1 | /*
|
---|
2 | * i386 emulator main execution loop
|
---|
3 | *
|
---|
4 | * Copyright (c) 2003-2005 Fabrice Bellard
|
---|
5 | *
|
---|
6 | * This library is free software; you can redistribute it and/or
|
---|
7 | * modify it under the terms of the GNU Lesser General Public
|
---|
8 | * License as published by the Free Software Foundation; either
|
---|
9 | * version 2 of the License, or (at your option) any later version.
|
---|
10 | *
|
---|
11 | * This library is distributed in the hope that it will be useful,
|
---|
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
14 | * Lesser General Public License for more details.
|
---|
15 | *
|
---|
16 | * You should have received a copy of the GNU Lesser General Public
|
---|
17 | * License along with this library; if not, write to the Free Software
|
---|
18 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
---|
19 | */
|
---|
20 |
|
---|
21 | /*
|
---|
22 | * Oracle LGPL Disclaimer: For the avoidance of doubt, except that if any license choice
|
---|
23 | * other than GPL or LGPL is available it will apply instead, Oracle elects to use only
|
---|
24 | * the Lesser General Public License version 2.1 (LGPLv2) at this time for any software where
|
---|
25 | * a choice of LGPL license versions is made available with the language indicating
|
---|
26 | * that LGPLv2 or any later version may be used, or where a choice of which version
|
---|
27 | * of the LGPL is applied is otherwise unspecified.
|
---|
28 | */
|
---|
29 |
|
---|
30 | #include "config.h"
|
---|
31 | #define CPU_NO_GLOBAL_REGS
|
---|
32 | #include "exec.h"
|
---|
33 | #include "disas.h"
|
---|
34 | #include "tcg.h"
|
---|
35 |
|
---|
36 | #if !defined(CONFIG_SOFTMMU)
|
---|
37 | #undef EAX
|
---|
38 | #undef ECX
|
---|
39 | #undef EDX
|
---|
40 | #undef EBX
|
---|
41 | #undef ESP
|
---|
42 | #undef EBP
|
---|
43 | #undef ESI
|
---|
44 | #undef EDI
|
---|
45 | #undef EIP
|
---|
46 | #include <signal.h>
|
---|
47 | #include <sys/ucontext.h>
|
---|
48 | #endif
|
---|
49 |
|
---|
50 | #if defined(__sparc__) && !defined(HOST_SOLARIS)
|
---|
51 | // Work around ugly bugs in glibc that mangle global register contents
|
---|
52 | #undef env
|
---|
53 | #define env cpu_single_env
|
---|
54 | #endif
|
---|
55 |
|
---|
56 | int tb_invalidated_flag;
|
---|
57 |
|
---|
58 | //#define DEBUG_EXEC
|
---|
59 | //#define DEBUG_SIGNAL
|
---|
60 |
|
---|
61 |
|
---|
62 | void cpu_loop_exit(void)
|
---|
63 | {
|
---|
64 | /* NOTE: the register at this point must be saved by hand because
|
---|
65 | longjmp restore them */
|
---|
66 | regs_to_env();
|
---|
67 | longjmp(env->jmp_env, 1);
|
---|
68 | }
|
---|
69 |
|
---|
70 | #if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
|
---|
71 | #define reg_T2
|
---|
72 | #endif
|
---|
73 |
|
---|
74 | /* exit the current TB from a signal handler. The host registers are
|
---|
75 | restored in a state compatible with the CPU emulator
|
---|
76 | */
|
---|
77 | void cpu_resume_from_signal(CPUState *env1, void *puc)
|
---|
78 | {
|
---|
79 | #if !defined(CONFIG_SOFTMMU)
|
---|
80 | struct ucontext *uc = puc;
|
---|
81 | #endif
|
---|
82 |
|
---|
83 | env = env1;
|
---|
84 |
|
---|
85 | /* XXX: restore cpu registers saved in host registers */
|
---|
86 |
|
---|
87 | #if !defined(CONFIG_SOFTMMU)
|
---|
88 | if (puc) {
|
---|
89 | /* XXX: use siglongjmp ? */
|
---|
90 | sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
|
---|
91 | }
|
---|
92 | #endif
|
---|
93 | longjmp(env->jmp_env, 1);
|
---|
94 | }
|
---|
95 |
|
---|
96 | /* Execute the code without caching the generated code. An interpreter
|
---|
97 | could be used if available. */
|
---|
98 | static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
|
---|
99 | {
|
---|
100 | unsigned long next_tb;
|
---|
101 | TranslationBlock *tb;
|
---|
102 |
|
---|
103 | /* Should never happen.
|
---|
104 | We only end up here when an existing TB is too long. */
|
---|
105 | if (max_cycles > CF_COUNT_MASK)
|
---|
106 | max_cycles = CF_COUNT_MASK;
|
---|
107 |
|
---|
108 | tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
|
---|
109 | max_cycles);
|
---|
110 | env->current_tb = tb;
|
---|
111 | /* execute the generated code */
|
---|
112 | #if defined(VBOX) && defined(GCC_WITH_BUGGY_REGPARM)
|
---|
113 | tcg_qemu_tb_exec(tb->tc_ptr, next_tb);
|
---|
114 | #else
|
---|
115 | next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
|
---|
116 | #endif
|
---|
117 |
|
---|
118 | if ((next_tb & 3) == 2) {
|
---|
119 | /* Restore PC. This may happen if async event occurs before
|
---|
120 | the TB starts executing. */
|
---|
121 | CPU_PC_FROM_TB(env, tb);
|
---|
122 | }
|
---|
123 | tb_phys_invalidate(tb, -1);
|
---|
124 | tb_free(tb);
|
---|
125 | }
|
---|
126 |
|
---|
127 | static TranslationBlock *tb_find_slow(target_ulong pc,
|
---|
128 | target_ulong cs_base,
|
---|
129 | uint64_t flags)
|
---|
130 | {
|
---|
131 | TranslationBlock *tb, **ptb1;
|
---|
132 | unsigned int h;
|
---|
133 | target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
|
---|
134 |
|
---|
135 | tb_invalidated_flag = 0;
|
---|
136 |
|
---|
137 | regs_to_env(); /* XXX: do it just before cpu_gen_code() */
|
---|
138 |
|
---|
139 | /* find translated block using physical mappings */
|
---|
140 | phys_pc = get_phys_addr_code(env, pc);
|
---|
141 | phys_page1 = phys_pc & TARGET_PAGE_MASK;
|
---|
142 | phys_page2 = -1;
|
---|
143 | h = tb_phys_hash_func(phys_pc);
|
---|
144 | ptb1 = &tb_phys_hash[h];
|
---|
145 | for(;;) {
|
---|
146 | tb = *ptb1;
|
---|
147 | if (!tb)
|
---|
148 | goto not_found;
|
---|
149 | if (tb->pc == pc &&
|
---|
150 | tb->page_addr[0] == phys_page1 &&
|
---|
151 | tb->cs_base == cs_base &&
|
---|
152 | tb->flags == flags) {
|
---|
153 | /* check next page if needed */
|
---|
154 | if (tb->page_addr[1] != -1) {
|
---|
155 | virt_page2 = (pc & TARGET_PAGE_MASK) +
|
---|
156 | TARGET_PAGE_SIZE;
|
---|
157 | phys_page2 = get_phys_addr_code(env, virt_page2);
|
---|
158 | if (tb->page_addr[1] == phys_page2)
|
---|
159 | goto found;
|
---|
160 | } else {
|
---|
161 | goto found;
|
---|
162 | }
|
---|
163 | }
|
---|
164 | ptb1 = &tb->phys_hash_next;
|
---|
165 | }
|
---|
166 | not_found:
|
---|
167 | /* if no translated code available, then translate it now */
|
---|
168 | tb = tb_gen_code(env, pc, cs_base, flags, 0);
|
---|
169 |
|
---|
170 | found:
|
---|
171 | /* we add the TB in the virtual pc hash table */
|
---|
172 | env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
|
---|
173 | return tb;
|
---|
174 | }
|
---|
175 |
|
---|
176 | #ifndef VBOX
|
---|
177 | static inline TranslationBlock *tb_find_fast(void)
|
---|
178 | #else
|
---|
179 | DECLINLINE(TranslationBlock *) tb_find_fast(void)
|
---|
180 | #endif
|
---|
181 | {
|
---|
182 | TranslationBlock *tb;
|
---|
183 | target_ulong cs_base, pc;
|
---|
184 | uint64_t flags;
|
---|
185 |
|
---|
186 | /* we record a subset of the CPU state. It will
|
---|
187 | always be the same before a given translated block
|
---|
188 | is executed. */
|
---|
189 | #if defined(TARGET_I386)
|
---|
190 | flags = env->hflags;
|
---|
191 | flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
|
---|
192 | cs_base = env->segs[R_CS].base;
|
---|
193 | pc = cs_base + env->eip;
|
---|
194 | #elif defined(TARGET_ARM)
|
---|
195 | flags = env->thumb | (env->vfp.vec_len << 1)
|
---|
196 | | (env->vfp.vec_stride << 4);
|
---|
197 | if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
|
---|
198 | flags |= (1 << 6);
|
---|
199 | if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
|
---|
200 | flags |= (1 << 7);
|
---|
201 | flags |= (env->condexec_bits << 8);
|
---|
202 | cs_base = 0;
|
---|
203 | pc = env->regs[15];
|
---|
204 | #elif defined(TARGET_SPARC)
|
---|
205 | #ifdef TARGET_SPARC64
|
---|
206 | // AM . Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
|
---|
207 | flags = ((env->pstate & PS_AM) << 2)
|
---|
208 | | (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
|
---|
209 | | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
|
---|
210 | #else
|
---|
211 | // FPU enable . Supervisor
|
---|
212 | flags = (env->psref << 4) | env->psrs;
|
---|
213 | #endif
|
---|
214 | cs_base = env->npc;
|
---|
215 | pc = env->pc;
|
---|
216 | #elif defined(TARGET_PPC)
|
---|
217 | flags = env->hflags;
|
---|
218 | cs_base = 0;
|
---|
219 | pc = env->nip;
|
---|
220 | #elif defined(TARGET_MIPS)
|
---|
221 | flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
|
---|
222 | cs_base = 0;
|
---|
223 | pc = env->active_tc.PC;
|
---|
224 | #elif defined(TARGET_M68K)
|
---|
225 | flags = (env->fpcr & M68K_FPCR_PREC) /* Bit 6 */
|
---|
226 | | (env->sr & SR_S) /* Bit 13 */
