VirtualBox

source: vbox/trunk/src/recompiler/cpu-all.h@ 52707

Last change on this file since 52707 was 42601, checked in by vboxsync, 12 years ago

REM: Initial changes to make it work (seemingly) with MinGW-w64.

  • Property svn:eol-style set to native
File size: 30.0 KB
Line 
1/*
2 * defines common to all virtual CPUs
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20/*
21 * Oracle LGPL Disclaimer: For the avoidance of doubt, except that if any license choice
22 * other than GPL or LGPL is available it will apply instead, Oracle elects to use only
23 * the Lesser General Public License version 2.1 (LGPLv2) at this time for any software where
24 * a choice of LGPL license versions is made available with the language indicating
25 * that LGPLv2 or any later version may be used, or where a choice of which version
26 * of the LGPL is applied is otherwise unspecified.
27 */
28
29#ifndef CPU_ALL_H
30#define CPU_ALL_H
31
32#ifdef VBOX
33# ifndef LOG_GROUP
34# define LOG_GROUP LOG_GROUP_REM
35# endif
36# include <VBox/log.h>
37# include <VBox/vmm/pgm.h> /* PGM_DYNAMIC_RAM_ALLOC */
38#endif /* VBOX */
39#include "qemu-common.h"
40#include "cpu-common.h"
41
42/* some important defines:
43 *
44 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
45 * memory accesses.
46 *
47 * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
48 * otherwise little endian.
49 *
50 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
51 *
52 * TARGET_WORDS_BIGENDIAN : same for target cpu
53 */
54
55#include "softfloat.h"
56
57#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
58#define BSWAP_NEEDED
59#endif
60
61#ifdef BSWAP_NEEDED
62
63static inline uint16_t tswap16(uint16_t s)
64{
65 return bswap16(s);
66}
67
68static inline uint32_t tswap32(uint32_t s)
69{
70 return bswap32(s);
71}
72
73static inline uint64_t tswap64(uint64_t s)
74{
75 return bswap64(s);
76}
77
78static inline void tswap16s(uint16_t *s)
79{
80 *s = bswap16(*s);
81}
82
83static inline void tswap32s(uint32_t *s)
84{
85 *s = bswap32(*s);
86}
87
88static inline void tswap64s(uint64_t *s)
89{
90 *s = bswap64(*s);
91}
92
93#else
94
95static inline uint16_t tswap16(uint16_t s)
96{
97 return s;
98}
99
100static inline uint32_t tswap32(uint32_t s)
101{
102 return s;
103}
104
105static inline uint64_t tswap64(uint64_t s)
106{
107 return s;
108}
109
110static inline void tswap16s(uint16_t *s)
111{
112}
113
114static inline void tswap32s(uint32_t *s)
115{
116}
117
118static inline void tswap64s(uint64_t *s)
119{
120}
121
122#endif
123
124#if TARGET_LONG_SIZE == 4
125#define tswapl(s) tswap32(s)
126#define tswapls(s) tswap32s((uint32_t *)(s))
127#define bswaptls(s) bswap32s(s)
128#else
129#define tswapl(s) tswap64(s)
130#define tswapls(s) tswap64s((uint64_t *)(s))
131#define bswaptls(s) bswap64s(s)
132#endif
133
134typedef union {
135 float32 f;
136 uint32_t l;
137} CPU_FloatU;
138
139/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
140 endian ! */
141typedef union {
142 float64 d;
143#if defined(HOST_WORDS_BIGENDIAN) \
144 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
145 struct {
146 uint32_t upper;
147 uint32_t lower;
148 } l;
149#else
150 struct {
151 uint32_t lower;
152 uint32_t upper;
153 } l;
154#endif
155 uint64_t ll;
156} CPU_DoubleU;
157
158#ifdef TARGET_SPARC
159typedef union {
160 float128 q;
161#if defined(HOST_WORDS_BIGENDIAN) \
162 || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
163 struct {
164 uint32_t upmost;
165 uint32_t upper;
166 uint32_t lower;
167 uint32_t lowest;
168 } l;
169 struct {
170 uint64_t upper;
171 uint64_t lower;
172 } ll;
173#else
174 struct {
175 uint32_t lowest;
176 uint32_t lower;
177 uint32_t upper;
178 uint32_t upmost;
179 } l;
180 struct {
181 uint64_t lower;
182 uint64_t upper;
183 } ll;
184#endif
185} CPU_QuadU;
186#endif
187
188/* CPU memory access without any memory or io remapping */
189
190/*
191 * the generic syntax for the memory accesses is:
192 *
193 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
194 *
195 * store: st{type}{size}{endian}_{access_type}(ptr, val)
196 *
197 * type is:
198 * (empty): integer access
199 * f : float access
200 *
201 * sign is:
202 * (empty): for floats or 32 bit size
203 * u : unsigned
204 * s : signed
205 *
206 * size is:
207 * b: 8 bits
208 * w: 16 bits
209 * l: 32 bits
210 * q: 64 bits
211 *
212 * endian is:
213 * (empty): target cpu endianness or 8 bit access
214 * r : reversed target cpu endianness (not implemented yet)
215 * be : big endian (not implemented yet)
216 * le : little endian (not implemented yet)
217 *
218 * access_type is:
219 * raw : host memory access
220 * user : user mode access using soft MMU
221 * kernel : kernel mode access using soft MMU
222 */
223
224#ifdef VBOX
225void remAbort(int rc, const char *pszTip) __attribute__((__noreturn__));
226
227void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb);
228RTCCUINTREG remR3PhysReadU8(RTGCPHYS SrcGCPhys);
229RTCCINTREG remR3PhysReadS8(RTGCPHYS SrcGCPhys);
230RTCCUINTREG remR3PhysReadU16(RTGCPHYS SrcGCPhys);
231RTCCINTREG remR3PhysReadS16(RTGCPHYS SrcGCPhys);
232RTCCUINTREG remR3PhysReadU32(RTGCPHYS SrcGCPhys);
233RTCCINTREG remR3PhysReadS32(RTGCPHYS SrcGCPhys);
234uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys);
235int64_t remR3PhysReadS64(RTGCPHYS SrcGCPhys);
236void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb);
237void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val);
238void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val);
239void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val);
240void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val);
241
242# ifndef REM_PHYS_ADDR_IN_TLB
243void *remR3TlbGCPhys2Ptr(CPUState *env1, target_ulong physAddr, int fWritable);
244# endif
245
246#endif /* VBOX */
247
248#if defined(VBOX) && defined(REM_PHYS_ADDR_IN_TLB)
249
250DECLINLINE(uint8_t) ldub_p(const void *ptr)
251{
252 VBOX_CHECK_ADDR(ptr);
253 return remR3PhysReadU8((uintptr_t)ptr);
254}
255
256DECLINLINE(int8_t) ldsb_p(const void *ptr)
257{
258 VBOX_CHECK_ADDR(ptr);
259 return remR3PhysReadS8((uintptr_t)ptr);
260}
261
262DECLINLINE(void) stb_p(void *ptr, int v)
263{
264 VBOX_CHECK_ADDR(ptr);
265 remR3PhysWriteU8((uintptr_t)ptr, v);
266}
267
268DECLINLINE(uint32_t) lduw_le_p(const void *ptr)
269{
270 VBOX_CHECK_ADDR(ptr);
271 return remR3PhysReadU16((uintptr_t)ptr);
272}
273
274DECLINLINE(int32_t) ldsw_le_p(const void *ptr)
275{
276 VBOX_CHECK_ADDR(ptr);
277 return remR3PhysReadS16((uintptr_t)ptr);
278}
279
280DECLINLINE(void) stw_le_p(void *ptr, int v)
281{
282 VBOX_CHECK_ADDR(ptr);
283 remR3PhysWriteU16((uintptr_t)ptr, v);
284}
285
286DECLINLINE(uint32_t) ldl_le_p(const void *ptr)
287{
288 VBOX_CHECK_ADDR(ptr);
289 return remR3PhysReadU32((uintptr_t)ptr);
290}
291
292DECLINLINE(void) stl_le_p(void *ptr, int v)
293{
294 VBOX_CHECK_ADDR(ptr);
295 remR3PhysWriteU32((uintptr_t)ptr, v);
296}
297
298DECLINLINE(void) stq_le_p(void *ptr, uint64_t v)
299{
300 VBOX_CHECK_ADDR(ptr);
301 remR3PhysWriteU64((uintptr_t)ptr, v);
302}
303
304DECLINLINE(uint64_t) ldq_le_p(const void *ptr)
305{
306 VBOX_CHECK_ADDR(ptr);
307 return remR3PhysReadU64((uintptr_t)ptr);
308}
309
310# undef VBOX_CHECK_ADDR
311
312/* float access */
313
314DECLINLINE(float32) ldfl_le_p(const void *ptr)
315{
316 union {
317 float32 f;
318 uint32_t i;
319 } u;
320 u.i = ldl_le_p(ptr);
321 return u.f;
322}
323
324DECLINLINE(void) stfl_le_p(void *ptr, float32 v)
325{
326 union {
327 float32 f;
328 uint32_t i;
329 } u;
330 u.f = v;
331 stl_le_p(ptr, u.i);
332}
333
334DECLINLINE(float64) ldfq_le_p(const void *ptr)
335{
336 CPU_DoubleU u;
337 u.l.lower = ldl_le_p(ptr);
338 u.l.upper = ldl_le_p((uint8_t*)ptr + 4);
339 return u.d;
340}
341
342DECLINLINE(void) stfq_le_p(void *ptr, float64 v)
343{
344 CPU_DoubleU u;
345 u.d = v;
346 stl_le_p(ptr, u.l.lower);
347 stl_le_p((uint8_t*)ptr + 4, u.l.upper);
348}
349
350#else /* !VBOX || !REM_PHYS_ADDR_IN_TLB */
351
352static inline int ldub_p(const void *ptr)
353{
354 return *(uint8_t *)ptr;
355}
356
357static inline int ldsb_p(const void *ptr)
358{
359 return *(int8_t *)ptr;
360}
361
362static inline void stb_p(void *ptr, int v)
363{
364 *(uint8_t *)ptr = v;
365}
366
367/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
368 kernel handles unaligned load/stores may give better results, but
369 it is a system wide setting : bad */
370#if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
371
372/* conservative code for little endian unaligned accesses */
373static inline int lduw_le_p(const void *ptr)
374{
375#ifdef _ARCH_PPC
376 int val;
377 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
378 return val;
379#else
380 const uint8_t *p = ptr;
381 return p[0] | (p[1] << 8);
382#endif
383}
384
385static inline int ldsw_le_p(const void *ptr)
386{
387#ifdef _ARCH_PPC
388 int val;
389 __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
390 return (int16_t)val;
391#else
392 const uint8_t *p = ptr;
393 return (int16_t)(p[0] | (p[1] << 8));
394#endif
395}
396
397static inline int ldl_le_p(const void *ptr)
398{
399#ifdef _ARCH_PPC
400 int val;
401 __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
402 return val;
403#else
404 const uint8_t *p = ptr;
405 return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
406#endif
407}
408
409static inline uint64_t ldq_le_p(const void *ptr)
410{
411 const uint8_t *p = ptr;
412 uint32_t v1, v2;
413 v1 = ldl_le_p(p);
414 v2 = ldl_le_p(p + 4);
415 return v1 | ((uint64_t)v2 << 32);
416}
417
418static inline void stw_le_p(void *ptr, int v)
419{
420#ifdef _ARCH_PPC
421 __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
422#else
423 uint8_t *p = ptr;
424 p[0] = v;
425 p[1] = v >> 8;
426#endif
427}
428
429static inline void stl_le_p(void *ptr, int v)
430{
431#ifdef _ARCH_PPC
432 __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
433#else
434 uint8_t *p = ptr;
435 p[0] = v;
436 p[1] = v >> 8;
437 p[2] = v >> 16;
438 p[3] = v >> 24;
439#endif
440}
441
442static inline void stq_le_p(void *ptr, uint64_t v)
443{
444 uint8_t *p = ptr;
445 stl_le_p(p, (uint32_t)v);
446 stl_le_p(p + 4, v >> 32);
447}
448
449/* float access */
450
451static inline float32 ldfl_le_p(const void *ptr)
452{
453 union {
454 float32 f;
455 uint32_t i;
456 } u;
457 u.i = ldl_le_p(ptr);
458 return u.f;
459}
460
461static inline void stfl_le_p(void *ptr, float32 v)
462{
463 union {
464 float32 f;
465 uint32_t i;
466 } u;
467 u.f = v;
468 stl_le_p(ptr, u.i);
469}
470
471static inline float64 ldfq_le_p(const void *ptr)
472{
473 CPU_DoubleU u;
474 u.l.lower = ldl_le_p(ptr);
475 u.l.upper = ldl_le_p(ptr + 4);
476 return u.d;
477}
478
479static inline void stfq_le_p(void *ptr, float64 v)
480{
481 CPU_DoubleU u;
482 u.d = v;
483 stl_le_p(ptr, u.l.lower);
484 stl_le_p(ptr + 4, u.l.upper);
485}
486
487#else
488
489static inline int lduw_le_p(const void *ptr)
490{
491 return *(uint16_t *)ptr;
492}
493
494static inline int ldsw_le_p(const void *ptr)
495{
496 return *(int16_t *)ptr;
497}
498
499static inline int ldl_le_p(const void *ptr)
500{
501 return *(uint32_t *)ptr;
502}
503
504static inline uint64_t ldq_le_p(const void *ptr)
505{
506 return *(uint64_t *)ptr;
507}
508
509static inline void stw_le_p(void *ptr, int v)
510{
511 *(uint16_t *)ptr = v;
512}
513
514static inline void stl_le_p(void *ptr, int v)
515{
516 *(uint32_t *)ptr = v;
517}
518
519static inline void stq_le_p(void *ptr, uint64_t v)
520{
521 *(uint64_t *)ptr = v;
522}
523
524/* float access */
525
526static inline float32 ldfl_le_p(const void *ptr)
527{
528 return *(float32 *)ptr;
529}
530
531static inline float64 ldfq_le_p(const void *ptr)
532{
533 return *(float64 *)ptr;
534}
535
536static inline void stfl_le_p(void *ptr, float32 v)
537{
538 *(float32 *)ptr = v;
539}
540
541static inline void stfq_le_p(void *ptr, float64 v)
542{
543 *(float64 *)ptr = v;
544}
545#endif
546
547#endif /* !VBOX || !REM_PHYS_ADDR_IN_TLB */
548
549#if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
550
551static inline int lduw_be_p(const void *ptr)
552{
553#if defined(__i386__)
554 int val;
555 asm volatile ("movzwl %1, %0\n"
556 "xchgb %b0, %h0\n"
557 : "=q" (val)
558 : "m" (*(uint16_t *)ptr));
559 return val;
560#else
561 const uint8_t *b = ptr;
562 return ((b[0] << 8) | b[1]);
563#endif
564}
565
566static inline int ldsw_be_p(const void *ptr)
567{
568#if defined(__i386__)
569 int val;
570 asm volatile ("movzwl %1, %0\n"
571 "xchgb %b0, %h0\n"
572 : "=q" (val)
573 : "m" (*(uint16_t *)ptr));
574 return (int16_t)val;
575#else
576 const uint8_t *b = ptr;
577 return (int16_t)((b[0] << 8) | b[1]);
578#endif
579}
580
581static inline int ldl_be_p(const void *ptr)
582{
583#if defined(__i386__) || defined(__x86_64__)
584 int val;
585 asm volatile ("movl %1, %0\n"
586 "bswap %0\n"
587 : "=r" (val)
588 : "m" (*(uint32_t *)ptr));
589 return val;
590#else
591 const uint8_t *b = ptr;
592 return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
593#endif
594}
595
596static inline uint64_t ldq_be_p(const void *ptr)
597{
598 uint32_t a,b;
599 a = ldl_be_p(ptr);
600 b = ldl_be_p((uint8_t *)ptr + 4);
601 return (((uint64_t)a<<32)|b);
602}
603
604static inline void stw_be_p(void *ptr, int v)
605{
606#if defined(__i386__)
607 asm volatile ("xchgb %b0, %h0\n"
608 "movw %w0, %1\n"
609 : "=q" (v)
610 : "m" (*(uint16_t *)ptr), "0" (v));
611#else
612 uint8_t *d = (uint8_t *) ptr;
613 d[0] = v >> 8;
614 d[1] = v;
615#endif
616}
617
618static inline void stl_be_p(void *ptr, int v)
619{
620#if defined(__i386__) || defined(__x86_64__)
621 asm volatile ("bswap %0\n"
622 "movl %0, %1\n"
623 : "=r" (v)
624 : "m" (*(uint32_t *)ptr), "0" (v));
625#else
626 uint8_t *d = (uint8_t *) ptr;
627 d[0] = v >> 24;
628 d[1] = v >> 16;
629 d[2] = v >> 8;
630 d[3] = v;
631#endif
632}
633
634static inline void stq_be_p(void *ptr, uint64_t v)
635{
636 stl_be_p(ptr, v >> 32);
637 stl_be_p((uint8_t *)ptr + 4, v);
638}
639
640/* float access */
641
642static inline float32 ldfl_be_p(const void *ptr)
643{
644 union {
645 float32 f;
646 uint32_t i;
647 } u;
648 u.i = ldl_be_p(ptr);
649 return u.f;
650}
651
652static inline void stfl_be_p(void *ptr, float32 v)
653{
654 union {
655 float32 f;
656 uint32_t i;
657 } u;
658 u.f = v;
659 stl_be_p(ptr, u.i);
660}
661
662static inline float64 ldfq_be_p(const void *ptr)
663{
664 CPU_DoubleU u;
665 u.l.upper = ldl_be_p(ptr);
666 u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
667 return u.d;
668}
669
670static inline void stfq_be_p(void *ptr, float64 v)
671{
672 CPU_DoubleU u;
673 u.d = v;
674 stl_be_p(ptr, u.l.upper);
675 stl_be_p((uint8_t *)ptr + 4, u.l.lower);
676}
677
678#else
679
680static inline int lduw_be_p(const void *ptr)
681{
682 return *(uint16_t *)ptr;
683}
684
685static inline int ldsw_be_p(const void *ptr)
686{
687 return *(int16_t *)ptr;
688}
689
690static inline int ldl_be_p(const void *ptr)
691{
692 return *(uint32_t *)ptr;
693}
694
695static inline uint64_t ldq_be_p(const void *ptr)
696{
697 return *(uint64_t *)ptr;
698}
699
700static inline void stw_be_p(void *ptr, int v)
701{
702 *(uint16_t *)ptr = v;
703}
704
705static inline void stl_be_p(void *ptr, int v)
706{
707 *(uint32_t *)ptr = v;
708}
709
710static inline void stq_be_p(void *ptr, uint64_t v)
711{
712 *(uint64_t *)ptr = v;
713}
714
715/* float access */
716
717static inline float32 ldfl_be_p(const void *ptr)
718{
719 return *(float32 *)ptr;
720}
721
722static inline float64 ldfq_be_p(const void *ptr)
723{
724 return *(float64 *)ptr;
725}
726
727static inline void stfl_be_p(void *ptr, float32 v)
728{
729 *(float32 *)ptr = v;
730}
731
732static inline void stfq_be_p(void *ptr, float64 v)
733{
734 *(float64 *)ptr = v;
735}
736
737#endif
738
739/* target CPU memory access functions */
740#if defined(TARGET_WORDS_BIGENDIAN)
741#define lduw_p(p) lduw_be_p(p)
742#define ldsw_p(p) ldsw_be_p(p)
743#define ldl_p(p) ldl_be_p(p)
744#define ldq_p(p) ldq_be_p(p)
745#define ldfl_p(p) ldfl_be_p(p)
746#define ldfq_p(p) ldfq_be_p(p)
747#define stw_p(p, v) stw_be_p(p, v)
748#define stl_p(p, v) stl_be_p(p, v)
749#define stq_p(p, v) stq_be_p(p, v)
750#define stfl_p(p, v) stfl_be_p(p, v)
751#define stfq_p(p, v) stfq_be_p(p, v)
752#else
753#define lduw_p(p) lduw_le_p(p)
754#define ldsw_p(p) ldsw_le_p(p)
755#define ldl_p(p) ldl_le_p(p)
756#define ldq_p(p) ldq_le_p(p)
757#define ldfl_p(p) ldfl_le_p(p)
758#define ldfq_p(p) ldfq_le_p(p)
759#define stw_p(p, v) stw_le_p(p, v)
760#define stl_p(p, v) stl_le_p(p, v)
761#define stq_p(p, v) stq_le_p(p, v)
762#define stfl_p(p, v) stfl_le_p(p, v)
763#define stfq_p(p, v) stfq_le_p(p, v)
764#endif
765
766/* MMU memory access macros */
767
768#if defined(CONFIG_USER_ONLY)
769#include <assert.h>
770#include "qemu-types.h"
771
772/* On some host systems the guest address space is reserved on the host.
773 * This allows the guest address space to be offset to a convenient location.
774 */
775#if defined(CONFIG_USE_GUEST_BASE)
776extern uintptr_t guest_base;
777extern int have_guest_base;
778extern uintptr_t reserved_va;
779#define GUEST_BASE guest_base
780#define RESERVED_VA reserved_va
781#else
782#define GUEST_BASE 0ul
783#define RESERVED_VA 0ul
784#endif
785
786/* All direct uses of g2h and h2g need to go away for usermode softmmu. */
787#define g2h(x) ((void *)((uintptr_t)(x) + GUEST_BASE))
788
789#if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
790#define h2g_valid(x) 1
791#else
792#define h2g_valid(x) ({ \
793 uintptr_t __guest = (uintptr_t)(x) - GUEST_BASE; \
794 __guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS); \
795})
796#endif
797
798#define h2g(x) ({ \
799 uintptr_t __ret = (uintptr_t)(x) - GUEST_BASE; \
800 /* Check if given address fits target address space */ \
801 assert(h2g_valid(x)); \
802 (abi_ulong)__ret; \
803})
804
805#define saddr(x) g2h(x)
806#define laddr(x) g2h(x)
807
808#else /* !CONFIG_USER_ONLY */
809/* NOTE: we use double casts if pointers and target_ulong have
810 different sizes */
811#define saddr(x) (uint8_t *)(intptr_t)(x)
812#define laddr(x) (uint8_t *)(intptr_t)(x)
813#endif
814
815#define ldub_raw(p) ldub_p(laddr((p)))
816#define ldsb_raw(p) ldsb_p(laddr((p)))
817#define lduw_raw(p) lduw_p(laddr((p)))
818#define ldsw_raw(p) ldsw_p(laddr((p)))
819#define ldl_raw(p) ldl_p(laddr((p)))
820#define ldq_raw(p) ldq_p(laddr((p)))
821#define ldfl_raw(p) ldfl_p(laddr((p)))
822#define ldfq_raw(p) ldfq_p(laddr((p)))
823#define stb_raw(p, v) stb_p(saddr((p)), v)
824#define stw_raw(p, v) stw_p(saddr((p)), v)
825#define stl_raw(p, v) stl_p(saddr((p)), v)
826#define stq_raw(p, v) stq_p(saddr((p)), v)
827#define stfl_raw(p, v) stfl_p(saddr((p)), v)
828#define stfq_raw(p, v) stfq_p(saddr((p)), v)
829
830
831#if defined(CONFIG_USER_ONLY)
832
833/* if user mode, no other memory access functions */
834#define ldub(p) ldub_raw(p)
835#define ldsb(p) ldsb_raw(p)
836#define lduw(p) lduw_raw(p)
837#define ldsw(p) ldsw_raw(p)
838#define ldl(p) ldl_raw(p)
839#define ldq(p) ldq_raw(p)
840#define ldfl(p) ldfl_raw(p)
841#define ldfq(p) ldfq_raw(p)
842#define stb(p, v) stb_raw(p, v)
843#define stw(p, v) stw_raw(p, v)
844#define stl(p, v) stl_raw(p, v)
845#define stq(p, v) stq_raw(p, v)
846#define stfl(p, v) stfl_raw(p, v)
847#define stfq(p, v) stfq_raw(p, v)
848
849#define ldub_code(p) ldub_raw(p)
850#define ldsb_code(p) ldsb_raw(p)
851#define lduw_code(p) lduw_raw(p)
852#define ldsw_code(p) ldsw_raw(p)
853#define ldl_code(p) ldl_raw(p)
854#define ldq_code(p) ldq_raw(p)
855
856#define ldub_kernel(p) ldub_raw(p)
857#define ldsb_kernel(p) ldsb_raw(p)
858#define lduw_kernel(p) lduw_raw(p)
859#define ldsw_kernel(p) ldsw_raw(p)
860#define ldl_kernel(p) ldl_raw(p)
861#define ldq_kernel(p) ldq_raw(p)
862#define ldfl_kernel(p) ldfl_raw(p)
863#define ldfq_kernel(p) ldfq_raw(p)
864#define stb_kernel(p, v) stb_raw(p, v)
865#define stw_kernel(p, v) stw_raw(p, v)
866#define stl_kernel(p, v) stl_raw(p, v)
867#define stq_kernel(p, v) stq_raw(p, v)
868#define stfl_kernel(p, v) stfl_raw(p, v)
869#define stfq_kernel(p, vt) stfq_raw(p, v)
870
871#endif /* defined(CONFIG_USER_ONLY) */
872
873/* page related stuff */
874
875#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
876#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
877#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
878
879/* ??? These should be the larger of uintptr_t and target_ulong. */
880extern size_t qemu_real_host_page_size;
881extern size_t qemu_host_page_bits;
882extern size_t qemu_host_page_size;
883extern uintptr_t qemu_host_page_mask;
884
885#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
886
887/* same as PROT_xxx */
888#define PAGE_READ 0x0001
889#define PAGE_WRITE 0x0002
890#define PAGE_EXEC 0x0004
891#define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
892#define PAGE_VALID 0x0008
893/* original state of the write flag (used when tracking self-modifying
894 code */
895#define PAGE_WRITE_ORG 0x0010
896#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
897/* FIXME: Code that sets/uses this is broken and needs to go away. */
898#define PAGE_RESERVED 0x0020
899#endif
900
901#if defined(CONFIG_USER_ONLY)
902void page_dump(FILE *f);
903
904typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
905 abi_ulong, uintptr_t);
906int walk_memory_regions(void *, walk_memory_regions_fn);
907
908int page_get_flags(target_ulong address);
909void page_set_flags(target_ulong start, target_ulong end, int flags);
910int page_check_range(target_ulong start, target_ulong len, int flags);
911#endif
912
913CPUState *cpu_copy(CPUState *env);
914CPUState *qemu_get_cpu(int cpu);
915
916void cpu_dump_state(CPUState *env, FILE *f,
917 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
918 int flags);
919void cpu_dump_statistics (CPUState *env, FILE *f,
920 int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
921 int flags);
922
923void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
924#ifndef VBOX
925 __attribute__ ((__format__ (__printf__, 2, 3)));
926#else /* VBOX */
927 ;
928#endif /* VBOX */
929extern CPUState *first_cpu;
930extern CPUState *cpu_single_env;
931
932#define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
933#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
934#define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
935#define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
936#define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
937#define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
938#define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
939#define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
940#define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
941#define CPU_INTERRUPT_INIT 0x400 /* INIT pending. */
942#define CPU_INTERRUPT_SIPI 0x800 /* SIPI pending. */
943#define CPU_INTERRUPT_MCE 0x1000 /* (x86 only) MCE pending. */
944
945#ifdef VBOX
946/** Executes a single instruction. cpu_exec() will normally return EXCP_SINGLE_INSTR. */
947# define CPU_INTERRUPT_SINGLE_INSTR 0x01000000
948/** Executing a CPU_INTERRUPT_SINGLE_INSTR request, quit the cpu_loop. (for exceptions and suchlike) */
949# define CPU_INTERRUPT_SINGLE_INSTR_IN_FLIGHT 0x02000000
950/** VM execution was interrupted by VMR3Reset, VMR3Suspend or VMR3PowerOff. */
951# define CPU_INTERRUPT_RC 0x04000000
952/** Exit current TB to process an external request. */
953# define CPU_INTERRUPT_EXTERNAL_FLUSH_TLB 0x08000000
954/** Exit current TB to process an external request. */
955# define CPU_INTERRUPT_EXTERNAL_EXIT 0x10000000
956/** Exit current TB to process an external interrupt request. */
957# define CPU_INTERRUPT_EXTERNAL_HARD 0x20000000
958/** Exit current TB to process an external timer request. */
959# define CPU_INTERRUPT_EXTERNAL_TIMER 0x40000000
960/** Exit current TB to process an external DMA request. */
961# define CPU_INTERRUPT_EXTERNAL_DMA 0x80000000
962#endif /* VBOX */
963void cpu_interrupt(CPUState *s, int mask);
964void cpu_reset_interrupt(CPUState *env, int mask);
965
966void cpu_exit(CPUState *s);
967
968int qemu_cpu_has_work(CPUState *env);
969
970/* Breakpoint/watchpoint flags */
971#define BP_MEM_READ 0x01
972#define BP_MEM_WRITE 0x02
973#define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
974#define BP_STOP_BEFORE_ACCESS 0x04
975#define BP_WATCHPOINT_HIT 0x08
976#define BP_GDB 0x10
977#define BP_CPU 0x20
978
979int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
980 CPUBreakpoint **breakpoint);
981int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
982void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
983void cpu_breakpoint_remove_all(CPUState *env, int mask);
984int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
985 int flags, CPUWatchpoint **watchpoint);
986int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
987 target_ulong len, int flags);
988void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
989void cpu_watchpoint_remove_all(CPUState *env, int mask);
990
991#define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
992#define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
993#define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
994
995void cpu_single_step(CPUState *env, int enabled);
996void cpu_reset(CPUState *s);
997int cpu_is_stopped(CPUState *env);
998void run_on_cpu(CPUState *env, void (*func)(void *data), void *data);
999
1000#define CPU_LOG_TB_OUT_ASM (1 << 0)
1001#define CPU_LOG_TB_IN_ASM (1 << 1)
1002#define CPU_LOG_TB_OP (1 << 2)
1003#define CPU_LOG_TB_OP_OPT (1 << 3)
1004#define CPU_LOG_INT (1 << 4)
1005#define CPU_LOG_EXEC (1 << 5)
1006#define CPU_LOG_PCALL (1 << 6)
1007#define CPU_LOG_IOPORT (1 << 7)
1008#define CPU_LOG_TB_CPU (1 << 8)
1009#define CPU_LOG_RESET (1 << 9)
1010
1011/* define log items */
1012typedef struct CPULogItem {
1013 int mask;
1014 const char *name;
1015 const char *help;
1016} CPULogItem;
1017
1018extern const CPULogItem cpu_log_items[];
1019
1020void cpu_set_log(int log_flags);
1021void cpu_set_log_filename(const char *filename);
1022int cpu_str_to_log_mask(const char *str);
1023
1024#if !defined(CONFIG_USER_ONLY)
1025
1026/* Return the physical page corresponding to a virtual one. Use it
1027 only for debugging because no protection checks are done. Return -1
1028 if no page found. */
1029target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
1030
1031/* memory API */
1032
1033#ifndef VBOX
1034extern int phys_ram_fd;
1035extern ram_addr_t ram_size;
1036#endif /* !VBOX */
1037
1038typedef struct RAMBlock {
1039 uint8_t *host;
1040 ram_addr_t offset;
1041 ram_addr_t length;
1042 char idstr[256];
1043 QLIST_ENTRY(RAMBlock) next;
1044#if defined(__linux__) && !defined(TARGET_S390X)
1045 int fd;
1046#endif
1047} RAMBlock;
1048
1049typedef struct RAMList {
1050 uint8_t *phys_dirty;
1051#ifdef VBOX
1052 /** This is required for bounds checking the phys_ram_dirty accesses.
1053 * We have memory ranges (the high PC-BIOS mapping) which causes some pages
1054 * to fall outside the dirty map. */
1055 RTGCPHYS phys_dirty_size;
1056#if 1
1057# define VBOX_RAMLIST_DIRTY_BOUNDS_CHECK_RET(addr,rv) \
1058 do { \
1059 if (RT_UNLIKELY( ((addr) >> TARGET_PAGE_BITS) >= ram_list.phys_dirty_size)) { \
1060 Log(("%s: %RGp\n", __FUNCTION__, (RTGCPHYS)addr)); \
1061 return (rv); \
1062 } \
1063 } while (0)
1064# define VBOX_RAMLIST_DIRTY_BOUNDS_CHECK_RETV(addr) \
1065 do { \
1066 if (RT_UNLIKELY( ((addr) >> TARGET_PAGE_BITS) >= ram_list.phys_dirty_size)) { \
1067 Log(("%s: %RGp\n", __FUNCTION__, (RTGCPHYS)addr)); \
1068 return; \
1069 } \
1070 } while (0)
1071#else
1072# define VBOX_RAMLIST_DIRTY_BOUNDS_CHECK_RET(addr,rv) \
1073 AssertMsgReturn(((addr) >> TARGET_PAGE_BITS) < ram_list.phys_dirty_size, ("%#RGp\n", (RTGCPHYS)(addr)), (rv));
1074# define VBOX_RAMLIST_DIRTY_BOUNDS_CHECK_RETV(addr) \
1075 AssertMsgReturnVoid(((addr) >> TARGET_PAGE_BITS) < ram_list.phys_dirty_size, ("%#RGp\n", (RTGCPHYS)(addr)));
1076# endif
1077#else
1078# define VBOX_RAMLIST_DIRTY_BOUNDS_CHECK_RET(addr,rv) do {} while()
1079# define VBOX_RAMLIST_DIRTY_BOUNDS_CHECK_RETV(addr) do {} while()
1080#endif /* VBOX */
1081 QLIST_HEAD(ram, RAMBlock) blocks;
1082} RAMList;
1083extern RAMList ram_list;
1084
1085extern const char *mem_path;
1086extern int mem_prealloc;
1087
1088/* physical memory access */
1089
1090/* MMIO pages are identified by a combination of an IO device index and
1091 3 flags. The ROMD code stores the page ram offset in iotlb entry,
1092 so only a limited number of ids are avaiable. */
1093
1094#define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
1095
1096/* Flags stored in the low bits of the TLB virtual address. These are
1097 defined so that fast path ram access is all zeros. */
1098/* Zero if TLB entry is valid. */
1099#define TLB_INVALID_MASK (1 << 3)
1100/* Set if TLB entry references a clean RAM page. The iotlb entry will
1101 contain the page physical address. */
1102#define TLB_NOTDIRTY (1 << 4)
1103/* Set if TLB entry is an IO callback. */
1104#define TLB_MMIO (1 << 5)
1105
1106#define VGA_DIRTY_FLAG 0x01
1107#define CODE_DIRTY_FLAG 0x02
1108#define MIGRATION_DIRTY_FLAG 0x08
1109
1110/* read dirty bit (return 0 or 1) */
1111static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
1112{
1113 VBOX_RAMLIST_DIRTY_BOUNDS_CHECK_RET(addr, 0);
1114 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
1115}
1116
1117static inline int cpu_physical_memory_get_dirty_flags(ram_addr_t addr)
1118{
1119 VBOX_RAMLIST_DIRTY_BOUNDS_CHECK_RET(addr, 0xff);
1120 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS];
1121}
1122
1123static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
1124 int dirty_flags)
1125{
1126 VBOX_RAMLIST_DIRTY_BOUNDS_CHECK_RET(addr, 0xff & dirty_flags);
1127 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
1128}
1129
1130static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
1131{
1132 VBOX_RAMLIST_DIRTY_BOUNDS_CHECK_RETV(addr);
1133 ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
1134}
1135
1136static inline int cpu_physical_memory_set_dirty_flags(ram_addr_t addr,
1137 int dirty_flags)
1138{
1139 VBOX_RAMLIST_DIRTY_BOUNDS_CHECK_RET(addr, 0xff);
1140 return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] |= dirty_flags;
1141}
1142
1143static inline void cpu_physical_memory_mask_dirty_range(ram_addr_t start,
1144 int length,
1145 int dirty_flags)
1146{
1147 int i, mask, len;
1148 uint8_t *p;
1149
1150 VBOX_RAMLIST_DIRTY_BOUNDS_CHECK_RETV(start);
1151 len = length >> TARGET_PAGE_BITS;
1152 mask = ~dirty_flags;
1153 p = ram_list.phys_dirty + (start >> TARGET_PAGE_BITS);
1154 for (i = 0; i < len; i++) {
1155 p[i] &= mask;
1156 }
1157}
1158
1159void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1160 int dirty_flags);
1161void cpu_tlb_update_dirty(CPUState *env);
1162
1163int cpu_physical_memory_set_dirty_tracking(int enable);
1164
1165int cpu_physical_memory_get_dirty_tracking(void);
1166
1167int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1168 target_phys_addr_t end_addr);
1169
1170void dump_exec_info(FILE *f,
1171 int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
1172#endif /* !CONFIG_USER_ONLY */
1173
1174int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
1175 uint8_t *buf, int len, int is_write);
1176
1177void cpu_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
1178 uint64_t mcg_status, uint64_t addr, uint64_t misc);
1179
1180#ifdef VBOX
1181void tb_invalidate_virt(CPUState *env, uint32_t eip);
1182#endif /* VBOX */
1183
1184#endif /* CPU_ALL_H */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette