1 | /*
|
---|
2 | * i386 emulator main execution loop
|
---|
3 | *
|
---|
4 | * Copyright (c) 2003-2005 Fabrice Bellard
|
---|
5 | *
|
---|
6 | * This library is free software; you can redistribute it and/or
|
---|
7 | * modify it under the terms of the GNU Lesser General Public
|
---|
8 | * License as published by the Free Software Foundation; either
|
---|
9 | * version 2 of the License, or (at your option) any later version.
|
---|
10 | *
|
---|
11 | * This library is distributed in the hope that it will be useful,
|
---|
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
14 | * Lesser General Public License for more details.
|
---|
15 | *
|
---|
16 | * You should have received a copy of the GNU Lesser General Public
|
---|
17 | * License along with this library; if not, write to the Free Software
|
---|
18 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
|
---|
19 | */
|
---|
20 |
|
---|
21 | /*
|
---|
22 | * Oracle LGPL Disclaimer: For the avoidance of doubt, except that if any license choice
|
---|
23 | * other than GPL or LGPL is available it will apply instead, Oracle elects to use only
|
---|
24 | * the Lesser General Public License version 2.1 (LGPLv2) at this time for any software where
|
---|
25 | * a choice of LGPL license versions is made available with the language indicating
|
---|
26 | * that LGPLv2 or any later version may be used, or where a choice of which version
|
---|
27 | * of the LGPL is applied is otherwise unspecified.
|
---|
28 | */
|
---|
29 |
|
---|
30 | #include "config.h"
|
---|
31 | #define CPU_NO_GLOBAL_REGS
|
---|
32 | #include "exec.h"
|
---|
33 | #include "disas.h"
|
---|
34 | #include "tcg.h"
|
---|
35 | #include "kvm.h"
|
---|
36 |
|
---|
37 | #if !defined(CONFIG_SOFTMMU)
|
---|
38 | #undef EAX
|
---|
39 | #undef ECX
|
---|
40 | #undef EDX
|
---|
41 | #undef EBX
|
---|
42 | #undef ESP
|
---|
43 | #undef EBP
|
---|
44 | #undef ESI
|
---|
45 | #undef EDI
|
---|
46 | #undef EIP
|
---|
47 | #include <signal.h>
|
---|
48 | #ifdef __linux__
|
---|
49 | #include <sys/ucontext.h>
|
---|
50 | #endif
|
---|
51 | #endif
|
---|
52 |
|
---|
53 | #if defined(__sparc__) && !defined(HOST_SOLARIS)
|
---|
54 | // Work around ugly bugs in glibc that mangle global register contents
|
---|
55 | #undef env
|
---|
56 | #define env cpu_single_env
|
---|
57 | #endif
|
---|
58 |
|
---|
59 | int tb_invalidated_flag;
|
---|
60 |
|
---|
61 | //#define DEBUG_EXEC
|
---|
62 | //#define DEBUG_SIGNAL
|
---|
63 |
|
---|
64 | void cpu_loop_exit(void)
|
---|
65 | {
|
---|
66 | /* NOTE: the register at this point must be saved by hand because
|
---|
67 | longjmp restore them */
|
---|
68 | regs_to_env();
|
---|
69 | longjmp(env->jmp_env, 1);
|
---|
70 | }
|
---|
71 |
|
---|
72 | /* exit the current TB from a signal handler. The host registers are
|
---|
73 | restored in a state compatible with the CPU emulator
|
---|
74 | */
|
---|
75 | void cpu_resume_from_signal(CPUState *env1, void *puc)
|
---|
76 | {
|
---|
77 | #if !defined(CONFIG_SOFTMMU)
|
---|
78 | #ifdef __linux__
|
---|
79 | struct ucontext *uc = puc;
|
---|
80 | #elif defined(__OpenBSD__)
|
---|
81 | struct sigcontext *uc = puc;
|
---|
82 | #endif
|
---|
83 | #endif
|
---|
84 |
|
---|
85 | env = env1;
|
---|
86 |
|
---|
87 | /* XXX: restore cpu registers saved in host registers */
|
---|
88 |
|
---|
89 | #if !defined(CONFIG_SOFTMMU)
|
---|
90 | if (puc) {
|
---|
91 | /* XXX: use siglongjmp ? */
|
---|
92 | #ifdef __linux__
|
---|
93 | sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
|
---|
94 | #elif defined(__OpenBSD__)
|
---|
95 | sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL);
|
---|
96 | #endif
|
---|
97 | }
|
---|
98 | #endif
|
---|
99 | env->exception_index = -1;
|
---|
100 | longjmp(env->jmp_env, 1);
|
---|
101 | }
|
---|
102 |
|
---|
103 | /* Execute the code without caching the generated code. An interpreter
|
---|
104 | could be used if available. */
|
---|
105 | static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
|
---|
106 | {
|
---|
107 | unsigned long next_tb;
|
---|
108 | TranslationBlock *tb;
|
---|
109 |
|
---|
110 | /* Should never happen.
|
---|
111 | We only end up here when an existing TB is too long. */
|
---|
112 | if (max_cycles > CF_COUNT_MASK)
|
---|
113 | max_cycles = CF_COUNT_MASK;
|
---|
114 |
|
---|
115 | tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
|
---|
116 | max_cycles);
|
---|
117 | env->current_tb = tb;
|
---|
118 | /* execute the generated code */
|
---|
119 | #if defined(VBOX) && defined(GCC_WITH_BUGGY_REGPARM)
|
---|
120 | tcg_qemu_tb_exec(tb->tc_ptr, next_tb);
|
---|
121 | #else
|
---|
122 | next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
|
---|
123 | #endif
|
---|
124 |
|
---|
125 | if ((next_tb & 3) == 2) {
|
---|
126 | /* Restore PC. This may happen if async event occurs before
|
---|
127 | the TB starts executing. */
|
---|
128 | cpu_pc_from_tb(env, tb);
|
---|
129 | }
|
---|
130 | tb_phys_invalidate(tb, -1);
|
---|
131 | tb_free(tb);
|
---|
132 | }
|
---|
133 |
|
---|
134 | static TranslationBlock *tb_find_slow(target_ulong pc,
|
---|
135 | target_ulong cs_base,
|
---|
136 | uint64_t flags)
|
---|
137 | {
|
---|
138 | TranslationBlock *tb, **ptb1;
|
---|
139 | unsigned int h;
|
---|
140 | target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
|
---|
141 |
|
---|
142 | tb_invalidated_flag = 0;
|
---|
143 |
|
---|
144 | regs_to_env(); /* XXX: do it just before cpu_gen_code() */
|
---|
145 |
|
---|
146 | /* find translated block using physical mappings */
|
---|
147 | phys_pc = get_phys_addr_code(env, pc);
|
---|
148 | phys_page1 = phys_pc & TARGET_PAGE_MASK;
|
---|
149 | phys_page2 = -1;
|
---|
150 | h = tb_phys_hash_func(phys_pc);
|
---|
151 | ptb1 = &tb_phys_hash[h];
|
---|
152 | for(;;) {
|
---|
153 | tb = *ptb1;
|
---|
154 | if (!tb)
|
---|
155 | goto not_found;
|
---|
156 | if (tb->pc == pc &&
|
---|
157 | tb->page_addr[0] == phys_page1 &&
|
---|
158 | tb->cs_base == cs_base &&
|
---|
159 | tb->flags == flags) {
|
---|
160 | /* check next page if needed */
|
---|
161 | if (tb->page_addr[1] != -1) {
|
---|
162 | virt_page2 = (pc & TARGET_PAGE_MASK) +
|
---|
163 | TARGET_PAGE_SIZE;
|
---|
164 | phys_page2 = get_phys_addr_code(env, virt_page2);
|
---|
165 | if (tb->page_addr[1] == phys_page2)
|
---|
166 | goto found;
|
---|
167 | } else {
|
---|
168 | goto found;
|
---|
169 | }
|
---|
170 | }
|
---|
171 | ptb1 = &tb->phys_hash_next;
|
---|
172 | }
|
---|
173 | not_found:
|
---|
174 | /* if no translated code available, then translate it now */
|
---|
175 | tb = tb_gen_code(env, pc, cs_base, flags, 0);
|
---|
176 |
|
---|
177 | found:
|
---|
178 | /* we add the TB in the virtual pc hash table */
|
---|
179 | env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
|
---|
180 | return tb;
|
---|
181 | }
|
---|
182 |
|
---|
183 | static inline TranslationBlock *tb_find_fast(void)
|
---|
184 | {
|
---|
185 | TranslationBlock *tb;
|
---|
186 | target_ulong cs_base, pc;
|
---|
187 | int flags;
|
---|
188 |
|
---|
189 | /* we record a subset of the CPU state. It will
|
---|
190 | always be the same before a given translated block
|
---|
191 | is executed. */
|
---|
192 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
|
---|
193 | tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
|
---|
194 | if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
|
---|
195 | tb->flags != flags)) {
|
---|
196 | tb = tb_find_slow(pc, cs_base, flags);
|
---|
197 | }
|
---|
198 | return tb;
|
---|
199 | }
|
---|
200 |
|
---|
201 | static CPUDebugExcpHandler *debug_excp_handler;
|
---|
202 |
|
---|
203 | CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
|
---|
204 | {
|
---|
205 | CPUDebugExcpHandler *old_handler = debug_excp_handler;
|
---|
206 |
|
---|
207 | debug_excp_handler = handler;
|
---|
208 | return old_handler;
|
---|
209 | }
|
---|
210 |
|
---|
211 | static void cpu_handle_debug_exception(CPUState *env)
|
---|
212 | {
|
---|
213 | CPUWatchpoint *wp;
|
---|
214 |
|
---|
215 | if (!env->watchpoint_hit)
|
---|
216 | TAILQ_FOREACH(wp, &env->watchpoints, entry)
|
---|
217 | wp->flags &= ~BP_WATCHPOINT_HIT;
|
---|
218 |
|
---|
219 | if (debug_excp_handler)
|
---|
220 | debug_excp_handler(env);
|
---|
221 | }
|
---|
222 |
|
---|
223 | /* main execution loop */
|
---|
224 |
|
---|
225 | #ifdef VBOX
|
---|
226 |
|
---|
227 | int cpu_exec(CPUState *env1)
|
---|
228 | {
|
---|
229 | #define DECLARE_HOST_REGS 1
|
---|
230 | #include "hostregs_helper.h"
|
---|
231 | int ret = 0, interrupt_request;
|
---|
232 | TranslationBlock *tb;
|
---|
233 | uint8_t *tc_ptr;
|
---|
234 | unsigned long next_tb;
|
---|
235 |
|
---|
236 | cpu_single_env = env1;
|
---|
237 |
|
---|
238 | /* first we save global registers */
|
---|
239 | #define SAVE_HOST_REGS 1
|
---|
240 | #include "hostregs_helper.h"
|
---|
241 | env = env1;
|
---|
242 |
|
---|
243 | env_to_regs();
|
---|
244 | #if defined(TARGET_I386)
|
---|
245 | /* put eflags in CPU temporary format */
|
---|
246 | CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
---|
247 | DF = 1 - (2 * ((env->eflags >> 10) & 1));
|
---|
248 | CC_OP = CC_OP_EFLAGS;
|
---|
249 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
---|
250 | #elif defined(TARGET_SPARC)
|
---|
251 | #elif defined(TARGET_M68K)
|
---|
252 | env->cc_op = CC_OP_FLAGS;
|
---|
253 | env->cc_dest = env->sr & 0xf;
|
---|
254 | env->cc_x = (env->sr >> 4) & 1;
|
---|
255 | #elif defined(TARGET_ALPHA)
|
---|
256 | #elif defined(TARGET_ARM)
|
---|
257 | #elif defined(TARGET_PPC)
|
---|
258 | #elif defined(TARGET_MIPS)
|
---|
259 | #elif defined(TARGET_SH4)
|
---|
260 | #elif defined(TARGET_CRIS)
|
---|
261 | /* XXXXX */
|
---|
262 | #else
|
---|
263 | #error unsupported target CPU
|
---|
264 | #endif
|
---|
265 | #ifndef VBOX /* VBOX: We need to raise traps and suchlike from the outside. */
|
---|
266 | env->exception_index = -1;
|
---|
267 | #endif
|
---|
268 |
|
---|
269 | /* prepare setjmp context for exception handling */
|
---|
270 | for(;;) {
|
---|
271 | if (setjmp(env->jmp_env) == 0)
|
---|
272 | {
|
---|
273 | env->current_tb = NULL;
|
---|
274 |
|
---|
275 | /*
|
---|
276 | * Check for fatal errors first
|
---|
277 | */
|
---|
278 | if (env->interrupt_request & CPU_INTERRUPT_RC) {
|
---|
279 | env->exception_index = EXCP_RC;
|
---|
280 | ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~CPU_INTERRUPT_RC);
|
---|
281 | ret = env->exception_index;
|
---|
282 | cpu_loop_exit();
|
---|
283 | }
|
---|
284 |
|
---|
285 | /* if an exception is pending, we execute it here */
|
---|
286 | if (env->exception_index >= 0) {
|
---|
287 | if (env->exception_index >= EXCP_INTERRUPT) {
|
---|
288 | /* exit request from the cpu execution loop */
|
---|
289 | ret = env->exception_index;
|
---|
290 | if (ret == EXCP_DEBUG)
|
---|
291 | cpu_handle_debug_exception(env);
|
---|
292 | break;
|
---|
293 | } else {
|
---|
294 | /* simulate a real cpu exception. On i386, it can
|
---|
295 | trigger new exceptions, but we do not handle
|
---|
296 | double or triple faults yet. */
|
---|
297 | RAWEx_ProfileStart(env, STATS_IRQ_HANDLING);
|
---|
298 | Log(("do_interrupt %d %d %RGv\n", env->exception_index, env->exception_is_int, (RTGCPTR)env->exception_next_eip));
|
---|
299 | do_interrupt(env->exception_index,
|
---|
300 | env->exception_is_int,
|
---|
301 | env->error_code,
|
---|
302 | env->exception_next_eip, 0);
|
---|
303 | /* successfully delivered */
|
---|
304 | env->old_exception = -1;
|
---|
305 | RAWEx_ProfileStop(env, STATS_IRQ_HANDLING);
|
---|
306 | }
|
---|
307 | env->exception_index = -1;
|
---|
308 | }
|
---|
309 |
|
---|
310 | next_tb = 0; /* force lookup of first TB */
|
---|
311 | for(;;)
|
---|
312 | {
|
---|
313 | interrupt_request = env->interrupt_request;
|
---|
314 | if (unlikely(interrupt_request)) {
|
---|
315 | if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
|
---|
316 | /* Mask out external interrupts for this step. */
|
---|
317 | interrupt_request &= ~(CPU_INTERRUPT_HARD |
|
---|
318 | CPU_INTERRUPT_FIQ |
|
---|
319 | CPU_INTERRUPT_SMI |
|
---|
320 | CPU_INTERRUPT_NMI);
|
---|
321 | }
|
---|
322 | if (interrupt_request & CPU_INTERRUPT_DEBUG) {
|
---|
323 | env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
|
---|
324 | env->exception_index = EXCP_DEBUG;
|
---|
325 | cpu_loop_exit();
|
---|
326 | }
|
---|
327 | /** @todo: reconcile with what QEMU really does */
|
---|
328 |
|
---|
329 | /* Single instruction exec request, we execute it and return (one way or the other).
|
---|
330 | The caller will always reschedule after doing this operation! */
|
---|
331 | if (interrupt_request & CPU_INTERRUPT_SINGLE_INSTR)
|
---|
332 | {
|
---|
333 | /* not in flight are we? (if we are, we trapped) */
|
---|
334 | if (!(env->interrupt_request & CPU_INTERRUPT_SINGLE_INSTR_IN_FLIGHT))
|
---|
335 | {
|
---|
336 | ASMAtomicOrS32((int32_t volatile *)&env->interrupt_request, CPU_INTERRUPT_SINGLE_INSTR_IN_FLIGHT);
|
---|
337 | env->exception_index = EXCP_SINGLE_INSTR;
|
---|
338 | if (emulate_single_instr(env) == -1)
|
---|
339 | AssertMsgFailed(("REM: emulate_single_instr failed for EIP=%RGv!!\n", (RTGCPTR)env->eip));
|
---|
340 |
|
---|
341 | /* When we receive an external interrupt during execution of this single
|
---|
342 | instruction, then we should stay here. We will leave when we're ready
|
---|
343 | for raw-mode or when interrupted by pending EMT requests. */
|
---|
344 | interrupt_request = env->interrupt_request; /* reload this! */
|
---|
345 | if ( !(interrupt_request & CPU_INTERRUPT_HARD)
|
---|
346 | || !(env->eflags & IF_MASK)
|
---|
347 | || (env->hflags & HF_INHIBIT_IRQ_MASK)
|
---|
348 | || (env->state & CPU_RAW_HWACC)
|
---|
349 | )
|
---|
350 | {
|
---|
351 | env->exception_index = ret = EXCP_SINGLE_INSTR;
|
---|
352 | cpu_loop_exit();
|
---|
353 | }
|
---|
354 | }
|
---|
355 | /* Clear CPU_INTERRUPT_SINGLE_INSTR and leave CPU_INTERRUPT_SINGLE_INSTR_IN_FLIGHT set. */
|
---|
356 | ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~CPU_INTERRUPT_SINGLE_INSTR);
|
---|
357 | }
|
---|
358 |
|
---|
359 | RAWEx_ProfileStart(env, STATS_IRQ_HANDLING);
|
---|
360 | if ((interrupt_request & CPU_INTERRUPT_SMI) &&
|
---|
361 | !(env->hflags & HF_SMM_MASK)) {
|
---|
362 | env->interrupt_request &= ~CPU_INTERRUPT_SMI;
|
---|
363 | do_smm_enter();
|
---|
364 | next_tb = 0;
|
---|
365 | }
|
---|
366 | else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
|
---|
367 | (env->eflags & IF_MASK) &&
|
---|
368 | !(env->hflags & HF_INHIBIT_IRQ_MASK))
|
---|
369 | {
|
---|
370 | /* if hardware interrupt pending, we execute it */
|
---|
371 | int intno;
|
---|
372 | ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~CPU_INTERRUPT_HARD);
|
---|
373 | intno = cpu_get_pic_interrupt(env);
|
---|
374 | if (intno >= 0)
|
---|
375 | {
|
---|
376 | Log(("do_interrupt %d\n", intno));
|
---|
377 | do_interrupt(intno, 0, 0, 0, 1);
|
---|
378 | }
|
---|
379 | /* ensure that no TB jump will be modified as
|
---|
380 | the program flow was changed */
|
---|
381 | next_tb = 0;
|
---|
382 | }
|
---|
383 | if (env->interrupt_request & CPU_INTERRUPT_EXITTB)
|
---|
384 | {
|
---|
385 | ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~CPU_INTERRUPT_EXITTB);
|
---|
386 | /* ensure that no TB jump will be modified as
|
---|
387 | the program flow was changed */
|
---|
388 | next_tb = 0;
|
---|
389 | }
|
---|
390 | RAWEx_ProfileStop(env, STATS_IRQ_HANDLING);
|
---|
391 | if (interrupt_request & CPU_INTERRUPT_EXIT)
|
---|
392 | {
|
---|
393 | env->exception_index = EXCP_INTERRUPT;
|
---|
394 | ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~CPU_INTERRUPT_EXIT);
|
---|
395 | ret = env->exception_index;
|
---|
396 | cpu_loop_exit();
|
---|
397 | }
|
---|
398 | if (interrupt_request & CPU_INTERRUPT_RC)
|
---|
399 | {
|
---|
400 | env->exception_index = EXCP_RC;
|
---|
401 | ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~CPU_INTERRUPT_RC);
|
---|
402 | ret = env->exception_index;
|
---|
403 | cpu_loop_exit();
|
---|
404 | }
|
---|
405 | }
|
---|
406 |
|
---|
407 | /*
|
---|
408 | * Check if we the CPU state allows us to execute the code in raw-mode.
|
---|
409 | */
|
---|
410 | RAWEx_ProfileStart(env, STATS_RAW_CHECK);
|
---|
411 | if (remR3CanExecuteRaw(env,
|
---|
412 | env->eip + env->segs[R_CS].base,
|
---|
413 | env->hflags | (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK)),
|
---|
414 | &env->exception_index))
|
---|
415 | {
|
---|
416 | RAWEx_ProfileStop(env, STATS_RAW_CHECK);
|
---|
417 | ret = env->exception_index;
|
---|
418 | cpu_loop_exit();
|
---|
419 | }
|
---|
420 | RAWEx_ProfileStop(env, STATS_RAW_CHECK);
|
---|
421 |
|
---|
422 | RAWEx_ProfileStart(env, STATS_TLB_LOOKUP);
|
---|
423 | spin_lock(&tb_lock);
|
---|
424 | tb = tb_find_fast();
|
---|
425 | /* Note: we do it here to avoid a gcc bug on Mac OS X when
|
---|
426 | doing it in tb_find_slow */
|
---|
427 | if (tb_invalidated_flag) {
|
---|
428 | /* as some TB could have been invalidated because
|
---|
429 | of memory exceptions while generating the code, we
|
---|
430 | must recompute the hash index here */
|
---|
431 | next_tb = 0;
|
---|
432 | tb_invalidated_flag = 0;
|
---|
433 | }
|
---|
434 |
|
---|
435 | /* see if we can patch the calling TB. When the TB
|
---|
436 | spans two pages, we cannot safely do a direct
|
---|
437 | jump. */
|
---|
438 | if (next_tb != 0
|
---|
439 | && !(tb->cflags & CF_RAW_MODE)
|
---|
440 | && tb->page_addr[1] == -1)
|
---|
441 | {
|
---|
442 | tb_add_jump((TranslationBlock *)(long)(next_tb & ~3), next_tb & 3, tb);
|
---|
443 | }
|
---|
444 | spin_unlock(&tb_lock);
|
---|
445 | RAWEx_ProfileStop(env, STATS_TLB_LOOKUP);
|
---|
446 |
|
---|
447 | env->current_tb = tb;
|
---|
448 |
|
---|
449 | /* cpu_interrupt might be called while translating the
|
---|
450 | TB, but before it is linked into a potentially
|
---|
451 | infinite loop and becomes env->current_tb. Avoid
|
---|
452 | starting execution if there is a pending interrupt. */
|
---|
453 | if (unlikely (env->interrupt_request & CPU_INTERRUPT_EXIT))
|
---|
454 | env->current_tb = NULL;
|
---|
455 |
|
---|
456 | while (env->current_tb) {
|
---|
457 | tc_ptr = tb->tc_ptr;
|
---|
458 | /* execute the generated code */
|
---|
459 | RAWEx_ProfileStart(env, STATS_QEMU_RUN_EMULATED_CODE);
|
---|
460 | #if defined(VBOX) && defined(GCC_WITH_BUGGY_REGPARM)
|
---|
461 | tcg_qemu_tb_exec(tc_ptr, next_tb);
|
---|
462 | #else
|
---|
463 | next_tb = tcg_qemu_tb_exec(tc_ptr);
|
---|
464 | #endif
|
---|
465 | RAWEx_ProfileStop(env, STATS_QEMU_RUN_EMULATED_CODE);
|
---|
466 | env->current_tb = NULL;
|
---|
467 | if ((next_tb & 3) == 2) {
|
---|
468 | /* Instruction counter expired. */
|
---|
469 | int insns_left;
|
---|
470 | tb = (TranslationBlock *)(long)(next_tb & ~3);
|
---|
471 | /* Restore PC. */
|
---|
472 | cpu_pc_from_tb(env, tb);
|
---|
473 | insns_left = env->icount_decr.u32;
|
---|
474 | if (env->icount_extra && insns_left >= 0) {
|
---|
475 | /* Refill decrementer and continue execution. */
|
---|
476 | env->icount_extra += insns_left;
|
---|
477 | if (env->icount_extra > 0xffff) {
|
---|
478 | insns_left = 0xffff;
|
---|
479 | } else {
|
---|
480 | insns_left = env->icount_extra;
|
---|
481 | }
|
---|
482 | env->icount_extra -= insns_left;
|
---|
483 | env->icount_decr.u16.low = insns_left;
|
---|
484 | } else {
|
---|
485 | if (insns_left > 0) {
|
---|
486 | /* Execute remaining instructions. */
|
---|
487 | cpu_exec_nocache(insns_left, tb);
|
---|
488 | }
|
---|
489 | env->exception_index = EXCP_INTERRUPT;
|
---|
490 | next_tb = 0;
|
---|
491 | cpu_loop_exit();
|
---|
492 | }
|
---|
493 | }
|
---|
494 | }
|
---|
495 |
|
---|
496 | /* reset soft MMU for next block (it can currently
|
---|
497 | only be set by a memory fault) */
|
---|
498 | #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
|
---|
499 | if (env->hflags & HF_SOFTMMU_MASK) {
|
---|
500 | env->hflags &= ~HF_SOFTMMU_MASK;
|
---|
501 | /* do not allow linking to another block */
|
---|
502 | next_tb = 0;
|
---|
503 | }
|
---|
504 | #endif
|
---|
505 | } /* for(;;) */
|
---|
506 | } else {
|
---|
507 | env_to_regs();
|
---|
508 | }
|
---|
509 | #ifdef VBOX_HIGH_RES_TIMERS_HACK
|
---|
510 | /* NULL the current_tb here so cpu_interrupt() doesn't do anything
|
---|
511 | unnecessary (like crashing during emulate single instruction).
|
---|
512 | Note! Don't use env1->pVM here, the code wouldn't run with
|
---|
513 | gcc-4.4/amd64 anymore, see #3883. */
|
---|
514 | env->current_tb = NULL;
|
---|
515 | if ( !(env->interrupt_request & ( CPU_INTERRUPT_EXIT | CPU_INTERRUPT_DEBUG | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_RC
|
---|
516 | | CPU_INTERRUPT_SINGLE_INSTR | CPU_INTERRUPT_SINGLE_INSTR_IN_FLIGHT))
|
---|
517 | && ( (env->interrupt_request & CPU_INTERRUPT_EXTERNAL_TIMER)
|
---|
518 | || TMTimerPollBool(env->pVM, env->pVCpu)) ) {
|
---|
519 | ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~CPU_INTERRUPT_EXTERNAL_TIMER);
|
---|
520 | remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
|
---|
521 | TMR3TimerQueuesDo(env->pVM);
|
---|
522 | remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
|
---|
523 | }
|
---|
524 | #endif
|
---|
525 | } /* for(;;) */
|
---|
526 |
|
---|
527 | #if defined(TARGET_I386)
|
---|
528 | /* restore flags in standard format */
|
---|
529 | env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
|
---|
530 | #else
|
---|
531 | #error unsupported target CPU
|
---|
532 | #endif
|
---|
533 | #include "hostregs_helper.h"
|
---|
534 | return ret;
|
---|
535 | }
|
---|
536 |
|
---|
537 | #else /* !VBOX */
|
---|
538 | int cpu_exec(CPUState *env1)
|
---|
539 | {
|
---|
540 | #define DECLARE_HOST_REGS 1
|
---|
541 | #include "hostregs_helper.h"
|
---|
542 | int ret, interrupt_request;
|
---|
543 | TranslationBlock *tb;
|
---|
544 | uint8_t *tc_ptr;
|
---|
545 | unsigned long next_tb;
|
---|
546 |
|
---|
547 | if (cpu_halted(env1) == EXCP_HALTED)
|
---|
548 | return EXCP_HALTED;
|
---|
549 |
|
---|
550 | cpu_single_env = env1;
|
---|
551 |
|
---|
552 | /* first we save global registers */
|
---|
553 | #define SAVE_HOST_REGS 1
|
---|
554 | #include "hostregs_helper.h"
|
---|
555 | env = env1;
|
---|
556 |
|
---|
557 | env_to_regs();
|
---|
558 | #if defined(TARGET_I386)
|
---|
559 | /* put eflags in CPU temporary format */
|
---|
560 | CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
---|
561 | DF = 1 - (2 * ((env->eflags >> 10) & 1));
|
---|
562 | CC_OP = CC_OP_EFLAGS;
|
---|
563 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
---|
564 | #elif defined(TARGET_SPARC)
|
---|
565 | #elif defined(TARGET_M68K)
|
---|
566 | env->cc_op = CC_OP_FLAGS;
|
---|
567 | env->cc_dest = env->sr & 0xf;
|
---|
568 | env->cc_x = (env->sr >> 4) & 1;
|
---|
569 | #elif defined(TARGET_ALPHA)
|
---|
570 | #elif defined(TARGET_ARM)
|
---|
571 | #elif defined(TARGET_PPC)
|
---|
572 | #elif defined(TARGET_MIPS)
|
---|
573 | #elif defined(TARGET_SH4)
|
---|
574 | #elif defined(TARGET_CRIS)
|
---|
575 | /* XXXXX */
|
---|
576 | #else
|
---|
577 | #error unsupported target CPU
|
---|
578 | #endif
|
---|
579 | env->exception_index = -1;
|
---|
580 |
|
---|
581 | /* prepare setjmp context for exception handling */
|
---|
582 | for(;;) {
|
---|
583 | if (setjmp(env->jmp_env) == 0) {
|
---|
584 | env->current_tb = NULL;
|
---|
585 | /* if an exception is pending, we execute it here */
|
---|
586 | if (env->exception_index >= 0) {
|
---|
587 | if (env->exception_index >= EXCP_INTERRUPT) {
|
---|
588 | /* exit request from the cpu execution loop */
|
---|
589 | ret = env->exception_index;
|
---|
590 | if (ret == EXCP_DEBUG)
|
---|
591 | cpu_handle_debug_exception(env);
|
---|
592 | break;
|
---|
593 | } else {
|
---|
594 | #if defined(CONFIG_USER_ONLY)
|
---|
595 | /* if user mode only, we simulate a fake exception
|
---|
596 | which will be handled outside the cpu execution
|
---|
597 | loop */
|
---|
598 | #if defined(TARGET_I386)
|
---|
599 | do_interrupt_user(env->exception_index,
|
---|
600 | env->exception_is_int,
|
---|
601 | env->error_code,
|
---|
602 | env->exception_next_eip);
|
---|
603 | /* successfully delivered */
|
---|
604 | env->old_exception = -1;
|
---|
605 | #endif
|
---|
606 | ret = env->exception_index;
|
---|
607 | break;
|
---|
608 | #else
|
---|
609 | #if defined(TARGET_I386)
|
---|
610 | /* simulate a real cpu exception. On i386, it can
|
---|
611 | trigger new exceptions, but we do not handle
|
---|
612 | double or triple faults yet. */
|
---|
613 | do_interrupt(env->exception_index,
|
---|
614 | env->exception_is_int,
|
---|
615 | env->error_code,
|
---|
616 | env->exception_next_eip, 0);
|
---|
617 | /* successfully delivered */
|
---|
618 | env->old_exception = -1;
|
---|
619 | #elif defined(TARGET_PPC)
|
---|
620 | do_interrupt(env);
|
---|
621 | #elif defined(TARGET_MIPS)
|
---|
622 | do_interrupt(env);
|
---|
623 | #elif defined(TARGET_SPARC)
|
---|
624 | do_interrupt(env);
|
---|
625 | #elif defined(TARGET_ARM)
|
---|
626 | do_interrupt(env);
|
---|
627 | #elif defined(TARGET_SH4)
|
---|
628 | do_interrupt(env);
|
---|
629 | #elif defined(TARGET_ALPHA)
|
---|
630 | do_interrupt(env);
|
---|
631 | #elif defined(TARGET_CRIS)
|
---|
632 | do_interrupt(env);
|
---|
633 | #elif defined(TARGET_M68K)