|
---|
227 | | ((env->macsr >> 4) & 0xf); /* Bits 0-3 */
|
---|
228 | cs_base = 0;
|
---|
229 | pc = env->pc;
|
---|
230 | #elif defined(TARGET_SH4)
|
---|
231 | flags = (env->flags & (DELAY_SLOT | DELAY_SLOT_CONDITIONAL
|
---|
232 | | DELAY_SLOT_TRUE | DELAY_SLOT_CLEARME)) /* Bits 0- 3 */
|
---|
233 | | (env->fpscr & (FPSCR_FR | FPSCR_SZ | FPSCR_PR)) /* Bits 19-21 */
|
---|
234 | | (env->sr & (SR_MD | SR_RB)); /* Bits 29-30 */
|
---|
235 | cs_base = 0;
|
---|
236 | pc = env->pc;
|
---|
237 | #elif defined(TARGET_ALPHA)
|
---|
238 | flags = env->ps;
|
---|
239 | cs_base = 0;
|
---|
240 | pc = env->pc;
|
---|
241 | #elif defined(TARGET_CRIS)
|
---|
242 | flags = env->pregs[PR_CCS] & (S_FLAG | P_FLAG | U_FLAG | X_FLAG);
|
---|
243 | flags |= env->dslot;
|
---|
244 | cs_base = 0;
|
---|
245 | pc = env->pc;
|
---|
246 | #else
|
---|
247 | #error unsupported CPU
|
---|
248 | #endif
|
---|
249 | tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
|
---|
250 | if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
|
---|
251 | tb->flags != flags)) {
|
---|
252 | tb = tb_find_slow(pc, cs_base, flags);
|
---|
253 | }
|
---|
254 | return tb;
|
---|
255 | }
|
---|
256 |
|
---|
257 | /* main execution loop */
|
---|
258 |
|
---|
259 | #ifdef VBOX
|
---|
260 |
|
---|
261 | int cpu_exec(CPUState *env1)
|
---|
262 | {
|
---|
263 | #define DECLARE_HOST_REGS 1
|
---|
264 | #include "hostregs_helper.h"
|
---|
265 | int ret = 0, interrupt_request;
|
---|
266 | TranslationBlock *tb;
|
---|
267 | uint8_t *tc_ptr;
|
---|
268 | unsigned long next_tb;
|
---|
269 |
|
---|
270 | cpu_single_env = env1;
|
---|
271 |
|
---|
272 | /* first we save global registers */
|
---|
273 | #define SAVE_HOST_REGS 1
|
---|
274 | #include "hostregs_helper.h"
|
---|
275 | env = env1;
|
---|
276 |
|
---|
277 | env_to_regs();
|
---|
278 | #if defined(TARGET_I386)
|
---|
279 | /* put eflags in CPU temporary format */
|
---|
280 | CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
---|
281 | DF = 1 - (2 * ((env->eflags >> 10) & 1));
|
---|
282 | CC_OP = CC_OP_EFLAGS;
|
---|
283 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
---|
284 | #elif defined(TARGET_SPARC)
|
---|
285 | #elif defined(TARGET_M68K)
|
---|
286 | env->cc_op = CC_OP_FLAGS;
|
---|
287 | env->cc_dest = env->sr & 0xf;
|
---|
288 | env->cc_x = (env->sr >> 4) & 1;
|
---|
289 | #elif defined(TARGET_ALPHA)
|
---|
290 | #elif defined(TARGET_ARM)
|
---|
291 | #elif defined(TARGET_PPC)
|
---|
292 | #elif defined(TARGET_MIPS)
|
---|
293 | #elif defined(TARGET_SH4)
|
---|
294 | #elif defined(TARGET_CRIS)
|
---|
295 | /* XXXXX */
|
---|
296 | #else
|
---|
297 | #error unsupported target CPU
|
---|
298 | #endif
|
---|
299 | #ifndef VBOX /* VBOX: We need to raise traps and suchlike from the outside. */
|
---|
300 | env->exception_index = -1;
|
---|
301 | #endif
|
---|
302 |
|
---|
303 | /* prepare setjmp context for exception handling */
|
---|
304 | for(;;) {
|
---|
305 | if (setjmp(env->jmp_env) == 0)
|
---|
306 | {
|
---|
307 | env->current_tb = NULL;
|
---|
308 |
|
---|
309 | /*
|
---|
310 | * Check for fatal errors first
|
---|
311 | */
|
---|
312 | if (env->interrupt_request & CPU_INTERRUPT_RC) {
|
---|
313 | env->exception_index = EXCP_RC;
|
---|
314 | ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~CPU_INTERRUPT_RC);
|
---|
315 | ret = env->exception_index;
|
---|
316 | cpu_loop_exit();
|
---|
317 | }
|
---|
318 |
|
---|
319 | /* if an exception is pending, we execute it here */
|
---|
320 | if (env->exception_index >= 0) {
|
---|
321 | Assert(!env->user_mode_only);
|
---|
322 | if (env->exception_index >= EXCP_INTERRUPT) {
|
---|
323 | /* exit request from the cpu execution loop */
|
---|
324 | ret = env->exception_index;
|
---|
325 | break;
|
---|
326 | } else {
|
---|
327 | /* simulate a real cpu exception. On i386, it can
|
---|
328 | trigger new exceptions, but we do not handle
|
---|
329 | double or triple faults yet. */
|
---|
330 | RAWEx_ProfileStart(env, STATS_IRQ_HANDLING);
|
---|
331 | Log(("do_interrupt %d %d %RGv\n", env->exception_index, env->exception_is_int, (RTGCPTR)env->exception_next_eip));
|
---|
332 | do_interrupt(env->exception_index,
|
---|
333 | env->exception_is_int,
|
---|
334 | env->error_code,
|
---|
335 | env->exception_next_eip, 0);
|
---|
336 | /* successfully delivered */
|
---|
337 | env->old_exception = -1;
|
---|
338 | RAWEx_ProfileStop(env, STATS_IRQ_HANDLING);
|
---|
339 | }
|
---|
340 | env->exception_index = -1;
|
---|
341 | }
|
---|
342 |
|
---|
343 | next_tb = 0; /* force lookup of first TB */
|
---|
344 | for(;;)
|
---|
345 | {
|
---|
346 | interrupt_request = env->interrupt_request;
|
---|
347 | #ifndef VBOX
|
---|
348 | if (__builtin_expect(interrupt_request, 0))
|
---|
349 | #else
|
---|
350 | if (RT_UNLIKELY(interrupt_request != 0))
|
---|
351 | #endif
|
---|
352 | {
|
---|
353 | /** @todo: reconcile with what QEMU really does */
|
---|
354 |
|
---|
355 | /* Single instruction exec request, we execute it and return (one way or the other).
|
---|
356 | The caller will always reschedule after doing this operation! */
|
---|
357 | if (interrupt_request & CPU_INTERRUPT_SINGLE_INSTR)
|
---|
358 | {
|
---|
359 | /* not in flight are we? (if we are, we trapped) */
|
---|
360 | if (!(env->interrupt_request & CPU_INTERRUPT_SINGLE_INSTR_IN_FLIGHT))
|
---|
361 | {
|
---|
362 | ASMAtomicOrS32((int32_t volatile *)&env->interrupt_request, CPU_INTERRUPT_SINGLE_INSTR_IN_FLIGHT);
|
---|
363 | env->exception_index = EXCP_SINGLE_INSTR;
|
---|
364 | if (emulate_single_instr(env) == -1)
|
---|
365 | AssertMsgFailed(("REM: emulate_single_instr failed for EIP=%RGv!!\n", (RTGCPTR)env->eip));
|
---|
366 |
|
---|
367 | /* When we receive an external interrupt during execution of this single
|
---|
368 | instruction, then we should stay here. We will leave when we're ready
|
---|
369 | for raw-mode or when interrupted by pending EMT requests. */
|
---|
370 | interrupt_request = env->interrupt_request; /* reload this! */
|
---|
371 | if ( !(interrupt_request & CPU_INTERRUPT_HARD)
|
---|
372 | || !(env->eflags & IF_MASK)
|
---|
373 | || (env->hflags & HF_INHIBIT_IRQ_MASK)
|
---|
374 | || (env->state & CPU_RAW_HWACC)
|
---|
375 | )
|
---|
376 | {
|
---|
377 | env->exception_index = ret = EXCP_SINGLE_INSTR;
|
---|
378 | cpu_loop_exit();
|
---|
379 | }
|
---|
380 | }
|
---|
381 | /* Clear CPU_INTERRUPT_SINGLE_INSTR and leave CPU_INTERRUPT_SINGLE_INSTR_IN_FLIGHT set. */
|
---|
382 | ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~CPU_INTERRUPT_SINGLE_INSTR);
|
---|
383 | }
|
---|
384 |
|
---|
385 | RAWEx_ProfileStart(env, STATS_IRQ_HANDLING);
|
---|
386 | if ((interrupt_request & CPU_INTERRUPT_SMI) &&
|
---|
387 | !(env->hflags & HF_SMM_MASK)) {
|
---|
388 | env->interrupt_request &= ~CPU_INTERRUPT_SMI;
|
---|
389 | do_smm_enter();
|
---|
390 | next_tb = 0;
|
---|
391 | }
|
---|
392 | else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
|
---|
393 | (env->eflags & IF_MASK) &&
|
---|
394 | !(env->hflags & HF_INHIBIT_IRQ_MASK))
|
---|
395 | {
|
---|
396 | /* if hardware interrupt pending, we execute it */
|
---|
397 | int intno;
|
---|
398 | ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~CPU_INTERRUPT_HARD);
|
---|
399 | intno = cpu_get_pic_interrupt(env);
|
---|
400 | if (intno >= 0)
|
---|
401 | {
|
---|
402 | Log(("do_interrupt %d\n", intno));
|
---|
403 | do_interrupt(intno, 0, 0, 0, 1);
|
---|
404 | }
|
---|
405 | /* ensure that no TB jump will be modified as
|
---|
406 | the program flow was changed */
|
---|
407 | next_tb = 0;
|
---|
408 | }
|
---|
409 | if (env->interrupt_request & CPU_INTERRUPT_EXITTB)
|
---|
410 | {
|
---|
411 | ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~CPU_INTERRUPT_EXITTB);
|
---|
412 | /* ensure that no TB jump will be modified as
|
---|
413 | the program flow was changed */
|
---|
414 | next_tb = 0;
|
---|
415 | }
|
---|
416 | RAWEx_ProfileStop(env, STATS_IRQ_HANDLING);
|
---|
417 | if (interrupt_request & CPU_INTERRUPT_EXIT)
|
---|
418 | {
|
---|
419 | env->exception_index = EXCP_INTERRUPT;
|
---|
420 | ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~CPU_INTERRUPT_EXIT);
|
---|
421 | ret = env->exception_index;
|
---|
422 | cpu_loop_exit();
|
---|
423 | }
|
---|
424 | if (interrupt_request & CPU_INTERRUPT_RC)
|
---|
425 | {
|
---|
426 | env->exception_index = EXCP_RC;
|
---|
427 | ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~CPU_INTERRUPT_RC);
|
---|
428 | ret = env->exception_index;
|
---|
429 | cpu_loop_exit();
|
---|
430 | }
|
---|
431 | }
|
---|
432 |
|
---|
433 | /*
|
---|
434 | * Check if we the CPU state allows us to execute the code in raw-mode.
|
---|
435 | */
|
---|
436 | RAWEx_ProfileStart(env, STATS_RAW_CHECK);
|
---|
437 | if (remR3CanExecuteRaw(env,
|
---|
438 | env->eip + env->segs[R_CS].base,
|
---|
439 | env->hflags | (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK)),
|
---|
440 | &env->exception_index))
|
---|
441 | {
|
---|
442 | RAWEx_ProfileStop(env, STATS_RAW_CHECK);
|
---|
443 | ret = env->exception_index;
|
---|
444 | cpu_loop_exit();
|
---|
445 | }
|
---|
446 | RAWEx_ProfileStop(env, STATS_RAW_CHECK);
|
---|
447 |
|
---|
448 | RAWEx_ProfileStart(env, STATS_TLB_LOOKUP);
|
---|
449 | spin_lock(&tb_lock);
|
---|
450 | tb = tb_find_fast();
|
---|
451 | /* Note: we do it here to avoid a gcc bug on Mac OS X when
|
---|
452 | doing it in tb_find_slow */
|
---|
453 | if (tb_invalidated_flag) {
|
---|
454 | /* as some TB could have been invalidated because
|
---|
455 | of memory exceptions while generating the code, we
|
---|
456 | must recompute the hash index here */
|
---|
457 | next_tb = 0;
|
---|
458 | tb_invalidated_flag = 0;
|
---|
459 | }
|
---|
460 |
|
---|
461 | /* see if we can patch the calling TB. When the TB
|
---|
462 | spans two pages, we cannot safely do a direct
|
---|
463 | jump. */
|
---|
464 | if (next_tb != 0
|
---|
465 | && !(tb->cflags & CF_RAW_MODE)
|
---|
466 | && tb->page_addr[1] == -1)
|
---|
467 | {
|
---|
468 | tb_add_jump((TranslationBlock *)(long)(next_tb & ~3), next_tb & 3, tb);
|
---|
469 | }
|
---|
470 | spin_unlock(&tb_lock);
|
---|
471 | RAWEx_ProfileStop(env, STATS_TLB_LOOKUP);
|
---|
472 |
|
---|
473 | env->current_tb = tb;
|
---|
474 | while (env->current_tb) {
|
---|
475 | tc_ptr = tb->tc_ptr;
|
---|
476 | /* execute the generated code */
|
---|
477 | RAWEx_ProfileStart(env, STATS_QEMU_RUN_EMULATED_CODE);
|
---|
478 | #if defined(VBOX) && defined(GCC_WITH_BUGGY_REGPARM)
|
---|
479 | tcg_qemu_tb_exec(tc_ptr, next_tb);
|
---|
480 | #else
|
---|
481 | next_tb = tcg_qemu_tb_exec(tc_ptr);
|
---|
482 | #endif
|
---|
483 | RAWEx_ProfileStop(env, STATS_QEMU_RUN_EMULATED_CODE);
|
---|
484 | env->current_tb = NULL;
|
---|
485 | if ((next_tb & 3) == 2) {
|
---|
486 | /* Instruction counter expired. */
|
---|
487 | int insns_left;
|
---|
488 | tb = (TranslationBlock *)(long)(next_tb & ~3);
|
---|
489 | /* Restore PC. */
|
---|
490 | CPU_PC_FROM_TB(env, tb);
|
---|
491 | insns_left = env->icount_decr.u32;
|
---|
492 | if (env->icount_extra && insns_left >= 0) {
|
---|
493 | /* Refill decrementer and continue execution. */
|
---|
494 | env->icount_extra += insns_left;
|
---|
495 | if (env->icount_extra > 0xffff) {
|
---|
496 | insns_left = 0xffff;
|
---|
497 | } else {
|
---|
498 | insns_left = env->icount_extra;
|
---|
499 | }
|
---|
500 | env->icount_extra -= insns_left;
|
---|
501 | env->icount_decr.u16.low = insns_left;
|
---|
502 | } else {
|
---|
503 | if (insns_left > 0) {
|
---|
504 | /* Execute remaining instructions. */
|
---|
505 | cpu_exec_nocache(insns_left, tb);
|
---|
506 | }
|
---|
507 | env->exception_index = EXCP_INTERRUPT;
|
---|
508 | next_tb = 0;
|
---|
509 | cpu_loop_exit();
|
---|
510 | }
|
---|
511 | }
|
---|
512 | }
|
---|
513 |
|
---|
514 | /* reset soft MMU for next block (it can currently
|
---|
515 | only be set by a memory fault) */
|
---|
516 | #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
|
---|
517 | if (env->hflags & HF_SOFTMMU_MASK) {
|
---|
518 | env->hflags &= ~HF_SOFTMMU_MASK;
|
---|
519 | /* do not allow linking to another block */
|
---|
520 | next_tb = 0;
|
---|
521 | }
|
---|
522 | #endif
|
---|
523 | } /* for(;;) */
|
---|
524 | } else {
|
---|
525 | env_to_regs();
|
---|
526 | }
|
---|
527 | #ifdef VBOX_HIGH_RES_TIMERS_HACK
|
---|
528 | /* NULL the current_tb here so cpu_interrupt() doesn't do anything
|
---|
529 | unnecessary (like crashing during emulate single instruction).
|
---|
530 | Note! Don't use env1->pVM here, the code wouldn't run with
|
---|
531 | gcc-4.4/amd64 anymore, see #3883. */
|
---|
532 | env->current_tb = NULL;
|
---|
533 | if ( !(env->interrupt_request & ( CPU_INTERRUPT_EXIT | CPU_INTERRUPT_DEBUG | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_RC
|
---|
534 | | CPU_INTERRUPT_SINGLE_INSTR | CPU_INTERRUPT_SINGLE_INSTR_IN_FLIGHT))
|
---|
535 | && ( (env->interrupt_request & CPU_INTERRUPT_EXTERNAL_TIMER)
|
---|
536 | || TMTimerPollBool(env->pVM, env->pVCpu)) ) {
|
---|
537 | ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~CPU_INTERRUPT_EXTERNAL_TIMER);
|
---|
538 | remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
|
---|
539 | TMR3TimerQueuesDo(env->pVM);
|
---|
540 | remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
|
---|
541 | }
|
---|
542 | #endif
|
---|
543 | } /* for(;;) */
|
---|
544 |
|
---|
545 | #if defined(TARGET_I386)
|
---|
546 | /* restore flags in standard format */
|
---|
547 | env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
|
---|
548 | #else
|
---|
549 | #error unsupported target CPU
|
---|
550 | #endif
|
---|
551 | #include "hostregs_helper.h"
|
---|
552 | return ret;
|
---|
553 | }
|
---|
554 |
|
---|
555 | #else /* !VBOX */
|
---|
556 | int cpu_exec(CPUState *env1)
|
---|
557 | {
|
---|
558 | #define DECLARE_HOST_REGS 1
|
---|
559 | #include "hostregs_helper.h"
|
---|
560 | int ret, interrupt_request;
|
---|
561 | TranslationBlock *tb;
|
---|
562 | uint8_t *tc_ptr;
|
---|
563 | unsigned long next_tb;
|
---|
564 |
|
---|
565 | if (cpu_halted(env1) == EXCP_HALTED)
|
---|
566 | return EXCP_HALTED;
|
---|
567 |
|
---|
568 | cpu_single_env = env1;
|
---|
569 |
|
---|
570 | /* first we save global registers */
|
---|
571 | #define SAVE_HOST_REGS 1
|
---|
572 | #include "hostregs_helper.h"
|
---|
573 | env = env1;
|
---|
574 |
|
---|
575 | env_to_regs();
|
---|
576 | #if defined(TARGET_I386)
|
---|
577 | /* put eflags in CPU temporary format */
|
---|
578 | CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
---|
579 | DF = 1 - (2 * ((env->eflags >> 10) & 1));
|
---|
580 | CC_OP = CC_OP_EFLAGS;
|
---|
581 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
---|
582 | #elif defined(TARGET_SPARC)
|
---|
583 | #elif defined(TARGET_M68K)
|
---|
584 | env->cc_op = CC_OP_FLAGS;
|
---|
585 | env->cc_dest = env->sr & 0xf;
|
---|
586 | env->cc_x = (env->sr >> 4) & 1;
|
---|
587 | #elif defined(TARGET_ALPHA)
|
---|
588 | #elif defined(TARGET_ARM)
|
---|
589 | #elif defined(TARGET_PPC)
|
---|
590 | #elif defined(TARGET_MIPS)
|
---|
591 | #elif defined(TARGET_SH4)
|
---|
592 | #elif defined(TARGET_CRIS)
|
---|
593 | /* XXXXX */
|
---|
594 | #else
|
---|
595 | #error unsupported target CPU
|
---|
596 | #endif
|
---|
597 | env->exception_index = -1;
|
---|
598 |
|
---|
599 | /* prepare setjmp context for exception handling */
|
---|
600 | for(;;) {
|
---|
601 | if (setjmp(env->jmp_env) == 0) {
|
---|
602 | env->current_tb = NULL;
|
---|
603 | /* if an exception is pending, we execute it here */
|
---|
604 | if (env->exception_index >= 0) {
|
---|
605 | if (env->exception_index >= EXCP_INTERRUPT) {
|
---|
606 | /* exit request from the cpu execution loop */
|
---|
607 | ret = env->exception_index;
|
---|
608 | break;
|
---|
609 | } else if (env->user_mode_only) {
|
---|
610 | /* if user mode only, we simulate a fake exception
|
---|
611 | which will be handled outside the cpu execution
|
---|
612 | loop */
|
---|
613 | #if defined(TARGET_I386)
|
---|
614 | do_interrupt_user(env->exception_index,
|
---|
615 | env->exception_is_int,
|
---|
616 | env->error_code,
|
---|
617 | env->exception_next_eip);
|
---|
618 | /* successfully delivered */
|
---|
619 | env->old_exception = -1;
|
---|
620 | #endif
|
---|
621 | ret = env->exception_index;
|
---|
622 | break;
|
---|
623 | } else {
|
---|
624 | #if defined(TARGET_I386)
