1 | /*
|
---|
2 | * virtual page mapping and translated block handling
|
---|
3 | *
|
---|
4 | * Copyright (c) 2003 Fabrice Bellard
|
---|
5 | *
|
---|
6 | * This library is free software; you can redistribute it and/or
|
---|
7 | * modify it under the terms of the GNU Lesser General Public
|
---|
8 | * License as published by the Free Software Foundation; either
|
---|
9 | * version 2 of the License, or (at your option) any later version.
|
---|
10 | *
|
---|
11 | * This library is distributed in the hope that it will be useful,
|
---|
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
14 | * Lesser General Public License for more details.
|
---|
15 | *
|
---|
16 | * You should have received a copy of the GNU Lesser General Public
|
---|
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
---|
18 | */
|
---|
19 |
|
---|
20 | /*
|
---|
21 | * Oracle LGPL Disclaimer: For the avoidance of doubt, except that if any license choice
|
---|
22 | * other than GPL or LGPL is available it will apply instead, Oracle elects to use only
|
---|
23 | * the Lesser General Public License version 2.1 (LGPLv2) at this time for any software where
|
---|
24 | * a choice of LGPL license versions is made available with the language indicating
|
---|
25 | * that LGPLv2 or any later version may be used, or where a choice of which version
|
---|
26 | * of the LGPL is applied is otherwise unspecified.
|
---|
27 | */
|
---|
28 |
|
---|
29 | #include "config.h"
|
---|
30 | #ifndef VBOX
|
---|
31 | #ifdef _WIN32
|
---|
32 | #include <windows.h>
|
---|
33 | #else
|
---|
34 | #include <sys/types.h>
|
---|
35 | #include <sys/mman.h>
|
---|
36 | #endif
|
---|
37 | #include <stdlib.h>
|
---|
38 | #include <stdio.h>
|
---|
39 | #include <stdarg.h>
|
---|
40 | #include <string.h>
|
---|
41 | #include <errno.h>
|
---|
42 | #include <unistd.h>
|
---|
43 | #include <inttypes.h>
|
---|
44 | #else /* VBOX */
|
---|
45 | # include <stdlib.h>
|
---|
46 | # include <stdio.h>
|
---|
47 | # include <iprt/alloc.h>
|
---|
48 | # include <iprt/string.h>
|
---|
49 | # include <iprt/param.h>
|
---|
50 | # include <VBox/vmm/pgm.h> /* PGM_DYNAMIC_RAM_ALLOC */
|
---|
51 | #endif /* VBOX */
|
---|
52 |
|
---|
53 | #include "cpu.h"
|
---|
54 | #include "exec-all.h"
|
---|
55 | #include "qemu-common.h"
|
---|
56 | #include "tcg.h"
|
---|
57 | #ifndef VBOX
|
---|
58 | #include "hw/hw.h"
|
---|
59 | #endif
|
---|
60 | #include "osdep.h"
|
---|
61 | #include "kvm.h"
|
---|
62 | #if defined(CONFIG_USER_ONLY)
|
---|
63 | #include <qemu.h>
|
---|
64 | #endif
|
---|
65 |
|
---|
66 | //#define DEBUG_TB_INVALIDATE
|
---|
67 | //#define DEBUG_FLUSH
|
---|
68 | //#define DEBUG_TLB
|
---|
69 | //#define DEBUG_UNASSIGNED
|
---|
70 |
|
---|
71 | /* make various TB consistency checks */
|
---|
72 | //#define DEBUG_TB_CHECK
|
---|
73 | //#define DEBUG_TLB_CHECK
|
---|
74 |
|
---|
75 | //#define DEBUG_IOPORT
|
---|
76 | //#define DEBUG_SUBPAGE
|
---|
77 |
|
---|
78 | #if !defined(CONFIG_USER_ONLY)
|
---|
79 | /* TB consistency checks only implemented for usermode emulation. */
|
---|
80 | #undef DEBUG_TB_CHECK
|
---|
81 | #endif
|
---|
82 |
|
---|
83 | #define SMC_BITMAP_USE_THRESHOLD 10
|
---|
84 |
|
---|
85 | #if defined(TARGET_SPARC64)
|
---|
86 | #define TARGET_PHYS_ADDR_SPACE_BITS 41
|
---|
87 | #elif defined(TARGET_SPARC)
|
---|
88 | #define TARGET_PHYS_ADDR_SPACE_BITS 36
|
---|
89 | #elif defined(TARGET_ALPHA)
|
---|
90 | #define TARGET_PHYS_ADDR_SPACE_BITS 42
|
---|
91 | #define TARGET_VIRT_ADDR_SPACE_BITS 42
|
---|
92 | #elif defined(TARGET_PPC64)
|
---|
93 | #define TARGET_PHYS_ADDR_SPACE_BITS 42
|
---|
94 | #elif defined(TARGET_X86_64) && !defined(CONFIG_KQEMU)
|
---|
95 | #define TARGET_PHYS_ADDR_SPACE_BITS 42
|
---|
96 | #elif defined(TARGET_I386) && !defined(CONFIG_KQEMU)
|
---|
97 | #define TARGET_PHYS_ADDR_SPACE_BITS 36
|
---|
98 | #else
|
---|
99 | /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
|
---|
100 | #define TARGET_PHYS_ADDR_SPACE_BITS 32
|
---|
101 | #endif
|
---|
102 |
|
---|
103 | static TranslationBlock *tbs;
|
---|
104 | int code_gen_max_blocks;
|
---|
105 | TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
|
---|
106 | static int nb_tbs;
|
---|
107 | /* any access to the tbs or the page table must use this lock */
|
---|
108 | spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
|
---|
109 |
|
---|
110 | #ifndef VBOX
|
---|
111 | #if defined(__arm__) || defined(__sparc_v9__)
|
---|
112 | /* The prologue must be reachable with a direct jump. ARM and Sparc64
|
---|
113 | have limited branch ranges (possibly also PPC) so place it in a
|
---|
114 | section close to code segment. */
|
---|
115 | #define code_gen_section \
|
---|
116 | __attribute__((__section__(".gen_code"))) \
|
---|
117 | __attribute__((aligned (32)))
|
---|
118 | #elif defined(_WIN32)
|
---|
119 | /* Maximum alignment for Win32 is 16. */
|
---|
120 | #define code_gen_section \
|
---|
121 | __attribute__((aligned (16)))
|
---|
122 | #else
|
---|
123 | #define code_gen_section \
|
---|
124 | __attribute__((aligned (32)))
|
---|
125 | #endif
|
---|
126 |
|
---|
127 | uint8_t code_gen_prologue[1024] code_gen_section;
|
---|
128 | #else /* VBOX */
|
---|
129 | extern uint8_t* code_gen_prologue;
|
---|
130 | #endif /* VBOX */
|
---|
131 | static uint8_t *code_gen_buffer;
|
---|
132 | static unsigned long code_gen_buffer_size;
|
---|
133 | /* threshold to flush the translated code buffer */
|
---|
134 | static unsigned long code_gen_buffer_max_size;
|
---|
135 | uint8_t *code_gen_ptr;
|
---|
136 |
|
---|
137 | #ifndef VBOX
|
---|
138 | #if !defined(CONFIG_USER_ONLY)
|
---|
139 | int phys_ram_fd;
|
---|
140 | uint8_t *phys_ram_dirty;
|
---|
141 | static int in_migration;
|
---|
142 |
|
---|
143 | typedef struct RAMBlock {
|
---|
144 | uint8_t *host;
|
---|
145 | ram_addr_t offset;
|
---|
146 | ram_addr_t length;
|
---|
147 | struct RAMBlock *next;
|
---|
148 | } RAMBlock;
|
---|
149 |
|
---|
150 | static RAMBlock *ram_blocks;
|
---|
151 | /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
|
---|
152 | then we can no longer assume contiguous ram offsets, and external uses
|
---|
153 | of this variable will break. */
|
---|
154 | ram_addr_t last_ram_offset;
|
---|
155 | #endif
|
---|
156 | #else /* VBOX */
|
---|
157 | /* we have memory ranges (the high PC-BIOS mapping) which
|
---|
158 | causes some pages to fall outside the dirty map here. */
|
---|
159 | RTGCPHYS phys_ram_dirty_size;
|
---|
160 | uint8_t *phys_ram_dirty;
|
---|
161 | #endif /* VBOX */
|
---|
162 |
|
---|
163 | CPUState *first_cpu;
|
---|
164 | /* current CPU in the current thread. It is only valid inside
|
---|
165 | cpu_exec() */
|
---|
166 | CPUState *cpu_single_env;
|
---|
167 | /* 0 = Do not count executed instructions.
|
---|
168 | 1 = Precise instruction counting.