|
---|
634 | do_interrupt(0);
|
---|
635 | #endif
|
---|
636 | #endif
|
---|
637 | }
|
---|
638 | env->exception_index = -1;
|
---|
639 | }
|
---|
640 | #ifdef USE_KQEMU
|
---|
641 | if (kqemu_is_ok(env) && env->interrupt_request == 0) {
|
---|
642 | int ret;
|
---|
643 | env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
|
---|
644 | ret = kqemu_cpu_exec(env);
|
---|
645 | /* put eflags in CPU temporary format */
|
---|
646 | CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
---|
647 | DF = 1 - (2 * ((env->eflags >> 10) & 1));
|
---|
648 | CC_OP = CC_OP_EFLAGS;
|
---|
649 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
---|
650 | if (ret == 1) {
|
---|
651 | /* exception */
|
---|
652 | longjmp(env->jmp_env, 1);
|
---|
653 | } else if (ret == 2) {
|
---|
654 | /* softmmu execution needed */
|
---|
655 | } else {
|
---|
656 | if (env->interrupt_request != 0) {
|
---|
657 | /* hardware interrupt will be executed just after */
|
---|
658 | } else {
|
---|
659 | /* otherwise, we restart */
|
---|
660 | longjmp(env->jmp_env, 1);
|
---|
661 | }
|
---|
662 | }
|
---|
663 | }
|
---|
664 | #endif
|
---|
665 |
|
---|
666 | if (kvm_enabled()) {
|
---|
667 | kvm_cpu_exec(env);
|
---|
668 | longjmp(env->jmp_env, 1);
|
---|
669 | }
|
---|
670 |
|
---|
671 | next_tb = 0; /* force lookup of first TB */
|
---|
672 | for(;;) {
|
---|
673 | interrupt_request = env->interrupt_request;
|
---|
674 | if (unlikely(interrupt_request)) {
|
---|
675 | if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
|
---|
676 | /* Mask out external interrupts for this step. */
|
---|
677 | interrupt_request &= ~(CPU_INTERRUPT_HARD |
|
---|
678 | CPU_INTERRUPT_FIQ |
|
---|
679 | CPU_INTERRUPT_SMI |
|
---|
680 | CPU_INTERRUPT_NMI);
|
---|
681 | }
|
---|
682 | if (interrupt_request & CPU_INTERRUPT_DEBUG) {
|
---|
683 | env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
|
---|
684 | env->exception_index = EXCP_DEBUG;
|
---|
685 | cpu_loop_exit();
|
---|
686 | }
|
---|
687 | #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
|
---|
688 | defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS)
|
---|
689 | if (interrupt_request & CPU_INTERRUPT_HALT) {
|
---|
690 | env->interrupt_request &= ~CPU_INTERRUPT_HALT;
|
---|
691 | env->halted = 1;
|
---|
692 | env->exception_index = EXCP_HLT;
|
---|
693 | cpu_loop_exit();
|
---|
694 | }
|
---|
695 | #endif
|
---|
696 | #if defined(TARGET_I386)
|
---|
697 | if (env->hflags2 & HF2_GIF_MASK) {
|
---|
698 | if ((interrupt_request & CPU_INTERRUPT_SMI) &&
|
---|
699 | !(env->hflags & HF_SMM_MASK)) {
|
---|
700 | svm_check_intercept(SVM_EXIT_SMI);
|
---|
701 | env->interrupt_request &= ~CPU_INTERRUPT_SMI;
|
---|
702 | do_smm_enter();
|
---|
703 | next_tb = 0;
|
---|
704 | } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
|
---|
705 | !(env->hflags2 & HF2_NMI_MASK)) {
|
---|
706 | env->interrupt_request &= ~CPU_INTERRUPT_NMI;
|
---|
707 | env->hflags2 |= HF2_NMI_MASK;
|
---|
708 | do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
|
---|
709 | next_tb = 0;
|
---|
710 | } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
|
---|
711 | (((env->hflags2 & HF2_VINTR_MASK) &&
|
---|
712 | (env->hflags2 & HF2_HIF_MASK)) ||
|
---|
713 | (!(env->hflags2 & HF2_VINTR_MASK) &&
|
---|
714 | (env->eflags & IF_MASK &&
|
---|
715 | !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
|
---|
716 | int intno;
|
---|
717 | svm_check_intercept(SVM_EXIT_INTR);
|
---|
718 | env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
|
---|
719 | intno = cpu_get_pic_interrupt(env);
|
---|
720 | qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
|
---|
721 | do_interrupt(intno, 0, 0, 0, 1);
|
---|
722 | /* ensure that no TB jump will be modified as
|
---|
723 | the program flow was changed */
|
---|
724 | next_tb = 0;
|
---|
725 | #if !defined(CONFIG_USER_ONLY)
|
---|
726 | } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
|
---|
727 | (env->eflags & IF_MASK) &&
|
---|
728 | !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
|
---|
729 | int intno;
|
---|
730 | /* FIXME: this should respect TPR */
|
---|
731 | svm_check_intercept(SVM_EXIT_VINTR);
|
---|
732 | intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
|
---|
733 | qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
|
---|
734 | do_interrupt(intno, 0, 0, 0, 1);
|
---|
735 | env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
|
---|
736 | next_tb = 0;
|
---|
737 | #endif
|
---|
738 | }
|
---|
739 | }
|
---|
740 | #elif defined(TARGET_PPC)
|
---|
741 | #if 0
|
---|
742 | if ((interrupt_request & CPU_INTERRUPT_RESET)) {
|
---|
743 | cpu_ppc_reset(env);
|
---|
744 | }
|
---|
745 | #endif
|
---|
746 | if (interrupt_request & CPU_INTERRUPT_HARD) {
|
---|
747 | ppc_hw_interrupt(env);
|
---|
748 | if (env->pending_interrupts == 0)
|
---|
749 | env->interrupt_request &= ~CPU_INTERRUPT_HARD;
|
---|
750 | next_tb = 0;
|
---|
751 | }
|
---|
752 | #elif defined(TARGET_MIPS)
|
---|
753 | if ((interrupt_request & CPU_INTERRUPT_HARD) &&
|
---|
754 | (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
|
---|
755 | (env->CP0_Status & (1 << CP0St_IE)) &&
|
---|
756 | !(env->CP0_Status & (1 << CP0St_EXL)) &&
|
---|
757 | !(env->CP0_Status & (1 << CP0St_ERL)) &&
|
---|
758 | !(env->hflags & MIPS_HFLAG_DM)) {
|
---|
759 | /* Raise it */
|
---|
760 | env->exception_index = EXCP_EXT_INTERRUPT;
|
---|
761 | env->error_code = 0;
|
---|
762 | do_interrupt(env);
|
---|
763 | next_tb = 0;
|
---|
764 | }
|
---|
765 | #elif defined(TARGET_SPARC)
|
---|
766 | if ((interrupt_request & CPU_INTERRUPT_HARD) &&
|
---|
767 | (env->psret != 0)) {
|
---|
768 | int pil = env->interrupt_index & 15;
|
---|
769 | int type = env->interrupt_index & 0xf0;
|
---|
770 |
|
---|
771 | if (((type == TT_EXTINT) &&
|
---|
772 | (pil == 15 || pil > env->psrpil)) ||
|
---|
773 | type != TT_EXTINT) {
|
---|
774 | env->interrupt_request &= ~CPU_INTERRUPT_HARD;
|
---|
775 | env->exception_index = env->interrupt_index;
|
---|
776 | do_interrupt(env);
|
---|
777 | env->interrupt_index = 0;
|
---|
778 | #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
|
---|
779 | cpu_check_irqs(env);
|
---|
780 | #endif
|
---|
781 | next_tb = 0;
|
---|
782 | }
|
---|
783 | } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
|
---|
784 | //do_interrupt(0, 0, 0, 0, 0);
|
---|
785 | env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
|
---|
786 | }
|
---|
787 | #elif defined(TARGET_ARM)
|
---|
788 | if (interrupt_request & CPU_INTERRUPT_FIQ
|
---|
789 | && !(env->uncached_cpsr & CPSR_F)) {
|
---|
790 | env->exception_index = EXCP_FIQ;
|
---|
791 | do_interrupt(env);
|
---|
792 | next_tb = 0;
|
---|
793 | }
|
---|
794 | /* ARMv7-M interrupt return works by loading a magic value
|
---|
795 | into the PC. On real hardware the load causes the
|
---|
796 | return to occur. The qemu implementation performs the
|
---|
797 | jump normally, then does the exception return when the
|
---|
798 | CPU tries to execute code at the magic address.
|
---|
799 | This will cause the magic PC value to be pushed to
|
---|
800 | the stack if an interrupt occured at the wrong time.
|
---|
801 | We avoid this by disabling interrupts when
|
---|
802 | pc contains a magic address. */
|
---|
803 | if (interrupt_request & CPU_INTERRUPT_HARD
|
---|
804 | && ((IS_M(env) && env->regs[15] < 0xfffffff0)
|
---|
805 | || !(env->uncached_cpsr & CPSR_I))) {
|
---|
806 | env->exception_index = EXCP_IRQ;
|
---|
807 | do_interrupt(env);
|
---|
808 | next_tb = 0;
|
---|
809 | }
|
---|
810 | #elif defined(TARGET_SH4)
|
---|
811 | if (interrupt_request & CPU_INTERRUPT_HARD) {
|
---|
812 | do_interrupt(env);
|
---|
813 | next_tb = 0;
|
---|
814 | }
|
---|
815 | #elif defined(TARGET_ALPHA)
|
---|
816 | if (interrupt_request & CPU_INTERRUPT_HARD) {
|
---|
817 | do_interrupt(env);
|
---|
818 | next_tb = 0;
|
---|
819 | }
|
---|
820 | #elif defined(TARGET_CRIS)
|
---|
821 | if (interrupt_request & CPU_INTERRUPT_HARD
|
---|
822 | && (env->pregs[PR_CCS] & I_FLAG)) {
|
---|
823 | env->exception_index = EXCP_IRQ;
|
---|
824 | do_interrupt(env);
|
---|
825 | next_tb = 0;
|
---|
826 | }
|
---|
827 | if (interrupt_request & CPU_INTERRUPT_NMI
|
---|
828 | && (env->pregs[PR_CCS] & M_FLAG)) {
|
---|
829 | env->exception_index = EXCP_NMI;
|
---|
830 | do_interrupt(env);
|
---|
831 | next_tb = 0;
|
---|
832 | }
|
---|
833 | #elif defined(TARGET_M68K)
|
---|
834 | if (interrupt_request & CPU_INTERRUPT_HARD
|
---|
835 | && ((env->sr & SR_I) >> SR_I_SHIFT)
|
---|
836 | < env->pending_level) {
|
---|
837 | /* Real hardware gets the interrupt vector via an
|
---|
838 | IACK cycle at this point. Current emulated
|
---|
839 | hardware doesn't rely on this, so we
|
---|
840 | provide/save the vector when the interrupt is
|
---|
841 | first signalled. */
|
---|
842 | env->exception_index = env->pending_vector;
|
---|
843 | do_interrupt(1);
|
---|
844 | next_tb = 0;
|
---|
845 | }
|
---|
846 | #endif
|
---|
847 | /* Don't use the cached interupt_request value,
|
---|
848 | do_interrupt may have updated the EXITTB flag. */
|
---|
849 | if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
|
---|
850 | env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
|
---|
851 | /* ensure that no TB jump will be modified as
|
---|
852 | the program flow was changed */
|
---|
853 | next_tb = 0;
|
---|
854 | }
|
---|
855 | if (interrupt_request & CPU_INTERRUPT_EXIT) {
|
---|
856 | env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
|
---|
857 | env->exception_index = EXCP_INTERRUPT;
|
---|
858 | cpu_loop_exit();
|
---|
859 | }
|
---|
860 | }
|
---|
861 | #ifdef DEBUG_EXEC
|
---|
862 | if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
|
---|
863 | /* restore flags in standard format */
|
---|
864 | regs_to_env();
|
---|
865 | #if defined(TARGET_I386)
|
---|
866 | env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
|
---|
867 | log_cpu_state(env, X86_DUMP_CCOP);
|
---|
868 | env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
|
---|
869 | #elif defined(TARGET_ARM)
|
---|
870 | log_cpu_state(env, 0);
|
---|
871 | #elif defined(TARGET_SPARC)
|
---|
872 | log_cpu_state(env, 0);
|
---|
873 | #elif defined(TARGET_PPC)
|
---|
874 | log_cpu_state(env, 0);
|
---|
875 | #elif defined(TARGET_M68K)
|
---|
876 | cpu_m68k_flush_flags(env, env->cc_op);
|
---|
877 | env->cc_op = CC_OP_FLAGS;
|
---|
878 | env->sr = (env->sr & 0xffe0)
|
---|
879 | | env->cc_dest | (env->cc_x << 4);
|
---|
880 | log_cpu_state(env, 0);
|
---|
881 | #elif defined(TARGET_MIPS)
|
---|
882 | log_cpu_state(env, 0);
|
---|
883 | #elif defined(TARGET_SH4)
|
---|
884 | log_cpu_state(env, 0);
|
---|
885 | #elif defined(TARGET_ALPHA)
|
---|
886 | log_cpu_state(env, 0);
|
---|
887 | #elif defined(TARGET_CRIS)
|
---|
888 | log_cpu_state(env, 0);
|
---|
889 | #else
|
---|
890 | #error unsupported target CPU
|
---|
891 | #endif
|
---|
892 | }
|
---|
893 | #endif
|
---|
894 | spin_lock(&tb_lock);
|
---|
895 | tb = tb_find_fast();
|
---|
896 | /* Note: we do it here to avoid a gcc bug on Mac OS X when
|
---|
897 | doing it in tb_find_slow */
|
---|
898 | if (tb_invalidated_flag) {
|
---|
899 | /* as some TB could have been invalidated because
|
---|
900 | of memory exceptions while generating the code, we
|
---|
901 | must recompute the hash index here */
|
---|
902 | next_tb = 0;
|
---|
903 | tb_invalidated_flag = 0;
|
---|
904 | }
|
---|
905 | #ifdef DEBUG_EXEC
|
---|
906 | qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
|
---|
907 | (long)tb->tc_ptr, tb->pc,
|
---|
908 | lookup_symbol(tb->pc));
|
---|
909 | #endif
|
---|
910 | /* see if we can patch the calling TB. When the TB
|
---|
911 | spans two pages, we cannot safely do a direct
|
---|
912 | jump. */
|
---|
913 | {
|
---|
914 | if (next_tb != 0 &&
|
---|
915 | #ifdef USE_KQEMU
|
---|
916 | (env->kqemu_enabled != 2) &&
|
---|
917 | #endif
|
---|
918 | tb->page_addr[1] == -1) {
|
---|
919 | tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
|
---|
920 | }
|
---|
921 | }
|
---|
922 | spin_unlock(&tb_lock);
|
---|
923 | env->current_tb = tb;
|
---|
924 |
|
---|
925 | /* cpu_interrupt might be called while translating the
|
---|
926 | TB, but before it is linked into a potentially
|
---|
927 | infinite loop and becomes env->current_tb. Avoid
|
---|
928 | starting execution if there is a pending interrupt. */
|
---|
929 | if (unlikely (env->interrupt_request & CPU_INTERRUPT_EXIT))
|
---|
930 | env->current_tb = NULL;
|
---|
931 |
|
---|
932 | while (env->current_tb) {
|
---|
933 | tc_ptr = tb->tc_ptr;
|
---|
934 | /* execute the generated code */
|
---|
935 | #if defined(__sparc__) && !defined(HOST_SOLARIS)
|
---|
936 | #undef env
|
---|
937 | env = cpu_single_env;
|
---|
938 | #define env cpu_single_env
|
---|
939 | #endif
|
---|
940 | next_tb = tcg_qemu_tb_exec(tc_ptr);
|
---|
941 | env->current_tb = NULL;
|
---|
942 | if ((next_tb & 3) == 2) {
|
---|
943 | /* Instruction counter expired. */
|
---|
944 | int insns_left;
|
---|
945 | tb = (TranslationBlock *)(long)(next_tb & ~3);
|
---|
946 | /* Restore PC. */
|
---|
947 | cpu_pc_from_tb(env, tb);
|
---|
948 | insns_left = env->icount_decr.u32;
|
---|
949 | if (env->icount_extra && insns_left >= 0) {
|
---|
950 | /* Refill decrementer and continue execution. */
|
---|
951 | env->icount_extra += insns_left;
|
---|
952 | if (env->icount_extra > 0xffff) {
|
---|
953 | insns_left = 0xffff;
|
---|
954 | } else {
|
---|
955 | insns_left = env->icount_extra;
|
---|
956 | }
|
---|
957 | env->icount_extra -= insns_left;
|
---|
958 | env->icount_decr.u16.low = insns_left;
|
---|
959 | } else {
|
---|
960 | if (insns_left > 0) {
|
---|
961 | /* Execute remaining instructions. */
|
---|
962 | cpu_exec_nocache(insns_left, tb);
|
---|
963 | }
|
---|
964 | env->exception_index = EXCP_INTERRUPT;
|
---|
965 | next_tb = 0;
|
---|
966 | cpu_loop_exit();
|
---|
967 | }
|
---|
968 | }
|
---|
969 | }
|
---|
970 | /* reset soft MMU for next block (it can currently
|
---|
971 | only be set by a memory fault) */
|
---|
972 | #if defined(USE_KQEMU)
|
---|
973 | #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
|
---|
974 | if (kqemu_is_ok(env) &&
|
---|
975 | (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
|
---|
976 | cpu_loop_exit();
|
---|
977 | }
|
---|
978 | #endif
|
---|
979 | } /* for(;;) */
|
---|
980 | } else {
|
---|
981 | env_to_regs();
|
---|
982 | }
|
---|
983 | } /* for(;;) */
|
---|
984 |
|
---|
985 |
|
---|
986 | #if defined(TARGET_I386)
|
---|
987 | /* restore flags in standard format */
|
---|
988 | env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
|
---|
989 | #elif defined(TARGET_ARM)
|
---|
990 | /* XXX: Save/restore host fpu exception state?. */
|
---|
991 | #elif defined(TARGET_SPARC)
|
---|
992 | #elif defined(TARGET_PPC)
|
---|
993 | #elif defined(TARGET_M68K)
|
---|
994 | cpu_m68k_flush_flags(env, env->cc_op);
|
---|
995 | env->cc_op = CC_OP_FLAGS;
|
---|
996 | env->sr = (env->sr & 0xffe0)
|
---|
997 | | env->cc_dest | (env->cc_x << 4);
|
---|
998 | #elif defined(TARGET_MIPS)
|
---|
999 | #elif defined(TARGET_SH4)
|
---|
1000 | #elif defined(TARGET_ALPHA)
|
---|
1001 | #elif defined(TARGET_CRIS)
|
---|
1002 | /* XXXXX */
|
---|
1003 | #else
|
---|
1004 | #error unsupported target CPU
|
---|
1005 | #endif
|
---|
1006 |
|
---|
1007 | /* restore global registers */
|
---|
1008 | #include "hostregs_helper.h"
|
---|
1009 |
|
---|
1010 | /* fail safe : never use cpu_single_env outside cpu_exec() */
|
---|
1011 | cpu_single_env = NULL;
|
---|
1012 | return ret;
|
---|
1013 | }
|
---|
1014 |
|
---|
1015 | #endif /* !VBOX */
|
---|
1016 |
|
---|
1017 | /* must only be called from the generated code as an exception can be
|
---|
1018 | generated */
|
---|
1019 | void tb_invalidate_page_range(target_ulong start, target_ulong end)
|
---|
1020 | {
|
---|
1021 | /* XXX: cannot enable it yet because it yields to MMU exception
|
---|
1022 | where NIP != read address on PowerPC */
|
---|
1023 | #if 0
|
---|
1024 | target_ulong phys_addr;
|
---|
1025 | phys_addr = get_phys_addr_code(env, start);
|
---|
1026 | tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
|
---|
1027 | #endif
|
---|
1028 | }
|
---|
1029 |
|
---|
1030 | #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
|
---|
1031 |
|
---|
1032 | void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
|
---|
1033 | {
|
---|
1034 | CPUX86State *saved_env;
|
---|
1035 |
|
---|
1036 | saved_env = env;
|
---|
1037 | env = s;
|
---|
1038 | if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
|
---|
1039 | selector &= 0xffff;
|
---|
1040 | cpu_x86_load_seg_cache(env, seg_reg, selector,
|
---|
1041 | (selector << 4), 0xffff, 0);
|
---|
1042 | } else {
|
---|
1043 | helper_load_seg(seg_reg, selector);
|
---|
1044 | }
|
---|
1045 | env = saved_env;
|
---|
1046 | }
|
---|
1047 |
|
---|
1048 | void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
|
---|
1049 | {
|
---|
1050 | CPUX86State *saved_env;
|
---|
1051 |
|
---|
1052 | saved_env = env;
|
---|
1053 | env = s;
|
---|
1054 |
|
---|
1055 | helper_fsave(ptr, data32);
|
---|
1056 |
|
---|
1057 | env = saved_env;
|
---|
1058 | }
|
---|
1059 |
|
---|
1060 | void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
|
---|
1061 | {
|
---|
1062 | CPUX86State *saved_env;
|
---|
1063 |
|
---|
1064 | saved_env = env;
|
---|
1065 | env = s;
|
---|
1066 |
|
---|
1067 | helper_frstor(ptr, data32);
|
---|
1068 |
|
---|
1069 | env = saved_env;
|
---|
1070 | }
|
---|
1071 |
|
---|
1072 | #endif /* TARGET_I386 */
|
---|
1073 |
|
---|
1074 | #if !defined(CONFIG_SOFTMMU)
|
---|
1075 |
|
---|
1076 | #if defined(TARGET_I386)
|
---|
1077 |
|
---|
1078 | /* 'pc' is the host PC at which the exception was raised. 'address' is
|
---|
1079 | the effective address of the memory exception. 'is_write' is 1 if a
|
---|
1080 | write caused the exception and otherwise 0'. 'old_set' is the
|
---|
1081 | signal set which should be restored */
|
---|
1082 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
---|
1083 | int is_write, sigset_t *old_set,
|
---|
1084 | void *puc)
|
---|
1085 | {
|
---|
1086 | TranslationBlock *tb;
|
---|
1087 | int ret;
|
---|
1088 |
|
---|
1089 | if (cpu_single_env)
|
---|
1090 | env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
---|
1091 | #if defined(DEBUG_SIGNAL)
|
---|
1092 | qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
---|
1093 | pc, address, is_write, *(unsigned long *)old_set);
|
---|
1094 | #endif
|
---|
1095 | /* XXX: locking issue */
|
---|
1096 | if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
---|
1097 | return 1;
|
---|
1098 | }
|
---|
1099 |
|
---|
1100 | /* see if it is an MMU fault */
|
---|
1101 | ret = cpu_x86_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
---|
1102 | if (ret < 0)
|
---|
1103 | return 0; /* not an MMU fault */
|
---|
1104 | if (ret == 0)
|
---|
1105 | return 1; /* the MMU fault was handled without causing real CPU fault */
|
---|
1106 | /* now we have a real cpu fault */
|
---|
1107 | tb = tb_find_pc(pc);
|
---|
1108 | if (tb) {
|
---|
1109 | /* the PC is inside the translated code. It means that we have
|
---|
1110 | a virtual CPU fault */
|
---|
1111 | cpu_restore_state(tb, env, pc, puc);
|
---|
1112 | }
|
---|
1113 | if (ret == 1) {
|
---|
1114 | #if 0
|
---|
1115 | printf("PF exception: EIP=0x%RGv CR2=0x%RGv error=0x%x\n",
|
---|
1116 | env->eip, env->cr[2], env->error_code);
|
---|
1117 | #endif
|
---|
1118 | /* we restore the process signal mask as the sigreturn should
|
---|
1119 | do it (XXX: use sigsetjmp) */
|
---|
1120 | sigprocmask(SIG_SETMASK, old_set, NULL);
|
---|
1121 | raise_exception_err(env->exception_index, env->error_code);
|
---|
1122 | } else {
|
---|
1123 | /* activate soft MMU for this block */
|
---|
1124 | env->hflags |= HF_SOFTMMU_MASK;
|
---|
1125 | cpu_resume_from_signal(env, puc);
|
---|
1126 | }
|
---|
1127 | /* never comes here */
|
---|
1128 | return 1;
|
---|
1129 | }
|
---|
1130 |
|
---|
1131 | #elif defined(TARGET_ARM)
|
---|
1132 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
---|
1133 | int is_write, sigset_t *old_set,
|
---|
1134 | void *puc)
|
---|
1135 | {
|
---|
1136 | TranslationBlock *tb;
|
---|
1137 | int ret;
|
---|
1138 |
|
---|
1139 | if (cpu_single_env)
|
---|
1140 | env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
---|
1141 | #if defined(DEBUG_SIGNAL)
|
---|
1142 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
---|
1143 | pc, address, is_write, *(unsigned long *)old_set);
|
---|
1144 | #endif
|
---|
1145 | /* XXX: locking issue */
|
---|
1146 | if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
---|
1147 | return 1;
|
---|
1148 | }
|
---|
1149 | /* see if it is an MMU fault */
|
---|
1150 | ret = cpu_arm_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
---|
1151 | if (ret < 0)
|
---|
1152 | return 0; /* not an MMU fault */
|
---|
1153 | if (ret == 0)
|
---|
1154 | return 1; /* the MMU fault was handled without causing real CPU fault */
|
---|
1155 | /* now we have a real cpu fault */
|
---|
1156 | tb = tb_find_pc(pc);
|
---|
1157 | if (tb) {
|
---|
1158 | /* the PC is inside the translated code. It means that we have
|
---|
1159 | a virtual CPU fault */
|
---|
1160 | cpu_restore_state(tb, env, pc, puc);
|
---|
1161 | }
|
---|
1162 | /* we restore the process signal mask as the sigreturn should
|
---|
1163 | do it (XXX: use sigsetjmp) */
|
---|
1164 | sigprocmask(SIG_SETMASK, old_set, NULL);
|
---|
1165 | cpu_loop_exit();
|
---|
1166 | /* never comes here */
|
---|
1167 | return 1;
|
---|
1168 | }
|
---|
1169 | #elif defined(TARGET_SPARC)
|
---|
1170 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
---|
1171 | int is_write, sigset_t *old_set,
|
---|
1172 | void *puc)
|
---|
1173 | {
|
---|
1174 | TranslationBlock *tb;
|
---|
1175 | int ret;
|
---|
1176 |
|
---|
1177 | if (cpu_single_env)
|
---|
1178 | env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
---|
1179 | #if defined(DEBUG_SIGNAL)
|
---|
1180 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
---|
1181 | pc, address, is_write, *(unsigned long *)old_set);
|
---|
1182 | #endif
|
---|
1183 | /* XXX: locking issue */
|
---|
1184 | if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
---|
1185 | return 1;
|
---|
1186 | }
|
---|
1187 | /* see if it is an MMU fault */
|
---|
1188 | ret = cpu_sparc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
---|
1189 | if (ret < 0)
|
---|
1190 | return 0; /* not an MMU fault */
|
---|
1191 | if (ret == 0)
|
---|
1192 | return 1; /* the MMU fault was handled without causing real CPU fault */
|
---|
1193 | /* now we have a real cpu fault */
|
---|
1194 | tb = tb_find_pc(pc);
|
---|
1195 | if (tb) {
|
---|
1196 | /* the PC is inside the translated code. It means that we have
|
---|
1197 | a virtual CPU fault */
|
---|
1198 | cpu_restore_state(tb, env, pc, puc);
|
---|
1199 | }
|
---|
1200 | /* we restore the process signal mask as the sigreturn should
|
---|
1201 | do it (XXX: use sigsetjmp) */
|
---|
1202 | sigprocmask(SIG_SETMASK, old_set, NULL);
|
---|
1203 | cpu_loop_exit();
|
---|
1204 | /* never comes here */
|
---|
1205 | return 1;
|
---|
1206 | }
|
---|
1207 | #elif defined (TARGET_PPC)
|
---|
1208 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
---|
1209 | int is_write, sigset_t *old_set,
|
---|
1210 | void *puc)
|
---|
1211 | {
|
---|
1212 | TranslationBlock *tb;
|
---|
1213 | int ret;
|
---|
1214 |
|
---|
1215 | if (cpu_single_env)
|
---|
1216 | env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
---|
1217 | #if defined(DEBUG_SIGNAL)
|
---|
1218 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
---|
1219 | pc, address, is_write, *(unsigned long *)old_set);
|
---|
1220 | #endif
|
---|
1221 | /* XXX: locking issue */
|
---|
1222 | if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
---|
1223 | return 1;
|
---|
1224 | }
|
---|
1225 |
|
---|
1226 | /* see if it is an MMU fault */
|
---|
1227 | ret = cpu_ppc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
---|
1228 | if (ret < 0)
|
---|
1229 | return 0; /* not an MMU fault */
|
---|
1230 | if (ret == 0)
|
---|
1231 | return 1; /* the MMU fault was handled without causing real CPU fault */
|
---|
1232 |
|
---|
1233 | /* now we have a real cpu fault */
|
---|
1234 | tb = tb_find_pc(pc);
|
---|
1235 | if (tb) {
|
---|
1236 | /* the PC is inside the translated code. It means that we have
|
---|
1237 | a virtual CPU fault */
|
---|
1238 | cpu_restore_state(tb, env, pc, puc);
|
---|
1239 | }
|
---|
1240 | if (ret == 1) {
|
---|
1241 | #if 0
|
---|
1242 | printf("PF exception: NIP=0x%08x error=0x%x %p\n",
|
---|
1243 | env->nip, env->error_code, tb);
|
---|
1244 | #endif
|
---|
1245 | /* we restore the process signal mask as the sigreturn should
|
---|
1246 | do it (XXX: use sigsetjmp) */
|
---|
1247 | sigprocmask(SIG_SETMASK, old_set, NULL);
|
---|
1248 | cpu_loop_exit();
|
---|
1249 | } else {
|
---|
1250 | /* activate soft MMU for this block */
|
---|
1251 | cpu_resume_from_signal(env, puc);
|
---|
1252 | }
|
---|
1253 | /* never comes here */
|
---|
1254 | return 1;
|
---|
1255 | }
|
---|
1256 |
|
---|
1257 | #elif defined(TARGET_M68K)
|
---|
1258 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
---|
1259 | int is_write, sigset_t *old_set,
|
---|
1260 | void *puc)
|
---|
1261 | {
|
---|
1262 | TranslationBlock *tb;
|
---|
1263 | int ret;
|
---|
1264 |
|
---|
1265 | if (cpu_single_env)
|
---|
1266 | env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
---|
1267 | #if defined(DEBUG_SIGNAL)
|
---|
1268 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
---|
1269 | pc, address, is_write, *(unsigned long *)old_set);
|
---|
1270 | #endif
|
---|
1271 | /* XXX: locking issue */
|
---|
1272 | if (is_write && page_unprotect(address, pc, puc)) {
|
---|
1273 | return 1;
|
---|
1274 | }
|
---|
1275 | /* see if it is an MMU fault */
|
---|
1276 | ret = cpu_m68k_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
---|
1277 | if (ret < 0)
|
---|
1278 | return 0; /* not an MMU fault */
|
---|
1279 | if (ret == 0)
|
---|
1280 | return 1; /* the MMU fault was handled without causing real CPU fault */
|
---|
1281 | /* now we have a real cpu fault */
|
---|
1282 | tb = tb_find_pc(pc);
|
---|
1283 | if (tb) {
|
---|
1284 | /* the PC is inside the translated code. It means that we have
|
---|
1285 | a virtual CPU fault */
|
---|
1286 | cpu_restore_state(tb, env, pc, puc);
|
---|
1287 | }
|
---|
1288 | /* we restore the process signal mask as the sigreturn should
|
---|
1289 | do it (XXX: use sigsetjmp) */
|
---|
1290 | sigprocmask(SIG_SETMASK, old_set, NULL);
|
---|
1291 | cpu_loop_exit();
|
---|
1292 | /* never comes here */
|
---|
1293 | return 1;
|
---|
1294 | }
|
---|
1295 |
|
---|
1296 | #elif defined (TARGET_MIPS)
|
---|
1297 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
---|
1298 | int is_write, sigset_t *old_set,
|
---|
1299 | void *puc)
|
---|
1300 | {
|
---|
1301 | TranslationBlock *tb;
|
---|
1302 | int ret;
|
---|
1303 |
|
---|
1304 | if (cpu_single_env)
|
---|
1305 | env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
---|
1306 | #if defined(DEBUG_SIGNAL)
|
---|
1307 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
---|
1308 | pc, address, is_write, *(unsigned long *)old_set);
|
---|
1309 | #endif
|
---|
1310 | /* XXX: locking issue */
|
---|
1311 | if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
---|
1312 | return 1;
|
---|
1313 | }
|
---|
1314 |
|
---|
1315 | /* see if it is an MMU fault */
|
---|
1316 | ret = cpu_mips_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
---|
1317 | if (ret < 0)
|
---|
1318 | return 0; /* not an MMU fault */
|
---|
1319 | if (ret == 0)
|
---|
1320 | return 1; /* the MMU fault was handled without causing real CPU fault */
|
---|
1321 |
|
---|
1322 | /* now we have a real cpu fault */
|
---|
1323 | tb = tb_find_pc(pc);
|
---|
1324 | if (tb) {
|
---|
1325 | /* the PC is inside the translated code. It means that we have
|
---|
1326 | a virtual CPU fault */
|
---|
1327 | cpu_restore_state(tb, env, pc, puc);
|
---|
1328 | }
|
---|
1329 | if (ret == 1) {
|
---|
1330 | #if 0
|
---|
1331 | printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
|
---|
1332 | env->PC, env->error_code, tb);
|
---|
1333 | #endif
|
---|
1334 | /* we restore the process signal mask as the sigreturn should
|
---|
1335 | do it (XXX: use sigsetjmp) */
|
---|
1336 | sigprocmask(SIG_SETMASK, old_set, NULL);
|
---|
1337 | cpu_loop_exit();
|
---|
1338 | } else {
|
---|
1339 | /* activate soft MMU for this block */
|
---|
1340 | cpu_resume_from_signal(env, puc);
|
---|
1341 | }
|
---|
1342 | /* never comes here */
|
---|
1343 | return 1;
|
---|
1344 | }
|
---|
1345 |
|
---|
1346 | #elif defined (TARGET_SH4)
|
---|
1347 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
---|
1348 | int is_write, sigset_t *old_set,
|
---|
1349 | void *puc)
|
---|
1350 | {
|
---|
1351 | TranslationBlock *tb;
|
---|
1352 | int ret;
|
---|
1353 |
|
---|
1354 | if (cpu_single_env)
|
---|
1355 | env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
---|
1356 | #if defined(DEBUG_SIGNAL)
|
---|
1357 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
---|
1358 | pc, address, is_write, *(unsigned long *)old_set);
|
---|
1359 | #endif
|
---|
1360 | /* XXX: locking issue */
|
---|
1361 | if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
---|
1362 | return 1;
|
---|
1363 | }
|
---|
1364 |
|
---|
1365 | /* see if it is an MMU fault */
|
---|
1366 | ret = cpu_sh4_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
---|
1367 | if (ret < 0)
|
---|
1368 | return 0; /* not an MMU fault */
|
---|
1369 | if (ret == 0)
|
---|
1370 | return 1; /* the MMU fault was handled without causing real CPU fault */
|
---|
1371 |
|
---|
1372 | /* now we have a real cpu fault */
|
---|
1373 | tb = tb_find_pc(pc);
|
---|
1374 | if (tb) {
|
---|
1375 | /* the PC is inside the translated code. It means that we have
|
---|
1376 | a virtual CPU fault */
|
---|
1377 | cpu_restore_state(tb, env, pc, puc);
|
---|
1378 | }
|
---|
1379 | #if 0
|
---|
1380 | printf("PF exception: NIP=0x%08x error=0x%x %p\n",
|
---|
1381 | env->nip, env->error_code, tb);
|
---|
1382 | #endif
|
---|
1383 | /* we restore the process signal mask as the sigreturn should
|
---|
1384 | do it (XXX: use sigsetjmp) */
|
---|
1385 | sigprocmask(SIG_SETMASK, old_set, NULL);
|
---|
1386 | cpu_loop_exit();
|
---|
1387 | /* never comes here */
|
---|
1388 | return 1;
|
---|
1389 | }
|
---|
1390 |
|
---|
1391 | #elif defined (TARGET_ALPHA)
|
---|
1392 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
---|
1393 | int is_write, sigset_t *old_set,
|
---|
1394 | void *puc)
|
---|
1395 | {
|
---|
1396 | TranslationBlock *tb;
|
---|
1397 | int ret;
|
---|
1398 |
|
---|
1399 | if (cpu_single_env)
|
---|
1400 | env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
---|
1401 | #if defined(DEBUG_SIGNAL)
|
---|
1402 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
---|
1403 | pc, address, is_write, *(unsigned long *)old_set);
|
---|
1404 | #endif
|
---|
1405 | /* XXX: locking issue */
|
---|
1406 | if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
---|
1407 | return 1;
|
---|
1408 | }
|
---|
1409 |
|
---|
1410 | /* see if it is an MMU fault */
|
---|
1411 | ret = cpu_alpha_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
---|
1412 | if (ret < 0)
|
---|
1413 | return 0; /* not an MMU fault */
|
---|
1414 | if (ret == 0)
|
---|
1415 | return 1; /* the MMU fault was handled without causing real CPU fault */
|
---|
1416 |
|
---|
1417 | /* now we have a real cpu fault */
|
---|
1418 | tb = tb_find_pc(pc);
|
---|
1419 | if (tb) {
|
---|
1420 | /* the PC is inside the translated code. It means that we have
|
---|
1421 | a virtual CPU fault */
|
---|
1422 | cpu_restore_state(tb, env, pc, puc);
|
---|
1423 | }
|
---|
1424 | #if 0
|
---|
1425 | printf("PF exception: NIP=0x%08x error=0x%x %p\n",
|
---|
1426 | env->nip, env->error_code, tb);
|
---|
1427 | #endif
|
---|
1428 | /* we restore the process signal mask as the sigreturn should
|
---|
1429 | do it (XXX: use sigsetjmp) */
|
---|
1430 | sigprocmask(SIG_SETMASK, old_set, NULL);
|
---|
1431 | cpu_loop_exit();
|
---|
1432 | /* never comes here */
|
---|
1433 | return 1;
|
---|
1434 | }
|
---|
1435 | #elif defined (TARGET_CRIS)
|
---|
1436 | static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
|
---|
1437 | int is_write, sigset_t *old_set,
|
---|
1438 | void *puc)
|
---|
1439 | {
|
---|
1440 | TranslationBlock *tb;
|
---|
1441 | int ret;
|
---|
1442 |
|
---|
1443 | if (cpu_single_env)
|
---|
1444 | env = cpu_single_env; /* XXX: find a correct solution for multithread */
|
---|
1445 | #if defined(DEBUG_SIGNAL)
|
---|
1446 | printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
|
---|
1447 | pc, address, is_write, *(unsigned long *)old_set);
|
---|
1448 | #endif
|
---|
1449 | /* XXX: locking issue */
|
---|
1450 | if (is_write && page_unprotect(h2g(address), pc, puc)) {
|
---|
1451 | return 1;
|
---|
1452 | }
|
---|
1453 |
|
---|
1454 | /* see if it is an MMU fault */
|
---|
1455 | ret = cpu_cris_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
|
---|
1456 | if (ret < 0)
|
---|
1457 | return 0; /* not an MMU fault */
|
---|
1458 | if (ret == 0)
|
---|
1459 | return 1; /* the MMU fault was handled without causing real CPU fault */
|
---|
1460 |
|
---|
1461 | /* now we have a real cpu fault */
|
---|
1462 | tb = tb_find_pc(pc);
|
---|
1463 | if (tb) {
|
---|
1464 | /* the PC is inside the translated code. It means that we have
|
---|
1465 | a virtual CPU fault */
|
---|
1466 | cpu_restore_state(tb, env, pc, puc);
|
---|
1467 | }
|
---|
1468 | /* we restore the process signal mask as the sigreturn should
|
---|
1469 | do it (XXX: use sigsetjmp) */
|
---|
1470 | sigprocmask(SIG_SETMASK, old_set, NULL);
|
---|
1471 | cpu_loop_exit();
|
---|
1472 | /* never comes here */
|
---|
1473 | return 1;
|
---|
1474 | }
|
---|
1475 |
|
---|
1476 | #else
|
---|
1477 | #error unsupported target CPU
|
---|
1478 | #endif
|
---|
1479 |
|
---|
1480 | #if defined(__i386__)
|
---|
1481 |
|
---|
1482 | #if defined(__APPLE__)
|
---|
1483 | # include <sys/ucontext.h>
|
---|
1484 |
|
---|
1485 | # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
|
---|
1486 | # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
|
---|
1487 | # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
|
---|
1488 | #else
|
---|
1489 | # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
|
---|
1490 | # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
|
---|
1491 | # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
|
---|
1492 | #endif
|
---|
1493 |
|
---|
1494 | int cpu_signal_handler(int host_signum, void *pinfo,
|
---|
1495 | void *puc)
|
---|
1496 | {
|
---|
1497 | siginfo_t *info = pinfo;
|
---|
1498 | struct ucontext *uc = puc;
|
---|
1499 | unsigned long pc;
|
---|
1500 | int trapno;
|
---|
1501 |
|
---|
1502 | #ifndef REG_EIP
|
---|
1503 | /* for glibc 2.1 */
|
---|
1504 | #define REG_EIP EIP
|
---|
1505 | #define REG_ERR ERR
|
---|
1506 | #define REG_TRAPNO TRAPNO
|
---|
1507 | #endif
|
---|
1508 | pc = EIP_sig(uc);
|
---|
1509 | trapno = TRAP_sig(uc);
|
---|
1510 | return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
---|
1511 | trapno == 0xe ?
|
---|
1512 | (ERROR_sig(uc) >> 1) & 1 : 0,
|
---|
1513 | &uc->uc_sigmask, puc);
|
---|
1514 | }
|
---|
1515 |
|
---|
1516 | #elif defined(__x86_64__)
|
---|
1517 |
|
---|
1518 | #ifdef __NetBSD__
|
---|
1519 | #define REG_ERR _REG_ERR
|
---|
1520 | #define REG_TRAPNO _REG_TRAPNO
|
---|
1521 |
|
---|
1522 | #define QEMU_UC_MCONTEXT_GREGS(uc, reg) (uc)->uc_mcontext.__gregs[(reg)]
|
---|
1523 | #define QEMU_UC_MACHINE_PC(uc) _UC_MACHINE_PC(uc)
|
---|
1524 | #else
|
---|
1525 | #define QEMU_UC_MCONTEXT_GREGS(uc, reg) (uc)->uc_mcontext.gregs[(reg)]
|
---|
1526 | #define QEMU_UC_MACHINE_PC(uc) QEMU_UC_MCONTEXT_GREGS(uc, REG_RIP)
|
---|
1527 | #endif
|
---|
1528 |
|
---|
1529 | int cpu_signal_handler(int host_signum, void *pinfo,
|
---|
1530 | void *puc)
|
---|
1531 | {
|
---|
1532 | siginfo_t *info = pinfo;
|
---|
1533 | unsigned long pc;
|
---|
1534 | #ifdef __NetBSD__
|
---|
1535 | ucontext_t *uc = puc;
|
---|
1536 | #else
|
---|
1537 | struct ucontext *uc = puc;
|
---|
1538 | #endif
|
---|
1539 |
|
---|
1540 | pc = QEMU_UC_MACHINE_PC(uc);
|
---|
1541 | return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
---|
1542 | QEMU_UC_MCONTEXT_GREGS(uc, REG_TRAPNO) == 0xe ?
|
---|
1543 | (QEMU_UC_MCONTEXT_GREGS(uc, REG_ERR) >> 1) & 1 : 0,
|
---|
1544 | &uc->uc_sigmask, puc);
|
---|
1545 | }
|
---|
1546 |
|
---|
1547 | #elif defined(_ARCH_PPC)
|
---|
1548 |
|
---|
1549 | /***********************************************************************
|
---|
1550 | * signal context platform-specific definitions
|
---|
1551 | * From Wine
|
---|
1552 | */
|
---|
1553 | #ifdef linux
|
---|
1554 | /* All Registers access - only for local access */
|
---|
1555 | # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
|
---|
1556 | /* Gpr Registers access */
|
---|
1557 | # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
|
---|
1558 | # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
|
---|
1559 | # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
|
---|
1560 | # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
|
---|
1561 | # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
|
---|
1562 | # define LR_sig(context) REG_sig(link, context) /* Link register */
|
---|
1563 | # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
|
---|
1564 | /* Float Registers access */
|
---|
1565 | # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
|
---|
1566 | # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
|
---|
1567 | /* Exception Registers access */
|
---|
1568 | # define DAR_sig(context) REG_sig(dar, context)
|
---|
1569 | # define DSISR_sig(context) REG_sig(dsisr, context)
|
---|
1570 | # define TRAP_sig(context) REG_sig(trap, context)
|
---|
1571 | #endif /* linux */
|
---|
1572 |
|
---|
1573 | #ifdef __APPLE__
|
---|
1574 | # include <sys/ucontext.h>
|
---|
1575 | typedef struct ucontext SIGCONTEXT;
|
---|
1576 | /* All Registers access - only for local access */
|
---|
1577 | # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
|
---|
1578 | # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
|
---|
1579 | # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
|
---|
1580 | # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
|
---|
1581 | /* Gpr Registers access */
|
---|
1582 | # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
|
---|
1583 | # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
|
---|
1584 | # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
|
---|
1585 | # define CTR_sig(context) REG_sig(ctr, context)
|
---|
1586 | # define XER_sig(context) REG_sig(xer, context) /* Link register */
|
---|
1587 | # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
|
---|
1588 | # define CR_sig(context) REG_sig(cr, context) /* Condition register */
|
---|
1589 | /* Float Registers access */
|
---|
1590 | # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
|
---|
1591 | # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
|
---|
1592 | /* Exception Registers access */
|
---|
1593 | # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
|
---|
1594 | # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
|
---|
1595 | # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
|
---|
1596 | #endif /* __APPLE__ */
|
---|
1597 |
|
---|
1598 | int cpu_signal_handler(int host_signum, void *pinfo,
|
---|
1599 | void *puc)
|
---|
1600 | {
|
---|
1601 | siginfo_t *info = pinfo;
|
---|
1602 | struct ucontext *uc = puc;
|
---|
1603 | unsigned long pc;
|
---|
1604 | int is_write;
|
---|
1605 |
|
---|
1606 | pc = IAR_sig(uc);
|
---|
1607 | is_write = 0;
|
---|
1608 | #if 0
|
---|
1609 | /* ppc 4xx case */
|
---|
1610 | if (DSISR_sig(uc) & 0x00800000)
|
---|
1611 | is_write = 1;
|
---|
1612 | #else
|
---|
1613 | if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
|
---|
1614 | is_write = 1;
|
---|
1615 | #endif
|
---|
1616 | return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
---|
1617 | is_write, &uc->uc_sigmask, puc);
|
---|
1618 | }
|
---|
1619 |
|
---|
1620 | #elif defined(__alpha__)
|
---|
1621 |
|
---|
1622 | int cpu_signal_handler(int host_signum, void *pinfo,
|
---|
1623 | void *puc)
|
---|
1624 | {
|
---|
1625 | siginfo_t *info = pinfo;
|
---|
1626 | struct ucontext *uc = puc;
|
---|
1627 | uint32_t *pc = uc->uc_mcontext.sc_pc;
|
---|
1628 | uint32_t insn = *pc;
|
---|
1629 | int is_write = 0;
|
---|
1630 |
|
---|
1631 | /* XXX: need kernel patch to get write flag faster */
|
---|
1632 | switch (insn >> 26) {
|
---|
1633 | case 0x0d: // stw
|
---|
1634 | case 0x0e: // stb
|
---|
1635 | case 0x0f: // stq_u
|
---|
1636 | case 0x24: // stf
|
---|
1637 | case 0x25: // stg
|
---|
1638 | case 0x26: // sts
|
---|
1639 | case 0x27: // stt
|
---|
1640 | case 0x2c: // stl
|
---|
1641 | case 0x2d: // stq
|
---|
1642 | case 0x2e: // stl_c
|
---|
1643 | case 0x2f: // stq_c
|
---|
1644 | is_write = 1;
|
---|
1645 | }
|
---|
1646 |
|
---|
1647 | return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
---|
1648 | is_write, &uc->uc_sigmask, puc);
|
---|
1649 | }
|
---|
1650 | #elif defined(__sparc__)
|
---|
1651 |
|
---|
1652 | int cpu_signal_handler(int host_signum, void *pinfo,
|
---|
1653 | void *puc)
|
---|
1654 | {
|
---|
1655 | siginfo_t *info = pinfo;
|
---|
1656 | int is_write;
|
---|
1657 | uint32_t insn;
|
---|
1658 | #if !defined(__arch64__) || defined(HOST_SOLARIS)
|
---|
1659 | uint32_t *regs = (uint32_t *)(info + 1);
|
---|
1660 | void *sigmask = (regs + 20);
|
---|
1661 | /* XXX: is there a standard glibc define ? */
|
---|
1662 | unsigned long pc = regs[1];
|
---|
1663 | #else
|
---|
1664 | #ifdef __linux__
|
---|
1665 | struct sigcontext *sc = puc;
|
---|
1666 | unsigned long pc = sc->sigc_regs.tpc;
|
---|
1667 | void *sigmask = (void *)sc->sigc_mask;
|
---|
1668 | #elif defined(__OpenBSD__)
|
---|
1669 | struct sigcontext *uc = puc;
|
---|
1670 | unsigned long pc = uc->sc_pc;
|
---|
1671 | void *sigmask = (void *)(long)uc->sc_mask;
|
---|
1672 | #endif
|
---|
1673 | #endif
|
---|
1674 |
|
---|
1675 | /* XXX: need kernel patch to get write flag faster */
|
---|
1676 | is_write = 0;
|
---|
1677 | insn = *(uint32_t *)pc;
|
---|
1678 | if ((insn >> 30) == 3) {
|
---|
1679 | switch((insn >> 19) & 0x3f) {
|
---|
1680 | case 0x05: // stb
|
---|
1681 | case 0x06: // sth
|
---|
1682 | case 0x04: // st
|
---|
1683 | case 0x07: // std
|
---|
1684 | case 0x24: // stf
|
---|
1685 | case 0x27: // stdf
|
---|
1686 | case 0x25: // stfsr
|
---|
1687 | is_write = 1;
|
---|
1688 | break;
|
---|
1689 | }
|
---|
1690 | }
|
---|
1691 | return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
---|
1692 | is_write, sigmask, NULL);
|
---|
1693 | }
|
---|
1694 |
|
---|
1695 | #elif defined(__arm__)
|
---|
1696 |
|
---|
1697 | int cpu_signal_handler(int host_signum, void *pinfo,
|
---|
1698 | void *puc)
|
---|
1699 | {
|
---|
1700 | siginfo_t *info = pinfo;
|
---|
1701 | struct ucontext *uc = puc;
|
---|
1702 | unsigned long pc;
|
---|
1703 | int is_write;
|
---|
1704 |
|
---|
1705 | #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
|
---|
1706 | pc = uc->uc_mcontext.gregs[R15];
|
---|
1707 | #else
|
---|
1708 | pc = uc->uc_mcontext.arm_pc;
|
---|
1709 | #endif
|
---|
1710 | /* XXX: compute is_write */
|
---|
1711 | is_write = 0;
|
---|
1712 | return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
---|
1713 | is_write,
|
---|
1714 | &uc->uc_sigmask, puc);
|
---|
1715 | }
|
---|
1716 |
|
---|
1717 | #elif defined(__mc68000)
|
---|
1718 |
|
---|
1719 | int cpu_signal_handler(int host_signum, void *pinfo,
|
---|
1720 | void *puc)
|
---|
1721 | {
|
---|
1722 | siginfo_t *info = pinfo;
|
---|
1723 | struct ucontext *uc = puc;
|
---|
1724 | unsigned long pc;
|
---|
1725 | int is_write;
|
---|
1726 |
|
---|
1727 | pc = uc->uc_mcontext.gregs[16];
|
---|
1728 | /* XXX: compute is_write */
|
---|
1729 | is_write = 0;
|
---|
1730 | return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
---|
1731 | is_write,
|
---|
1732 | &uc->uc_sigmask, puc);
|
---|
1733 | }
|
---|
1734 |
|
---|
1735 | #elif defined(__ia64)
|
---|
1736 |
|
---|
1737 | #ifndef __ISR_VALID
|
---|
1738 | /* This ought to be in <bits/siginfo.h>... */
|
---|
1739 | # define __ISR_VALID 1
|
---|
1740 | #endif
|
---|
1741 |
|
---|
1742 | int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
|
---|
1743 | {
|
---|
1744 | siginfo_t *info = pinfo;
|
---|
1745 | struct ucontext *uc = puc;
|
---|
1746 | unsigned long ip;
|
---|
1747 | int is_write = 0;
|
---|
1748 |
|
---|
1749 | ip = uc->uc_mcontext.sc_ip;
|
---|
1750 | switch (host_signum) {
|
---|
1751 | case SIGILL:
|
---|
1752 | case SIGFPE:
|
---|
1753 | case SIGSEGV:
|
---|
1754 | case SIGBUS:
|
---|
1755 | case SIGTRAP:
|
---|
1756 | if (info->si_code && (info->si_segvflags & __ISR_VALID))
|
---|
1757 | /* ISR.W (write-access) is bit 33: */
|
---|
1758 | is_write = (info->si_isr >> 33) & 1;
|
---|
1759 | break;
|
---|
1760 |
|
---|
1761 | default:
|
---|
1762 | break;
|
---|
1763 | }
|
---|
1764 | return handle_cpu_signal(ip, (unsigned long)info->si_addr,
|
---|
1765 | is_write,
|
---|
1766 | &uc->uc_sigmask, puc);
|
---|
1767 | }
|
---|
1768 |
|
---|
1769 | #elif defined(__s390__)
|
---|
1770 |
|
---|
1771 | int cpu_signal_handler(int host_signum, void *pinfo,
|
---|
1772 | void *puc)
|
---|
1773 | {
|
---|
1774 | siginfo_t *info = pinfo;
|
---|
1775 | struct ucontext *uc = puc;
|
---|
1776 | unsigned long pc;
|
---|
1777 | int is_write;
|
---|
1778 |
|
---|
1779 | pc = uc->uc_mcontext.psw.addr;
|
---|
1780 | /* XXX: compute is_write */
|
---|
1781 | is_write = 0;
|
---|
1782 | return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
---|
1783 | is_write, &uc->uc_sigmask, puc);
|
---|
1784 | }
|
---|
1785 |
|
---|
1786 | #elif defined(__mips__)
|
---|
1787 |
|
---|
1788 | int cpu_signal_handler(int host_signum, void *pinfo,
|
---|
1789 | void *puc)
|
---|
1790 | {
|
---|
1791 | siginfo_t *info = pinfo;
|
---|
1792 | struct ucontext *uc = puc;
|
---|
1793 | greg_t pc = uc->uc_mcontext.pc;
|
---|
1794 | int is_write;
|
---|
1795 |
|
---|
1796 | /* XXX: compute is_write */
|
---|
1797 | is_write = 0;
|
---|
1798 | return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
---|
1799 | is_write, &uc->uc_sigmask, puc);
|
---|
1800 | }
|
---|
1801 |
|
---|
1802 | #elif defined(__hppa__)
|
---|
1803 |
|
---|
1804 | int cpu_signal_handler(int host_signum, void *pinfo,
|
---|
1805 | void *puc)
|
---|
1806 | {
|
---|
1807 | struct siginfo *info = pinfo;
|
---|
1808 | struct ucontext *uc = puc;
|
---|
1809 | unsigned long pc;
|
---|
1810 | int is_write;
|
---|
1811 |
|
---|
1812 | pc = uc->uc_mcontext.sc_iaoq[0];
|
---|
1813 | /* FIXME: compute is_write */
|
---|
1814 | is_write = 0;
|
---|
1815 | return handle_cpu_signal(pc, (unsigned long)info->si_addr,
|
---|
1816 | is_write,
|
---|
1817 | &uc->uc_sigmask, puc);
|
---|
1818 | }
|
---|
1819 |
|
---|
1820 | #else
|
---|
1821 |
|
---|
1822 | #error host CPU specific signal handler needed
|
---|
1823 |
|
---|
1824 | #endif
|
---|
1825 |
|
---|
1826 | #endif /* !defined(CONFIG_SOFTMMU) */
|
---|