|
---|
625 | /* simulate a real cpu exception. On i386, it can
|
---|
626 | trigger new exceptions, but we do not handle
|
---|
627 | double or triple faults yet. */
|
---|
628 | do_interrupt(env->exception_index,
|
---|
629 | env->exception_is_int,
|
---|
630 | env->error_code,
|
---|
631 | env->exception_next_eip, 0);
|
---|
632 | /* successfully delivered */
|
---|
633 | env->old_exception = -1;
|
---|
634 | #elif defined(TARGET_PPC)
|
---|
635 | do_interrupt(env);
|
---|
636 | #elif defined(TARGET_MIPS)
|
---|
637 | do_interrupt(env);
|
---|
638 | #elif defined(TARGET_SPARC)
|
---|
639 | do_interrupt(env);
|
---|
640 | #elif defined(TARGET_ARM)
|
---|
641 | do_interrupt(env);
|
---|
642 | #elif defined(TARGET_SH4)
|
---|
643 | do_interrupt(env);
|
---|
644 | #elif defined(TARGET_ALPHA)
|
---|
645 | do_interrupt(env);
|
---|
646 | #elif defined(TARGET_CRIS)
|
---|
647 | do_interrupt(env);
|
---|
648 | #elif defined(TARGET_M68K)
|
---|
649 | do_interrupt(0);
|
---|
650 | #endif
|
---|
651 | }
|
---|
652 | env->exception_index = -1;
|
---|
653 | }
|
---|
654 | #ifdef USE_KQEMU
|
---|
655 | if (kqemu_is_ok(env) && env->interrupt_request == 0) {
|
---|
656 | int ret;
|
---|
657 | env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
|
---|
658 | ret = kqemu_cpu_exec(env);
|
---|
659 | /* put eflags in CPU temporary format */
|
---|
660 | CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
---|
661 | DF = 1 - (2 * ((env->eflags >> 10) & 1));
|
---|
662 | CC_OP = CC_OP_EFLAGS;
|
---|
663 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
---|
664 | if (ret == 1) {
|
---|
665 | /* exception */
|
---|
666 | longjmp(env->jmp_env, 1);
|
---|
667 | } else if (ret == 2) {
|
---|
668 | /* softmmu execution needed */
|
---|
669 | } else {
|
---|
670 | if (env->interrupt_request != 0) {
|
---|
671 | /* hardware interrupt will be executed just after */
|
---|
672 | } else {
|
---|
673 | /* otherwise, we restart */
|
---|
674 | longjmp(env->jmp_env, 1);
|
---|
675 | }
|
---|
676 | }
|
---|
677 | }
|
---|
678 | #endif
|
---|
679 |
|
---|
680 | next_tb = 0; /* force lookup of first TB */
|
---|
681 | for(;;) {
|
---|
682 | interrupt_request = env->interrupt_request;
|
---|
683 | if (unlikely(interrupt_request) &&
|
---|
684 | likely(!(env->singlestep_enabled & SSTEP_NOIRQ))) {
|
---|
685 | if (interrupt_request & CPU_INTERRUPT_DEBUG) {
|
---|
686 | env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
|
---|
687 | env->exception_index = EXCP_DEBUG;
|
---|
688 | cpu_loop_exit();
|
---|
689 | }
|
---|
690 | #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
|
---|
691 | defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS)
|
---|
692 | if (interrupt_request & CPU_INTERRUPT_HALT) {
|
---|
693 | env->interrupt_request &= ~CPU_INTERRUPT_HALT;
|
---|
694 | env->halted = 1;
|
---|
695 | env->exception_index = EXCP_HLT;
|
---|
696 | cpu_loop_exit();
|
---|
697 | }
|
---|
698 | #endif
|
---|
699 | #if defined(TARGET_I386)
|
---|
700 | if (env->hflags2 & HF2_GIF_MASK) {
|
---|
701 | if ((interrupt_request & CPU_INTERRUPT_SMI) &&
|
---|
702 | !(env->hflags & HF_SMM_MASK)) {
|
---|
703 | svm_check_intercept(SVM_EXIT_SMI);
|
---|
704 | env->interrupt_request &= ~CPU_INTERRUPT_SMI;
|
---|
705 | do_smm_enter();
|
---|
706 | next_tb = 0;
|
---|
707 | } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
|
---|
708 | !(env->hflags2 & HF2_NMI_MASK)) {
|
---|
709 | env->interrupt_request &= ~CPU_INTERRUPT_NMI;
|
---|
710 | env->hflags2 |= HF2_NMI_MASK;
|
---|
711 | do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
|
---|
712 | next_tb = 0;
|
---|
713 | } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
|
---|
714 | (((env->hflags2 & HF2_VINTR_MASK) &&
|
---|
715 | (env->hflags2 & HF2_HIF_MASK)) ||
|
---|
716 | (!(env->hflags2 & HF2_VINTR_MASK) &&
|
---|
717 | (env->eflags & IF_MASK &&
|
---|
718 | !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
|
---|
719 | int intno;
|
---|
720 | svm_check_intercept(SVM_EXIT_INTR);
|
---|
721 | env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
|
---|
722 | intno = cpu_get_pic_interrupt(env);
|
---|
723 | if (loglevel & CPU_LOG_TB_IN_ASM) {
|
---|
724 | fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
|
---|
725 | }
|
---|
726 | do_interrupt(intno, 0, 0, 0, 1);
|
---|
727 | /* ensure that no TB jump will be modified as
|
---|
728 | the program flow was changed */
|
---|
729 | next_tb = 0;
|
---|
730 | #if !defined(CONFIG_USER_ONLY)
|
---|
731 | } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
|
---|
732 | (env->eflags & IF_MASK) &&
|
---|
733 | !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
|
---|
734 | int intno;
|
---|
735 | /* FIXME: this should respect TPR */
|
---|
736 | svm_check_intercept(SVM_EXIT_VINTR);
|
---|
737 | env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
|
---|
738 | intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
|
---|
739 | if (loglevel & CPU_LOG_TB_IN_ASM)
|
---|
740 | fprintf(logfile, "Servicing virtual hardware INT=0x%02x\n", intno);
|
---|
741 | do_interrupt(intno, 0, 0, 0, 1);
|
---|
742 | next_tb = 0;
|
---|
743 | #endif
|
---|
744 | }
|
---|
745 | }
|
---|
746 | #elif defined(TARGET_PPC)
|
---|
747 | #if 0
|
---|
748 | if ((interrupt_request & CPU_INTERRUPT_RESET)) {
|
---|
749 | cpu_ppc_reset(env);
|
---|
750 | }
|
---|
751 | #endif
|
---|
752 | if (interrupt_request & CPU_INTERRUPT_HARD) {
|
---|
753 | ppc_hw_interrupt(env);
|
---|
754 | if (env->pending_interrupts == 0)
|
---|
755 | env->interrupt_request &= ~CPU_INTERRUPT_HARD;
|
---|
756 | next_tb = 0;
|
---|
757 | }
|
---|
758 | #elif defined(TARGET_MIPS)
|
---|
759 | if ((interrupt_request & CPU_INTERRUPT_HARD) &&
|
---|
760 | (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
|
---|
761 | (env->CP0_Status & (1 << CP0St_IE)) &&
|
---|
762 | !(env->CP0_Status & (1 << CP0St_EXL)) &&
|
---|
763 | !(env->CP0_Status & (1 << CP0St_ERL)) &&
|
---|
764 | !(env->hflags & MIPS_HFLAG_DM)) {
|
---|
765 | /* Raise it */
|
---|
766 | env->exception_index = EXCP_EXT_INTERRUPT;
|
---|
767 | env->error_code = 0;
|
---|
768 | do_interrupt(env);
|
---|
769 | next_tb = 0;
|
---|
770 | }
|
---|
771 | #elif defined(TARGET_SPARC)
|
---|
772 | if ((interrupt_request & CPU_INTERRUPT_HARD) &&
|
---|
773 | (env->psret != 0)) {
|
---|
774 | int pil = env->interrupt_index & 15;
|
---|
775 | int type = env->interrupt_index & 0xf0;
|
---|
776 |
|
---|
777 | if (((type == TT_EXTINT) &&
|
---|
778 | (pil == 15 || pil > env->psrpil)) ||
|
---|
779 | type != TT_EXTINT) {
|
---|
780 | env->interrupt_request &= ~CPU_INTERRUPT_HARD;
|
---|
781 | env->exception_index = env->interrupt_index;
|
---|
782 | do_interrupt(env);
|
---|
783 | env->interrupt_index = 0;
|
---|
784 | #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
|
---|
785 | cpu_check_irqs(env);
|
---|
786 | #endif
|
---|
787 | next_tb = 0;
|
---|
788 | }
|
---|
789 | } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
|
---|
790 | //do_interrupt(0, 0, 0, 0, 0);
|
---|
791 | env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
|
---|
792 | }
|
---|
793 | #elif defined(TARGET_ARM)
|
---|
794 | if (interrupt_request & CPU_INTERRUPT_FIQ
|
---|
795 | && !(env->uncached_cpsr & CPSR_F)) {
|
---|
796 | env->exception_index = EXCP_FIQ;
|
---|
797 | do_interrupt(env);
|
---|
798 | next_tb = 0;
|
---|
799 | }
|
---|
800 | /* ARMv7-M interrupt return works by loading a magic value
|
---|
801 | into the PC. On real hardware the load causes the
|
---|
802 | return to occur. The qemu implementation performs the
|
---|
803 | jump normally, then does the exception return when the
|
---|
804 | CPU tries to execute code at the magic address.
|
---|
805 | This will cause the magic PC value to be pushed to
|
---|
806 | the stack if an interrupt occurred at the wrong time.
|
---|
807 | We avoid this by disabling interrupts when
|
---|
808 | pc contains a magic address. */
|
---|
809 | if (interrupt_request & CPU_INTERRUPT_HARD
|
---|
810 | && ((IS_M(env) && env->regs[15] < 0xfffffff0)
|
---|
811 | || !(env->uncached_cpsr & CPSR_I))) {
|
---|
812 | env->exception_index = EXCP_IRQ;
|
---|
813 | do_interrupt(env);
|
---|
814 | next_tb = 0;
|
---|
815 | }
|
---|
816 | #elif defined(TARGET_SH4)
|
---|
817 | if (interrupt_request & CPU_INTERRUPT_HARD) {
|
---|
818 | do_interrupt(env);
|
---|
819 | next_tb = 0;
|
---|
820 | }
|
---|
821 | #elif defined(TARGET_ALPHA)
|
---|
822 | if (interrupt_request & CPU_INTERRUPT_HARD) {
|
---|
823 | do_interrupt(env);
|
---|
824 | next_tb = 0;
|
---|
825 | }
|
---|
826 | #elif defined(TARGET_CRIS)
|
---|
827 | if (interrupt_request & CPU_INTERRUPT_HARD
|
---|
828 | && (env->pregs[PR_CCS] & I_FLAG)) {
|
---|
829 | env->exception_index = EXCP_IRQ;
|
---|
830 | do_interrupt(env);
|
---|
831 | next_tb = 0;
|
---|
832 | }
|
---|
833 | if (interrupt_request & CPU_INTERRUPT_NMI
|
---|
834 | && (env->pregs[PR_CCS] & M_FLAG)) {
|
---|
835 | env->exception_index = EXCP_NMI;
|
---|
836 | do_interrupt(env);
|
---|
837 | next_tb = 0;
|
---|
838 | }
|
---|
839 | #elif defined(TARGET_M68K)
|
---|
840 | if (interrupt_request & CPU_INTERRUPT_HARD
|
---|
841 | && ((env->sr & SR_I) >> SR_I_SHIFT)
|
---|
842 | < env->pending_level) {
|
---|
843 | /* Real hardware gets the interrupt vector via an
|
---|
844 | IACK cycle at this point. Current emulated
|
---|
845 | hardware doesn't rely on this, so we
|
---|
846 | provide/save the vector when the interrupt is
|
---|
847 | first signalled. */
|
---|
848 | env->exception_index = env->pending_vector;
|
---|
849 | do_interrupt(1);
|
---|
850 | next_tb = 0;
|
---|
851 | }
|
---|
852 | #endif
|
---|
853 | /* Don't use the cached interrupt_request value,
|
---|
854 | do_interrupt may have updated the EXITTB flag. */
|
---|
855 | if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
|
---|
856 | env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
|
---|
857 | /* ensure that no TB jump will be modified as
|
---|
858 | the program flow was changed */
|
---|
859 | next_tb = 0;
|
---|
860 | }
|
---|
861 | if (interrupt_request & CPU_INTERRUPT_EXIT) {
|
---|
862 | env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
|
---|
863 | env->exception_index = EXCP_INTERRUPT;
|
---|
864 | cpu_loop_exit();
|
---|
865 | }
|
---|
866 | }
|
---|
867 | #ifdef DEBUG_EXEC
|
---|
868 | if ((loglevel & CPU_LOG_TB_CPU)) {
|
---|
869 | /* restore flags in standard format */
|
---|
870 | regs_to_env();
|
---|
871 | #if defined(TARGET_I386)
|
---|
872 | env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
|
---|
873 | cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
|
---|
874 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
---|
875 | #elif defined(TARGET_ARM)
|
---|
876 | cpu_dump_state(env, logfile, fprintf, 0);
|
---|
877 | #elif defined(TARGET_SPARC)
|
---|
878 | cpu_dump_state(env, logfile, fprintf, 0);
|
---|
879 | #elif defined(TARGET_PPC)
|
---|
880 | cpu_dump_state(env, logfile, fprintf, 0);
|
---|
881 | #elif defined(TARGET_M68K)
|
---|
882 | cpu_m68k_flush_flags(env, env->cc_op);
|
---|
883 | env->cc_op = CC_OP_FLAGS;
|
---|
884 | env->sr = (env->sr & 0xffe0)
|
---|
885 | | env->cc_dest | (env->cc_x << 4);
|
---|
886 | cpu_dump_state(env, logfile, fprintf, 0);
|
---|
887 | #elif defined(TARGET_MIPS)
|
---|
888 | cpu_dump_state(env, logfile, fprintf, 0);
|
---|
889 | #elif defined(TARGET_SH4)
|
---|
890 | cpu_dump_state(env, logfile, fprintf, 0);
|
---|
891 | #elif defined(TARGET_ALPHA)
|
---|
892 | cpu_dump_state(env, logfile, fprintf, 0);
|
---|
893 | #elif defined(TARGET_CRIS)
|
---|
894 | cpu_dump_state(env, logfile, fprintf, 0);
|
---|
895 | #else
|
---|
896 | #error unsupported target CPU
|
---|
897 | #endif
|
---|
898 | }
|
---|
899 | #endif
|
---|
900 | spin_lock(&tb_lock);
|
---|
901 | tb = tb_find_fast();
|
---|
902 | /* Note: we do it here to avoid a gcc bug on Mac OS X when
|
---|
903 | doing it in tb_find_slow */
|
---|
904 | if (tb_invalidated_flag) {
|
---|
905 | /* as some TB could have been invalidated because
|
---|
906 | of memory exceptions while generating the code, we
|
---|
907 | must recompute the hash index here */
|
---|
908 | next_tb = 0;
|
---|
909 | tb_invalidated_flag = 0;
|
---|
910 | }
|
---|
911 | #ifdef DEBUG_EXEC
|
---|
912 | if ((loglevel & CPU_LOG_EXEC)) {
|
---|
913 | fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
|
---|
914 | (long)tb->tc_ptr, tb->pc,
|
---|
915 | lookup_symbol(tb->pc));
|
---|
916 | }
|
---|
917 | #endif
|
---|
918 | /* see if we can patch the calling TB. When the TB
|
---|
919 | spans two pages, we cannot safely do a direct
|
---|
920 | jump. */
|
---|
921 | {
|
---|
922 | if (next_tb != 0 &&
|
---|
923 | #ifdef USE_KQEMU
|
---|
924 | (env->kqemu_enabled != 2) &&
|
---|
925 | #endif
|
---|
926 | tb->page_addr[1] == -1) {
|
---|
927 | tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
|
---|
928 | }
|
---|
929 | }
|
---|
930 | spin_unlock(&tb_lock);
|
---|
931 | env->current_tb = tb;
|
---|
932 | while (env->current_tb) {
|
---|
933 | tc_ptr = tb->tc_ptr;
|
---|
934 | /* execute the generated code */
|
---|
935 | #if defined(__sparc__) && !defined(HOST_SOLARIS)
|
---|
936 | #undef env
|
---|
937 | env = cpu_single_env;
|
---|
938 | #define env cpu_single_env
|
---|
939 | #endif
|
---|
940 | next_tb = tcg_qemu_tb_exec(tc_ptr);
|
---|
941 | env->current_tb = NULL;
|
---|
942 | if ((next_tb & 3) == 2) {
|
---|
943 | /* Instruction counter expired. */
|
---|
944 | int insns_left;
|
---|
945 | tb = (TranslationBlock *)(long)(next_tb & ~3);
|
---|
946 | /* Restore PC. */
|
---|
947 | CPU_PC_FROM_TB(env, tb);
|
---|
948 | insns_left = env->icount_decr.u32;
|
---|
949 | if (env->icount_extra && insns_left >= 0) {
|
---|
950 | /* Refill decrementer and continue execution. */
|
---|
951 | env->icount_extra += insns_left;
|
---|
952 | if (env->icount_extra > 0xffff) {
|
---|
953 | insns_left = 0xffff;
|
---|
954 | } else {
|
---|
955 | insns_left = env->icount_extra;
|
---|
956 | }
|
---|
957 | env->icount_extra -= insns_left;
|
---|
958 | env->icount_decr.u16.low = insns_left;
|
---|
959 | } else {
|
---|
960 | if (insns_left > 0) {
|
---|
961 | /* Execute remaining instructions. */
|
---|
962 | cpu_exec_nocache(insns_left, tb);
|
---|
963 | }
|
---|
964 | env->exception_index = EXCP_INTERRUPT;
|
---|
965 | next_tb = 0;
|
---|
966 | cpu_loop_exit();
|
---|
967 | }
|
---|
968 | }
|
---|
969 | }
|
---|
970 | /* reset soft MMU for next block (it can currently
|
---|
971 | only be set by a memory fault) */
|
---|
972 | #if defined(USE_KQEMU)
|
---|
973 | #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
|
---|
974 | if (kqemu_is_ok(env) &&
|
---|
975 | (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
|
---|
976 | cpu_loop_exit();
|
---|
977 | }
|
---|
978 | #endif
|
---|
979 | } /* for(;;) */
|
---|
980 | } else {
|
---|
981 | env_to_regs();
|
---|
982 | }
|
---|
983 | } /* for(;;) */
|
---|
984 |
|
---|
985 |
|
---|
986 | #if defined(TARGET_I386)
|
---|
987 | /* restore flags in standard format */
|
---|
988 | env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
|
---|
989 | #elif defined(TARGET_ARM)
|
---|
990 | /* XXX: Save/restore host fpu exception state?. */
|
---|
991 | #elif defined(TARGET_SPARC)
|
---|
992 | #elif defined(TARGET_PPC)
|
---|
993 | #elif defined(TARGET_M68K)
|
---|
994 | cpu_m68k_flush_flags(env, env->cc_op);
|
---|
995 | env->cc_op = CC_OP_FLAGS;
|
---|
996 | env->sr = (env->sr & 0xffe0)
|
---|
997 | | env->cc_dest | (env->cc_x << 4);
|
---|
998 | #elif defined(TARGET_MIPS)
|
---|
999 | #elif defined(TARGET_SH4)
|
---|
1000 | #elif defined(TARGET_ALPHA)
|
---|
1001 | #elif defined(TARGET_CRIS)
|
---|
1002 | /* XXXXX */
|
---|
1003 | #else
|
---|
1004 | #error unsupported target CPU
|
---|
1005 | #endif
|
---|
1006 |
|
---|
1007 | /* restore global registers */
|
---|
1008 | #include "hostregs_helper.h"
|
---|
1009 |
|
---|
1010 | /* fail safe : never use cpu_single_env outside cpu_exec() */
|
---|
1011 | cpu_single_env = NULL;
|
---|
1012 | return ret;
|
---|
1013 | }
|
---|
1014 | #endif /* !VBOX */
|
---|
1015 |
|
---|
1016 | /* must only be called from the generated code as an exception can be
|
---|
1017 | generated */
|
---|
1018 | void tb_invalidate_page_range(target_ulong start, target_ulong end)
|
---|
1019 | {
|
---|
1020 | /* XXX: cannot enable it yet because it yields to MMU exception
|
---|
1021 | where NIP != read address on PowerPC */
|
---|
1022 | #if 0
|
---|
1023 | target_ulong phys_addr;
|
---|
1024 | phys_addr = get_phys_addr_code(env, start);
|
---|
1025 | tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
|
---|
1026 | #endif
|
---|
1027 | }
|
---|
1028 |
|
---|
1029 | #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
|
---|
1030 |
|
---|
1031 | void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
|
---|
1032 | {
|
---|
1033 | CPUX86State *saved_env;
|
---|
1034 |
|
---|
1035 | saved_env = env;
|
---|
1036 | env = s;
|
---|
1037 | if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
|
---|
1038 | selector &= 0xffff;
|
---|
1039 | cpu_x86_load_seg_cache(env, seg_reg, selector,
|
---|
1040 | (selector << 4), 0xffff, 0);
|
---|
1041 | } else {
|
---|
1042 | load_seg(seg_reg, selector);
|
---|
1043 | }
|
---|
1044 | env = saved_env;
|
---|
1045 | }
|
---|
1046 |
|
---|
1047 | void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
|
---|
1048 | {
|
---|
1049 | CPUX86State *saved_env;
|
---|
1050 |
|
---|
1051 | saved_env = env;
|
---|
1052 | env = s;
|
---|
1053 |
|
---|
1054 | helper_fsave((target_ulong)ptr, data32);
|
---|
1055 |
|
---|
1056 | env = saved_env;
|
---|
1057 | }
|
---|
1058 |
|
---|
1059 | void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
|
---|
1060 | {
|
---|
1061 | CPUX86State *saved_env;
|
---|
1062 |
|
---|
1063 | saved_env = env;
|
---|
1064 | env = s;
|
---|
1065 |
|
---|
1066 | helper_frstor((target_ulong)ptr, data32);
|
---|
1067 |
|
---|
1068 | env = saved_env;
|
---|
1069 | }
|
---|
1070 |
|
---|
1071 | #endif /* TARGET_I386 */
|
---|
1072 |
|
---|
1073 | #if !defined(CONFIG_SOFTMMU)
|
---|
1074 |
|
---|
1075 | #if defined(TARGET_I386)
|
---|
1076 |
|
---|
1077 | /* 'pc' is the host PC at which the exception was raised. 'address' is
|
---|
1078 | the effective address of the memory exception. 'is_write' is 1 if a
|
---|
1079 | write caused the exception and otherwise 0'. 'old_set' is the
|
---|
1080 | signal set which should be restored */
|
---|
1081 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
---|
1082 | int is_write, sigset_t *old_set,
|
---|
1083 | void *puc)
|
---|
1084 | {
|
---|
1085 | TranslationBlock *tb;
|
---|
1086 | int ret;
|
---|
1087 |
|
---|
1088 | if (cpu_single_env)
|
---|
1089 | env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
---|
1090 | #if defined(DEBUG_SIGNAL)
|
---|
1091 | qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
---|
1092 | pc, address, is_write, *(unsigned long *)old_set);
|
---|
1093 | #endif
|
---|
1094 | /* XXX: locking issue */
|
---|
1095 | if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
---|
1096 | return 1;
|
---|
1097 | }
|
---|
1098 |
|
---|
1099 | /* see if it is an MMU fault */
|
---|
1100 | ret = cpu_x86_handle_mmu_fault(env, address, is_write,
|
---|
1101 | ((env->hflags & HF_CPL_MASK) == 3), 0);
|
---|
1102 | if (ret < 0)
|
---|
1103 | return 0; /* not an MMU fault */
|
---|
1104 | if (ret == 0)
|
---|
1105 | return 1; /* the MMU fault was handled without causing real CPU fault */
|
---|
1106 | /* now we have a real cpu fault */
|
---|
1107 | tb = tb_find_pc(pc);
|
---|
1108 | if (tb) {
|
---|
1109 | /* the PC is inside the translated code. It means that we have
|
---|
1110 | a virtual CPU fault */
|
---|
1111 | cpu_restore_state(tb, env, pc, puc);
|
---|
1112 | }
|
---|
1113 | if (ret == 1) {
|
---|
1114 | #if 0
|
---|
1115 | printf("PF exception: EIP=0x%RGv CR2=0x%RGv error=0x%x\n",
|
---|
1116 | env->eip, env->cr[2], env->error_code);
|
---|
1117 | #endif
|
---|
1118 | /* we restore the process signal mask as the sigreturn should
|
---|
1119 | do it (XXX: use sigsetjmp) */
|
---|
1120 | sigprocmask(SIG_SETMASK, old_set, NULL);
|
---|
1121 | raise_exception_err(env->exception_index, env->error_code);
|
---|
1122 | } else {
|
---|
1123 | /* activate soft MMU for this block */
|
---|
1124 | env->hflags |= HF_SOFTMMU_MASK;
|
---|
1125 | cpu_resume_from_signal(env, puc);
|
---|
1126 | }
|
---|
1127 | /* never comes here */
|
---|
1128 | return 1;
|
---|
1129 | }
|
---|
1130 |
|
---|
1131 | #elif defined(TARGET_ARM)
|
---|
1132 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
---|
1133 | int is_write, sigset_t *old_set,
|
---|
1134 | void *puc)
|
---|
1135 | {
|
---|
1136 | TranslationBlock *tb;
|
---|
1137 | int ret;
|
---|
1138 |
|
---|
1139 | if (cpu_single_env)
|
---|
1140 | env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
---|
1141 | #if defined(DEBUG_SIGNAL)
|
---|
1142 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
---|
1143 | pc, address, is_write, *(unsigned long *)old_set);
|
---|
1144 | #endif
|
---|
1145 | /* XXX: locking issue */
|
---|
1146 | if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
---|
1147 | return 1;
|
---|
1148 | }
|
---|
1149 | /* see if it is an MMU fault */
|
---|
1150 | ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
|
---|
1151 | if (ret < 0)
|
---|
1152 | return 0; /* not an MMU fault */
|
---|
1153 | if (ret == 0)
|
---|
1154 | return 1; /* the MMU fault was handled without causing real CPU fault */
|
---|
1155 | /* now we have a real cpu fault */
|
---|
1156 | tb = tb_find_pc(pc);
|
---|
1157 | if (tb) {
|
---|
1158 | /* the PC is inside the translated code. It means that we have
|
---|
1159 | a virtual CPU fault */
|
---|
1160 | cpu_restore_state(tb, env, pc, puc);
|
---|
1161 | }
|
---|
1162 | /* we restore the process signal mask as the sigreturn should
|
---|
1163 | do it (XXX: use sigsetjmp) */
|
---|
1164 | sigprocmask(SIG_SETMASK, old_set, NULL);
|
---|
1165 | cpu_loop_exit();
|
---|
1166 | }
|
---|
1167 | #elif defined(TARGET_SPARC)
|
---|
1168 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
---|
1169 | int is_write, sigset_t *old_set,
|
---|
1170 | void *puc)
|
---|
1171 | {
|
---|
1172 | TranslationBlock *tb;
|
---|
1173 | int ret;
|
---|
1174 |
|
---|
1175 | if (cpu_single_env)
|
---|
1176 | env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
---|
1177 | #if defined(DEBUG_SIGNAL)
|
---|
1178 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
---|
1179 | pc, address, is_write, *(unsigned long *)old_set);
|
---|
1180 | #endif
|
---|
1181 | /* XXX: locking issue */
|
---|
1182 | if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
---|
1183 | return 1;
|
---|
1184 | }
|
---|
1185 | /* see if it is an MMU fault */
|
---|
1186 | ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
|
---|
1187 | if (ret < 0)
|
---|
1188 | return 0; /* not an MMU fault */
|
---|
1189 | if (ret == 0)
|
---|
1190 | return 1; /* the MMU fault was handled without causing real CPU fault */
|
---|
1191 | /* now we have a real cpu fault */
|
---|
1192 | tb = tb_find_pc(pc);
|
---|
1193 | if (tb) {
|
---|
1194 | /* the PC is inside the translated code. It means that we have
|
---|
1195 | a virtual CPU fault */
|
---|
1196 | cpu_restore_state(tb, env, pc, puc);
|
---|
1197 | }
|
---|
1198 | /* we restore the process signal mask as the sigreturn should
|
---|
1199 | do it (XXX: use sigsetjmp) */
|
---|
1200 | sigprocmask(SIG_SETMASK, old_set, NULL);
|
---|
1201 | cpu_loop_exit();
|
---|
1202 | }
|
---|
1203 | #elif defined (TARGET_PPC)
|
---|
1204 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
---|
1205 | int is_write, sigset_t *old_set,
|
---|
1206 | void *puc)
|
---|
1207 | {
|
---|
1208 | TranslationBlock *tb;
|
---|
1209 | int ret;
|
---|
1210 |
|
---|
1211 | if (cpu_single_env)
|
---|
1212 | env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
---|
1213 | #if defined(DEBUG_SIGNAL)
|
---|
1214 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
---|
1215 | pc, address, is_write, *(unsigned long *)old_set);
|
---|
1216 | #endif
|
---|
1217 | /* XXX: locking issue */
|
---|
1218 | if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
---|
1219 | return 1;
|
---|
1220 | }
|
---|
1221 |
|
---|
1222 | /* see if it is an MMU fault */
|
---|
1223 | ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
|
---|
1224 | if (ret < 0)
|
---|
1225 | return 0; /* not an MMU fault */
|
---|
1226 | if (ret == 0)
|
---|
1227 | return 1; /* the MMU fault was handled without causing real CPU fault */
|
---|
1228 |
|
---|
1229 | /* now we have a real cpu fault */
|
---|
1230 | tb = tb_find_pc(pc);
|
---|
1231 | if (tb) {
|
---|
1232 | /* the PC is inside the translated code. It means that we have
|
---|
1233 | a virtual CPU fault */
|
---|
1234 | cpu_restore_state(tb, env, pc, puc);
|
---|
1235 | }
|
---|
1236 | if (ret == 1) {
|
---|
1237 | #if 0
|
---|
1238 | printf("PF exception: NIP=0x%08x error=0x%x %p\n",
|
---|
1239 | env->nip, env->error_code, tb);
|
---|
1240 | #endif
|
---|
1241 | /* we restore the process signal mask as the sigreturn should
|
---|
1242 | do it (XXX: use sigsetjmp) */
|
---|
1243 | sigprocmask(SIG_SETMASK, old_set, NULL);
|
---|
1244 | do_raise_exception_err(env->exception_index, env->error_code);
|
---|
1245 | } else {
|
---|
1246 | /* activate soft MMU for this block */
|
---|
1247 | cpu_resume_from_signal(env, puc);
|
---|
1248 | }
|
---|
1249 | /* never comes here */
|
---|
1250 | return 1;
|
---|
1251 | }
|
---|
1252 |
|
---|
1253 | #elif defined(TARGET_M68K)
|
---|
1254 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
---|
1255 | int is_write, sigset_t *old_set,
|
---|
1256 | void *puc)
|
---|
1257 | {
|
---|
1258 | TranslationBlock *tb;
|
---|
1259 | int ret;
|
---|
1260 |
|
---|
1261 | if (cpu_single_env)
|
---|
1262 | env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
---|
1263 | #if defined(DEBUG_SIGNAL)
|
---|
1264 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
---|
1265 | pc, address, is_write, *(unsigned long *)old_set);
|
---|
1266 | #endif
|
---|
1267 | /* XXX: locking issue */
|
---|
1268 | if (is_write && page_unprotect(address, pc, puc)) {
|
---|
1269 | return 1;
|
---|
1270 | }
|
---|
1271 | /* see if it is an MMU fault */
|
---|
1272 | ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0);
|
---|
1273 | if (ret < 0)
|
---|
1274 | return 0; /* not an MMU fault */
|
---|
1275 | if (ret == 0)
|
---|
1276 | return 1; /* the MMU fault was handled without causing real CPU fault */
|
---|
1277 | /* now we have a real cpu fault */
|
---|
1278 | tb = tb_find_pc(pc);
|
---|
1279 | if (tb) {
|
---|
1280 | /* the PC is inside the translated code. It means that we have
|
---|
1281 | a virtual CPU fault */
|
---|
1282 | cpu_restore_state(tb, env, pc, puc);
|
---|
1283 | }
|
---|
1284 | /* we restore the process signal mask as the sigreturn should
|
---|
1285 | do it (XXX: use sigsetjmp) */
|
---|
1286 | sigprocmask(SIG_SETMASK, old_set, NULL);
|
---|
1287 | cpu_loop_exit();
|
---|
1288 | /* never comes here */
|
---|
1289 | return 1;
|
---|
1290 | }
|
---|
1291 |
|
---|
1292 | #elif defined (TARGET_MIPS)
|
---|
1293 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
---|
1294 | int is_write, sigset_t *old_set,
|
---|
1295 | void *puc)
|
---|
1296 | {
|
---|
1297 | TranslationBlock *tb;
|
---|
1298 | int ret;
|
---|
1299 |
|
---|
1300 | if (cpu_single_env)
|
---|
1301 | env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
---|
1302 | #if defined(DEBUG_SIGNAL)
|
---|
1303 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
---|
1304 | pc, address, is_write, *(unsigned long *)old_set);
|
---|
1305 | #endif
|
---|
1306 | /* XXX: locking issue */
|
---|
1307 | if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
---|
1308 | return 1;
|
---|
1309 | }
|
---|
1310 |
|
---|
1311 | /* see if it is an MMU fault */
|
---|
1312 | ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
|
---|
1313 | if (ret < 0)
|
---|
1314 | return 0; /* not an MMU fault */
|
---|
1315 | if (ret == 0)
|
---|
1316 | return 1; /* the MMU fault was handled without causing real CPU fault */
|
---|
1317 |
|
---|
1318 | /* now we have a real cpu fault */
|
---|
1319 | tb = tb_find_pc(pc);
|
---|
1320 | if (tb) {
|
---|
1321 | /* the PC is inside the translated code. It means that we have
|
---|
1322 | a virtual CPU fault */
|
---|
1323 | cpu_restore_state(tb, env, pc, puc);
|
---|
1324 | }
|
---|
1325 | if (ret == 1) {
|
---|
1326 | #if 0
|
---|
1327 | printf("PF exception: NIP=0x%08x error=0x%x %p\n",
|
---|
1328 | env->nip, env->error_code, tb);
|
---|
1329 | #endif
|
---|
1330 | /* we restore the process signal mask as the sigreturn should
|
---|
1331 | do it (XXX: use sigsetjmp) */
|
---|
1332 | sigprocmask(SIG_SETMASK, old_set, NULL);
|
---|
1333 | do_raise_exception_err(env->exception_index, env->error_code);
|
---|
1334 | } else {
|
---|
1335 | /* activate soft MMU for this block */
|
---|
1336 | cpu_resume_from_signal(env, puc);
|
---|
1337 | }
|
---|
1338 | /* never comes here */
|
---|
1339 | return 1;
|
---|
1340 | }
|
---|
1341 |
|
---|
1342 | #elif defined (TARGET_SH4)
|
---|
1343 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
---|
1344 | int is_write, sigset_t *old_set,
|
---|
1345 | void *puc)
|
---|
1346 | {
|
---|
1347 | TranslationBlock *tb;
|
---|
1348 | int ret;
|
---|
1349 |
|
---|
1350 | if (cpu_single_env)
|
---|
1351 | env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
---|
1352 | #if defined(DEBUG_SIGNAL)
|
---|
1353 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
---|
1354 | pc, address, is_write, *(unsigned long *)old_set);
|
---|
1355 | #endif
|
---|
1356 | /* XXX: locking issue */
|
---|
1357 | if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
---|
1358 | return 1;
|
---|
1359 | }
|
---|
1360 |
|
---|
1361 | /* see if it is an MMU fault */
|
---|
1362 | ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
|
---|
1363 | if (ret < 0)
|
---|
1364 | return 0; /* not an MMU fault */
|
---|
1365 | if (ret == 0)
|
---|
1366 | return 1; /* the MMU fault was handled without causing real CPU fault */
|
---|
1367 |
|
---|
1368 | /* now we have a real cpu fault */
|
---|
1369 | tb = tb_find_pc(pc);
|
---|
1370 | if (tb) {
|
---|
1371 | /* the PC is inside the translated code. It means that we have
|
---|
1372 | a virtual CPU fault */
|
---|
1373 | cpu_restore_state(tb, env, pc, puc);
|
---|
1374 | }
|
---|
1375 | #if 0
|
---|
1376 | printf("PF exception: NIP=0x%08x error=0x%x %p\n",
|
---|
1377 | env->nip, env->error_code, tb);
|
---|
1378 | #endif
|
---|
1379 | /* we restore the process signal mask as the sigreturn should
|
---|
1380 | do it (XXX: use sigsetjmp) */
|
---|
1381 | sigprocmask(SIG_SETMASK, old_set, NULL);
|
---|
1382 | cpu_loop_exit();
|
---|
1383 | /* never comes here */
|
---|
1384 | return 1;
|
---|
1385 | }
|
---|
1386 | #else
|
---|
1387 | #error unsupported target CPU
|
---|
1388 | #endif
|
---|
1389 |
|
---|
1390 | #if defined(__i386__)
|
---|
1391 |
|
---|
1392 | #if defined(__APPLE__)
|
---|
1393 | # include <sys/ucontext.h>
|
---|
1394 |
|
---|
1395 | # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
|
---|
1396 | # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
|
---|
1397 | # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
|
---|
1398 | #else
|
---|
1399 | # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
|
---|
1400 | # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
|
---|
1401 | # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
|
---|
1402 | #endif
|
---|
1403 |
|
---|
1404 | int cpu_signal_handler(int host_signum, void *pinfo,
|
---|
1405 | void *puc)
|
---|
1406 | {
|
---|
1407 | siginfo_t *info = pinfo;
|
---|
1408 | struct ucontext *uc = puc;
|
---|
1409 | unsigned long pc;
|
---|
1410 | int trapno;
|
---|
1411 |
|
---|
1412 | #ifndef REG_EIP
|
---|
1413 | /* for glibc 2.1 */
|
---|
1414 | #define REG_EIP EIP
|
---|
1415 | #define REG_ERR ERR
|
---|
1416 | #define REG_TRAPNO TRAPNO
|
---|
1417 | #endif
|
---|
1418 | pc = uc->uc_mcontext.gregs[REG_EIP];
|
---|
1419 | trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
|
---|
1420 | #if defined(TARGET_I386) && defined(USE_CODE_COPY)
|
---|
1421 | if (trapno == 0x00 || trapno == 0x05) {
|
---|
1422 | /* send division by zero or bound exception */
|
---|
1423 | cpu_send_trap(pc, trapno, uc);
|
---|
1424 | return 1;
|
---|
1425 | } else
|
---|
1426 | #endif
|
---|
1427 | return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
---|
1428 | trapno == 0xe ?
|
---|
1429 | (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
|
---|
1430 | &uc->uc_sigmask, puc);
|
---|
1431 | }
|
---|
1432 |
|
---|
1433 | #elif defined(__x86_64__)
|
---|
1434 |
|
---|
1435 | int cpu_signal_handler(int host_signum, void *pinfo,
|
---|
1436 | void *puc)
|
---|
1437 | {
|
---|
1438 | siginfo_t *info = pinfo;
|
---|
1439 | struct ucontext *uc = puc;
|
---|
1440 | unsigned long pc;
|
---|
1441 |
|
---|
1442 | pc = uc->uc_mcontext.gregs[REG_RIP];
|
---|
1443 | return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
---|
1444 | uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
|
---|
1445 | (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
|
---|
1446 | &uc->uc_sigmask, puc);
|
---|
1447 | }
|
---|
1448 |
|
---|
1449 | #elif defined(__powerpc__)
|
---|
1450 |
|
---|
1451 | /***********************************************************************
|
---|
1452 | * signal context platform-specific definitions
|
---|
1453 | * From Wine
|
---|
1454 | */
|
---|
1455 | #ifdef linux
|
---|
1456 | /* All Registers access - only for local access */
|
---|
1457 | # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
|
---|
1458 | /* Gpr Registers access */
|
---|
1459 | # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
|
---|
1460 | # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
|
---|
1461 | # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
|
---|
1462 | # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
|
---|
1463 | # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
|
---|
1464 | # define LR_sig(context) REG_sig(link, context) /* Link register */
|
---|
1465 | # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
|
---|
1466 | /* Float Registers access */
|
---|
1467 | # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
|
---|
1468 | # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
|
---|
1469 | /* Exception Registers access */
|
---|
1470 | # define DAR_sig(context) REG_sig(dar, context)
|
---|
1471 | # define DSISR_sig(context) REG_sig(dsisr, context)
|
---|
1472 | # define TRAP_sig(context) REG_sig(trap, context)
|
---|
1473 | #endif /* linux */
|
---|
1474 |
|
---|
1475 | #ifdef __APPLE__
|
---|
1476 | # include <sys/ucontext.h>
|
---|
1477 | typedef struct ucontext SIGCONTEXT;
|
---|
1478 | /* All Registers access - only for local access */
|
---|
1479 | # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
|
---|
1480 | # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
|
---|
1481 | # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
|
---|
1482 | # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
|
---|
1483 | /* Gpr Registers access */
|
---|
1484 | # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
|
---|
1485 | # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
|
---|
1486 | # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
|
---|
1487 | # define CTR_sig(context) REG_sig(ctr, context)
|
---|
1488 | # define XER_sig(context) REG_sig(xer, context) /* Link register */
|
---|
1489 | # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
|
---|
1490 | # define CR_sig(context) REG_sig(cr, context) /* Condition register */
|
---|
1491 | /* Float Registers access */
|
---|
1492 | # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
|
---|
1493 | # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
|
---|
1494 | /* Exception Registers access */
|
---|
1495 | # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
|
---|
1496 | # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
|
---|
1497 | # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
|
---|
1498 | #endif /* __APPLE__ */
|
---|
1499 |
|
---|
1500 | int cpu_signal_handler(int host_signum, void *pinfo,
|
---|
1501 | void *puc)
|
---|
1502 | {
|
---|
1503 | siginfo_t *info = pinfo;
|
---|
1504 | struct ucontext *uc = puc;
|
---|
1505 | unsigned long pc;
|
---|
1506 | int is_write;
|
---|
1507 |
|
---|
1508 | pc = IAR_sig(uc);
|
---|
1509 | is_write = 0;
|
---|
1510 | #if 0
|
---|
1511 | /* ppc 4xx case */
|
---|
1512 | if (DSISR_sig(uc) & 0x00800000)
|
---|
1513 | is_write = 1;
|
---|
1514 | #else
|
---|
1515 | if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
|
---|
1516 | is_write = 1;
|
---|
1517 | #endif
|
---|
1518 | return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
---|
1519 | is_write, &uc->uc_sigmask, puc);
|
---|
1520 | }
|
---|
1521 |
|
---|
1522 | #elif defined(__alpha__)
|
---|
1523 |
|
---|
1524 | int cpu_signal_handler(int host_signum, void *pinfo,
|
---|
1525 | void *puc)
|
---|
1526 | {
|
---|
1527 | siginfo_t *info = pinfo;
|
---|
1528 | struct ucontext *uc = puc;
|
---|
1529 | uint32_t *pc = uc->uc_mcontext.sc_pc;
|
---|
1530 | uint32_t insn = *pc;
|
---|
1531 | int is_write = 0;
|
---|
1532 |
|
---|
1533 | /* XXX: need kernel patch to get write flag faster */
|
---|
1534 | switch (insn >> 26) {
|
---|
1535 | case 0x0d: // stw
|
---|
1536 | case 0x0e: // stb
|
---|
1537 | case 0x0f: // stq_u
|
---|
1538 | case 0x24: // stf
|
---|
1539 | case 0x25: // stg
|
---|
1540 | case 0x26: // sts
|
---|
1541 | case 0x27: // stt
|
---|
1542 | case 0x2c: // stl
|
---|
1543 | case 0x2d: // stq
|
---|
1544 | case 0x2e: // stl_c
|
---|
1545 | case 0x2f: // stq_c
|
---|
1546 | is_write = 1;
|
---|
1547 | }
|
---|
1548 |
|
---|
1549 | return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
---|
1550 | is_write, &uc->uc_sigmask, puc);
|
---|
1551 | }
|
---|
1552 | #elif defined(__sparc__)
|
---|
1553 |
|
---|
1554 | int cpu_signal_handler(int host_signum, void *pinfo,
|
---|
1555 | void *puc)
|
---|
1556 | {
|
---|
1557 | siginfo_t *info = pinfo;
|
---|
1558 | uint32_t *regs = (uint32_t *)(info + 1);
|
---|
1559 | void *sigmask = (regs + 20);
|
---|
1560 | unsigned long pc;
|
---|
1561 | int is_write;
|
---|
1562 | uint32_t insn;
|
---|
1563 |
|
---|
1564 | /* XXX: is there a standard glibc define ? */
|
---|
1565 | pc = regs[1];
|
---|
1566 | /* XXX: need kernel patch to get write flag faster */
|
---|
1567 | is_write = 0;
|
---|
1568 | insn = *(uint32_t *)pc;
|
---|
1569 | if ((insn >> 30) == 3) {
|
---|
1570 | switch((insn >> 19) & 0x3f) {
|
---|
1571 | case 0x05: // stb
|
---|
1572 | case 0x06: // sth
|
---|
1573 | case 0x04: // st
|
---|
1574 | case 0x07: // std
|
---|
1575 | case 0x24: // stf
|
---|
1576 | case 0x27: // stdf
|
---|
1577 | case 0x25: // stfsr
|
---|
1578 | is_write = 1;
|
---|
1579 | break;
|
---|
1580 | }
|
---|
1581 | }
|
---|
1582 | return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
---|
1583 | is_write, sigmask, NULL);
|
---|
1584 | }
|
---|
1585 |
|
---|
1586 | #elif defined(__arm__)
|
---|
1587 |
|
---|
1588 | int cpu_signal_handler(int host_signum, void *pinfo,
|
---|
1589 | void *puc)
|
---|
1590 | {
|
---|
1591 | siginfo_t *info = pinfo;
|
---|
1592 | struct ucontext *uc = puc;
|
---|
1593 | unsigned long pc;
|
---|
1594 | int is_write;
|
---|
1595 |
|
---|
1596 | pc = uc->uc_mcontext.gregs[R15];
|
---|
1597 | /* XXX: compute is_write */
|
---|
1598 | is_write = 0;
|
---|
1599 | return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
---|
1600 | is_write,
|
---|
1601 | &uc->uc_sigmask, puc);
|
---|
1602 | }
|
---|
1603 |
|
---|
1604 | #elif defined(__mc68000)
|
---|
1605 |
|
---|
1606 | int cpu_signal_handler(int host_signum, void *pinfo,
|
---|
1607 | void *puc)
|
---|
1608 | {
|
---|
1609 | siginfo_t *info = pinfo;
|
---|
1610 | struct ucontext *uc = puc;
|
---|
1611 | unsigned long pc;
|
---|
1612 | int is_write;
|
---|
1613 |
|
---|
1614 | pc = uc->uc_mcontext.gregs[16];
|
---|
1615 | /* XXX: compute is_write */
|
---|
1616 | is_write = 0;
|
---|
1617 | return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
---|
1618 | is_write,
|
---|
1619 | &uc->uc_sigmask, puc);
|
---|
1620 | }
|
---|
1621 |
|
---|
1622 | #elif defined(__ia64)
|
---|
1623 |
|
---|
1624 | #ifndef __ISR_VALID
|
---|
1625 | /* This ought to be in <bits/siginfo.h>... */
|
---|
1626 | # define __ISR_VALID 1
|
---|
1627 | #endif
|
---|
1628 |
|
---|
1629 | int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
|
---|
1630 | {
|
---|
1631 | siginfo_t *info = pinfo;
|
---|
1632 | struct ucontext *uc = puc;
|
---|
1633 | unsigned long ip;
|
---|
1634 | int is_write = 0;
|
---|
1635 |
|
---|
1636 | ip = uc->uc_mcontext.sc_ip;
|
---|
1637 | switch (host_signum) {
|
---|
1638 | case SIGILL:
|
---|
1639 | case SIGFPE:
|
---|
1640 | case SIGSEGV:
|
---|
1641 | case SIGBUS:
|
---|
1642 | case SIGTRAP:
|
---|
1643 | if (info->si_code && (info->si_segvflags & __ISR_VALID))
|
---|
1644 | /* ISR.W (write-access) is bit 33: */
|
---|
1645 | is_write = (info->si_isr >> 33) & 1;
|
---|
1646 | break;
|
---|
1647 |
|
---|
1648 | default:
|
---|
1649 | break;
|
---|
1650 | }
|
---|
1651 | return handle_cpu_signal(ip, (unsigned long)info->si_addr,
|
---|
1652 | is_write,
|
---|
1653 | &uc->uc_sigmask, puc);
|
---|
1654 | }
|
---|
1655 |
|
---|
1656 | #elif defined(__s390__)
|
---|
1657 |
|
---|
1658 | int cpu_signal_handler(int host_signum, void *pinfo,
|
---|
1659 | void *puc)
|
---|
1660 | {
|
---|
1661 | siginfo_t *info = pinfo;
|
---|
1662 | struct ucontext *uc = puc;
|
---|
1663 | unsigned long pc;
|
---|
1664 | int is_write;
|
---|
1665 |
|
---|
1666 | pc = uc->uc_mcontext.psw.addr;
|
---|
1667 | /* XXX: compute is_write */
|
---|
1668 | is_write = 0;
|
---|
1669 | return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
---|
1670 | is_write,
|
---|
1671 | &uc->uc_sigmask, puc);
|
---|
1672 | }
|
---|
1673 |
|
---|
1674 | #else
|
---|
1675 |
|
---|
1676 | #error host CPU specific signal handler needed
|
---|
1677 |
|
---|
1678 | #endif
|
---|
1679 |
|
---|
1680 | #endif /* !defined(CONFIG_SOFTMMU) */
|
---|