|
---|
169 | 2 = Adaptive rate instruction counting. */
|
---|
170 | int use_icount = 0;
|
---|
171 | /* Current instruction counter. While executing translated code this may
|
---|
172 | include some instructions that have not yet been executed. */
|
---|
173 | int64_t qemu_icount;
|
---|
174 |
|
---|
175 | typedef struct PageDesc {
|
---|
176 | /* list of TBs intersecting this ram page */
|
---|
177 | TranslationBlock *first_tb;
|
---|
178 | /* in order to optimize self modifying code, we count the number
|
---|
179 | of lookups we do to a given page to use a bitmap */
|
---|
180 | unsigned int code_write_count;
|
---|
181 | uint8_t *code_bitmap;
|
---|
182 | #if defined(CONFIG_USER_ONLY)
|
---|
183 | unsigned long flags;
|
---|
184 | #endif
|
---|
185 | } PageDesc;
|
---|
186 |
|
---|
187 | typedef struct PhysPageDesc {
|
---|
188 | /* offset in host memory of the page + io_index in the low bits */
|
---|
189 | ram_addr_t phys_offset;
|
---|
190 | ram_addr_t region_offset;
|
---|
191 | } PhysPageDesc;
|
---|
192 |
|
---|
193 | #define L2_BITS 10
|
---|
194 | #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
|
---|
195 | /* XXX: this is a temporary hack for alpha target.
|
---|
196 | * In the future, this is to be replaced by a multi-level table
|
---|
197 | * to actually be able to handle the complete 64 bits address space.
|
---|
198 | */
|
---|
199 | #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
|
---|
200 | #else
|
---|
201 | #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
|
---|
202 | #endif
|
---|
203 | #ifdef VBOX
|
---|
204 | #define L0_BITS (TARGET_PHYS_ADDR_SPACE_BITS - 32)
|
---|
205 | #endif
|
---|
206 |
|
---|
207 | #ifdef VBOX
|
---|
208 | #define L0_SIZE (1 << L0_BITS)
|
---|
209 | #endif
|
---|
210 | #define L1_SIZE (1 << L1_BITS)
|
---|
211 | #define L2_SIZE (1 << L2_BITS)
|
---|
212 |
|
---|
213 | unsigned long qemu_real_host_page_size;
|
---|
214 | unsigned long qemu_host_page_bits;
|
---|
215 | unsigned long qemu_host_page_size;
|
---|
216 | unsigned long qemu_host_page_mask;
|
---|
217 |
|
---|
218 | /* XXX: for system emulation, it could just be an array */
|
---|
219 | #ifndef VBOX
|
---|
220 | static PageDesc *l1_map[L1_SIZE];
|
---|
221 | static PhysPageDesc **l1_phys_map;
|
---|
222 | #else
|
---|
223 | static unsigned l0_map_max_used = 0;
|
---|
224 | static PageDesc **l0_map[L0_SIZE];
|
---|
225 | static void **l0_phys_map[L0_SIZE];
|
---|
226 | #endif
|
---|
227 |
|
---|
228 | #if !defined(CONFIG_USER_ONLY)
|
---|
229 | static void io_mem_init(void);
|
---|
230 |
|
---|
231 | /* io memory support */
|
---|
232 | CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
|
---|
233 | CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
|
---|
234 | void *io_mem_opaque[IO_MEM_NB_ENTRIES];
|
---|
235 | static char io_mem_used[IO_MEM_NB_ENTRIES];
|
---|
236 | static int io_mem_watch;
|
---|
237 | #endif
|
---|
238 |
|
---|
239 | #ifndef VBOX
|
---|
240 | /* log support */
|
---|
241 | static const char *logfilename = "/tmp/qemu.log";
|
---|
242 | #endif /* !VBOX */
|
---|
243 | FILE *logfile;
|
---|
244 | int loglevel;
|
---|
245 | #ifndef VBOX
|
---|
246 | static int log_append = 0;
|
---|
247 | #endif
|
---|
248 |
|
---|
249 | /* statistics */
|
---|
250 | #ifndef VBOX
|
---|
251 | static int tlb_flush_count;
|
---|
252 | static int tb_flush_count;
|
---|
253 | static int tb_phys_invalidate_count;
|
---|
254 | #else /* VBOX - Resettable U32 stats, see VBoxRecompiler.c. */
|
---|
255 | uint32_t tlb_flush_count;
|
---|
256 | uint32_t tb_flush_count;
|
---|
257 | uint32_t tb_phys_invalidate_count;
|
---|
258 | #endif /* VBOX */
|
---|
259 |
|
---|
260 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
|
---|
261 | typedef struct subpage_t {
|
---|
262 | target_phys_addr_t base;
|
---|
263 | CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
|
---|
264 | CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
|
---|
265 | void *opaque[TARGET_PAGE_SIZE][2][4];
|
---|
266 | ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
|
---|
267 | } subpage_t;
|
---|
268 |
|
---|
269 | #ifndef VBOX
|
---|
270 | #ifdef _WIN32
|
---|
271 | static void map_exec(void *addr, long size)
|
---|
272 | {
|
---|
273 | DWORD old_protect;
|
---|
274 | VirtualProtect(addr, size,
|
---|
275 | PAGE_EXECUTE_READWRITE, &old_protect);
|
---|
276 |
|
---|
277 | }
|
---|
278 | #else
|
---|
279 | static void map_exec(void *addr, long size)
|
---|
280 | {
|
---|
281 | unsigned long start, end, page_size;
|
---|
282 |
|
---|
283 | page_size = getpagesize();
|
---|
284 | start = (unsigned long)addr;
|
---|
285 | start &= ~(page_size - 1);
|
---|
286 |
|
---|
287 | end = (unsigned long)addr + size;
|
---|
288 | end += page_size - 1;
|
---|
289 | end &= ~(page_size - 1);
|
---|
290 |
|
---|
291 | mprotect((void *)start, end - start,
|
---|
292 | PROT_READ | PROT_WRITE | PROT_EXEC);
|
---|
293 | }
|
---|
294 | #endif
|
---|
295 | #else /* VBOX */
|
---|
296 | static void map_exec(void *addr, long size)
|
---|
297 | {
|
---|
298 | RTMemProtect(addr, size,
|
---|
299 | RTMEM_PROT_EXEC | RTMEM_PROT_READ | RTMEM_PROT_WRITE);
|
---|
300 | }
|
---|
301 | #endif /* VBOX */
|
---|
302 |
|
---|
303 | static void page_init(void)
|
---|
304 | {
|
---|
305 | /* NOTE: we can always suppose that qemu_host_page_size >=
|
---|
306 | TARGET_PAGE_SIZE */
|
---|
307 | #ifdef VBOX
|
---|
308 | RTMemProtect(code_gen_buffer, sizeof(code_gen_buffer),
|
---|
309 | RTMEM_PROT_EXEC | RTMEM_PROT_READ | RTMEM_PROT_WRITE);
|
---|
310 | qemu_real_host_page_size = PAGE_SIZE;
|
---|
311 | #else /* !VBOX */
|
---|
312 | #ifdef _WIN32
|
---|
313 | {
|
---|
314 | SYSTEM_INFO system_info;
|
---|
315 |
|
---|
316 | GetSystemInfo(&system_info);
|
---|
317 | qemu_real_host_page_size = system_info.dwPageSize;
|
---|
318 | }
|
---|
319 | #else
|
---|
320 | qemu_real_host_page_size = getpagesize();
|
---|
321 | #endif
|
---|
322 | #endif /* !VBOX */
|
---|
323 | if (qemu_host_page_size == 0)
|
---|
324 | qemu_host_page_size = qemu_real_host_page_size;
|
---|
325 | if (qemu_host_page_size < TARGET_PAGE_SIZE)
|
---|
326 | qemu_host_page_size = TARGET_PAGE_SIZE;
|
---|
327 | qemu_host_page_bits = 0;
|
---|
328 | #ifndef VBOX
|
---|
329 | while ((1 << qemu_host_page_bits) < qemu_host_page_size)
|
---|
330 | #else
|
---|
331 | while ((1 << qemu_host_page_bits) < (int)qemu_host_page_size)
|
---|
332 | #endif
|
---|
333 | qemu_host_page_bits++;
|
---|
334 | qemu_host_page_mask = ~(qemu_host_page_size - 1);
|
---|
335 | #ifndef VBOX
|
---|
336 | l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
|
---|
337 | memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
|
---|
338 | #endif
|
---|
339 |
|
---|
340 | #ifdef VBOX
|
---|
341 | /* We use other means to set reserved bit on our pages */
|
---|
342 | #else /* !VBOX */
|
---|
343 | #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
|
---|
344 | {
|
---|
345 | long long startaddr, endaddr;
|
---|
346 | FILE *f;
|
---|
347 | int n;
|
---|
348 |
|
---|
349 | mmap_lock();
|
---|
350 | last_brk = (unsigned long)sbrk(0);
|
---|
351 | f = fopen("/proc/self/maps", "r");
|
---|
352 | if (f) {
|
---|
353 | do {
|
---|
354 | n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
|
---|
355 | if (n == 2) {
|
---|
356 | startaddr = MIN(startaddr,
|
---|
