/*
* internal execution defines for qemu
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see .
*/
/*
* Oracle LGPL Disclaimer: For the avoidance of doubt, except that if any license choice
* other than GPL or LGPL is available it will apply instead, Oracle elects to use only
* the Lesser General Public License version 2.1 (LGPLv2) at this time for any software where
* a choice of LGPL license versions is made available with the language indicating
* that LGPLv2 or any later version may be used, or where a choice of which version
* of the LGPL is applied is otherwise unspecified.
*/
#ifndef _EXEC_ALL_H_
#define _EXEC_ALL_H_
#include "qemu-common.h"
/* allow to see translation results - the slowdown should be negligible, so we leave it */
#ifndef VBOX
#define DEBUG_DISAS
#endif
#ifdef VBOX
# include
# include /* PGM_DYNAMIC_RAM_ALLOC */
# ifndef LOG_GROUP
# define LOG_GROUP LOG_GROUP_REM
# endif
# include
# include "REMInternal.h"
# include
#endif /* VBOX */
/* is_jmp field values */
#define DISAS_NEXT 0 /* next instruction can be analyzed */
#define DISAS_JUMP 1 /* only pc was modified dynamically */
#define DISAS_UPDATE 2 /* cpu state was modified dynamically */
#define DISAS_TB_JUMP 3 /* only pc was modified statically */
typedef struct TranslationBlock TranslationBlock;
/* XXX: make safe guess about sizes */
#define MAX_OP_PER_INSTR 96
/* A Call op needs up to 6 + 2N parameters (N = number of arguments). */
#define MAX_OPC_PARAM 10
#define OPC_BUF_SIZE 512
#define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
/* Maximum size a TCG op can expand to. This is complicated because a
single op may require several host instructions and regirster reloads.
For now take a wild guess at 128 bytes, which should allow at least
a couple of fixup instructions per argument. */
#define TCG_MAX_OP_SIZE 128
#define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM)
extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
extern uint16_t gen_opc_icount[OPC_BUF_SIZE];
extern target_ulong gen_opc_jump_pc[2];
extern uint32_t gen_opc_hflags[OPC_BUF_SIZE];
#include "qemu-log.h"
void gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
void gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
void gen_pc_load(CPUState *env, struct TranslationBlock *tb,
unsigned long searched_pc, int pc_pos, void *puc);
unsigned long code_gen_max_block_size(void);
void cpu_gen_init(void);
int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
int *gen_code_size_ptr);
int cpu_restore_state(struct TranslationBlock *tb,
CPUState *env, unsigned long searched_pc,
void *puc);
int cpu_restore_state_copy(struct TranslationBlock *tb,
CPUState *env, unsigned long searched_pc,
void *puc);
void cpu_resume_from_signal(CPUState *env1, void *puc);
void cpu_io_recompile(CPUState *env, void *retaddr);
TranslationBlock *tb_gen_code(CPUState *env,
target_ulong pc, target_ulong cs_base, int flags,
int cflags);
void cpu_exec_init(CPUState *env);
void QEMU_NORETURN cpu_loop_exit(void);
int page_unprotect(target_ulong address, unsigned long pc, void *puc);
void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
int is_cpu_write_access);
void tb_invalidate_page_range(target_ulong start, target_ulong end);
void tlb_flush_page(CPUState *env, target_ulong addr);
void tlb_flush(CPUState *env, int flush_global);
int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
target_phys_addr_t paddr, int prot,
int mmu_idx, int is_softmmu);
static inline int tlb_set_page(CPUState *env1, target_ulong vaddr,
target_phys_addr_t paddr, int prot,
int mmu_idx, int is_softmmu)
{
if (prot & PAGE_READ)
prot |= PAGE_EXEC;
return tlb_set_page_exec(env1, vaddr, paddr, prot, mmu_idx, is_softmmu);
}
#define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
#define CODE_GEN_PHYS_HASH_BITS 15
#define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS)
#define MIN_CODE_GEN_BUFFER_SIZE (1024 * 1024)
/* estimated block size for TB allocation */
/* XXX: use a per code average code fragment size and modulate it
according to the host CPU */
#if defined(CONFIG_SOFTMMU)
#define CODE_GEN_AVG_BLOCK_SIZE 128
#else
#define CODE_GEN_AVG_BLOCK_SIZE 64
#endif
#if defined(_ARCH_PPC) || defined(__x86_64__) || defined(__arm__)
#define USE_DIRECT_JUMP
#endif
#if defined(__i386__) && !defined(_WIN32)
#define USE_DIRECT_JUMP
#endif
#ifdef VBOX /* bird: not safe in next step because of threading & cpu_interrupt. */
#undef USE_DIRECT_JUMP
#endif /* VBOX */
struct TranslationBlock {
target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */
target_ulong cs_base; /* CS base for this block */
uint64_t flags; /* flags defining in which context the code was generated */
uint16_t size; /* size of target code for this block (1 <=
size <= TARGET_PAGE_SIZE) */
uint16_t cflags; /* compile flags */
#define CF_COUNT_MASK 0x7fff
#define CF_LAST_IO 0x8000 /* Last insn may be an IO access. */
#ifdef VBOX
#define CF_RAW_MODE 0x0010 /* block was generated in raw mode */
#endif
uint8_t *tc_ptr; /* pointer to the translated code */
/* next matching tb for physical address. */
struct TranslationBlock *phys_hash_next;
/* first and second physical page containing code. The lower bit
of the pointer tells the index in page_next[] */
struct TranslationBlock *page_next[2];
target_ulong page_addr[2];
/* the following data are used to directly call another TB from
the code of this one. */
uint16_t tb_next_offset[2]; /* offset of original jump target */
#ifdef USE_DIRECT_JUMP
uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
#else
unsigned long tb_next[2]; /* address of jump generated code */
#endif
/* list of TBs jumping to this one. This is a circular list using
the two least significant bits of the pointers to tell what is
the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
jmp_first */
struct TranslationBlock *jmp_next[2];
struct TranslationBlock *jmp_first;
uint32_t icount;
};
static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
{
target_ulong tmp;
tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
return (tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK;
}
static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
{
target_ulong tmp;
tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
return (((tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK)
| (tmp & TB_JMP_ADDR_MASK));
}
static inline unsigned int tb_phys_hash_func(unsigned long pc)
{
return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
}
TranslationBlock *tb_alloc(target_ulong pc);
void tb_free(TranslationBlock *tb);
void tb_flush(CPUState *env);
void tb_link_phys(TranslationBlock *tb,
target_ulong phys_pc, target_ulong phys_page2);
void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr);
extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
extern uint8_t *code_gen_ptr;
extern int code_gen_max_blocks;
#if defined(USE_DIRECT_JUMP)
#if defined(_ARCH_PPC)
extern void ppc_tb_set_jmp_target(unsigned long jmp_addr, unsigned long addr);
#define tb_set_jmp_target1 ppc_tb_set_jmp_target
#elif defined(__i386__) || defined(__x86_64__)
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
{
/* patch the branch destination */
*(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
/* no need to flush icache explicitly */
}
#elif defined(__arm__)
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
{
#if QEMU_GNUC_PREREQ(4, 1)
void __clear_cache(char *beg, char *end);
#else
register unsigned long _beg __asm ("a1");
register unsigned long _end __asm ("a2");
register unsigned long _flg __asm ("a3");
#endif
/* we could use a ldr pc, [pc, #-4] kind of branch and avoid the flush */
*(uint32_t *)jmp_addr =
(*(uint32_t *)jmp_addr & ~0xffffff)
| (((addr - (jmp_addr + 8)) >> 2) & 0xffffff);
#if QEMU_GNUC_PREREQ(4, 1)
__clear_cache((char *) jmp_addr, (char *) jmp_addr + 4);
#else
/* flush icache */
_beg = jmp_addr;
_end = jmp_addr + 4;
_flg = 0;
__asm __volatile__ ("swi 0x9f0002" : : "r" (_beg), "r" (_end), "r" (_flg));
#endif
}
#endif
static inline void tb_set_jmp_target(TranslationBlock *tb,
int n, unsigned long addr)
{
unsigned long offset;
offset = tb->tb_jmp_offset[n];
tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
offset = tb->tb_jmp_offset[n + 2];
if (offset != 0xffff)
tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
}
#else
/* set the jump target */
static inline void tb_set_jmp_target(TranslationBlock *tb,
int n, unsigned long addr)
{
tb->tb_next[n] = addr;
}
#endif
static inline void tb_add_jump(TranslationBlock *tb, int n,
TranslationBlock *tb_next)
{
/* NOTE: this test is only needed for thread safety */
if (!tb->jmp_next[n]) {
/* patch the native jump address */
tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
/* add in TB jmp circular list */
tb->jmp_next[n] = tb_next->jmp_first;
tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
}
}
TranslationBlock *tb_find_pc(unsigned long pc_ptr);
extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
#include "qemu-lock.h"
extern spinlock_t tb_lock;
extern int tb_invalidated_flag;
#if !defined(CONFIG_USER_ONLY)
void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
void *retaddr);
#include "softmmu_defs.h"
#define ACCESS_TYPE (NB_MMU_MODES + 1)
#define MEMSUFFIX _code
#define env cpu_single_env
#define DATA_SIZE 1
#include "softmmu_header.h"
#define DATA_SIZE 2
#include "softmmu_header.h"
#define DATA_SIZE 4
#include "softmmu_header.h"
#define DATA_SIZE 8
#include "softmmu_header.h"
#undef ACCESS_TYPE
#undef MEMSUFFIX
#undef env
#endif
#if defined(CONFIG_USER_ONLY)
static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr)
{
return addr;
}
#else
# ifdef VBOX
target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry, target_phys_addr_t ioTLBEntry);
# endif
/* NOTE: this function can trigger an exception */
/* NOTE2: the returned address is not exactly the physical address: it
is the offset relative to phys_ram_base */
static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr)
{
int mmu_idx, page_index, pd;
void *p;
page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
mmu_idx = cpu_mmu_index(env1);
if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
(addr & TARGET_PAGE_MASK))) {
ldub_code(addr);
}
pd = env1->tlb_table[mmu_idx][page_index].addr_code & ~TARGET_PAGE_MASK;
if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
# ifdef VBOX
/* deal with non-MMIO access handlers. */
return remR3PhysGetPhysicalAddressCode(env1, addr,
&env1->tlb_table[mmu_idx][page_index],
env1->iotlb[mmu_idx][page_index]);
# elif defined(TARGET_SPARC) || defined(TARGET_MIPS)
do_unassigned_access(addr, 0, 1, 0, 4);
#else
cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
#endif
}
# if defined(VBOX) && defined(REM_PHYS_ADDR_IN_TLB)
return addr + env1->tlb_table[mmu_idx][page_index].addend;
# elif defined(VBOX)
Assert(env1->phys_addends[mmu_idx][page_index] != -1);
return addr + env1->phys_addends[mmu_idx][page_index];
# else
p = (void *)(unsigned long)addr
+ env1->tlb_table[mmu_idx][page_index].addend;
return qemu_ram_addr_from_host(p);
# endif
}
/* Deterministic execution requires that IO only be performed on the last
instruction of a TB so that interrupts take effect immediately. */
static inline int can_do_io(CPUState *env)
{
if (!use_icount)
return 1;
/* If not executing code then assume we are ok. */
if (!env->current_tb)
return 1;
return env->can_do_io != 0;
}
#endif
#ifdef CONFIG_KQEMU
#define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))
#define MSR_QPI_COMMBASE 0xfabe0010
int kqemu_init(CPUState *env);
int kqemu_cpu_exec(CPUState *env);
void kqemu_flush_page(CPUState *env, target_ulong addr);
void kqemu_flush(CPUState *env, int global);
void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr);
void kqemu_set_phys_mem(uint64_t start_addr, ram_addr_t size,
ram_addr_t phys_offset);
void kqemu_cpu_interrupt(CPUState *env);
void kqemu_record_dump(void);
extern uint32_t kqemu_comm_base;
extern ram_addr_t kqemu_phys_ram_size;
extern uint8_t *kqemu_phys_ram_base;
static inline int kqemu_is_ok(CPUState *env)
{
return(env->kqemu_enabled &&
(env->cr[0] & CR0_PE_MASK) &&
!(env->hflags & HF_INHIBIT_IRQ_MASK) &&
(env->eflags & IF_MASK) &&
!(env->eflags & VM_MASK) &&
(env->kqemu_enabled == 2 ||
((env->hflags & HF_CPL_MASK) == 3 &&
(env->eflags & IOPL_MASK) != IOPL_MASK)));
}
#endif
typedef void (CPUDebugExcpHandler)(CPUState *env);
CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler);
/* vl.c */
#ifndef VBOX
extern int singlestep;
#endif
#endif