/* * internal execution defines for qemu * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* * Oracle LGPL Disclaimer: For the avoidance of doubt, except that if any license choice * other than GPL or LGPL is available it will apply instead, Oracle elects to use only * the Lesser General Public License version 2.1 (LGPLv2) at this time for any software where * a choice of LGPL license versions is made available with the language indicating * that LGPLv2 or any later version may be used, or where a choice of which version * of the LGPL is applied is otherwise unspecified. */ /* allow to see translation results - the slowdown should be negligible, so we leave it */ #ifndef VBOX #define DEBUG_DISAS #endif #ifdef VBOX # include # include /* PGM_DYNAMIC_RAM_ALLOC */ # ifndef LOG_GROUP # define LOG_GROUP LOG_GROUP_REM # endif # include # include "REMInternal.h" # include #endif /* VBOX */ /* is_jmp field values */ #define DISAS_NEXT 0 /* next instruction can be analyzed */ #define DISAS_JUMP 1 /* only pc was modified dynamically */ #define DISAS_UPDATE 2 /* cpu state was modified dynamically */ #define DISAS_TB_JUMP 3 /* only pc was modified statically */ typedef struct TranslationBlock TranslationBlock; /* XXX: make safe guess about sizes */ #define MAX_OP_PER_INSTR 64 /* A Call op needs up to 6 + 2N parameters (N = number of arguments). */ #define MAX_OPC_PARAM 10 #define OPC_BUF_SIZE 512 #define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR) /* Maximum size a TCG op can expand to. This is complicated because a single op may require several host instructions and regirster reloads. For now take a wild guess at 128 bytes, which should allow at least a couple of fixup instructions per argument. */ #define TCG_MAX_OP_SIZE 128 #define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM) extern target_ulong gen_opc_pc[OPC_BUF_SIZE]; extern target_ulong gen_opc_npc[OPC_BUF_SIZE]; extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE]; extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE]; extern uint16_t gen_opc_icount[OPC_BUF_SIZE]; extern target_ulong gen_opc_jump_pc[2]; extern uint32_t gen_opc_hflags[OPC_BUF_SIZE]; typedef void (GenOpFunc)(void); typedef void (GenOpFunc1)(long); typedef void (GenOpFunc2)(long, long); typedef void (GenOpFunc3)(long, long, long); #include "qemu-log.h" void gen_intermediate_code(CPUState *env, struct TranslationBlock *tb); void gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb); void gen_pc_load(CPUState *env, struct TranslationBlock *tb, unsigned long searched_pc, int pc_pos, void *puc); unsigned long code_gen_max_block_size(void); void cpu_gen_init(void); int cpu_gen_code(CPUState *env, struct TranslationBlock *tb, int *gen_code_size_ptr); int cpu_restore_state(struct TranslationBlock *tb, CPUState *env, unsigned long searched_pc, void *puc); int cpu_restore_state_copy(struct TranslationBlock *tb, CPUState *env, unsigned long searched_pc, void *puc); void cpu_resume_from_signal(CPUState *env1, void *puc); void cpu_io_recompile(CPUState *env, void *retaddr); TranslationBlock *tb_gen_code(CPUState *env, target_ulong pc, target_ulong cs_base, int flags, int cflags); void cpu_exec_init(CPUState *env); int page_unprotect(target_ulong address, unsigned long pc, void *puc); void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end, int is_cpu_write_access); void tb_invalidate_page_range(target_ulong start, target_ulong end); void tlb_flush_page(CPUState *env, target_ulong addr); void tlb_flush(CPUState *env, int flush_global); int tlb_set_page_exec(CPUState *env, target_ulong vaddr, target_phys_addr_t paddr, int prot, int mmu_idx, int is_softmmu); static inline int tlb_set_page(CPUState *env1, target_ulong vaddr, target_phys_addr_t paddr, int prot, int mmu_idx, int is_softmmu) { if (prot & PAGE_READ) prot |= PAGE_EXEC; return tlb_set_page_exec(env1, vaddr, paddr, prot, mmu_idx, is_softmmu); } #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */ #define CODE_GEN_PHYS_HASH_BITS 15 #define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS) #define MIN_CODE_GEN_BUFFER_SIZE (1024 * 1024) /* estimated block size for TB allocation */ /* XXX: use a per code average code fragment size and modulate it according to the host CPU */ #if defined(CONFIG_SOFTMMU) #define CODE_GEN_AVG_BLOCK_SIZE 128 #else #define CODE_GEN_AVG_BLOCK_SIZE 64 #endif #if defined(__powerpc__) || defined(__x86_64__) || defined(__arm__) #define USE_DIRECT_JUMP #endif #if defined(__i386__) && !defined(_WIN32) #define USE_DIRECT_JUMP #endif #ifdef VBOX /* bird: not safe in next step because of threading & cpu_interrupt. */ #undef USE_DIRECT_JUMP #endif /* VBOX */ struct TranslationBlock { target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */ target_ulong cs_base; /* CS base for this block */ uint64_t flags; /* flags defining in which context the code was generated */ uint16_t size; /* size of target code for this block (1 <= size <= TARGET_PAGE_SIZE) */ uint16_t cflags; /* compile flags */ #define CF_COUNT_MASK 0x7fff #define CF_LAST_IO 0x8000 /* Last insn may be an IO access. */ #ifdef VBOX #define CF_RAW_MODE 0x0010 /* block was generated in raw mode */ #endif uint8_t *tc_ptr; /* pointer to the translated code */ /* next matching tb for physical address. */ struct TranslationBlock *phys_hash_next; /* first and second physical page containing code. The lower bit of the pointer tells the index in page_next[] */ struct TranslationBlock *page_next[2]; target_ulong page_addr[2]; /* the following data are used to directly call another TB from the code of this one. */ uint16_t tb_next_offset[2]; /* offset of original jump target */ #ifdef USE_DIRECT_JUMP uint16_t tb_jmp_offset[4]; /* offset of jump instruction */ #else unsigned long tb_next[2]; /* address of jump generated code */ #endif /* list of TBs jumping to this one. This is a circular list using the two least significant bits of the pointers to tell what is the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 = jmp_first */ struct TranslationBlock *jmp_next[2]; struct TranslationBlock *jmp_first; uint32_t icount; }; static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc) { target_ulong tmp; tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)); return (tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK; } static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc) { target_ulong tmp; tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)); return (((tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK) | (tmp & TB_JMP_ADDR_MASK)); } static inline unsigned int tb_phys_hash_func(unsigned long pc) { return pc & (CODE_GEN_PHYS_HASH_SIZE - 1); } TranslationBlock *tb_alloc(target_ulong pc); void tb_free(TranslationBlock *tb); void tb_flush(CPUState *env); void tb_link_phys(TranslationBlock *tb, target_ulong phys_pc, target_ulong phys_page2); void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr); extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE]; extern uint8_t *code_gen_ptr; extern int code_gen_max_blocks; #if defined(USE_DIRECT_JUMP) #if defined(__powerpc__) extern void ppc_tb_set_jmp_target(unsigned long jmp_addr, unsigned long addr); #define tb_set_jmp_target1 ppc_tb_set_jmp_target #elif defined(__i386__) || defined(__x86_64__) static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr) { /* patch the branch destination */ *(uint32_t *)jmp_addr = addr - (jmp_addr + 4); /* no need to flush icache explicitly */ } #elif defined(__arm__) static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr) { register unsigned long _beg __asm ("a1"); register unsigned long _end __asm ("a2"); register unsigned long _flg __asm ("a3"); /* we could use a ldr pc, [pc, #-4] kind of branch and avoid the flush */ *(uint32_t *)jmp_addr |= ((addr - (jmp_addr + 8)) >> 2) & 0xffffff; /* flush icache */ _beg = jmp_addr; _end = jmp_addr + 4; _flg = 0; __asm __volatile__ ("swi 0x9f0002" : : "r" (_beg), "r" (_end), "r" (_flg)); } #endif static inline void tb_set_jmp_target(TranslationBlock *tb, int n, unsigned long addr) { unsigned long offset; offset = tb->tb_jmp_offset[n]; tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr); offset = tb->tb_jmp_offset[n + 2]; if (offset != 0xffff) tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr); } #else /* set the jump target */ static inline void tb_set_jmp_target(TranslationBlock *tb, int n, unsigned long addr) { tb->tb_next[n] = addr; } #endif static inline void tb_add_jump(TranslationBlock *tb, int n, TranslationBlock *tb_next) { /* NOTE: this test is only needed for thread safety */ if (!tb->jmp_next[n]) { /* patch the native jump address */ tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr); /* add in TB jmp circular list */ tb->jmp_next[n] = tb_next->jmp_first; tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n)); } } TranslationBlock *tb_find_pc(unsigned long pc_ptr); #if defined(_WIN32) #define ASM_DATA_SECTION ".section \".data\"\n" #define ASM_PREVIOUS_SECTION ".section .text\n" #elif defined(__APPLE__) #define ASM_DATA_SECTION ".data\n" #define ASM_PREVIOUS_SECTION ".text\n" #else #define ASM_DATA_SECTION ".section \".data\"\n" #define ASM_PREVIOUS_SECTION ".previous\n" #endif #define ASM_OP_LABEL_NAME(n, opname) \ ASM_NAME(__op_label) #n "." ASM_NAME(opname) extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4]; extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4]; extern void *io_mem_opaque[IO_MEM_NB_ENTRIES]; #include "qemu-lock.h" extern spinlock_t tb_lock; extern int tb_invalidated_flag; #if !defined(CONFIG_USER_ONLY) void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr); #include "softmmu_defs.h" #define ACCESS_TYPE (NB_MMU_MODES + 1) #define MEMSUFFIX _code #define env cpu_single_env #define DATA_SIZE 1 #include "softmmu_header.h" #define DATA_SIZE 2 #include "softmmu_header.h" #define DATA_SIZE 4 #include "softmmu_header.h" #define DATA_SIZE 8 #include "softmmu_header.h" #undef ACCESS_TYPE #undef MEMSUFFIX #undef env #endif #if defined(CONFIG_USER_ONLY) static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr) { return addr; } #else # ifdef VBOX target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry, target_phys_addr_t ioTLBEntry); # endif /* NOTE: this function can trigger an exception */ /* NOTE2: the returned address is not exactly the physical address: it is the offset relative to phys_ram_base */ static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr) { int mmu_idx, page_index, pd; page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); mmu_idx = cpu_mmu_index(env1); if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code != (addr & TARGET_PAGE_MASK))) { ldub_code(addr); } pd = env1->tlb_table[mmu_idx][page_index].addr_code & ~TARGET_PAGE_MASK; if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) { # ifdef VBOX /* deal with non-MMIO access handlers. */ return remR3PhysGetPhysicalAddressCode(env1, addr, &env1->tlb_table[mmu_idx][page_index], env1->iotlb[mmu_idx][page_index]); # elif defined(TARGET_SPARC) || defined(TARGET_MIPS) do_unassigned_access(addr, 0, 1, 0, 4); #else cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr); #endif } # if defined(VBOX) && defined(REM_PHYS_ADDR_IN_TLB) return addr + env1->tlb_table[mmu_idx][page_index].addend; # elif defined(VBOX) Assert(env1->phys_addends[mmu_idx][page_index] != -1); return addr + env1->phys_addends[mmu_idx][page_index]; # else return addr + env1->tlb_table[mmu_idx][page_index].addend - (unsigned long)phys_ram_base; # endif } /* Deterministic execution requires that IO only be performed on the last instruction of a TB so that interrupts take effect immediately. */ static inline int can_do_io(CPUState *env) { if (!use_icount) return 1; /* If not executing code then assume we are ok. */ if (!env->current_tb) return 1; return env->can_do_io != 0; } #endif #ifdef USE_KQEMU #define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG)) #define MSR_QPI_COMMBASE 0xfabe0010 int kqemu_init(CPUState *env); int kqemu_cpu_exec(CPUState *env); void kqemu_flush_page(CPUState *env, target_ulong addr); void kqemu_flush(CPUState *env, int global); void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr); void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr); void kqemu_set_phys_mem(uint64_t start_addr, ram_addr_t size, ram_addr_t phys_offset); void kqemu_cpu_interrupt(CPUState *env); void kqemu_record_dump(void); extern uint32_t kqemu_comm_base; static inline int kqemu_is_ok(CPUState *env) { return(env->kqemu_enabled && (env->cr[0] & CR0_PE_MASK) && !(env->hflags & HF_INHIBIT_IRQ_MASK) && (env->eflags & IF_MASK) && !(env->eflags & VM_MASK) && (env->kqemu_enabled == 2 || ((env->hflags & HF_CPL_MASK) == 3 && (env->eflags & IOPL_MASK) != IOPL_MASK))); } #endif