570 if (!pVM->rem.s.paHCVirtToGCPhys)
2571 {
2572 uint32_t size = (_4G >> PGM_DYNAMIC_CHUNK_SHIFT) * sizeof(REMCHUNKINFO);
2573
2574 Assert(phys_ram_size);
2575
2576 pVM->rem.s.paHCVirtToGCPhys = (PREMCHUNKINFO)MMR3HeapAllocZ(pVM, MM_TAG_REM, size);
2577 pVM->rem.s.paGCPhysToHCVirt = (RTHCPTR)MMR3HeapAllocZ(pVM, MM_TAG_REM, (phys_ram_size >> PGM_DYNAMIC_CHUNK_SHIFT)*sizeof(RTHCPTR));
2578 }
2579 pVM->rem.s.paGCPhysToHCVirt[GCPhys >> PGM_DYNAMIC_CHUNK_SHIFT] = pvRam;
2580
2581 idx = (pvRam >> PGM_DYNAMIC_CHUNK_SHIFT);
2582 if (!pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1)
2583 {
2584 pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1 = pvRam;
2585 pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 = GCPhys;
2586 }
2587 else
2588 {
2589 Assert(!pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2);
2590 pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2 = pvRam;
2591 pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 = GCPhys;
2592 }
2593 /* Does the region spawn two chunks? */
2594 if (pvRam & PGM_DYNAMIC_CHUNK_OFFSET_MASK)
2595 {
2596 if (!pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk1)
2597 {
2598 pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk1 = pvRam;
2599 pVM->rem.s.paHCVirtToGCPhys[idx+1].GCPhys1 = GCPhys;
2600 }
2601 else
2602 {
2603 Assert(!pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk2);
2604 pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk2 = pvRam;
2605 pVM->rem.s.paHCVirtToGCPhys[idx+1].GCPhys2 = GCPhys;
2606 }
2607 }
2608 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2609}
2610
2611/**
2612 * Convert GC physical address to HC virt
2613 *
2614 * @returns The HC virt address corresponding to addr.
2615 * @param env The cpu environment.
2616 * @param addr The physical address.
2617 */
2618void *remR3GCPhys2HCVirt(void *env, target_ulong addr)
2619{
2620#ifdef PGM_DYNAMIC_RAM_ALLOC
2621 PVM pVM = ((CPUState *)env)->pVM;
2622 uint32_t i;
2623
2624 /* lookup in pVM->rem.s.aPhysReg array first (for ROM range(s) inside the guest's RAM) */
2625 for (i=0;i<pVM->rem.s.cPhysRegistrations;i++)
2626 {
2627 uint32_t off = addr - pVM->rem.s.aPhysReg[i].GCPhys;
2628 if (off < pVM->rem.s.aPhysReg[i].cb)
2629 {
2630 Log(("remR3GCPhys2HCVirt: %x -> %x\n", addr, pVM->rem.s.aPhysReg[i].HCVirt + off));
2631 return (void *)(pVM->rem.s.aPhysReg[i].HCVirt + off);
2632 }
2633 }
2634 Assert(addr < phys_ram_size);
2635 Log(("remR3GCPhys2HCVirt: %x -> %x\n", addr, pVM->rem.s.paGCPhysToHCVirt[addr >> PGM_DYNAMIC_CHUNK_SHIFT] + (addr & PGM_DYNAMIC_CHUNK_OFFSET_MASK)));
2636 return (void *)(pVM->rem.s.paGCPhysToHCVirt[addr >> PGM_DYNAMIC_CHUNK_SHIFT] + (addr & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
2637#else
2638 return phys_ram_base + addr;
2639#endif
2640}
2641
2642/**
2643 * Convert GC physical address to HC virt
2644 *
2645 * @returns The HC virt address corresponding to addr.
2646 * @param env The cpu environment.
2647 * @param addr The physical address.
2648 */
2649target_ulong remR3HCVirt2GCPhys(void *env, void *addr)
2650{
2651#ifdef PGM_DYNAMIC_RAM_ALLOC
2652 PVM pVM = ((CPUState *)env)->pVM;
2653 RTHCUINTPTR HCVirt = (RTHCUINTPTR)addr;
2654 uint32_t idx = (HCVirt >> PGM_DYNAMIC_CHUNK_SHIFT);
2655 RTHCUINTPTR off;
2656 RTUINT i;
2657
2658 off = HCVirt - pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1;
2659
2660 if ( pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1
2661 && off < PGM_DYNAMIC_CHUNK_SIZE)
2662 {
2663 Log(("remR3HCVirt2GCPhys %x -> %x\n", addr, pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 + off));
2664 return pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 + off;
2665 }
2666
2667 off = HCVirt - pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2;
2668 if ( pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2
2669 && off < PGM_DYNAMIC_CHUNK_SIZE)
2670 {
2671 Log(("remR3HCVirt2GCPhys %x -> %x\n", addr, pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 + off));
2672 return pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 + off;
2673 }
2674
2675 /* Must be externally registered RAM/ROM range */
2676 for (i=0;i<pVM->rem.s.cPhysRegistrations;i++)
2677 {
2678 uint32_t off = HCVirt - pVM->rem.s.aPhysReg[i].HCVirt;
2679 if (off < pVM->rem.s.aPhysReg[i].cb)
2680 {
2681 Log(("remR3HCVirt2GCPhys %x -> %x\n", addr, pVM->rem.s.aPhysReg[i].GCPhys + off));
2682 return pVM->rem.s.aPhysReg[i].GCPhys + off;
2683 }
2684 }
2685 AssertReleaseMsgFailed(("No translation for physical address %p???\n", addr));
2686 return 0;
2687#else
2688 return (target_ulong)addr - (target_ulong)phys_ram_base;
2689#endif
2690}
2691
2692/**
2693 * Grows dynamically allocated guest RAM.
2694 * Will raise a fatal error if the operation fails.
2695 *
2696 * @param physaddr The physical address.
2697 */
2698void remR3GrowDynRange(unsigned long physaddr)
2699{
2700 int rc;
2701 PVM pVM = cpu_single_env->pVM;
2702
2703 Log(("remR3GrowDynRange %VGp\n", physaddr));
2704 rc = PGM3PhysGrowRange(pVM, (RTGCPHYS)physaddr);
2705 if (VBOX_SUCCESS(rc))
2706 return;
2707
2708 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2709 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2710 AssertFatalFailed();
2711}
2712
2713/**
2714 * Notification about a successful MMR3PhysRomRegister() call.
2715 *
2716 * @param pVM VM handle.
2717 * @param GCPhys The physical address of the ROM.
2718 * @param cb The size of the ROM.
2719 * @param pvCopy Pointer to the ROM copy.
2720 */
2721REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy)
2722{
2723 Log(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p\n", GCPhys, cb, pvCopy));
2724 VM_ASSERT_EMT(pVM);
2725
2726 /*
2727 * Validate input - we trust the caller.
2728 */
2729 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2730 Assert(cb);
2731 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2732 Assert(pvCopy);
2733 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2734
2735 /*
2736 * Register the rom.
2737 */
2738#ifdef PGM_DYNAMIC_RAM_ALLOC
2739 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_ROM);
2740 AssertRelease(pVM->rem.s.cPhysRegistrations < REM_MAX_PHYS_REGISTRATIONS);
2741 pVM->rem.s.aPhysReg[pVM->rem.s.cPhysRegistrations].GCPhys = GCPhys;
2742 pVM->rem.s.aPhysReg[pVM->rem.s.cPhysRegistrations].HCVirt = (RTHCUINTPTR)pvCopy;
2743 pVM->rem.s.aPhysReg[pVM->rem.s.cPhysRegistrations].cb = cb;
2744 pVM->rem.s.cPhysRegistrations++;
2745#else
2746 AssertRelease(phys_ram_base);
2747 cpu_register_physical_memory(GCPhys, cb, ((uintptr_t)pvCopy - (uintptr_t)phys_ram_base) | IO_MEM_ROM);
2748#endif
2749 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2750}
2751
2752
2753/**
2754 * Notification about a successful MMR3PhysRegister() call.
2755 *
2756 * @param pVM VM Handle.
2757 * @param GCPhys Start physical address.
2758 * @param cb The size of the range.
2759 */
2760REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2761{
2762 LogFlow(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2763 VM_ASSERT_EMT(pVM);
2764
2765 /*
2766 * Validate input - we trust the caller.
2767 */
2768 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2769 Assert(cb);
2770 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2771
2772 /*
2773 * Unassigning the memory.
2774 */
2775 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2776}
2777
2778
2779/**
2780 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2781 *
2782 * @param pVM VM Handle.
2783 * @param enmType Handler type.
2784 * @param GCPhys Handler range address.
2785 * @param cb Size of the handler range.
2786 * @param fHasHCHandler Set if the handler has a HC callback function.
2787 *
2788 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2789 * Handler memory type to memory which has no HC handler.
2790 */
2791REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2792{
2793 LogFlow(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d\n",
2794 enmType, GCPhys, cb, fHasHCHandler));
2795 VM_ASSERT_EMT(pVM);
2796 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2797 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2798
2799 if (pVM->rem.s.cHandlerNotifications)
2800 REMR3ReplayHandlerNotifications(pVM);
2801
2802 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2803 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2804 else if (fHasHCHandler)
2805 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2806}
2807
2808
2809/**
2810 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2811 *
2812 * @param pVM VM Handle.
2813 * @param enmType Handler type.
2814 * @param GCPhys Handler range address.
2815 * @param cb Size of the handler range.
2816 * @param fHasHCHandler Set if the handler has a HC callback function.
2817 * @param pvHCPtr The HC virtual address corresponding to GCPhys if available.
2818 */
2819REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, void *pvHCPtr)
2820{
2821 LogFlow(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d pvHCPtr=%p RAM=%08x\n",
2822 enmType, GCPhys, cb, fHasHCHandler, pvHCPtr, MMR3PhysGetRamSize(pVM)));
2823 VM_ASSERT_EMT(pVM);
2824
2825 if (pVM->rem.s.cHandlerNotifications)
2826 REMR3ReplayHandlerNotifications(pVM);
2827
2828 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2829 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2830 else if (fHasHCHandler)
2831 {
2832 if (!pvHCPtr)
2833 {
2834 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2835 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2836 }
2837 else
2838 {
2839 /* This is not prefect, but it'll do for PD monitoring... */
2840 Assert(cb == PAGE_SIZE);
2841 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2842 Assert(remR3HCVirt2GCPhys(cpu_single_env, pvHCPtr) < MMR3PhysGetRamSize(pVM));
2843#ifdef PGM_DYNAMIC_RAM_ALLOC
2844 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2845#else
2846 cpu_register_physical_memory(GCPhys, cb, remR3HCVirt2GCPhys(cpu_single_env, pvHCPtr));
2847#endif
2848 }
2849 }
2850}
2851
2852
2853/**
2854 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2855 *
2856 * @param pVM VM Handle.
2857 * @param enmType Handler type.
2858 * @param GCPhysOld Old handler range address.
2859 * @param GCPhysNew New handler range address.
2860 * @param cb Size of the handler range.
2861 * @param fHasHCHandler Set if the handler has a HC callback function.
2862 * @param pvHCPtr The HC virtual address corresponding to GCPhys if available.
2863 */
2864REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, void *pvHCPtr)
2865{
2866 LogFlow(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%d fHasHCHandler=%d pvHCPtr=%p\n",
2867 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, pvHCPtr));
2868 VM_ASSERT_EMT(pVM);
2869 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2870
2871 if (pVM->rem.s.cHandlerNotifications)
2872 REMR3ReplayHandlerNotifications(pVM);
2873
2874 if (fHasHCHandler)
2875 {
2876 /*
2877 * Reset the old page.
2878 */
2879 if (!pvHCPtr)
2880 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2881 else
2882 {
2883 /* This is not prefect, but it'll do for PD monitoring... */
2884 Assert(cb == PAGE_SIZE);
2885 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2886 Assert(remR3HCVirt2GCPhys(cpu_single_env, pvHCPtr) < MMR3PhysGetRamSize(pVM));
2887#ifdef PGM_DYNAMIC_RAM_ALLOC
2888 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2889#else
2890 cpu_register_physical_memory(GCPhysOld, cb, remR3HCVirt2GCPhys(cpu_single_env, pvHCPtr));
2891#endif
2892 }
2893
2894 /*
2895 * Update the new page.
2896 */
2897 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2898 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2899 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2900 }
2901}
2902
2903
2904/**
2905 * Checks if we're handling access to this page or not.
2906 *
2907 * @returns true if we're trapping access.
2908 * @returns false if we aren't.
2909 * @param pVM The VM handle.
2910 * @param GCPhys The physical address.
2911 *
2912 * @remark This function will only work correctly in VBOX_STRICT builds!
2913 */
2914REMDECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
2915{
2916#ifdef VBOX_STRICT
2917 if (pVM->rem.s.cHandlerNotifications)
2918 REMR3ReplayHandlerNotifications(pVM);
2919
2920 unsigned long off = get_phys_page_offset(GCPhys);
2921 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
2922 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
2923 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
2924#else
2925 return false;
2926#endif
2927}
2928
2929
2930/**
2931 * Deals with a rare case in get_phys_addr_code where the code
2932 * is being monitored.
2933 *
2934 * It could also be an MMIO page, in which case we will raise a fatal error.
2935 *
2936 * @returns The physical address corresponding to addr.
2937 * @param env The cpu environment.
2938 * @param addr The virtual address.
2939 * @param pTLBEntry The TLB entry.
2940 */
2941target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
2942{
2943 PVM pVM = env->pVM;
2944 if ((pTLBEntry->address & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
2945 {
2946 target_ulong ret = pTLBEntry->addend + addr;
2947 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv address=%VGv addend=%VGp ret=%VGp\n",
2948 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->address, (RTGCPHYS)pTLBEntry->addend, ret);
2949 return ret;
2950 }
2951 LogRel(("\nTrying to execute code with memory type address=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
2952 "*** handlers\n",
2953 (RTGCPTR)pTLBEntry->address, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
2954 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
2955 LogRel(("*** mmio\n"));
2956 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
2957 LogRel(("*** phys\n"));
2958 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
2959 cpu_abort(env, "Trying to execute code with memory type address=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
2960 (RTGCPTR)pTLBEntry->address, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
2961 AssertFatalFailed();
2962}
2963
2964/**
2965 * Read guest RAM and ROM.
2966 *
2967 * @param pbSrcPhys The source address. Relative to guest RAM.
2968 * @param pvDst The destination address.
2969 * @param cb Number of bytes
2970 */
2971void remR3PhysReadBytes(uint8_t *pbSrcPhys, void *pvDst, unsigned cb)
2972{
2973 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2974
2975 /*
2976 * Calc the physical address ('off') and check that it's within the RAM.
2977 * ROM is accessed this way, even if it's not part of the RAM.
2978 */
2979 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
2980 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
2981 if (off < (uintptr_t)phys_ram_size)
2982 PGMPhysRead(cpu_single_env->pVM, (RTGCPHYS)off, pvDst, cb);
2983 else
2984 {
2985 /* ROM range outside physical RAM, HC address passed directly */
2986 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
2987 memcpy(pvDst, pbSrcPhys, cb);
2988 }
2989 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2990}
2991
2992/** @todo r=bird: s/Byte/U8/ s/Word/U16/ s/Dword/U32/, see MMIO and other functions.
2993 * It could be an idea to inline these wrapper functions... */
2994
2995/**
2996 * Read guest RAM and ROM.
2997 *
2998 * @param pbSrcPhys The source address. Relative to guest RAM.
2999 */
3000uint8_t remR3PhysReadUByte(uint8_t *pbSrcPhys)
3001{
3002 uint8_t val;
3003
3004 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3005
3006 /*
3007 * Calc the physical address ('off') and check that it's within the RAM.
3008 * ROM is accessed this way, even if it's not part of the RAM.
3009 */
3010 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3011 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3012 if (off < (uintptr_t)phys_ram_size)
3013 val = PGMR3PhysReadByte(cpu_single_env->pVM, (RTGCPHYS)off);
3014 else
3015 {
3016 /* ROM range outside physical RAM, HC address passed directly */
3017 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3018 val = *pbSrcPhys;
3019 }
3020 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3021 return val;
3022}
3023
3024/**
3025 * Read guest RAM and ROM.
3026 *
3027 * @param pbSrcPhys The source address. Relative to guest RAM.
3028 */
3029int8_t remR3PhysReadSByte(uint8_t *pbSrcPhys)
3030{
3031 int8_t val;
3032
3033 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3034
3035 /*
3036 * Calc the physical address ('off') and check that it's within the RAM.
3037 * ROM is accessed this way, even if it's not part of the RAM.
3038 */
3039 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3040 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3041 if (off < (uintptr_t)phys_ram_size)
3042 val = PGMR3PhysReadByte(cpu_single_env->pVM, (RTGCPHYS)off);
3043 else
3044 {
3045 /* ROM range outside physical RAM, HC address passed directly */
3046 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3047 val = *(int8_t *)pbSrcPhys;
3048 }
3049 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3050 return val;
3051}
3052
3053/**
3054 * Read guest RAM and ROM.
3055 *
3056 * @param pbSrcPhys The source address. Relative to guest RAM.
3057 */
3058uint16_t remR3PhysReadUWord(uint8_t *pbSrcPhys)
3059{
3060 uint16_t val;
3061
3062 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3063
3064 /*
3065 * Calc the physical address ('off') and check that it's within the RAM.
3066 * ROM is accessed this way, even if it's not part of the RAM.
3067 */
3068 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3069 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3070 if (off < (uintptr_t)phys_ram_size)
3071 val = PGMR3PhysReadWord(cpu_single_env->pVM, (RTGCPHYS)off);
3072 else
3073 {
3074 /* ROM range outside physical RAM, HC address passed directly */
3075 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3076 val = *(uint16_t *)pbSrcPhys;
3077 }
3078 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3079 return val;
3080}
3081
3082/**
3083 * Read guest RAM and ROM.
3084 *
3085 * @param pbSrcPhys The source address. Relative to guest RAM.
3086 */
3087int16_t remR3PhysReadSWord(uint8_t *pbSrcPhys)
3088{
3089 int16_t val;
3090
3091 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3092
3093 /*
3094 * Calc the physical address ('off') and check that it's within the RAM.
3095 * ROM is accessed this way, even if it's not part of the RAM.
3096 */
3097 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3098 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3099 if (off < (uintptr_t)phys_ram_size)
3100 val = PGMR3PhysReadWord(cpu_single_env->pVM, (RTGCPHYS)off);
3101 else
3102 {
3103 /* ROM range outside physical RAM, HC address passed directly */
3104 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3105 val = *(int16_t *)pbSrcPhys;
3106 }
3107 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3108 return val;
3109}
3110
3111/**
3112 * Read guest RAM and ROM.
3113 *
3114 * @param pbSrcPhys The source address. Relative to guest RAM.
3115 */
3116uint32_t remR3PhysReadULong(uint8_t *pbSrcPhys)
3117{
3118 uint32_t val;
3119
3120 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3121
3122 /*
3123 * Calc the physical address ('off') and check that it's within the RAM.
3124 * ROM is accessed this way, even if it's not part of the RAM.
3125 */
3126 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3127 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3128 if (off < (uintptr_t)phys_ram_size)
3129 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off);
3130 else
3131 {
3132 /* ROM range outside physical RAM, HC address passed directly */
3133 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3134 val = *(uint32_t *)pbSrcPhys;
3135 }
3136 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3137 return val;
3138}
3139
3140/**
3141 * Read guest RAM and ROM.
3142 *
3143 * @param pbSrcPhys The source address. Relative to guest RAM.
3144 */
3145int32_t remR3PhysReadSLong(uint8_t *pbSrcPhys)
3146{
3147 int32_t val;
3148
3149 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3150
3151 /*
3152 * Calc the physical address ('off') and check that it's within the RAM.
3153 * ROM is accessed this way, even if it's not part of the RAM.
3154 */
3155 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3156 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbSrcPhys);
3157 if (off < (uintptr_t)phys_ram_size)
3158 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off);
3159 else
3160 {
3161 /* ROM range outside physical RAM, HC address passed directly */
3162 Log4(("remR3PhysReadBytes ROM: %p\n", pbSrcPhys));
3163 val = *(int32_t *)pbSrcPhys;
3164 }
3165 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3166 return val;
3167}
3168
3169/**
3170 * Write guest RAM.
3171 *
3172 * @param pbDstPhys The destination address. Relative to guest RAM.
3173 * @param pvSrc The source address.
3174 * @param cb Number of bytes to write
3175 */
3176void remR3PhysWriteBytes(uint8_t *pbDstPhys, const void *pvSrc, unsigned cb)
3177{
3178 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3179 /*
3180 * Calc the physical address ('off') and check that it's within the RAM.
3181 */
3182 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbDstPhys);
3183 if (off < (uintptr_t)phys_ram_size)
3184 PGMPhysWrite(cpu_single_env->pVM, (RTGCPHYS)off, pvSrc, cb);
3185 else
3186 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, cb));
3187 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3188}
3189
3190
3191/**
3192 * Write guest RAM.
3193 *
3194 * @param pbDstPhys The destination address. Relative to guest RAM.
3195 * @param val Value
3196 */
3197void remR3PhysWriteByte(uint8_t *pbDstPhys, uint8_t val)
3198{
3199 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3200 /*
3201 * Calc the physical address ('off') and check that it's within the RAM.
3202 */
3203 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbDstPhys);
3204 if (off < (uintptr_t)phys_ram_size)
3205 PGMR3PhysWriteByte(cpu_single_env->pVM, (RTGCPHYS)off, val);
3206 else
3207 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, 1));
3208 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3209}
3210
3211/**
3212 * Write guest RAM.
3213 *
3214 * @param pbDstPhys The destination address. Relative to guest RAM.
3215 * @param val Value
3216 */
3217void remR3PhysWriteWord(uint8_t *pbDstPhys, uint16_t val)
3218{
3219 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3220 /*
3221 * Calc the physical address ('off') and check that it's within the RAM.
3222 */
3223 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbDstPhys);
3224 if (off < (uintptr_t)phys_ram_size)
3225 PGMR3PhysWriteWord(cpu_single_env->pVM, (RTGCPHYS)off, val);
3226 else
3227 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, 2));
3228 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3229}
3230
3231/**
3232 * Write guest RAM.
3233 *
3234 * @param pbDstPhys The destination address. Relative to guest RAM.
3235 * @param val Value
3236 */
3237void remR3PhysWriteDword(uint8_t *pbDstPhys, uint32_t val)
3238{
3239 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3240 /*
3241 * Calc the physical address ('off') and check that it's within the RAM.
3242 */
3243 uintptr_t off = remR3HCVirt2GCPhys(cpu_single_env, pbDstPhys);
3244 if (off < (uintptr_t)phys_ram_size)
3245 PGMR3PhysWriteDword(cpu_single_env->pVM, (RTGCPHYS)off, val);
3246 else
3247 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, 4));
3248 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3249}
3250
3251
3252
3253#undef LOG_GROUP
3254#define LOG_GROUP LOG_GROUP_REM_MMIO
3255
3256/** Read MMIO memory. */
3257static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3258{
3259 uint32_t u32 = 0;
3260 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3261 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3262 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3263 return u32;
3264}
3265
3266/** Read MMIO memory. */
3267static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3268{
3269 uint32_t u32 = 0;
3270 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3271 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3272 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3273 return u32;
3274}
3275
3276/** Read MMIO memory. */
3277static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3278{
3279 uint32_t u32 = 0;
3280 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3281 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3282 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3283 return u32;
3284}
3285
3286/** Write to MMIO memory. */
3287static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3288{
3289 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3290 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3291 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3292}
3293
3294/** Write to MMIO memory. */
3295static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3296{
3297 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3298 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3299 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3300}
3301
3302/** Write to MMIO memory. */
3303static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3304{
3305 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3306 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3307 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3308}
3309
3310
3311#undef LOG_GROUP
3312#define LOG_GROUP LOG_GROUP_REM_HANDLER
3313
3314/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3315
3316static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3317{
3318 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3319 uint8_t u8;
3320 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3321 return u8;
3322}
3323
3324static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3325{
3326 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3327 uint16_t u16;
3328 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3329 return u16;
3330}
3331
3332static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3333{
3334 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3335 uint32_t u32;
3336 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3337 return u32;
3338}
3339
3340static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3341{
3342 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3343 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3344}
3345
3346static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3347{
3348 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3349 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3350}
3351
3352static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3353{
3354 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3355 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3356}
3357
3358/* -+- disassembly -+- */
3359
3360#undef LOG_GROUP
3361#define LOG_GROUP LOG_GROUP_REM_DISAS
3362
3363
3364/**
3365 * Enables or disables singled stepped disassembly.
3366 *
3367 * @returns VBox status code.
3368 * @param pVM VM handle.
3369 * @param fEnable To enable set this flag, to disable clear it.
3370 */
3371static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3372{
3373 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3374 VM_ASSERT_EMT(pVM);
3375
3376 if (fEnable)
3377 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3378 else
3379 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3380 return VINF_SUCCESS;
3381}
3382
3383
3384/**
3385 * Enables or disables singled stepped disassembly.
3386 *
3387 * @returns VBox status code.
3388 * @param pVM VM handle.
3389 * @param fEnable To enable set this flag, to disable clear it.
3390 */
3391REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3392{
3393 PVMREQ pReq;
3394 int rc;
3395
3396 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3397 if (VM_IS_EMT(pVM))
3398 return remR3DisasEnableStepping(pVM, fEnable);
3399
3400 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3401 AssertRC(rc);
3402 if (VBOX_SUCCESS(rc))
3403 rc = pReq->iStatus;
3404 VMR3ReqFree(pReq);
3405 return rc;
3406}
3407
3408
3409#ifdef VBOX_WITH_DEBUGGER
3410/**
3411 * External Debugger Command: .remstep [on|off|1|0]
3412 */
3413static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3414{
3415 bool fEnable;
3416 int rc;
3417
3418 /* print status */
3419 if (cArgs == 0)
3420 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3421 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3422
3423 /* convert the argument and change the mode. */
3424 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3425 if (VBOX_FAILURE(rc))
3426 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3427 rc = REMR3DisasEnableStepping(pVM, fEnable);
3428 if (VBOX_FAILURE(rc))
3429 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3430 return rc;
3431}
3432#endif
3433
3434
3435/**
3436 * Disassembles n instructions and prints them to the log.
3437 *
3438 * @returns Success indicator.
3439 * @param env Pointer to the recompiler CPU structure.
3440 * @param f32BitCode Indicates that whether or not the code should
3441 * be disassembled as 16 or 32 bit. If -1 the CS
3442 * selector will be inspected.
3443 * @param nrInstructions Nr of instructions to disassemble
3444 * @param pszPrefix
3445 * @remark not currently used for anything but ad-hoc debugging.
3446 */
3447bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3448{
3449 int i;
3450
3451 /*
3452 * Determin 16/32 bit mode.
3453 */
3454 if (f32BitCode == -1)
3455 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3456
3457 /*
3458 * Convert cs:eip to host context address.
3459 * We don't care to much about cross page correctness presently.
3460 */
3461 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3462 void *pvPC;
3463 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3464 {
3465 /* convert eip to physical address. */
3466 int rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3467 GCPtrPC,
3468 env->cr[3],
3469 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3470 &pvPC);
3471 if (VBOX_FAILURE(rc))
3472 {
3473 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3474 return false;
3475 pvPC = (char *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3476 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3477 }
3478 }
3479 else
3480 {
3481 /* physical address */
3482 int rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions*16, &pvPC);
3483 if (VBOX_FAILURE(rc))
3484 return false;
3485 }
3486
3487 /*
3488 * Disassemble.
3489 */
3490 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
3491 DISCPUSTATE Cpu;
3492 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3493 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3494 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3495 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3496 //Cpu.dwUserData[2] = GCPtrPC;
3497
3498 for (i=0;i<nrInstructions;i++)
3499 {
3500 char szOutput[256];
3501 uint32_t cbOp;
3502 if (!DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0]))
3503 return false;
3504 if (pszPrefix)
3505 Log(("%s: %s", pszPrefix, szOutput));
3506 else
3507 Log(("%s", szOutput));
3508
3509 pvPC += cbOp;
3510 }
3511 return true;
3512}
3513
3514
3515/** @todo need to test the new code, using the old code in the mean while. */
3516#define USE_OLD_DUMP_AND_DISASSEMBLY
3517
3518/**
3519 * Disassembles one instruction and prints it to the log.
3520 *
3521 * @returns Success indicator.
3522 * @param env Pointer to the recompiler CPU structure.
3523 * @param f32BitCode Indicates that whether or not the code should
3524 * be disassembled as 16 or 32 bit. If -1 the CS
3525 * selector will be inspected.
3526 * @param pszPrefix
3527 */
3528bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3529{
3530#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3531 PVM pVM = env->pVM;
3532
3533 /*
3534 * Determin 16/32 bit mode.
3535 */
3536 if (f32BitCode == -1)
3537 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3538
3539 /*
3540 * Log registers
3541 */
3542 if (LogIs2Enabled())
3543 {
3544 remR3StateUpdate(pVM);
3545 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3546 }
3547
3548 /*
3549 * Convert cs:eip to host context address.
3550 * We don't care to much about cross page correctness presently.
3551 */
3552 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3553 void *pvPC;
3554 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3555 {
3556 /* convert eip to physical address. */
3557 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
3558 GCPtrPC,
3559 env->cr[3],
3560 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3561 &pvPC);
3562 if (VBOX_FAILURE(rc))
3563 {
3564 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3565 return false;
3566 pvPC = (char *)PATMR3QueryPatchMemHC(pVM, NULL)
3567 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3568 }
3569 }
3570 else
3571 {
3572
3573 /* physical address */
3574 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, &pvPC);
3575 if (VBOX_FAILURE(rc))
3576 return false;
3577 }
3578
3579 /*
3580 * Disassemble.
3581 */
3582 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
3583 DISCPUSTATE Cpu;
3584 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3585 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3586 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3587 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3588 //Cpu.dwUserData[2] = GCPtrPC;
3589 char szOutput[256];
3590 uint32_t cbOp;
3591 if (!DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0]))
3592 return false;
3593
3594 if (!f32BitCode)
3595 {
3596 if (pszPrefix)
3597 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3598 else
3599 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3600 }
3601 else
3602 {
3603 if (pszPrefix)
3604 Log(("%s: %s", pszPrefix, szOutput));
3605 else
3606 Log(("%s", szOutput));
3607 }
3608 return true;
3609
3610#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3611 PVM pVM = env->pVM;
3612 const bool fLog = LogIsEnabled();
3613 const bool fLog2 = LogIs2Enabled();
3614 int rc = VINF_SUCCESS;
3615
3616 /*
3617 * Don't bother if there ain't any log output to do.
3618 */
3619 if (!fLog && !fLog2)
3620 return true;
3621
3622 /*
3623 * Update the state so DBGF reads the correct register values.
3624 */
3625 remR3StateUpdate(pVM);
3626
3627 /*
3628 * Log registers if requested.
3629 */
3630 if (!fLog2)
3631 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3632
3633 /*
3634 * Disassemble to log.
3635 */
3636 if (fLog)
3637 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3638
3639 return VBOX_SUCCESS(rc);
3640#endif
3641}
3642
3643
3644/**
3645 * Disassemble recompiled code.
3646 *
3647 * @param phFileIgnored Ignored, logfile usually.
3648 * @param pvCode Pointer to the code block.
3649 * @param cb Size of the code block.
3650 */
3651void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3652{
3653 if (LogIs2Enabled())
3654 {
3655 unsigned off = 0;
3656 char szOutput[256];
3657 DISCPUSTATE Cpu = {0};
3658 Cpu.mode = CPUMODE_32BIT;
3659
3660 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3661 while (off < cb)
3662 {
3663 uint32_t cbInstr;
3664 if (DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput))
3665 RTLogPrintf("%s", szOutput);
3666 else
3667 {
3668 RTLogPrintf("disas error\n");
3669 cbInstr = 1;
3670 }
3671 off += cbInstr;
3672 }
3673 }
3674 NOREF(phFileIgnored);
3675}
3676
3677
3678/**
3679 * Disassemble guest code.
3680 *
3681 * @param phFileIgnored Ignored, logfile usually.
3682 * @param uCode The guest address of the code to disassemble. (flat?)
3683 * @param cb Number of bytes to disassemble.
3684 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3685 */
3686void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3687{
3688 if (LogIs2Enabled())
3689 {
3690 PVM pVM = cpu_single_env->pVM;
3691
3692 /*
3693 * Update the state so DBGF reads the correct register values (flags).
3694 */
3695 remR3StateUpdate(pVM);
3696
3697 /*
3698 * Do the disassembling.
3699 */
3700 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
3701 RTSEL cs = cpu_single_env->segs[R_CS].selector;
3702 RTGCUINTPTR eip = uCode - cpu_single_env->segs[R_CS].base;
3703 for (;;)
3704 {
3705 char szBuf[256];
3706 size_t cbInstr;
3707 int rc = DBGFR3DisasInstrEx(pVM,
3708 cs,
3709 eip,
3710 0,
3711 szBuf, sizeof(szBuf),
3712 &cbInstr);
3713 if (VBOX_SUCCESS(rc))
3714 RTLogPrintf("%VGp %s\n", uCode, szBuf);
3715 else
3716 {
3717 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
3718 cbInstr = 1;
3719 }
3720
3721 /* next */
3722 if (cb <= cbInstr)
3723 break;
3724 cb -= cbInstr;
3725 uCode += cbInstr;
3726 eip += cbInstr;
3727 }
3728 }
3729 NOREF(phFileIgnored);
3730}
3731
3732
3733/**
3734 * Looks up a guest symbol.
3735 *
3736 * @returns Pointer to symbol name. This is a static buffer.
3737 * @param orig_addr The address in question.
3738 */
3739const char *lookup_symbol(target_ulong orig_addr)
3740{
3741 RTGCINTPTR off = 0;
3742 DBGFSYMBOL Sym;
3743 PVM pVM = cpu_single_env->pVM;
3744 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3745 if (VBOX_SUCCESS(rc))
3746 {
3747 static char szSym[sizeof(Sym.szName) + 48];
3748 if (!off)
3749 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3750 else if (off > 0)
3751 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3752 else
3753 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3754 return szSym;
3755 }
3756 return "<N/A>";
3757}
3758
3759
3760#undef LOG_GROUP
3761#define LOG_GROUP LOG_GROUP_REM
3762
3763
3764/* -+- FF notifications -+- */
3765
3766
3767/**
3768 * Notification about a pending interrupt.
3769 *
3770 * @param pVM VM Handle.
3771 * @param u8Interrupt Interrupt
3772 * @thread The emulation thread.
3773 */
3774REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3775{
3776 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3777 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3778}
3779
3780/**
3781 * Notification about a pending interrupt.
3782 *
3783 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3784 * @param pVM VM Handle.
3785 * @thread The emulation thread.
3786 */
3787REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3788{
3789 return pVM->rem.s.u32PendingInterrupt;
3790}
3791
3792/**
3793 * Notification about the interrupt FF being set.
3794 *
3795 * @param pVM VM Handle.
3796 * @thread The emulation thread.
3797 */
3798REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3799{
3800 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3801 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3802 if (pVM->rem.s.fInREM)
3803 {
3804 if (VM_IS_EMT(pVM))
3805 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3806 else
3807 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_HARD);
3808 }
3809}
3810
3811
3812/**
3813 * Notification about the interrupt FF being set.
3814 *
3815 * @param pVM VM Handle.
3816 * @thread The emulation thread.
3817 */
3818REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3819{
3820 LogFlow(("REMR3NotifyInterruptClear:\n"));
3821 VM_ASSERT_EMT(pVM);
3822 if (pVM->rem.s.fInREM)
3823 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3824}
3825
3826
3827/**
3828 * Notification about pending timer(s).
3829 *
3830 * @param pVM VM Handle.
3831 * @thread Any.
3832 */
3833REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3834{
3835#ifndef DEBUG_bird
3836 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3837#endif
3838 if (pVM->rem.s.fInREM)
3839 {
3840 if (VM_IS_EMT(pVM))
3841 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3842 else
3843 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_TIMER);
3844 }
3845}
3846
3847
3848/**
3849 * Notification about pending DMA transfers.
3850 *
3851 * @param pVM VM Handle.
3852 * @thread Any.
3853 */
3854REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3855{
3856 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3857 if (pVM->rem.s.fInREM)
3858 {
3859 if (VM_IS_EMT(pVM))
3860 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3861 else
3862 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_DMA);
3863 }
3864}
3865
3866
3867/**
3868 * Notification about pending timer(s).
3869 *
3870 * @param pVM VM Handle.
3871 * @thread Any.
3872 */
3873REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3874{
3875 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3876 if (pVM->rem.s.fInREM)
3877 {
3878 if (VM_IS_EMT(pVM))
3879 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3880 else
3881 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3882 }
3883}
3884
3885
3886/**
3887 * Notification about pending FF set by an external thread.
3888 *
3889 * @param pVM VM handle.
3890 * @thread Any.
3891 */
3892REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3893{
3894 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3895 if (pVM->rem.s.fInREM)
3896 {
3897 if (VM_IS_EMT(pVM))
3898 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3899 else
3900 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3901 }
3902}
3903
3904
3905#ifdef VBOX_WITH_STATISTICS
3906void remR3ProfileStart(int statcode)
3907{
3908 STAMPROFILEADV *pStat;
3909 switch(statcode)
3910 {
3911 case STATS_EMULATE_SINGLE_INSTR:
3912 pStat = &gStatExecuteSingleInstr;
3913 break;
3914 case STATS_QEMU_COMPILATION:
3915 pStat = &gStatCompilationQEmu;
3916 break;
3917 case STATS_QEMU_RUN_EMULATED_CODE:
3918 pStat = &gStatRunCodeQEmu;
3919 break;
3920 case STATS_QEMU_TOTAL:
3921 pStat = &gStatTotalTimeQEmu;
3922 break;
3923 case STATS_QEMU_RUN_TIMERS:
3924 pStat = &gStatTimers;
3925 break;
3926 case STATS_TLB_LOOKUP:
3927 pStat= &gStatTBLookup;
3928 break;
3929 case STATS_IRQ_HANDLING:
3930 pStat= &gStatIRQ;
3931 break;
3932 case STATS_RAW_CHECK:
3933 pStat = &gStatRawCheck;
3934 break;
3935
3936 default:
3937 AssertMsgFailed(("unknown stat %d\n", statcode));
3938 return;
3939 }
3940 STAM_PROFILE_ADV_START(pStat, a);
3941}
3942
3943
3944void remR3ProfileStop(int statcode)
3945{
3946 STAMPROFILEADV *pStat;
3947 switch(statcode)
3948 {
3949 case STATS_EMULATE_SINGLE_INSTR:
3950 pStat = &gStatExecuteSingleInstr;
3951 break;
3952 case STATS_QEMU_COMPILATION:
3953 pStat = &gStatCompilationQEmu;
3954 break;
3955 case STATS_QEMU_RUN_EMULATED_CODE:
3956 pStat = &gStatRunCodeQEmu;
3957 break;
3958 case STATS_QEMU_TOTAL:
3959 pStat = &gStatTotalTimeQEmu;
3960 break;
3961 case STATS_QEMU_RUN_TIMERS:
3962 pStat = &gStatTimers;
3963 break;
3964 case STATS_TLB_LOOKUP:
3965 pStat= &gStatTBLookup;
3966 break;
3967 case STATS_IRQ_HANDLING:
3968 pStat= &gStatIRQ;
3969 break;
3970 case STATS_RAW_CHECK:
3971 pStat = &gStatRawCheck;
3972 break;
3973 default:
3974 AssertMsgFailed(("unknown stat %d\n", statcode));
3975 return;
3976 }
3977 STAM_PROFILE_ADV_STOP(pStat, a);
3978}
3979#endif
3980
3981/**
3982 * Raise an RC, force rem exit.
3983 *
3984 * @param pVM VM handle.
3985 * @param rc The rc.
3986 */
3987void remR3RaiseRC(PVM pVM, int rc)
3988{
3989 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
3990 Assert(pVM->rem.s.fInREM);
3991 VM_ASSERT_EMT(pVM);
3992 pVM->rem.s.rc = rc;
3993 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
3994}
3995
3996
3997/* -+- timers -+- */
3998
3999uint64_t cpu_get_tsc(CPUX86State *env)
4000{
4001 return TMCpuTickGet(env->pVM);
4002}
4003
4004
4005/* -+- interrupts -+- */
4006
4007void cpu_set_ferr(CPUX86State *env)
4008{
4009 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
4010 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4011}
4012
4013int cpu_get_pic_interrupt(CPUState *env)
4014{
4015 uint8_t u8Interrupt;
4016 int rc;
4017
4018 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4019 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4020 * with the (a)pic.
4021 */
4022 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4023 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4024 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4025 * remove this kludge. */
4026 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4027 {
4028 rc = VINF_SUCCESS;
4029 Assert(env->pVM->rem.s.u32PendingInterrupt >= 0 && env->pVM->rem.s.u32PendingInterrupt <= 255);
4030 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4031 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4032 }
4033 else
4034 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4035
4036 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
4037 if (VBOX_SUCCESS(rc))
4038 {
4039 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4040 env->interrupt_request |= CPU_INTERRUPT_HARD;
4041 return u8Interrupt;
4042 }
4043 return -1;
4044}
4045
4046
4047/* -+- local apic -+- */
4048
4049void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4050{
4051 int rc = PDMApicSetBase(env->pVM, val);
4052 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
4053}
4054
4055uint64_t cpu_get_apic_base(CPUX86State *env)
4056{
4057 uint64_t u64;
4058 int rc = PDMApicGetBase(env->pVM, &u64);
4059 if (VBOX_SUCCESS(rc))
4060 {
4061 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4062 return u64;
4063 }
4064 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
4065 return 0;
4066}
4067
4068void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4069{
4070 int rc = PDMApicSetTPR(env->pVM, val);
4071 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
4072}
4073
4074uint8_t cpu_get_apic_tpr(CPUX86State *env)
4075{
4076 uint8_t u8;
4077 int rc = PDMApicGetTPR(env->pVM, &u8);
4078 if (VBOX_SUCCESS(rc))
4079 {
4080 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4081 return u8;
4082 }
4083 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
4084 return 0;
4085}
4086
4087
4088/* -+- I/O Ports -+- */
4089
4090#undef LOG_GROUP
4091#define LOG_GROUP LOG_GROUP_REM_IOPORT
4092
4093void cpu_outb(CPUState *env, int addr, int val)
4094{
4095 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4096 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4097
4098 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4099 if (rc == VINF_SUCCESS)
4100 return;
4101 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4102 {
4103 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4104 remR3RaiseRC(env->pVM, rc);
4105 return;
4106 }
4107 remAbort(rc, __FUNCTION__);
4108}
4109
4110void cpu_outw(CPUState *env, int addr, int val)
4111{
4112 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4113 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4114 if (rc == VINF_SUCCESS)
4115 return;
4116 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4117 {
4118 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4119 remR3RaiseRC(env->pVM, rc);
4120 return;
4121 }
4122 remAbort(rc, __FUNCTION__);
4123}
4124
4125void cpu_outl(CPUState *env, int addr, int val)
4126{
4127 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4128 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4129 if (rc == VINF_SUCCESS)
4130 return;
4131 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4132 {
4133 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4134 remR3RaiseRC(env->pVM, rc);
4135 return;
4136 }
4137 remAbort(rc, __FUNCTION__);
4138}
4139
4140int cpu_inb(CPUState *env, int addr)
4141{
4142 uint32_t u32 = 0;
4143 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4144 if (rc == VINF_SUCCESS)
4145 {
4146 if (/*addr != 0x61 && */addr != 0x71)
4147 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4148 return (int)u32;
4149 }
4150 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4151 {
4152 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4153 remR3RaiseRC(env->pVM, rc);
4154 return (int)u32;
4155 }
4156 remAbort(rc, __FUNCTION__);
4157 return 0xff;
4158}
4159
4160int cpu_inw(CPUState *env, int addr)
4161{
4162 uint32_t u32 = 0;
4163 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4164 if (rc == VINF_SUCCESS)
4165 {
4166 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4167 return (int)u32;
4168 }
4169 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4170 {
4171 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4172 remR3RaiseRC(env->pVM, rc);
4173 return (int)u32;
4174 }
4175 remAbort(rc, __FUNCTION__);
4176 return 0xffff;
4177}
4178
4179int cpu_inl(CPUState *env, int addr)
4180{
4181 uint32_t u32 = 0;
4182 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4183 if (rc == VINF_SUCCESS)
4184 {
4185//if (addr==0x01f0 && u32 == 0x6b6d)
4186// loglevel = ~0;
4187 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4188 return (int)u32;
4189 }
4190 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4191 {
4192 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4193 remR3RaiseRC(env->pVM, rc);
4194 return (int)u32;
4195 }
4196 remAbort(rc, __FUNCTION__);
4197 return 0xffffffff;
4198}
4199
4200#undef LOG_GROUP
4201#define LOG_GROUP LOG_GROUP_REM
4202
4203
4204/* -+- helpers and misc other interfaces -+- */
4205
4206/**
4207 * Perform the CPUID instruction.
4208 *
4209 * ASMCpuId cannot be invoked from some source files where this is used because of global
4210 * register allocations.
4211 *
4212 * @param env Pointer to the recompiler CPU structure.
4213 * @param uOperator CPUID operation (eax).
4214 * @param pvEAX Where to store eax.
4215 * @param pvEBX Where to store ebx.
4216 * @param pvECX Where to store ecx.
4217 * @param pvEDX Where to store edx.
4218 */
4219void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4220{
4221 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4222}
4223
4224
4225#if 0 /* not used */
4226/**
4227 * Interface for qemu hardware to report back fatal errors.
4228 */
4229void hw_error(const char *pszFormat, ...)
4230{
4231 /*
4232 * Bitch about it.
4233 */
4234 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4235 * this in my Odin32 tree at home! */
4236 va_list args;
4237 va_start(args, pszFormat);
4238 RTLogPrintf("fatal error in virtual hardware:");
4239 RTLogPrintfV(pszFormat, args);
4240 va_end(args);
4241 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4242
4243 /*
4244 * If we're in REM context we'll sync back the state before 'jumping' to
4245 * the EMs failure handling.
4246 */
4247 PVM pVM = cpu_single_env->pVM;
4248 if (pVM->rem.s.fInREM)
4249 REMR3StateBack(pVM);
4250 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4251 AssertMsgFailed(("EMR3FatalError returned!\n"));
4252}
4253#endif
4254
4255/**
4256 * Interface for the qemu cpu to report unhandled situation
4257 * raising a fatal VM error.
4258 */
4259void cpu_abort(CPUState *env, const char *pszFormat, ...)
4260{
4261 /*
4262 * Bitch about it.
4263 */
4264 RTLogFlags(NULL, "nodisabled nobuffered");
4265 va_list args;
4266 va_start(args, pszFormat);
4267 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4268 va_end(args);
4269 va_start(args, pszFormat);
4270 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4271 va_end(args);
4272
4273 /*
4274 * If we're in REM context we'll sync back the state before 'jumping' to
4275 * the EMs failure handling.
4276 */
4277 PVM pVM = cpu_single_env->pVM;
4278 if (pVM->rem.s.fInREM)
4279 REMR3StateBack(pVM);
4280 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4281 AssertMsgFailed(("EMR3FatalError returned!\n"));
4282}
4283
4284
4285/**
4286 * Aborts the VM.
4287 *
4288 * @param rc VBox error code.
4289 * @param pszTip Hint about why/when this happend.
4290 */
4291static void remAbort(int rc, const char *pszTip)
4292{
4293 /*
4294 * Bitch about it.
4295 */
4296 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4297 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4298
4299 /*
4300 * Jump back to where we entered the recompiler.
4301 */
4302 PVM pVM = cpu_single_env->pVM;
4303 if (pVM->rem.s.fInREM)
4304 REMR3StateBack(pVM);
4305 EMR3FatalError(pVM, rc);
4306 AssertMsgFailed(("EMR3FatalError returned!\n"));
4307}
4308
4309
4310/**
4311 * Dumps a linux system call.
4312 * @param pVM VM handle.
4313 */
4314void remR3DumpLnxSyscall(PVM pVM)
4315{
4316 static const char *apsz[] =
4317 {
4318 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4319 "sys_exit",
4320 "sys_fork",
4321 "sys_read",
4322 "sys_write",
4323 "sys_open", /* 5 */
4324 "sys_close",
4325 "sys_waitpid",
4326 "sys_creat",
4327 "sys_link",
4328 "sys_unlink", /* 10 */
4329 "sys_execve",
4330 "sys_chdir",
4331 "sys_time",
4332 "sys_mknod",
4333 "sys_chmod", /* 15 */
4334 "sys_lchown16",
4335 "sys_ni_syscall", /* old break syscall holder */
4336 "sys_stat",
4337 "sys_lseek",
4338 "sys_getpid", /* 20 */
4339 "sys_mount",
4340 "sys_oldumount",
4341 "sys_setuid16",
4342 "sys_getuid16",
4343 "sys_stime", /* 25 */
4344 "sys_ptrace",
4345 "sys_alarm",
4346 "sys_fstat",
4347 "sys_pause",
4348 "sys_utime", /* 30 */
4349 "sys_ni_syscall", /* old stty syscall holder */
4350 "sys_ni_syscall", /* old gtty syscall holder */
4351 "sys_access",
4352 "sys_nice",
4353 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4354 "sys_sync",
4355 "sys_kill",
4356 "sys_rename",
4357 "sys_mkdir",
4358 "sys_rmdir", /* 40 */
4359 "sys_dup",
4360 "sys_pipe",
4361 "sys_times",
4362 "sys_ni_syscall", /* old prof syscall holder */
4363 "sys_brk", /* 45 */
4364 "sys_setgid16",
4365 "sys_getgid16",
4366 "sys_signal",
4367 "sys_geteuid16",
4368 "sys_getegid16", /* 50 */
4369 "sys_acct",
4370 "sys_umount", /* recycled never used phys() */
4371 "sys_ni_syscall", /* old lock syscall holder */
4372 "sys_ioctl",
4373 "sys_fcntl", /* 55 */
4374 "sys_ni_syscall", /* old mpx syscall holder */
4375 "sys_setpgid",
4376 "sys_ni_syscall", /* old ulimit syscall holder */
4377 "sys_olduname",
4378 "sys_umask", /* 60 */
4379 "sys_chroot",
4380 "sys_ustat",
4381 "sys_dup2",
4382 "sys_getppid",
4383 "sys_getpgrp", /* 65 */
4384 "sys_setsid",
4385 "sys_sigaction",
4386 "sys_sgetmask",
4387 "sys_ssetmask",
4388 "sys_setreuid16", /* 70 */
4389 "sys_setregid16",
4390 "sys_sigsuspend",
4391 "sys_sigpending",
4392 "sys_sethostname",
4393 "sys_setrlimit", /* 75 */
4394 "sys_old_getrlimit",
4395 "sys_getrusage",
4396 "sys_gettimeofday",
4397 "sys_settimeofday",
4398 "sys_getgroups16", /* 80 */
4399 "sys_setgroups16",
4400 "old_select",
4401 "sys_symlink",
4402 "sys_lstat",
4403 "sys_readlink", /* 85 */
4404 "sys_uselib",
4405 "sys_swapon",
4406 "sys_reboot",
4407 "old_readdir",
4408 "old_mmap", /* 90 */
4409 "sys_munmap",
4410 "sys_truncate",
4411 "sys_ftruncate",
4412 "sys_fchmod",
4413 "sys_fchown16", /* 95 */
4414 "sys_getpriority",
4415 "sys_setpriority",
4416 "sys_ni_syscall", /* old profil syscall holder */
4417 "sys_statfs",
4418 "sys_fstatfs", /* 100 */
4419 "sys_ioperm",
4420 "sys_socketcall",
4421 "sys_syslog",
4422 "sys_setitimer",
4423 "sys_getitimer", /* 105 */
4424 "sys_newstat",
4425 "sys_newlstat",
4426 "sys_newfstat",
4427 "sys_uname",
4428 "sys_iopl", /* 110 */
4429 "sys_vhangup",
4430 "sys_ni_syscall", /* old "idle" system call */
4431 "sys_vm86old",
4432 "sys_wait4",
4433 "sys_swapoff", /* 115 */
4434 "sys_sysinfo",
4435 "sys_ipc",
4436 "sys_fsync",
4437 "sys_sigreturn",
4438 "sys_clone", /* 120 */
4439 "sys_setdomainname",
4440 "sys_newuname",
4441 "sys_modify_ldt",
4442 "sys_adjtimex",
4443 "sys_mprotect", /* 125 */
4444 "sys_sigprocmask",
4445 "sys_ni_syscall", /* old "create_module" */
4446 "sys_init_module",
4447 "sys_delete_module",
4448 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4449 "sys_quotactl",
4450 "sys_getpgid",
4451 "sys_fchdir",
4452 "sys_bdflush",
4453 "sys_sysfs", /* 135 */
4454 "sys_personality",
4455 "sys_ni_syscall", /* reserved for afs_syscall */
4456 "sys_setfsuid16",
4457 "sys_setfsgid16",
4458 "sys_llseek", /* 140 */
4459 "sys_getdents",
4460 "sys_select",
4461 "sys_flock",
4462 "sys_msync",
4463 "sys_readv", /* 145 */
4464 "sys_writev",
4465 "sys_getsid",
4466 "sys_fdatasync",
4467 "sys_sysctl",
4468 "sys_mlock", /* 150 */
4469 "sys_munlock",
4470 "sys_mlockall",
4471 "sys_munlockall",
4472 "sys_sched_setparam",
4473 "sys_sched_getparam", /* 155 */
4474 "sys_sched_setscheduler",
4475 "sys_sched_getscheduler",
4476 "sys_sched_yield",
4477 "sys_sched_get_priority_max",
4478 "sys_sched_get_priority_min", /* 160 */
4479 "sys_sched_rr_get_interval",
4480 "sys_nanosleep",
4481 "sys_mremap",
4482 "sys_setresuid16",
4483 "sys_getresuid16", /* 165 */
4484 "sys_vm86",
4485 "sys_ni_syscall", /* Old sys_query_module */
4486 "sys_poll",
4487 "sys_nfsservctl",
4488 "sys_setresgid16", /* 170 */
4489 "sys_getresgid16",
4490 "sys_prctl",
4491 "sys_rt_sigreturn",
4492 "sys_rt_sigaction",
4493 "sys_rt_sigprocmask", /* 175 */
4494 "sys_rt_sigpending",
4495 "sys_rt_sigtimedwait",
4496 "sys_rt_sigqueueinfo",
4497 "sys_rt_sigsuspend",
4498 "sys_pread64", /* 180 */
4499 "sys_pwrite64",
4500 "sys_chown16",
4501 "sys_getcwd",
4502 "sys_capget",
4503 "sys_capset", /* 185 */
4504 "sys_sigaltstack",
4505 "sys_sendfile",
4506 "sys_ni_syscall", /* reserved for streams1 */
4507 "sys_ni_syscall", /* reserved for streams2 */
4508 "sys_vfork", /* 190 */
4509 "sys_getrlimit",
4510 "sys_mmap2",
4511 "sys_truncate64",
4512 "sys_ftruncate64",
4513 "sys_stat64", /* 195 */
4514 "sys_lstat64",
4515 "sys_fstat64",
4516 "sys_lchown",
4517 "sys_getuid",
4518 "sys_getgid", /* 200 */
4519 "sys_geteuid",
4520 "sys_getegid",
4521 "sys_setreuid",
4522 "sys_setregid",
4523 "sys_getgroups", /* 205 */
4524 "sys_setgroups",
4525 "sys_fchown",
4526 "sys_setresuid",
4527 "sys_getresuid",
4528 "sys_setresgid", /* 210 */
4529 "sys_getresgid",
4530 "sys_chown",
4531 "sys_setuid",
4532 "sys_setgid",
4533 "sys_setfsuid", /* 215 */
4534 "sys_setfsgid",
4535 "sys_pivot_root",
4536 "sys_mincore",
4537 "sys_madvise",
4538 "sys_getdents64", /* 220 */
4539 "sys_fcntl64",
4540 "sys_ni_syscall", /* reserved for TUX */
4541 "sys_ni_syscall",
4542 "sys_gettid",
4543 "sys_readahead", /* 225 */
4544 "sys_setxattr",
4545 "sys_lsetxattr",
4546 "sys_fsetxattr",
4547 "sys_getxattr",
4548 "sys_lgetxattr", /* 230 */
4549 "sys_fgetxattr",
4550 "sys_listxattr",
4551 "sys_llistxattr",
4552 "sys_flistxattr",
4553 "sys_removexattr", /* 235 */
4554 "sys_lremovexattr",
4555 "sys_fremovexattr",
4556 "sys_tkill",
4557 "sys_sendfile64",
4558 "sys_futex", /* 240 */
4559 "sys_sched_setaffinity",
4560 "sys_sched_getaffinity",
4561 "sys_set_thread_area",
4562 "sys_get_thread_area",
4563 "sys_io_setup", /* 245 */
4564 "sys_io_destroy",
4565 "sys_io_getevents",
4566 "sys_io_submit",
4567 "sys_io_cancel",
4568 "sys_fadvise64", /* 250 */
4569 "sys_ni_syscall",
4570 "sys_exit_group",
4571 "sys_lookup_dcookie",
4572 "sys_epoll_create",
4573 "sys_epoll_ctl", /* 255 */
4574 "sys_epoll_wait",
4575 "sys_remap_file_pages",
4576 "sys_set_tid_address",
4577 "sys_timer_create",
4578 "sys_timer_settime", /* 260 */
4579 "sys_timer_gettime",
4580 "sys_timer_getoverrun",
4581 "sys_timer_delete",
4582 "sys_clock_settime",
4583 "sys_clock_gettime", /* 265 */
4584 "sys_clock_getres",
4585 "sys_clock_nanosleep",
4586 "sys_statfs64",
4587 "sys_fstatfs64",
4588 "sys_tgkill", /* 270 */
4589 "sys_utimes",
4590 "sys_fadvise64_64",
4591 "sys_ni_syscall" /* sys_vserver */
4592 };
4593
4594 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4595 switch (uEAX)
4596 {
4597 default:
4598 if (uEAX < ELEMENTS(apsz))
4599 Log(("REM: linux syscall %3d: %s (eip=%VGv ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4600 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4601 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4602 else
4603 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4604 break;
4605
4606 }
4607}
4608
4609
4610/**
4611 * Dumps an OpenBSD system call.
4612 * @param pVM VM handle.
4613 */
4614void remR3DumpOBsdSyscall(PVM pVM)
4615{
4616 static const char *apsz[] =
4617 {
4618 "SYS_syscall", //0
4619 "SYS_exit", //1
4620 "SYS_fork", //2
4621 "SYS_read", //3
4622 "SYS_write", //4
4623 "SYS_open", //5
4624 "SYS_close", //6
4625 "SYS_wait4", //7
4626 "SYS_8",
4627 "SYS_link", //9
4628 "SYS_unlink", //10
4629 "SYS_11",
4630 "SYS_chdir", //12
4631 "SYS_fchdir", //13
4632 "SYS_mknod", //14
4633 "SYS_chmod", //15
4634 "SYS_chown", //16
4635 "SYS_break", //17
4636 "SYS_18",
4637 "SYS_19",
4638 "SYS_getpid", //20
4639 "SYS_mount", //21
4640 "SYS_unmount", //22
4641 "SYS_setuid", //23
4642 "SYS_getuid", //24
4643 "SYS_geteuid", //25
4644 "SYS_ptrace", //26
4645 "SYS_recvmsg", //27
4646 "SYS_sendmsg", //28
4647 "SYS_recvfrom", //29
4648 "SYS_accept", //30
4649 "SYS_getpeername", //31
4650 "SYS_getsockname", //32
4651 "SYS_access", //33
4652 "SYS_chflags", //34
4653 "SYS_fchflags", //35
4654 "SYS_sync", //36
4655 "SYS_kill", //37
4656 "SYS_38",
4657 "SYS_getppid", //39
4658 "SYS_40",
4659 "SYS_dup", //41
4660 "SYS_opipe", //42
4661 "SYS_getegid", //43
4662 "SYS_profil", //44
4663 "SYS_ktrace", //45
4664 "SYS_sigaction", //46
4665 "SYS_getgid", //47
4666 "SYS_sigprocmask", //48
4667 "SYS_getlogin", //49
4668 "SYS_setlogin", //50
4669 "SYS_acct", //51
4670 "SYS_sigpending", //52
4671 "SYS_osigaltstack", //53
4672 "SYS_ioctl", //54
4673 "SYS_reboot", //55
4674 "SYS_revoke", //56
4675 "SYS_symlink", //57
4676 "SYS_readlink", //58
4677 "SYS_execve", //59
4678 "SYS_umask", //60
4679 "SYS_chroot", //61
4680 "SYS_62",
4681 "SYS_63",
4682 "SYS_64",
4683 "SYS_65",
4684 "SYS_vfork", //66
4685 "SYS_67",
4686 "SYS_68",
4687 "SYS_sbrk", //69
4688 "SYS_sstk", //70
4689 "SYS_61",
4690 "SYS_vadvise", //72
4691 "SYS_munmap", //73
4692 "SYS_mprotect", //74
4693 "SYS_madvise", //75
4694 "SYS_76",
4695 "SYS_77",
4696 "SYS_mincore", //78
4697 "SYS_getgroups", //79
4698 "SYS_setgroups", //80
4699 "SYS_getpgrp", //81
4700 "SYS_setpgid", //82
4701 "SYS_setitimer", //83
4702 "SYS_84",
4703 "SYS_85",
4704 "SYS_getitimer", //86
4705 "SYS_87",
4706 "SYS_88",
4707 "SYS_89",
4708 "SYS_dup2", //90
4709 "SYS_91",
4710 "SYS_fcntl", //92
4711 "SYS_select", //93
4712 "SYS_94",
4713 "SYS_fsync", //95
4714 "SYS_setpriority", //96
4715 "SYS_socket", //97
4716 "SYS_connect", //98
4717 "SYS_99",
4718 "SYS_getpriority", //100
4719 "SYS_101",
4720 "SYS_102",
4721 "SYS_sigreturn", //103
4722 "SYS_bind", //104
4723 "SYS_setsockopt", //105
4724 "SYS_listen", //106
4725 "SYS_107",
4726 "SYS_108",
4727 "SYS_109",
4728 "SYS_110",
4729 "SYS_sigsuspend", //111
4730 "SYS_112",
4731 "SYS_113",
4732 "SYS_114",
4733 "SYS_115",
4734 "SYS_gettimeofday", //116
4735 "SYS_getrusage", //117
4736 "SYS_getsockopt", //118
4737 "SYS_119",
4738 "SYS_readv", //120
4739 "SYS_writev", //121
4740 "SYS_settimeofday", //122
4741 "SYS_fchown", //123
4742 "SYS_fchmod", //124
4743 "SYS_125",
4744 "SYS_setreuid", //126
4745 "SYS_setregid", //127
4746 "SYS_rename", //128
4747 "SYS_129",
4748 "SYS_130",
4749 "SYS_flock", //131
4750 "SYS_mkfifo", //132
4751 "SYS_sendto", //133
4752 "SYS_shutdown", //134
4753 "SYS_socketpair", //135
4754 "SYS_mkdir", //136
4755 "SYS_rmdir", //137
4756 "SYS_utimes", //138
4757 "SYS_139",
4758 "SYS_adjtime", //140
4759 "SYS_141",
4760 "SYS_142",
4761 "SYS_143",
4762 "SYS_144",
4763 "SYS_145",
4764 "SYS_146",
4765 "SYS_setsid", //147
4766 "SYS_quotactl", //148
4767 "SYS_149",
4768 "SYS_150",
4769 "SYS_151",
4770 "SYS_152",
4771 "SYS_153",
4772 "SYS_154",
4773 "SYS_nfssvc", //155
4774 "SYS_156",
4775 "SYS_157",
4776 "SYS_158",
4777 "SYS_159",
4778 "SYS_160",
4779 "SYS_getfh", //161
4780 "SYS_162",
4781 "SYS_163",
4782 "SYS_164",
4783 "SYS_sysarch", //165
4784 "SYS_166",
4785 "SYS_167",
4786 "SYS_168",
4787 "SYS_169",
4788 "SYS_170",
4789 "SYS_171",
4790 "SYS_172",
4791 "SYS_pread", //173
4792 "SYS_pwrite", //174
4793 "SYS_175",
4794 "SYS_176",
4795 "SYS_177",
4796 "SYS_178",
4797 "SYS_179",
4798 "SYS_180",
4799 "SYS_setgid", //181
4800 "SYS_setegid", //182
4801 "SYS_seteuid", //183
4802 "SYS_lfs_bmapv", //184
4803 "SYS_lfs_markv", //185
4804 "SYS_lfs_segclean", //186
4805 "SYS_lfs_segwait", //187
4806 "SYS_188",
4807 "SYS_189",
4808 "SYS_190",
4809 "SYS_pathconf", //191
4810 "SYS_fpathconf", //192
4811 "SYS_swapctl", //193
4812 "SYS_getrlimit", //194
4813 "SYS_setrlimit", //195
4814 "SYS_getdirentries", //196
4815 "SYS_mmap", //197
4816 "SYS___syscall", //198
4817 "SYS_lseek", //199
4818 "SYS_truncate", //200
4819 "SYS_ftruncate", //201
4820 "SYS___sysctl", //202
4821 "SYS_mlock", //203
4822 "SYS_munlock", //204
4823 "SYS_205",
4824 "SYS_futimes", //206
4825 "SYS_getpgid", //207
4826 "SYS_xfspioctl", //208
4827 "SYS_209",
4828 "SYS_210",
4829 "SYS_211",
4830 "SYS_212",
4831 "SYS_213",
4832 "SYS_214",
4833 "SYS_215",
4834 "SYS_216",
4835 "SYS_217",
4836 "SYS_218",
4837 "SYS_219",
4838 "SYS_220",
4839 "SYS_semget", //221
4840 "SYS_222",
4841 "SYS_223",
4842 "SYS_224",
4843 "SYS_msgget", //225
4844 "SYS_msgsnd", //226
4845 "SYS_msgrcv", //227
4846 "SYS_shmat", //228
4847 "SYS_229",
4848 "SYS_shmdt", //230
4849 "SYS_231",
4850 "SYS_clock_gettime", //232
4851 "SYS_clock_settime", //233
4852 "SYS_clock_getres", //234
4853 "SYS_235",
4854 "SYS_236",
4855 "SYS_237",
4856 "SYS_238",
4857 "SYS_239",
4858 "SYS_nanosleep", //240
4859 "SYS_241",
4860 "SYS_242",
4861 "SYS_243",
4862 "SYS_244",
4863 "SYS_245",
4864 "SYS_246",
4865 "SYS_247",
4866 "SYS_248",
4867 "SYS_249",
4868 "SYS_minherit", //250
4869 "SYS_rfork", //251
4870 "SYS_poll", //252
4871 "SYS_issetugid", //253
4872 "SYS_lchown", //254
4873 "SYS_getsid", //255
4874 "SYS_msync", //256
4875 "SYS_257",
4876 "SYS_258",
4877 "SYS_259",
4878 "SYS_getfsstat", //260
4879 "SYS_statfs", //261
4880 "SYS_fstatfs", //262
4881 "SYS_pipe", //263
4882 "SYS_fhopen", //264
4883 "SYS_265",
4884 "SYS_fhstatfs", //266
4885 "SYS_preadv", //267
4886 "SYS_pwritev", //268
4887 "SYS_kqueue", //269
4888 "SYS_kevent", //270
4889 "SYS_mlockall", //271
4890 "SYS_munlockall", //272
4891 "SYS_getpeereid", //273
4892 "SYS_274",
4893 "SYS_275",
4894 "SYS_276",
4895 "SYS_277",
4896 "SYS_278",
4897 "SYS_279",
4898 "SYS_280",
4899 "SYS_getresuid", //281
4900 "SYS_setresuid", //282
4901 "SYS_getresgid", //283
4902 "SYS_setresgid", //284
4903 "SYS_285",
4904 "SYS_mquery", //286
4905 "SYS_closefrom", //287
4906 "SYS_sigaltstack", //288
4907 "SYS_shmget", //289
4908 "SYS_semop", //290
4909 "SYS_stat", //291
4910 "SYS_fstat", //292
4911 "SYS_lstat", //293
4912 "SYS_fhstat", //294
4913 "SYS___semctl", //295
4914 "SYS_shmctl", //296
4915 "SYS_msgctl", //297
4916 "SYS_MAXSYSCALL", //298
4917 //299
4918 //300
4919 };
4920 uint32_t uEAX;
4921#ifndef DEBUG_bird
4922 if (!LogIsEnabled())
4923 return;
4924#endif
4925 uEAX = CPUMGetGuestEAX(pVM);
4926 switch (uEAX)
4927 {
4928 default:
4929 if (uEAX < ELEMENTS(apsz))
4930 {
4931 uint32_t au32Args[8] = {0};
4932 PGMPhysReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
4933 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
4934 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
4935 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
4936 }
4937 else
4938 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
4939 break;
4940 }
4941}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette