VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 9125

Last change on this file since 9125 was 8955, checked in by vboxsync, 17 years ago

Updated REMR3NotifyInterruptClear docs as it is being called on non-EMT threads now after the PDM lock change.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 150.8 KB
Line 
1/* $Id: VBoxRecompiler.c 8955 2008-05-20 14:24:20Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "exec-all.h"
29
30#include <VBox/rem.h>
31#include <VBox/vmapi.h>
32#include <VBox/tm.h>
33#include <VBox/ssm.h>
34#include <VBox/em.h>
35#include <VBox/trpm.h>
36#include <VBox/iom.h>
37#include <VBox/mm.h>
38#include <VBox/pgm.h>
39#include <VBox/pdm.h>
40#include <VBox/dbgf.h>
41#include <VBox/dbg.h>
42#include <VBox/hwaccm.h>
43#include <VBox/patm.h>
44#include <VBox/csam.h>
45#include "REMInternal.h"
46#include <VBox/vm.h>
47#include <VBox/param.h>
48#include <VBox/err.h>
49
50#include <VBox/log.h>
51#include <iprt/semaphore.h>
52#include <iprt/asm.h>
53#include <iprt/assert.h>
54#include <iprt/thread.h>
55#include <iprt/string.h>
56
57/* Don't wanna include everything. */
58extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
59extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
60extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
61extern void tlb_flush_page(CPUX86State *env, uint32_t addr);
62extern void tlb_flush(CPUState *env, int flush_global);
63extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
64extern void sync_ldtr(CPUX86State *env1, int selector);
65extern int sync_tr(CPUX86State *env1, int selector);
66
67#ifdef VBOX_STRICT
68unsigned long get_phys_page_offset(target_ulong addr);
69#endif
70
71
72/*******************************************************************************
73* Defined Constants And Macros *
74*******************************************************************************/
75
76/** Copy 80-bit fpu register at pSrc to pDst.
77 * This is probably faster than *calling* memcpy.
78 */
79#define REM_COPY_FPU_REG(pDst, pSrc) \
80 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
81
82
83/*******************************************************************************
84* Internal Functions *
85*******************************************************************************/
86static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
87static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
88static void remR3StateUpdate(PVM pVM);
89
90static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
91static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
92static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
93static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
94static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
95static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
96
97static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
98static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
99static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
100static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
101static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
102static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
103
104
105/*******************************************************************************
106* Global Variables *
107*******************************************************************************/
108
109/** @todo Move stats to REM::s some rainy day we have nothing do to. */
110#ifdef VBOX_WITH_STATISTICS
111static STAMPROFILEADV gStatExecuteSingleInstr;
112static STAMPROFILEADV gStatCompilationQEmu;
113static STAMPROFILEADV gStatRunCodeQEmu;
114static STAMPROFILEADV gStatTotalTimeQEmu;
115static STAMPROFILEADV gStatTimers;
116static STAMPROFILEADV gStatTBLookup;
117static STAMPROFILEADV gStatIRQ;
118static STAMPROFILEADV gStatRawCheck;
119static STAMPROFILEADV gStatMemRead;
120static STAMPROFILEADV gStatMemWrite;
121static STAMPROFILE gStatGCPhys2HCVirt;
122static STAMPROFILE gStatHCVirt2GCPhys;
123static STAMCOUNTER gStatCpuGetTSC;
124static STAMCOUNTER gStatRefuseTFInhibit;
125static STAMCOUNTER gStatRefuseVM86;
126static STAMCOUNTER gStatRefusePaging;
127static STAMCOUNTER gStatRefusePAE;
128static STAMCOUNTER gStatRefuseIOPLNot0;
129static STAMCOUNTER gStatRefuseIF0;
130static STAMCOUNTER gStatRefuseCode16;
131static STAMCOUNTER gStatRefuseWP0;
132static STAMCOUNTER gStatRefuseRing1or2;
133static STAMCOUNTER gStatRefuseCanExecute;
134static STAMCOUNTER gStatREMGDTChange;
135static STAMCOUNTER gStatREMIDTChange;
136static STAMCOUNTER gStatREMLDTRChange;
137static STAMCOUNTER gStatREMTRChange;
138static STAMCOUNTER gStatSelOutOfSync[6];
139static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
140#endif
141
142/*
143 * Global stuff.
144 */
145
146/** MMIO read callbacks. */
147CPUReadMemoryFunc *g_apfnMMIORead[3] =
148{
149 remR3MMIOReadU8,
150 remR3MMIOReadU16,
151 remR3MMIOReadU32
152};
153
154/** MMIO write callbacks. */
155CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
156{
157 remR3MMIOWriteU8,
158 remR3MMIOWriteU16,
159 remR3MMIOWriteU32
160};
161
162/** Handler read callbacks. */
163CPUReadMemoryFunc *g_apfnHandlerRead[3] =
164{
165 remR3HandlerReadU8,
166 remR3HandlerReadU16,
167 remR3HandlerReadU32
168};
169
170/** Handler write callbacks. */
171CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
172{
173 remR3HandlerWriteU8,
174 remR3HandlerWriteU16,
175 remR3HandlerWriteU32
176};
177
178
179#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDWS) && defined(RT_ARCH_AMD64))
180/*
181 * Debugger commands.
182 */
183static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
184
185/** '.remstep' arguments. */
186static const DBGCVARDESC g_aArgRemStep[] =
187{
188 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
189 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
190};
191
192/** Command descriptors. */
193static const DBGCCMD g_aCmds[] =
194{
195 {
196 .pszCmd ="remstep",
197 .cArgsMin = 0,
198 .cArgsMax = 1,
199 .paArgDescs = &g_aArgRemStep[0],
200 .cArgDescs = ELEMENTS(g_aArgRemStep),
201 .pResultDesc = NULL,
202 .fFlags = 0,
203 .pfnHandler = remR3CmdDisasEnableStepping,
204 .pszSyntax = "[on/off]",
205 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
206 "If no arguments show the current state."
207 }
208};
209#endif
210
211
212/* Instantiate the structure signatures. */
213#define REM_STRUCT_OP 0
214#include "Sun/structs.h"
215
216
217
218/*******************************************************************************
219* Internal Functions *
220*******************************************************************************/
221static void remAbort(int rc, const char *pszTip);
222extern int testmath(void);
223
224/* Put them here to avoid unused variable warning. */
225AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
226#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
227AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
228#else
229AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
230#endif
231
232
233/**
234 * Initializes the REM.
235 *
236 * @returns VBox status code.
237 * @param pVM The VM to operate on.
238 */
239REMR3DECL(int) REMR3Init(PVM pVM)
240{
241 uint32_t u32Dummy;
242 unsigned i;
243
244 /*
245 * Assert sanity.
246 */
247 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
248 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
249 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
250#if defined(DEBUG) && !defined(RT_OS_SOLARIS) /// @todo fix the solaris math stuff.
251 Assert(!testmath());
252#endif
253 ASSERT_STRUCT_TABLE(Misc);
254 ASSERT_STRUCT_TABLE(TLB);
255 ASSERT_STRUCT_TABLE(SegmentCache);
256 ASSERT_STRUCT_TABLE(XMMReg);
257 ASSERT_STRUCT_TABLE(MMXReg);
258 ASSERT_STRUCT_TABLE(float_status);
259 ASSERT_STRUCT_TABLE(float32u);
260 ASSERT_STRUCT_TABLE(float64u);
261 ASSERT_STRUCT_TABLE(floatx80u);
262 ASSERT_STRUCT_TABLE(CPUState);
263
264 /*
265 * Init some internal data members.
266 */
267 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
268 pVM->rem.s.Env.pVM = pVM;
269#ifdef CPU_RAW_MODE_INIT
270 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
271#endif
272
273 /* ctx. */
274 int rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
275 if (VBOX_FAILURE(rc))
276 {
277 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
278 return rc;
279 }
280 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
281
282 /* ignore all notifications */
283 pVM->rem.s.fIgnoreAll = true;
284
285 /*
286 * Init the recompiler.
287 */
288 if (!cpu_x86_init(&pVM->rem.s.Env))
289 {
290 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
291 return VERR_GENERAL_FAILURE;
292 }
293 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
294 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
295
296 /* allocate code buffer for single instruction emulation. */
297 pVM->rem.s.Env.cbCodeBuffer = 4096;
298 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
299 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
300
301 /* finally, set the cpu_single_env global. */
302 cpu_single_env = &pVM->rem.s.Env;
303
304 /* Nothing is pending by default */
305 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
306
307 /*
308 * Register ram types.
309 */
310 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
311 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
312 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
313 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
314 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
315
316 /* stop ignoring. */
317 pVM->rem.s.fIgnoreAll = false;
318
319 /*
320 * Register the saved state data unit.
321 */
322 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
323 NULL, remR3Save, NULL,
324 NULL, remR3Load, NULL);
325 if (VBOX_FAILURE(rc))
326 return rc;
327
328#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
329 /*
330 * Debugger commands.
331 */
332 static bool fRegisteredCmds = false;
333 if (!fRegisteredCmds)
334 {
335 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
336 if (VBOX_SUCCESS(rc))
337 fRegisteredCmds = true;
338 }
339#endif
340
341#ifdef VBOX_WITH_STATISTICS
342 /*
343 * Statistics.
344 */
345 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
346 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
347 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
348 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
349 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
350 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
351 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
352 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
353 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
354 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
355 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
356 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
357
358 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
359
360 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
361 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
362 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
363 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
364 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
365 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
366 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
367 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
368 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
369 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
370
371 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
372 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
373 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
374 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
375
376 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
377 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
378 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
379 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
380 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
381 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
382
383 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
384 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
385 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
386 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
387 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
388 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
389
390
391#endif
392
393#ifdef DEBUG_ALL_LOGGING
394 loglevel = ~0;
395#endif
396
397 return rc;
398}
399
400
401/**
402 * Terminates the REM.
403 *
404 * Termination means cleaning up and freeing all resources,
405 * the VM it self is at this point powered off or suspended.
406 *
407 * @returns VBox status code.
408 * @param pVM The VM to operate on.
409 */
410REMR3DECL(int) REMR3Term(PVM pVM)
411{
412 return VINF_SUCCESS;
413}
414
415
416/**
417 * The VM is being reset.
418 *
419 * For the REM component this means to call the cpu_reset() and
420 * reinitialize some state variables.
421 *
422 * @param pVM VM handle.
423 */
424REMR3DECL(void) REMR3Reset(PVM pVM)
425{
426 /*
427 * Reset the REM cpu.
428 */
429 pVM->rem.s.fIgnoreAll = true;
430 cpu_reset(&pVM->rem.s.Env);
431 pVM->rem.s.cInvalidatedPages = 0;
432 pVM->rem.s.fIgnoreAll = false;
433
434 /* Clear raw ring 0 init state */
435 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
436}
437
438
439/**
440 * Execute state save operation.
441 *
442 * @returns VBox status code.
443 * @param pVM VM Handle.
444 * @param pSSM SSM operation handle.
445 */
446static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
447{
448 LogFlow(("remR3Save:\n"));
449
450 /*
451 * Save the required CPU Env bits.
452 * (Not much because we're never in REM when doing the save.)
453 */
454 PREM pRem = &pVM->rem.s;
455 Assert(!pRem->fInREM);
456 SSMR3PutU32(pSSM, pRem->Env.hflags);
457 SSMR3PutMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
458 SSMR3PutU32(pSSM, ~0); /* separator */
459
460 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
461 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
462
463 /*
464 * Save the REM stuff.
465 */
466 SSMR3PutUInt(pSSM, pRem->cInvalidatedPages);
467 unsigned i;
468 for (i = 0; i < pRem->cInvalidatedPages; i++)
469 SSMR3PutGCPtr(pSSM, pRem->aGCPtrInvalidatedPages[i]);
470
471 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
472
473 return SSMR3PutU32(pSSM, ~0); /* terminator */
474}
475
476
477/**
478 * Execute state load operation.
479 *
480 * @returns VBox status code.
481 * @param pVM VM Handle.
482 * @param pSSM SSM operation handle.
483 * @param u32Version Data layout version.
484 */
485static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
486{
487 uint32_t u32Dummy;
488 uint32_t fRawRing0 = false;
489 LogFlow(("remR3Load:\n"));
490
491 /*
492 * Validate version.
493 */
494 if (u32Version != REM_SAVED_STATE_VERSION)
495 {
496 Log(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
497 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
498 }
499
500 /*
501 * Do a reset to be on the safe side...
502 */
503 REMR3Reset(pVM);
504
505 /*
506 * Ignore all ignorable notifications.
507 * (Not doing this will cause serious trouble.)
508 */
509 pVM->rem.s.fIgnoreAll = true;
510
511 /*
512 * Load the required CPU Env bits.
513 * (Not much because we're never in REM when doing the save.)
514 */
515 PREM pRem = &pVM->rem.s;
516 Assert(!pRem->fInREM);
517 SSMR3GetU32(pSSM, &pRem->Env.hflags);
518 SSMR3GetMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
519 uint32_t u32Sep;
520 int rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
521 if (VBOX_FAILURE(rc))
522 return rc;
523 if (u32Sep != ~0)
524 {
525 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
526 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
527 }
528
529 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
530 SSMR3GetUInt(pSSM, &fRawRing0);
531 if (fRawRing0)
532 pRem->Env.state |= CPU_RAW_RING0;
533
534 /*
535 * Load the REM stuff.
536 */
537 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
538 if (VBOX_FAILURE(rc))
539 return rc;
540 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
541 {
542 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
543 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
544 }
545 unsigned i;
546 for (i = 0; i < pRem->cInvalidatedPages; i++)
547 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
548
549 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
550 if (VBOX_FAILURE(rc))
551 return rc;
552
553 /* check the terminator. */
554 rc = SSMR3GetU32(pSSM, &u32Sep);
555 if (VBOX_FAILURE(rc))
556 return rc;
557 if (u32Sep != ~0)
558 {
559 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
560 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
561 }
562
563 /*
564 * Get the CPUID features.
565 */
566 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
567 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
568
569 /*
570 * Sync the Load Flush the TLB
571 */
572 tlb_flush(&pRem->Env, 1);
573
574#if 0 /** @todo r=bird: this doesn't make sense. WHY? */
575 /*
576 * Clear all lazy flags (only FPU sync for now).
577 */
578 CPUMGetAndClearFPUUsedREM(pVM);
579#endif
580
581 /*
582 * Stop ignoring ignornable notifications.
583 */
584 pVM->rem.s.fIgnoreAll = false;
585
586 return VINF_SUCCESS;
587}
588
589
590
591#undef LOG_GROUP
592#define LOG_GROUP LOG_GROUP_REM_RUN
593
594/**
595 * Single steps an instruction in recompiled mode.
596 *
597 * Before calling this function the REM state needs to be in sync with
598 * the VM. Call REMR3State() to perform the sync. It's only necessary
599 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
600 * and after calling REMR3StateBack().
601 *
602 * @returns VBox status code.
603 *
604 * @param pVM VM Handle.
605 */
606REMR3DECL(int) REMR3Step(PVM pVM)
607{
608 /*
609 * Lock the REM - we don't wanna have anyone interrupting us
610 * while stepping - and enabled single stepping. We also ignore
611 * pending interrupts and suchlike.
612 */
613 int interrupt_request = pVM->rem.s.Env.interrupt_request;
614 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
615 pVM->rem.s.Env.interrupt_request = 0;
616 cpu_single_step(&pVM->rem.s.Env, 1);
617
618 /*
619 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
620 */
621 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
622 bool fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
623
624 /*
625 * Execute and handle the return code.
626 * We execute without enabling the cpu tick, so on success we'll
627 * just flip it on and off to make sure it moves
628 */
629 int rc = cpu_exec(&pVM->rem.s.Env);
630 if (rc == EXCP_DEBUG)
631 {
632 TMCpuTickResume(pVM);
633 TMCpuTickPause(pVM);
634 TMVirtualResume(pVM);
635 TMVirtualPause(pVM);
636 rc = VINF_EM_DBG_STEPPED;
637 }
638 else
639 {
640 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
641 switch (rc)
642 {
643 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
644 case EXCP_HLT:
645 case EXCP_HALTED: rc = VINF_EM_HALT; break;
646 case EXCP_RC:
647 rc = pVM->rem.s.rc;
648 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
649 break;
650 default:
651 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
652 rc = VERR_INTERNAL_ERROR;
653 break;
654 }
655 }
656
657 /*
658 * Restore the stuff we changed to prevent interruption.
659 * Unlock the REM.
660 */
661 if (fBp)
662 {
663 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
664 Assert(rc2 == 0); NOREF(rc2);
665 }
666 cpu_single_step(&pVM->rem.s.Env, 0);
667 pVM->rem.s.Env.interrupt_request = interrupt_request;
668
669 return rc;
670}
671
672
673/**
674 * Set a breakpoint using the REM facilities.
675 *
676 * @returns VBox status code.
677 * @param pVM The VM handle.
678 * @param Address The breakpoint address.
679 * @thread The emulation thread.
680 */
681REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
682{
683 VM_ASSERT_EMT(pVM);
684 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
685 {
686 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
687 return VINF_SUCCESS;
688 }
689 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
690 return VERR_REM_NO_MORE_BP_SLOTS;
691}
692
693
694/**
695 * Clears a breakpoint set by REMR3BreakpointSet().
696 *
697 * @returns VBox status code.
698 * @param pVM The VM handle.
699 * @param Address The breakpoint address.
700 * @thread The emulation thread.
701 */
702REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
703{
704 VM_ASSERT_EMT(pVM);
705 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
706 {
707 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
708 return VINF_SUCCESS;
709 }
710 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
711 return VERR_REM_BP_NOT_FOUND;
712}
713
714
715/**
716 * Emulate an instruction.
717 *
718 * This function executes one instruction without letting anyone
719 * interrupt it. This is intended for being called while being in
720 * raw mode and thus will take care of all the state syncing between
721 * REM and the rest.
722 *
723 * @returns VBox status code.
724 * @param pVM VM handle.
725 */
726REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
727{
728 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
729
730 /*
731 * Sync the state and enable single instruction / single stepping.
732 */
733 int rc = REMR3State(pVM);
734 if (VBOX_SUCCESS(rc))
735 {
736 int interrupt_request = pVM->rem.s.Env.interrupt_request;
737 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
738 Assert(!pVM->rem.s.Env.singlestep_enabled);
739#if 1
740
741 /*
742 * Now we set the execute single instruction flag and enter the cpu_exec loop.
743 */
744 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
745 rc = cpu_exec(&pVM->rem.s.Env);
746 switch (rc)
747 {
748 /*
749 * Executed without anything out of the way happening.
750 */
751 case EXCP_SINGLE_INSTR:
752 rc = VINF_EM_RESCHEDULE;
753 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
754 break;
755
756 /*
757 * If we take a trap or start servicing a pending interrupt, we might end up here.
758 * (Timer thread or some other thread wishing EMT's attention.)
759 */
760 case EXCP_INTERRUPT:
761 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
762 rc = VINF_EM_RESCHEDULE;
763 break;
764
765 /*
766 * Single step, we assume!
767 * If there was a breakpoint there we're fucked now.
768 */
769 case EXCP_DEBUG:
770 {
771 /* breakpoint or single step? */
772 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
773 int iBP;
774 rc = VINF_EM_DBG_STEPPED;
775 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
776 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
777 {
778 rc = VINF_EM_DBG_BREAKPOINT;
779 break;
780 }
781 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
782 break;
783 }
784
785 /*
786 * hlt instruction.
787 */
788 case EXCP_HLT:
789 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
790 rc = VINF_EM_HALT;
791 break;
792
793 /*
794 * The VM has halted.
795 */
796 case EXCP_HALTED:
797 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
798 rc = VINF_EM_HALT;
799 break;
800
801 /*
802 * Switch to RAW-mode.
803 */
804 case EXCP_EXECUTE_RAW:
805 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
806 rc = VINF_EM_RESCHEDULE_RAW;
807 break;
808
809 /*
810 * Switch to hardware accelerated RAW-mode.
811 */
812 case EXCP_EXECUTE_HWACC:
813 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
814 rc = VINF_EM_RESCHEDULE_HWACC;
815 break;
816
817 /*
818 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
819 */
820 case EXCP_RC:
821 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
822 rc = pVM->rem.s.rc;
823 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
824 break;
825
826 /*
827 * Figure out the rest when they arrive....
828 */
829 default:
830 AssertMsgFailed(("rc=%d\n", rc));
831 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
832 rc = VINF_EM_RESCHEDULE;
833 break;
834 }
835
836 /*
837 * Switch back the state.
838 */
839#else
840 pVM->rem.s.Env.interrupt_request = 0;
841 cpu_single_step(&pVM->rem.s.Env, 1);
842
843 /*
844 * Execute and handle the return code.
845 * We execute without enabling the cpu tick, so on success we'll
846 * just flip it on and off to make sure it moves.
847 *
848 * (We do not use emulate_single_instr() because that doesn't enter the
849 * right way in will cause serious trouble if a longjmp was attempted.)
850 */
851# ifdef DEBUG_bird
852 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
853# endif
854 int cTimesMax = 16384;
855 uint32_t eip = pVM->rem.s.Env.eip;
856 do
857 {
858 rc = cpu_exec(&pVM->rem.s.Env);
859
860 } while ( eip == pVM->rem.s.Env.eip
861 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
862 && --cTimesMax > 0);
863 switch (rc)
864 {
865 /*
866 * Single step, we assume!
867 * If there was a breakpoint there we're fucked now.
868 */
869 case EXCP_DEBUG:
870 {
871 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
872 rc = VINF_EM_RESCHEDULE;
873 break;
874 }
875
876 /*
877 * We cannot be interrupted!
878 */
879 case EXCP_INTERRUPT:
880 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
881 rc = VERR_INTERNAL_ERROR;
882 break;
883
884 /*
885 * hlt instruction.
886 */
887 case EXCP_HLT:
888 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
889 rc = VINF_EM_HALT;
890 break;
891
892 /*
893 * The VM has halted.
894 */
895 case EXCP_HALTED:
896 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
897 rc = VINF_EM_HALT;
898 break;
899
900 /*
901 * Switch to RAW-mode.
902 */
903 case EXCP_EXECUTE_RAW:
904 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
905 rc = VINF_EM_RESCHEDULE_RAW;
906 break;
907
908 /*
909 * Switch to hardware accelerated RAW-mode.
910 */
911 case EXCP_EXECUTE_HWACC:
912 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
913 rc = VINF_EM_RESCHEDULE_HWACC;
914 break;
915
916 /*
917 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
918 */
919 case EXCP_RC:
920 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
921 rc = pVM->rem.s.rc;
922 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
923 break;
924
925 /*
926 * Figure out the rest when they arrive....
927 */
928 default:
929 AssertMsgFailed(("rc=%d\n", rc));
930 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
931 rc = VINF_SUCCESS;
932 break;
933 }
934
935 /*
936 * Switch back the state.
937 */
938 cpu_single_step(&pVM->rem.s.Env, 0);
939#endif
940 pVM->rem.s.Env.interrupt_request = interrupt_request;
941 int rc2 = REMR3StateBack(pVM);
942 AssertRC(rc2);
943 }
944
945 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%08x)\n",
946 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
947 return rc;
948}
949
950
951/**
952 * Runs code in recompiled mode.
953 *
954 * Before calling this function the REM state needs to be in sync with
955 * the VM. Call REMR3State() to perform the sync. It's only necessary
956 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
957 * and after calling REMR3StateBack().
958 *
959 * @returns VBox status code.
960 *
961 * @param pVM VM Handle.
962 */
963REMR3DECL(int) REMR3Run(PVM pVM)
964{
965 Log2(("REMR3Run: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
966 Assert(pVM->rem.s.fInREM);
967
968 int rc = cpu_exec(&pVM->rem.s.Env);
969 switch (rc)
970 {
971 /*
972 * This happens when the execution was interrupted
973 * by an external event, like pending timers.
974 */
975 case EXCP_INTERRUPT:
976 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
977 rc = VINF_SUCCESS;
978 break;
979
980 /*
981 * hlt instruction.
982 */
983 case EXCP_HLT:
984 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
985 rc = VINF_EM_HALT;
986 break;
987
988 /*
989 * The VM has halted.
990 */
991 case EXCP_HALTED:
992 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
993 rc = VINF_EM_HALT;
994 break;
995
996 /*
997 * Breakpoint/single step.
998 */
999 case EXCP_DEBUG:
1000 {
1001#if 0//def DEBUG_bird
1002 static int iBP = 0;
1003 printf("howdy, breakpoint! iBP=%d\n", iBP);
1004 switch (iBP)
1005 {
1006 case 0:
1007 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1008 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1009 //pVM->rem.s.Env.interrupt_request = 0;
1010 //pVM->rem.s.Env.exception_index = -1;
1011 //g_fInterruptDisabled = 1;
1012 rc = VINF_SUCCESS;
1013 asm("int3");
1014 break;
1015 default:
1016 asm("int3");
1017 break;
1018 }
1019 iBP++;
1020#else
1021 /* breakpoint or single step? */
1022 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1023 int iBP;
1024 rc = VINF_EM_DBG_STEPPED;
1025 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1026 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1027 {
1028 rc = VINF_EM_DBG_BREAKPOINT;
1029 break;
1030 }
1031 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1032#endif
1033 break;
1034 }
1035
1036 /*
1037 * Switch to RAW-mode.
1038 */
1039 case EXCP_EXECUTE_RAW:
1040 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1041 rc = VINF_EM_RESCHEDULE_RAW;
1042 break;
1043
1044 /*
1045 * Switch to hardware accelerated RAW-mode.
1046 */
1047 case EXCP_EXECUTE_HWACC:
1048 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1049 rc = VINF_EM_RESCHEDULE_HWACC;
1050 break;
1051
1052 /*
1053 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1054 */
1055 case EXCP_RC:
1056 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1057 rc = pVM->rem.s.rc;
1058 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1059 break;
1060
1061 /*
1062 * Figure out the rest when they arrive....
1063 */
1064 default:
1065 AssertMsgFailed(("rc=%d\n", rc));
1066 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1067 rc = VINF_SUCCESS;
1068 break;
1069 }
1070
1071 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%08x)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1072 return rc;
1073}
1074
1075
1076/**
1077 * Check if the cpu state is suitable for Raw execution.
1078 *
1079 * @returns boolean
1080 * @param env The CPU env struct.
1081 * @param eip The EIP to check this for (might differ from env->eip).
1082 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1083 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1084 *
1085 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1086 */
1087bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1088{
1089 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1090 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1091 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1092
1093 /* Update counter. */
1094 env->pVM->rem.s.cCanExecuteRaw++;
1095
1096 if (HWACCMIsEnabled(env->pVM))
1097 {
1098 env->state |= CPU_RAW_HWACC;
1099
1100 /*
1101 * Create partial context for HWACCMR3CanExecuteGuest
1102 */
1103 CPUMCTX Ctx;
1104 Ctx.cr0 = env->cr[0];
1105 Ctx.cr3 = env->cr[3];
1106 Ctx.cr4 = env->cr[4];
1107
1108 Ctx.tr = env->tr.selector;
1109 Ctx.trHid.u32Base = (uint32_t)env->tr.base;
1110 Ctx.trHid.u32Limit = env->tr.limit;
1111 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1112
1113 Ctx.idtr.cbIdt = env->idt.limit;
1114 Ctx.idtr.pIdt = (uint32_t)env->idt.base;
1115
1116 Ctx.eflags.u32 = env->eflags;
1117
1118 Ctx.cs = env->segs[R_CS].selector;
1119 Ctx.csHid.u32Base = (uint32_t)env->segs[R_CS].base;
1120 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1121 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1122
1123 Ctx.ss = env->segs[R_SS].selector;
1124 Ctx.ssHid.u32Base = (uint32_t)env->segs[R_SS].base;
1125 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1126 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1127
1128 /* Hardware accelerated raw-mode:
1129 *
1130 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1131 */
1132 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1133 {
1134 *piException = EXCP_EXECUTE_HWACC;
1135 return true;
1136 }
1137 return false;
1138 }
1139
1140 /*
1141 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1142 * or 32 bits protected mode ring 0 code
1143 *
1144 * The tests are ordered by the likelyhood of being true during normal execution.
1145 */
1146 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1147 {
1148 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1149 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1150 return false;
1151 }
1152
1153#ifndef VBOX_RAW_V86
1154 if (fFlags & VM_MASK) {
1155 STAM_COUNTER_INC(&gStatRefuseVM86);
1156 Log2(("raw mode refused: VM_MASK\n"));
1157 return false;
1158 }
1159#endif
1160
1161 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1162 {
1163#ifndef DEBUG_bird
1164 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1165#endif
1166 return false;
1167 }
1168
1169 if (env->singlestep_enabled)
1170 {
1171 //Log2(("raw mode refused: Single step\n"));
1172 return false;
1173 }
1174
1175 if (env->nb_breakpoints > 0)
1176 {
1177 //Log2(("raw mode refused: Breakpoints\n"));
1178 return false;
1179 }
1180
1181 uint32_t u32CR0 = env->cr[0];
1182 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1183 {
1184 STAM_COUNTER_INC(&gStatRefusePaging);
1185 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1186 return false;
1187 }
1188
1189 if (env->cr[4] & CR4_PAE_MASK)
1190 {
1191 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1192 {
1193 STAM_COUNTER_INC(&gStatRefusePAE);
1194 return false;
1195 }
1196 }
1197
1198 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1199 {
1200 if (!EMIsRawRing3Enabled(env->pVM))
1201 return false;
1202
1203 if (!(env->eflags & IF_MASK))
1204 {
1205 STAM_COUNTER_INC(&gStatRefuseIF0);
1206 Log2(("raw mode refused: IF (RawR3)\n"));
1207 return false;
1208 }
1209
1210 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1211 {
1212 STAM_COUNTER_INC(&gStatRefuseWP0);
1213 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1214 return false;
1215 }
1216 }
1217 else
1218 {
1219 if (!EMIsRawRing0Enabled(env->pVM))
1220 return false;
1221
1222 // Let's start with pure 32 bits ring 0 code first
1223 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1224 {
1225 STAM_COUNTER_INC(&gStatRefuseCode16);
1226 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1227 return false;
1228 }
1229
1230 // Only R0
1231 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1232 {
1233 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1234 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1235 return false;
1236 }
1237
1238 if (!(u32CR0 & CR0_WP_MASK))
1239 {
1240 STAM_COUNTER_INC(&gStatRefuseWP0);
1241 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1242 return false;
1243 }
1244
1245 if (PATMIsPatchGCAddr(env->pVM, eip))
1246 {
1247 Log2(("raw r0 mode forced: patch code\n"));
1248 *piException = EXCP_EXECUTE_RAW;
1249 return true;
1250 }
1251
1252#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1253 if (!(env->eflags & IF_MASK))
1254 {
1255 STAM_COUNTER_INC(&gStatRefuseIF0);
1256 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1257 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1258 return false;
1259 }
1260#endif
1261
1262 env->state |= CPU_RAW_RING0;
1263 }
1264
1265 /*
1266 * Don't reschedule the first time we're called, because there might be
1267 * special reasons why we're here that is not covered by the above checks.
1268 */
1269 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1270 {
1271 Log2(("raw mode refused: first scheduling\n"));
1272 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1273 return false;
1274 }
1275
1276 Assert(PGMPhysIsA20Enabled(env->pVM));
1277 *piException = EXCP_EXECUTE_RAW;
1278 return true;
1279}
1280
1281
1282/**
1283 * Fetches a code byte.
1284 *
1285 * @returns Success indicator (bool) for ease of use.
1286 * @param env The CPU environment structure.
1287 * @param GCPtrInstr Where to fetch code.
1288 * @param pu8Byte Where to store the byte on success
1289 */
1290bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1291{
1292 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1293 if (VBOX_SUCCESS(rc))
1294 return true;
1295 return false;
1296}
1297
1298
1299/**
1300 * Flush (or invalidate if you like) page table/dir entry.
1301 *
1302 * (invlpg instruction; tlb_flush_page)
1303 *
1304 * @param env Pointer to cpu environment.
1305 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1306 */
1307void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1308{
1309 PVM pVM = env->pVM;
1310
1311 /*
1312 * When we're replaying invlpg instructions or restoring a saved
1313 * state we disable this path.
1314 */
1315 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1316 return;
1317 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1318 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1319
1320 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1321
1322 /*
1323 * Update the control registers before calling PGMFlushPage.
1324 */
1325 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1326 pCtx->cr0 = env->cr[0];
1327 pCtx->cr3 = env->cr[3];
1328 pCtx->cr4 = env->cr[4];
1329
1330 /*
1331 * Let PGM do the rest.
1332 */
1333 int rc = PGMInvalidatePage(pVM, GCPtr);
1334 if (VBOX_FAILURE(rc))
1335 {
1336 AssertMsgFailed(("remR3FlushPage %x %x %x %d failed!!\n", GCPtr));
1337 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1338 }
1339 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1340}
1341
1342
1343/**
1344 * Called from tlb_protect_code in order to write monitor a code page.
1345 *
1346 * @param env Pointer to the CPU environment.
1347 * @param GCPtr Code page to monitor
1348 */
1349void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1350{
1351 Assert(env->pVM->rem.s.fInREM);
1352 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1353 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1354 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1355 && !(env->eflags & VM_MASK) /* no V86 mode */
1356 && !HWACCMIsEnabled(env->pVM))
1357 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1358}
1359
1360/**
1361 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1362 *
1363 * @param env Pointer to the CPU environment.
1364 * @param GCPtr Code page to monitor
1365 */
1366void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
1367{
1368 Assert(env->pVM->rem.s.fInREM);
1369 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1370 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1371 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1372 && !(env->eflags & VM_MASK) /* no V86 mode */
1373 && !HWACCMIsEnabled(env->pVM))
1374 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1375}
1376
1377
1378/**
1379 * Called when the CPU is initialized, any of the CRx registers are changed or
1380 * when the A20 line is modified.
1381 *
1382 * @param env Pointer to the CPU environment.
1383 * @param fGlobal Set if the flush is global.
1384 */
1385void remR3FlushTLB(CPUState *env, bool fGlobal)
1386{
1387 PVM pVM = env->pVM;
1388
1389 /*
1390 * When we're replaying invlpg instructions or restoring a saved
1391 * state we disable this path.
1392 */
1393 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1394 return;
1395 Assert(pVM->rem.s.fInREM);
1396
1397 /*
1398 * The caller doesn't check cr4, so we have to do that for ourselves.
1399 */
1400 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1401 fGlobal = true;
1402 Log(("remR3FlushTLB: CR0=%VGp CR3=%VGp CR4=%VGp %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1403
1404 /*
1405 * Update the control registers before calling PGMR3FlushTLB.
1406 */
1407 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1408 pCtx->cr0 = env->cr[0];
1409 pCtx->cr3 = env->cr[3];
1410 pCtx->cr4 = env->cr[4];
1411
1412 /*
1413 * Let PGM do the rest.
1414 */
1415 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1416}
1417
1418
1419/**
1420 * Called when any of the cr0, cr4 or efer registers is updated.
1421 *
1422 * @param env Pointer to the CPU environment.
1423 */
1424void remR3ChangeCpuMode(CPUState *env)
1425{
1426 int rc;
1427 PVM pVM = env->pVM;
1428
1429 /*
1430 * When we're replaying loads or restoring a saved
1431 * state this path is disabled.
1432 */
1433 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1434 return;
1435 Assert(pVM->rem.s.fInREM);
1436
1437 /*
1438 * Update the control registers before calling PGMR3ChangeMode()
1439 * as it may need to map whatever cr3 is pointing to.
1440 */
1441 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1442 pCtx->cr0 = env->cr[0];
1443 pCtx->cr3 = env->cr[3];
1444 pCtx->cr4 = env->cr[4];
1445
1446#ifdef TARGET_X86_64
1447 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1448 if (rc != VINF_SUCCESS)
1449 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1450#else
1451 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1452 if (rc != VINF_SUCCESS)
1453 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1454#endif
1455}
1456
1457
1458/**
1459 * Called from compiled code to run dma.
1460 *
1461 * @param env Pointer to the CPU environment.
1462 */
1463void remR3DmaRun(CPUState *env)
1464{
1465 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1466 PDMR3DmaRun(env->pVM);
1467 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1468}
1469
1470
1471/**
1472 * Called from compiled code to schedule pending timers in VMM
1473 *
1474 * @param env Pointer to the CPU environment.
1475 */
1476void remR3TimersRun(CPUState *env)
1477{
1478 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1479 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1480 TMR3TimerQueuesDo(env->pVM);
1481 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1482 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1483}
1484
1485
1486/**
1487 * Record trap occurance
1488 *
1489 * @returns VBox status code
1490 * @param env Pointer to the CPU environment.
1491 * @param uTrap Trap nr
1492 * @param uErrorCode Error code
1493 * @param pvNextEIP Next EIP
1494 */
1495int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1496{
1497 PVM pVM = env->pVM;
1498#ifdef VBOX_WITH_STATISTICS
1499 static STAMCOUNTER s_aStatTrap[255];
1500 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1501#endif
1502
1503#ifdef VBOX_WITH_STATISTICS
1504 if (uTrap < 255)
1505 {
1506 if (!s_aRegisters[uTrap])
1507 {
1508 s_aRegisters[uTrap] = true;
1509 char szStatName[64];
1510 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1511 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1512 }
1513 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1514 }
1515#endif
1516 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1517 if( uTrap < 0x20
1518 && (env->cr[0] & X86_CR0_PE)
1519 && !(env->eflags & X86_EFL_VM))
1520 {
1521#ifdef DEBUG
1522 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1523#endif
1524 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1525 {
1526 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1527 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1528 return VERR_REM_TOO_MANY_TRAPS;
1529 }
1530 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1531 pVM->rem.s.cPendingExceptions = 1;
1532 pVM->rem.s.uPendingException = uTrap;
1533 pVM->rem.s.uPendingExcptEIP = env->eip;
1534 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1535 }
1536 else
1537 {
1538 pVM->rem.s.cPendingExceptions = 0;
1539 pVM->rem.s.uPendingException = uTrap;
1540 pVM->rem.s.uPendingExcptEIP = env->eip;
1541 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1542 }
1543 return VINF_SUCCESS;
1544}
1545
1546
1547/*
1548 * Clear current active trap
1549 *
1550 * @param pVM VM Handle.
1551 */
1552void remR3TrapClear(PVM pVM)
1553{
1554 pVM->rem.s.cPendingExceptions = 0;
1555 pVM->rem.s.uPendingException = 0;
1556 pVM->rem.s.uPendingExcptEIP = 0;
1557 pVM->rem.s.uPendingExcptCR2 = 0;
1558}
1559
1560
1561/*
1562 * Record previous call instruction addresses
1563 *
1564 * @param env Pointer to the CPU environment.
1565 */
1566void remR3RecordCall(CPUState *env)
1567{
1568 CSAMR3RecordCallAddress(env->pVM, env->eip);
1569}
1570
1571
1572/**
1573 * Syncs the internal REM state with the VM.
1574 *
1575 * This must be called before REMR3Run() is invoked whenever when the REM
1576 * state is not up to date. Calling it several times in a row is not
1577 * permitted.
1578 *
1579 * @returns VBox status code.
1580 *
1581 * @param pVM VM Handle.
1582 *
1583 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1584 * no do this since the majority of the callers don't want any unnecessary of events
1585 * pending that would immediatly interrupt execution.
1586 */
1587REMR3DECL(int) REMR3State(PVM pVM)
1588{
1589 Log2(("REMR3State:\n"));
1590 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1591 register const CPUMCTX *pCtx = pVM->rem.s.pCtx;
1592 register unsigned fFlags;
1593 bool fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1594
1595 Assert(!pVM->rem.s.fInREM);
1596 pVM->rem.s.fInStateSync = true;
1597
1598 /*
1599 * Copy the registers which requires no special handling.
1600 */
1601 Assert(R_EAX == 0);
1602 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1603 Assert(R_ECX == 1);
1604 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1605 Assert(R_EDX == 2);
1606 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1607 Assert(R_EBX == 3);
1608 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1609 Assert(R_ESP == 4);
1610 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1611 Assert(R_EBP == 5);
1612 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1613 Assert(R_ESI == 6);
1614 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1615 Assert(R_EDI == 7);
1616 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1617 pVM->rem.s.Env.eip = pCtx->eip;
1618
1619 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1620
1621 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1622
1623 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1624 pVM->rem.s.Env.dr[0] = pCtx->dr0;
1625 pVM->rem.s.Env.dr[1] = pCtx->dr1;
1626 pVM->rem.s.Env.dr[2] = pCtx->dr2;
1627 pVM->rem.s.Env.dr[3] = pCtx->dr3;
1628 pVM->rem.s.Env.dr[4] = pCtx->dr4;
1629 pVM->rem.s.Env.dr[5] = pCtx->dr5;
1630 pVM->rem.s.Env.dr[6] = pCtx->dr6;
1631 pVM->rem.s.Env.dr[7] = pCtx->dr7;
1632
1633 /*
1634 * Clear the halted hidden flag (the interrupt waking up the CPU can
1635 * have been dispatched in raw mode).
1636 */
1637 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1638
1639 /*
1640 * Replay invlpg?
1641 */
1642 if (pVM->rem.s.cInvalidatedPages)
1643 {
1644 pVM->rem.s.fIgnoreInvlPg = true;
1645 RTUINT i;
1646 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1647 {
1648 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1649 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1650 }
1651 pVM->rem.s.fIgnoreInvlPg = false;
1652 pVM->rem.s.cInvalidatedPages = 0;
1653 }
1654
1655 /*
1656 * Registers which are rarely changed and require special handling / order when changed.
1657 */
1658 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1659 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1660 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1661 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
1662 {
1663 if (fFlags & CPUM_CHANGED_FPU_REM)
1664 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1665
1666 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1667 {
1668 pVM->rem.s.fIgnoreCR3Load = true;
1669 tlb_flush(&pVM->rem.s.Env, true);
1670 pVM->rem.s.fIgnoreCR3Load = false;
1671 }
1672
1673 if (fFlags & CPUM_CHANGED_CR4)
1674 {
1675 pVM->rem.s.fIgnoreCR3Load = true;
1676 pVM->rem.s.fIgnoreCpuMode = true;
1677 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1678 pVM->rem.s.fIgnoreCpuMode = false;
1679 pVM->rem.s.fIgnoreCR3Load = false;
1680 }
1681
1682 if (fFlags & CPUM_CHANGED_CR0)
1683 {
1684 pVM->rem.s.fIgnoreCR3Load = true;
1685 pVM->rem.s.fIgnoreCpuMode = true;
1686 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1687 pVM->rem.s.fIgnoreCpuMode = false;
1688 pVM->rem.s.fIgnoreCR3Load = false;
1689 }
1690
1691 if (fFlags & CPUM_CHANGED_CR3)
1692 {
1693 pVM->rem.s.fIgnoreCR3Load = true;
1694 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1695 pVM->rem.s.fIgnoreCR3Load = false;
1696 }
1697
1698 if (fFlags & CPUM_CHANGED_GDTR)
1699 {
1700 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1701 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1702 }
1703
1704 if (fFlags & CPUM_CHANGED_IDTR)
1705 {
1706 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1707 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1708 }
1709
1710 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1711 {
1712 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1713 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1714 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1715 }
1716
1717 if (fFlags & CPUM_CHANGED_LDTR)
1718 {
1719 if (fHiddenSelRegsValid)
1720 {
1721 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1722 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u32Base;
1723 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1724 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1725 }
1726 else
1727 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1728 }
1729
1730 if (fFlags & CPUM_CHANGED_TR)
1731 {
1732 if (fHiddenSelRegsValid)
1733 {
1734 pVM->rem.s.Env.tr.selector = pCtx->tr;
1735 pVM->rem.s.Env.tr.base = pCtx->trHid.u32Base;
1736 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1737 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1738 }
1739 else
1740 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1741
1742 /** @note do_interrupt will fault if the busy flag is still set.... */
1743 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1744 }
1745
1746 if (fFlags & CPUM_CHANGED_CPUID)
1747 {
1748 uint32_t u32Dummy;
1749
1750 /*
1751 * Get the CPUID features.
1752 */
1753 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
1754 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
1755 }
1756 }
1757
1758 /*
1759 * Update selector registers.
1760 * This must be done *after* we've synced gdt, ldt and crX registers
1761 * since we're reading the GDT/LDT om sync_seg. This will happen with
1762 * saved state which takes a quick dip into rawmode for instance.
1763 */
1764 /*
1765 * Stack; Note first check this one as the CPL might have changed. The
1766 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1767 */
1768
1769 if (fHiddenSelRegsValid)
1770 {
1771 /* The hidden selector registers are valid in the CPU context. */
1772 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1773
1774 /* Set current CPL */
1775 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1776
1777 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u32Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1778 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u32Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1779 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u32Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1780 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u32Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1781 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u32Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1782 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u32Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1783 }
1784 else
1785 {
1786 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1787 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1788 {
1789 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1790
1791 cpu_x86_set_cpl(&pVM->rem.s.Env, (pCtx->eflags.Bits.u1VM) ? 3 : (pCtx->ss & 3));
1792 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1793#ifdef VBOX_WITH_STATISTICS
1794 if (pVM->rem.s.Env.segs[R_SS].newselector)
1795 {
1796 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1797 }
1798#endif
1799 }
1800 else
1801 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1802
1803 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1804 {
1805 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1806 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1807#ifdef VBOX_WITH_STATISTICS
1808 if (pVM->rem.s.Env.segs[R_ES].newselector)
1809 {
1810 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1811 }
1812#endif
1813 }
1814 else
1815 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1816
1817 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1818 {
1819 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1820 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1821#ifdef VBOX_WITH_STATISTICS
1822 if (pVM->rem.s.Env.segs[R_CS].newselector)
1823 {
1824 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1825 }
1826#endif
1827 }
1828 else
1829 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1830
1831 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1832 {
1833 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1834 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1835#ifdef VBOX_WITH_STATISTICS
1836 if (pVM->rem.s.Env.segs[R_DS].newselector)
1837 {
1838 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1839 }
1840#endif
1841 }
1842 else
1843 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1844
1845 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1846 * be the same but not the base/limit. */
1847 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1848 {
1849 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1850 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1851#ifdef VBOX_WITH_STATISTICS
1852 if (pVM->rem.s.Env.segs[R_FS].newselector)
1853 {
1854 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1855 }
1856#endif
1857 }
1858 else
1859 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1860
1861 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1862 {
1863 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1864 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1865#ifdef VBOX_WITH_STATISTICS
1866 if (pVM->rem.s.Env.segs[R_GS].newselector)
1867 {
1868 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1869 }
1870#endif
1871 }
1872 else
1873 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1874 }
1875
1876 /* Update MSRs. */
1877 pVM->rem.s.Env.efer = pCtx->msrEFER;
1878 pVM->rem.s.Env.star = pCtx->msrSTAR;
1879 pVM->rem.s.Env.pat = pCtx->msrPAT;
1880#ifdef TARGET_X86_64
1881 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1882 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1883 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1884 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1885#endif
1886 /* Note that FS_BASE & GS_BASE are already synced; QEmu keeps them in the hidden selector registers.
1887 * So we basically assume the hidden registers are in sync with these MSRs (vt-x & amd-v). Correct??
1888 */
1889
1890 /*
1891 * Check for traps.
1892 */
1893 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1894 TRPMEVENT enmType;
1895 uint8_t u8TrapNo;
1896 int rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
1897 if (VBOX_SUCCESS(rc))
1898 {
1899#ifdef DEBUG
1900 if (u8TrapNo == 0x80)
1901 {
1902 remR3DumpLnxSyscall(pVM);
1903 remR3DumpOBsdSyscall(pVM);
1904 }
1905#endif
1906
1907 pVM->rem.s.Env.exception_index = u8TrapNo;
1908 if (enmType != TRPM_SOFTWARE_INT)
1909 {
1910 pVM->rem.s.Env.exception_is_int = 0;
1911 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
1912 }
1913 else
1914 {
1915 /*
1916 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
1917 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
1918 * for int03 and into.
1919 */
1920 pVM->rem.s.Env.exception_is_int = 1;
1921 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 2;
1922 /* int 3 may be generated by one-byte 0xcc */
1923 if (u8TrapNo == 3)
1924 {
1925 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xcc)
1926 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1927 }
1928 /* int 4 may be generated by one-byte 0xce */
1929 else if (u8TrapNo == 4)
1930 {
1931 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xce)
1932 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1933 }
1934 }
1935
1936 /* get error code and cr2 if needed. */
1937 switch (u8TrapNo)
1938 {
1939 case 0x0e:
1940 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
1941 /* fallthru */
1942 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
1943 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
1944 break;
1945
1946 case 0x11: case 0x08:
1947 default:
1948 pVM->rem.s.Env.error_code = 0;
1949 break;
1950 }
1951
1952 /*
1953 * We can now reset the active trap since the recompiler is gonna have a go at it.
1954 */
1955 rc = TRPMResetTrap(pVM);
1956 AssertRC(rc);
1957 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
1958 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
1959 }
1960
1961 /*
1962 * Clear old interrupt request flags; Check for pending hardware interrupts.
1963 * (See @remark for why we don't check for other FFs.)
1964 */
1965 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
1966 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
1967 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
1968 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
1969
1970 /*
1971 * We're now in REM mode.
1972 */
1973 pVM->rem.s.fInREM = true;
1974 pVM->rem.s.fInStateSync = false;
1975 pVM->rem.s.cCanExecuteRaw = 0;
1976 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
1977 Log2(("REMR3State: returns VINF_SUCCESS\n"));
1978 return VINF_SUCCESS;
1979}
1980
1981
1982/**
1983 * Syncs back changes in the REM state to the the VM state.
1984 *
1985 * This must be called after invoking REMR3Run().
1986 * Calling it several times in a row is not permitted.
1987 *
1988 * @returns VBox status code.
1989 *
1990 * @param pVM VM Handle.
1991 */
1992REMR3DECL(int) REMR3StateBack(PVM pVM)
1993{
1994 Log2(("REMR3StateBack:\n"));
1995 Assert(pVM->rem.s.fInREM);
1996 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
1997 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
1998
1999 /*
2000 * Copy back the registers.
2001 * This is done in the order they are declared in the CPUMCTX structure.
2002 */
2003
2004 /** @todo FOP */
2005 /** @todo FPUIP */
2006 /** @todo CS */
2007 /** @todo FPUDP */
2008 /** @todo DS */
2009 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2010 pCtx->fpu.MXCSR = 0;
2011 pCtx->fpu.MXCSR_MASK = 0;
2012
2013 /** @todo check if FPU/XMM was actually used in the recompiler */
2014 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2015//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2016
2017 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2018 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2019 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2020 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2021 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2022 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2023 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2024
2025 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2026 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2027
2028#ifdef VBOX_WITH_STATISTICS
2029 if (pVM->rem.s.Env.segs[R_SS].newselector)
2030 {
2031 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2032 }
2033 if (pVM->rem.s.Env.segs[R_GS].newselector)
2034 {
2035 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2036 }
2037 if (pVM->rem.s.Env.segs[R_FS].newselector)
2038 {
2039 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2040 }
2041 if (pVM->rem.s.Env.segs[R_ES].newselector)
2042 {
2043 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2044 }
2045 if (pVM->rem.s.Env.segs[R_DS].newselector)
2046 {
2047 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2048 }
2049 if (pVM->rem.s.Env.segs[R_CS].newselector)
2050 {
2051 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2052 }
2053#endif
2054 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2055 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2056 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2057 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2058 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2059
2060 pCtx->eip = pVM->rem.s.Env.eip;
2061 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2062
2063 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2064 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2065 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2066 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2067
2068 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2069 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2070 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2071 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2072 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2073 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2074 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2075 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2076
2077 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2078 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2079 {
2080 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2081 STAM_COUNTER_INC(&gStatREMGDTChange);
2082 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2083 }
2084
2085 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2086 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2087 {
2088 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2089 STAM_COUNTER_INC(&gStatREMIDTChange);
2090 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2091 }
2092
2093 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2094 {
2095 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2096 STAM_COUNTER_INC(&gStatREMLDTRChange);
2097 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2098 }
2099 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2100 {
2101 pCtx->tr = pVM->rem.s.Env.tr.selector;
2102 STAM_COUNTER_INC(&gStatREMTRChange);
2103 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2104 }
2105
2106 /** @todo These values could still be out of sync! */
2107 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2108 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2109 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2110 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2111
2112 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2113 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2114 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2115
2116 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2117 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2118 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2119
2120 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2121 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2122 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2123
2124 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2125 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2126 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2127
2128 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2129 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2130 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2131
2132 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2133 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2134 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2135
2136 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2137 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2138 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2139
2140 /* Sysenter MSR */
2141 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2142 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2143 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2144
2145 /* System MSRs. */
2146 pCtx->msrEFER = pVM->rem.s.Env.efer;
2147 pCtx->msrSTAR = pVM->rem.s.Env.star;
2148 pCtx->msrPAT = pVM->rem.s.Env.pat;
2149#ifdef TARGET_X86_64
2150 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2151 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2152 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2153 pCtx->msrFSBASE = pVM->rem.s.Env.segs[R_FS].base;
2154 pCtx->msrGSBASE = pVM->rem.s.Env.segs[R_GS].base;
2155 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2156#endif
2157
2158 remR3TrapClear(pVM);
2159
2160 /*
2161 * Check for traps.
2162 */
2163 if ( pVM->rem.s.Env.exception_index >= 0
2164 && pVM->rem.s.Env.exception_index < 256)
2165 {
2166 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2167 int rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2168 AssertRC(rc);
2169 switch (pVM->rem.s.Env.exception_index)
2170 {
2171 case 0x0e:
2172 TRPMSetFaultAddress(pVM, pCtx->cr2);
2173 /* fallthru */
2174 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2175 case 0x11: case 0x08: /* 0 */
2176 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2177 break;
2178 }
2179
2180 }
2181
2182 /*
2183 * We're not longer in REM mode.
2184 */
2185 pVM->rem.s.fInREM = false;
2186 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2187 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2188 return VINF_SUCCESS;
2189}
2190
2191
2192/**
2193 * This is called by the disassembler when it wants to update the cpu state
2194 * before for instance doing a register dump.
2195 */
2196static void remR3StateUpdate(PVM pVM)
2197{
2198 Assert(pVM->rem.s.fInREM);
2199 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2200
2201 /*
2202 * Copy back the registers.
2203 * This is done in the order they are declared in the CPUMCTX structure.
2204 */
2205
2206 /** @todo FOP */
2207 /** @todo FPUIP */
2208 /** @todo CS */
2209 /** @todo FPUDP */
2210 /** @todo DS */
2211 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2212 pCtx->fpu.MXCSR = 0;
2213 pCtx->fpu.MXCSR_MASK = 0;
2214
2215 /** @todo check if FPU/XMM was actually used in the recompiler */
2216 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2217//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2218
2219 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2220 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2221 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2222 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2223 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2224 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2225 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2226
2227 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2228 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2229
2230 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2231 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2232 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2233 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2234 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2235
2236 pCtx->eip = pVM->rem.s.Env.eip;
2237 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2238
2239 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2240 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2241 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2242 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2243
2244 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2245 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2246 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2247 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2248 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2249 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2250 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2251 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2252
2253 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2254 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2255 {
2256 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2257 STAM_COUNTER_INC(&gStatREMGDTChange);
2258 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2259 }
2260
2261 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2262 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2263 {
2264 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2265 STAM_COUNTER_INC(&gStatREMIDTChange);
2266 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2267 }
2268
2269 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2270 {
2271 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2272 STAM_COUNTER_INC(&gStatREMLDTRChange);
2273 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2274 }
2275 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2276 {
2277 pCtx->tr = pVM->rem.s.Env.tr.selector;
2278 STAM_COUNTER_INC(&gStatREMTRChange);
2279 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2280 }
2281
2282 /** @todo These values could still be out of sync! */
2283 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2284 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2285 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2286 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2287
2288 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2289 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2290 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2291
2292 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2293 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2294 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2295
2296 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2297 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2298 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2299
2300 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2301 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2302 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2303
2304 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2305 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2306 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2307
2308 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2309 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2310 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2311
2312 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2313 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2314 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2315
2316 /* Sysenter MSR */
2317 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2318 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2319 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2320}
2321
2322
2323/**
2324 * Update the VMM state information if we're currently in REM.
2325 *
2326 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2327 * we're currently executing in REM and the VMM state is invalid. This method will of
2328 * course check that we're executing in REM before syncing any data over to the VMM.
2329 *
2330 * @param pVM The VM handle.
2331 */
2332REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2333{
2334 if (pVM->rem.s.fInREM)
2335 remR3StateUpdate(pVM);
2336}
2337
2338
2339#undef LOG_GROUP
2340#define LOG_GROUP LOG_GROUP_REM
2341
2342
2343/**
2344 * Notify the recompiler about Address Gate 20 state change.
2345 *
2346 * This notification is required since A20 gate changes are
2347 * initialized from a device driver and the VM might just as
2348 * well be in REM mode as in RAW mode.
2349 *
2350 * @param pVM VM handle.
2351 * @param fEnable True if the gate should be enabled.
2352 * False if the gate should be disabled.
2353 */
2354REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2355{
2356 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2357 VM_ASSERT_EMT(pVM);
2358 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2359}
2360
2361
2362/**
2363 * Replays the invalidated recorded pages.
2364 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2365 *
2366 * @param pVM VM handle.
2367 */
2368REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2369{
2370 VM_ASSERT_EMT(pVM);
2371
2372 /*
2373 * Sync the required registers.
2374 */
2375 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2376 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2377 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2378 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2379
2380 /*
2381 * Replay the flushes.
2382 */
2383 pVM->rem.s.fIgnoreInvlPg = true;
2384 RTUINT i;
2385 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2386 {
2387 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2388 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2389 }
2390 pVM->rem.s.fIgnoreInvlPg = false;
2391 pVM->rem.s.cInvalidatedPages = 0;
2392}
2393
2394
2395/**
2396 * Replays the invalidated recorded pages.
2397 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2398 *
2399 * @param pVM VM handle.
2400 */
2401REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2402{
2403 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2404 VM_ASSERT_EMT(pVM);
2405
2406 /*
2407 * Replay the flushes.
2408 */
2409 RTUINT i;
2410 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2411 pVM->rem.s.cHandlerNotifications = 0;
2412 for (i = 0; i < c; i++)
2413 {
2414 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2415 switch (pRec->enmKind)
2416 {
2417 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2418 REMR3NotifyHandlerPhysicalRegister(pVM,
2419 pRec->u.PhysicalRegister.enmType,
2420 pRec->u.PhysicalRegister.GCPhys,
2421 pRec->u.PhysicalRegister.cb,
2422 pRec->u.PhysicalRegister.fHasHCHandler);
2423 break;
2424
2425 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2426 REMR3NotifyHandlerPhysicalDeregister(pVM,
2427 pRec->u.PhysicalDeregister.enmType,
2428 pRec->u.PhysicalDeregister.GCPhys,
2429 pRec->u.PhysicalDeregister.cb,
2430 pRec->u.PhysicalDeregister.fHasHCHandler,
2431 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2432 break;
2433
2434 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2435 REMR3NotifyHandlerPhysicalModify(pVM,
2436 pRec->u.PhysicalModify.enmType,
2437 pRec->u.PhysicalModify.GCPhysOld,
2438 pRec->u.PhysicalModify.GCPhysNew,
2439 pRec->u.PhysicalModify.cb,
2440 pRec->u.PhysicalModify.fHasHCHandler,
2441 pRec->u.PhysicalModify.fRestoreAsRAM);
2442 break;
2443
2444 default:
2445 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2446 break;
2447 }
2448 }
2449}
2450
2451
2452/**
2453 * Notify REM about changed code page.
2454 *
2455 * @returns VBox status code.
2456 * @param pVM VM handle.
2457 * @param pvCodePage Code page address
2458 */
2459REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2460{
2461 int rc;
2462 RTGCPHYS PhysGC;
2463 uint64_t flags;
2464
2465 VM_ASSERT_EMT(pVM);
2466
2467 /*
2468 * Get the physical page address.
2469 */
2470 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2471 if (rc == VINF_SUCCESS)
2472 {
2473 /*
2474 * Sync the required registers and flush the whole page.
2475 * (Easier to do the whole page than notifying it about each physical
2476 * byte that was changed.
2477 */
2478 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2479 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2480 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2481 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2482
2483 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2484 }
2485 return VINF_SUCCESS;
2486}
2487
2488
2489/**
2490 * Notification about a successful MMR3PhysRegister() call.
2491 *
2492 * @param pVM VM handle.
2493 * @param GCPhys The physical address the RAM.
2494 * @param cb Size of the memory.
2495 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2496 */
2497REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, unsigned fFlags)
2498{
2499 Log(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d fFlags=%d\n", GCPhys, cb, fFlags));
2500 VM_ASSERT_EMT(pVM);
2501
2502 /*
2503 * Validate input - we trust the caller.
2504 */
2505 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2506 Assert(cb);
2507 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2508
2509 /*
2510 * Base ram?
2511 */
2512 if (!GCPhys)
2513 {
2514 phys_ram_size = cb;
2515 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2516#ifndef VBOX_STRICT
2517 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2518 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2519#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2520 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2521 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2522 uint32_t cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2523 int rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2524 AssertRC(rc);
2525 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2526#endif
2527 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2528 }
2529
2530 /*
2531 * Register the ram.
2532 */
2533 Assert(!pVM->rem.s.fIgnoreAll);
2534 pVM->rem.s.fIgnoreAll = true;
2535
2536#ifdef VBOX_WITH_NEW_PHYS_CODE
2537 if (fFlags & MM_RAM_FLAGS_RESERVED)
2538 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2539 else
2540 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2541#else
2542 if (!GCPhys)
2543 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2544 else
2545 {
2546 if (fFlags & MM_RAM_FLAGS_RESERVED)
2547 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2548 else
2549 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2550 }
2551#endif
2552 Assert(pVM->rem.s.fIgnoreAll);
2553 pVM->rem.s.fIgnoreAll = false;
2554}
2555
2556#ifndef VBOX_WITH_NEW_PHYS_CODE
2557
2558/**
2559 * Notification about a successful PGMR3PhysRegisterChunk() call.
2560 *
2561 * @param pVM VM handle.
2562 * @param GCPhys The physical address the RAM.
2563 * @param cb Size of the memory.
2564 * @param pvRam The HC address of the RAM.
2565 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2566 */
2567REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2568{
2569 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2570 VM_ASSERT_EMT(pVM);
2571
2572 /*
2573 * Validate input - we trust the caller.
2574 */
2575 Assert(pvRam);
2576 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2577 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2578 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2579 Assert(fFlags == 0 /* normal RAM */);
2580 Assert(!pVM->rem.s.fIgnoreAll);
2581 pVM->rem.s.fIgnoreAll = true;
2582
2583 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2584
2585 Assert(pVM->rem.s.fIgnoreAll);
2586 pVM->rem.s.fIgnoreAll = false;
2587}
2588
2589
2590/**
2591 * Grows dynamically allocated guest RAM.
2592 * Will raise a fatal error if the operation fails.
2593 *
2594 * @param physaddr The physical address.
2595 */
2596void remR3GrowDynRange(unsigned long physaddr)
2597{
2598 int rc;
2599 PVM pVM = cpu_single_env->pVM;
2600
2601 Log(("remR3GrowDynRange %VGp\n", physaddr));
2602 const RTGCPHYS GCPhys = physaddr;
2603 rc = PGM3PhysGrowRange(pVM, &GCPhys);
2604 if (VBOX_SUCCESS(rc))
2605 return;
2606
2607 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2608 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2609 AssertFatalFailed();
2610}
2611
2612#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2613
2614/**
2615 * Notification about a successful MMR3PhysRomRegister() call.
2616 *
2617 * @param pVM VM handle.
2618 * @param GCPhys The physical address of the ROM.
2619 * @param cb The size of the ROM.
2620 * @param pvCopy Pointer to the ROM copy.
2621 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2622 * This function will be called when ever the protection of the
2623 * shadow ROM changes (at reset and end of POST).
2624 */
2625REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2626{
2627 Log(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p fShadow=%RTbool\n", GCPhys, cb, pvCopy, fShadow));
2628 VM_ASSERT_EMT(pVM);
2629
2630 /*
2631 * Validate input - we trust the caller.
2632 */
2633 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2634 Assert(cb);
2635 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2636 Assert(pvCopy);
2637 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2638
2639 /*
2640 * Register the rom.
2641 */
2642 Assert(!pVM->rem.s.fIgnoreAll);
2643 pVM->rem.s.fIgnoreAll = true;
2644
2645 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2646
2647 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2648
2649 Assert(pVM->rem.s.fIgnoreAll);
2650 pVM->rem.s.fIgnoreAll = false;
2651}
2652
2653
2654/**
2655 * Notification about a successful memory deregistration or reservation.
2656 *
2657 * @param pVM VM Handle.
2658 * @param GCPhys Start physical address.
2659 * @param cb The size of the range.
2660 * @todo Rename to REMR3NotifyPhysRamDeregister (for MMIO2) as we won't
2661 * reserve any memory soon.
2662 */
2663REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2664{
2665 Log(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2666 VM_ASSERT_EMT(pVM);
2667
2668 /*
2669 * Validate input - we trust the caller.
2670 */
2671 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2672 Assert(cb);
2673 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2674
2675 /*
2676 * Unassigning the memory.
2677 */
2678 Assert(!pVM->rem.s.fIgnoreAll);
2679 pVM->rem.s.fIgnoreAll = true;
2680
2681 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2682
2683 Assert(pVM->rem.s.fIgnoreAll);
2684 pVM->rem.s.fIgnoreAll = false;
2685}
2686
2687
2688/**
2689 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2690 *
2691 * @param pVM VM Handle.
2692 * @param enmType Handler type.
2693 * @param GCPhys Handler range address.
2694 * @param cb Size of the handler range.
2695 * @param fHasHCHandler Set if the handler has a HC callback function.
2696 *
2697 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2698 * Handler memory type to memory which has no HC handler.
2699 */
2700REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2701{
2702 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d\n",
2703 enmType, GCPhys, cb, fHasHCHandler));
2704 VM_ASSERT_EMT(pVM);
2705 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2706 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2707
2708 if (pVM->rem.s.cHandlerNotifications)
2709 REMR3ReplayHandlerNotifications(pVM);
2710
2711 Assert(!pVM->rem.s.fIgnoreAll);
2712 pVM->rem.s.fIgnoreAll = true;
2713
2714 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2715 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2716 else if (fHasHCHandler)
2717 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2718
2719 Assert(pVM->rem.s.fIgnoreAll);
2720 pVM->rem.s.fIgnoreAll = false;
2721}
2722
2723
2724/**
2725 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2726 *
2727 * @param pVM VM Handle.
2728 * @param enmType Handler type.
2729 * @param GCPhys Handler range address.
2730 * @param cb Size of the handler range.
2731 * @param fHasHCHandler Set if the handler has a HC callback function.
2732 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2733 */
2734REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2735{
2736 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%VGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2737 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2738 VM_ASSERT_EMT(pVM);
2739
2740 if (pVM->rem.s.cHandlerNotifications)
2741 REMR3ReplayHandlerNotifications(pVM);
2742
2743 Assert(!pVM->rem.s.fIgnoreAll);
2744 pVM->rem.s.fIgnoreAll = true;
2745
2746/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
2747 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2748 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2749 else if (fHasHCHandler)
2750 {
2751 if (!fRestoreAsRAM)
2752 {
2753 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2754 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2755 }
2756 else
2757 {
2758 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2759 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2760 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2761 }
2762 }
2763
2764 Assert(pVM->rem.s.fIgnoreAll);
2765 pVM->rem.s.fIgnoreAll = false;
2766}
2767
2768
2769/**
2770 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2771 *
2772 * @param pVM VM Handle.
2773 * @param enmType Handler type.
2774 * @param GCPhysOld Old handler range address.
2775 * @param GCPhysNew New handler range address.
2776 * @param cb Size of the handler range.
2777 * @param fHasHCHandler Set if the handler has a HC callback function.
2778 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2779 */
2780REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2781{
2782 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%d fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
2783 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
2784 VM_ASSERT_EMT(pVM);
2785 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2786
2787 if (pVM->rem.s.cHandlerNotifications)
2788 REMR3ReplayHandlerNotifications(pVM);
2789
2790 if (fHasHCHandler)
2791 {
2792 Assert(!pVM->rem.s.fIgnoreAll);
2793 pVM->rem.s.fIgnoreAll = true;
2794
2795 /*
2796 * Reset the old page.
2797 */
2798 if (!fRestoreAsRAM)
2799 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2800 else
2801 {
2802 /* This is not perfect, but it'll do for PD monitoring... */
2803 Assert(cb == PAGE_SIZE);
2804 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2805 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2806 }
2807
2808 /*
2809 * Update the new page.
2810 */
2811 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2812 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2813 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2814
2815 Assert(pVM->rem.s.fIgnoreAll);
2816 pVM->rem.s.fIgnoreAll = false;
2817 }
2818}
2819
2820
2821/**
2822 * Checks if we're handling access to this page or not.
2823 *
2824 * @returns true if we're trapping access.
2825 * @returns false if we aren't.
2826 * @param pVM The VM handle.
2827 * @param GCPhys The physical address.
2828 *
2829 * @remark This function will only work correctly in VBOX_STRICT builds!
2830 */
2831REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
2832{
2833#ifdef VBOX_STRICT
2834 if (pVM->rem.s.cHandlerNotifications)
2835 REMR3ReplayHandlerNotifications(pVM);
2836
2837 unsigned long off = get_phys_page_offset(GCPhys);
2838 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
2839 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
2840 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
2841#else
2842 return false;
2843#endif
2844}
2845
2846
2847/**
2848 * Deals with a rare case in get_phys_addr_code where the code
2849 * is being monitored.
2850 *
2851 * It could also be an MMIO page, in which case we will raise a fatal error.
2852 *
2853 * @returns The physical address corresponding to addr.
2854 * @param env The cpu environment.
2855 * @param addr The virtual address.
2856 * @param pTLBEntry The TLB entry.
2857 */
2858target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
2859{
2860 PVM pVM = env->pVM;
2861 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
2862 {
2863 target_ulong ret = pTLBEntry->addend + addr;
2864 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv addr_code=%VGv addend=%VGp ret=%VGp\n",
2865 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
2866 return ret;
2867 }
2868 LogRel(("\nTrying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
2869 "*** handlers\n",
2870 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
2871 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
2872 LogRel(("*** mmio\n"));
2873 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
2874 LogRel(("*** phys\n"));
2875 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
2876 cpu_abort(env, "Trying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
2877 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
2878 AssertFatalFailed();
2879}
2880
2881
2882/** Validate the physical address passed to the read functions.
2883 * Useful for finding non-guest-ram reads/writes. */
2884#if 1 /* disable if it becomes bothersome... */
2885# define VBOX_CHECK_ADDR(GCPhys) AssertMsg(PGMPhysIsGCPhysValid(cpu_single_env->pVM, (GCPhys)), ("%VGp\n", (GCPhys)))
2886#else
2887# define VBOX_CHECK_ADDR(GCPhys) do { } while (0)
2888#endif
2889
2890/**
2891 * Read guest RAM and ROM.
2892 *
2893 * @param SrcGCPhys The source address (guest physical).
2894 * @param pvDst The destination address.
2895 * @param cb Number of bytes
2896 */
2897void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
2898{
2899 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2900 VBOX_CHECK_ADDR(SrcGCPhys);
2901 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
2902 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2903}
2904
2905
2906/**
2907 * Read guest RAM and ROM, unsigned 8-bit.
2908 *
2909 * @param SrcGCPhys The source address (guest physical).
2910 */
2911uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
2912{
2913 uint8_t val;
2914 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2915 VBOX_CHECK_ADDR(SrcGCPhys);
2916 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
2917 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2918 return val;
2919}
2920
2921
2922/**
2923 * Read guest RAM and ROM, signed 8-bit.
2924 *
2925 * @param SrcGCPhys The source address (guest physical).
2926 */
2927int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
2928{
2929 int8_t val;
2930 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2931 VBOX_CHECK_ADDR(SrcGCPhys);
2932 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
2933 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2934 return val;
2935}
2936
2937
2938/**
2939 * Read guest RAM and ROM, unsigned 16-bit.
2940 *
2941 * @param SrcGCPhys The source address (guest physical).
2942 */
2943uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
2944{
2945 uint16_t val;
2946 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2947 VBOX_CHECK_ADDR(SrcGCPhys);
2948 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
2949 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2950 return val;
2951}
2952
2953
2954/**
2955 * Read guest RAM and ROM, signed 16-bit.
2956 *
2957 * @param SrcGCPhys The source address (guest physical).
2958 */
2959int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
2960{
2961 uint16_t val;
2962 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2963 VBOX_CHECK_ADDR(SrcGCPhys);
2964 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
2965 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2966 return val;
2967}
2968
2969
2970/**
2971 * Read guest RAM and ROM, unsigned 32-bit.
2972 *
2973 * @param SrcGCPhys The source address (guest physical).
2974 */
2975uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
2976{
2977 uint32_t val;
2978 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2979 VBOX_CHECK_ADDR(SrcGCPhys);
2980 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
2981 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2982 return val;
2983}
2984
2985
2986/**
2987 * Read guest RAM and ROM, signed 32-bit.
2988 *
2989 * @param SrcGCPhys The source address (guest physical).
2990 */
2991int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
2992{
2993 int32_t val;
2994 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2995 VBOX_CHECK_ADDR(SrcGCPhys);
2996 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
2997 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
2998 return val;
2999}
3000
3001
3002/**
3003 * Read guest RAM and ROM, unsigned 64-bit.
3004 *
3005 * @param SrcGCPhys The source address (guest physical).
3006 */
3007uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3008{
3009 uint64_t val;
3010 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3011 VBOX_CHECK_ADDR(SrcGCPhys);
3012 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3013 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3014 return val;
3015}
3016
3017
3018/**
3019 * Write guest RAM.
3020 *
3021 * @param DstGCPhys The destination address (guest physical).
3022 * @param pvSrc The source address.
3023 * @param cb Number of bytes to write
3024 */
3025void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3026{
3027 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3028 VBOX_CHECK_ADDR(DstGCPhys);
3029 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3030 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3031}
3032
3033
3034/**
3035 * Write guest RAM, unsigned 8-bit.
3036 *
3037 * @param DstGCPhys The destination address (guest physical).
3038 * @param val Value
3039 */
3040void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3041{
3042 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3043 VBOX_CHECK_ADDR(DstGCPhys);
3044 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3045 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3046}
3047
3048
3049/**
3050 * Write guest RAM, unsigned 8-bit.
3051 *
3052 * @param DstGCPhys The destination address (guest physical).
3053 * @param val Value
3054 */
3055void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3056{
3057 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3058 VBOX_CHECK_ADDR(DstGCPhys);
3059 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3060 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3061}
3062
3063
3064/**
3065 * Write guest RAM, unsigned 32-bit.
3066 *
3067 * @param DstGCPhys The destination address (guest physical).
3068 * @param val Value
3069 */
3070void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3071{
3072 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3073 VBOX_CHECK_ADDR(DstGCPhys);
3074 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3075 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3076}
3077
3078
3079/**
3080 * Write guest RAM, unsigned 64-bit.
3081 *
3082 * @param DstGCPhys The destination address (guest physical).
3083 * @param val Value
3084 */
3085void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3086{
3087 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3088 VBOX_CHECK_ADDR(DstGCPhys);
3089 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3090 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3091}
3092
3093#undef LOG_GROUP
3094#define LOG_GROUP LOG_GROUP_REM_MMIO
3095
3096/** Read MMIO memory. */
3097static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3098{
3099 uint32_t u32 = 0;
3100 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3101 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3102 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3103 return u32;
3104}
3105
3106/** Read MMIO memory. */
3107static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3108{
3109 uint32_t u32 = 0;
3110 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3111 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3112 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3113 return u32;
3114}
3115
3116/** Read MMIO memory. */
3117static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3118{
3119 uint32_t u32 = 0;
3120 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3121 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3122 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3123 return u32;
3124}
3125
3126/** Write to MMIO memory. */
3127static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3128{
3129 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3130 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3131 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3132}
3133
3134/** Write to MMIO memory. */
3135static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3136{
3137 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3138 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3139 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3140}
3141
3142/** Write to MMIO memory. */
3143static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3144{
3145 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3146 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3147 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3148}
3149
3150
3151#undef LOG_GROUP
3152#define LOG_GROUP LOG_GROUP_REM_HANDLER
3153
3154/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3155
3156static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3157{
3158 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3159 uint8_t u8;
3160 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3161 return u8;
3162}
3163
3164static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3165{
3166 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3167 uint16_t u16;
3168 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3169 return u16;
3170}
3171
3172static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3173{
3174 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3175 uint32_t u32;
3176 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3177 return u32;
3178}
3179
3180static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3181{
3182 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3183 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3184}
3185
3186static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3187{
3188 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3189 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3190}
3191
3192static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3193{
3194 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3195 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3196}
3197
3198/* -+- disassembly -+- */
3199
3200#undef LOG_GROUP
3201#define LOG_GROUP LOG_GROUP_REM_DISAS
3202
3203
3204/**
3205 * Enables or disables singled stepped disassembly.
3206 *
3207 * @returns VBox status code.
3208 * @param pVM VM handle.
3209 * @param fEnable To enable set this flag, to disable clear it.
3210 */
3211static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3212{
3213 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3214 VM_ASSERT_EMT(pVM);
3215
3216 if (fEnable)
3217 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3218 else
3219 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3220 return VINF_SUCCESS;
3221}
3222
3223
3224/**
3225 * Enables or disables singled stepped disassembly.
3226 *
3227 * @returns VBox status code.
3228 * @param pVM VM handle.
3229 * @param fEnable To enable set this flag, to disable clear it.
3230 */
3231REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3232{
3233 PVMREQ pReq;
3234 int rc;
3235
3236 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3237 if (VM_IS_EMT(pVM))
3238 return remR3DisasEnableStepping(pVM, fEnable);
3239
3240 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3241 AssertRC(rc);
3242 if (VBOX_SUCCESS(rc))
3243 rc = pReq->iStatus;
3244 VMR3ReqFree(pReq);
3245 return rc;
3246}
3247
3248
3249#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3250/**
3251 * External Debugger Command: .remstep [on|off|1|0]
3252 */
3253static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3254{
3255 bool fEnable;
3256 int rc;
3257
3258 /* print status */
3259 if (cArgs == 0)
3260 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3261 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3262
3263 /* convert the argument and change the mode. */
3264 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3265 if (VBOX_FAILURE(rc))
3266 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3267 rc = REMR3DisasEnableStepping(pVM, fEnable);
3268 if (VBOX_FAILURE(rc))
3269 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3270 return rc;
3271}
3272#endif
3273
3274
3275/**
3276 * Disassembles n instructions and prints them to the log.
3277 *
3278 * @returns Success indicator.
3279 * @param env Pointer to the recompiler CPU structure.
3280 * @param f32BitCode Indicates that whether or not the code should
3281 * be disassembled as 16 or 32 bit. If -1 the CS
3282 * selector will be inspected.
3283 * @param nrInstructions Nr of instructions to disassemble
3284 * @param pszPrefix
3285 * @remark not currently used for anything but ad-hoc debugging.
3286 */
3287bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3288{
3289 int i;
3290
3291 /*
3292 * Determin 16/32 bit mode.
3293 */
3294 if (f32BitCode == -1)
3295 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3296
3297 /*
3298 * Convert cs:eip to host context address.
3299 * We don't care to much about cross page correctness presently.
3300 */
3301 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3302 void *pvPC;
3303 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3304 {
3305 Assert(PGMGetGuestMode(env->pVM) < PGMMODE_AMD64);
3306
3307 /* convert eip to physical address. */
3308 int rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3309 GCPtrPC,
3310 env->cr[3],
3311 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3312 &pvPC);
3313 if (VBOX_FAILURE(rc))
3314 {
3315 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3316 return false;
3317 pvPC = (char *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3318 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3319 }
3320 }
3321 else
3322 {
3323 /* physical address */
3324 int rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16, &pvPC);
3325 if (VBOX_FAILURE(rc))
3326 return false;
3327 }
3328
3329 /*
3330 * Disassemble.
3331 */
3332 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
3333 DISCPUSTATE Cpu;
3334 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3335 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3336 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3337 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3338 //Cpu.dwUserData[2] = GCPtrPC;
3339
3340 for (i=0;i<nrInstructions;i++)
3341 {
3342 char szOutput[256];
3343 uint32_t cbOp;
3344 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3345 return false;
3346 if (pszPrefix)
3347 Log(("%s: %s", pszPrefix, szOutput));
3348 else
3349 Log(("%s", szOutput));
3350
3351 pvPC += cbOp;
3352 }
3353 return true;
3354}
3355
3356
3357/** @todo need to test the new code, using the old code in the mean while. */
3358#define USE_OLD_DUMP_AND_DISASSEMBLY
3359
3360/**
3361 * Disassembles one instruction and prints it to the log.
3362 *
3363 * @returns Success indicator.
3364 * @param env Pointer to the recompiler CPU structure.
3365 * @param f32BitCode Indicates that whether or not the code should
3366 * be disassembled as 16 or 32 bit. If -1 the CS
3367 * selector will be inspected.
3368 * @param pszPrefix
3369 */
3370bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3371{
3372#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3373 PVM pVM = env->pVM;
3374
3375 /*
3376 * Determin 16/32 bit mode.
3377 */
3378 if (f32BitCode == -1)
3379 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3380
3381 /*
3382 * Log registers
3383 */
3384 if (LogIs2Enabled())
3385 {
3386 remR3StateUpdate(pVM);
3387 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3388 }
3389
3390 /*
3391 * Convert cs:eip to host context address.
3392 * We don't care to much about cross page correctness presently.
3393 */
3394 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3395 void *pvPC;
3396 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3397 {
3398 /* convert eip to physical address. */
3399 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
3400 GCPtrPC,
3401 env->cr[3],
3402 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3403 &pvPC);
3404 if (VBOX_FAILURE(rc))
3405 {
3406 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3407 return false;
3408 pvPC = (char *)PATMR3QueryPatchMemHC(pVM, NULL)
3409 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3410 }
3411 }
3412 else
3413 {
3414
3415 /* physical address */
3416 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, &pvPC);
3417 if (VBOX_FAILURE(rc))
3418 return false;
3419 }
3420
3421 /*
3422 * Disassemble.
3423 */
3424 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
3425 DISCPUSTATE Cpu;
3426 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3427 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3428 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3429 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3430 //Cpu.dwUserData[2] = GCPtrPC;
3431 char szOutput[256];
3432 uint32_t cbOp;
3433 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3434 return false;
3435
3436 if (!f32BitCode)
3437 {
3438 if (pszPrefix)
3439 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3440 else
3441 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3442 }
3443 else
3444 {
3445 if (pszPrefix)
3446 Log(("%s: %s", pszPrefix, szOutput));
3447 else
3448 Log(("%s", szOutput));
3449 }
3450 return true;
3451
3452#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3453 PVM pVM = env->pVM;
3454 const bool fLog = LogIsEnabled();
3455 const bool fLog2 = LogIs2Enabled();
3456 int rc = VINF_SUCCESS;
3457
3458 /*
3459 * Don't bother if there ain't any log output to do.
3460 */
3461 if (!fLog && !fLog2)
3462 return true;
3463
3464 /*
3465 * Update the state so DBGF reads the correct register values.
3466 */
3467 remR3StateUpdate(pVM);
3468
3469 /*
3470 * Log registers if requested.
3471 */
3472 if (!fLog2)
3473 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3474
3475 /*
3476 * Disassemble to log.
3477 */
3478 if (fLog)
3479 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3480
3481 return VBOX_SUCCESS(rc);
3482#endif
3483}
3484
3485
3486/**
3487 * Disassemble recompiled code.
3488 *
3489 * @param phFileIgnored Ignored, logfile usually.
3490 * @param pvCode Pointer to the code block.
3491 * @param cb Size of the code block.
3492 */
3493void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3494{
3495 if (LogIs2Enabled())
3496 {
3497 unsigned off = 0;
3498 char szOutput[256];
3499 DISCPUSTATE Cpu;
3500
3501 memset(&Cpu, 0, sizeof(Cpu));
3502#ifdef RT_ARCH_X86
3503 Cpu.mode = CPUMODE_32BIT;
3504#else
3505 Cpu.mode = CPUMODE_64BIT;
3506#endif
3507
3508 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3509 while (off < cb)
3510 {
3511 uint32_t cbInstr;
3512 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3513 RTLogPrintf("%s", szOutput);
3514 else
3515 {
3516 RTLogPrintf("disas error\n");
3517 cbInstr = 1;
3518#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3519 break;
3520#endif
3521 }
3522 off += cbInstr;
3523 }
3524 }
3525 NOREF(phFileIgnored);
3526}
3527
3528
3529/**
3530 * Disassemble guest code.
3531 *
3532 * @param phFileIgnored Ignored, logfile usually.
3533 * @param uCode The guest address of the code to disassemble. (flat?)
3534 * @param cb Number of bytes to disassemble.
3535 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3536 */
3537void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3538{
3539 if (LogIs2Enabled())
3540 {
3541 PVM pVM = cpu_single_env->pVM;
3542
3543 /*
3544 * Update the state so DBGF reads the correct register values (flags).
3545 */
3546 remR3StateUpdate(pVM);
3547
3548 /*
3549 * Do the disassembling.
3550 */
3551 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
3552 RTSEL cs = cpu_single_env->segs[R_CS].selector;
3553 RTGCUINTPTR eip = uCode - cpu_single_env->segs[R_CS].base;
3554 for (;;)
3555 {
3556 char szBuf[256];
3557 uint32_t cbInstr;
3558 int rc = DBGFR3DisasInstrEx(pVM,
3559 cs,
3560 eip,
3561 0,
3562 szBuf, sizeof(szBuf),
3563 &cbInstr);
3564 if (VBOX_SUCCESS(rc))
3565 RTLogPrintf("%VGp %s\n", uCode, szBuf);
3566 else
3567 {
3568 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
3569 cbInstr = 1;
3570 }
3571
3572 /* next */
3573 if (cb <= cbInstr)
3574 break;
3575 cb -= cbInstr;
3576 uCode += cbInstr;
3577 eip += cbInstr;
3578 }
3579 }
3580 NOREF(phFileIgnored);
3581}
3582
3583
3584/**
3585 * Looks up a guest symbol.
3586 *
3587 * @returns Pointer to symbol name. This is a static buffer.
3588 * @param orig_addr The address in question.
3589 */
3590const char *lookup_symbol(target_ulong orig_addr)
3591{
3592 RTGCINTPTR off = 0;
3593 DBGFSYMBOL Sym;
3594 PVM pVM = cpu_single_env->pVM;
3595 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3596 if (VBOX_SUCCESS(rc))
3597 {
3598 static char szSym[sizeof(Sym.szName) + 48];
3599 if (!off)
3600 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3601 else if (off > 0)
3602 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3603 else
3604 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3605 return szSym;
3606 }
3607 return "<N/A>";
3608}
3609
3610
3611#undef LOG_GROUP
3612#define LOG_GROUP LOG_GROUP_REM
3613
3614
3615/* -+- FF notifications -+- */
3616
3617
3618/**
3619 * Notification about a pending interrupt.
3620 *
3621 * @param pVM VM Handle.
3622 * @param u8Interrupt Interrupt
3623 * @thread The emulation thread.
3624 */
3625REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3626{
3627 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3628 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3629}
3630
3631/**
3632 * Notification about a pending interrupt.
3633 *
3634 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3635 * @param pVM VM Handle.
3636 * @thread The emulation thread.
3637 */
3638REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3639{
3640 return pVM->rem.s.u32PendingInterrupt;
3641}
3642
3643/**
3644 * Notification about the interrupt FF being set.
3645 *
3646 * @param pVM VM Handle.
3647 * @thread The emulation thread.
3648 */
3649REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3650{
3651 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3652 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3653 if (pVM->rem.s.fInREM)
3654 {
3655 if (VM_IS_EMT(pVM))
3656 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3657 else
3658 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_HARD);
3659 }
3660}
3661
3662
3663/**
3664 * Notification about the interrupt FF being set.
3665 *
3666 * @param pVM VM Handle.
3667 * @thread Any.
3668 */
3669REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3670{
3671 LogFlow(("REMR3NotifyInterruptClear:\n"));
3672 if (pVM->rem.s.fInREM)
3673 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3674}
3675
3676
3677/**
3678 * Notification about pending timer(s).
3679 *
3680 * @param pVM VM Handle.
3681 * @thread Any.
3682 */
3683REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3684{
3685#ifndef DEBUG_bird
3686 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3687#endif
3688 if (pVM->rem.s.fInREM)
3689 {
3690 if (VM_IS_EMT(pVM))
3691 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3692 else
3693 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_TIMER);
3694 }
3695}
3696
3697
3698/**
3699 * Notification about pending DMA transfers.
3700 *
3701 * @param pVM VM Handle.
3702 * @thread Any.
3703 */
3704REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3705{
3706 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3707 if (pVM->rem.s.fInREM)
3708 {
3709 if (VM_IS_EMT(pVM))
3710 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3711 else
3712 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_DMA);
3713 }
3714}
3715
3716
3717/**
3718 * Notification about pending timer(s).
3719 *
3720 * @param pVM VM Handle.
3721 * @thread Any.
3722 */
3723REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3724{
3725 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3726 if (pVM->rem.s.fInREM)
3727 {
3728 if (VM_IS_EMT(pVM))
3729 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3730 else
3731 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3732 }
3733}
3734
3735
3736/**
3737 * Notification about pending FF set by an external thread.
3738 *
3739 * @param pVM VM handle.
3740 * @thread Any.
3741 */
3742REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3743{
3744 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3745 if (pVM->rem.s.fInREM)
3746 {
3747 if (VM_IS_EMT(pVM))
3748 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3749 else
3750 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3751 }
3752}
3753
3754
3755#ifdef VBOX_WITH_STATISTICS
3756void remR3ProfileStart(int statcode)
3757{
3758 STAMPROFILEADV *pStat;
3759 switch(statcode)
3760 {
3761 case STATS_EMULATE_SINGLE_INSTR:
3762 pStat = &gStatExecuteSingleInstr;
3763 break;
3764 case STATS_QEMU_COMPILATION:
3765 pStat = &gStatCompilationQEmu;
3766 break;
3767 case STATS_QEMU_RUN_EMULATED_CODE:
3768 pStat = &gStatRunCodeQEmu;
3769 break;
3770 case STATS_QEMU_TOTAL:
3771 pStat = &gStatTotalTimeQEmu;
3772 break;
3773 case STATS_QEMU_RUN_TIMERS:
3774 pStat = &gStatTimers;
3775 break;
3776 case STATS_TLB_LOOKUP:
3777 pStat= &gStatTBLookup;
3778 break;
3779 case STATS_IRQ_HANDLING:
3780 pStat= &gStatIRQ;
3781 break;
3782 case STATS_RAW_CHECK:
3783 pStat = &gStatRawCheck;
3784 break;
3785
3786 default:
3787 AssertMsgFailed(("unknown stat %d\n", statcode));
3788 return;
3789 }
3790 STAM_PROFILE_ADV_START(pStat, a);
3791}
3792
3793
3794void remR3ProfileStop(int statcode)
3795{
3796 STAMPROFILEADV *pStat;
3797 switch(statcode)
3798 {
3799 case STATS_EMULATE_SINGLE_INSTR:
3800 pStat = &gStatExecuteSingleInstr;
3801 break;
3802 case STATS_QEMU_COMPILATION:
3803 pStat = &gStatCompilationQEmu;
3804 break;
3805 case STATS_QEMU_RUN_EMULATED_CODE:
3806 pStat = &gStatRunCodeQEmu;
3807 break;
3808 case STATS_QEMU_TOTAL:
3809 pStat = &gStatTotalTimeQEmu;
3810 break;
3811 case STATS_QEMU_RUN_TIMERS:
3812 pStat = &gStatTimers;
3813 break;
3814 case STATS_TLB_LOOKUP:
3815 pStat= &gStatTBLookup;
3816 break;
3817 case STATS_IRQ_HANDLING:
3818 pStat= &gStatIRQ;
3819 break;
3820 case STATS_RAW_CHECK:
3821 pStat = &gStatRawCheck;
3822 break;
3823 default:
3824 AssertMsgFailed(("unknown stat %d\n", statcode));
3825 return;
3826 }
3827 STAM_PROFILE_ADV_STOP(pStat, a);
3828}
3829#endif
3830
3831/**
3832 * Raise an RC, force rem exit.
3833 *
3834 * @param pVM VM handle.
3835 * @param rc The rc.
3836 */
3837void remR3RaiseRC(PVM pVM, int rc)
3838{
3839 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
3840 Assert(pVM->rem.s.fInREM);
3841 VM_ASSERT_EMT(pVM);
3842 pVM->rem.s.rc = rc;
3843 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
3844}
3845
3846
3847/* -+- timers -+- */
3848
3849uint64_t cpu_get_tsc(CPUX86State *env)
3850{
3851 STAM_COUNTER_INC(&gStatCpuGetTSC);
3852 return TMCpuTickGet(env->pVM);
3853}
3854
3855
3856/* -+- interrupts -+- */
3857
3858void cpu_set_ferr(CPUX86State *env)
3859{
3860 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
3861 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
3862}
3863
3864int cpu_get_pic_interrupt(CPUState *env)
3865{
3866 uint8_t u8Interrupt;
3867 int rc;
3868
3869 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
3870 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
3871 * with the (a)pic.
3872 */
3873 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
3874 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
3875 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
3876 * remove this kludge. */
3877 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
3878 {
3879 rc = VINF_SUCCESS;
3880 Assert(env->pVM->rem.s.u32PendingInterrupt >= 0 && env->pVM->rem.s.u32PendingInterrupt <= 255);
3881 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
3882 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
3883 }
3884 else
3885 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
3886
3887 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
3888 if (VBOX_SUCCESS(rc))
3889 {
3890 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
3891 env->interrupt_request |= CPU_INTERRUPT_HARD;
3892 return u8Interrupt;
3893 }
3894 return -1;
3895}
3896
3897
3898/* -+- local apic -+- */
3899
3900void cpu_set_apic_base(CPUX86State *env, uint64_t val)
3901{
3902 int rc = PDMApicSetBase(env->pVM, val);
3903 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
3904}
3905
3906uint64_t cpu_get_apic_base(CPUX86State *env)
3907{
3908 uint64_t u64;
3909 int rc = PDMApicGetBase(env->pVM, &u64);
3910 if (VBOX_SUCCESS(rc))
3911 {
3912 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
3913 return u64;
3914 }
3915 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
3916 return 0;
3917}
3918
3919void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
3920{
3921 int rc = PDMApicSetTPR(env->pVM, val);
3922 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
3923}
3924
3925uint8_t cpu_get_apic_tpr(CPUX86State *env)
3926{
3927 uint8_t u8;
3928 int rc = PDMApicGetTPR(env->pVM, &u8);
3929 if (VBOX_SUCCESS(rc))
3930 {
3931 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
3932 return u8;
3933 }
3934 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
3935 return 0;
3936}
3937
3938
3939/* -+- I/O Ports -+- */
3940
3941#undef LOG_GROUP
3942#define LOG_GROUP LOG_GROUP_REM_IOPORT
3943
3944void cpu_outb(CPUState *env, int addr, int val)
3945{
3946 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
3947 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
3948
3949 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
3950 if (RT_LIKELY(rc == VINF_SUCCESS))
3951 return;
3952 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
3953 {
3954 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
3955 remR3RaiseRC(env->pVM, rc);
3956 return;
3957 }
3958 remAbort(rc, __FUNCTION__);
3959}
3960
3961void cpu_outw(CPUState *env, int addr, int val)
3962{
3963 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
3964 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
3965 if (RT_LIKELY(rc == VINF_SUCCESS))
3966 return;
3967 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
3968 {
3969 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
3970 remR3RaiseRC(env->pVM, rc);
3971 return;
3972 }
3973 remAbort(rc, __FUNCTION__);
3974}
3975
3976void cpu_outl(CPUState *env, int addr, int val)
3977{
3978 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
3979 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
3980 if (RT_LIKELY(rc == VINF_SUCCESS))
3981 return;
3982 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
3983 {
3984 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
3985 remR3RaiseRC(env->pVM, rc);
3986 return;
3987 }
3988 remAbort(rc, __FUNCTION__);
3989}
3990
3991int cpu_inb(CPUState *env, int addr)
3992{
3993 uint32_t u32 = 0;
3994 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
3995 if (RT_LIKELY(rc == VINF_SUCCESS))
3996 {
3997 if (/*addr != 0x61 && */addr != 0x71)
3998 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
3999 return (int)u32;
4000 }
4001 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4002 {
4003 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4004 remR3RaiseRC(env->pVM, rc);
4005 return (int)u32;
4006 }
4007 remAbort(rc, __FUNCTION__);
4008 return 0xff;
4009}
4010
4011int cpu_inw(CPUState *env, int addr)
4012{
4013 uint32_t u32 = 0;
4014 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4015 if (RT_LIKELY(rc == VINF_SUCCESS))
4016 {
4017 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4018 return (int)u32;
4019 }
4020 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4021 {
4022 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4023 remR3RaiseRC(env->pVM, rc);
4024 return (int)u32;
4025 }
4026 remAbort(rc, __FUNCTION__);
4027 return 0xffff;
4028}
4029
4030int cpu_inl(CPUState *env, int addr)
4031{
4032 uint32_t u32 = 0;
4033 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4034 if (RT_LIKELY(rc == VINF_SUCCESS))
4035 {
4036//if (addr==0x01f0 && u32 == 0x6b6d)
4037// loglevel = ~0;
4038 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4039 return (int)u32;
4040 }
4041 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4042 {
4043 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4044 remR3RaiseRC(env->pVM, rc);
4045 return (int)u32;
4046 }
4047 remAbort(rc, __FUNCTION__);
4048 return 0xffffffff;
4049}
4050
4051#undef LOG_GROUP
4052#define LOG_GROUP LOG_GROUP_REM
4053
4054
4055/* -+- helpers and misc other interfaces -+- */
4056
4057/**
4058 * Perform the CPUID instruction.
4059 *
4060 * ASMCpuId cannot be invoked from some source files where this is used because of global
4061 * register allocations.
4062 *
4063 * @param env Pointer to the recompiler CPU structure.
4064 * @param uOperator CPUID operation (eax).
4065 * @param pvEAX Where to store eax.
4066 * @param pvEBX Where to store ebx.
4067 * @param pvECX Where to store ecx.
4068 * @param pvEDX Where to store edx.
4069 */
4070void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4071{
4072 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4073}
4074
4075
4076#if 0 /* not used */
4077/**
4078 * Interface for qemu hardware to report back fatal errors.
4079 */
4080void hw_error(const char *pszFormat, ...)
4081{
4082 /*
4083 * Bitch about it.
4084 */
4085 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4086 * this in my Odin32 tree at home! */
4087 va_list args;
4088 va_start(args, pszFormat);
4089 RTLogPrintf("fatal error in virtual hardware:");
4090 RTLogPrintfV(pszFormat, args);
4091 va_end(args);
4092 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4093
4094 /*
4095 * If we're in REM context we'll sync back the state before 'jumping' to
4096 * the EMs failure handling.
4097 */
4098 PVM pVM = cpu_single_env->pVM;
4099 if (pVM->rem.s.fInREM)
4100 REMR3StateBack(pVM);
4101 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4102 AssertMsgFailed(("EMR3FatalError returned!\n"));
4103}
4104#endif
4105
4106/**
4107 * Interface for the qemu cpu to report unhandled situation
4108 * raising a fatal VM error.
4109 */
4110void cpu_abort(CPUState *env, const char *pszFormat, ...)
4111{
4112 /*
4113 * Bitch about it.
4114 */
4115 RTLogFlags(NULL, "nodisabled nobuffered");
4116 va_list args;
4117 va_start(args, pszFormat);
4118 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4119 va_end(args);
4120 va_start(args, pszFormat);
4121 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4122 va_end(args);
4123
4124 /*
4125 * If we're in REM context we'll sync back the state before 'jumping' to
4126 * the EMs failure handling.
4127 */
4128 PVM pVM = cpu_single_env->pVM;
4129 if (pVM->rem.s.fInREM)
4130 REMR3StateBack(pVM);
4131 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4132 AssertMsgFailed(("EMR3FatalError returned!\n"));
4133}
4134
4135
4136/**
4137 * Aborts the VM.
4138 *
4139 * @param rc VBox error code.
4140 * @param pszTip Hint about why/when this happend.
4141 */
4142static void remAbort(int rc, const char *pszTip)
4143{
4144 /*
4145 * Bitch about it.
4146 */
4147 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4148 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4149
4150 /*
4151 * Jump back to where we entered the recompiler.
4152 */
4153 PVM pVM = cpu_single_env->pVM;
4154 if (pVM->rem.s.fInREM)
4155 REMR3StateBack(pVM);
4156 EMR3FatalError(pVM, rc);
4157 AssertMsgFailed(("EMR3FatalError returned!\n"));
4158}
4159
4160
4161/**
4162 * Dumps a linux system call.
4163 * @param pVM VM handle.
4164 */
4165void remR3DumpLnxSyscall(PVM pVM)
4166{
4167 static const char *apsz[] =
4168 {
4169 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4170 "sys_exit",
4171 "sys_fork",
4172 "sys_read",
4173 "sys_write",
4174 "sys_open", /* 5 */
4175 "sys_close",
4176 "sys_waitpid",
4177 "sys_creat",
4178 "sys_link",
4179 "sys_unlink", /* 10 */
4180 "sys_execve",
4181 "sys_chdir",
4182 "sys_time",
4183 "sys_mknod",
4184 "sys_chmod", /* 15 */
4185 "sys_lchown16",
4186 "sys_ni_syscall", /* old break syscall holder */
4187 "sys_stat",
4188 "sys_lseek",
4189 "sys_getpid", /* 20 */
4190 "sys_mount",
4191 "sys_oldumount",
4192 "sys_setuid16",
4193 "sys_getuid16",
4194 "sys_stime", /* 25 */
4195 "sys_ptrace",
4196 "sys_alarm",
4197 "sys_fstat",
4198 "sys_pause",
4199 "sys_utime", /* 30 */
4200 "sys_ni_syscall", /* old stty syscall holder */
4201 "sys_ni_syscall", /* old gtty syscall holder */
4202 "sys_access",
4203 "sys_nice",
4204 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4205 "sys_sync",
4206 "sys_kill",
4207 "sys_rename",
4208 "sys_mkdir",
4209 "sys_rmdir", /* 40 */
4210 "sys_dup",
4211 "sys_pipe",
4212 "sys_times",
4213 "sys_ni_syscall", /* old prof syscall holder */
4214 "sys_brk", /* 45 */
4215 "sys_setgid16",
4216 "sys_getgid16",
4217 "sys_signal",
4218 "sys_geteuid16",
4219 "sys_getegid16", /* 50 */
4220 "sys_acct",
4221 "sys_umount", /* recycled never used phys() */
4222 "sys_ni_syscall", /* old lock syscall holder */
4223 "sys_ioctl",
4224 "sys_fcntl", /* 55 */
4225 "sys_ni_syscall", /* old mpx syscall holder */
4226 "sys_setpgid",
4227 "sys_ni_syscall", /* old ulimit syscall holder */
4228 "sys_olduname",
4229 "sys_umask", /* 60 */
4230 "sys_chroot",
4231 "sys_ustat",
4232 "sys_dup2",
4233 "sys_getppid",
4234 "sys_getpgrp", /* 65 */
4235 "sys_setsid",
4236 "sys_sigaction",
4237 "sys_sgetmask",
4238 "sys_ssetmask",
4239 "sys_setreuid16", /* 70 */
4240 "sys_setregid16",
4241 "sys_sigsuspend",
4242 "sys_sigpending",
4243 "sys_sethostname",
4244 "sys_setrlimit", /* 75 */
4245 "sys_old_getrlimit",
4246 "sys_getrusage",
4247 "sys_gettimeofday",
4248 "sys_settimeofday",
4249 "sys_getgroups16", /* 80 */
4250 "sys_setgroups16",
4251 "old_select",
4252 "sys_symlink",
4253 "sys_lstat",
4254 "sys_readlink", /* 85 */
4255 "sys_uselib",
4256 "sys_swapon",
4257 "sys_reboot",
4258 "old_readdir",
4259 "old_mmap", /* 90 */
4260 "sys_munmap",
4261 "sys_truncate",
4262 "sys_ftruncate",
4263 "sys_fchmod",
4264 "sys_fchown16", /* 95 */
4265 "sys_getpriority",
4266 "sys_setpriority",
4267 "sys_ni_syscall", /* old profil syscall holder */
4268 "sys_statfs",
4269 "sys_fstatfs", /* 100 */
4270 "sys_ioperm",
4271 "sys_socketcall",
4272 "sys_syslog",
4273 "sys_setitimer",
4274 "sys_getitimer", /* 105 */
4275 "sys_newstat",
4276 "sys_newlstat",
4277 "sys_newfstat",
4278 "sys_uname",
4279 "sys_iopl", /* 110 */
4280 "sys_vhangup",
4281 "sys_ni_syscall", /* old "idle" system call */
4282 "sys_vm86old",
4283 "sys_wait4",
4284 "sys_swapoff", /* 115 */
4285 "sys_sysinfo",
4286 "sys_ipc",
4287 "sys_fsync",
4288 "sys_sigreturn",
4289 "sys_clone", /* 120 */
4290 "sys_setdomainname",
4291 "sys_newuname",
4292 "sys_modify_ldt",
4293 "sys_adjtimex",
4294 "sys_mprotect", /* 125 */
4295 "sys_sigprocmask",
4296 "sys_ni_syscall", /* old "create_module" */
4297 "sys_init_module",
4298 "sys_delete_module",
4299 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4300 "sys_quotactl",
4301 "sys_getpgid",
4302 "sys_fchdir",
4303 "sys_bdflush",
4304 "sys_sysfs", /* 135 */
4305 "sys_personality",
4306 "sys_ni_syscall", /* reserved for afs_syscall */
4307 "sys_setfsuid16",
4308 "sys_setfsgid16",
4309 "sys_llseek", /* 140 */
4310 "sys_getdents",
4311 "sys_select",
4312 "sys_flock",
4313 "sys_msync",
4314 "sys_readv", /* 145 */
4315 "sys_writev",
4316 "sys_getsid",
4317 "sys_fdatasync",
4318 "sys_sysctl",
4319 "sys_mlock", /* 150 */
4320 "sys_munlock",
4321 "sys_mlockall",
4322 "sys_munlockall",
4323 "sys_sched_setparam",
4324 "sys_sched_getparam", /* 155 */
4325 "sys_sched_setscheduler",
4326 "sys_sched_getscheduler",
4327 "sys_sched_yield",
4328 "sys_sched_get_priority_max",
4329 "sys_sched_get_priority_min", /* 160 */
4330 "sys_sched_rr_get_interval",
4331 "sys_nanosleep",
4332 "sys_mremap",
4333 "sys_setresuid16",
4334 "sys_getresuid16", /* 165 */
4335 "sys_vm86",
4336 "sys_ni_syscall", /* Old sys_query_module */
4337 "sys_poll",
4338 "sys_nfsservctl",
4339 "sys_setresgid16", /* 170 */
4340 "sys_getresgid16",
4341 "sys_prctl",
4342 "sys_rt_sigreturn",
4343 "sys_rt_sigaction",
4344 "sys_rt_sigprocmask", /* 175 */
4345 "sys_rt_sigpending",
4346 "sys_rt_sigtimedwait",
4347 "sys_rt_sigqueueinfo",
4348 "sys_rt_sigsuspend",
4349 "sys_pread64", /* 180 */
4350 "sys_pwrite64",
4351 "sys_chown16",
4352 "sys_getcwd",
4353 "sys_capget",
4354 "sys_capset", /* 185 */
4355 "sys_sigaltstack",
4356 "sys_sendfile",
4357 "sys_ni_syscall", /* reserved for streams1 */
4358 "sys_ni_syscall", /* reserved for streams2 */
4359 "sys_vfork", /* 190 */
4360 "sys_getrlimit",
4361 "sys_mmap2",
4362 "sys_truncate64",
4363 "sys_ftruncate64",
4364 "sys_stat64", /* 195 */
4365 "sys_lstat64",
4366 "sys_fstat64",
4367 "sys_lchown",
4368 "sys_getuid",
4369 "sys_getgid", /* 200 */
4370 "sys_geteuid",
4371 "sys_getegid",
4372 "sys_setreuid",
4373 "sys_setregid",
4374 "sys_getgroups", /* 205 */
4375 "sys_setgroups",
4376 "sys_fchown",
4377 "sys_setresuid",
4378 "sys_getresuid",
4379 "sys_setresgid", /* 210 */
4380 "sys_getresgid",
4381 "sys_chown",
4382 "sys_setuid",
4383 "sys_setgid",
4384 "sys_setfsuid", /* 215 */
4385 "sys_setfsgid",
4386 "sys_pivot_root",
4387 "sys_mincore",
4388 "sys_madvise",
4389 "sys_getdents64", /* 220 */
4390 "sys_fcntl64",
4391 "sys_ni_syscall", /* reserved for TUX */
4392 "sys_ni_syscall",
4393 "sys_gettid",
4394 "sys_readahead", /* 225 */
4395 "sys_setxattr",
4396 "sys_lsetxattr",
4397 "sys_fsetxattr",
4398 "sys_getxattr",
4399 "sys_lgetxattr", /* 230 */
4400 "sys_fgetxattr",
4401 "sys_listxattr",
4402 "sys_llistxattr",
4403 "sys_flistxattr",
4404 "sys_removexattr", /* 235 */
4405 "sys_lremovexattr",
4406 "sys_fremovexattr",
4407 "sys_tkill",
4408 "sys_sendfile64",
4409 "sys_futex", /* 240 */
4410 "sys_sched_setaffinity",
4411 "sys_sched_getaffinity",
4412 "sys_set_thread_area",
4413 "sys_get_thread_area",
4414 "sys_io_setup", /* 245 */
4415 "sys_io_destroy",
4416 "sys_io_getevents",
4417 "sys_io_submit",
4418 "sys_io_cancel",
4419 "sys_fadvise64", /* 250 */
4420 "sys_ni_syscall",
4421 "sys_exit_group",
4422 "sys_lookup_dcookie",
4423 "sys_epoll_create",
4424 "sys_epoll_ctl", /* 255 */
4425 "sys_epoll_wait",
4426 "sys_remap_file_pages",
4427 "sys_set_tid_address",
4428 "sys_timer_create",
4429 "sys_timer_settime", /* 260 */
4430 "sys_timer_gettime",
4431 "sys_timer_getoverrun",
4432 "sys_timer_delete",
4433 "sys_clock_settime",
4434 "sys_clock_gettime", /* 265 */
4435 "sys_clock_getres",
4436 "sys_clock_nanosleep",
4437 "sys_statfs64",
4438 "sys_fstatfs64",
4439 "sys_tgkill", /* 270 */
4440 "sys_utimes",
4441 "sys_fadvise64_64",
4442 "sys_ni_syscall" /* sys_vserver */
4443 };
4444
4445 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4446 switch (uEAX)
4447 {
4448 default:
4449 if (uEAX < ELEMENTS(apsz))
4450 Log(("REM: linux syscall %3d: %s (eip=%VGv ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4451 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4452 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4453 else
4454 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4455 break;
4456
4457 }
4458}
4459
4460
4461/**
4462 * Dumps an OpenBSD system call.
4463 * @param pVM VM handle.
4464 */
4465void remR3DumpOBsdSyscall(PVM pVM)
4466{
4467 static const char *apsz[] =
4468 {
4469 "SYS_syscall", //0
4470 "SYS_exit", //1
4471 "SYS_fork", //2
4472 "SYS_read", //3
4473 "SYS_write", //4
4474 "SYS_open", //5
4475 "SYS_close", //6
4476 "SYS_wait4", //7
4477 "SYS_8",
4478 "SYS_link", //9
4479 "SYS_unlink", //10
4480 "SYS_11",
4481 "SYS_chdir", //12
4482 "SYS_fchdir", //13
4483 "SYS_mknod", //14
4484 "SYS_chmod", //15
4485 "SYS_chown", //16
4486 "SYS_break", //17
4487 "SYS_18",
4488 "SYS_19",
4489 "SYS_getpid", //20
4490 "SYS_mount", //21
4491 "SYS_unmount", //22
4492 "SYS_setuid", //23
4493 "SYS_getuid", //24
4494 "SYS_geteuid", //25
4495 "SYS_ptrace", //26
4496 "SYS_recvmsg", //27
4497 "SYS_sendmsg", //28
4498 "SYS_recvfrom", //29
4499 "SYS_accept", //30
4500 "SYS_getpeername", //31
4501 "SYS_getsockname", //32
4502 "SYS_access", //33
4503 "SYS_chflags", //34
4504 "SYS_fchflags", //35
4505 "SYS_sync", //36
4506 "SYS_kill", //37
4507 "SYS_38",
4508 "SYS_getppid", //39
4509 "SYS_40",
4510 "SYS_dup", //41
4511 "SYS_opipe", //42
4512 "SYS_getegid", //43
4513 "SYS_profil", //44
4514 "SYS_ktrace", //45
4515 "SYS_sigaction", //46
4516 "SYS_getgid", //47
4517 "SYS_sigprocmask", //48
4518 "SYS_getlogin", //49
4519 "SYS_setlogin", //50
4520 "SYS_acct", //51
4521 "SYS_sigpending", //52
4522 "SYS_osigaltstack", //53
4523 "SYS_ioctl", //54
4524 "SYS_reboot", //55
4525 "SYS_revoke", //56
4526 "SYS_symlink", //57
4527 "SYS_readlink", //58
4528 "SYS_execve", //59
4529 "SYS_umask", //60
4530 "SYS_chroot", //61
4531 "SYS_62",
4532 "SYS_63",
4533 "SYS_64",
4534 "SYS_65",
4535 "SYS_vfork", //66
4536 "SYS_67",
4537 "SYS_68",
4538 "SYS_sbrk", //69
4539 "SYS_sstk", //70
4540 "SYS_61",
4541 "SYS_vadvise", //72
4542 "SYS_munmap", //73
4543 "SYS_mprotect", //74
4544 "SYS_madvise", //75
4545 "SYS_76",
4546 "SYS_77",
4547 "SYS_mincore", //78
4548 "SYS_getgroups", //79
4549 "SYS_setgroups", //80
4550 "SYS_getpgrp", //81
4551 "SYS_setpgid", //82
4552 "SYS_setitimer", //83
4553 "SYS_84",
4554 "SYS_85",
4555 "SYS_getitimer", //86
4556 "SYS_87",
4557 "SYS_88",
4558 "SYS_89",
4559 "SYS_dup2", //90
4560 "SYS_91",
4561 "SYS_fcntl", //92
4562 "SYS_select", //93
4563 "SYS_94",
4564 "SYS_fsync", //95
4565 "SYS_setpriority", //96
4566 "SYS_socket", //97
4567 "SYS_connect", //98
4568 "SYS_99",
4569 "SYS_getpriority", //100
4570 "SYS_101",
4571 "SYS_102",
4572 "SYS_sigreturn", //103
4573 "SYS_bind", //104
4574 "SYS_setsockopt", //105
4575 "SYS_listen", //106
4576 "SYS_107",
4577 "SYS_108",
4578 "SYS_109",
4579 "SYS_110",
4580 "SYS_sigsuspend", //111
4581 "SYS_112",
4582 "SYS_113",
4583 "SYS_114",
4584 "SYS_115",
4585 "SYS_gettimeofday", //116
4586 "SYS_getrusage", //117
4587 "SYS_getsockopt", //118
4588 "SYS_119",
4589 "SYS_readv", //120
4590 "SYS_writev", //121
4591 "SYS_settimeofday", //122
4592 "SYS_fchown", //123
4593 "SYS_fchmod", //124
4594 "SYS_125",
4595 "SYS_setreuid", //126
4596 "SYS_setregid", //127
4597 "SYS_rename", //128
4598 "SYS_129",
4599 "SYS_130",
4600 "SYS_flock", //131
4601 "SYS_mkfifo", //132
4602 "SYS_sendto", //133
4603 "SYS_shutdown", //134
4604 "SYS_socketpair", //135
4605 "SYS_mkdir", //136
4606 "SYS_rmdir", //137
4607 "SYS_utimes", //138
4608 "SYS_139",
4609 "SYS_adjtime", //140
4610 "SYS_141",
4611 "SYS_142",
4612 "SYS_143",
4613 "SYS_144",
4614 "SYS_145",
4615 "SYS_146",
4616 "SYS_setsid", //147
4617 "SYS_quotactl", //148
4618 "SYS_149",
4619 "SYS_150",
4620 "SYS_151",
4621 "SYS_152",
4622 "SYS_153",
4623 "SYS_154",
4624 "SYS_nfssvc", //155
4625 "SYS_156",
4626 "SYS_157",
4627 "SYS_158",
4628 "SYS_159",
4629 "SYS_160",
4630 "SYS_getfh", //161
4631 "SYS_162",
4632 "SYS_163",
4633 "SYS_164",
4634 "SYS_sysarch", //165
4635 "SYS_166",
4636 "SYS_167",
4637 "SYS_168",
4638 "SYS_169",
4639 "SYS_170",
4640 "SYS_171",
4641 "SYS_172",
4642 "SYS_pread", //173
4643 "SYS_pwrite", //174
4644 "SYS_175",
4645 "SYS_176",
4646 "SYS_177",
4647 "SYS_178",
4648 "SYS_179",
4649 "SYS_180",
4650 "SYS_setgid", //181
4651 "SYS_setegid", //182
4652 "SYS_seteuid", //183
4653 "SYS_lfs_bmapv", //184
4654 "SYS_lfs_markv", //185
4655 "SYS_lfs_segclean", //186
4656 "SYS_lfs_segwait", //187
4657 "SYS_188",
4658 "SYS_189",
4659 "SYS_190",
4660 "SYS_pathconf", //191
4661 "SYS_fpathconf", //192
4662 "SYS_swapctl", //193
4663 "SYS_getrlimit", //194
4664 "SYS_setrlimit", //195
4665 "SYS_getdirentries", //196
4666 "SYS_mmap", //197
4667 "SYS___syscall", //198
4668 "SYS_lseek", //199
4669 "SYS_truncate", //200
4670 "SYS_ftruncate", //201
4671 "SYS___sysctl", //202
4672 "SYS_mlock", //203
4673 "SYS_munlock", //204
4674 "SYS_205",
4675 "SYS_futimes", //206
4676 "SYS_getpgid", //207
4677 "SYS_xfspioctl", //208
4678 "SYS_209",
4679 "SYS_210",
4680 "SYS_211",
4681 "SYS_212",
4682 "SYS_213",
4683 "SYS_214",
4684 "SYS_215",
4685 "SYS_216",
4686 "SYS_217",
4687 "SYS_218",
4688 "SYS_219",
4689 "SYS_220",
4690 "SYS_semget", //221
4691 "SYS_222",
4692 "SYS_223",
4693 "SYS_224",
4694 "SYS_msgget", //225
4695 "SYS_msgsnd", //226
4696 "SYS_msgrcv", //227
4697 "SYS_shmat", //228
4698 "SYS_229",
4699 "SYS_shmdt", //230
4700 "SYS_231",
4701 "SYS_clock_gettime", //232
4702 "SYS_clock_settime", //233
4703 "SYS_clock_getres", //234
4704 "SYS_235",
4705 "SYS_236",
4706 "SYS_237",
4707 "SYS_238",
4708 "SYS_239",
4709 "SYS_nanosleep", //240
4710 "SYS_241",
4711 "SYS_242",
4712 "SYS_243",
4713 "SYS_244",
4714 "SYS_245",
4715 "SYS_246",
4716 "SYS_247",
4717 "SYS_248",
4718 "SYS_249",
4719 "SYS_minherit", //250
4720 "SYS_rfork", //251
4721 "SYS_poll", //252
4722 "SYS_issetugid", //253
4723 "SYS_lchown", //254
4724 "SYS_getsid", //255
4725 "SYS_msync", //256
4726 "SYS_257",
4727 "SYS_258",
4728 "SYS_259",
4729 "SYS_getfsstat", //260
4730 "SYS_statfs", //261
4731 "SYS_fstatfs", //262
4732 "SYS_pipe", //263
4733 "SYS_fhopen", //264
4734 "SYS_265",
4735 "SYS_fhstatfs", //266
4736 "SYS_preadv", //267
4737 "SYS_pwritev", //268
4738 "SYS_kqueue", //269
4739 "SYS_kevent", //270
4740 "SYS_mlockall", //271
4741 "SYS_munlockall", //272
4742 "SYS_getpeereid", //273
4743 "SYS_274",
4744 "SYS_275",
4745 "SYS_276",
4746 "SYS_277",
4747 "SYS_278",
4748 "SYS_279",
4749 "SYS_280",
4750 "SYS_getresuid", //281
4751 "SYS_setresuid", //282
4752 "SYS_getresgid", //283
4753 "SYS_setresgid", //284
4754 "SYS_285",
4755 "SYS_mquery", //286
4756 "SYS_closefrom", //287
4757 "SYS_sigaltstack", //288
4758 "SYS_shmget", //289
4759 "SYS_semop", //290
4760 "SYS_stat", //291
4761 "SYS_fstat", //292
4762 "SYS_lstat", //293
4763 "SYS_fhstat", //294
4764 "SYS___semctl", //295
4765 "SYS_shmctl", //296
4766 "SYS_msgctl", //297
4767 "SYS_MAXSYSCALL", //298
4768 //299
4769 //300
4770 };
4771 uint32_t uEAX;
4772 if (!LogIsEnabled())
4773 return;
4774 uEAX = CPUMGetGuestEAX(pVM);
4775 switch (uEAX)
4776 {
4777 default:
4778 if (uEAX < ELEMENTS(apsz))
4779 {
4780 uint32_t au32Args[8] = {0};
4781 PGMPhysReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
4782 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
4783 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
4784 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
4785 }
4786 else
4787 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
4788 break;
4789 }
4790}
4791
4792
4793#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
4794/**
4795 * The Dll main entry point (stub).
4796 */
4797bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
4798{
4799 return true;
4800}
4801
4802void *memcpy(void *dst, const void *src, size_t size)
4803{
4804 uint8_t*pbDst = dst, *pbSrc = src;
4805 while (size-- > 0)
4806 *pbDst++ = *pbSrc++;
4807 return dst;
4808}
4809
4810#endif
4811
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette