VirtualBox

source: vbox/trunk/src/recompiler/VBoxRecompiler.c@ 9817

Last change on this file since 9817 was 9817, checked in by vboxsync, 16 years ago

fs & gs base cleanup

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 154.2 KB
Line 
1/* $Id: VBoxRecompiler.c 9817 2008-06-19 11:47:38Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "exec-all.h"
29
30#include <VBox/rem.h>
31#include <VBox/vmapi.h>
32#include <VBox/tm.h>
33#include <VBox/ssm.h>
34#include <VBox/em.h>
35#include <VBox/trpm.h>
36#include <VBox/iom.h>
37#include <VBox/mm.h>
38#include <VBox/pgm.h>
39#include <VBox/pdm.h>
40#include <VBox/dbgf.h>
41#include <VBox/dbg.h>
42#include <VBox/hwaccm.h>
43#include <VBox/patm.h>
44#include <VBox/csam.h>
45#include "REMInternal.h"
46#include <VBox/vm.h>
47#include <VBox/param.h>
48#include <VBox/err.h>
49
50#include <VBox/log.h>
51#include <iprt/semaphore.h>
52#include <iprt/asm.h>
53#include <iprt/assert.h>
54#include <iprt/thread.h>
55#include <iprt/string.h>
56
57/* Don't wanna include everything. */
58extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
59extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
60extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
61extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
62extern void tlb_flush(CPUState *env, int flush_global);
63extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
64extern void sync_ldtr(CPUX86State *env1, int selector);
65extern int sync_tr(CPUX86State *env1, int selector);
66
67#ifdef VBOX_STRICT
68unsigned long get_phys_page_offset(target_ulong addr);
69#endif
70
71
72/*******************************************************************************
73* Defined Constants And Macros *
74*******************************************************************************/
75
76/** Copy 80-bit fpu register at pSrc to pDst.
77 * This is probably faster than *calling* memcpy.
78 */
79#define REM_COPY_FPU_REG(pDst, pSrc) \
80 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
81
82
83/*******************************************************************************
84* Internal Functions *
85*******************************************************************************/
86static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
87static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
88static void remR3StateUpdate(PVM pVM);
89
90static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
91static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
92static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
93static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
94static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
95static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
96
97static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
98static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
99static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
100static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
101static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
102static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
103
104
105/*******************************************************************************
106* Global Variables *
107*******************************************************************************/
108
109/** @todo Move stats to REM::s some rainy day we have nothing do to. */
110#ifdef VBOX_WITH_STATISTICS
111static STAMPROFILEADV gStatExecuteSingleInstr;
112static STAMPROFILEADV gStatCompilationQEmu;
113static STAMPROFILEADV gStatRunCodeQEmu;
114static STAMPROFILEADV gStatTotalTimeQEmu;
115static STAMPROFILEADV gStatTimers;
116static STAMPROFILEADV gStatTBLookup;
117static STAMPROFILEADV gStatIRQ;
118static STAMPROFILEADV gStatRawCheck;
119static STAMPROFILEADV gStatMemRead;
120static STAMPROFILEADV gStatMemWrite;
121static STAMPROFILE gStatGCPhys2HCVirt;
122static STAMPROFILE gStatHCVirt2GCPhys;
123static STAMCOUNTER gStatCpuGetTSC;
124static STAMCOUNTER gStatRefuseTFInhibit;
125static STAMCOUNTER gStatRefuseVM86;
126static STAMCOUNTER gStatRefusePaging;
127static STAMCOUNTER gStatRefusePAE;
128static STAMCOUNTER gStatRefuseIOPLNot0;
129static STAMCOUNTER gStatRefuseIF0;
130static STAMCOUNTER gStatRefuseCode16;
131static STAMCOUNTER gStatRefuseWP0;
132static STAMCOUNTER gStatRefuseRing1or2;
133static STAMCOUNTER gStatRefuseCanExecute;
134static STAMCOUNTER gStatREMGDTChange;
135static STAMCOUNTER gStatREMIDTChange;
136static STAMCOUNTER gStatREMLDTRChange;
137static STAMCOUNTER gStatREMTRChange;
138static STAMCOUNTER gStatSelOutOfSync[6];
139static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
140#endif
141
142/*
143 * Global stuff.
144 */
145
146/** MMIO read callbacks. */
147CPUReadMemoryFunc *g_apfnMMIORead[3] =
148{
149 remR3MMIOReadU8,
150 remR3MMIOReadU16,
151 remR3MMIOReadU32
152};
153
154/** MMIO write callbacks. */
155CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
156{
157 remR3MMIOWriteU8,
158 remR3MMIOWriteU16,
159 remR3MMIOWriteU32
160};
161
162/** Handler read callbacks. */
163CPUReadMemoryFunc *g_apfnHandlerRead[3] =
164{
165 remR3HandlerReadU8,
166 remR3HandlerReadU16,
167 remR3HandlerReadU32
168};
169
170/** Handler write callbacks. */
171CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
172{
173 remR3HandlerWriteU8,
174 remR3HandlerWriteU16,
175 remR3HandlerWriteU32
176};
177
178
179#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDWS) && defined(RT_ARCH_AMD64))
180/*
181 * Debugger commands.
182 */
183static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
184
185/** '.remstep' arguments. */
186static const DBGCVARDESC g_aArgRemStep[] =
187{
188 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
189 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
190};
191
192/** Command descriptors. */
193static const DBGCCMD g_aCmds[] =
194{
195 {
196 .pszCmd ="remstep",
197 .cArgsMin = 0,
198 .cArgsMax = 1,
199 .paArgDescs = &g_aArgRemStep[0],
200 .cArgDescs = ELEMENTS(g_aArgRemStep),
201 .pResultDesc = NULL,
202 .fFlags = 0,
203 .pfnHandler = remR3CmdDisasEnableStepping,
204 .pszSyntax = "[on/off]",
205 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
206 "If no arguments show the current state."
207 }
208};
209#endif
210
211
212/* Instantiate the structure signatures. */
213#define REM_STRUCT_OP 0
214#include "Sun/structs.h"
215
216
217
218/*******************************************************************************
219* Internal Functions *
220*******************************************************************************/
221static void remAbort(int rc, const char *pszTip);
222extern int testmath(void);
223
224/* Put them here to avoid unused variable warning. */
225AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
226#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
227//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
228/* Why did this have to be identical?? */
229AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
230#else
231AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
232#endif
233
234
235/**
236 * Initializes the REM.
237 *
238 * @returns VBox status code.
239 * @param pVM The VM to operate on.
240 */
241REMR3DECL(int) REMR3Init(PVM pVM)
242{
243 uint32_t u32Dummy;
244 unsigned i;
245
246 /*
247 * Assert sanity.
248 */
249 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
250 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
251 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
252#if defined(DEBUG) && !defined(RT_OS_SOLARIS) /// @todo fix the solaris math stuff.
253 Assert(!testmath());
254#endif
255 ASSERT_STRUCT_TABLE(Misc);
256 ASSERT_STRUCT_TABLE(TLB);
257 ASSERT_STRUCT_TABLE(SegmentCache);
258 ASSERT_STRUCT_TABLE(XMMReg);
259 ASSERT_STRUCT_TABLE(MMXReg);
260 ASSERT_STRUCT_TABLE(float_status);
261 ASSERT_STRUCT_TABLE(float32u);
262 ASSERT_STRUCT_TABLE(float64u);
263 ASSERT_STRUCT_TABLE(floatx80u);
264 ASSERT_STRUCT_TABLE(CPUState);
265
266 /*
267 * Init some internal data members.
268 */
269 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
270 pVM->rem.s.Env.pVM = pVM;
271#ifdef CPU_RAW_MODE_INIT
272 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
273#endif
274
275 /* ctx. */
276 int rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
277 if (VBOX_FAILURE(rc))
278 {
279 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
280 return rc;
281 }
282 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
283
284 /* ignore all notifications */
285 pVM->rem.s.fIgnoreAll = true;
286
287 /*
288 * Init the recompiler.
289 */
290 if (!cpu_x86_init(&pVM->rem.s.Env))
291 {
292 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
293 return VERR_GENERAL_FAILURE;
294 }
295 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
296 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
297
298 /* allocate code buffer for single instruction emulation. */
299 pVM->rem.s.Env.cbCodeBuffer = 4096;
300 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
301 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
302
303 /* finally, set the cpu_single_env global. */
304 cpu_single_env = &pVM->rem.s.Env;
305
306 /* Nothing is pending by default */
307 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
308
309 /*
310 * Register ram types.
311 */
312 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
313 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
314 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
315 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
316 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
317
318 /* stop ignoring. */
319 pVM->rem.s.fIgnoreAll = false;
320
321 /*
322 * Register the saved state data unit.
323 */
324 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
325 NULL, remR3Save, NULL,
326 NULL, remR3Load, NULL);
327 if (VBOX_FAILURE(rc))
328 return rc;
329
330#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
331 /*
332 * Debugger commands.
333 */
334 static bool fRegisteredCmds = false;
335 if (!fRegisteredCmds)
336 {
337 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
338 if (VBOX_SUCCESS(rc))
339 fRegisteredCmds = true;
340 }
341#endif
342
343#ifdef VBOX_WITH_STATISTICS
344 /*
345 * Statistics.
346 */
347 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
348 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
349 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
350 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
351 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
352 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
353 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
354 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
355 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
356 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
357 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
358 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
359
360 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
361
362 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
363 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
364 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
365 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
366 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
367 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
368 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
369 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
370 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
371 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
372
373 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
374 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
375 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
376 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
377
378 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
379 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
380 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
381 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
382 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
383 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
384
385 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
386 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
387 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
388 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
389 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
390 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
391
392
393#endif
394
395#ifdef DEBUG_ALL_LOGGING
396 loglevel = ~0;
397#endif
398
399 return rc;
400}
401
402
403/**
404 * Terminates the REM.
405 *
406 * Termination means cleaning up and freeing all resources,
407 * the VM it self is at this point powered off or suspended.
408 *
409 * @returns VBox status code.
410 * @param pVM The VM to operate on.
411 */
412REMR3DECL(int) REMR3Term(PVM pVM)
413{
414 return VINF_SUCCESS;
415}
416
417
418/**
419 * The VM is being reset.
420 *
421 * For the REM component this means to call the cpu_reset() and
422 * reinitialize some state variables.
423 *
424 * @param pVM VM handle.
425 */
426REMR3DECL(void) REMR3Reset(PVM pVM)
427{
428 /*
429 * Reset the REM cpu.
430 */
431 pVM->rem.s.fIgnoreAll = true;
432 cpu_reset(&pVM->rem.s.Env);
433 pVM->rem.s.cInvalidatedPages = 0;
434 pVM->rem.s.fIgnoreAll = false;
435
436 /* Clear raw ring 0 init state */
437 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
438}
439
440
441/**
442 * Execute state save operation.
443 *
444 * @returns VBox status code.
445 * @param pVM VM Handle.
446 * @param pSSM SSM operation handle.
447 */
448static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
449{
450 LogFlow(("remR3Save:\n"));
451
452 /*
453 * Save the required CPU Env bits.
454 * (Not much because we're never in REM when doing the save.)
455 */
456 PREM pRem = &pVM->rem.s;
457 Assert(!pRem->fInREM);
458 SSMR3PutU32(pSSM, pRem->Env.hflags);
459 SSMR3PutMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
460 SSMR3PutU32(pSSM, ~0); /* separator */
461
462 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
463 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
464
465 /*
466 * Save the REM stuff.
467 */
468 SSMR3PutUInt(pSSM, pRem->cInvalidatedPages);
469 unsigned i;
470 for (i = 0; i < pRem->cInvalidatedPages; i++)
471 SSMR3PutGCPtr(pSSM, pRem->aGCPtrInvalidatedPages[i]);
472
473 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
474
475 return SSMR3PutU32(pSSM, ~0); /* terminator */
476}
477
478
479/**
480 * Execute state load operation.
481 *
482 * @returns VBox status code.
483 * @param pVM VM Handle.
484 * @param pSSM SSM operation handle.
485 * @param u32Version Data layout version.
486 */
487static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
488{
489 uint32_t u32Dummy;
490 uint32_t fRawRing0 = false;
491 LogFlow(("remR3Load:\n"));
492
493 /*
494 * Validate version.
495 */
496 if (u32Version != REM_SAVED_STATE_VERSION)
497 {
498 Log(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
499 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
500 }
501
502 /*
503 * Do a reset to be on the safe side...
504 */
505 REMR3Reset(pVM);
506
507 /*
508 * Ignore all ignorable notifications.
509 * (Not doing this will cause serious trouble.)
510 */
511 pVM->rem.s.fIgnoreAll = true;
512
513 /*
514 * Load the required CPU Env bits.
515 * (Not much because we're never in REM when doing the save.)
516 */
517 PREM pRem = &pVM->rem.s;
518 Assert(!pRem->fInREM);
519 SSMR3GetU32(pSSM, &pRem->Env.hflags);
520 SSMR3GetMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
521 uint32_t u32Sep;
522 int rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
523 if (VBOX_FAILURE(rc))
524 return rc;
525 if (u32Sep != ~0)
526 {
527 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
528 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
529 }
530
531 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
532 SSMR3GetUInt(pSSM, &fRawRing0);
533 if (fRawRing0)
534 pRem->Env.state |= CPU_RAW_RING0;
535
536 /*
537 * Load the REM stuff.
538 */
539 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
540 if (VBOX_FAILURE(rc))
541 return rc;
542 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
543 {
544 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
545 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
546 }
547 unsigned i;
548 for (i = 0; i < pRem->cInvalidatedPages; i++)
549 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
550
551 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
552 if (VBOX_FAILURE(rc))
553 return rc;
554
555 /* check the terminator. */
556 rc = SSMR3GetU32(pSSM, &u32Sep);
557 if (VBOX_FAILURE(rc))
558 return rc;
559 if (u32Sep != ~0)
560 {
561 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
562 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
563 }
564
565 /*
566 * Get the CPUID features.
567 */
568 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
569 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
570
571 /*
572 * Sync the Load Flush the TLB
573 */
574 tlb_flush(&pRem->Env, 1);
575
576#if 0 /** @todo r=bird: this doesn't make sense. WHY? */
577 /*
578 * Clear all lazy flags (only FPU sync for now).
579 */
580 CPUMGetAndClearFPUUsedREM(pVM);
581#endif
582
583 /*
584 * Stop ignoring ignornable notifications.
585 */
586 pVM->rem.s.fIgnoreAll = false;
587
588 return VINF_SUCCESS;
589}
590
591
592
593#undef LOG_GROUP
594#define LOG_GROUP LOG_GROUP_REM_RUN
595
596/**
597 * Single steps an instruction in recompiled mode.
598 *
599 * Before calling this function the REM state needs to be in sync with
600 * the VM. Call REMR3State() to perform the sync. It's only necessary
601 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
602 * and after calling REMR3StateBack().
603 *
604 * @returns VBox status code.
605 *
606 * @param pVM VM Handle.
607 */
608REMR3DECL(int) REMR3Step(PVM pVM)
609{
610 /*
611 * Lock the REM - we don't wanna have anyone interrupting us
612 * while stepping - and enabled single stepping. We also ignore
613 * pending interrupts and suchlike.
614 */
615 int interrupt_request = pVM->rem.s.Env.interrupt_request;
616 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
617 pVM->rem.s.Env.interrupt_request = 0;
618 cpu_single_step(&pVM->rem.s.Env, 1);
619
620 /*
621 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
622 */
623 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
624 bool fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
625
626 /*
627 * Execute and handle the return code.
628 * We execute without enabling the cpu tick, so on success we'll
629 * just flip it on and off to make sure it moves
630 */
631 int rc = cpu_exec(&pVM->rem.s.Env);
632 if (rc == EXCP_DEBUG)
633 {
634 TMCpuTickResume(pVM);
635 TMCpuTickPause(pVM);
636 TMVirtualResume(pVM);
637 TMVirtualPause(pVM);
638 rc = VINF_EM_DBG_STEPPED;
639 }
640 else
641 {
642 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
643 switch (rc)
644 {
645 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
646 case EXCP_HLT:
647 case EXCP_HALTED: rc = VINF_EM_HALT; break;
648 case EXCP_RC:
649 rc = pVM->rem.s.rc;
650 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
651 break;
652 default:
653 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
654 rc = VERR_INTERNAL_ERROR;
655 break;
656 }
657 }
658
659 /*
660 * Restore the stuff we changed to prevent interruption.
661 * Unlock the REM.
662 */
663 if (fBp)
664 {
665 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
666 Assert(rc2 == 0); NOREF(rc2);
667 }
668 cpu_single_step(&pVM->rem.s.Env, 0);
669 pVM->rem.s.Env.interrupt_request = interrupt_request;
670
671 return rc;
672}
673
674
675/**
676 * Set a breakpoint using the REM facilities.
677 *
678 * @returns VBox status code.
679 * @param pVM The VM handle.
680 * @param Address The breakpoint address.
681 * @thread The emulation thread.
682 */
683REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
684{
685 VM_ASSERT_EMT(pVM);
686 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
687 {
688 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
689 return VINF_SUCCESS;
690 }
691 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
692 return VERR_REM_NO_MORE_BP_SLOTS;
693}
694
695
696/**
697 * Clears a breakpoint set by REMR3BreakpointSet().
698 *
699 * @returns VBox status code.
700 * @param pVM The VM handle.
701 * @param Address The breakpoint address.
702 * @thread The emulation thread.
703 */
704REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
705{
706 VM_ASSERT_EMT(pVM);
707 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
708 {
709 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
710 return VINF_SUCCESS;
711 }
712 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
713 return VERR_REM_BP_NOT_FOUND;
714}
715
716
717/**
718 * Emulate an instruction.
719 *
720 * This function executes one instruction without letting anyone
721 * interrupt it. This is intended for being called while being in
722 * raw mode and thus will take care of all the state syncing between
723 * REM and the rest.
724 *
725 * @returns VBox status code.
726 * @param pVM VM handle.
727 */
728REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
729{
730 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
731
732 /*
733 * Sync the state and enable single instruction / single stepping.
734 */
735 int rc = REMR3State(pVM);
736 if (VBOX_SUCCESS(rc))
737 {
738 int interrupt_request = pVM->rem.s.Env.interrupt_request;
739 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
740 Assert(!pVM->rem.s.Env.singlestep_enabled);
741#if 1
742
743 /*
744 * Now we set the execute single instruction flag and enter the cpu_exec loop.
745 */
746 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
747 rc = cpu_exec(&pVM->rem.s.Env);
748 switch (rc)
749 {
750 /*
751 * Executed without anything out of the way happening.
752 */
753 case EXCP_SINGLE_INSTR:
754 rc = VINF_EM_RESCHEDULE;
755 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
756 break;
757
758 /*
759 * If we take a trap or start servicing a pending interrupt, we might end up here.
760 * (Timer thread or some other thread wishing EMT's attention.)
761 */
762 case EXCP_INTERRUPT:
763 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
764 rc = VINF_EM_RESCHEDULE;
765 break;
766
767 /*
768 * Single step, we assume!
769 * If there was a breakpoint there we're fucked now.
770 */
771 case EXCP_DEBUG:
772 {
773 /* breakpoint or single step? */
774 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
775 int iBP;
776 rc = VINF_EM_DBG_STEPPED;
777 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
778 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
779 {
780 rc = VINF_EM_DBG_BREAKPOINT;
781 break;
782 }
783 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
784 break;
785 }
786
787 /*
788 * hlt instruction.
789 */
790 case EXCP_HLT:
791 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
792 rc = VINF_EM_HALT;
793 break;
794
795 /*
796 * The VM has halted.
797 */
798 case EXCP_HALTED:
799 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
800 rc = VINF_EM_HALT;
801 break;
802
803 /*
804 * Switch to RAW-mode.
805 */
806 case EXCP_EXECUTE_RAW:
807 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
808 rc = VINF_EM_RESCHEDULE_RAW;
809 break;
810
811 /*
812 * Switch to hardware accelerated RAW-mode.
813 */
814 case EXCP_EXECUTE_HWACC:
815 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
816 rc = VINF_EM_RESCHEDULE_HWACC;
817 break;
818
819 /*
820 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
821 */
822 case EXCP_RC:
823 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
824 rc = pVM->rem.s.rc;
825 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
826 break;
827
828 /*
829 * Figure out the rest when they arrive....
830 */
831 default:
832 AssertMsgFailed(("rc=%d\n", rc));
833 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
834 rc = VINF_EM_RESCHEDULE;
835 break;
836 }
837
838 /*
839 * Switch back the state.
840 */
841#else
842 pVM->rem.s.Env.interrupt_request = 0;
843 cpu_single_step(&pVM->rem.s.Env, 1);
844
845 /*
846 * Execute and handle the return code.
847 * We execute without enabling the cpu tick, so on success we'll
848 * just flip it on and off to make sure it moves.
849 *
850 * (We do not use emulate_single_instr() because that doesn't enter the
851 * right way in will cause serious trouble if a longjmp was attempted.)
852 */
853# ifdef DEBUG_bird
854 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
855# endif
856 int cTimesMax = 16384;
857 uint32_t eip = pVM->rem.s.Env.eip;
858 do
859 {
860 rc = cpu_exec(&pVM->rem.s.Env);
861
862 } while ( eip == pVM->rem.s.Env.eip
863 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
864 && --cTimesMax > 0);
865 switch (rc)
866 {
867 /*
868 * Single step, we assume!
869 * If there was a breakpoint there we're fucked now.
870 */
871 case EXCP_DEBUG:
872 {
873 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
874 rc = VINF_EM_RESCHEDULE;
875 break;
876 }
877
878 /*
879 * We cannot be interrupted!
880 */
881 case EXCP_INTERRUPT:
882 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
883 rc = VERR_INTERNAL_ERROR;
884 break;
885
886 /*
887 * hlt instruction.
888 */
889 case EXCP_HLT:
890 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
891 rc = VINF_EM_HALT;
892 break;
893
894 /*
895 * The VM has halted.
896 */
897 case EXCP_HALTED:
898 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
899 rc = VINF_EM_HALT;
900 break;
901
902 /*
903 * Switch to RAW-mode.
904 */
905 case EXCP_EXECUTE_RAW:
906 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
907 rc = VINF_EM_RESCHEDULE_RAW;
908 break;
909
910 /*
911 * Switch to hardware accelerated RAW-mode.
912 */
913 case EXCP_EXECUTE_HWACC:
914 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
915 rc = VINF_EM_RESCHEDULE_HWACC;
916 break;
917
918 /*
919 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
920 */
921 case EXCP_RC:
922 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
923 rc = pVM->rem.s.rc;
924 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
925 break;
926
927 /*
928 * Figure out the rest when they arrive....
929 */
930 default:
931 AssertMsgFailed(("rc=%d\n", rc));
932 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
933 rc = VINF_SUCCESS;
934 break;
935 }
936
937 /*
938 * Switch back the state.
939 */
940 cpu_single_step(&pVM->rem.s.Env, 0);
941#endif
942 pVM->rem.s.Env.interrupt_request = interrupt_request;
943 int rc2 = REMR3StateBack(pVM);
944 AssertRC(rc2);
945 }
946
947 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%08x)\n",
948 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
949 return rc;
950}
951
952
953/**
954 * Runs code in recompiled mode.
955 *
956 * Before calling this function the REM state needs to be in sync with
957 * the VM. Call REMR3State() to perform the sync. It's only necessary
958 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
959 * and after calling REMR3StateBack().
960 *
961 * @returns VBox status code.
962 *
963 * @param pVM VM Handle.
964 */
965REMR3DECL(int) REMR3Run(PVM pVM)
966{
967 Log2(("REMR3Run: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
968 Assert(pVM->rem.s.fInREM);
969
970 int rc = cpu_exec(&pVM->rem.s.Env);
971 switch (rc)
972 {
973 /*
974 * This happens when the execution was interrupted
975 * by an external event, like pending timers.
976 */
977 case EXCP_INTERRUPT:
978 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
979 rc = VINF_SUCCESS;
980 break;
981
982 /*
983 * hlt instruction.
984 */
985 case EXCP_HLT:
986 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
987 rc = VINF_EM_HALT;
988 break;
989
990 /*
991 * The VM has halted.
992 */
993 case EXCP_HALTED:
994 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
995 rc = VINF_EM_HALT;
996 break;
997
998 /*
999 * Breakpoint/single step.
1000 */
1001 case EXCP_DEBUG:
1002 {
1003#if 0//def DEBUG_bird
1004 static int iBP = 0;
1005 printf("howdy, breakpoint! iBP=%d\n", iBP);
1006 switch (iBP)
1007 {
1008 case 0:
1009 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1010 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1011 //pVM->rem.s.Env.interrupt_request = 0;
1012 //pVM->rem.s.Env.exception_index = -1;
1013 //g_fInterruptDisabled = 1;
1014 rc = VINF_SUCCESS;
1015 asm("int3");
1016 break;
1017 default:
1018 asm("int3");
1019 break;
1020 }
1021 iBP++;
1022#else
1023 /* breakpoint or single step? */
1024 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1025 int iBP;
1026 rc = VINF_EM_DBG_STEPPED;
1027 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1028 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1029 {
1030 rc = VINF_EM_DBG_BREAKPOINT;
1031 break;
1032 }
1033 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1034#endif
1035 break;
1036 }
1037
1038 /*
1039 * Switch to RAW-mode.
1040 */
1041 case EXCP_EXECUTE_RAW:
1042 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1043 rc = VINF_EM_RESCHEDULE_RAW;
1044 break;
1045
1046 /*
1047 * Switch to hardware accelerated RAW-mode.
1048 */
1049 case EXCP_EXECUTE_HWACC:
1050 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1051 rc = VINF_EM_RESCHEDULE_HWACC;
1052 break;
1053
1054 /*
1055 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1056 */
1057 case EXCP_RC:
1058 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1059 rc = pVM->rem.s.rc;
1060 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1061 break;
1062
1063 /*
1064 * Figure out the rest when they arrive....
1065 */
1066 default:
1067 AssertMsgFailed(("rc=%d\n", rc));
1068 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1069 rc = VINF_SUCCESS;
1070 break;
1071 }
1072
1073 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%08x)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1074 return rc;
1075}
1076
1077
1078/**
1079 * Check if the cpu state is suitable for Raw execution.
1080 *
1081 * @returns boolean
1082 * @param env The CPU env struct.
1083 * @param eip The EIP to check this for (might differ from env->eip).
1084 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1085 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1086 *
1087 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1088 */
1089bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1090{
1091 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1092 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1093 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1094
1095 /* Update counter. */
1096 env->pVM->rem.s.cCanExecuteRaw++;
1097
1098 if (HWACCMIsEnabled(env->pVM))
1099 {
1100 env->state |= CPU_RAW_HWACC;
1101
1102 /*
1103 * Create partial context for HWACCMR3CanExecuteGuest
1104 */
1105 CPUMCTX Ctx;
1106 Ctx.cr0 = env->cr[0];
1107 Ctx.cr3 = env->cr[3];
1108 Ctx.cr4 = env->cr[4];
1109
1110 Ctx.tr = env->tr.selector;
1111 Ctx.trHid.u64Base = env->tr.base;
1112 Ctx.trHid.u32Limit = env->tr.limit;
1113 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1114
1115 Ctx.idtr.cbIdt = env->idt.limit;
1116 Ctx.idtr.pIdt = env->idt.base;
1117
1118 Ctx.eflags.u32 = env->eflags;
1119
1120 Ctx.cs = env->segs[R_CS].selector;
1121 Ctx.csHid.u64Base = env->segs[R_CS].base;
1122 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1123 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1124
1125 Ctx.ss = env->segs[R_SS].selector;
1126 Ctx.ssHid.u64Base = env->segs[R_SS].base;
1127 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1128 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1129
1130 /* Hardware accelerated raw-mode:
1131 *
1132 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1133 */
1134 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1135 {
1136 *piException = EXCP_EXECUTE_HWACC;
1137 return true;
1138 }
1139 return false;
1140 }
1141
1142 /*
1143 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1144 * or 32 bits protected mode ring 0 code
1145 *
1146 * The tests are ordered by the likelyhood of being true during normal execution.
1147 */
1148 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1149 {
1150 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1151 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1152 return false;
1153 }
1154
1155#ifndef VBOX_RAW_V86
1156 if (fFlags & VM_MASK) {
1157 STAM_COUNTER_INC(&gStatRefuseVM86);
1158 Log2(("raw mode refused: VM_MASK\n"));
1159 return false;
1160 }
1161#endif
1162
1163 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1164 {
1165#ifndef DEBUG_bird
1166 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1167#endif
1168 return false;
1169 }
1170
1171 if (env->singlestep_enabled)
1172 {
1173 //Log2(("raw mode refused: Single step\n"));
1174 return false;
1175 }
1176
1177 if (env->nb_breakpoints > 0)
1178 {
1179 //Log2(("raw mode refused: Breakpoints\n"));
1180 return false;
1181 }
1182
1183 uint32_t u32CR0 = env->cr[0];
1184 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1185 {
1186 STAM_COUNTER_INC(&gStatRefusePaging);
1187 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1188 return false;
1189 }
1190
1191 if (env->cr[4] & CR4_PAE_MASK)
1192 {
1193 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1194 {
1195 STAM_COUNTER_INC(&gStatRefusePAE);
1196 return false;
1197 }
1198 }
1199
1200 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1201 {
1202 if (!EMIsRawRing3Enabled(env->pVM))
1203 return false;
1204
1205 if (!(env->eflags & IF_MASK))
1206 {
1207 STAM_COUNTER_INC(&gStatRefuseIF0);
1208 Log2(("raw mode refused: IF (RawR3)\n"));
1209 return false;
1210 }
1211
1212 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1213 {
1214 STAM_COUNTER_INC(&gStatRefuseWP0);
1215 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1216 return false;
1217 }
1218 }
1219 else
1220 {
1221 if (!EMIsRawRing0Enabled(env->pVM))
1222 return false;
1223
1224 // Let's start with pure 32 bits ring 0 code first
1225 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1226 {
1227 STAM_COUNTER_INC(&gStatRefuseCode16);
1228 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1229 return false;
1230 }
1231
1232 // Only R0
1233 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1234 {
1235 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1236 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1237 return false;
1238 }
1239
1240 if (!(u32CR0 & CR0_WP_MASK))
1241 {
1242 STAM_COUNTER_INC(&gStatRefuseWP0);
1243 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1244 return false;
1245 }
1246
1247 if (PATMIsPatchGCAddr(env->pVM, eip))
1248 {
1249 Log2(("raw r0 mode forced: patch code\n"));
1250 *piException = EXCP_EXECUTE_RAW;
1251 return true;
1252 }
1253
1254#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1255 if (!(env->eflags & IF_MASK))
1256 {
1257 STAM_COUNTER_INC(&gStatRefuseIF0);
1258 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1259 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1260 return false;
1261 }
1262#endif
1263
1264 env->state |= CPU_RAW_RING0;
1265 }
1266
1267 /*
1268 * Don't reschedule the first time we're called, because there might be
1269 * special reasons why we're here that is not covered by the above checks.
1270 */
1271 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1272 {
1273 Log2(("raw mode refused: first scheduling\n"));
1274 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1275 return false;
1276 }
1277
1278 Assert(PGMPhysIsA20Enabled(env->pVM));
1279 *piException = EXCP_EXECUTE_RAW;
1280 return true;
1281}
1282
1283
1284/**
1285 * Fetches a code byte.
1286 *
1287 * @returns Success indicator (bool) for ease of use.
1288 * @param env The CPU environment structure.
1289 * @param GCPtrInstr Where to fetch code.
1290 * @param pu8Byte Where to store the byte on success
1291 */
1292bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1293{
1294 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1295 if (VBOX_SUCCESS(rc))
1296 return true;
1297 return false;
1298}
1299
1300
1301/**
1302 * Flush (or invalidate if you like) page table/dir entry.
1303 *
1304 * (invlpg instruction; tlb_flush_page)
1305 *
1306 * @param env Pointer to cpu environment.
1307 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1308 */
1309void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1310{
1311 PVM pVM = env->pVM;
1312
1313 /*
1314 * When we're replaying invlpg instructions or restoring a saved
1315 * state we disable this path.
1316 */
1317 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1318 return;
1319 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1320 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1321
1322 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1323
1324 /*
1325 * Update the control registers before calling PGMFlushPage.
1326 */
1327 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1328 pCtx->cr0 = env->cr[0];
1329 pCtx->cr3 = env->cr[3];
1330 pCtx->cr4 = env->cr[4];
1331
1332 /*
1333 * Let PGM do the rest.
1334 */
1335 int rc = PGMInvalidatePage(pVM, GCPtr);
1336 if (VBOX_FAILURE(rc))
1337 {
1338 AssertMsgFailed(("remR3FlushPage %VGv failed with %d!!\n", GCPtr, rc));
1339 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1340 }
1341 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1342}
1343
1344
1345/**
1346 * Called from tlb_protect_code in order to write monitor a code page.
1347 *
1348 * @param env Pointer to the CPU environment.
1349 * @param GCPtr Code page to monitor
1350 */
1351void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1352{
1353 Assert(env->pVM->rem.s.fInREM);
1354 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1355 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1356 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1357 && !(env->eflags & VM_MASK) /* no V86 mode */
1358 && !HWACCMIsEnabled(env->pVM))
1359 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1360}
1361
1362/**
1363 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1364 *
1365 * @param env Pointer to the CPU environment.
1366 * @param GCPtr Code page to monitor
1367 */
1368void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
1369{
1370 Assert(env->pVM->rem.s.fInREM);
1371 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1372 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1373 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1374 && !(env->eflags & VM_MASK) /* no V86 mode */
1375 && !HWACCMIsEnabled(env->pVM))
1376 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1377}
1378
1379
1380/**
1381 * Called when the CPU is initialized, any of the CRx registers are changed or
1382 * when the A20 line is modified.
1383 *
1384 * @param env Pointer to the CPU environment.
1385 * @param fGlobal Set if the flush is global.
1386 */
1387void remR3FlushTLB(CPUState *env, bool fGlobal)
1388{
1389 PVM pVM = env->pVM;
1390
1391 /*
1392 * When we're replaying invlpg instructions or restoring a saved
1393 * state we disable this path.
1394 */
1395 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1396 return;
1397 Assert(pVM->rem.s.fInREM);
1398
1399 /*
1400 * The caller doesn't check cr4, so we have to do that for ourselves.
1401 */
1402 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1403 fGlobal = true;
1404 Log(("remR3FlushTLB: CR0=%VGp CR3=%VGp CR4=%VGp %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1405
1406 /*
1407 * Update the control registers before calling PGMR3FlushTLB.
1408 */
1409 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1410 pCtx->cr0 = env->cr[0];
1411 pCtx->cr3 = env->cr[3];
1412 pCtx->cr4 = env->cr[4];
1413
1414 /*
1415 * Let PGM do the rest.
1416 */
1417 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1418}
1419
1420
1421/**
1422 * Called when any of the cr0, cr4 or efer registers is updated.
1423 *
1424 * @param env Pointer to the CPU environment.
1425 */
1426void remR3ChangeCpuMode(CPUState *env)
1427{
1428 int rc;
1429 PVM pVM = env->pVM;
1430
1431 /*
1432 * When we're replaying loads or restoring a saved
1433 * state this path is disabled.
1434 */
1435 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1436 return;
1437 Assert(pVM->rem.s.fInREM);
1438
1439 /*
1440 * Update the control registers before calling PGMChangeMode()
1441 * as it may need to map whatever cr3 is pointing to.
1442 */
1443 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1444 pCtx->cr0 = env->cr[0];
1445 pCtx->cr3 = env->cr[3];
1446 pCtx->cr4 = env->cr[4];
1447
1448#ifdef TARGET_X86_64
1449 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1450 if (rc != VINF_SUCCESS)
1451 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1452#else
1453 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1454 if (rc != VINF_SUCCESS)
1455 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1456#endif
1457}
1458
1459
1460/**
1461 * Called from compiled code to run dma.
1462 *
1463 * @param env Pointer to the CPU environment.
1464 */
1465void remR3DmaRun(CPUState *env)
1466{
1467 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1468 PDMR3DmaRun(env->pVM);
1469 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1470}
1471
1472
1473/**
1474 * Called from compiled code to schedule pending timers in VMM
1475 *
1476 * @param env Pointer to the CPU environment.
1477 */
1478void remR3TimersRun(CPUState *env)
1479{
1480 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1481 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1482 TMR3TimerQueuesDo(env->pVM);
1483 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1484 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1485}
1486
1487
1488/**
1489 * Record trap occurance
1490 *
1491 * @returns VBox status code
1492 * @param env Pointer to the CPU environment.
1493 * @param uTrap Trap nr
1494 * @param uErrorCode Error code
1495 * @param pvNextEIP Next EIP
1496 */
1497int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1498{
1499 PVM pVM = env->pVM;
1500#ifdef VBOX_WITH_STATISTICS
1501 static STAMCOUNTER s_aStatTrap[255];
1502 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1503#endif
1504
1505#ifdef VBOX_WITH_STATISTICS
1506 if (uTrap < 255)
1507 {
1508 if (!s_aRegisters[uTrap])
1509 {
1510 s_aRegisters[uTrap] = true;
1511 char szStatName[64];
1512 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1513 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1514 }
1515 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1516 }
1517#endif
1518 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1519 if( uTrap < 0x20
1520 && (env->cr[0] & X86_CR0_PE)
1521 && !(env->eflags & X86_EFL_VM))
1522 {
1523#ifdef DEBUG
1524 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1525#endif
1526 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1527 {
1528 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1529 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1530 return VERR_REM_TOO_MANY_TRAPS;
1531 }
1532 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1533 pVM->rem.s.cPendingExceptions = 1;
1534 pVM->rem.s.uPendingException = uTrap;
1535 pVM->rem.s.uPendingExcptEIP = env->eip;
1536 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1537 }
1538 else
1539 {
1540 pVM->rem.s.cPendingExceptions = 0;
1541 pVM->rem.s.uPendingException = uTrap;
1542 pVM->rem.s.uPendingExcptEIP = env->eip;
1543 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1544 }
1545 return VINF_SUCCESS;
1546}
1547
1548
1549/*
1550 * Clear current active trap
1551 *
1552 * @param pVM VM Handle.
1553 */
1554void remR3TrapClear(PVM pVM)
1555{
1556 pVM->rem.s.cPendingExceptions = 0;
1557 pVM->rem.s.uPendingException = 0;
1558 pVM->rem.s.uPendingExcptEIP = 0;
1559 pVM->rem.s.uPendingExcptCR2 = 0;
1560}
1561
1562
1563/*
1564 * Record previous call instruction addresses
1565 *
1566 * @param env Pointer to the CPU environment.
1567 */
1568void remR3RecordCall(CPUState *env)
1569{
1570 CSAMR3RecordCallAddress(env->pVM, env->eip);
1571}
1572
1573
1574/**
1575 * Syncs the internal REM state with the VM.
1576 *
1577 * This must be called before REMR3Run() is invoked whenever when the REM
1578 * state is not up to date. Calling it several times in a row is not
1579 * permitted.
1580 *
1581 * @returns VBox status code.
1582 *
1583 * @param pVM VM Handle.
1584 *
1585 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1586 * no do this since the majority of the callers don't want any unnecessary of events
1587 * pending that would immediatly interrupt execution.
1588 */
1589REMR3DECL(int) REMR3State(PVM pVM)
1590{
1591 Log2(("REMR3State:\n"));
1592 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1593 register const CPUMCTX *pCtx = pVM->rem.s.pCtx;
1594 register unsigned fFlags;
1595 bool fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1596
1597 Assert(!pVM->rem.s.fInREM);
1598 pVM->rem.s.fInStateSync = true;
1599
1600 /*
1601 * Copy the registers which require no special handling.
1602 */
1603#ifdef TARGET_X86_64
1604 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
1605 Assert(R_EAX == 0);
1606 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
1607 Assert(R_ECX == 1);
1608 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
1609 Assert(R_EDX == 2);
1610 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
1611 Assert(R_EBX == 3);
1612 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
1613 Assert(R_ESP == 4);
1614 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
1615 Assert(R_EBP == 5);
1616 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
1617 Assert(R_ESI == 6);
1618 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
1619 Assert(R_EDI == 7);
1620 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
1621 pVM->rem.s.Env.regs[8] = pCtx->r8;
1622 pVM->rem.s.Env.regs[9] = pCtx->r9;
1623 pVM->rem.s.Env.regs[10] = pCtx->r10;
1624 pVM->rem.s.Env.regs[11] = pCtx->r11;
1625 pVM->rem.s.Env.regs[12] = pCtx->r12;
1626 pVM->rem.s.Env.regs[13] = pCtx->r13;
1627 pVM->rem.s.Env.regs[14] = pCtx->r14;
1628 pVM->rem.s.Env.regs[15] = pCtx->r15;
1629
1630 pVM->rem.s.Env.eip = pCtx->rip;
1631
1632 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
1633#else
1634 Assert(R_EAX == 0);
1635 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1636 Assert(R_ECX == 1);
1637 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1638 Assert(R_EDX == 2);
1639 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1640 Assert(R_EBX == 3);
1641 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1642 Assert(R_ESP == 4);
1643 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1644 Assert(R_EBP == 5);
1645 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1646 Assert(R_ESI == 6);
1647 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1648 Assert(R_EDI == 7);
1649 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1650 pVM->rem.s.Env.eip = pCtx->eip;
1651
1652 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1653#endif
1654
1655 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1656
1657 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1658 pVM->rem.s.Env.dr[0] = pCtx->dr0;
1659 pVM->rem.s.Env.dr[1] = pCtx->dr1;
1660 pVM->rem.s.Env.dr[2] = pCtx->dr2;
1661 pVM->rem.s.Env.dr[3] = pCtx->dr3;
1662 pVM->rem.s.Env.dr[4] = pCtx->dr4;
1663 pVM->rem.s.Env.dr[5] = pCtx->dr5;
1664 pVM->rem.s.Env.dr[6] = pCtx->dr6;
1665 pVM->rem.s.Env.dr[7] = pCtx->dr7;
1666
1667 /*
1668 * Clear the halted hidden flag (the interrupt waking up the CPU can
1669 * have been dispatched in raw mode).
1670 */
1671 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1672
1673 /*
1674 * Replay invlpg?
1675 */
1676 if (pVM->rem.s.cInvalidatedPages)
1677 {
1678 pVM->rem.s.fIgnoreInvlPg = true;
1679 RTUINT i;
1680 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1681 {
1682 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1683 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1684 }
1685 pVM->rem.s.fIgnoreInvlPg = false;
1686 pVM->rem.s.cInvalidatedPages = 0;
1687 }
1688
1689 /* Update MSRs; before CRx registers! */
1690 pVM->rem.s.Env.efer = pCtx->msrEFER;
1691 pVM->rem.s.Env.star = pCtx->msrSTAR;
1692 pVM->rem.s.Env.pat = pCtx->msrPAT;
1693#ifdef TARGET_X86_64
1694 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1695 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1696 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1697 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1698#endif
1699
1700
1701 /*
1702 * Registers which are rarely changed and require special handling / order when changed.
1703 */
1704 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1705 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1706 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1707 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
1708 {
1709 if (fFlags & CPUM_CHANGED_FPU_REM)
1710 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1711
1712 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1713 {
1714 pVM->rem.s.fIgnoreCR3Load = true;
1715 tlb_flush(&pVM->rem.s.Env, true);
1716 pVM->rem.s.fIgnoreCR3Load = false;
1717 }
1718
1719 if (fFlags & CPUM_CHANGED_CR4)
1720 {
1721 pVM->rem.s.fIgnoreCR3Load = true;
1722 pVM->rem.s.fIgnoreCpuMode = true;
1723 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1724 pVM->rem.s.fIgnoreCpuMode = false;
1725 pVM->rem.s.fIgnoreCR3Load = false;
1726 }
1727
1728 if (fFlags & CPUM_CHANGED_CR0)
1729 {
1730 pVM->rem.s.fIgnoreCR3Load = true;
1731 pVM->rem.s.fIgnoreCpuMode = true;
1732 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1733 pVM->rem.s.fIgnoreCpuMode = false;
1734 pVM->rem.s.fIgnoreCR3Load = false;
1735 }
1736
1737 if (fFlags & CPUM_CHANGED_CR3)
1738 {
1739 pVM->rem.s.fIgnoreCR3Load = true;
1740 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1741 pVM->rem.s.fIgnoreCR3Load = false;
1742 }
1743
1744 if (fFlags & CPUM_CHANGED_GDTR)
1745 {
1746 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1747 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1748 }
1749
1750 if (fFlags & CPUM_CHANGED_IDTR)
1751 {
1752 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1753 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1754 }
1755
1756 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1757 {
1758 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1759 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1760 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1761 }
1762
1763 if (fFlags & CPUM_CHANGED_LDTR)
1764 {
1765 if (fHiddenSelRegsValid)
1766 {
1767 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1768 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u64Base;
1769 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1770 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1771 }
1772 else
1773 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1774 }
1775
1776 if (fFlags & CPUM_CHANGED_TR)
1777 {
1778 if (fHiddenSelRegsValid)
1779 {
1780 pVM->rem.s.Env.tr.selector = pCtx->tr;
1781 pVM->rem.s.Env.tr.base = pCtx->trHid.u64Base;
1782 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1783 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1784 }
1785 else
1786 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1787
1788 /** @note do_interrupt will fault if the busy flag is still set.... */
1789 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1790 }
1791
1792 if (fFlags & CPUM_CHANGED_CPUID)
1793 {
1794 uint32_t u32Dummy;
1795
1796 /*
1797 * Get the CPUID features.
1798 */
1799 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
1800 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
1801 }
1802 }
1803
1804 /*
1805 * Update selector registers.
1806 * This must be done *after* we've synced gdt, ldt and crX registers
1807 * since we're reading the GDT/LDT om sync_seg. This will happen with
1808 * saved state which takes a quick dip into rawmode for instance.
1809 */
1810 /*
1811 * Stack; Note first check this one as the CPL might have changed. The
1812 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1813 */
1814
1815 if (fHiddenSelRegsValid)
1816 {
1817 /* The hidden selector registers are valid in the CPU context. */
1818 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1819
1820 /* Set current CPL */
1821 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1822
1823 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1824 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1825 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1826 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1827 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1828 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1829 }
1830 else
1831 {
1832 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1833 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1834 {
1835 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1836
1837 cpu_x86_set_cpl(&pVM->rem.s.Env, (pCtx->eflags.Bits.u1VM) ? 3 : (pCtx->ss & 3));
1838 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1839#ifdef VBOX_WITH_STATISTICS
1840 if (pVM->rem.s.Env.segs[R_SS].newselector)
1841 {
1842 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1843 }
1844#endif
1845 }
1846 else
1847 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1848
1849 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1850 {
1851 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1852 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1853#ifdef VBOX_WITH_STATISTICS
1854 if (pVM->rem.s.Env.segs[R_ES].newselector)
1855 {
1856 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1857 }
1858#endif
1859 }
1860 else
1861 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1862
1863 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1864 {
1865 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1866 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1867#ifdef VBOX_WITH_STATISTICS
1868 if (pVM->rem.s.Env.segs[R_CS].newselector)
1869 {
1870 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1871 }
1872#endif
1873 }
1874 else
1875 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1876
1877 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1878 {
1879 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1880 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1881#ifdef VBOX_WITH_STATISTICS
1882 if (pVM->rem.s.Env.segs[R_DS].newselector)
1883 {
1884 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1885 }
1886#endif
1887 }
1888 else
1889 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1890
1891 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1892 * be the same but not the base/limit. */
1893 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1894 {
1895 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1896 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1897#ifdef VBOX_WITH_STATISTICS
1898 if (pVM->rem.s.Env.segs[R_FS].newselector)
1899 {
1900 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1901 }
1902#endif
1903 }
1904 else
1905 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1906
1907 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1908 {
1909 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1910 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1911#ifdef VBOX_WITH_STATISTICS
1912 if (pVM->rem.s.Env.segs[R_GS].newselector)
1913 {
1914 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1915 }
1916#endif
1917 }
1918 else
1919 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1920 }
1921
1922 /*
1923 * Check for traps.
1924 */
1925 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1926 TRPMEVENT enmType;
1927 uint8_t u8TrapNo;
1928 int rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
1929 if (VBOX_SUCCESS(rc))
1930 {
1931#ifdef DEBUG
1932 if (u8TrapNo == 0x80)
1933 {
1934 remR3DumpLnxSyscall(pVM);
1935 remR3DumpOBsdSyscall(pVM);
1936 }
1937#endif
1938
1939 pVM->rem.s.Env.exception_index = u8TrapNo;
1940 if (enmType != TRPM_SOFTWARE_INT)
1941 {
1942 pVM->rem.s.Env.exception_is_int = 0;
1943 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
1944 }
1945 else
1946 {
1947 /*
1948 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
1949 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
1950 * for int03 and into.
1951 */
1952 pVM->rem.s.Env.exception_is_int = 1;
1953 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 2;
1954 /* int 3 may be generated by one-byte 0xcc */
1955 if (u8TrapNo == 3)
1956 {
1957 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xcc)
1958 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1959 }
1960 /* int 4 may be generated by one-byte 0xce */
1961 else if (u8TrapNo == 4)
1962 {
1963 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xce)
1964 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1965 }
1966 }
1967
1968 /* get error code and cr2 if needed. */
1969 switch (u8TrapNo)
1970 {
1971 case 0x0e:
1972 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
1973 /* fallthru */
1974 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
1975 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
1976 break;
1977
1978 case 0x11: case 0x08:
1979 default:
1980 pVM->rem.s.Env.error_code = 0;
1981 break;
1982 }
1983
1984 /*
1985 * We can now reset the active trap since the recompiler is gonna have a go at it.
1986 */
1987 rc = TRPMResetTrap(pVM);
1988 AssertRC(rc);
1989 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
1990 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
1991 }
1992
1993 /*
1994 * Clear old interrupt request flags; Check for pending hardware interrupts.
1995 * (See @remark for why we don't check for other FFs.)
1996 */
1997 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
1998 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
1999 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
2000 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2001
2002 /*
2003 * We're now in REM mode.
2004 */
2005 pVM->rem.s.fInREM = true;
2006 pVM->rem.s.fInStateSync = false;
2007 pVM->rem.s.cCanExecuteRaw = 0;
2008 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2009 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2010 return VINF_SUCCESS;
2011}
2012
2013
2014/**
2015 * Syncs back changes in the REM state to the the VM state.
2016 *
2017 * This must be called after invoking REMR3Run().
2018 * Calling it several times in a row is not permitted.
2019 *
2020 * @returns VBox status code.
2021 *
2022 * @param pVM VM Handle.
2023 */
2024REMR3DECL(int) REMR3StateBack(PVM pVM)
2025{
2026 Log2(("REMR3StateBack:\n"));
2027 Assert(pVM->rem.s.fInREM);
2028 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2029 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2030
2031 /*
2032 * Copy back the registers.
2033 * This is done in the order they are declared in the CPUMCTX structure.
2034 */
2035
2036 /** @todo FOP */
2037 /** @todo FPUIP */
2038 /** @todo CS */
2039 /** @todo FPUDP */
2040 /** @todo DS */
2041 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2042 pCtx->fpu.MXCSR = 0;
2043 pCtx->fpu.MXCSR_MASK = 0;
2044
2045 /** @todo check if FPU/XMM was actually used in the recompiler */
2046 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2047//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2048
2049#ifdef TARGET_X86_64
2050 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2051 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2052 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2053 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2054 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2055 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2056 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2057 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2058 pCtx->r8 = pVM->rem.s.Env.regs[8];
2059 pCtx->r9 = pVM->rem.s.Env.regs[9];
2060 pCtx->r10 = pVM->rem.s.Env.regs[10];
2061 pCtx->r11 = pVM->rem.s.Env.regs[11];
2062 pCtx->r12 = pVM->rem.s.Env.regs[12];
2063 pCtx->r13 = pVM->rem.s.Env.regs[13];
2064 pCtx->r14 = pVM->rem.s.Env.regs[14];
2065 pCtx->r15 = pVM->rem.s.Env.regs[15];
2066
2067 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2068
2069#else
2070 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2071 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2072 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2073 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2074 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2075 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2076 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2077
2078 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2079#endif
2080
2081 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2082
2083#ifdef VBOX_WITH_STATISTICS
2084 if (pVM->rem.s.Env.segs[R_SS].newselector)
2085 {
2086 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2087 }
2088 if (pVM->rem.s.Env.segs[R_GS].newselector)
2089 {
2090 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2091 }
2092 if (pVM->rem.s.Env.segs[R_FS].newselector)
2093 {
2094 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2095 }
2096 if (pVM->rem.s.Env.segs[R_ES].newselector)
2097 {
2098 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2099 }
2100 if (pVM->rem.s.Env.segs[R_DS].newselector)
2101 {
2102 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2103 }
2104 if (pVM->rem.s.Env.segs[R_CS].newselector)
2105 {
2106 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2107 }
2108#endif
2109 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2110 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2111 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2112 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2113 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2114
2115#ifdef TARGET_X86_64
2116 pCtx->rip = pVM->rem.s.Env.eip;
2117 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2118#else
2119 pCtx->eip = pVM->rem.s.Env.eip;
2120 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2121#endif
2122
2123 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2124 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2125 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2126 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2127
2128 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2129 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2130 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2131 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2132 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2133 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2134 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2135 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2136
2137 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2138 if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
2139 {
2140 pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
2141 STAM_COUNTER_INC(&gStatREMGDTChange);
2142 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2143 }
2144
2145 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2146 if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
2147 {
2148 pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
2149 STAM_COUNTER_INC(&gStatREMIDTChange);
2150 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2151 }
2152
2153 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2154 {
2155 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2156 STAM_COUNTER_INC(&gStatREMLDTRChange);
2157 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2158 }
2159 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2160 {
2161 pCtx->tr = pVM->rem.s.Env.tr.selector;
2162 STAM_COUNTER_INC(&gStatREMTRChange);
2163 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2164 }
2165
2166 /** @todo These values could still be out of sync! */
2167 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2168 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2169 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2170 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2171
2172 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2173 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2174 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2175
2176 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2177 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2178 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2179
2180 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2181 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2182 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2183
2184 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2185 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2186 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2187
2188 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2189 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2190 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2191
2192 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2193 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2194 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2195
2196 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2197 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2198 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2199
2200 /* Sysenter MSR */
2201 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2202 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2203 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2204
2205 /* System MSRs. */
2206 pCtx->msrEFER = pVM->rem.s.Env.efer;
2207 pCtx->msrSTAR = pVM->rem.s.Env.star;
2208 pCtx->msrPAT = pVM->rem.s.Env.pat;
2209#ifdef TARGET_X86_64
2210 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2211 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2212 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2213 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2214#endif
2215
2216 remR3TrapClear(pVM);
2217
2218 /*
2219 * Check for traps.
2220 */
2221 if ( pVM->rem.s.Env.exception_index >= 0
2222 && pVM->rem.s.Env.exception_index < 256)
2223 {
2224 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2225 int rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2226 AssertRC(rc);
2227 switch (pVM->rem.s.Env.exception_index)
2228 {
2229 case 0x0e:
2230 TRPMSetFaultAddress(pVM, pCtx->cr2);
2231 /* fallthru */
2232 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2233 case 0x11: case 0x08: /* 0 */
2234 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2235 break;
2236 }
2237
2238 }
2239
2240 /*
2241 * We're not longer in REM mode.
2242 */
2243 pVM->rem.s.fInREM = false;
2244 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2245 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2246 return VINF_SUCCESS;
2247}
2248
2249
2250/**
2251 * This is called by the disassembler when it wants to update the cpu state
2252 * before for instance doing a register dump.
2253 */
2254static void remR3StateUpdate(PVM pVM)
2255{
2256 Assert(pVM->rem.s.fInREM);
2257 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2258
2259 /*
2260 * Copy back the registers.
2261 * This is done in the order they are declared in the CPUMCTX structure.
2262 */
2263
2264 /** @todo FOP */
2265 /** @todo FPUIP */
2266 /** @todo CS */
2267 /** @todo FPUDP */
2268 /** @todo DS */
2269 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2270 pCtx->fpu.MXCSR = 0;
2271 pCtx->fpu.MXCSR_MASK = 0;
2272
2273 /** @todo check if FPU/XMM was actually used in the recompiler */
2274 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2275//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2276
2277#ifdef TARGET_X86_64
2278 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2279 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2280 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2281 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2282 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2283 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2284 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2285 pCtx->r8 = pVM->rem.s.Env.regs[8];
2286 pCtx->r9 = pVM->rem.s.Env.regs[9];
2287 pCtx->r10 = pVM->rem.s.Env.regs[10];
2288 pCtx->r11 = pVM->rem.s.Env.regs[11];
2289 pCtx->r12 = pVM->rem.s.Env.regs[12];
2290 pCtx->r13 = pVM->rem.s.Env.regs[13];
2291 pCtx->r14 = pVM->rem.s.Env.regs[14];
2292 pCtx->r15 = pVM->rem.s.Env.regs[15];
2293
2294 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2295#else
2296 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2297 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2298 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2299 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2300 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2301 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2302 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2303
2304 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2305#endif
2306
2307 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2308
2309 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2310 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2311 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2312 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2313 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2314
2315#ifdef TARGET_X86_64
2316 pCtx->rip = pVM->rem.s.Env.eip;
2317 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2318#else
2319 pCtx->eip = pVM->rem.s.Env.eip;
2320 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2321#endif
2322
2323 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2324 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2325 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2326 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2327
2328 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2329 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2330 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2331 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2332 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2333 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2334 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2335 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2336
2337 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2338 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2339 {
2340 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2341 STAM_COUNTER_INC(&gStatREMGDTChange);
2342 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2343 }
2344
2345 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2346 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2347 {
2348 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2349 STAM_COUNTER_INC(&gStatREMIDTChange);
2350 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2351 }
2352
2353 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2354 {
2355 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2356 STAM_COUNTER_INC(&gStatREMLDTRChange);
2357 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2358 }
2359 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2360 {
2361 pCtx->tr = pVM->rem.s.Env.tr.selector;
2362 STAM_COUNTER_INC(&gStatREMTRChange);
2363 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2364 }
2365
2366 /** @todo These values could still be out of sync! */
2367 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2368 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2369 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2370 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2371
2372 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2373 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2374 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2375
2376 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2377 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2378 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2379
2380 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2381 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2382 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2383
2384 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2385 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2386 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2387
2388 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2389 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2390 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2391
2392 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2393 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2394 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2395
2396 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2397 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2398 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2399
2400 /* Sysenter MSR */
2401 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2402 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2403 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2404
2405 /* System MSRs. */
2406 pCtx->msrEFER = pVM->rem.s.Env.efer;
2407 pCtx->msrSTAR = pVM->rem.s.Env.star;
2408 pCtx->msrPAT = pVM->rem.s.Env.pat;
2409#ifdef TARGET_X86_64
2410 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2411 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2412 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2413 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2414#endif
2415
2416}
2417
2418
2419/**
2420 * Update the VMM state information if we're currently in REM.
2421 *
2422 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2423 * we're currently executing in REM and the VMM state is invalid. This method will of
2424 * course check that we're executing in REM before syncing any data over to the VMM.
2425 *
2426 * @param pVM The VM handle.
2427 */
2428REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2429{
2430 if (pVM->rem.s.fInREM)
2431 remR3StateUpdate(pVM);
2432}
2433
2434
2435#undef LOG_GROUP
2436#define LOG_GROUP LOG_GROUP_REM
2437
2438
2439/**
2440 * Notify the recompiler about Address Gate 20 state change.
2441 *
2442 * This notification is required since A20 gate changes are
2443 * initialized from a device driver and the VM might just as
2444 * well be in REM mode as in RAW mode.
2445 *
2446 * @param pVM VM handle.
2447 * @param fEnable True if the gate should be enabled.
2448 * False if the gate should be disabled.
2449 */
2450REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2451{
2452 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2453 VM_ASSERT_EMT(pVM);
2454
2455 bool fSaved = pVM->rem.s.fIgnoreAll; /* just in case. */
2456 pVM->rem.s.fIgnoreAll = fSaved || !pVM->rem.s.fInREM;
2457
2458 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2459
2460 pVM->rem.s.fIgnoreAll = fSaved;
2461}
2462
2463
2464/**
2465 * Replays the invalidated recorded pages.
2466 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2467 *
2468 * @param pVM VM handle.
2469 */
2470REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2471{
2472 VM_ASSERT_EMT(pVM);
2473
2474 /*
2475 * Sync the required registers.
2476 */
2477 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2478 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2479 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2480 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2481
2482 /*
2483 * Replay the flushes.
2484 */
2485 pVM->rem.s.fIgnoreInvlPg = true;
2486 RTUINT i;
2487 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2488 {
2489 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2490 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2491 }
2492 pVM->rem.s.fIgnoreInvlPg = false;
2493 pVM->rem.s.cInvalidatedPages = 0;
2494}
2495
2496
2497/**
2498 * Replays the invalidated recorded pages.
2499 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2500 *
2501 * @param pVM VM handle.
2502 */
2503REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2504{
2505 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2506 VM_ASSERT_EMT(pVM);
2507
2508 /*
2509 * Replay the flushes.
2510 */
2511 RTUINT i;
2512 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2513 pVM->rem.s.cHandlerNotifications = 0;
2514 for (i = 0; i < c; i++)
2515 {
2516 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2517 switch (pRec->enmKind)
2518 {
2519 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2520 REMR3NotifyHandlerPhysicalRegister(pVM,
2521 pRec->u.PhysicalRegister.enmType,
2522 pRec->u.PhysicalRegister.GCPhys,
2523 pRec->u.PhysicalRegister.cb,
2524 pRec->u.PhysicalRegister.fHasHCHandler);
2525 break;
2526
2527 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2528 REMR3NotifyHandlerPhysicalDeregister(pVM,
2529 pRec->u.PhysicalDeregister.enmType,
2530 pRec->u.PhysicalDeregister.GCPhys,
2531 pRec->u.PhysicalDeregister.cb,
2532 pRec->u.PhysicalDeregister.fHasHCHandler,
2533 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2534 break;
2535
2536 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2537 REMR3NotifyHandlerPhysicalModify(pVM,
2538 pRec->u.PhysicalModify.enmType,
2539 pRec->u.PhysicalModify.GCPhysOld,
2540 pRec->u.PhysicalModify.GCPhysNew,
2541 pRec->u.PhysicalModify.cb,
2542 pRec->u.PhysicalModify.fHasHCHandler,
2543 pRec->u.PhysicalModify.fRestoreAsRAM);
2544 break;
2545
2546 default:
2547 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2548 break;
2549 }
2550 }
2551}
2552
2553
2554/**
2555 * Notify REM about changed code page.
2556 *
2557 * @returns VBox status code.
2558 * @param pVM VM handle.
2559 * @param pvCodePage Code page address
2560 */
2561REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2562{
2563 int rc;
2564 RTGCPHYS PhysGC;
2565 uint64_t flags;
2566
2567 VM_ASSERT_EMT(pVM);
2568
2569 /*
2570 * Get the physical page address.
2571 */
2572 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2573 if (rc == VINF_SUCCESS)
2574 {
2575 /*
2576 * Sync the required registers and flush the whole page.
2577 * (Easier to do the whole page than notifying it about each physical
2578 * byte that was changed.
2579 */
2580 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2581 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2582 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2583 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2584
2585 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2586 }
2587 return VINF_SUCCESS;
2588}
2589
2590
2591/**
2592 * Notification about a successful MMR3PhysRegister() call.
2593 *
2594 * @param pVM VM handle.
2595 * @param GCPhys The physical address the RAM.
2596 * @param cb Size of the memory.
2597 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2598 */
2599REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, unsigned fFlags)
2600{
2601 Log(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d fFlags=%d\n", GCPhys, cb, fFlags));
2602 VM_ASSERT_EMT(pVM);
2603
2604 /*
2605 * Validate input - we trust the caller.
2606 */
2607 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2608 Assert(cb);
2609 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2610
2611 /*
2612 * Base ram?
2613 */
2614 if (!GCPhys)
2615 {
2616 phys_ram_size = cb;
2617 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2618#ifndef VBOX_STRICT
2619 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2620 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2621#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2622 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2623 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2624 uint32_t cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2625 int rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2626 AssertRC(rc);
2627 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2628#endif
2629 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2630 }
2631
2632 /*
2633 * Register the ram.
2634 */
2635 Assert(!pVM->rem.s.fIgnoreAll);
2636 pVM->rem.s.fIgnoreAll = true;
2637
2638#ifdef VBOX_WITH_NEW_PHYS_CODE
2639 if (fFlags & MM_RAM_FLAGS_RESERVED)
2640 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2641 else
2642 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2643#else
2644 if (!GCPhys)
2645 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2646 else
2647 {
2648 if (fFlags & MM_RAM_FLAGS_RESERVED)
2649 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2650 else
2651 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2652 }
2653#endif
2654 Assert(pVM->rem.s.fIgnoreAll);
2655 pVM->rem.s.fIgnoreAll = false;
2656}
2657
2658#ifndef VBOX_WITH_NEW_PHYS_CODE
2659
2660/**
2661 * Notification about a successful PGMR3PhysRegisterChunk() call.
2662 *
2663 * @param pVM VM handle.
2664 * @param GCPhys The physical address the RAM.
2665 * @param cb Size of the memory.
2666 * @param pvRam The HC address of the RAM.
2667 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2668 */
2669REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2670{
2671 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2672 VM_ASSERT_EMT(pVM);
2673
2674 /*
2675 * Validate input - we trust the caller.
2676 */
2677 Assert(pvRam);
2678 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2679 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2680 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2681 Assert(fFlags == 0 /* normal RAM */);
2682 Assert(!pVM->rem.s.fIgnoreAll);
2683 pVM->rem.s.fIgnoreAll = true;
2684
2685 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2686
2687 Assert(pVM->rem.s.fIgnoreAll);
2688 pVM->rem.s.fIgnoreAll = false;
2689}
2690
2691
2692/**
2693 * Grows dynamically allocated guest RAM.
2694 * Will raise a fatal error if the operation fails.
2695 *
2696 * @param physaddr The physical address.
2697 */
2698void remR3GrowDynRange(unsigned long physaddr)
2699{
2700 int rc;
2701 PVM pVM = cpu_single_env->pVM;
2702
2703 LogFlow(("remR3GrowDynRange %VGp\n", physaddr));
2704 const RTGCPHYS GCPhys = physaddr;
2705 rc = PGM3PhysGrowRange(pVM, &GCPhys);
2706 if (VBOX_SUCCESS(rc))
2707 return;
2708
2709 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2710 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2711 AssertFatalFailed();
2712}
2713
2714#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2715
2716/**
2717 * Notification about a successful MMR3PhysRomRegister() call.
2718 *
2719 * @param pVM VM handle.
2720 * @param GCPhys The physical address of the ROM.
2721 * @param cb The size of the ROM.
2722 * @param pvCopy Pointer to the ROM copy.
2723 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2724 * This function will be called when ever the protection of the
2725 * shadow ROM changes (at reset and end of POST).
2726 */
2727REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2728{
2729 Log(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p fShadow=%RTbool\n", GCPhys, cb, pvCopy, fShadow));
2730 VM_ASSERT_EMT(pVM);
2731
2732 /*
2733 * Validate input - we trust the caller.
2734 */
2735 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2736 Assert(cb);
2737 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2738 Assert(pvCopy);
2739 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2740
2741 /*
2742 * Register the rom.
2743 */
2744 Assert(!pVM->rem.s.fIgnoreAll);
2745 pVM->rem.s.fIgnoreAll = true;
2746
2747 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2748
2749 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2750
2751 Assert(pVM->rem.s.fIgnoreAll);
2752 pVM->rem.s.fIgnoreAll = false;
2753}
2754
2755
2756/**
2757 * Notification about a successful memory deregistration or reservation.
2758 *
2759 * @param pVM VM Handle.
2760 * @param GCPhys Start physical address.
2761 * @param cb The size of the range.
2762 * @todo Rename to REMR3NotifyPhysRamDeregister (for MMIO2) as we won't
2763 * reserve any memory soon.
2764 */
2765REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2766{
2767 Log(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2768 VM_ASSERT_EMT(pVM);
2769
2770 /*
2771 * Validate input - we trust the caller.
2772 */
2773 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2774 Assert(cb);
2775 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2776
2777 /*
2778 * Unassigning the memory.
2779 */
2780 Assert(!pVM->rem.s.fIgnoreAll);
2781 pVM->rem.s.fIgnoreAll = true;
2782
2783 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2784
2785 Assert(pVM->rem.s.fIgnoreAll);
2786 pVM->rem.s.fIgnoreAll = false;
2787}
2788
2789
2790/**
2791 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2792 *
2793 * @param pVM VM Handle.
2794 * @param enmType Handler type.
2795 * @param GCPhys Handler range address.
2796 * @param cb Size of the handler range.
2797 * @param fHasHCHandler Set if the handler has a HC callback function.
2798 *
2799 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2800 * Handler memory type to memory which has no HC handler.
2801 */
2802REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2803{
2804 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d\n",
2805 enmType, GCPhys, cb, fHasHCHandler));
2806 VM_ASSERT_EMT(pVM);
2807 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2808 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2809
2810 if (pVM->rem.s.cHandlerNotifications)
2811 REMR3ReplayHandlerNotifications(pVM);
2812
2813 Assert(!pVM->rem.s.fIgnoreAll);
2814 pVM->rem.s.fIgnoreAll = true;
2815
2816 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2817 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2818 else if (fHasHCHandler)
2819 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2820
2821 Assert(pVM->rem.s.fIgnoreAll);
2822 pVM->rem.s.fIgnoreAll = false;
2823}
2824
2825
2826/**
2827 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2828 *
2829 * @param pVM VM Handle.
2830 * @param enmType Handler type.
2831 * @param GCPhys Handler range address.
2832 * @param cb Size of the handler range.
2833 * @param fHasHCHandler Set if the handler has a HC callback function.
2834 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2835 */
2836REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2837{
2838 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%VGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2839 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2840 VM_ASSERT_EMT(pVM);
2841
2842 if (pVM->rem.s.cHandlerNotifications)
2843 REMR3ReplayHandlerNotifications(pVM);
2844
2845 Assert(!pVM->rem.s.fIgnoreAll);
2846 pVM->rem.s.fIgnoreAll = true;
2847
2848/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
2849 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2850 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2851 else if (fHasHCHandler)
2852 {
2853 if (!fRestoreAsRAM)
2854 {
2855 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2856 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2857 }
2858 else
2859 {
2860 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2861 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2862 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2863 }
2864 }
2865
2866 Assert(pVM->rem.s.fIgnoreAll);
2867 pVM->rem.s.fIgnoreAll = false;
2868}
2869
2870
2871/**
2872 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2873 *
2874 * @param pVM VM Handle.
2875 * @param enmType Handler type.
2876 * @param GCPhysOld Old handler range address.
2877 * @param GCPhysNew New handler range address.
2878 * @param cb Size of the handler range.
2879 * @param fHasHCHandler Set if the handler has a HC callback function.
2880 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2881 */
2882REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2883{
2884 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%d fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
2885 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
2886 VM_ASSERT_EMT(pVM);
2887 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2888
2889 if (pVM->rem.s.cHandlerNotifications)
2890 REMR3ReplayHandlerNotifications(pVM);
2891
2892 if (fHasHCHandler)
2893 {
2894 Assert(!pVM->rem.s.fIgnoreAll);
2895 pVM->rem.s.fIgnoreAll = true;
2896
2897 /*
2898 * Reset the old page.
2899 */
2900 if (!fRestoreAsRAM)
2901 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2902 else
2903 {
2904 /* This is not perfect, but it'll do for PD monitoring... */
2905 Assert(cb == PAGE_SIZE);
2906 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2907 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2908 }
2909
2910 /*
2911 * Update the new page.
2912 */
2913 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2914 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2915 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2916
2917 Assert(pVM->rem.s.fIgnoreAll);
2918 pVM->rem.s.fIgnoreAll = false;
2919 }
2920}
2921
2922
2923/**
2924 * Checks if we're handling access to this page or not.
2925 *
2926 * @returns true if we're trapping access.
2927 * @returns false if we aren't.
2928 * @param pVM The VM handle.
2929 * @param GCPhys The physical address.
2930 *
2931 * @remark This function will only work correctly in VBOX_STRICT builds!
2932 */
2933REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
2934{
2935#ifdef VBOX_STRICT
2936 if (pVM->rem.s.cHandlerNotifications)
2937 REMR3ReplayHandlerNotifications(pVM);
2938
2939 unsigned long off = get_phys_page_offset(GCPhys);
2940 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
2941 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
2942 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
2943#else
2944 return false;
2945#endif
2946}
2947
2948
2949/**
2950 * Deals with a rare case in get_phys_addr_code where the code
2951 * is being monitored.
2952 *
2953 * It could also be an MMIO page, in which case we will raise a fatal error.
2954 *
2955 * @returns The physical address corresponding to addr.
2956 * @param env The cpu environment.
2957 * @param addr The virtual address.
2958 * @param pTLBEntry The TLB entry.
2959 */
2960target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
2961{
2962 PVM pVM = env->pVM;
2963 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
2964 {
2965 target_ulong ret = pTLBEntry->addend + addr;
2966 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv addr_code=%VGv addend=%VGp ret=%VGp\n",
2967 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
2968 return ret;
2969 }
2970 LogRel(("\nTrying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
2971 "*** handlers\n",
2972 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
2973 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
2974 LogRel(("*** mmio\n"));
2975 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
2976 LogRel(("*** phys\n"));
2977 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
2978 cpu_abort(env, "Trying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
2979 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
2980 AssertFatalFailed();
2981}
2982
2983
2984/** Validate the physical address passed to the read functions.
2985 * Useful for finding non-guest-ram reads/writes. */
2986#if 1 /* disable if it becomes bothersome... */
2987# define VBOX_CHECK_ADDR(GCPhys) AssertMsg(PGMPhysIsGCPhysValid(cpu_single_env->pVM, (GCPhys)), ("%VGp\n", (GCPhys)))
2988#else
2989# define VBOX_CHECK_ADDR(GCPhys) do { } while (0)
2990#endif
2991
2992/**
2993 * Read guest RAM and ROM.
2994 *
2995 * @param SrcGCPhys The source address (guest physical).
2996 * @param pvDst The destination address.
2997 * @param cb Number of bytes
2998 */
2999void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3000{
3001 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3002 VBOX_CHECK_ADDR(SrcGCPhys);
3003 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3004 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3005}
3006
3007
3008/**
3009 * Read guest RAM and ROM, unsigned 8-bit.
3010 *
3011 * @param SrcGCPhys The source address (guest physical).
3012 */
3013uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3014{
3015 uint8_t val;
3016 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3017 VBOX_CHECK_ADDR(SrcGCPhys);
3018 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3019 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3020 return val;
3021}
3022
3023
3024/**
3025 * Read guest RAM and ROM, signed 8-bit.
3026 *
3027 * @param SrcGCPhys The source address (guest physical).
3028 */
3029int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3030{
3031 int8_t val;
3032 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3033 VBOX_CHECK_ADDR(SrcGCPhys);
3034 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3035 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3036 return val;
3037}
3038
3039
3040/**
3041 * Read guest RAM and ROM, unsigned 16-bit.
3042 *
3043 * @param SrcGCPhys The source address (guest physical).
3044 */
3045uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3046{
3047 uint16_t val;
3048 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3049 VBOX_CHECK_ADDR(SrcGCPhys);
3050 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3051 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3052 return val;
3053}
3054
3055
3056/**
3057 * Read guest RAM and ROM, signed 16-bit.
3058 *
3059 * @param SrcGCPhys The source address (guest physical).
3060 */
3061int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3062{
3063 uint16_t val;
3064 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3065 VBOX_CHECK_ADDR(SrcGCPhys);
3066 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3067 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3068 return val;
3069}
3070
3071
3072/**
3073 * Read guest RAM and ROM, unsigned 32-bit.
3074 *
3075 * @param SrcGCPhys The source address (guest physical).
3076 */
3077uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3078{
3079 uint32_t val;
3080 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3081 VBOX_CHECK_ADDR(SrcGCPhys);
3082 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3083 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3084 return val;
3085}
3086
3087
3088/**
3089 * Read guest RAM and ROM, signed 32-bit.
3090 *
3091 * @param SrcGCPhys The source address (guest physical).
3092 */
3093int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3094{
3095 int32_t val;
3096 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3097 VBOX_CHECK_ADDR(SrcGCPhys);
3098 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3099 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3100 return val;
3101}
3102
3103
3104/**
3105 * Read guest RAM and ROM, unsigned 64-bit.
3106 *
3107 * @param SrcGCPhys The source address (guest physical).
3108 */
3109uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3110{
3111 uint64_t val;
3112 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3113 VBOX_CHECK_ADDR(SrcGCPhys);
3114 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3115 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3116 return val;
3117}
3118
3119
3120/**
3121 * Write guest RAM.
3122 *
3123 * @param DstGCPhys The destination address (guest physical).
3124 * @param pvSrc The source address.
3125 * @param cb Number of bytes to write
3126 */
3127void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3128{
3129 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3130 VBOX_CHECK_ADDR(DstGCPhys);
3131 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3132 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3133}
3134
3135
3136/**
3137 * Write guest RAM, unsigned 8-bit.
3138 *
3139 * @param DstGCPhys The destination address (guest physical).
3140 * @param val Value
3141 */
3142void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3143{
3144 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3145 VBOX_CHECK_ADDR(DstGCPhys);
3146 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3147 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3148}
3149
3150
3151/**
3152 * Write guest RAM, unsigned 8-bit.
3153 *
3154 * @param DstGCPhys The destination address (guest physical).
3155 * @param val Value
3156 */
3157void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3158{
3159 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3160 VBOX_CHECK_ADDR(DstGCPhys);
3161 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3162 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3163}
3164
3165
3166/**
3167 * Write guest RAM, unsigned 32-bit.
3168 *
3169 * @param DstGCPhys The destination address (guest physical).
3170 * @param val Value
3171 */
3172void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3173{
3174 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3175 VBOX_CHECK_ADDR(DstGCPhys);
3176 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3177 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3178}
3179
3180
3181/**
3182 * Write guest RAM, unsigned 64-bit.
3183 *
3184 * @param DstGCPhys The destination address (guest physical).
3185 * @param val Value
3186 */
3187void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3188{
3189 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3190 VBOX_CHECK_ADDR(DstGCPhys);
3191 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3192 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3193}
3194
3195#undef LOG_GROUP
3196#define LOG_GROUP LOG_GROUP_REM_MMIO
3197
3198/** Read MMIO memory. */
3199static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3200{
3201 uint32_t u32 = 0;
3202 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3203 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3204 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3205 return u32;
3206}
3207
3208/** Read MMIO memory. */
3209static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3210{
3211 uint32_t u32 = 0;
3212 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3213 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3214 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3215 return u32;
3216}
3217
3218/** Read MMIO memory. */
3219static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3220{
3221 uint32_t u32 = 0;
3222 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3223 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3224 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3225 return u32;
3226}
3227
3228/** Write to MMIO memory. */
3229static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3230{
3231 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3232 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3233 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3234}
3235
3236/** Write to MMIO memory. */
3237static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3238{
3239 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3240 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3241 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3242}
3243
3244/** Write to MMIO memory. */
3245static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3246{
3247 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3248 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3249 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3250}
3251
3252
3253#undef LOG_GROUP
3254#define LOG_GROUP LOG_GROUP_REM_HANDLER
3255
3256/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3257
3258static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3259{
3260 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3261 uint8_t u8;
3262 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3263 return u8;
3264}
3265
3266static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3267{
3268 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3269 uint16_t u16;
3270 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3271 return u16;
3272}
3273
3274static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3275{
3276 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3277 uint32_t u32;
3278 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3279 return u32;
3280}
3281
3282static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3283{
3284 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3285 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3286}
3287
3288static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3289{
3290 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3291 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3292}
3293
3294static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3295{
3296 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3297 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3298}
3299
3300/* -+- disassembly -+- */
3301
3302#undef LOG_GROUP
3303#define LOG_GROUP LOG_GROUP_REM_DISAS
3304
3305
3306/**
3307 * Enables or disables singled stepped disassembly.
3308 *
3309 * @returns VBox status code.
3310 * @param pVM VM handle.
3311 * @param fEnable To enable set this flag, to disable clear it.
3312 */
3313static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3314{
3315 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3316 VM_ASSERT_EMT(pVM);
3317
3318 if (fEnable)
3319 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3320 else
3321 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3322 return VINF_SUCCESS;
3323}
3324
3325
3326/**
3327 * Enables or disables singled stepped disassembly.
3328 *
3329 * @returns VBox status code.
3330 * @param pVM VM handle.
3331 * @param fEnable To enable set this flag, to disable clear it.
3332 */
3333REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3334{
3335 PVMREQ pReq;
3336 int rc;
3337
3338 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3339 if (VM_IS_EMT(pVM))
3340 return remR3DisasEnableStepping(pVM, fEnable);
3341
3342 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3343 AssertRC(rc);
3344 if (VBOX_SUCCESS(rc))
3345 rc = pReq->iStatus;
3346 VMR3ReqFree(pReq);
3347 return rc;
3348}
3349
3350
3351#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3352/**
3353 * External Debugger Command: .remstep [on|off|1|0]
3354 */
3355static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3356{
3357 bool fEnable;
3358 int rc;
3359
3360 /* print status */
3361 if (cArgs == 0)
3362 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3363 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3364
3365 /* convert the argument and change the mode. */
3366 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3367 if (VBOX_FAILURE(rc))
3368 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3369 rc = REMR3DisasEnableStepping(pVM, fEnable);
3370 if (VBOX_FAILURE(rc))
3371 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3372 return rc;
3373}
3374#endif
3375
3376
3377/**
3378 * Disassembles n instructions and prints them to the log.
3379 *
3380 * @returns Success indicator.
3381 * @param env Pointer to the recompiler CPU structure.
3382 * @param f32BitCode Indicates that whether or not the code should
3383 * be disassembled as 16 or 32 bit. If -1 the CS
3384 * selector will be inspected.
3385 * @param nrInstructions Nr of instructions to disassemble
3386 * @param pszPrefix
3387 * @remark not currently used for anything but ad-hoc debugging.
3388 */
3389bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3390{
3391 int i;
3392
3393 /*
3394 * Determin 16/32 bit mode.
3395 */
3396 if (f32BitCode == -1)
3397 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3398
3399 /*
3400 * Convert cs:eip to host context address.
3401 * We don't care to much about cross page correctness presently.
3402 */
3403 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3404 void *pvPC;
3405 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3406 {
3407 Assert(PGMGetGuestMode(env->pVM) < PGMMODE_AMD64);
3408
3409 /* convert eip to physical address. */
3410 int rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3411 GCPtrPC,
3412 env->cr[3],
3413 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3414 &pvPC);
3415 if (VBOX_FAILURE(rc))
3416 {
3417 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3418 return false;
3419 pvPC = (char *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3420 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3421 }
3422 }
3423 else
3424 {
3425 /* physical address */
3426 int rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16, &pvPC);
3427 if (VBOX_FAILURE(rc))
3428 return false;
3429 }
3430
3431 /*
3432 * Disassemble.
3433 */
3434 RTINTPTR off = env->eip - (RTGCUINTPTR)pvPC;
3435 DISCPUSTATE Cpu;
3436 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3437 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3438 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3439 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3440 //Cpu.dwUserData[2] = GCPtrPC;
3441
3442 for (i=0;i<nrInstructions;i++)
3443 {
3444 char szOutput[256];
3445 uint32_t cbOp;
3446 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3447 return false;
3448 if (pszPrefix)
3449 Log(("%s: %s", pszPrefix, szOutput));
3450 else
3451 Log(("%s", szOutput));
3452
3453 pvPC += cbOp;
3454 }
3455 return true;
3456}
3457
3458
3459/** @todo need to test the new code, using the old code in the mean while. */
3460#define USE_OLD_DUMP_AND_DISASSEMBLY
3461
3462/**
3463 * Disassembles one instruction and prints it to the log.
3464 *
3465 * @returns Success indicator.
3466 * @param env Pointer to the recompiler CPU structure.
3467 * @param f32BitCode Indicates that whether or not the code should
3468 * be disassembled as 16 or 32 bit. If -1 the CS
3469 * selector will be inspected.
3470 * @param pszPrefix
3471 */
3472bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3473{
3474#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3475 PVM pVM = env->pVM;
3476
3477 /*
3478 * Determin 16/32 bit mode.
3479 */
3480 if (f32BitCode == -1)
3481 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3482
3483 /*
3484 * Log registers
3485 */
3486 if (LogIs2Enabled())
3487 {
3488 remR3StateUpdate(pVM);
3489 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3490 }
3491
3492 /*
3493 * Convert cs:eip to host context address.
3494 * We don't care to much about cross page correctness presently.
3495 */
3496 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3497 void *pvPC;
3498 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3499 {
3500 /* convert eip to physical address. */
3501 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
3502 GCPtrPC,
3503 env->cr[3],
3504 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3505 &pvPC);
3506 if (VBOX_FAILURE(rc))
3507 {
3508 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3509 return false;
3510 pvPC = (char *)PATMR3QueryPatchMemHC(pVM, NULL)
3511 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3512 }
3513 }
3514 else
3515 {
3516
3517 /* physical address */
3518 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, &pvPC);
3519 if (VBOX_FAILURE(rc))
3520 return false;
3521 }
3522
3523 /*
3524 * Disassemble.
3525 */
3526 RTINTPTR off = env->eip - (RTGCUINTPTR)pvPC;
3527 DISCPUSTATE Cpu;
3528 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3529 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3530 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3531 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3532 //Cpu.dwUserData[2] = GCPtrPC;
3533 char szOutput[256];
3534 uint32_t cbOp;
3535 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3536 return false;
3537
3538 if (!f32BitCode)
3539 {
3540 if (pszPrefix)
3541 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3542 else
3543 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3544 }
3545 else
3546 {
3547 if (pszPrefix)
3548 Log(("%s: %s", pszPrefix, szOutput));
3549 else
3550 Log(("%s", szOutput));
3551 }
3552 return true;
3553
3554#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3555 PVM pVM = env->pVM;
3556 const bool fLog = LogIsEnabled();
3557 const bool fLog2 = LogIs2Enabled();
3558 int rc = VINF_SUCCESS;
3559
3560 /*
3561 * Don't bother if there ain't any log output to do.
3562 */
3563 if (!fLog && !fLog2)
3564 return true;
3565
3566 /*
3567 * Update the state so DBGF reads the correct register values.
3568 */
3569 remR3StateUpdate(pVM);
3570
3571 /*
3572 * Log registers if requested.
3573 */
3574 if (!fLog2)
3575 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3576
3577 /*
3578 * Disassemble to log.
3579 */
3580 if (fLog)
3581 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3582
3583 return VBOX_SUCCESS(rc);
3584#endif
3585}
3586
3587
3588/**
3589 * Disassemble recompiled code.
3590 *
3591 * @param phFileIgnored Ignored, logfile usually.
3592 * @param pvCode Pointer to the code block.
3593 * @param cb Size of the code block.
3594 */
3595void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3596{
3597 if (LogIs2Enabled())
3598 {
3599 unsigned off = 0;
3600 char szOutput[256];
3601 DISCPUSTATE Cpu;
3602
3603 memset(&Cpu, 0, sizeof(Cpu));
3604#ifdef RT_ARCH_X86
3605 Cpu.mode = CPUMODE_32BIT;
3606#else
3607 Cpu.mode = CPUMODE_64BIT;
3608#endif
3609
3610 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3611 while (off < cb)
3612 {
3613 uint32_t cbInstr;
3614 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3615 RTLogPrintf("%s", szOutput);
3616 else
3617 {
3618 RTLogPrintf("disas error\n");
3619 cbInstr = 1;
3620#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3621 break;
3622#endif
3623 }
3624 off += cbInstr;
3625 }
3626 }
3627 NOREF(phFileIgnored);
3628}
3629
3630
3631/**
3632 * Disassemble guest code.
3633 *
3634 * @param phFileIgnored Ignored, logfile usually.
3635 * @param uCode The guest address of the code to disassemble. (flat?)
3636 * @param cb Number of bytes to disassemble.
3637 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3638 */
3639void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3640{
3641 if (LogIs2Enabled())
3642 {
3643 PVM pVM = cpu_single_env->pVM;
3644
3645 /*
3646 * Update the state so DBGF reads the correct register values (flags).
3647 */
3648 remR3StateUpdate(pVM);
3649
3650 /*
3651 * Do the disassembling.
3652 */
3653 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
3654 RTSEL cs = cpu_single_env->segs[R_CS].selector;
3655 RTGCUINTPTR eip = uCode - cpu_single_env->segs[R_CS].base;
3656 for (;;)
3657 {
3658 char szBuf[256];
3659 uint32_t cbInstr;
3660 int rc = DBGFR3DisasInstrEx(pVM,
3661 cs,
3662 eip,
3663 0,
3664 szBuf, sizeof(szBuf),
3665 &cbInstr);
3666 if (VBOX_SUCCESS(rc))
3667 RTLogPrintf("%VGp %s\n", uCode, szBuf);
3668 else
3669 {
3670 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
3671 cbInstr = 1;
3672 }
3673
3674 /* next */
3675 if (cb <= cbInstr)
3676 break;
3677 cb -= cbInstr;
3678 uCode += cbInstr;
3679 eip += cbInstr;
3680 }
3681 }
3682 NOREF(phFileIgnored);
3683}
3684
3685
3686/**
3687 * Looks up a guest symbol.
3688 *
3689 * @returns Pointer to symbol name. This is a static buffer.
3690 * @param orig_addr The address in question.
3691 */
3692const char *lookup_symbol(target_ulong orig_addr)
3693{
3694 RTGCINTPTR off = 0;
3695 DBGFSYMBOL Sym;
3696 PVM pVM = cpu_single_env->pVM;
3697 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3698 if (VBOX_SUCCESS(rc))
3699 {
3700 static char szSym[sizeof(Sym.szName) + 48];
3701 if (!off)
3702 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3703 else if (off > 0)
3704 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3705 else
3706 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3707 return szSym;
3708 }
3709 return "<N/A>";
3710}
3711
3712
3713#undef LOG_GROUP
3714#define LOG_GROUP LOG_GROUP_REM
3715
3716
3717/* -+- FF notifications -+- */
3718
3719
3720/**
3721 * Notification about a pending interrupt.
3722 *
3723 * @param pVM VM Handle.
3724 * @param u8Interrupt Interrupt
3725 * @thread The emulation thread.
3726 */
3727REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3728{
3729 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3730 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3731}
3732
3733/**
3734 * Notification about a pending interrupt.
3735 *
3736 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3737 * @param pVM VM Handle.
3738 * @thread The emulation thread.
3739 */
3740REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3741{
3742 return pVM->rem.s.u32PendingInterrupt;
3743}
3744
3745/**
3746 * Notification about the interrupt FF being set.
3747 *
3748 * @param pVM VM Handle.
3749 * @thread The emulation thread.
3750 */
3751REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3752{
3753 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3754 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3755 if (pVM->rem.s.fInREM)
3756 {
3757 if (VM_IS_EMT(pVM))
3758 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3759 else
3760 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_HARD);
3761 }
3762}
3763
3764
3765/**
3766 * Notification about the interrupt FF being set.
3767 *
3768 * @param pVM VM Handle.
3769 * @thread Any.
3770 */
3771REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3772{
3773 LogFlow(("REMR3NotifyInterruptClear:\n"));
3774 if (pVM->rem.s.fInREM)
3775 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3776}
3777
3778
3779/**
3780 * Notification about pending timer(s).
3781 *
3782 * @param pVM VM Handle.
3783 * @thread Any.
3784 */
3785REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3786{
3787#ifndef DEBUG_bird
3788 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3789#endif
3790 if (pVM->rem.s.fInREM)
3791 {
3792 if (VM_IS_EMT(pVM))
3793 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3794 else
3795 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_TIMER);
3796 }
3797}
3798
3799
3800/**
3801 * Notification about pending DMA transfers.
3802 *
3803 * @param pVM VM Handle.
3804 * @thread Any.
3805 */
3806REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3807{
3808 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3809 if (pVM->rem.s.fInREM)
3810 {
3811 if (VM_IS_EMT(pVM))
3812 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3813 else
3814 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_DMA);
3815 }
3816}
3817
3818
3819/**
3820 * Notification about pending timer(s).
3821 *
3822 * @param pVM VM Handle.
3823 * @thread Any.
3824 */
3825REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3826{
3827 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3828 if (pVM->rem.s.fInREM)
3829 {
3830 if (VM_IS_EMT(pVM))
3831 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3832 else
3833 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3834 }
3835}
3836
3837
3838/**
3839 * Notification about pending FF set by an external thread.
3840 *
3841 * @param pVM VM handle.
3842 * @thread Any.
3843 */
3844REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3845{
3846 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3847 if (pVM->rem.s.fInREM)
3848 {
3849 if (VM_IS_EMT(pVM))
3850 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3851 else
3852 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
3853 }
3854}
3855
3856
3857#ifdef VBOX_WITH_STATISTICS
3858void remR3ProfileStart(int statcode)
3859{
3860 STAMPROFILEADV *pStat;
3861 switch(statcode)
3862 {
3863 case STATS_EMULATE_SINGLE_INSTR:
3864 pStat = &gStatExecuteSingleInstr;
3865 break;
3866 case STATS_QEMU_COMPILATION:
3867 pStat = &gStatCompilationQEmu;
3868 break;
3869 case STATS_QEMU_RUN_EMULATED_CODE:
3870 pStat = &gStatRunCodeQEmu;
3871 break;
3872 case STATS_QEMU_TOTAL:
3873 pStat = &gStatTotalTimeQEmu;
3874 break;
3875 case STATS_QEMU_RUN_TIMERS:
3876 pStat = &gStatTimers;
3877 break;
3878 case STATS_TLB_LOOKUP:
3879 pStat= &gStatTBLookup;
3880 break;
3881 case STATS_IRQ_HANDLING:
3882 pStat= &gStatIRQ;
3883 break;
3884 case STATS_RAW_CHECK:
3885 pStat = &gStatRawCheck;
3886 break;
3887
3888 default:
3889 AssertMsgFailed(("unknown stat %d\n", statcode));
3890 return;
3891 }
3892 STAM_PROFILE_ADV_START(pStat, a);
3893}
3894
3895
3896void remR3ProfileStop(int statcode)
3897{
3898 STAMPROFILEADV *pStat;
3899 switch(statcode)
3900 {
3901 case STATS_EMULATE_SINGLE_INSTR:
3902 pStat = &gStatExecuteSingleInstr;
3903 break;
3904 case STATS_QEMU_COMPILATION:
3905 pStat = &gStatCompilationQEmu;
3906 break;
3907 case STATS_QEMU_RUN_EMULATED_CODE:
3908 pStat = &gStatRunCodeQEmu;
3909 break;
3910 case STATS_QEMU_TOTAL:
3911 pStat = &gStatTotalTimeQEmu;
3912 break;
3913 case STATS_QEMU_RUN_TIMERS:
3914 pStat = &gStatTimers;
3915 break;
3916 case STATS_TLB_LOOKUP:
3917 pStat= &gStatTBLookup;
3918 break;
3919 case STATS_IRQ_HANDLING:
3920 pStat= &gStatIRQ;
3921 break;
3922 case STATS_RAW_CHECK:
3923 pStat = &gStatRawCheck;
3924 break;
3925 default:
3926 AssertMsgFailed(("unknown stat %d\n", statcode));
3927 return;
3928 }
3929 STAM_PROFILE_ADV_STOP(pStat, a);
3930}
3931#endif
3932
3933/**
3934 * Raise an RC, force rem exit.
3935 *
3936 * @param pVM VM handle.
3937 * @param rc The rc.
3938 */
3939void remR3RaiseRC(PVM pVM, int rc)
3940{
3941 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
3942 Assert(pVM->rem.s.fInREM);
3943 VM_ASSERT_EMT(pVM);
3944 pVM->rem.s.rc = rc;
3945 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
3946}
3947
3948
3949/* -+- timers -+- */
3950
3951uint64_t cpu_get_tsc(CPUX86State *env)
3952{
3953 STAM_COUNTER_INC(&gStatCpuGetTSC);
3954 return TMCpuTickGet(env->pVM);
3955}
3956
3957
3958/* -+- interrupts -+- */
3959
3960void cpu_set_ferr(CPUX86State *env)
3961{
3962 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
3963 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
3964}
3965
3966int cpu_get_pic_interrupt(CPUState *env)
3967{
3968 uint8_t u8Interrupt;
3969 int rc;
3970
3971 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
3972 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
3973 * with the (a)pic.
3974 */
3975 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
3976 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
3977 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
3978 * remove this kludge. */
3979 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
3980 {
3981 rc = VINF_SUCCESS;
3982 Assert(env->pVM->rem.s.u32PendingInterrupt >= 0 && env->pVM->rem.s.u32PendingInterrupt <= 255);
3983 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
3984 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
3985 }
3986 else
3987 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
3988
3989 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
3990 if (VBOX_SUCCESS(rc))
3991 {
3992 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
3993 env->interrupt_request |= CPU_INTERRUPT_HARD;
3994 return u8Interrupt;
3995 }
3996 return -1;
3997}
3998
3999
4000/* -+- local apic -+- */
4001
4002void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4003{
4004 int rc = PDMApicSetBase(env->pVM, val);
4005 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
4006}
4007
4008uint64_t cpu_get_apic_base(CPUX86State *env)
4009{
4010 uint64_t u64;
4011 int rc = PDMApicGetBase(env->pVM, &u64);
4012 if (VBOX_SUCCESS(rc))
4013 {
4014 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4015 return u64;
4016 }
4017 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
4018 return 0;
4019}
4020
4021void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4022{
4023 int rc = PDMApicSetTPR(env->pVM, val);
4024 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
4025}
4026
4027uint8_t cpu_get_apic_tpr(CPUX86State *env)
4028{
4029 uint8_t u8;
4030 int rc = PDMApicGetTPR(env->pVM, &u8);
4031 if (VBOX_SUCCESS(rc))
4032 {
4033 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4034 return u8;
4035 }
4036 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
4037 return 0;
4038}
4039
4040
4041/* -+- I/O Ports -+- */
4042
4043#undef LOG_GROUP
4044#define LOG_GROUP LOG_GROUP_REM_IOPORT
4045
4046void cpu_outb(CPUState *env, int addr, int val)
4047{
4048 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4049 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4050
4051 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4052 if (RT_LIKELY(rc == VINF_SUCCESS))
4053 return;
4054 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4055 {
4056 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4057 remR3RaiseRC(env->pVM, rc);
4058 return;
4059 }
4060 remAbort(rc, __FUNCTION__);
4061}
4062
4063void cpu_outw(CPUState *env, int addr, int val)
4064{
4065 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4066 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4067 if (RT_LIKELY(rc == VINF_SUCCESS))
4068 return;
4069 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4070 {
4071 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4072 remR3RaiseRC(env->pVM, rc);
4073 return;
4074 }
4075 remAbort(rc, __FUNCTION__);
4076}
4077
4078void cpu_outl(CPUState *env, int addr, int val)
4079{
4080 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4081 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4082 if (RT_LIKELY(rc == VINF_SUCCESS))
4083 return;
4084 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4085 {
4086 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4087 remR3RaiseRC(env->pVM, rc);
4088 return;
4089 }
4090 remAbort(rc, __FUNCTION__);
4091}
4092
4093int cpu_inb(CPUState *env, int addr)
4094{
4095 uint32_t u32 = 0;
4096 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4097 if (RT_LIKELY(rc == VINF_SUCCESS))
4098 {
4099 if (/*addr != 0x61 && */addr != 0x71)
4100 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4101 return (int)u32;
4102 }
4103 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4104 {
4105 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4106 remR3RaiseRC(env->pVM, rc);
4107 return (int)u32;
4108 }
4109 remAbort(rc, __FUNCTION__);
4110 return 0xff;
4111}
4112
4113int cpu_inw(CPUState *env, int addr)
4114{
4115 uint32_t u32 = 0;
4116 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4117 if (RT_LIKELY(rc == VINF_SUCCESS))
4118 {
4119 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4120 return (int)u32;
4121 }
4122 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4123 {
4124 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4125 remR3RaiseRC(env->pVM, rc);
4126 return (int)u32;
4127 }
4128 remAbort(rc, __FUNCTION__);
4129 return 0xffff;
4130}
4131
4132int cpu_inl(CPUState *env, int addr)
4133{
4134 uint32_t u32 = 0;
4135 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4136 if (RT_LIKELY(rc == VINF_SUCCESS))
4137 {
4138//if (addr==0x01f0 && u32 == 0x6b6d)
4139// loglevel = ~0;
4140 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4141 return (int)u32;
4142 }
4143 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4144 {
4145 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4146 remR3RaiseRC(env->pVM, rc);
4147 return (int)u32;
4148 }
4149 remAbort(rc, __FUNCTION__);
4150 return 0xffffffff;
4151}
4152
4153#undef LOG_GROUP
4154#define LOG_GROUP LOG_GROUP_REM
4155
4156
4157/* -+- helpers and misc other interfaces -+- */
4158
4159/**
4160 * Perform the CPUID instruction.
4161 *
4162 * ASMCpuId cannot be invoked from some source files where this is used because of global
4163 * register allocations.
4164 *
4165 * @param env Pointer to the recompiler CPU structure.
4166 * @param uOperator CPUID operation (eax).
4167 * @param pvEAX Where to store eax.
4168 * @param pvEBX Where to store ebx.
4169 * @param pvECX Where to store ecx.
4170 * @param pvEDX Where to store edx.
4171 */
4172void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4173{
4174 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4175}
4176
4177
4178#if 0 /* not used */
4179/**
4180 * Interface for qemu hardware to report back fatal errors.
4181 */
4182void hw_error(const char *pszFormat, ...)
4183{
4184 /*
4185 * Bitch about it.
4186 */
4187 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4188 * this in my Odin32 tree at home! */
4189 va_list args;
4190 va_start(args, pszFormat);
4191 RTLogPrintf("fatal error in virtual hardware:");
4192 RTLogPrintfV(pszFormat, args);
4193 va_end(args);
4194 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4195
4196 /*
4197 * If we're in REM context we'll sync back the state before 'jumping' to
4198 * the EMs failure handling.
4199 */
4200 PVM pVM = cpu_single_env->pVM;
4201 if (pVM->rem.s.fInREM)
4202 REMR3StateBack(pVM);
4203 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4204 AssertMsgFailed(("EMR3FatalError returned!\n"));
4205}
4206#endif
4207
4208/**
4209 * Interface for the qemu cpu to report unhandled situation
4210 * raising a fatal VM error.
4211 */
4212void cpu_abort(CPUState *env, const char *pszFormat, ...)
4213{
4214 /*
4215 * Bitch about it.
4216 */
4217 RTLogFlags(NULL, "nodisabled nobuffered");
4218 va_list args;
4219 va_start(args, pszFormat);
4220 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4221 va_end(args);
4222 va_start(args, pszFormat);
4223 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4224 va_end(args);
4225
4226 /*
4227 * If we're in REM context we'll sync back the state before 'jumping' to
4228 * the EMs failure handling.
4229 */
4230 PVM pVM = cpu_single_env->pVM;
4231 if (pVM->rem.s.fInREM)
4232 REMR3StateBack(pVM);
4233 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4234 AssertMsgFailed(("EMR3FatalError returned!\n"));
4235}
4236
4237
4238/**
4239 * Aborts the VM.
4240 *
4241 * @param rc VBox error code.
4242 * @param pszTip Hint about why/when this happend.
4243 */
4244static void remAbort(int rc, const char *pszTip)
4245{
4246 /*
4247 * Bitch about it.
4248 */
4249 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4250 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4251
4252 /*
4253 * Jump back to where we entered the recompiler.
4254 */
4255 PVM pVM = cpu_single_env->pVM;
4256 if (pVM->rem.s.fInREM)
4257 REMR3StateBack(pVM);
4258 EMR3FatalError(pVM, rc);
4259 AssertMsgFailed(("EMR3FatalError returned!\n"));
4260}
4261
4262
4263/**
4264 * Dumps a linux system call.
4265 * @param pVM VM handle.
4266 */
4267void remR3DumpLnxSyscall(PVM pVM)
4268{
4269 static const char *apsz[] =
4270 {
4271 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4272 "sys_exit",
4273 "sys_fork",
4274 "sys_read",
4275 "sys_write",
4276 "sys_open", /* 5 */
4277 "sys_close",
4278 "sys_waitpid",
4279 "sys_creat",
4280 "sys_link",
4281 "sys_unlink", /* 10 */
4282 "sys_execve",
4283 "sys_chdir",
4284 "sys_time",
4285 "sys_mknod",
4286 "sys_chmod", /* 15 */
4287 "sys_lchown16",
4288 "sys_ni_syscall", /* old break syscall holder */
4289 "sys_stat",
4290 "sys_lseek",
4291 "sys_getpid", /* 20 */
4292 "sys_mount",
4293 "sys_oldumount",
4294 "sys_setuid16",
4295 "sys_getuid16",
4296 "sys_stime", /* 25 */
4297 "sys_ptrace",
4298 "sys_alarm",
4299 "sys_fstat",
4300 "sys_pause",
4301 "sys_utime", /* 30 */
4302 "sys_ni_syscall", /* old stty syscall holder */
4303 "sys_ni_syscall", /* old gtty syscall holder */
4304 "sys_access",
4305 "sys_nice",
4306 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4307 "sys_sync",
4308 "sys_kill",
4309 "sys_rename",
4310 "sys_mkdir",
4311 "sys_rmdir", /* 40 */
4312 "sys_dup",
4313 "sys_pipe",
4314 "sys_times",
4315 "sys_ni_syscall", /* old prof syscall holder */
4316 "sys_brk", /* 45 */
4317 "sys_setgid16",
4318 "sys_getgid16",
4319 "sys_signal",
4320 "sys_geteuid16",
4321 "sys_getegid16", /* 50 */
4322 "sys_acct",
4323 "sys_umount", /* recycled never used phys() */
4324 "sys_ni_syscall", /* old lock syscall holder */
4325 "sys_ioctl",
4326 "sys_fcntl", /* 55 */
4327 "sys_ni_syscall", /* old mpx syscall holder */
4328 "sys_setpgid",
4329 "sys_ni_syscall", /* old ulimit syscall holder */
4330 "sys_olduname",
4331 "sys_umask", /* 60 */
4332 "sys_chroot",
4333 "sys_ustat",
4334 "sys_dup2",
4335 "sys_getppid",
4336 "sys_getpgrp", /* 65 */
4337 "sys_setsid",
4338 "sys_sigaction",
4339 "sys_sgetmask",
4340 "sys_ssetmask",
4341 "sys_setreuid16", /* 70 */
4342 "sys_setregid16",
4343 "sys_sigsuspend",
4344 "sys_sigpending",
4345 "sys_sethostname",
4346 "sys_setrlimit", /* 75 */
4347 "sys_old_getrlimit",
4348 "sys_getrusage",
4349 "sys_gettimeofday",
4350 "sys_settimeofday",
4351 "sys_getgroups16", /* 80 */
4352 "sys_setgroups16",
4353 "old_select",
4354 "sys_symlink",
4355 "sys_lstat",
4356 "sys_readlink", /* 85 */
4357 "sys_uselib",
4358 "sys_swapon",
4359 "sys_reboot",
4360 "old_readdir",
4361 "old_mmap", /* 90 */
4362 "sys_munmap",
4363 "sys_truncate",
4364 "sys_ftruncate",
4365 "sys_fchmod",
4366 "sys_fchown16", /* 95 */
4367 "sys_getpriority",
4368 "sys_setpriority",
4369 "sys_ni_syscall", /* old profil syscall holder */
4370 "sys_statfs",
4371 "sys_fstatfs", /* 100 */
4372 "sys_ioperm",
4373 "sys_socketcall",
4374 "sys_syslog",
4375 "sys_setitimer",
4376 "sys_getitimer", /* 105 */
4377 "sys_newstat",
4378 "sys_newlstat",
4379 "sys_newfstat",
4380 "sys_uname",
4381 "sys_iopl", /* 110 */
4382 "sys_vhangup",
4383 "sys_ni_syscall", /* old "idle" system call */
4384 "sys_vm86old",
4385 "sys_wait4",
4386 "sys_swapoff", /* 115 */
4387 "sys_sysinfo",
4388 "sys_ipc",
4389 "sys_fsync",
4390 "sys_sigreturn",
4391 "sys_clone", /* 120 */
4392 "sys_setdomainname",
4393 "sys_newuname",
4394 "sys_modify_ldt",
4395 "sys_adjtimex",
4396 "sys_mprotect", /* 125 */
4397 "sys_sigprocmask",
4398 "sys_ni_syscall", /* old "create_module" */
4399 "sys_init_module",
4400 "sys_delete_module",
4401 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4402 "sys_quotactl",
4403 "sys_getpgid",
4404 "sys_fchdir",
4405 "sys_bdflush",
4406 "sys_sysfs", /* 135 */
4407 "sys_personality",
4408 "sys_ni_syscall", /* reserved for afs_syscall */
4409 "sys_setfsuid16",
4410 "sys_setfsgid16",
4411 "sys_llseek", /* 140 */
4412 "sys_getdents",
4413 "sys_select",
4414 "sys_flock",
4415 "sys_msync",
4416 "sys_readv", /* 145 */
4417 "sys_writev",
4418 "sys_getsid",
4419 "sys_fdatasync",
4420 "sys_sysctl",
4421 "sys_mlock", /* 150 */
4422 "sys_munlock",
4423 "sys_mlockall",
4424 "sys_munlockall",
4425 "sys_sched_setparam",
4426 "sys_sched_getparam", /* 155 */
4427 "sys_sched_setscheduler",
4428 "sys_sched_getscheduler",
4429 "sys_sched_yield",
4430 "sys_sched_get_priority_max",
4431 "sys_sched_get_priority_min", /* 160 */
4432 "sys_sched_rr_get_interval",
4433 "sys_nanosleep",
4434 "sys_mremap",
4435 "sys_setresuid16",
4436 "sys_getresuid16", /* 165 */
4437 "sys_vm86",
4438 "sys_ni_syscall", /* Old sys_query_module */
4439 "sys_poll",
4440 "sys_nfsservctl",
4441 "sys_setresgid16", /* 170 */
4442 "sys_getresgid16",
4443 "sys_prctl",
4444 "sys_rt_sigreturn",
4445 "sys_rt_sigaction",
4446 "sys_rt_sigprocmask", /* 175 */
4447 "sys_rt_sigpending",
4448 "sys_rt_sigtimedwait",
4449 "sys_rt_sigqueueinfo",
4450 "sys_rt_sigsuspend",
4451 "sys_pread64", /* 180 */
4452 "sys_pwrite64",
4453 "sys_chown16",
4454 "sys_getcwd",
4455 "sys_capget",
4456 "sys_capset", /* 185 */
4457 "sys_sigaltstack",
4458 "sys_sendfile",
4459 "sys_ni_syscall", /* reserved for streams1 */
4460 "sys_ni_syscall", /* reserved for streams2 */
4461 "sys_vfork", /* 190 */
4462 "sys_getrlimit",
4463 "sys_mmap2",
4464 "sys_truncate64",
4465 "sys_ftruncate64",
4466 "sys_stat64", /* 195 */
4467 "sys_lstat64",
4468 "sys_fstat64",
4469 "sys_lchown",
4470 "sys_getuid",
4471 "sys_getgid", /* 200 */
4472 "sys_geteuid",
4473 "sys_getegid",
4474 "sys_setreuid",
4475 "sys_setregid",
4476 "sys_getgroups", /* 205 */
4477 "sys_setgroups",
4478 "sys_fchown",
4479 "sys_setresuid",
4480 "sys_getresuid",
4481 "sys_setresgid", /* 210 */
4482 "sys_getresgid",
4483 "sys_chown",
4484 "sys_setuid",
4485 "sys_setgid",
4486 "sys_setfsuid", /* 215 */
4487 "sys_setfsgid",
4488 "sys_pivot_root",
4489 "sys_mincore",
4490 "sys_madvise",
4491 "sys_getdents64", /* 220 */
4492 "sys_fcntl64",
4493 "sys_ni_syscall", /* reserved for TUX */
4494 "sys_ni_syscall",
4495 "sys_gettid",
4496 "sys_readahead", /* 225 */
4497 "sys_setxattr",
4498 "sys_lsetxattr",
4499 "sys_fsetxattr",
4500 "sys_getxattr",
4501 "sys_lgetxattr", /* 230 */
4502 "sys_fgetxattr",
4503 "sys_listxattr",
4504 "sys_llistxattr",
4505 "sys_flistxattr",
4506 "sys_removexattr", /* 235 */
4507 "sys_lremovexattr",
4508 "sys_fremovexattr",
4509 "sys_tkill",
4510 "sys_sendfile64",
4511 "sys_futex", /* 240 */
4512 "sys_sched_setaffinity",
4513 "sys_sched_getaffinity",
4514 "sys_set_thread_area",
4515 "sys_get_thread_area",
4516 "sys_io_setup", /* 245 */
4517 "sys_io_destroy",
4518 "sys_io_getevents",
4519 "sys_io_submit",
4520 "sys_io_cancel",
4521 "sys_fadvise64", /* 250 */
4522 "sys_ni_syscall",
4523 "sys_exit_group",
4524 "sys_lookup_dcookie",
4525 "sys_epoll_create",
4526 "sys_epoll_ctl", /* 255 */
4527 "sys_epoll_wait",
4528 "sys_remap_file_pages",
4529 "sys_set_tid_address",
4530 "sys_timer_create",
4531 "sys_timer_settime", /* 260 */
4532 "sys_timer_gettime",
4533 "sys_timer_getoverrun",
4534 "sys_timer_delete",
4535 "sys_clock_settime",
4536 "sys_clock_gettime", /* 265 */
4537 "sys_clock_getres",
4538 "sys_clock_nanosleep",
4539 "sys_statfs64",
4540 "sys_fstatfs64",
4541 "sys_tgkill", /* 270 */
4542 "sys_utimes",
4543 "sys_fadvise64_64",
4544 "sys_ni_syscall" /* sys_vserver */
4545 };
4546
4547 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4548 switch (uEAX)
4549 {
4550 default:
4551 if (uEAX < ELEMENTS(apsz))
4552 Log(("REM: linux syscall %3d: %s (eip=%VGv ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4553 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4554 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4555 else
4556 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4557 break;
4558
4559 }
4560}
4561
4562
4563/**
4564 * Dumps an OpenBSD system call.
4565 * @param pVM VM handle.
4566 */
4567void remR3DumpOBsdSyscall(PVM pVM)
4568{
4569 static const char *apsz[] =
4570 {
4571 "SYS_syscall", //0
4572 "SYS_exit", //1
4573 "SYS_fork", //2
4574 "SYS_read", //3
4575 "SYS_write", //4
4576 "SYS_open", //5
4577 "SYS_close", //6
4578 "SYS_wait4", //7
4579 "SYS_8",
4580 "SYS_link", //9
4581 "SYS_unlink", //10
4582 "SYS_11",
4583 "SYS_chdir", //12
4584 "SYS_fchdir", //13
4585 "SYS_mknod", //14
4586 "SYS_chmod", //15
4587 "SYS_chown", //16
4588 "SYS_break", //17
4589 "SYS_18",
4590 "SYS_19",
4591 "SYS_getpid", //20
4592 "SYS_mount", //21
4593 "SYS_unmount", //22
4594 "SYS_setuid", //23
4595 "SYS_getuid", //24
4596 "SYS_geteuid", //25
4597 "SYS_ptrace", //26
4598 "SYS_recvmsg", //27
4599 "SYS_sendmsg", //28
4600 "SYS_recvfrom", //29
4601 "SYS_accept", //30
4602 "SYS_getpeername", //31
4603 "SYS_getsockname", //32
4604 "SYS_access", //33
4605 "SYS_chflags", //34
4606 "SYS_fchflags", //35
4607 "SYS_sync", //36
4608 "SYS_kill", //37
4609 "SYS_38",
4610 "SYS_getppid", //39
4611 "SYS_40",
4612 "SYS_dup", //41
4613 "SYS_opipe", //42
4614 "SYS_getegid", //43
4615 "SYS_profil", //44
4616 "SYS_ktrace", //45
4617 "SYS_sigaction", //46
4618 "SYS_getgid", //47
4619 "SYS_sigprocmask", //48
4620 "SYS_getlogin", //49
4621 "SYS_setlogin", //50
4622 "SYS_acct", //51
4623 "SYS_sigpending", //52
4624 "SYS_osigaltstack", //53
4625 "SYS_ioctl", //54
4626 "SYS_reboot", //55
4627 "SYS_revoke", //56
4628 "SYS_symlink", //57
4629 "SYS_readlink", //58
4630 "SYS_execve", //59
4631 "SYS_umask", //60
4632 "SYS_chroot", //61
4633 "SYS_62",
4634 "SYS_63",
4635 "SYS_64",
4636 "SYS_65",
4637 "SYS_vfork", //66
4638 "SYS_67",
4639 "SYS_68",
4640 "SYS_sbrk", //69
4641 "SYS_sstk", //70
4642 "SYS_61",
4643 "SYS_vadvise", //72
4644 "SYS_munmap", //73
4645 "SYS_mprotect", //74
4646 "SYS_madvise", //75
4647 "SYS_76",
4648 "SYS_77",
4649 "SYS_mincore", //78
4650 "SYS_getgroups", //79
4651 "SYS_setgroups", //80
4652 "SYS_getpgrp", //81
4653 "SYS_setpgid", //82
4654 "SYS_setitimer", //83
4655 "SYS_84",
4656 "SYS_85",
4657 "SYS_getitimer", //86
4658 "SYS_87",
4659 "SYS_88",
4660 "SYS_89",
4661 "SYS_dup2", //90
4662 "SYS_91",
4663 "SYS_fcntl", //92
4664 "SYS_select", //93
4665 "SYS_94",
4666 "SYS_fsync", //95
4667 "SYS_setpriority", //96
4668 "SYS_socket", //97
4669 "SYS_connect", //98
4670 "SYS_99",
4671 "SYS_getpriority", //100
4672 "SYS_101",
4673 "SYS_102",
4674 "SYS_sigreturn", //103
4675 "SYS_bind", //104
4676 "SYS_setsockopt", //105
4677 "SYS_listen", //106
4678 "SYS_107",
4679 "SYS_108",
4680 "SYS_109",
4681 "SYS_110",
4682 "SYS_sigsuspend", //111
4683 "SYS_112",
4684 "SYS_113",
4685 "SYS_114",
4686 "SYS_115",
4687 "SYS_gettimeofday", //116
4688 "SYS_getrusage", //117
4689 "SYS_getsockopt", //118
4690 "SYS_119",
4691 "SYS_readv", //120
4692 "SYS_writev", //121
4693 "SYS_settimeofday", //122
4694 "SYS_fchown", //123
4695 "SYS_fchmod", //124
4696 "SYS_125",
4697 "SYS_setreuid", //126
4698 "SYS_setregid", //127
4699 "SYS_rename", //128
4700 "SYS_129",
4701 "SYS_130",
4702 "SYS_flock", //131
4703 "SYS_mkfifo", //132
4704 "SYS_sendto", //133
4705 "SYS_shutdown", //134
4706 "SYS_socketpair", //135
4707 "SYS_mkdir", //136
4708 "SYS_rmdir", //137
4709 "SYS_utimes", //138
4710 "SYS_139",
4711 "SYS_adjtime", //140
4712 "SYS_141",
4713 "SYS_142",
4714 "SYS_143",
4715 "SYS_144",
4716 "SYS_145",
4717 "SYS_146",
4718 "SYS_setsid", //147
4719 "SYS_quotactl", //148
4720 "SYS_149",
4721 "SYS_150",
4722 "SYS_151",
4723 "SYS_152",
4724 "SYS_153",
4725 "SYS_154",
4726 "SYS_nfssvc", //155
4727 "SYS_156",
4728 "SYS_157",
4729 "SYS_158",
4730 "SYS_159",
4731 "SYS_160",
4732 "SYS_getfh", //161
4733 "SYS_162",
4734 "SYS_163",
4735 "SYS_164",
4736 "SYS_sysarch", //165
4737 "SYS_166",
4738 "SYS_167",
4739 "SYS_168",
4740 "SYS_169",
4741 "SYS_170",
4742 "SYS_171",
4743 "SYS_172",
4744 "SYS_pread", //173
4745 "SYS_pwrite", //174
4746 "SYS_175",
4747 "SYS_176",
4748 "SYS_177",
4749 "SYS_178",
4750 "SYS_179",
4751 "SYS_180",
4752 "SYS_setgid", //181
4753 "SYS_setegid", //182
4754 "SYS_seteuid", //183
4755 "SYS_lfs_bmapv", //184
4756 "SYS_lfs_markv", //185
4757 "SYS_lfs_segclean", //186
4758 "SYS_lfs_segwait", //187
4759 "SYS_188",
4760 "SYS_189",
4761 "SYS_190",
4762 "SYS_pathconf", //191
4763 "SYS_fpathconf", //192
4764 "SYS_swapctl", //193
4765 "SYS_getrlimit", //194
4766 "SYS_setrlimit", //195
4767 "SYS_getdirentries", //196
4768 "SYS_mmap", //197
4769 "SYS___syscall", //198
4770 "SYS_lseek", //199
4771 "SYS_truncate", //200
4772 "SYS_ftruncate", //201
4773 "SYS___sysctl", //202
4774 "SYS_mlock", //203
4775 "SYS_munlock", //204
4776 "SYS_205",
4777 "SYS_futimes", //206
4778 "SYS_getpgid", //207
4779 "SYS_xfspioctl", //208
4780 "SYS_209",
4781 "SYS_210",
4782 "SYS_211",
4783 "SYS_212",
4784 "SYS_213",
4785 "SYS_214",
4786 "SYS_215",
4787 "SYS_216",
4788 "SYS_217",
4789 "SYS_218",
4790 "SYS_219",
4791 "SYS_220",
4792 "SYS_semget", //221
4793 "SYS_222",
4794 "SYS_223",
4795 "SYS_224",
4796 "SYS_msgget", //225
4797 "SYS_msgsnd", //226
4798 "SYS_msgrcv", //227
4799 "SYS_shmat", //228
4800 "SYS_229",
4801 "SYS_shmdt", //230
4802 "SYS_231",
4803 "SYS_clock_gettime", //232
4804 "SYS_clock_settime", //233
4805 "SYS_clock_getres", //234
4806 "SYS_235",
4807 "SYS_236",
4808 "SYS_237",
4809 "SYS_238",
4810 "SYS_239",
4811 "SYS_nanosleep", //240
4812 "SYS_241",
4813 "SYS_242",
4814 "SYS_243",
4815 "SYS_244",
4816 "SYS_245",
4817 "SYS_246",
4818 "SYS_247",
4819 "SYS_248",
4820 "SYS_249",
4821 "SYS_minherit", //250
4822 "SYS_rfork", //251
4823 "SYS_poll", //252
4824 "SYS_issetugid", //253
4825 "SYS_lchown", //254
4826 "SYS_getsid", //255
4827 "SYS_msync", //256
4828 "SYS_257",
4829 "SYS_258",
4830 "SYS_259",
4831 "SYS_getfsstat", //260
4832 "SYS_statfs", //261
4833 "SYS_fstatfs", //262
4834 "SYS_pipe", //263
4835 "SYS_fhopen", //264
4836 "SYS_265",
4837 "SYS_fhstatfs", //266
4838 "SYS_preadv", //267
4839 "SYS_pwritev", //268
4840 "SYS_kqueue", //269
4841 "SYS_kevent", //270
4842 "SYS_mlockall", //271
4843 "SYS_munlockall", //272
4844 "SYS_getpeereid", //273
4845 "SYS_274",
4846 "SYS_275",
4847 "SYS_276",
4848 "SYS_277",
4849 "SYS_278",
4850 "SYS_279",
4851 "SYS_280",
4852 "SYS_getresuid", //281
4853 "SYS_setresuid", //282
4854 "SYS_getresgid", //283
4855 "SYS_setresgid", //284
4856 "SYS_285",
4857 "SYS_mquery", //286
4858 "SYS_closefrom", //287
4859 "SYS_sigaltstack", //288
4860 "SYS_shmget", //289
4861 "SYS_semop", //290
4862 "SYS_stat", //291
4863 "SYS_fstat", //292
4864 "SYS_lstat", //293
4865 "SYS_fhstat", //294
4866 "SYS___semctl", //295
4867 "SYS_shmctl", //296
4868 "SYS_msgctl", //297
4869 "SYS_MAXSYSCALL", //298
4870 //299
4871 //300
4872 };
4873 uint32_t uEAX;
4874 if (!LogIsEnabled())
4875 return;
4876 uEAX = CPUMGetGuestEAX(pVM);
4877 switch (uEAX)
4878 {
4879 default:
4880 if (uEAX < ELEMENTS(apsz))
4881 {
4882 uint32_t au32Args[8] = {0};
4883 PGMPhysReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
4884 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
4885 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
4886 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
4887 }
4888 else
4889 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
4890 break;
4891 }
4892}
4893
4894
4895#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
4896/**
4897 * The Dll main entry point (stub).
4898 */
4899bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
4900{
4901 return true;
4902}
4903
4904void *memcpy(void *dst, const void *src, size_t size)
4905{
4906 uint8_t*pbDst = dst, *pbSrc = src;
4907 while (size-- > 0)
4908 *pbDst++ = *pbSrc++;
4909 return dst;
4910}
4911
4912#endif
4913
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette