1 | /*
|
---|
2 | * i386 emulator main execution loop
|
---|
3 | *
|
---|
4 | * Copyright (c) 2003-2005 Fabrice Bellard
|
---|
5 | *
|
---|
6 | * This library is free software; you can redistribute it and/or
|
---|
7 | * modify it under the terms of the GNU Lesser General Public
|
---|
8 | * License as published by the Free Software Foundation; either
|
---|
9 | * version 2 of the License, or (at your option) any later version.
|
---|
10 | *
|
---|
11 | * This library is distributed in the hope that it will be useful,
|
---|
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
14 | * Lesser General Public License for more details.
|
---|
15 | *
|
---|
16 | * You should have received a copy of the GNU Lesser General Public
|
---|
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
---|
18 | */
|
---|
19 |
|
---|
20 | /*
|
---|
21 | * Oracle LGPL Disclaimer: For the avoidance of doubt, except that if any license choice
|
---|
22 | * other than GPL or LGPL is available it will apply instead, Oracle elects to use only
|
---|
23 | * the Lesser General Public License version 2.1 (LGPLv2) at this time for any software where
|
---|
24 | * a choice of LGPL license versions is made available with the language indicating
|
---|
25 | * that LGPLv2 or any later version may be used, or where a choice of which version
|
---|
26 | * of the LGPL is applied is otherwise unspecified.
|
---|
27 | */
|
---|
28 |
|
---|
29 | #include "config.h"
|
---|
30 | #include "exec.h"
|
---|
31 | #include "disas.h"
|
---|
32 | #include "tcg.h"
|
---|
33 | #include "kvm.h"
|
---|
34 |
|
---|
35 | #if !defined(CONFIG_SOFTMMU)
|
---|
36 | #undef EAX
|
---|
37 | #undef ECX
|
---|
38 | #undef EDX
|
---|
39 | #undef EBX
|
---|
40 | #undef ESP
|
---|
41 | #undef EBP
|
---|
42 | #undef ESI
|
---|
43 | #undef EDI
|
---|
44 | #undef EIP
|
---|
45 | #include <signal.h>
|
---|
46 | #ifdef __linux__
|
---|
47 | #include <sys/ucontext.h>
|
---|
48 | #endif
|
---|
49 | #endif
|
---|
50 |
|
---|
51 | #if defined(__sparc__) && !defined(HOST_SOLARIS)
|
---|
52 | // Work around ugly bugs in glibc that mangle global register contents
|
---|
53 | #undef env
|
---|
54 | #define env cpu_single_env
|
---|
55 | #endif
|
---|
56 |
|
---|
57 | int tb_invalidated_flag;
|
---|
58 |
|
---|
59 | //#define DEBUG_EXEC
|
---|
60 | //#define DEBUG_SIGNAL
|
---|
61 |
|
---|
62 | int qemu_cpu_has_work(CPUState *env)
|
---|
63 | {
|
---|
64 | return cpu_has_work(env);
|
---|
65 | }
|
---|
66 |
|
---|
67 | void cpu_loop_exit(void)
|
---|
68 | {
|
---|
69 | /* NOTE: the register at this point must be saved by hand because
|
---|
70 | longjmp restore them */
|
---|
71 | regs_to_env();
|
---|
72 | longjmp(env->jmp_env, 1);
|
---|
73 | }
|
---|
74 |
|
---|
75 | /* exit the current TB from a signal handler. The host registers are
|
---|
76 | restored in a state compatible with the CPU emulator
|
---|
77 | */
|
---|
78 | void cpu_resume_from_signal(CPUState *env1, void *puc)
|
---|
79 | {
|
---|
80 | #if !defined(CONFIG_SOFTMMU)
|
---|
81 | #ifdef __linux__
|
---|
82 | struct ucontext *uc = puc;
|
---|
83 | #elif defined(__OpenBSD__)
|
---|
84 | struct sigcontext *uc = puc;
|
---|
85 | #endif
|
---|
86 | #endif
|
---|
87 |
|
---|
88 | env = env1;
|
---|
89 |
|
---|
90 | /* XXX: restore cpu registers saved in host registers */
|
---|
91 |
|
---|
92 | #if !defined(CONFIG_SOFTMMU)
|
---|
93 | if (puc) {
|
---|
94 | /* XXX: use siglongjmp ? */
|
---|
95 | #ifdef __linux__
|
---|
96 | sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
|
---|
97 | #elif defined(__OpenBSD__)
|
---|
98 | sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL);
|
---|
99 | #endif
|
---|
100 | }
|
---|
101 | #endif
|
---|
102 | env->exception_index = -1;
|
---|
103 | longjmp(env->jmp_env, 1);
|
---|
104 | }
|
---|
105 |
|
---|
106 | /* Execute the code without caching the generated code. An interpreter
|
---|
107 | could be used if available. */
|
---|
108 | static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
|
---|
109 | {
|
---|
110 | unsigned long next_tb;
|
---|
111 | TranslationBlock *tb;
|
---|
112 |
|
---|
113 | /* Should never happen.
|
---|
114 | We only end up here when an existing TB is too long. */
|
---|
115 | if (max_cycles > CF_COUNT_MASK)
|
---|
116 | max_cycles = CF_COUNT_MASK;
|
---|
117 |
|
---|
118 | tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
|
---|
119 | max_cycles);
|
---|
120 | env->current_tb = tb;
|
---|
121 | /* execute the generated code */
|
---|
122 | #if defined(VBOX) && defined(GCC_WITH_BUGGY_REGPARM)
|
---|
123 | tcg_qemu_tb_exec(tb->tc_ptr, next_tb);
|
---|
124 | #else
|
---|
125 | next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
|
---|
126 | #endif
|
---|
127 |
|
---|
128 | if ((next_tb & 3) == 2) {
|
---|
129 | /* Restore PC. This may happen if async event occurs before
|
---|
130 | the TB starts executing. */
|
---|
131 | cpu_pc_from_tb(env, tb);
|
---|
132 | }
|
---|
133 | tb_phys_invalidate(tb, -1);
|
---|
134 | tb_free(tb);
|
---|
135 | }
|
---|
136 |
|
---|
137 | static TranslationBlock *tb_find_slow(target_ulong pc,
|
---|
138 | target_ulong cs_base,
|
---|
139 | uint64_t flags)
|
---|
140 | {
|
---|
141 | TranslationBlock *tb, **ptb1;
|
---|
142 | unsigned int h;
|
---|
143 | target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
|
---|
144 |
|
---|
145 | tb_invalidated_flag = 0;
|
---|
146 |
|
---|
147 | regs_to_env(); /* XXX: do it just before cpu_gen_code() */
|
---|
148 |
|
---|
149 | /* find translated block using physical mappings */
|
---|
150 | phys_pc = get_phys_addr_code(env, pc);
|
---|
151 | phys_page1 = phys_pc & TARGET_PAGE_MASK;
|
---|
152 | phys_page2 = -1;
|
---|
153 | h = tb_phys_hash_func(phys_pc);
|
---|
154 | ptb1 = &tb_phys_hash[h];
|
---|
155 | for(;;) {
|
---|
156 | tb = *ptb1;
|
---|
157 | if (!tb)
|
---|
158 | goto not_found;
|
---|
159 | if (tb->pc == pc &&
|
---|
160 | tb->page_addr[0] == phys_page1 &&
|
---|
161 | tb->cs_base == cs_base &&
|
---|
162 | tb->flags == flags) {
|
---|
163 | /* check next page if needed */
|
---|
164 | if (tb->page_addr[1] != -1) {
|
---|
165 | virt_page2 = (pc & TARGET_PAGE_MASK) +
|
---|
166 | TARGET_PAGE_SIZE;
|
---|
167 | phys_page2 = get_phys_addr_code(env, virt_page2);
|
---|
168 | if (tb->page_addr[1] == phys_page2)
|
---|
169 | goto found;
|
---|
170 | } else {
|
---|
171 | goto found;
|
---|
172 | }
|
---|
173 | }
|
---|
174 | ptb1 = &tb->phys_hash_next;
|
---|
175 | }
|
---|
176 | not_found:
|
---|
177 | /* if no translated code available, then translate it now */
|
---|
178 | tb = tb_gen_code(env, pc, cs_base, flags, 0);
|
---|
179 |
|
---|
180 | found:
|
---|
181 | /* we add the TB in the virtual pc hash table */
|
---|
182 | env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
|
---|
183 | return tb;
|
---|
184 | }
|
---|
185 |
|
---|
186 | static inline TranslationBlock *tb_find_fast(void)
|
---|
187 | {
|
---|
188 | TranslationBlock *tb;
|
---|
189 | target_ulong cs_base, pc;
|
---|
190 | int flags;
|
---|
191 |
|
---|
192 | /* we record a subset of the CPU state. It will
|
---|
193 | always be the same before a given translated block
|
---|
194 | is executed. */
|
---|
195 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
|
---|
196 | tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
|
---|
197 | if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
|
---|
198 | tb->flags != flags)) {
|
---|
199 | tb = tb_find_slow(pc, cs_base, flags);
|
---|
200 | }
|
---|
201 | return tb;
|
---|
202 | }
|
---|
203 |
|
---|
204 | static CPUDebugExcpHandler *debug_excp_handler;
|
---|
205 |
|
---|
206 | CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
|
---|
207 | {
|
---|
208 | CPUDebugExcpHandler *old_handler = debug_excp_handler;
|
---|
209 |
|
---|
210 | debug_excp_handler = handler;
|
---|
211 | return old_handler;
|
---|
212 | }
|
---|
213 |
|
---|
214 | static void cpu_handle_debug_exception(CPUState *env)
|
---|
215 | {
|
---|
216 | CPUWatchpoint *wp;
|
---|
217 |
|
---|
218 | if (!env->watchpoint_hit)
|
---|
219 | TAILQ_FOREACH(wp, &env->watchpoints, entry)
|
---|
220 | wp->flags &= ~BP_WATCHPOINT_HIT;
|
---|
221 |
|
---|
222 | if (debug_excp_handler)
|
---|
223 | debug_excp_handler(env);
|
---|
224 | }
|
---|
225 |
|
---|
226 | /* main execution loop */
|
---|
227 |
|
---|
228 | #ifdef VBOX
|
---|
229 |
|
---|
230 | int cpu_exec(CPUState *env1)
|
---|
231 | {
|
---|
232 | #define DECLARE_HOST_REGS 1
|
---|
233 | #include "hostregs_helper.h"
|
---|
234 | int ret = 0, interrupt_request;
|
---|
235 | TranslationBlock *tb;
|
---|
236 | uint8_t *tc_ptr;
|
---|
237 | unsigned long next_tb;
|
---|
238 |
|
---|
239 | cpu_single_env = env1;
|
---|
240 |
|
---|
241 | /* first we save global registers */
|
---|
242 | #define SAVE_HOST_REGS 1
|
---|
243 | #include "hostregs_helper.h"
|
---|
244 | env = env1;
|
---|
245 |
|
---|
246 | env_to_regs();
|
---|
247 | #if defined(TARGET_I386)
|
---|
248 | /* put eflags in CPU temporary format */
|
---|
249 | CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
---|
250 | DF = 1 - (2 * ((env->eflags >> 10) & 1));
|
---|
251 | CC_OP = CC_OP_EFLAGS;
|
---|
252 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
---|
253 | #elif defined(TARGET_SPARC)
|
---|
254 | #elif defined(TARGET_M68K)
|
---|
255 | env->cc_op = CC_OP_FLAGS;
|
---|
256 | env->cc_dest = env->sr & 0xf;
|
---|
257 | env->cc_x = (env->sr >> 4) & 1;
|
---|
258 | #elif defined(TARGET_ALPHA)
|
---|
259 | #elif defined(TARGET_ARM)
|
---|
260 | #elif defined(TARGET_PPC)
|
---|
261 | #elif defined(TARGET_MIPS)
|
---|
262 | #elif defined(TARGET_SH4)
|
---|
263 | #elif defined(TARGET_CRIS)
|
---|
264 | /* XXXXX */
|
---|
265 | #else
|
---|
266 | #error unsupported target CPU
|
---|
267 | #endif
|
---|
268 | #ifndef VBOX /* VBOX: We need to raise traps and suchlike from the outside. */
|
---|
269 | env->exception_index = -1;
|
---|
270 | #endif
|
---|
271 |
|
---|
272 | /* prepare setjmp context for exception handling */
|
---|
273 | for(;;) {
|
---|
274 | if (setjmp(env->jmp_env) == 0)
|
---|
275 | {
|
---|
276 | env->current_tb = NULL;
|
---|
277 |
|
---|
278 | /*
|
---|
279 | * Check for fatal errors first
|
---|
280 | */
|
---|
281 | if (env->interrupt_request & CPU_INTERRUPT_RC) {
|
---|
282 | env->exception_index = EXCP_RC;
|
---|
283 | ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~CPU_INTERRUPT_RC);
|
---|
284 | ret = env->exception_index;
|
---|
285 | cpu_loop_exit();
|
---|
286 | }
|
---|
287 |
|
---|
288 | /* if an exception is pending, we execute it here */
|
---|
289 | if (env->exception_index >= 0) {
|
---|
290 | if (env->exception_index >= EXCP_INTERRUPT) {
|
---|
291 | /* exit request from the cpu execution loop */
|
---|
292 | ret = env->exception_index;
|
---|
293 | if (ret == EXCP_DEBUG)
|
---|
294 | cpu_handle_debug_exception(env);
|
---|
295 | break;
|
---|
296 | } else {
|
---|
297 | /* simulate a real cpu exception. On i386, it can
|
---|
298 | trigger new exceptions, but we do not handle
|
---|
299 | double or triple faults yet. */
|
---|
300 | RAWEx_ProfileStart(env, STATS_IRQ_HANDLING);
|
---|
301 | Log(("do_interrupt %d %d %RGv\n", env->exception_index, env->exception_is_int, (RTGCPTR)env->exception_next_eip));
|
---|
302 | do_interrupt(env->exception_index,
|
---|
303 | env->exception_is_int,
|
---|
304 | env->error_code,
|
---|
305 | env->exception_next_eip, 0);
|
---|
306 | /* successfully delivered */
|
---|
307 | env->old_exception = -1;
|
---|
308 | RAWEx_ProfileStop(env, STATS_IRQ_HANDLING);
|
---|
309 | }
|
---|
310 | env->exception_index = -1;
|
---|
311 | }
|
---|
312 |
|
---|
313 | next_tb = 0; /* force lookup of first TB */
|
---|
314 | for(;;)
|
---|
315 | {
|
---|
316 | interrupt_request = env->interrupt_request;
|
---|
317 | if (unlikely(interrupt_request)) {
|
---|
318 | if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
|
---|
319 | /* Mask out external interrupts for this step. */
|
---|
320 | interrupt_request &= ~(CPU_INTERRUPT_HARD |
|
---|
321 | CPU_INTERRUPT_FIQ |
|
---|
322 | CPU_INTERRUPT_SMI |
|
---|
323 | CPU_INTERRUPT_NMI);
|
---|
324 | }
|
---|
325 | if (interrupt_request & CPU_INTERRUPT_DEBUG) {
|
---|
326 | env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
|
---|
327 | env->exception_index = EXCP_DEBUG;
|
---|
328 | cpu_loop_exit();
|
---|
329 | }
|
---|
330 | /** @todo: reconcile with what QEMU really does */
|
---|
331 |
|
---|
332 | /* Single instruction exec request, we execute it and return (one way or the other).
|
---|
333 | The caller will always reschedule after doing this operation! */
|
---|
334 | if (interrupt_request & CPU_INTERRUPT_SINGLE_INSTR)
|
---|
335 | {
|
---|
336 | /* not in flight are we? (if we are, we trapped) */
|
---|
337 | if (!(env->interrupt_request & CPU_INTERRUPT_SINGLE_INSTR_IN_FLIGHT))
|
---|
338 | {
|
---|
339 | ASMAtomicOrS32((int32_t volatile *)&env->interrupt_request, CPU_INTERRUPT_SINGLE_INSTR_IN_FLIGHT);
|
---|
340 | env->exception_index = EXCP_SINGLE_INSTR;
|
---|
341 | if (emulate_single_instr(env) == -1)
|
---|
342 | AssertMsgFailed(("REM: emulate_single_instr failed for EIP=%RGv!!\n", (RTGCPTR)env->eip));
|
---|
343 |
|
---|
344 | /* When we receive an external interrupt during execution of this single
|
---|
345 | instruction, then we should stay here. We will leave when we're ready
|
---|
346 | for raw-mode or when interrupted by pending EMT requests. */
|
---|
347 | interrupt_request = env->interrupt_request; /* reload this! */
|
---|
348 | if ( !(interrupt_request & CPU_INTERRUPT_HARD)
|
---|
349 | || !(env->eflags & IF_MASK)
|
---|
350 | || (env->hflags & HF_INHIBIT_IRQ_MASK)
|
---|
351 | || (env->state & CPU_RAW_HWACC)
|
---|
352 | )
|
---|
353 | {
|
---|
354 | env->exception_index = ret = EXCP_SINGLE_INSTR;
|
---|
355 | cpu_loop_exit();
|
---|
356 | }
|
---|
357 | }
|
---|
358 | /* Clear CPU_INTERRUPT_SINGLE_INSTR and leave CPU_INTERRUPT_SINGLE_INSTR_IN_FLIGHT set. */
|
---|
359 | ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~CPU_INTERRUPT_SINGLE_INSTR);
|
---|
360 | }
|
---|
361 |
|
---|
362 | RAWEx_ProfileStart(env, STATS_IRQ_HANDLING);
|
---|
363 | if ((interrupt_request & CPU_INTERRUPT_SMI) &&
|
---|
364 | !(env->hflags & HF_SMM_MASK)) {
|
---|
365 | env->interrupt_request &= ~CPU_INTERRUPT_SMI;
|
---|
366 | do_smm_enter();
|
---|
367 | next_tb = 0;
|
---|
368 | }
|
---|
369 | else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
|
---|
370 | (env->eflags & IF_MASK) &&
|
---|
371 | !(env->hflags & HF_INHIBIT_IRQ_MASK))
|
---|
372 | {
|
---|
373 | /* if hardware interrupt pending, we execute it */
|
---|
374 | int intno;
|
---|
375 | ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~CPU_INTERRUPT_HARD);
|
---|
376 | intno = cpu_get_pic_interrupt(env);
|
---|
377 | if (intno >= 0)
|
---|
378 | {
|
---|
379 | Log(("do_interrupt %d\n", intno));
|
---|
380 | do_interrupt(intno, 0, 0, 0, 1);
|
---|
381 | }
|
---|
382 | /* ensure that no TB jump will be modified as
|
---|
383 | the program flow was changed */
|
---|
384 | next_tb = 0;
|
---|
385 | }
|
---|
386 | if (env->interrupt_request & CPU_INTERRUPT_EXITTB)
|
---|
387 | {
|
---|
388 | ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~CPU_INTERRUPT_EXITTB);
|
---|
389 | /* ensure that no TB jump will be modified as
|
---|
390 | the program flow was changed */
|
---|
391 | next_tb = 0;
|
---|
392 | }
|
---|
393 | RAWEx_ProfileStop(env, STATS_IRQ_HANDLING);
|
---|
394 | if (interrupt_request & CPU_INTERRUPT_RC)
|
---|
395 | {
|
---|
396 | env->exception_index = EXCP_RC;
|
---|
397 | ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~CPU_INTERRUPT_RC);
|
---|
398 | ret = env->exception_index;
|
---|
399 | cpu_loop_exit();
|
---|
400 | }
|
---|
401 | }
|
---|
402 | if (unlikely(env->exit_request)) {
|
---|
403 | env->exit_request = 0;
|
---|
404 | env->exception_index = EXCP_INTERRUPT;
|
---|
405 | cpu_loop_exit();
|
---|
406 | }
|
---|
407 |
|
---|
408 | /*
|
---|
409 | * Check if we the CPU state allows us to execute the code in raw-mode.
|
---|
410 | */
|
---|
411 | RAWEx_ProfileStart(env, STATS_RAW_CHECK);
|
---|
412 | if (remR3CanExecuteRaw(env,
|
---|
413 | env->eip + env->segs[R_CS].base,
|
---|
414 | env->hflags | (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK)),
|
---|
415 | &env->exception_index))
|
---|
416 | {
|
---|
417 | RAWEx_ProfileStop(env, STATS_RAW_CHECK);
|
---|
418 | ret = env->exception_index;
|
---|
419 | cpu_loop_exit();
|
---|
420 | }
|
---|
421 | RAWEx_ProfileStop(env, STATS_RAW_CHECK);
|
---|
422 |
|
---|
423 | RAWEx_ProfileStart(env, STATS_TLB_LOOKUP);
|
---|
424 | spin_lock(&tb_lock);
|
---|
425 | tb = tb_find_fast();
|
---|
426 | /* Note: we do it here to avoid a gcc bug on Mac OS X when
|
---|
427 | doing it in tb_find_slow */
|
---|
428 | if (tb_invalidated_flag) {
|
---|
429 | /* as some TB could have been invalidated because
|
---|
430 | of memory exceptions while generating the code, we
|
---|
431 | must recompute the hash index here */
|
---|
432 | next_tb = 0;
|
---|
433 | tb_invalidated_flag = 0;
|
---|
434 | }
|
---|
435 |
|
---|
436 | /* see if we can patch the calling TB. When the TB
|
---|
437 | spans two pages, we cannot safely do a direct
|
---|
438 | jump. */
|
---|
439 | if (next_tb != 0
|
---|
440 | && !(tb->cflags & CF_RAW_MODE)
|
---|
441 | && tb->page_addr[1] == -1)
|
---|
442 | {
|
---|
443 | tb_add_jump((TranslationBlock *)(long)(next_tb & ~3), next_tb & 3, tb);
|
---|
444 | }
|
---|
445 | spin_unlock(&tb_lock);
|
---|
446 | RAWEx_ProfileStop(env, STATS_TLB_LOOKUP);
|
---|
447 |
|
---|
448 | env->current_tb = tb;
|
---|
449 |
|
---|
450 | /* cpu_interrupt might be called while translating the
|
---|
451 | TB, but before it is linked into a potentially
|
---|
452 | infinite loop and becomes env->current_tb. Avoid
|
---|
453 | starting execution if there is a pending interrupt. */
|
---|
454 | if (unlikely (env->exit_request))
|
---|
455 | env->current_tb = NULL;
|
---|
456 |
|
---|
457 | while (env->current_tb) {
|
---|
458 | tc_ptr = tb->tc_ptr;
|
---|
459 | /* execute the generated code */
|
---|
460 | RAWEx_ProfileStart(env, STATS_QEMU_RUN_EMULATED_CODE);
|
---|
461 | #if defined(VBOX) && defined(GCC_WITH_BUGGY_REGPARM)
|
---|
462 | tcg_qemu_tb_exec(tc_ptr, next_tb);
|
---|
463 | #else
|
---|
464 | next_tb = tcg_qemu_tb_exec(tc_ptr);
|
---|
465 | #endif
|
---|
466 | RAWEx_ProfileStop(env, STATS_QEMU_RUN_EMULATED_CODE);
|
---|
467 | env->current_tb = NULL;
|
---|
468 | if ((next_tb & 3) == 2) {
|
---|
469 | /* Instruction counter expired. */
|
---|
470 | int insns_left;
|
---|
471 | tb = (TranslationBlock *)(long)(next_tb & ~3);
|
---|
472 | /* Restore PC. */
|
---|
473 | cpu_pc_from_tb(env, tb);
|
---|
474 | insns_left = env->icount_decr.u32;
|
---|
475 | if (env->icount_extra && insns_left >= 0) {
|
---|
476 | /* Refill decrementer and continue execution. */
|
---|
477 | env->icount_extra += insns_left;
|
---|
478 | if (env->icount_extra > 0xffff) {
|
---|
479 | insns_left = 0xffff;
|
---|
480 | } else {
|
---|
481 | insns_left = env->icount_extra;
|
---|
482 | }
|
---|
483 | env->icount_extra -= insns_left;
|
---|
484 | env->icount_decr.u16.low = insns_left;
|
---|
485 | } else {
|
---|
486 | if (insns_left > 0) {
|
---|
487 | /* Execute remaining instructions. */
|
---|
488 | cpu_exec_nocache(insns_left, tb);
|
---|
489 | }
|
---|
490 | env->exception_index = EXCP_INTERRUPT;
|
---|
491 | next_tb = 0;
|
---|
492 | cpu_loop_exit();
|
---|
493 | }
|
---|
494 | }
|
---|
495 | }
|
---|
496 |
|
---|
497 | /* reset soft MMU for next block (it can currently
|
---|
498 | only be set by a memory fault) */
|
---|
499 | #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
|
---|
500 | if (env->hflags & HF_SOFTMMU_MASK) {
|
---|
501 | env->hflags &= ~HF_SOFTMMU_MASK;
|
---|
502 | /* do not allow linking to another block */
|
---|
503 | next_tb = 0;
|
---|
504 | }
|
---|
505 | #endif
|
---|
506 | } /* for(;;) */
|
---|
507 | } else {
|
---|
508 | env_to_regs();
|
---|
509 | }
|
---|
510 | #ifdef VBOX_HIGH_RES_TIMERS_HACK
|
---|
511 | /* NULL the current_tb here so cpu_interrupt() doesn't do anything
|
---|
512 | unnecessary (like crashing during emulate single instruction).
|
---|
513 | Note! Don't use env1->pVM here, the code wouldn't run with
|
---|
514 | gcc-4.4/amd64 anymore, see #3883. */
|
---|
515 | env->current_tb = NULL;
|
---|
516 | if ( !(env->interrupt_request & ( CPU_INTERRUPT_DEBUG | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_RC
|
---|
517 | | CPU_INTERRUPT_SINGLE_INSTR | CPU_INTERRUPT_SINGLE_INSTR_IN_FLIGHT))
|
---|
518 | && ( (env->interrupt_request & CPU_INTERRUPT_EXTERNAL_TIMER)
|
---|
519 | || TMTimerPollBool(env->pVM, env->pVCpu)) ) {
|
---|
520 | ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~CPU_INTERRUPT_EXTERNAL_TIMER);
|
---|
521 | remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
|
---|
522 | TMR3TimerQueuesDo(env->pVM);
|
---|
523 | remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
|
---|
524 | }
|
---|
525 | #endif
|
---|
526 | } /* for(;;) */
|
---|
527 |
|
---|
528 | #if defined(TARGET_I386)
|
---|
529 | /* restore flags in standard format */
|
---|
530 | env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
|
---|
531 | #else
|
---|
532 | #error unsupported target CPU
|
---|
533 | #endif
|
---|
534 | #include "hostregs_helper.h"
|
---|
535 | return ret;
|
---|
536 | }
|
---|
537 |
|
---|
538 | #else /* !VBOX */
|
---|
539 | int cpu_exec(CPUState *env1)
|
---|
540 | {
|
---|
541 | #define DECLARE_HOST_REGS 1
|
---|
542 | #include "hostregs_helper.h"
|
---|
543 | int ret, interrupt_request;
|
---|
544 | TranslationBlock *tb;
|
---|
545 | uint8_t *tc_ptr;
|
---|
546 | unsigned long next_tb;
|
---|
547 |
|
---|
548 | if (cpu_halted(env1) == EXCP_HALTED)
|
---|
549 | return EXCP_HALTED;
|
---|
550 |
|
---|
551 | cpu_single_env = env1;
|
---|
552 |
|
---|
553 | /* first we save global registers */
|
---|
554 | #define SAVE_HOST_REGS 1
|
---|
555 | #include "hostregs_helper.h"
|
---|
556 | env = env1;
|
---|
557 |
|
---|
558 | env_to_regs();
|
---|
559 | #if defined(TARGET_I386)
|
---|
560 | /* put eflags in CPU temporary format */
|
---|
561 | CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
---|
562 | DF = 1 - (2 * ((env->eflags >> 10) & 1));
|
---|
563 | CC_OP = CC_OP_EFLAGS;
|
---|
564 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
---|
565 | #elif defined(TARGET_SPARC)
|
---|
566 | #elif defined(TARGET_M68K)
|
---|
567 | env->cc_op = CC_OP_FLAGS;
|
---|
568 | env->cc_dest = env->sr & 0xf;
|
---|
569 | env->cc_x = (env->sr >> 4) & 1;
|
---|
570 | #elif defined(TARGET_ALPHA)
|
---|
571 | #elif defined(TARGET_ARM)
|
---|
572 | #elif defined(TARGET_PPC)
|
---|
573 | #elif defined(TARGET_MICROBLAZE)
|
---|
574 | #elif defined(TARGET_MIPS)
|
---|
575 | #elif defined(TARGET_SH4)
|
---|
576 | #elif defined(TARGET_CRIS)
|
---|
577 | /* XXXXX */
|
---|
578 | #else
|
---|
579 | #error unsupported target CPU
|
---|
580 | #endif
|
---|
581 | env->exception_index = -1;
|
---|
582 |
|
---|
583 | /* prepare setjmp context for exception handling */
|
---|
584 | for(;;) {
|
---|
585 | if (setjmp(env->jmp_env) == 0) {
|
---|
586 | #if defined(__sparc__) && !defined(HOST_SOLARIS)
|
---|
587 | #undef env
|
---|
588 | env = cpu_single_env;
|
---|
589 | #define env cpu_single_env
|
---|
590 | #endif
|
---|
591 | env->current_tb = NULL;
|
---|
592 | /* if an exception is pending, we execute it here */
|
---|
593 | if (env->exception_index >= 0) {
|
---|
594 | if (env->exception_index >= EXCP_INTERRUPT) {
|
---|
595 | /* exit request from the cpu execution loop */
|
---|
596 | ret = env->exception_index;
|
---|
597 | if (ret == EXCP_DEBUG)
|
---|
598 | cpu_handle_debug_exception(env);
|
---|
599 | break;
|
---|
600 | } else {
|
---|
601 | #if defined(CONFIG_USER_ONLY)
|
---|
602 | /* if user mode only, we simulate a fake exception
|
---|
603 | which will be handled outside the cpu execution
|
---|
604 | loop */
|
---|
605 | #if defined(TARGET_I386)
|
---|
606 | do_interrupt_user(env->exception_index,
|
---|
607 | env->exception_is_int,
|
---|
608 | env->error_code,
|
---|
609 | env->exception_next_eip);
|
---|
610 | /* successfully delivered */
|
---|
611 | env->old_exception = -1;
|
---|
612 | #endif
|
---|
613 | ret = env->exception_index;
|
---|
614 | break;
|
---|
615 | #else
|
---|
616 | #if defined(TARGET_I386)
|
---|
617 | /* simulate a real cpu exception. On i386, it can
|
---|
618 | trigger new exceptions, but we do not handle
|
---|
619 | double or triple faults yet. */
|
---|
620 | do_interrupt(env->exception_index,
|
---|
621 | env->exception_is_int,
|
---|
622 | env->error_code,
|
---|
623 | env->exception_next_eip, 0);
|
---|
624 | /* successfully delivered */
|
---|
625 | env->old_exception = -1;
|
---|
626 | #elif defined(TARGET_PPC)
|
---|
627 | do_interrupt(env);
|
---|
628 | #elif defined(TARGET_MICROBLAZE)
|
---|
629 | do_interrupt(env);
|
---|
630 | #elif defined(TARGET_MIPS)
|
---|
631 | do_interrupt(env);
|
---|
632 | #elif defined(TARGET_SPARC)
|
---|
633 | do_interrupt(env);
|
---|
634 | #elif defined(TARGET_ARM)
|
---|
635 | do_interrupt(env);
|
---|
636 | #elif defined(TARGET_SH4)
|
---|
637 | do_interrupt(env);
|
---|
638 | #elif defined(TARGET_ALPHA)
|
---|
639 | do_interrupt(env);
|
---|
640 | #elif defined(TARGET_CRIS)
|
---|
641 | do_interrupt(env);
|
---|
642 | #elif defined(TARGET_M68K)
|
---|
643 | do_interrupt(0);
|
---|
644 | #endif
|
---|
645 | #endif
|
---|
646 | }
|
---|
647 | env->exception_index = -1;
|
---|
648 | }
|
---|
649 | #ifdef CONFIG_KQEMU
|
---|
650 | if (kqemu_is_ok(env) && env->interrupt_request == 0 && env->exit_request == 0) {
|
---|
651 | int ret;
|
---|
652 | env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
|
---|
653 | ret = kqemu_cpu_exec(env);
|
---|
654 | /* put eflags in CPU temporary format */
|
---|
655 | CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
---|
656 | DF = 1 - (2 * ((env->eflags >> 10) & 1));
|
---|
657 | CC_OP = CC_OP_EFLAGS;
|
---|
658 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
---|
659 | if (ret == 1) {
|
---|
660 | /* exception */
|
---|
661 | longjmp(env->jmp_env, 1);
|
---|
662 | } else if (ret == 2) {
|
---|
663 | /* softmmu execution needed */
|
---|
664 | } else {
|
---|
665 | if (env->interrupt_request != 0 || env->exit_request != 0) {
|
---|
666 | /* hardware interrupt will be executed just after */
|
---|
667 | } else {
|
---|
668 | /* otherwise, we restart */
|
---|
669 | longjmp(env->jmp_env, 1);
|
---|
670 | }
|
---|
671 | }
|
---|
672 | }
|
---|
673 | #endif
|
---|
674 |
|
---|
675 | if (kvm_enabled()) {
|
---|
676 | kvm_cpu_exec(env);
|
---|
677 | longjmp(env->jmp_env, 1);
|
---|
678 | }
|
---|
679 |
|
---|
680 | next_tb = 0; /* force lookup of first TB */
|
---|
681 | for(;;) {
|
---|
682 | interrupt_request = env->interrupt_request;
|
---|
683 | if (unlikely(interrupt_request)) {
|
---|
684 | if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
|
---|
685 | /* Mask out external interrupts for this step. */
|
---|
686 | interrupt_request &= ~(CPU_INTERRUPT_HARD |
|
---|
687 | CPU_INTERRUPT_FIQ |
|
---|
688 | CPU_INTERRUPT_SMI |
|
---|
689 | CPU_INTERRUPT_NMI);
|
---|
690 | }
|
---|
691 | if (interrupt_request & CPU_INTERRUPT_DEBUG) {
|
---|
692 | env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
|
---|
693 | env->exception_index = EXCP_DEBUG;
|
---|
694 | cpu_loop_exit();
|
---|
695 | }
|
---|
696 | #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
|
---|
697 | defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
|
---|
698 | defined(TARGET_MICROBLAZE)
|
---|
699 | if (interrupt_request & CPU_INTERRUPT_HALT) {
|
---|
700 | env->interrupt_request &= ~CPU_INTERRUPT_HALT;
|
---|
701 | env->halted = 1;
|
---|
702 | env->exception_index = EXCP_HLT;
|
---|
703 | cpu_loop_exit();
|
---|
704 | }
|
---|
705 | #endif
|
---|
706 | #if defined(TARGET_I386)
|
---|
707 | if (interrupt_request & CPU_INTERRUPT_INIT) {
|
---|
708 | svm_check_intercept(SVM_EXIT_INIT);
|
---|
709 | do_cpu_init(env);
|
---|
710 | env->exception_index = EXCP_HALTED;
|
---|
711 | cpu_loop_exit();
|
---|
712 | } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
|
---|
713 | do_cpu_sipi(env);
|
---|
714 | } else if (env->hflags2 & HF2_GIF_MASK) {
|
---|
715 | if ((interrupt_request & CPU_INTERRUPT_SMI) &&
|
---|
716 | !(env->hflags & HF_SMM_MASK)) {
|
---|
717 | svm_check_intercept(SVM_EXIT_SMI);
|
---|
718 | env->interrupt_request &= ~CPU_INTERRUPT_SMI;
|
---|
719 | do_smm_enter();
|
---|
720 | next_tb = 0;
|
---|
721 | } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
|
---|
722 | !(env->hflags2 & HF2_NMI_MASK)) {
|
---|
723 | env->interrupt_request &= ~CPU_INTERRUPT_NMI;
|
---|
724 | env->hflags2 |= HF2_NMI_MASK;
|
---|
725 | do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
|
---|
726 | next_tb = 0;
|
---|
727 | } else if (interrupt_request & CPU_INTERRUPT_MCE) {
|
---|
728 | env->interrupt_request &= ~CPU_INTERRUPT_MCE;
|
---|
729 | do_interrupt(EXCP12_MCHK, 0, 0, 0, 0);
|
---|
730 | next_tb = 0;
|
---|
731 | } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
|
---|
732 | (((env->hflags2 & HF2_VINTR_MASK) &&
|
---|
733 | (env->hflags2 & HF2_HIF_MASK)) ||
|
---|
734 | (!(env->hflags2 & HF2_VINTR_MASK) &&
|
---|
735 | (env->eflags & IF_MASK &&
|
---|
736 | !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
|
---|
737 | int intno;
|
---|
738 | svm_check_intercept(SVM_EXIT_INTR);
|
---|
739 | env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
|
---|
740 | intno = cpu_get_pic_interrupt(env);
|
---|
741 | qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
|
---|
742 | #if defined(__sparc__) && !defined(HOST_SOLARIS)
|
---|
743 | #undef env
|
---|
744 | env = cpu_single_env;
|
---|
745 | #define env cpu_single_env
|
---|
746 | #endif
|
---|
747 | do_interrupt(intno, 0, 0, 0, 1);
|
---|
748 | /* ensure that no TB jump will be modified as
|
---|
749 | the program flow was changed */
|
---|
750 | next_tb = 0;
|
---|
751 | #if !defined(CONFIG_USER_ONLY)
|
---|
752 | } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
|
---|
753 | (env->eflags & IF_MASK) &&
|
---|
754 | !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
|
---|
755 | int intno;
|
---|
756 | /* FIXME: this should respect TPR */
|
---|
757 | svm_check_intercept(SVM_EXIT_VINTR);
|
---|
758 | intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
|
---|
759 | qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
|
---|
760 | do_interrupt(intno, 0, 0, 0, 1);
|
---|
761 | env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
|
---|
762 | next_tb = 0;
|
---|
763 | #endif
|
---|
764 | }
|
---|
765 | }
|
---|
766 | #elif defined(TARGET_PPC)
|
---|
767 | #if 0
|
---|
768 | if ((interrupt_request & CPU_INTERRUPT_RESET)) {
|
---|
769 | cpu_ppc_reset(env);
|
---|
770 | }
|
---|
771 | #endif
|
---|
772 | if (interrupt_request & CPU_INTERRUPT_HARD) {
|
---|
773 | ppc_hw_interrupt(env);
|
---|
774 | if (env->pending_interrupts == 0)
|
---|
775 | env->interrupt_request &= ~CPU_INTERRUPT_HARD;
|
---|
776 | next_tb = 0;
|
---|
777 | }
|
---|
778 | #elif defined(TARGET_MICROBLAZE)
|
---|
779 | if ((interrupt_request & CPU_INTERRUPT_HARD)
|
---|
780 | && (env->sregs[SR_MSR] & MSR_IE)
|
---|
781 | && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
|
---|
782 | && !(env->iflags & (D_FLAG | IMM_FLAG))) {
|
---|
783 | env->exception_index = EXCP_IRQ;
|
---|
784 | do_interrupt(env);
|
---|
785 | next_tb = 0;
|
---|
786 | }
|
---|
787 | #elif defined(TARGET_MIPS)
|
---|
788 | if ((interrupt_request & CPU_INTERRUPT_HARD) &&
|
---|
789 | (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
|
---|
790 | (env->CP0_Status & (1 << CP0St_IE)) &&
|
---|
791 | !(env->CP0_Status & (1 << CP0St_EXL)) &&
|
---|
792 | !(env->CP0_Status & (1 << CP0St_ERL)) &&
|
---|
793 | !(env->hflags & MIPS_HFLAG_DM)) {
|
---|
794 | /* Raise it */
|
---|
795 | env->exception_index = EXCP_EXT_INTERRUPT;
|
---|
796 | env->error_code = 0;
|
---|
797 | do_interrupt(env);
|
---|
798 | next_tb = 0;
|
---|
799 | }
|
---|
800 | #elif defined(TARGET_SPARC)
|
---|
801 | if ((interrupt_request & CPU_INTERRUPT_HARD) &&
|
---|
802 | cpu_interrupts_enabled(env)) {
|
---|
803 | int pil = env->interrupt_index & 15;
|
---|
804 | int type = env->interrupt_index & 0xf0;
|
---|
805 |
|
---|
806 | if (((type == TT_EXTINT) &&
|
---|
807 | (pil == 15 || pil > env->psrpil)) ||
|
---|
808 | type != TT_EXTINT) {
|
---|
809 | env->interrupt_request &= ~CPU_INTERRUPT_HARD;
|
---|
810 | env->exception_index = env->interrupt_index;
|
---|
811 | do_interrupt(env);
|
---|
812 | env->interrupt_index = 0;
|
---|
813 | #if !defined(CONFIG_USER_ONLY)
|
---|
814 | cpu_check_irqs(env);
|
---|
815 | #endif
|
---|
816 | next_tb = 0;
|
---|
817 | }
|
---|
818 | } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
|
---|
819 | //do_interrupt(0, 0, 0, 0, 0);
|
---|
820 | env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
|
---|
821 | }
|
---|
822 | #elif defined(TARGET_ARM)
|
---|
823 | if (interrupt_request & CPU_INTERRUPT_FIQ
|
---|
824 | && !(env->uncached_cpsr & CPSR_F)) {
|
---|
825 | env->exception_index = EXCP_FIQ;
|
---|
826 | do_interrupt(env);
|
---|
827 | next_tb = 0;
|
---|
828 | }
|
---|
829 | /* ARMv7-M interrupt return works by loading a magic value
|
---|
830 | into the PC. On real hardware the load causes the
|
---|
831 | return to occur. The qemu implementation performs the
|
---|
832 | jump normally, then does the exception return when the
|
---|
833 | CPU tries to execute code at the magic address.
|
---|
834 | This will cause the magic PC value to be pushed to
|
---|
835 | the stack if an interrupt occured at the wrong time.
|
---|
836 | We avoid this by disabling interrupts when
|
---|
837 | pc contains a magic address. */
|
---|
838 | if (interrupt_request & CPU_INTERRUPT_HARD
|
---|
839 | && ((IS_M(env) && env->regs[15] < 0xfffffff0)
|
---|
840 | || !(env->uncached_cpsr & CPSR_I))) {
|
---|
841 | env->exception_index = EXCP_IRQ;
|
---|
842 | do_interrupt(env);
|
---|
843 | next_tb = 0;
|
---|
844 | }
|
---|
845 | #elif defined(TARGET_SH4)
|
---|
846 | if (interrupt_request & CPU_INTERRUPT_HARD) {
|
---|
847 | do_interrupt(env);
|
---|
848 | next_tb = 0;
|
---|
849 | }
|
---|
850 | #elif defined(TARGET_ALPHA)
|
---|
851 | if (interrupt_request & CPU_INTERRUPT_HARD) {
|
---|
852 | do_interrupt(env);
|
---|
853 | next_tb = 0;
|
---|
854 | }
|
---|
855 | #elif defined(TARGET_CRIS)
|
---|
856 | if (interrupt_request & CPU_INTERRUPT_HARD
|
---|
857 | && (env->pregs[PR_CCS] & I_FLAG)) {
|
---|
858 | env->exception_index = EXCP_IRQ;
|
---|
859 | do_interrupt(env);
|
---|
860 | next_tb = 0;
|
---|
861 | }
|
---|
862 | if (interrupt_request & CPU_INTERRUPT_NMI
|
---|
863 | && (env->pregs[PR_CCS] & M_FLAG)) {
|
---|
864 | env->exception_index = EXCP_NMI;
|
---|
865 | do_interrupt(env);
|
---|
866 | next_tb = 0;
|
---|
867 | }
|
---|
868 | #elif defined(TARGET_M68K)
|
---|
869 | if (interrupt_request & CPU_INTERRUPT_HARD
|
---|
870 | && ((env->sr & SR_I) >> SR_I_SHIFT)
|
---|
871 | < env->pending_level) {
|
---|
872 | /* Real hardware gets the interrupt vector via an
|
---|
873 | IACK cycle at this point. Current emulated
|
---|
874 | hardware doesn't rely on this, so we
|
---|
875 | provide/save the vector when the interrupt is
|
---|
876 | first signalled. */
|
---|
877 | env->exception_index = env->pending_vector;
|
---|
878 | do_interrupt(1);
|
---|
879 | next_tb = 0;
|
---|
880 | }
|
---|
881 | #endif
|
---|
882 | /* Don't use the cached interupt_request value,
|
---|
883 | do_interrupt may have updated the EXITTB flag. */
|
---|
884 | if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
|
---|
885 | env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
|
---|
886 | /* ensure that no TB jump will be modified as
|
---|
887 | the program flow was changed */
|
---|
888 | next_tb = 0;
|
---|
889 | }
|
---|
890 | }
|
---|
891 | if (unlikely(env->exit_request)) {
|
---|
892 | env->exit_request = 0;
|
---|
893 | env->exception_index = EXCP_INTERRUPT;
|
---|
894 | cpu_loop_exit();
|
---|
895 | }
|
---|
896 | #ifdef DEBUG_EXEC
|
---|
897 | if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
|
---|
898 | /* restore flags in standard format */
|
---|
899 | regs_to_env();
|
---|
900 | #if defined(TARGET_I386)
|
---|
901 | env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
|
---|
902 | log_cpu_state(env, X86_DUMP_CCOP);
|
---|
903 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
---|
904 | #elif defined(TARGET_ARM)
|
---|
905 | log_cpu_state(env, 0);
|
---|
906 | #elif defined(TARGET_SPARC)
|
---|
907 | log_cpu_state(env, 0);
|
---|
908 | #elif defined(TARGET_PPC)
|
---|
909 | log_cpu_state(env, 0);
|
---|
910 | #elif defined(TARGET_M68K)
|
---|
911 | cpu_m68k_flush_flags(env, env->cc_op);
|
---|
912 | env->cc_op = CC_OP_FLAGS;
|
---|
913 | env->sr = (env->sr & 0xffe0)
|
---|
914 | | env->cc_dest | (env->cc_x << 4);
|
---|
915 | log_cpu_state(env, 0);
|
---|
916 | #elif defined(TARGET_MICROBLAZE)
|
---|
917 | log_cpu_state(env, 0);
|
---|
918 | #elif defined(TARGET_MIPS)
|
---|
919 | log_cpu_state(env, 0);
|
---|
920 | #elif defined(TARGET_SH4)
|
---|
921 | log_cpu_state(env, 0);
|
---|
922 | #elif defined(TARGET_ALPHA)
|
---|
923 | log_cpu_state(env, 0);
|
---|
924 | #elif defined(TARGET_CRIS)
|
---|
925 | log_cpu_state(env, 0);
|
---|
926 | #else
|
---|
927 | #error unsupported target CPU
|
---|
928 | #endif
|
---|
929 | }
|
---|
930 | #endif
|
---|
931 | spin_lock(&tb_lock);
|
---|
932 | tb = tb_find_fast();
|
---|
933 | /* Note: we do it here to avoid a gcc bug on Mac OS X when
|
---|
934 | doing it in tb_find_slow */
|
---|
935 | if (tb_invalidated_flag) {
|
---|
936 | /* as some TB could have been invalidated because
|
---|
937 | of memory exceptions while generating the code, we
|
---|
938 | must recompute the hash index here */
|
---|
939 | next_tb = 0;
|
---|
940 | tb_invalidated_flag = 0;
|
---|
941 | }
|
---|
942 | #ifdef DEBUG_EXEC
|
---|
943 | qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
|
---|
944 | (long)tb->tc_ptr, tb->pc,
|
---|
945 | lookup_symbol(tb->pc));
|
---|
946 | #endif
|
---|
947 | /* see if we can patch the calling TB. When the TB
|
---|
948 | spans two pages, we cannot safely do a direct
|
---|
949 | jump. */
|
---|
950 | {
|
---|
951 | if (next_tb != 0 &&
|
---|
952 | #ifdef CONFIG_KQEMU
|
---|
953 | (env->kqemu_enabled != 2) &&
|
---|
954 | #endif
|
---|
955 | tb->page_addr[1] == -1) {
|
---|
956 | tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
|
---|
957 | }
|
---|
958 | }
|
---|
959 | spin_unlock(&tb_lock);
|
---|
960 | env->current_tb = tb;
|
---|
961 |
|
---|
962 | /* cpu_interrupt might be called while translating the
|
---|
963 | TB, but before it is linked into a potentially
|
---|
964 | infinite loop and becomes env->current_tb. Avoid
|
---|
965 | starting execution if there is a pending interrupt. */
|
---|
966 | if (unlikely (env->exit_request))
|
---|
967 | env->current_tb = NULL;
|
---|
968 |
|
---|
969 | while (env->current_tb) {
|
---|
970 | tc_ptr = tb->tc_ptr;
|
---|
971 | /* execute the generated code */
|
---|
972 | #if defined(__sparc__) && !defined(HOST_SOLARIS)
|
---|
973 | #undef env
|
---|
974 | env = cpu_single_env;
|
---|
975 | #define env cpu_single_env
|
---|
976 | #endif
|
---|
977 | next_tb = tcg_qemu_tb_exec(tc_ptr);
|
---|
978 | env->current_tb = NULL;
|
---|
979 | if ((next_tb & 3) == 2) {
|
---|
980 | /* Instruction counter expired. */
|
---|
981 | int insns_left;
|
---|
982 | tb = (TranslationBlock *)(long)(next_tb & ~3);
|
---|
983 | /* Restore PC. */
|
---|
984 | cpu_pc_from_tb(env, tb);
|
---|
985 | insns_left = env->icount_decr.u32;
|
---|
986 | if (env->icount_extra && insns_left >= 0) {
|
---|
987 | /* Refill decrementer and continue execution. */
|
---|
988 | env->icount_extra += insns_left;
|
---|
989 | if (env->icount_extra > 0xffff) {
|
---|
990 | insns_left = 0xffff;
|
---|
991 | } else {
|
---|
992 | insns_left = env->icount_extra;
|
---|
993 | }
|
---|
994 | env->icount_extra -= insns_left;
|
---|
995 | env->icount_decr.u16.low = insns_left;
|
---|
996 | } else {
|
---|
997 | if (insns_left > 0) {
|
---|
998 | /* Execute remaining instructions. */
|
---|
999 | cpu_exec_nocache(insns_left, tb);
|
---|
1000 | }
|
---|
1001 | env->exception_index = EXCP_INTERRUPT;
|
---|
1002 | next_tb = 0;
|
---|
1003 | cpu_loop_exit();
|
---|
1004 | }
|
---|
1005 | }
|
---|
1006 | }
|
---|
1007 | /* reset soft MMU for next block (it can currently
|
---|
1008 | only be set by a memory fault) */
|
---|
1009 | #if defined(CONFIG_KQEMU)
|
---|
1010 | #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
|
---|
1011 | if (kqemu_is_ok(env) &&
|
---|
1012 | (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
|
---|
1013 | cpu_loop_exit();
|
---|
1014 | }
|
---|
1015 | #endif
|
---|
1016 | } /* for(;;) */
|
---|
1017 | } else {
|
---|
1018 | env_to_regs();
|
---|
1019 | }
|
---|
1020 | } /* for(;;) */
|
---|
1021 |
|
---|
1022 |
|
---|
1023 | #if defined(TARGET_I386)
|
---|
1024 | /* restore flags in standard format */
|
---|
1025 | env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
|
---|
1026 | #elif defined(TARGET_ARM)
|
---|
1027 | /* XXX: Save/restore host fpu exception state?. */
|
---|
1028 | #elif defined(TARGET_SPARC)
|
---|
1029 | #elif defined(TARGET_PPC)
|
---|
1030 | #elif defined(TARGET_M68K)
|
---|
1031 | cpu_m68k_flush_flags(env, env->cc_op);
|
---|
1032 | env->cc_op = CC_OP_FLAGS;
|
---|
1033 | env->sr = (env->sr & 0xffe0)
|
---|
1034 | | env->cc_dest | (env->cc_x << 4);
|
---|
1035 | #elif defined(TARGET_MICROBLAZE)
|
---|
1036 | #elif defined(TARGET_MIPS)
|
---|
1037 | #elif defined(TARGET_SH4)
|
---|
1038 | #elif defined(TARGET_ALPHA)
|
---|
1039 | #elif defined(TARGET_CRIS)
|
---|
1040 | /* XXXXX */
|
---|
1041 | #else
|
---|
1042 | #error unsupported target CPU
|
---|
1043 | #endif
|
---|
1044 |
|
---|
1045 | /* restore global registers */
|
---|
1046 | #include "hostregs_helper.h"
|
---|
1047 |
|
---|
1048 | /* fail safe : never use cpu_single_env outside cpu_exec() */
|
---|
1049 | cpu_single_env = NULL;
|
---|
1050 | return ret;
|
---|
1051 | }
|
---|
1052 |
|
---|
1053 | #endif /* !VBOX */
|
---|
1054 |
|
---|
1055 | /* must only be called from the generated code as an exception can be
|
---|
1056 | generated */
|
---|
1057 | void tb_invalidate_page_range(target_ulong start, target_ulong end)
|
---|
1058 | {
|
---|
1059 | /* XXX: cannot enable it yet because it yields to MMU exception
|
---|
1060 | where NIP != read address on PowerPC */
|
---|
1061 | #if 0
|
---|
1062 | target_ulong phys_addr;
|
---|
1063 | phys_addr = get_phys_addr_code(env, start);
|
---|
1064 | tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
|
---|
1065 | #endif
|
---|
1066 | }
|
---|
1067 |
|
---|
1068 | #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
|
---|
1069 |
|
---|
1070 | void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
|
---|
1071 | {
|
---|
1072 | CPUX86State *saved_env;
|
---|
1073 |
|
---|
1074 | saved_env = env;
|
---|
1075 | env = s;
|
---|
1076 | if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
|
---|
1077 | selector &= 0xffff;
|
---|
1078 | cpu_x86_load_seg_cache(env, seg_reg, selector,
|
---|
1079 | (selector << 4), 0xffff, 0);
|
---|
1080 | } else {
|
---|
1081 | helper_load_seg(seg_reg, selector);
|
---|
1082 | }
|
---|
1083 | env = saved_env;
|
---|
1084 | }
|
---|
1085 |
|
---|
1086 | void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
|
---|
1087 | {
|
---|
1088 | CPUX86State *saved_env;
|
---|
1089 |
|
---|
1090 | saved_env = env;
|
---|
1091 | env = s;
|
---|
1092 |
|
---|
1093 | helper_fsave(ptr, data32);
|
---|
1094 |
|
---|
1095 | env = saved_env;
|
---|
1096 | }
|
---|
1097 |
|
---|
1098 | void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
|
---|
1099 | {
|
---|
1100 | CPUX86State *saved_env;
|
---|
1101 |
|
---|
1102 | saved_env = env;
|
---|
1103 | env = s;
|
---|
1104 |
|
---|
1105 | helper_frstor(ptr, data32);
|
---|
1106 |
|
---|
1107 | env = saved_env;
|
---|
1108 | }
|
---|
1109 |
|
---|
1110 | #endif /* TARGET_I386 */
|
---|
1111 |
|
---|
1112 | #if !defined(CONFIG_SOFTMMU)
|
---|
1113 |
|
---|
1114 | #if defined(TARGET_I386)
|
---|
1115 |
|
---|
1116 | /* 'pc' is the host PC at which the exception was raised. 'address' is
|
---|
1117 | the effective address of the memory exception. 'is_write' is 1 if a
|
---|
1118 | write caused the exception and otherwise 0'. 'old_set' is the
|
---|
1119 | signal set which should be restored */
|
---|
1120 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
---|
1121 | int is_write, sigset_t *old_set,
|
---|
1122 | void *puc)
|
---|
1123 | {
|
---|
1124 | TranslationBlock *tb;
|
---|
1125 | int ret;
|
---|
1126 |
|
---|
1127 | if (cpu_single_env)
|
---|
1128 | env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
---|
1129 | #if defined(DEBUG_SIGNAL)
|
---|
1130 | qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
---|
1131 | pc, address, is_write, *(unsigned long *)old_set);
|
---|
1132 | #endif
|
---|
1133 | /* XXX: locking issue */
|
---|
1134 | if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
---|
1135 | return 1;
|
---|
1136 | }
|
---|
1137 |
|
---|
1138 | /* see if it is an MMU fault */
|
---|
1139 | ret = cpu_x86_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
---|
1140 | if (ret < 0)
|
---|
1141 | return 0; /* not an MMU fault */
|
---|
1142 | if (ret == 0)
|
---|
1143 | return 1; /* the MMU fault was handled without causing real CPU fault */
|
---|
1144 | /* now we have a real cpu fault */
|
---|
1145 | tb = tb_find_pc(pc);
|
---|
1146 | if (tb) {
|
---|
1147 | /* the PC is inside the translated code. It means that we have
|
---|
1148 | a virtual CPU fault */
|
---|
1149 | cpu_restore_state(tb, env, pc, puc);
|
---|
1150 | }
|
---|
1151 | if (ret == 1) {
|
---|
1152 | #if 0
|
---|
1153 | printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
|
---|
1154 | env->eip, env->cr[2], env->error_code);
|
---|
1155 | #endif
|
---|
1156 | /* we restore the process signal mask as the sigreturn should
|
---|
1157 | do it (XXX: use sigsetjmp) */
|
---|
1158 | sigprocmask(SIG_SETMASK, old_set, NULL);
|
---|
1159 | raise_exception_err(env->exception_index, env->error_code);
|
---|
1160 | } else {
|
---|
1161 | /* activate soft MMU for this block */
|
---|
1162 | env->hflags |= HF_SOFTMMU_MASK;
|
---|
1163 | cpu_resume_from_signal(env, puc);
|
---|
1164 | }
|
---|
1165 | /* never comes here */
|
---|
1166 | return 1;
|
---|
1167 | }
|
---|
1168 |
|
---|
1169 | #elif defined(TARGET_ARM)
|
---|
1170 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
---|
1171 | int is_write, sigset_t *old_set,
|
---|
1172 | void *puc)
|
---|
1173 | {
|
---|
1174 | TranslationBlock *tb;
|
---|
1175 | int ret;
|
---|
1176 |
|
---|
1177 | if (cpu_single_env)
|
---|
1178 | env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
---|
1179 | #if defined(DEBUG_SIGNAL)
|
---|
1180 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
---|
1181 | pc, address, is_write, *(unsigned long *)old_set);
|
---|
1182 | #endif
|
---|
1183 | /* XXX: locking issue */
|
---|
1184 | if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
---|
1185 | return 1;
|
---|
1186 | }
|
---|
1187 | /* see if it is an MMU fault */
|
---|
1188 | ret = cpu_arm_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
---|
1189 | if (ret < 0)
|
---|
1190 | return 0; /* not an MMU fault */
|
---|
1191 | if (ret == 0)
|
---|
1192 | return 1; /* the MMU fault was handled without causing real CPU fault */
|
---|
1193 | /* now we have a real cpu fault */
|
---|
1194 | tb = tb_find_pc(pc);
|
---|
1195 | if (tb) {
|
---|
1196 | /* the PC is inside the translated code. It means that we have
|
---|
1197 | a virtual CPU fault */
|
---|
1198 | cpu_restore_state(tb, env, pc, puc);
|
---|
1199 | }
|
---|
1200 | /* we restore the process signal mask as the sigreturn should
|
---|
1201 | do it (XXX: use sigsetjmp) */
|
---|
1202 | sigprocmask(SIG_SETMASK, old_set, NULL);
|
---|
1203 | cpu_loop_exit();
|
---|
1204 | /* never comes here */
|
---|
1205 | return 1;
|
---|
1206 | }
|
---|
1207 | #elif defined(TARGET_SPARC)
|
---|
1208 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
---|
1209 | int is_write, sigset_t *old_set,
|
---|
1210 | void *puc)
|
---|
1211 | {
|
---|
1212 | TranslationBlock *tb;
|
---|
1213 | int ret;
|
---|
1214 |
|
---|
1215 | if (cpu_single_env)
|
---|
1216 | env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
---|
1217 | #if defined(DEBUG_SIGNAL)
|
---|
1218 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
---|
1219 | pc, address, is_write, *(unsigned long *)old_set);
|
---|
1220 | #endif
|
---|
1221 | /* XXX: locking issue */
|
---|
1222 | if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
---|
1223 | return 1;
|
---|
1224 | }
|
---|
1225 | /* see if it is an MMU fault */
|
---|
1226 | ret = cpu_sparc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
---|
1227 | if (ret < 0)
|
---|
1228 | return 0; /* not an MMU fault */
|
---|
1229 | if (ret == 0)
|
---|
1230 | return 1; /* the MMU fault was handled without causing real CPU fault */
|
---|
1231 | /* now we have a real cpu fault */
|
---|
1232 | tb = tb_find_pc(pc);
|
---|
1233 | if (tb) {
|
---|
1234 | /* the PC is inside the translated code. It means that we have
|
---|
1235 | a virtual CPU fault */
|
---|
1236 | cpu_restore_state(tb, env, pc, puc);
|
---|
1237 | }
|
---|
1238 | /* we restore the process signal mask as the sigreturn should
|
---|
1239 | do it (XXX: use sigsetjmp) */
|
---|
1240 | sigprocmask(SIG_SETMASK, old_set, NULL);
|
---|
1241 | cpu_loop_exit();
|
---|
1242 | /* never comes here */
|
---|
1243 | return 1;
|
---|
1244 | }
|
---|
1245 | #elif defined (TARGET_PPC)
|
---|
1246 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
---|
1247 | int is_write, sigset_t *old_set,
|
---|
1248 | void *puc)
|
---|
1249 | {
|
---|
1250 | TranslationBlock *tb;
|
---|
1251 | int ret;
|
---|
1252 |
|
---|
1253 | if (cpu_single_env)
|
---|
1254 | env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
---|
1255 | #if defined(DEBUG_SIGNAL)
|
---|
1256 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
---|
1257 | pc, address, is_write, *(unsigned long *)old_set);
|
---|
1258 | #endif
|
---|
1259 | /* XXX: locking issue */
|
---|
1260 | if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
---|
1261 | return 1;
|
---|
1262 | }
|
---|
1263 |
|
---|
1264 | /* see if it is an MMU fault */
|
---|
1265 | ret = cpu_ppc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
---|
1266 | if (ret < 0)
|
---|
1267 | return 0; /* not an MMU fault */
|
---|
1268 | if (ret == 0)
|
---|
1269 | return 1; /* the MMU fault was handled without causing real CPU fault */
|
---|
1270 |
|
---|
1271 | /* now we have a real cpu fault */
|
---|
1272 | tb = tb_find_pc(pc);
|
---|
1273 | if (tb) {
|
---|
1274 | /* the PC is inside the translated code. It means that we have
|
---|
1275 | a virtual CPU fault */
|
---|
1276 | cpu_restore_state(tb, env, pc, puc);
|
---|
1277 | }
|
---|
1278 | if (ret == 1) {
|
---|
1279 | #if 0
|
---|
1280 | printf("PF exception: NIP=0x%08x error=0x%x %p\n",
|
---|
1281 | env->nip, env->error_code, tb);
|
---|
1282 | #endif
|
---|
1283 | /* we restore the process signal mask as the sigreturn should
|
---|
1284 | do it (XXX: use sigsetjmp) */
|
---|
1285 | sigprocmask(SIG_SETMASK, old_set, NULL);
|
---|
1286 | cpu_loop_exit();
|
---|
1287 | } else {
|
---|
1288 | /* activate soft MMU for this block */
|
---|
1289 | cpu_resume_from_signal(env, puc);
|
---|
1290 | }
|
---|
1291 | /* never comes here */
|
---|
1292 | return 1;
|
---|
1293 | }
|
---|
1294 |
|
---|
1295 | #elif defined(TARGET_M68K)
|
---|
1296 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
---|
1297 | int is_write, sigset_t *old_set,
|
---|
1298 | void *puc)
|
---|
1299 | {
|
---|
1300 | TranslationBlock *tb;
|
---|
1301 | int ret;
|
---|
1302 |
|
---|
1303 | if (cpu_single_env)
|
---|
1304 | env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
---|
1305 | #if defined(DEBUG_SIGNAL)
|
---|
1306 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
---|
1307 | pc, address, is_write, *(unsigned long *)old_set);
|
---|
1308 | #endif
|
---|
1309 | /* XXX: locking issue */
|
---|
1310 | if (is_write && page_unprotect(address, pc, puc)) {
|
---|
1311 | return 1;
|
---|
1312 | }
|
---|
1313 | /* see if it is an MMU fault */
|
---|
1314 | ret = cpu_m68k_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
---|
1315 | if (ret < 0)
|
---|
1316 | return 0; /* not an MMU fault */
|
---|
1317 | if (ret == 0)
|
---|
1318 | return 1; /* the MMU fault was handled without causing real CPU fault */
|
---|
1319 | /* now we have a real cpu fault */
|
---|
1320 | tb = tb_find_pc(pc);
|
---|
1321 | if (tb) {
|
---|
1322 | /* the PC is inside the translated code. It means that we have
|
---|
1323 | a virtual CPU fault */
|
---|
1324 | cpu_restore_state(tb, env, pc, puc);
|
---|
1325 | }
|
---|
1326 | /* we restore the process signal mask as the sigreturn should
|
---|
1327 | do it (XXX: use sigsetjmp) */
|
---|
1328 | sigprocmask(SIG_SETMASK, old_set, NULL);
|
---|
1329 | cpu_loop_exit();
|
---|
1330 | /* never comes here */
|
---|
1331 | return 1;
|
---|
1332 | }
|
---|
1333 |
|
---|
1334 | #elif defined (TARGET_MIPS)
|
---|
1335 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
---|
1336 | int is_write, sigset_t *old_set,
|
---|
1337 | void *puc)
|
---|
1338 | {
|
---|
1339 | TranslationBlock *tb;
|
---|
1340 | int ret;
|
---|
1341 |
|
---|
1342 | if (cpu_single_env)
|
---|
1343 | env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
---|
1344 | #if defined(DEBUG_SIGNAL)
|
---|
1345 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
---|
1346 | pc, address, is_write, *(unsigned long *)old_set);
|
---|
1347 | #endif
|
---|
1348 | /* XXX: locking issue */
|
---|
1349 | if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
---|
1350 | return 1;
|
---|
1351 | }
|
---|
1352 |
|
---|
1353 | /* see if it is an MMU fault */
|
---|
1354 | ret = cpu_mips_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
---|
1355 | if (ret < 0)
|
---|
1356 | return 0; /* not an MMU fault */
|
---|
1357 | if (ret == 0)
|
---|
1358 | return 1; /* the MMU fault was handled without causing real CPU fault */
|
---|
1359 |
|
---|
1360 | /* now we have a real cpu fault */
|
---|
1361 | tb = tb_find_pc(pc);
|
---|
1362 | if (tb) {
|
---|
1363 | /* the PC is inside the translated code. It means that we have
|
---|
1364 | a virtual CPU fault */
|
---|
1365 | cpu_restore_state(tb, env, pc, puc);
|
---|
1366 | }
|
---|
1367 | if (ret == 1) {
|
---|
1368 | #if 0
|
---|
1369 | printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
|
---|
1370 | env->PC, env->error_code, tb);
|
---|
1371 | #endif
|
---|
1372 | /* we restore the process signal mask as the sigreturn should
|
---|
1373 | do it (XXX: use sigsetjmp) */
|
---|
1374 | sigprocmask(SIG_SETMASK, old_set, NULL);
|
---|
1375 | cpu_loop_exit();
|
---|
1376 | } else {
|
---|
1377 | /* activate soft MMU for this block */
|
---|
1378 | cpu_resume_from_signal(env, puc);
|
---|
1379 | }
|
---|
1380 | /* never comes here */
|
---|
1381 | return 1;
|
---|
1382 | }
|
---|
1383 |
|
---|
1384 | #elif defined (TARGET_MICROBLAZE)
|
---|
1385 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
---|
1386 | int is_write, sigset_t *old_set,
|
---|
1387 | void *puc)
|
---|
1388 | {
|
---|
1389 | TranslationBlock *tb;
|
---|
1390 | int ret;
|
---|
1391 |
|
---|
1392 | if (cpu_single_env)
|
---|
1393 | env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
---|
1394 | #if defined(DEBUG_SIGNAL)
|
---|
1395 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
---|
1396 | pc, address, is_write, *(unsigned long *)old_set);
|
---|
1397 | #endif
|
---|
1398 | /* XXX: locking issue */
|
---|
1399 | if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
---|
1400 | return 1;
|
---|
1401 | }
|
---|
1402 |
|
---|
1403 | /* see if it is an MMU fault */
|
---|
1404 | ret = cpu_mb_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
---|
1405 | if (ret < 0)
|
---|
1406 | return 0; /* not an MMU fault */
|
---|
1407 | if (ret == 0)
|
---|
1408 | return 1; /* the MMU fault was handled without causing real CPU fault */
|
---|
1409 |
|
---|
1410 | /* now we have a real cpu fault */
|
---|
1411 | tb = tb_find_pc(pc);
|
---|
1412 | if (tb) {
|
---|
1413 | /* the PC is inside the translated code. It means that we have
|
---|
1414 | a virtual CPU fault */
|
---|
1415 | cpu_restore_state(tb, env, pc, puc);
|
---|
1416 | }
|
---|
1417 | if (ret == 1) {
|
---|
1418 | #if 0
|
---|
1419 | printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
|
---|
1420 | env->PC, env->error_code, tb);
|
---|
1421 | #endif
|
---|
1422 | /* we restore the process signal mask as the sigreturn should
|
---|
1423 | do it (XXX: use sigsetjmp) */
|
---|
1424 | sigprocmask(SIG_SETMASK, old_set, NULL);
|
---|
1425 | cpu_loop_exit();
|
---|
1426 | } else {
|
---|
1427 | /* activate soft MMU for this block */
|
---|
1428 | cpu_resume_from_signal(env, puc);
|
---|
1429 | }
|
---|
1430 | /* never comes here */
|
---|
1431 | return 1;
|
---|
1432 | }
|
---|
1433 |
|
---|
1434 | #elif defined (TARGET_SH4)
|
---|
1435 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
---|
1436 | int is_write, sigset_t *old_set,
|
---|
1437 | void *puc)
|
---|
1438 | {
|
---|
1439 | TranslationBlock *tb;
|
---|
1440 | int ret;
|
---|
1441 |
|
---|
1442 | if (cpu_single_env)
|
---|
1443 | env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
---|
1444 | #if defined(DEBUG_SIGNAL)
|
---|
1445 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
---|
1446 | pc, address, is_write, *(unsigned long *)old_set);
|
---|
1447 | #endif
|
---|
1448 | /* XXX: locking issue */
|
---|
1449 | if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
---|
1450 | return 1;
|
---|
1451 | }
|
---|
1452 |
|
---|
1453 | /* see if it is an MMU fault */
|
---|
1454 | ret = cpu_sh4_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
---|
1455 | if (ret < 0)
|
---|
1456 | return 0; /* not an MMU fault */
|
---|
1457 | if (ret == 0)
|
---|
1458 | return 1; /* the MMU fault was handled without causing real CPU fault */
|
---|
1459 |
|
---|
1460 | /* now we have a real cpu fault */
|
---|
1461 | tb = tb_find_pc(pc);
|
---|
1462 | if (tb) {
|
---|
1463 | /* the PC is inside the translated code. It means that we have
|
---|
1464 | a virtual CPU fault */
|
---|
1465 | cpu_restore_state(tb, env, pc, puc);
|
---|
1466 | }
|
---|
1467 | #if 0
|
---|
1468 | printf("PF exception: NIP=0x%08x error=0x%x %p\n",
|
---|
1469 | env->nip, env->error_code, tb);
|
---|
1470 | #endif
|
---|
1471 | /* we restore the process signal mask as the sigreturn should
|
---|
1472 | do it (XXX: use sigsetjmp) */
|
---|
1473 | sigprocmask(SIG_SETMASK, old_set, NULL);
|
---|
1474 | cpu_loop_exit();
|
---|
1475 | /* never comes here */
|
---|
1476 | return 1;
|
---|
1477 | }
|
---|
1478 |
|
---|
1479 | #elif defined (TARGET_ALPHA)
|
---|
1480 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
---|
1481 | int is_write, sigset_t *old_set,
|
---|
1482 | void *puc)
|
---|
1483 | {
|
---|
1484 | TranslationBlock *tb;
|
---|
1485 | int ret;
|
---|
1486 |
|
---|
1487 | if (cpu_single_env)
|
---|
1488 | env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
---|
1489 | #if defined(DEBUG_SIGNAL)
|
---|
1490 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
---|
1491 | pc, address, is_write, *(unsigned long *)old_set);
|
---|
1492 | #endif
|
---|
1493 | /* XXX: locking issue */
|
---|
1494 | if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
---|
1495 | return 1;
|
---|
1496 | }
|
---|
1497 |
|
---|
1498 | /* see if it is an MMU fault */
|
---|
1499 | ret = cpu_alpha_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
---|
1500 | if (ret < 0)
|
---|
1501 | return 0; /* not an MMU fault */
|
---|
1502 | if (ret == 0)
|
---|
1503 | return 1; /* the MMU fault was handled without causing real CPU fault */
|
---|
1504 |
|
---|
1505 | /* now we have a real cpu fault */
|
---|
1506 | tb = tb_find_pc(pc);
|
---|
1507 | if (tb) {
|
---|
1508 | /* the PC is inside the translated code. It means that we have
|
---|
1509 | a virtual CPU fault */
|
---|
1510 | cpu_restore_state(tb, env, pc, puc);
|
---|
1511 | }
|
---|
1512 | #if 0
|
---|
1513 | printf("PF exception: NIP=0x%08x error=0x%x %p\n",
|
---|
1514 | env->nip, env->error_code, tb);
|
---|
1515 | #endif
|
---|
1516 | /* we restore the process signal mask as the sigreturn should
|
---|
1517 | do it (XXX: use sigsetjmp) */
|
---|
1518 | sigprocmask(SIG_SETMASK, old_set, NULL);
|
---|
1519 | cpu_loop_exit();
|
---|
1520 | /* never comes here */
|
---|
1521 | return 1;
|
---|
1522 | }
|
---|
1523 | #elif defined (TARGET_CRIS)
|
---|
1524 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
---|
1525 | int is_write, sigset_t *old_set,
|
---|
1526 | void *puc)
|
---|
1527 | {
|
---|
1528 | TranslationBlock *tb;
|
---|
1529 | int ret;
|
---|
1530 |
|
---|
1531 | if (cpu_single_env)
|
---|
1532 | env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
---|
1533 | #if defined(DEBUG_SIGNAL)
|
---|
1534 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
---|
1535 | pc, address, is_write, *(unsigned long *)old_set);
|
---|
1536 | #endif
|
---|
1537 | /* XXX: locking issue */
|
---|
1538 | if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
---|
1539 | return 1;
|
---|
1540 | }
|
---|
1541 |
|
---|
1542 | /* see if it is an MMU fault */
|
---|
1543 | ret = cpu_cris_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
---|
1544 | if (ret < 0)
|
---|
1545 | return 0; /* not an MMU fault */
|
---|
1546 | if (ret == 0)
|
---|
1547 | return 1; /* the MMU fault was handled without causing real CPU fault */
|
---|
1548 |
|
---|
1549 | /* now we have a real cpu fault */
|
---|
1550 | tb = tb_find_pc(pc);
|
---|
1551 | if (tb) {
|
---|
1552 | /* the PC is inside the translated code. It means that we have
|
---|
1553 | a virtual CPU fault */
|
---|
1554 | cpu_restore_state(tb, env, pc, puc);
|
---|
1555 | }
|
---|
1556 | /* we restore the process signal mask as the sigreturn should
|
---|
1557 | do it (XXX: use sigsetjmp) */
|
---|
1558 | sigprocmask(SIG_SETMASK, old_set, NULL);
|
---|
1559 | cpu_loop_exit();
|
---|
1560 | /* never comes here */
|
---|
1561 | return 1;
|
---|
1562 | }
|
---|
1563 |
|
---|
1564 | #else
|
---|
1565 | #error unsupported target CPU
|
---|
1566 | #endif
|
---|
1567 |
|
---|
1568 | #if defined(__i386__)
|
---|
1569 |
|
---|
1570 | #if defined(__APPLE__)
|
---|
1571 | # include <sys/ucontext.h>
|
---|
1572 |
|
---|
1573 | # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
|
---|
1574 | # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
|
---|
1575 | # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
|
---|
1576 | # define MASK_sig(context) ((context)->uc_sigmask)
|
---|
1577 | #elif defined(__OpenBSD__)
|
---|
1578 | # define EIP_sig(context) ((context)->sc_eip)
|
---|
1579 | # define TRAP_sig(context) ((context)->sc_trapno)
|
---|
1580 | # define ERROR_sig(context) ((context)->sc_err)
|
---|
1581 | # define MASK_sig(context) ((context)->sc_mask)
|
---|
1582 | #else
|
---|
1583 | # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
|
---|
1584 | # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
|
---|
1585 | # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
|
---|
1586 | # define MASK_sig(context) ((context)->uc_sigmask)
|
---|
1587 | #endif
|
---|
1588 |
|
---|
1589 | int cpu_signal_handler(int host_signum, void *pinfo,
|
---|
1590 | void *puc)
|
---|
1591 | {
|
---|
1592 | siginfo_t *info = pinfo;
|
---|
1593 | #if defined(__OpenBSD__)
|
---|
1594 | struct sigcontext *uc = puc;
|
---|
1595 | #else
|
---|
1596 | struct ucontext *uc = puc;
|
---|
1597 | #endif
|
---|
1598 | unsigned long pc;
|
---|
1599 | int trapno;
|
---|
1600 |
|
---|
1601 | #ifndef REG_EIP
|
---|
1602 | /* for glibc 2.1 */
|
---|
1603 | #define REG_EIP EIP
|
---|
1604 | #define REG_ERR ERR
|
---|
1605 | #define REG_TRAPNO TRAPNO
|
---|
1606 | #endif
|
---|
1607 | pc = EIP_sig(uc);
|
---|
1608 | trapno = TRAP_sig(uc);
|
---|
1609 | return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
---|
1610 | trapno == 0xe ?
|
---|
1611 | (ERROR_sig(uc) >> 1) & 1 : 0,
|
---|
1612 | &MASK_sig(uc), puc);
|
---|
1613 | }
|
---|
1614 |
|
---|
1615 | #elif defined(__x86_64__)
|
---|
1616 |
|
---|
1617 | #ifdef __NetBSD__
|
---|
1618 | #define PC_sig(context) _UC_MACHINE_PC(context)
|
---|
1619 | #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
|
---|
1620 | #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
|
---|
1621 | #define MASK_sig(context) ((context)->uc_sigmask)
|
---|
1622 | #elif defined(__OpenBSD__)
|
---|
1623 | #define PC_sig(context) ((context)->sc_rip)
|
---|
1624 | #define TRAP_sig(context) ((context)->sc_trapno)
|
---|
1625 | #define ERROR_sig(context) ((context)->sc_err)
|
---|
1626 | #define MASK_sig(context) ((context)->sc_mask)
|
---|
1627 | #else
|
---|
1628 | #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
|
---|
1629 | #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
|
---|
1630 | #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
|
---|
1631 | #define MASK_sig(context) ((context)->uc_sigmask)
|
---|
1632 | #endif
|
---|
1633 |
|
---|
1634 | int cpu_signal_handler(int host_signum, void *pinfo,
|
---|
1635 | void *puc)
|
---|
1636 | {
|
---|
1637 | siginfo_t *info = pinfo;
|
---|
1638 | unsigned long pc;
|
---|
1639 | #ifdef __NetBSD__
|
---|
1640 | ucontext_t *uc = puc;
|
---|
1641 | #elif defined(__OpenBSD__)
|
---|
1642 | struct sigcontext *uc = puc;
|
---|
1643 | #else
|
---|
1644 | struct ucontext *uc = puc;
|
---|
1645 | #endif
|
---|
1646 |
|
---|
1647 | pc = PC_sig(uc);
|
---|
1648 | return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
---|
1649 | TRAP_sig(uc) == 0xe ?
|
---|
1650 | (ERROR_sig(uc) >> 1) & 1 : 0,
|
---|
1651 | &MASK_sig(uc), puc);
|
---|
1652 | }
|
---|
1653 |
|
---|
1654 | #elif defined(_ARCH_PPC)
|
---|
1655 |
|
---|
1656 | /***********************************************************************
|
---|
1657 | * signal context platform-specific definitions
|
---|
1658 | * From Wine
|
---|
1659 | */
|
---|
1660 | #ifdef linux
|
---|
1661 | /* All Registers access - only for local access */
|
---|
1662 | # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
|
---|
1663 | /* Gpr Registers access */
|
---|
1664 | # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
|
---|
1665 | # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
|
---|
1666 | # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
|
---|
1667 | # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
|
---|
1668 | # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
|
---|
1669 | # define LR_sig(context) REG_sig(link, context) /* Link register */
|
---|
1670 | # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
|
---|
1671 | /* Float Registers access */
|
---|
1672 | # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
|
---|
1673 | # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
|
---|
1674 | /* Exception Registers access */
|
---|
1675 | # define DAR_sig(context) REG_sig(dar, context)
|
---|
1676 | # define DSISR_sig(context) REG_sig(dsisr, context)
|
---|
1677 | # define TRAP_sig(context) REG_sig(trap, context)
|
---|
1678 | #endif /* linux */
|
---|
1679 |
|
---|
1680 | #ifdef __APPLE__
|
---|
1681 | # include <sys/ucontext.h>
|
---|
1682 | typedef struct ucontext SIGCONTEXT;
|
---|
1683 | /* All Registers access - only for local access */
|
---|
1684 | # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
|
---|
1685 | # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
|
---|
1686 | # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
|
---|
1687 | # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
|
---|
1688 | /* Gpr Registers access */
|
---|
1689 | # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
|
---|
1690 | # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
|
---|
1691 | # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
|
---|
1692 | # define CTR_sig(context) REG_sig(ctr, context)
|
---|
1693 | # define XER_sig(context) REG_sig(xer, context) /* Link register */
|
---|
1694 | # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
|
---|
1695 | # define CR_sig(context) REG_sig(cr, context) /* Condition register */
|
---|
1696 | /* Float Registers access */
|
---|
1697 | # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
|
---|
1698 | # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
|
---|
1699 | /* Exception Registers access */
|
---|
1700 | # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
|
---|
1701 | # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
|
---|
1702 | # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
|
---|
1703 | #endif /* __APPLE__ */
|
---|
1704 |
|
---|
1705 | int cpu_signal_handler(int host_signum, void *pinfo,
|
---|
1706 | void *puc)
|
---|
1707 | {
|
---|
1708 | siginfo_t *info = pinfo;
|
---|
1709 | struct ucontext *uc = puc;
|
---|
1710 | unsigned long pc;
|
---|
1711 | int is_write;
|
---|
1712 |
|
---|
1713 | pc = IAR_sig(uc);
|
---|
1714 | is_write = 0;
|
---|
1715 | #if 0
|
---|
1716 | /* ppc 4xx case */
|
---|
1717 | if (DSISR_sig(uc) & 0x00800000)
|
---|
1718 | is_write = 1;
|
---|
1719 | #else
|
---|
1720 | if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
|
---|
1721 | is_write = 1;
|
---|
1722 | #endif
|
---|
1723 | return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
---|
1724 | is_write, &uc->uc_sigmask, puc);
|
---|
1725 | }
|
---|
1726 |
|
---|
1727 | #elif defined(__alpha__)
|
---|
1728 |
|
---|
1729 | int cpu_signal_handler(int host_signum, void *pinfo,
|
---|
1730 | void *puc)
|
---|
1731 | {
|
---|
1732 | siginfo_t *info = pinfo;
|
---|
1733 | struct ucontext *uc = puc;
|
---|
1734 | uint32_t *pc = uc->uc_mcontext.sc_pc;
|
---|
1735 | uint32_t insn = *pc;
|
---|
1736 | int is_write = 0;
|
---|
1737 |
|
---|
1738 | /* XXX: need kernel patch to get write flag faster */
|
---|
1739 | switch (insn >> 26) {
|
---|
1740 | case 0x0d: // stw
|
---|
1741 | case 0x0e: // stb
|
---|
1742 | case 0x0f: // stq_u
|
---|
1743 | case 0x24: // stf
|
---|
1744 | case 0x25: // stg
|
---|
1745 | case 0x26: // sts
|
---|
1746 | case 0x27: // stt
|
---|
1747 | case 0x2c: // stl
|
---|
1748 | case 0x2d: // stq
|
---|
1749 | case 0x2e: // stl_c
|
---|
1750 | case 0x2f: // stq_c
|
---|
1751 | is_write = 1;
|
---|
1752 | }
|
---|
1753 |
|
---|
1754 | return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
---|
1755 | is_write, &uc->uc_sigmask, puc);
|
---|
1756 | }
|
---|
1757 | #elif defined(__sparc__)
|
---|
1758 |
|
---|
1759 | int cpu_signal_handler(int host_signum, void *pinfo,
|
---|
1760 | void *puc)
|
---|
1761 | {
|
---|
1762 | siginfo_t *info = pinfo;
|
---|
1763 | int is_write;
|
---|
1764 | uint32_t insn;
|
---|
1765 | #if !defined(__arch64__) || defined(HOST_SOLARIS)
|
---|
1766 | uint32_t *regs = (uint32_t *)(info + 1);
|
---|
1767 | void *sigmask = (regs + 20);
|
---|
1768 | /* XXX: is there a standard glibc define ? */
|
---|
1769 | unsigned long pc = regs[1];
|
---|
1770 | #else
|
---|
1771 | #ifdef __linux__
|
---|
1772 | struct sigcontext *sc = puc;
|
---|
1773 | unsigned long pc = sc->sigc_regs.tpc;
|
---|
1774 | void *sigmask = (void *)sc->sigc_mask;
|
---|
1775 | #elif defined(__OpenBSD__)
|
---|
1776 | struct sigcontext *uc = puc;
|
---|
1777 | unsigned long pc = uc->sc_pc;
|
---|
1778 | void *sigmask = (void *)(long)uc->sc_mask;
|
---|
1779 | #endif
|
---|
1780 | #endif
|
---|
1781 |
|
---|
1782 | /* XXX: need kernel patch to get write flag faster */
|
---|
1783 | is_write = 0;
|
---|
1784 | insn = *(uint32_t *)pc;
|
---|
1785 | if ((insn >> 30) == 3) {
|
---|
1786 | switch((insn >> 19) & 0x3f) {
|
---|
1787 | case 0x05: // stb
|
---|
1788 | case 0x15: // stba
|
---|
1789 | case 0x06: // sth
|
---|
1790 | case 0x16: // stha
|
---|
1791 | case 0x04: // st
|
---|
1792 | case 0x14: // sta
|
---|
1793 | case 0x07: // std
|
---|
1794 | case 0x17: // stda
|
---|
1795 | case 0x0e: // stx
|
---|
1796 | case 0x1e: // stxa
|
---|
1797 | case 0x24: // stf
|
---|
1798 | case 0x34: // stfa
|
---|
1799 | case 0x27: // stdf
|
---|
1800 | case 0x37: // stdfa
|
---|
1801 | case 0x26: // stqf
|
---|
1802 | case 0x36: // stqfa
|
---|
1803 | case 0x25: // stfsr
|
---|
1804 | case 0x3c: // casa
|
---|
1805 | case 0x3e: // casxa
|
---|
1806 | is_write = 1;
|
---|
1807 | break;
|
---|
1808 | }
|
---|
1809 | }
|
---|
1810 | return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
---|
1811 | is_write, sigmask, NULL);
|
---|
1812 | }
|
---|
1813 |
|
---|
1814 | #elif defined(__arm__)
|
---|
1815 |
|
---|
1816 | int cpu_signal_handler(int host_signum, void *pinfo,
|
---|
1817 | void *puc)
|
---|
1818 | {
|
---|
1819 | siginfo_t *info = pinfo;
|
---|
1820 | struct ucontext *uc = puc;
|
---|
1821 | unsigned long pc;
|
---|
1822 | int is_write;
|
---|
1823 |
|
---|
1824 | #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
|
---|
1825 | pc = uc->uc_mcontext.gregs[R15];
|
---|
1826 | #else
|
---|
1827 | pc = uc->uc_mcontext.arm_pc;
|
---|
1828 | #endif
|
---|
1829 | /* XXX: compute is_write */
|
---|
1830 | is_write = 0;
|
---|
1831 | return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
---|
1832 | is_write,
|
---|
1833 | &uc->uc_sigmask, puc);
|
---|
1834 | }
|
---|
1835 |
|
---|
1836 | #elif defined(__mc68000)
|
---|
1837 |
|
---|
1838 | int cpu_signal_handler(int host_signum, void *pinfo,
|
---|
1839 | void *puc)
|
---|
1840 | {
|
---|
1841 | siginfo_t *info = pinfo;
|
---|
1842 | struct ucontext *uc = puc;
|
---|
1843 | unsigned long pc;
|
---|
1844 | int is_write;
|
---|
1845 |
|
---|
1846 | pc = uc->uc_mcontext.gregs[16];
|
---|
1847 | /* XXX: compute is_write */
|
---|
1848 | is_write = 0;
|
---|
1849 | return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
---|
1850 | is_write,
|
---|
1851 | &uc->uc_sigmask, puc);
|
---|
1852 | }
|
---|
1853 |
|
---|
1854 | #elif defined(__ia64)
|
---|
1855 |
|
---|
1856 | #ifndef __ISR_VALID
|
---|
1857 | /* This ought to be in <bits/siginfo.h>... */
|
---|
1858 | # define __ISR_VALID 1
|
---|
1859 | #endif
|
---|
1860 |
|
---|
1861 | int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
|
---|
1862 | {
|
---|
1863 | siginfo_t *info = pinfo;
|
---|
1864 | struct ucontext *uc = puc;
|
---|
1865 | unsigned long ip;
|
---|
1866 | int is_write = 0;
|
---|
1867 |
|
---|
1868 | ip = uc->uc_mcontext.sc_ip;
|
---|
1869 | switch (host_signum) {
|
---|
1870 | case SIGILL:
|
---|
1871 | case SIGFPE:
|
---|
1872 | case SIGSEGV:
|
---|
1873 | case SIGBUS:
|
---|
1874 | case SIGTRAP:
|
---|
1875 | if (info->si_code && (info->si_segvflags & __ISR_VALID))
|
---|
1876 | /* ISR.W (write-access) is bit 33: */
|
---|
1877 | is_write = (info->si_isr >> 33) & 1;
|
---|
1878 | break;
|
---|
1879 |
|
---|
1880 | default:
|
---|
1881 | break;
|
---|
1882 | }
|
---|
1883 | return handle_cpu_signal(ip, (unsigned long)info->si_addr,
|
---|
1884 | is_write,
|
---|
1885 | &uc->uc_sigmask, puc);
|
---|
1886 | }
|
---|
1887 |
|
---|
1888 | #elif defined(__s390__)
|
---|
1889 |
|
---|
1890 | int cpu_signal_handler(int host_signum, void *pinfo,
|
---|
1891 | void *puc)
|
---|
1892 | {
|
---|
1893 | siginfo_t *info = pinfo;
|
---|
1894 | struct ucontext *uc = puc;
|
---|
1895 | unsigned long pc;
|
---|
1896 | int is_write;
|
---|
1897 |
|
---|
1898 | pc = uc->uc_mcontext.psw.addr;
|
---|
1899 | /* XXX: compute is_write */
|
---|
1900 | is_write = 0;
|
---|
1901 | return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
---|
1902 | is_write, &uc->uc_sigmask, puc);
|
---|
1903 | }
|
---|
1904 |
|
---|
1905 | #elif defined(__mips__)
|
---|
1906 |
|
---|
1907 | int cpu_signal_handler(int host_signum, void *pinfo,
|
---|
1908 | void *puc)
|
---|
1909 | {
|
---|
1910 | siginfo_t *info = pinfo;
|
---|
1911 | struct ucontext *uc = puc;
|
---|
1912 | greg_t pc = uc->uc_mcontext.pc;
|
---|
1913 | int is_write;
|
---|
1914 |
|
---|
1915 | /* XXX: compute is_write */
|
---|
1916 | is_write = 0;
|
---|
1917 | return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
---|
1918 | is_write, &uc->uc_sigmask, puc);
|
---|
1919 | }
|
---|
1920 |
|
---|
1921 | #elif defined(__hppa__)
|
---|
1922 |
|
---|
1923 | int cpu_signal_handler(int host_signum, void *pinfo,
|
---|
1924 | void *puc)
|
---|
1925 | {
|
---|
1926 | struct siginfo *info = pinfo;
|
---|
1927 | struct ucontext *uc = puc;
|
---|
1928 | unsigned long pc;
|
---|
1929 | int is_write;
|
---|
1930 |
|
---|
1931 | pc = uc->uc_mcontext.sc_iaoq[0];
|
---|
1932 | /* FIXME: compute is_write */
|
---|
1933 | is_write = 0;
|
---|
1934 | return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
---|
1935 | is_write,
|
---|
1936 | &uc->uc_sigmask, puc);
|
---|
1937 | }
|
---|
1938 |
|
---|
1939 | #else
|
---|
1940 |
|
---|
1941 | #error host CPU specific signal handler needed
|
---|
1942 |
|
---|
1943 | #endif
|
---|
1944 |
|
---|
1945 | #endif /* !defined(CONFIG_SOFTMMU) */
|
---|