357 | (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
|
---|
358 | endaddr = MIN(endaddr,
|
---|
359 | (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
|
---|
360 | page_set_flags(startaddr & TARGET_PAGE_MASK,
|
---|
361 | TARGET_PAGE_ALIGN(endaddr),
|
---|
362 | PAGE_RESERVED);
|
---|
363 | }
|
---|
364 | } while (!feof(f));
|
---|
365 | fclose(f);
|
---|
366 | }
|
---|
367 | mmap_unlock();
|
---|
368 | }
|
---|
369 | #endif
|
---|
370 | #endif /* !VBOX */
|
---|
371 | }
|
---|
372 |
|
---|
373 | static inline PageDesc **page_l1_map(target_ulong index)
|
---|
374 | {
|
---|
375 | #ifndef VBOX
|
---|
376 | #if TARGET_LONG_BITS > 32
|
---|
377 | /* Host memory outside guest VM. For 32-bit targets we have already
|
---|
378 | excluded high addresses. */
|
---|
379 | if (index > ((target_ulong)L2_SIZE * L1_SIZE))
|
---|
380 | return NULL;
|
---|
381 | #endif
|
---|
382 | return &l1_map[index >> L2_BITS];
|
---|
383 | #else /* VBOX */
|
---|
384 | PageDesc **l1_map;
|
---|
385 | AssertMsgReturn(index < (target_ulong)L2_SIZE * L1_SIZE * L0_SIZE,
|
---|
386 | ("index=%RGp >= %RGp; L1_SIZE=%#x L2_SIZE=%#x L0_SIZE=%#x\n",
|
---|
387 | (RTGCPHYS)index, (RTGCPHYS)L2_SIZE * L1_SIZE, L1_SIZE, L2_SIZE, L0_SIZE),
|
---|
388 | NULL);
|
---|
389 | l1_map = l0_map[index >> (L1_BITS + L2_BITS)];
|
---|
390 | if (RT_UNLIKELY(!l1_map))
|
---|
391 | {
|
---|
392 | unsigned i0 = index >> (L1_BITS + L2_BITS);
|
---|
393 | l0_map[i0] = l1_map = qemu_mallocz(sizeof(PageDesc *) * L1_SIZE);
|
---|
394 | if (RT_UNLIKELY(!l1_map))
|
---|
395 | return NULL;
|
---|
396 | if (i0 >= l0_map_max_used)
|
---|
397 | l0_map_max_used = i0 + 1;
|
---|
398 | }
|
---|
399 | return &l1_map[(index >> L2_BITS) & (L1_SIZE - 1)];
|
---|
400 | #endif /* VBOX */
|
---|
401 | }
|
---|
402 |
|
---|
403 | static inline PageDesc *page_find_alloc(target_ulong index)
|
---|
404 | {
|
---|
405 | PageDesc **lp, *p;
|
---|
406 | lp = page_l1_map(index);
|
---|
407 | if (!lp)
|
---|
408 | return NULL;
|
---|
409 |
|
---|
410 | p = *lp;
|
---|
411 | if (!p) {
|
---|
412 | /* allocate if not found */
|
---|
413 | #if defined(CONFIG_USER_ONLY)
|
---|
414 | size_t len = sizeof(PageDesc) * L2_SIZE;
|
---|
415 | /* Don't use qemu_malloc because it may recurse. */
|
---|
416 | p = mmap(NULL, len, PROT_READ | PROT_WRITE,
|
---|
417 | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
---|
418 | *lp = p;
|
---|
419 | if (h2g_valid(p)) {
|
---|
420 | unsigned long addr = h2g(p);
|
---|
421 | page_set_flags(addr & TARGET_PAGE_MASK,
|
---|
422 | TARGET_PAGE_ALIGN(addr + len),
|
---|
423 | PAGE_RESERVED);
|
---|
424 | }
|
---|
425 | #else
|
---|
426 | p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
|
---|
427 | *lp = p;
|
---|
428 | #endif
|
---|
429 | }
|
---|
430 | return p + (index & (L2_SIZE - 1));
|
---|
431 | }
|
---|
432 |
|
---|
433 | static inline PageDesc *page_find(target_ulong index)
|
---|
434 | {
|
---|
435 | PageDesc **lp, *p;
|
---|
436 | lp = page_l1_map(index);
|
---|
437 | if (!lp)
|
---|
438 | return NULL;
|
---|
439 |
|
---|
440 | p = *lp;
|
---|
441 | if (!p) {
|
---|
442 | return NULL;
|
---|
443 | }
|
---|
444 | return p + (index & (L2_SIZE - 1));
|
---|
445 | }
|
---|
446 |
|
---|
447 | static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
|
---|
448 | {
|
---|
449 | void **lp, **p;
|
---|
450 | PhysPageDesc *pd;
|
---|
451 |
|
---|
452 | #ifndef VBOX
|
---|
453 | p = (void **)l1_phys_map;
|
---|
454 | #if TARGET_PHYS_ADDR_SPACE_BITS > 32
|
---|
455 |
|
---|
456 | #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
|
---|
457 | #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
|
---|
458 | #endif
|
---|
459 | lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
|
---|
460 | p = *lp;
|
---|
461 | if (!p) {
|
---|
462 | /* allocate if not found */
|
---|
463 | if (!alloc)
|
---|
464 | return NULL;
|
---|
465 | p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
|
---|
466 | memset(p, 0, sizeof(void *) * L1_SIZE);
|
---|
467 | *lp = p;
|
---|
468 | }
|
---|
469 | #endif
|
---|
470 | #else /* VBOX */
|
---|
471 | /* level 0 lookup and lazy allocation of level 1 map. */
|
---|
472 | if (RT_UNLIKELY(index >= (target_phys_addr_t)L2_SIZE * L1_SIZE * L0_SIZE))
|
---|
473 | return NULL;
|
---|
474 | p = l0_phys_map[index >> (L1_BITS + L2_BITS)];
|
---|
475 | if (RT_UNLIKELY(!p)) {
|
---|
476 | if (!alloc)
|
---|
477 | return NULL;
|
---|
478 | p = qemu_vmalloc(sizeof(void **) * L1_SIZE);
|
---|
479 | memset(p, 0, sizeof(void **) * L1_SIZE);
|
---|
480 | l0_phys_map[index >> (L1_BITS + L2_BITS)] = p;
|
---|
481 | }
|
---|
482 |
|
---|
483 | /* level 1 lookup and lazy allocation of level 2 map. */
|
---|
484 | #endif /* VBOX */
|
---|
485 | lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
|
---|
486 | pd = *lp;
|
---|
487 | if (!pd) {
|
---|
488 | int i;
|
---|
489 | /* allocate if not found */
|
---|
490 | if (!alloc)
|
---|
491 | return NULL;
|
---|
492 | pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
|
---|
493 | *lp = pd;
|
---|
494 | for (i = 0; i < L2_SIZE; i++) {
|
---|
495 | pd[i].phys_offset = IO_MEM_UNASSIGNED;
|
---|
496 | pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
|
---|
497 | }
|
---|
498 | }
|
---|
499 | return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
|
---|
500 | }
|
---|
501 |
|
---|
502 | static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
|
---|
503 | {
|
---|
504 | return phys_page_find_alloc(index, 0);
|
---|
505 | }
|
---|
506 |
|
---|
507 | #if !defined(CONFIG_USER_ONLY)
|
---|
508 | static void tlb_protect_code(ram_addr_t ram_addr);
|
---|
509 | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
|
---|
510 | target_ulong vaddr);
|
---|
511 | #define mmap_lock() do { } while(0)
|
---|
512 | #define mmap_unlock() do { } while(0)
|
---|
513 | #endif
|
---|
514 |
|
---|
515 | #ifdef VBOX /* We don't need such huge codegen buffer size, as execute
|
---|
516 | most of the code in raw or hwacc mode. */
|
---|
517 | #define DEFAULT_CODE_GEN_BUFFER_SIZE (8 * 1024 * 1024)
|
---|
518 | #else /* !VBOX */
|
---|
519 | #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
|
---|
520 | #endif /* !VBOX */
|
---|
521 |
|
---|
522 | #if defined(CONFIG_USER_ONLY)
|
---|
523 | /* Currently it is not recommended to allocate big chunks of data in
|
---|
524 | user mode. It will change when a dedicated libc will be used */
|
---|
525 | #define USE_STATIC_CODE_GEN_BUFFER
|
---|
526 | #endif
|
---|
527 |
|
---|
528 | #if defined(VBOX) && defined(USE_STATIC_CODE_GEN_BUFFER)
|
---|
529 | # error "VBox allocates codegen buffer dynamically"
|
---|
530 | #endif
|
---|
531 |
|
---|
532 | #ifdef USE_STATIC_CODE_GEN_BUFFER
|
---|
533 | static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
|
---|
534 | #endif
|
---|
535 |
|
---|
536 | static void code_gen_alloc(unsigned long tb_size)
|
---|
537 | {
|
---|
538 | #ifdef USE_STATIC_CODE_GEN_BUFFER
|
---|
539 | code_gen_buffer = static_code_gen_buffer;
|
---|
540 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
|
---|
541 | map_exec(code_gen_buffer, code_gen_buffer_size);
|
---|
542 | #else
|
---|
543 | # ifdef VBOX
|
---|
544 | /* We cannot use phys_ram_size here, as it's 0 now,
|
---|
545 | * it only gets initialized once RAM registration callback
|
---|
546 | * (REMR3NotifyPhysRamRegister()) called.
|
---|
547 | */
|
---|
548 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
|
---|
549 | # else /* !VBOX */
|
---|
550 | code_gen_buffer_size = tb_size;
|
---|
551 | if (code_gen_buffer_size == 0) {
|
---|
552 | #if defined(CONFIG_USER_ONLY)
|
---|
553 | /* in user mode, phys_ram_size is not meaningful */
|
---|
554 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
|
---|
555 | #else
|
---|
556 | /* XXX: needs ajustments */
|
---|
557 | code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
|
---|
558 | #endif
|
---|
559 | }
|
---|
560 | if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
|
---|
561 | code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
|
---|
562 | # endif /* !VBOX */
|
---|
563 | /* The code gen buffer location may have constraints depending on
|
---|
564 | the host cpu and OS */
|
---|
565 | # ifdef VBOX
|
---|
566 | code_gen_buffer = RTMemExecAlloc(code_gen_buffer_size);
|
---|
567 |
|
---|
568 | if (!code_gen_buffer) {
|
---|
569 | LogRel(("REM: failed allocate codegen buffer %lld\n",
|
---|
570 | code_gen_buffer_size));
|
---|
571 | return;
|
---|
572 | }
|
---|
573 | # else /* !VBOX */
|
---|
574 | #if defined(__linux__)
|
---|
575 | {
|
---|
576 | int flags;
|
---|
577 | void *start = NULL;
|
---|
578 |
|
---|
579 | flags = MAP_PRIVATE | MAP_ANONYMOUS;
|
---|
580 | #if defined(__x86_64__)
|
---|
581 | flags |= MAP_32BIT;
|
---|
582 | /* Cannot map more than that */
|
---|
583 | if (code_gen_buffer_size > (800 * 1024 * 1024))
|
---|
584 | code_gen_buffer_size = (800 * 1024 * 1024);
|
---|
585 | #elif defined(__sparc_v9__)
|
---|
586 | // Map the buffer below 2G, so we can use direct calls and branches
|
---|
587 | flags |= MAP_FIXED;
|
---|
588 | start = (void *) 0x60000000UL;
|
---|
589 | if (code_gen_buffer_size > (512 * 1024 * 1024))
|
---|
590 | code_gen_buffer_size = (512 * 1024 * 1024);
|
---|
591 | #elif defined(__arm__)
|
---|
592 | /* Map the buffer below 32M, so we can use direct calls and branches */
|
---|
593 | flags |= MAP_FIXED;
|
---|
594 | start = (void *) 0x01000000UL;
|
---|
595 | if (code_gen_buffer_size > 16 * 1024 * 1024)
|
---|
596 | code_gen_buffer_size = 16 * 1024 * 1024;
|
---|
597 | #endif
|
---|
598 | code_gen_buffer = mmap(start, code_gen_buffer_size,
|
---|
599 | PROT_WRITE | PROT_READ | PROT_EXEC,
|
---|
600 | flags, -1, 0);
|
---|
601 | if (code_gen_buffer == MAP_FAILED) {
|
---|
602 | fprintf(stderr, "Could not allocate dynamic translator buffer\n");
|
---|
603 | exit(1);
|
---|
604 | }
|
---|
605 | }
|
---|
606 | #elif defined(__FreeBSD__) || defined(__DragonFly__)
|
---|
607 | {
|
---|
608 | int flags;
|
---|
609 | void *addr = NULL;
|
---|
610 | flags = MAP_PRIVATE | MAP_ANONYMOUS;
|
---|
611 | #if defined(__x86_64__)
|
---|
612 | /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
|
---|
613 | * 0x40000000 is free */
|
---|
614 | flags |= MAP_FIXED;
|
---|
615 | addr = (void *)0x40000000;
|
---|
616 | /* Cannot map more than that */
|
---|
617 | if (code_gen_buffer_size > (800 * 1024 * 1024))
|
---|
618 | code_gen_buffer_size = (800 * 1024 * 1024);
|
---|
619 | #endif
|
---|
620 | code_gen_buffer = mmap(addr, code_gen_buffer_size,
|
---|
621 | PROT_WRITE | PROT_READ | PROT_EXEC,
|
---|
622 | flags, -1, 0);
|
---|
623 | if (code_gen_buffer == MAP_FAILED) {
|
---|
624 | fprintf(stderr, "Could not allocate dynamic translator buffer\n");
|
---|
625 | exit(1);
|
---|
626 | }
|
---|
627 | }
|
---|
628 | #else
|
---|
629 | code_gen_buffer = qemu_malloc(code_gen_buffer_size);
|
---|
630 | map_exec(code_gen_buffer, code_gen_buffer_size);
|
---|
631 | #endif
|
---|
632 | # endif /* !VBOX */
|
---|
633 | #endif /* !USE_STATIC_CODE_GEN_BUFFER */
|
---|
634 | #ifndef VBOX
|
---|
635 | map_exec(code_gen_prologue, sizeof(code_gen_prologue));
|
---|
636 | #else
|
---|
637 | map_exec(code_gen_prologue, _1K);
|
---|
638 | #endif
|
---|
639 | code_gen_buffer_max_size = code_gen_buffer_size -
|
---|
640 | code_gen_max_block_size();
|
---|
641 | code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
|
---|
642 | tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
|
---|
643 | }
|
---|
644 |
|
---|
645 | /* Must be called before using the QEMU cpus. 'tb_size' is the size
|
---|
646 | (in bytes) allocated to the translation buffer. Zero means default
|
---|
647 | size. */
|
---|
648 | void cpu_exec_init_all(unsigned long tb_size)
|
---|
649 | {
|
---|
650 | cpu_gen_init();
|
---|
651 | code_gen_alloc(tb_size);
|
---|
652 | code_gen_ptr = code_gen_buffer;
|
---|
653 | page_init();
|
---|
654 | #if !defined(CONFIG_USER_ONLY)
|
---|
655 | io_mem_init();
|
---|
656 | #endif
|
---|
657 | }
|
---|
658 |
|
---|
659 | #ifndef VBOX
|
---|
660 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
|
---|
661 |
|
---|
662 | #define CPU_COMMON_SAVE_VERSION 1
|
---|
663 |
|
---|
664 | static void cpu_common_save(QEMUFile *f, void *opaque)
|
---|
665 | {
|
---|
666 | CPUState *env = opaque;
|
---|
667 |
|
---|
668 | cpu_synchronize_state(env, 0);
|
---|
669 |
|
---|
670 | qemu_put_be32s(f, &env->halted);
|
---|
671 | qemu_put_be32s(f, &env->interrupt_request);
|
---|
672 | }
|
---|
673 |
|
---|
674 | static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
|
---|
675 | {
|
---|
676 | CPUState *env = opaque;
|
---|
677 |
|
---|
678 | if (version_id != CPU_COMMON_SAVE_VERSION)
|
---|
679 | return -EINVAL;
|
---|
680 |
|
---|
681 | qemu_get_be32s(f, &env->halted);
|
---|
682 | qemu_get_be32s(f, &env->interrupt_request);
|
---|
683 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
|
---|
684 | version_id is increased. */
|
---|
685 | env->interrupt_request &= ~0x01;
|
---|
686 | tlb_flush(env, 1);
|
---|
687 | cpu_synchronize_state(env, 1);
|
---|
688 |
|
---|
689 | return 0;
|
---|
690 | }
|
---|
691 | #endif
|
---|
692 |
|
---|
693 | CPUState *qemu_get_cpu(int cpu)
|
---|
694 | {
|
---|
695 | CPUState *env = first_cpu;
|
---|
696 |
|
---|
697 | while (env) {
|
---|
698 | if (env->cpu_index == cpu)
|
---|
699 | break;
|
---|
700 | env = env->next_cpu;
|
---|
701 | }
|
---|
702 |
|
---|
703 | return env;
|
---|
704 | }
|
---|
705 |
|
---|
706 | #endif /* !VBOX */
|
---|
707 |
|
---|
708 | void cpu_exec_init(CPUState *env)
|
---|
709 | {
|
---|
710 | CPUState **penv;
|
---|
711 | int cpu_index;
|
---|
712 |
|
---|
713 | #if defined(CONFIG_USER_ONLY)
|
---|
714 | cpu_list_lock();
|
---|
715 | #endif
|
---|
716 | env->next_cpu = NULL;
|
---|
717 | penv = &first_cpu;
|
---|
718 | cpu_index = 0;
|
---|
719 | while (*penv != NULL) {
|
---|
720 | penv = &(*penv)->next_cpu;
|
---|
721 | cpu_index++;
|
---|
722 | }
|
---|
723 | env->cpu_index = cpu_index;
|
---|
724 | env->numa_node = 0;
|
---|
725 | TAILQ_INIT(&env->breakpoints);
|
---|
726 | TAILQ_INIT(&env->watchpoints);
|
---|
727 | *penv = env;
|
---|
728 | #ifndef VBOX
|
---|
729 | #if defined(CONFIG_USER_ONLY)
|
---|
730 | cpu_list_unlock();
|
---|
731 | #endif
|
---|
732 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
|
---|
733 | register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
|
---|
734 | cpu_common_save, cpu_common_load, env);
|
---|
735 | register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
|
---|
736 | cpu_save, cpu_load, env);
|
---|
737 | #endif
|
---|
738 | #endif /* !VBOX */
|
---|
739 | }
|
---|
740 |
|
---|
741 | static inline void invalidate_page_bitmap(PageDesc *p)
|
---|
742 | {
|
---|
743 | if (p->code_bitmap) {
|
---|
744 | qemu_free(p->code_bitmap);
|
---|
745 | p->code_bitmap = NULL;
|
---|
746 | }
|
---|
747 | p->code_write_count = 0;
|
---|
748 | }
|
---|
749 |
|
---|
750 | /* set to NULL all the 'first_tb' fields in all PageDescs */
|
---|
751 | static void page_flush_tb(void)
|
---|
752 | {
|
---|
753 | int i, j;
|
---|
754 | PageDesc *p;
|
---|
755 | #ifdef VBOX
|
---|
756 | int k;
|
---|
757 | #endif
|
---|
758 |
|
---|
759 | #ifdef VBOX
|
---|
760 | k = l0_map_max_used;
|
---|
761 | while (k-- > 0) {
|
---|
762 | PageDesc **l1_map = l0_map[k];
|
---|
763 | if (l1_map) {
|
---|
764 | #endif
|
---|
765 | for(i = 0; i < L1_SIZE; i++) {
|
---|
766 | p = l1_map[i];
|
---|
767 | if (p) {
|
---|
768 | for(j = 0; j < L2_SIZE; j++) {
|
---|
769 | p->first_tb = NULL;
|
---|
770 | invalidate_page_bitmap(p);
|
---|
771 | p++;
|
---|
772 | }
|
---|
773 | }
|
---|
774 | }
|
---|
775 | #ifdef VBOX
|
---|
776 | }
|
---|
777 | }
|
---|
778 | #endif
|
---|
779 | }
|
---|
780 |
|
---|
781 | /* flush all the translation blocks */
|
---|
782 | /* XXX: tb_flush is currently not thread safe */
|
---|
783 | void tb_flush(CPUState *env1)
|
---|
784 | {
|
---|
785 | CPUState *env;
|
---|
786 | #ifdef VBOX
|
---|
787 | STAM_PROFILE_START(&env1->StatTbFlush, a);
|
---|
788 | #endif
|
---|
789 | #if defined(DEBUG_FLUSH)
|
---|
790 | printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
|
---|
791 | (unsigned long)(code_gen_ptr - code_gen_buffer),
|
---|
792 | nb_tbs, nb_tbs > 0 ?
|
---|
793 | ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
|
---|
794 | #endif
|
---|
795 | if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
|
---|
796 | cpu_abort(env1, "Internal error: code buffer overflow\n");
|
---|
797 |
|
---|
798 | nb_tbs = 0;
|
---|
799 |
|
---|
800 | for(env = first_cpu; env != NULL; env = env->next_cpu) {
|
---|
801 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
|
---|
802 | }
|
---|
803 |
|
---|
804 | memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
|
---|
805 | page_flush_tb();
|
---|
806 |
|
---|
807 | code_gen_ptr = code_gen_buffer;
|
---|
808 | /* XXX: flush processor icache at this point if cache flush is
|
---|
809 | expensive */
|
---|
810 | tb_flush_count++;
|
---|
811 | #ifdef VBOX
|
---|
812 | STAM_PROFILE_STOP(&env1->StatTbFlush, a);
|
---|
813 | #endif
|
---|
814 | }
|
---|
815 |
|
---|
816 | #ifdef DEBUG_TB_CHECK
|
---|
817 |
|
---|
818 | static void tb_invalidate_check(target_ulong address)
|
---|
819 | {
|
---|
820 | TranslationBlock *tb;
|
---|
821 | int i;
|
---|
822 | address &= TARGET_PAGE_MASK;
|
---|
823 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
|
---|
824 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
|
---|
825 | if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
|
---|
826 | address >= tb->pc + tb->size)) {
|
---|
827 | printf("ERROR invalidate: address=" TARGET_FMT_lx
|
---|
828 | " PC=%08lx size=%04x\n",
|
---|
829 | address, (long)tb->pc, tb->size);
|
---|
830 | }
|
---|
831 | }
|
---|
832 | }
|
---|
833 | }
|
---|
834 |
|
---|
835 | /* verify that all the pages have correct rights for code */
|
---|
836 | static void tb_page_check(void)
|
---|
837 | {
|
---|
838 | TranslationBlock *tb;
|
---|
839 | int i, flags1, flags2;
|
---|
840 |
|
---|
841 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
|
---|
842 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
|
---|
843 | flags1 = page_get_flags(tb->pc);
|
---|
844 | flags2 = page_get_flags(tb->pc + tb->size - 1);
|
---|
845 | if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
|
---|
846 | printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
|
---|
847 | (long)tb->pc, tb->size, flags1, flags2);
|
---|
848 | }
|
---|
849 | }
|
---|
850 | }
|
---|
851 | }
|
---|
852 |
|
---|
853 | #endif
|
---|
854 |
|
---|
855 | /* invalidate one TB */
|
---|
856 | static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
|
---|
857 | int next_offset)
|
---|
858 | {
|
---|
859 | TranslationBlock *tb1;
|
---|
860 | for(;;) {
|
---|
861 | tb1 = *ptb;
|
---|
862 | if (tb1 == tb) {
|
---|
863 | *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
|
---|
864 | break;
|
---|
865 | }
|
---|
866 | ptb = (TranslationBlock **)((char *)tb1 + next_offset);
|
---|
867 | }
|
---|
868 | }
|
---|
869 |
|
---|
870 | static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
|
---|
871 | {
|
---|
872 | TranslationBlock *tb1;
|
---|
873 | unsigned int n1;
|
---|
874 |
|
---|
875 | for(;;) {
|
---|
876 | tb1 = *ptb;
|
---|
877 | n1 = (long)tb1 & 3;
|
---|
878 | tb1 = (TranslationBlock *)((long)tb1 & ~3);
|
---|
879 | if (tb1 == tb) {
|
---|
880 | *ptb = tb1->page_next[n1];
|
---|
881 | break;
|
---|
882 | }
|
---|
883 | ptb = &tb1->page_next[n1];
|
---|
884 | }
|
---|
885 | }
|
---|
886 |
|
---|
887 | static inline void tb_jmp_remove(TranslationBlock *tb, int n)
|
---|
888 | {
|
---|
889 | TranslationBlock *tb1, **ptb;
|
---|
890 | unsigned int n1;
|
---|
891 |
|
---|
892 | ptb = &tb->jmp_next[n];
|
---|
893 | tb1 = *ptb;
|
---|
894 | if (tb1) {
|
---|
895 | /* find tb(n) in circular list */
|
---|
896 | for(;;) {
|
---|
897 | tb1 = *ptb;
|
---|
898 | n1 = (long)tb1 & 3;
|
---|
899 | tb1 = (TranslationBlock *)((long)tb1 & ~3);
|
---|
900 | if (n1 == n && tb1 == tb)
|
---|
901 | break;
|
---|
902 | if (n1 == 2) {
|
---|
903 | ptb = &tb1->jmp_first;
|
---|
904 | } else {
|
---|
905 | ptb = &tb1->jmp_next[n1];
|
---|
906 | }
|
---|
907 | }
|
---|
908 | /* now we can suppress tb(n) from the list */
|
---|
909 | *ptb = tb->jmp_next[n];
|
---|
910 |
|
---|
911 | tb->jmp_next[n] = NULL;
|
---|
912 | }
|
---|
913 | }
|
---|
914 |
|
---|
915 | /* reset the jump entry 'n' of a TB so that it is not chained to
|
---|
916 | another TB */
|
---|
917 | static inline void tb_reset_jump(TranslationBlock *tb, int n)
|
---|
918 | {
|
---|
919 | tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
|
---|
920 | }
|
---|
921 |
|
---|
922 | void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
|
---|
923 | {
|
---|
924 | CPUState *env;
|
---|
925 | PageDesc *p;
|
---|
926 | unsigned int h, n1;
|
---|
927 | target_phys_addr_t phys_pc;
|
---|
928 | TranslationBlock *tb1, *tb2;
|
---|
929 |
|
---|
930 | /* remove the TB from the hash list */
|
---|
931 | phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
|
---|
932 | h = tb_phys_hash_func(phys_pc);
|
---|
933 | tb_remove(&tb_phys_hash[h], tb,
|
---|
934 | offsetof(TranslationBlock, phys_hash_next));
|
---|
935 |
|
---|
936 | /* remove the TB from the page list */
|
---|
937 | if (tb->page_addr[0] != page_addr) {
|
---|
938 | p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
|
---|
939 | tb_page_remove(&p->first_tb, tb);
|
---|
940 | invalidate_page_bitmap(p);
|
---|
941 | }
|
---|
942 | if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
|
---|
943 | p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
|
---|
944 | tb_page_remove(&p->first_tb, tb);
|
---|
945 | invalidate_page_bitmap(p);
|
---|
946 | }
|
---|
947 |
|
---|
948 | tb_invalidated_flag = 1;
|
---|
949 |
|
---|
950 | /* remove the TB from the hash list */
|
---|
951 | h = tb_jmp_cache_hash_func(tb->pc);
|
---|
952 | for(env = first_cpu; env != NULL; env = env->next_cpu) {
|
---|
953 | if (env->tb_jmp_cache[h] == tb)
|
---|
954 | env->tb_jmp_cache[h] = NULL;
|
---|
955 | }
|
---|
956 |
|
---|
957 | /* suppress this TB from the two jump lists */
|
---|
958 | tb_jmp_remove(tb, 0);
|
---|
959 | tb_jmp_remove(tb, 1);
|
---|
960 |
|
---|
961 | /* suppress any remaining jumps to this TB */
|
---|
962 | tb1 = tb->jmp_first;
|
---|
963 | for(;;) {
|
---|
964 | n1 = (long)tb1 & 3;
|
---|
965 | if (n1 == 2)
|
---|
966 | break;
|
---|
967 | tb1 = (TranslationBlock *)((long)tb1 & ~3);
|
---|
968 | tb2 = tb1->jmp_next[n1];
|
---|
969 | tb_reset_jump(tb1, n1);
|
---|
970 | tb1->jmp_next[n1] = NULL;
|
---|
971 | tb1 = tb2;
|
---|
972 | }
|
---|
973 | tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
|
---|
974 |
|
---|
975 | tb_phys_invalidate_count++;
|
---|
976 | }
|
---|
977 |
|
---|
978 | #ifdef VBOX
|
---|
979 |
|
---|
980 | void tb_invalidate_virt(CPUState *env, uint32_t eip)
|
---|
981 | {
|
---|
982 | # if 1
|
---|
983 | tb_flush(env);
|
---|
984 | # else
|
---|
985 | uint8_t *cs_base, *pc;
|
---|
986 | unsigned int flags, h, phys_pc;
|
---|
987 | TranslationBlock *tb, **ptb;
|
---|
988 |
|
---|
989 | flags = env->hflags;
|
---|
990 | flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
|
---|
991 | cs_base = env->segs[R_CS].base;
|
---|
992 | pc = cs_base + eip;
|
---|
993 |
|
---|
994 | tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base,
|
---|
995 | flags);
|
---|
996 |
|
---|
997 | if(tb)
|
---|
998 | {
|
---|
999 | # ifdef DEBUG
|
---|
1000 | printf("invalidating TB (%08X) at %08X\n", tb, eip);
|
---|
1001 | # endif
|
---|
1002 | tb_invalidate(tb);
|
---|
1003 | //Note: this will leak TBs, but the whole cache will be flushed
|
---|
1004 | // when it happens too often
|
---|
1005 | tb->pc = 0;
|
---|
1006 | tb->cs_base = 0;
|
---|
1007 | tb->flags = 0;
|
---|
1008 | }
|
---|
1009 | # endif
|
---|
1010 | }
|
---|
1011 |
|
---|
1012 | # ifdef VBOX_STRICT
|
---|
1013 | /**
|
---|
1014 | * Gets the page offset.
|
---|
1015 | */
|
---|
1016 | unsigned long get_phys_page_offset(target_ulong addr)
|
---|
1017 | {
|
---|
1018 | PhysPageDesc *p = phys_page_find(addr >> TARGET_PAGE_BITS);
|
---|
1019 | return p ? p->phys_offset : 0;
|
---|
1020 | }
|
---|
1021 | # endif /* VBOX_STRICT */
|
---|
1022 |
|
---|
1023 | #endif /* VBOX */
|
---|
1024 |
|
---|
1025 | static inline void set_bits(uint8_t *tab, int start, int len)
|
---|
1026 | {
|
---|
1027 | int end, mask, end1;
|
---|
1028 |
|
---|
1029 | end = start + len;
|
---|
1030 | tab += start >> 3;
|
---|
1031 | mask = 0xff << (start & 7);
|
---|
1032 | if ((start & ~7) == (end & ~7)) {
|
---|
1033 | if (start < end) {
|
---|
1034 | mask &= ~(0xff << (end & 7));
|
---|
1035 | *tab |= mask;
|
---|
1036 | }
|
---|
1037 | } else {
|
---|
1038 | *tab++ |= mask;
|
---|
1039 | start = (start + 8) & ~7;
|
---|
1040 | end1 = end & ~7;
|
---|
1041 | while (start < end1) {
|
---|
1042 | *tab++ = 0xff;
|
---|
1043 | start += 8;
|
---|
1044 | }
|
---|
1045 | if (start < end) {
|
---|
1046 | mask = ~(0xff << (end & 7));
|
---|
1047 | *tab |= mask;
|
---|
1048 | }
|
---|
1049 | }
|
---|
1050 | }
|
---|
1051 |
|
---|
1052 | static void build_page_bitmap(PageDesc *p)
|
---|
1053 | {
|
---|
1054 | int n, tb_start, tb_end;
|
---|
1055 | TranslationBlock *tb;
|
---|
1056 |
|
---|
1057 | p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
|
---|
1058 |
|
---|
1059 | tb = p->first_tb;
|
---|
1060 | while (tb != NULL) {
|
---|
1061 | n = (long)tb & 3;
|
---|
1062 | tb = (TranslationBlock *)((long)tb & ~3);
|
---|
1063 | /* NOTE: this is subtle as a TB may span two physical pages */
|
---|
1064 | if (n == 0) {
|
---|
1065 | /* NOTE: tb_end may be after the end of the page, but
|
---|
1066 | it is not a problem */
|
---|
1067 | tb_start = tb->pc & ~TARGET_PAGE_MASK;
|
---|
1068 | tb_end = tb_start + tb->size;
|
---|
1069 | if (tb_end > TARGET_PAGE_SIZE)
|
---|
1070 | tb_end = TARGET_PAGE_SIZE;
|
---|
1071 | } else {
|
---|
1072 | tb_start = 0;
|
---|
1073 | tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
|
---|
1074 | }
|
---|
1075 | set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
|
---|
1076 | tb = tb->page_next[n];
|
---|
1077 | }
|
---|
1078 | }
|
---|
1079 |
|
---|
1080 | TranslationBlock *tb_gen_code(CPUState *env,
|
---|
1081 | target_ulong pc, target_ulong cs_base,
|
---|
1082 | int flags, int cflags)
|
---|
1083 | {
|
---|
1084 | TranslationBlock *tb;
|
---|
1085 | uint8_t *tc_ptr;
|
---|
1086 | target_ulong phys_pc, phys_page2, virt_page2;
|
---|
1087 | int code_gen_size;
|
---|
1088 |
|
---|
1089 | phys_pc = get_phys_addr_code(env, pc);
|
---|
1090 | tb = tb_alloc(pc);
|
---|
1091 | if (!tb) {
|
---|
1092 | /* flush must be done */
|
---|
1093 | tb_flush(env);
|
---|
1094 | /* cannot fail at this point */
|
---|
1095 | tb = tb_alloc(pc);
|
---|
1096 | /* Don't forget to invalidate previous TB info. */
|
---|
1097 | tb_invalidated_flag = 1;
|
---|
1098 | }
|
---|
1099 | tc_ptr = code_gen_ptr;
|
---|
1100 | tb->tc_ptr = tc_ptr;
|
---|
1101 | tb->cs_base = cs_base;
|
---|
1102 | tb->flags = flags;
|
---|
1103 | tb->cflags = cflags;
|
---|
1104 | cpu_gen_code(env, tb, &code_gen_size);
|
---|
1105 | code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
|
---|
1106 |
|
---|
1107 | /* check next page if needed */
|
---|
1108 | virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
|
---|
1109 | phys_page2 = -1;
|
---|
1110 | if ((pc & TARGET_PAGE_MASK) != virt_page2) {
|
---|
1111 | phys_page2 = get_phys_addr_code(env, virt_page2);
|
---|
1112 | }
|
---|
1113 | tb_link_phys(tb, phys_pc, phys_page2);
|
---|
1114 | return tb;
|
---|
1115 | }
|
---|
1116 |
|
---|
1117 | /* invalidate all TBs which intersect with the target physical page
|
---|
1118 | starting in range [start;end[. NOTE: start and end must refer to
|
---|
1119 | the same physical page. 'is_cpu_write_access' should be true if called
|
---|
1120 | from a real cpu write access: the virtual CPU will exit the current
|
---|
1121 | TB if code is modified inside this TB. */
|
---|
1122 | void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
|
---|
1123 | int is_cpu_write_access)
|
---|
1124 | {
|
---|
1125 | TranslationBlock *tb, *tb_next, *saved_tb;
|
---|
1126 | CPUState *env = cpu_single_env;
|
---|
1127 | target_ulong tb_start, tb_end;
|
---|
1128 | PageDesc *p;
|
---|
1129 | int n;
|
---|
1130 | #ifdef TARGET_HAS_PRECISE_SMC
|
---|
1131 | int current_tb_not_found = is_cpu_write_access;
|
---|
1132 | TranslationBlock *current_tb = NULL;
|
---|
1133 | int current_tb_modified = 0;
|
---|
1134 | target_ulong current_pc = 0;
|
---|
1135 | target_ulong current_cs_base = 0;
|
---|
1136 | int current_flags = 0;
|
---|
1137 | #endif /* TARGET_HAS_PRECISE_SMC */
|
---|
1138 |
|
---|
1139 | p = page_find(start >> TARGET_PAGE_BITS);
|
---|
1140 | if (!p)
|
---|
1141 | return;
|
---|
1142 | if (!p->code_bitmap &&
|
---|
1143 | ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
|
---|
1144 | is_cpu_write_access) {
|
---|
1145 | /* build code bitmap */
|
---|
1146 | build_page_bitmap(p);
|
---|
1147 | }
|
---|
1148 |
|
---|
1149 | /* we remove all the TBs in the range [start, end[ */
|
---|
1150 | /* XXX: see if in some cases it could be faster to invalidate all the code */
|
---|
1151 | tb = p->first_tb;
|
---|
1152 | while (tb != NULL) {
|
---|
1153 | n = (long)tb & 3;
|
---|
1154 | tb = (TranslationBlock *)((long)tb & ~3);
|
---|
1155 | tb_next = tb->page_next[n];
|
---|
1156 | /* NOTE: this is subtle as a TB may span two physical pages */
|
---|
1157 | if (n == 0) {
|
---|
1158 | /* NOTE: tb_end may be after the end of the page, but
|
---|
1159 | it is not a problem */
|
---|
1160 | tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
|
---|
1161 | tb_end = tb_start + tb->size;
|
---|
1162 | } else {
|
---|
1163 | tb_start = tb->page_addr[1];
|
---|
1164 | tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
|
---|
1165 | }
|
---|
1166 | if (!(tb_end <= start || tb_start >= end)) {
|
---|
1167 | #ifdef TARGET_HAS_PRECISE_SMC
|
---|
1168 | if (current_tb_not_found) {
|
---|
1169 | current_tb_not_found = 0;
|
---|
1170 | current_tb = NULL;
|
---|
1171 | if (env->mem_io_pc) {
|
---|
1172 | /* now we have a real cpu fault */
|
---|
1173 | current_tb = tb_find_pc(env->mem_io_pc);
|
---|
1174 | }
|
---|
1175 | }
|
---|
1176 | if (current_tb == tb &&
|
---|
1177 | (current_tb->cflags & CF_COUNT_MASK) != 1) {
|
---|
1178 | /* If we are modifying the current TB, we must stop
|
---|
1179 | its execution. We could be more precise by checking
|
---|
1180 | that the modification is after the current PC, but it
|
---|
1181 | would require a specialized function to partially
|
---|
1182 | restore the CPU state */
|
---|
1183 |
|
---|
1184 | current_tb_modified = 1;
|
---|
1185 | cpu_restore_state(current_tb, env,
|
---|
1186 | env->mem_io_pc, NULL);
|
---|
1187 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
|
---|
1188 | ¤t_flags);
|
---|
1189 | }
|
---|
1190 | #endif /* TARGET_HAS_PRECISE_SMC */
|
---|
1191 | /* we need to do that to handle the case where a signal
|
---|
1192 | occurs while doing tb_phys_invalidate() */
|
---|
1193 | saved_tb = NULL;
|
---|
1194 | if (env) {
|
---|
1195 | saved_tb = env->current_tb;
|
---|
1196 | env->current_tb = NULL;
|
---|
1197 | }
|
---|
1198 | tb_phys_invalidate(tb, -1);
|
---|
1199 | if (env) {
|
---|
1200 | env->current_tb = saved_tb;
|
---|
1201 | if (env->interrupt_request && env->current_tb)
|
---|
1202 | cpu_interrupt(env, env->interrupt_request);
|
---|
1203 | }
|
---|
1204 | }
|
---|
1205 | tb = tb_next;
|
---|
1206 | }
|
---|
1207 | #if !defined(CONFIG_USER_ONLY)
|
---|
1208 | /* if no code remaining, no need to continue to use slow writes */
|
---|
1209 | if (!p->first_tb) {
|
---|
1210 | invalidate_page_bitmap(p);
|
---|
1211 | if (is_cpu_write_access) {
|
---|
1212 | tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
|
---|
1213 | }
|
---|
1214 | }
|
---|
1215 | #endif
|
---|
1216 | #ifdef TARGET_HAS_PRECISE_SMC
|
---|
1217 | if (current_tb_modified) {
|
---|
1218 | /* we generate a block containing just the instruction
|
---|
1219 | modifying the memory. It will ensure that it cannot modify
|
---|
1220 | itself */
|
---|
1221 | env->current_tb = NULL;
|
---|
1222 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
|
---|
1223 | cpu_resume_from_signal(env, NULL);
|
---|
1224 | }
|
---|
1225 | #endif
|
---|
1226 | }
|
---|
1227 |
|
---|
1228 | /* len must be <= 8 and start must be a multiple of len */
|
---|
1229 | static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
|
---|
1230 | {
|
---|
1231 | PageDesc *p;
|
---|
1232 | int offset, b;
|
---|
1233 | #if 0
|
---|
1234 | if (1) {
|
---|
1235 | qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
|
---|
1236 | cpu_single_env->mem_io_vaddr, len,
|
---|
1237 | cpu_single_env->eip,
|
---|
1238 | cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
|
---|
1239 | }
|
---|
1240 | #endif
|
---|
1241 | p = page_find(start >> TARGET_PAGE_BITS);
|
---|
1242 | if (!p)
|
---|
1243 | return;
|
---|
1244 | if (p->code_bitmap) {
|
---|
1245 | offset = start & ~TARGET_PAGE_MASK;
|
---|
1246 | b = p->code_bitmap[offset >> 3] >> (offset & 7);
|
---|
1247 | if (b & ((1 << len) - 1))
|
---|
1248 | goto do_invalidate;
|
---|
1249 | } else {
|
---|
1250 | do_invalidate:
|
---|
1251 | tb_invalidate_phys_page_range(start, start + len, 1);
|
---|
1252 | }
|
---|
1253 | }
|
---|
1254 |
|
---|
1255 | #if !defined(CONFIG_SOFTMMU)
|
---|
1256 | static void tb_invalidate_phys_page(target_phys_addr_t addr,
|
---|
1257 | unsigned long pc, void *puc)
|
---|
1258 | {
|
---|
1259 | TranslationBlock *tb;
|
---|
1260 | PageDesc *p;
|
---|
1261 | int n;
|
---|
1262 | #ifdef TARGET_HAS_PRECISE_SMC
|
---|
1263 | TranslationBlock *current_tb = NULL;
|
---|
1264 | CPUState *env = cpu_single_env;
|
---|
1265 | int current_tb_modified = 0;
|
---|
1266 | target_ulong current_pc = 0;
|
---|
1267 | target_ulong current_cs_base = 0;
|
---|
1268 | int current_flags = 0;
|
---|
1269 | #endif
|
---|
1270 |
|
---|
1271 | addr &= TARGET_PAGE_MASK;
|
---|
1272 | p = page_find(addr >> TARGET_PAGE_BITS);
|
---|
1273 | if (!p)
|
---|
1274 | return;
|
---|
1275 | tb = p->first_tb;
|
---|
1276 | #ifdef TARGET_HAS_PRECISE_SMC
|
---|
1277 | if (tb && pc != 0) {
|
---|
1278 | current_tb = tb_find_pc(pc);
|
---|
1279 | }
|
---|
1280 | #endif
|
---|
1281 | while (tb != NULL) {
|
---|
1282 | n = (long)tb & 3;
|
---|
1283 | tb = (TranslationBlock *)((long)tb & ~3);
|
---|
1284 | #ifdef TARGET_HAS_PRECISE_SMC
|
---|
1285 | if (current_tb == tb &&
|
---|
1286 | (current_tb->cflags & CF_COUNT_MASK) != 1) {
|
---|
1287 | /* If we are modifying the current TB, we must stop
|
---|
1288 | its execution. We could be more precise by checking
|
---|
1289 | that the modification is after the current PC, but it
|
---|
1290 | would require a specialized function to partially
|
---|
1291 | restore the CPU state */
|
---|
1292 |
|
---|
1293 | current_tb_modified = 1;
|
---|
1294 | cpu_restore_state(current_tb, env, pc, puc);
|
---|
1295 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
|
---|
1296 | ¤t_flags);
|
---|
1297 | }
|
---|
1298 | #endif /* TARGET_HAS_PRECISE_SMC */
|
---|
1299 | tb_phys_invalidate(tb, addr);
|
---|
1300 | tb = tb->page_next[n];
|
---|
1301 | }
|
---|
1302 | p->first_tb = NULL;
|
---|
1303 | #ifdef TARGET_HAS_PRECISE_SMC
|
---|
1304 | if (current_tb_modified) {
|
---|
1305 | /* we generate a block containing just the instruction
|
---|
1306 | modifying the memory. It will ensure that it cannot modify
|
---|
1307 | itself */
|
---|
1308 | env->current_tb = NULL;
|
---|
1309 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
|
---|
1310 | cpu_resume_from_signal(env, puc);
|
---|
1311 | }
|
---|
1312 | #endif
|
---|
1313 | }
|
---|
1314 | #endif
|
---|
1315 |
|
---|
1316 | /* add the tb in the target page and protect it if necessary */
|
---|
1317 | static inline void tb_alloc_page(TranslationBlock *tb,
|
---|
1318 | unsigned int n, target_ulong page_addr)
|
---|
1319 | {
|
---|
1320 | PageDesc *p;
|
---|
1321 | TranslationBlock *last_first_tb;
|
---|
1322 |
|
---|
1323 | tb->page_addr[n] = page_addr;
|
---|
1324 | p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
|
---|
1325 | tb->page_next[n] = p->first_tb;
|
---|
1326 | last_first_tb = p->first_tb;
|
---|
1327 | p->first_tb = (TranslationBlock *)((long)tb | n);
|
---|
1328 | invalidate_page_bitmap(p);
|
---|
1329 |
|
---|
1330 | #if defined(TARGET_HAS_SMC) || 1
|
---|
1331 |
|
---|
1332 | #if defined(CONFIG_USER_ONLY)
|
---|
1333 | if (p->flags & PAGE_WRITE) {
|
---|
1334 | target_ulong addr;
|
---|
1335 | PageDesc *p2;
|
---|
1336 | int prot;
|
---|
1337 |
|
---|
1338 | /* force the host page as non writable (writes will have a
|
---|
1339 | page fault + mprotect overhead) */
|
---|
1340 | page_addr &= qemu_host_page_mask;
|
---|
1341 | prot = 0;
|
---|
1342 | for(addr = page_addr; addr < page_addr + qemu_host_page_size;
|
---|
1343 | addr += TARGET_PAGE_SIZE) {
|
---|
1344 |
|
---|
1345 | p2 = page_find (addr >> TARGET_PAGE_BITS);
|
---|
1346 | if (!p2)
|
---|
1347 | continue;
|
---|
1348 | prot |= p2->flags;
|
---|
1349 | p2->flags &= ~PAGE_WRITE;
|
---|
1350 | page_get_flags(addr);
|
---|
1351 | }
|
---|
1352 | mprotect(g2h(page_addr), qemu_host_page_size,
|
---|
1353 | (prot & PAGE_BITS) & ~PAGE_WRITE);
|
---|
1354 | #ifdef DEBUG_TB_INVALIDATE
|
---|
1355 | printf("protecting code page: 0x" TARGET_FMT_lx "\n",
|
---|
1356 | page_addr);
|
---|
1357 | #endif
|
---|
1358 | }
|
---|
1359 | #else
|
---|
1360 | /* if some code is already present, then the pages are already
|
---|
1361 | protected. So we handle the case where only the first TB is
|
---|
1362 | allocated in a physical page */
|
---|
1363 | if (!last_first_tb) {
|
---|
1364 | tlb_protect_code(page_addr);
|
---|
1365 | }
|
---|
1366 | #endif
|
---|
1367 |
|
---|
1368 | #endif /* TARGET_HAS_SMC */
|
---|
1369 | }
|
---|
1370 |
|
---|
1371 | /* Allocate a new translation block. Flush the translation buffer if
|
---|
1372 | too many translation blocks or too much generated code. */
|
---|
1373 | TranslationBlock *tb_alloc(target_ulong pc)
|
---|
1374 | {
|
---|
1375 | TranslationBlock *tb;
|
---|
1376 |
|
---|
1377 | if (nb_tbs >= code_gen_max_blocks ||
|
---|
1378 | #ifndef VBOX
|
---|
1379 | (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
|
---|
1380 | #else
|
---|
1381 | (code_gen_ptr - code_gen_buffer) >= (int)code_gen_buffer_max_size)
|
---|
1382 | #endif
|
---|
1383 | return NULL;
|
---|
1384 | tb = &tbs[nb_tbs++];
|
---|
1385 | tb->pc = pc;
|
---|
1386 | tb->cflags = 0;
|
---|
1387 | return tb;
|
---|
1388 | }
|
---|
1389 |
|
---|
1390 | void tb_free(TranslationBlock *tb)
|
---|
1391 | {
|
---|
1392 | /* In practice this is mostly used for single use temporary TB
|
---|
1393 | Ignore the hard cases and just back up if this TB happens to
|
---|
1394 | be the last one generated. */
|
---|
1395 | if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
|
---|
1396 | code_gen_ptr = tb->tc_ptr;
|
---|
1397 | nb_tbs--;
|
---|
1398 | }
|
---|
1399 | }
|
---|
1400 |
|
---|
1401 | /* add a new TB and link it to the physical page tables. phys_page2 is
|
---|
1402 | (-1) to indicate that only one page contains the TB. */
|
---|
1403 | void tb_link_phys(TranslationBlock *tb,
|
---|
1404 | target_ulong phys_pc, target_ulong phys_page2)
|
---|
1405 | {
|
---|
1406 | unsigned int h;
|
---|
1407 | TranslationBlock **ptb;
|
---|
1408 |
|
---|
1409 | /* Grab the mmap lock to stop another thread invalidating this TB
|
---|
1410 | before we are done. */
|
---|
1411 | mmap_lock();
|
---|
1412 | /* add in the physical hash table */
|
---|
1413 | h = tb_phys_hash_func(phys_pc);
|
---|
1414 | ptb = &tb_phys_hash[h];
|
---|
1415 | tb->phys_hash_next = *ptb;
|
---|
1416 | *ptb = tb;
|
---|
1417 |
|
---|
1418 | /* add in the page list */
|
---|
1419 | tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
|
---|
1420 | if (phys_page2 != -1)
|
---|
1421 | tb_alloc_page(tb, 1, phys_page2);
|
---|
1422 | else
|
---|
1423 | tb->page_addr[1] = -1;
|
---|
1424 |
|
---|
1425 | tb->jmp_first = (TranslationBlock *)((long)tb | 2);
|
---|
1426 | tb->jmp_next[0] = NULL;
|
---|
1427 | tb->jmp_next[1] = NULL;
|
---|
1428 |
|
---|
1429 | /* init original jump addresses */
|
---|
1430 | if (tb->tb_next_offset[0] != 0xffff)
|
---|
1431 | tb_reset_jump(tb, 0);
|
---|
1432 | if (tb->tb_next_offset[1] != 0xffff)
|
---|
1433 | tb_reset_jump(tb, 1);
|
---|
1434 |
|
---|
1435 | #ifdef DEBUG_TB_CHECK
|
---|
1436 | tb_page_check();
|
---|
1437 | #endif
|
---|
1438 | mmap_unlock();
|
---|
1439 | }
|
---|
1440 |
|
---|
1441 | /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
|
---|
1442 | tb[1].tc_ptr. Return NULL if not found */
|
---|
1443 | TranslationBlock *tb_find_pc(unsigned long tc_ptr)
|
---|
1444 | {
|
---|
1445 | int m_min, m_max, m;
|
---|
1446 | unsigned long v;
|
---|
1447 | TranslationBlock *tb;
|
---|
1448 |
|
---|
1449 | if (nb_tbs <= 0)
|
---|
1450 | return NULL;
|
---|
1451 | if (tc_ptr < (unsigned long)code_gen_buffer ||
|
---|
1452 | tc_ptr >= (unsigned long)code_gen_ptr)
|
---|
1453 | return NULL;
|
---|
1454 | /* binary search (cf Knuth) */
|
---|
1455 | m_min = 0;
|
---|
1456 | m_max = nb_tbs - 1;
|
---|
1457 | while (m_min <= m_max) {
|
---|
1458 | m = (m_min + m_max) >> 1;
|
---|
1459 | tb = &tbs[m];
|
---|
1460 | v = (unsigned long)tb->tc_ptr;
|
---|
1461 | if (v == tc_ptr)
|
---|
1462 | return tb;
|
---|
1463 | else if (tc_ptr < v) {
|
---|
1464 | m_max = m - 1;
|
---|
1465 | } else {
|
---|
1466 | m_min = m + 1;
|
---|
1467 | }
|
---|
1468 | }
|
---|
1469 | return &tbs[m_max];
|
---|
1470 | }
|
---|
1471 |
|
---|
1472 | static void tb_reset_jump_recursive(TranslationBlock *tb);
|
---|
1473 |
|
---|
1474 | static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
|
---|
1475 | {
|
---|
1476 | TranslationBlock *tb1, *tb_next, **ptb;
|
---|
1477 | unsigned int n1;
|
---|
1478 |
|
---|
1479 | tb1 = tb->jmp_next[n];
|
---|
1480 | if (tb1 != NULL) {
|
---|
1481 | /* find head of list */
|
---|
1482 | for(;;) {
|
---|
1483 | n1 = (long)tb1 & 3;
|
---|
1484 | tb1 = (TranslationBlock *)((long)tb1 & ~3);
|
---|
1485 | if (n1 == 2)
|
---|
1486 | break;
|
---|
1487 | tb1 = tb1->jmp_next[n1];
|
---|
1488 | }
|
---|
1489 | /* we are now sure now that tb jumps to tb1 */
|
---|
1490 | tb_next = tb1;
|
---|
1491 |
|
---|
1492 | /* remove tb from the jmp_first list */
|
---|
1493 | ptb = &tb_next->jmp_first;
|
---|
1494 | for(;;) {
|
---|
1495 | tb1 = *ptb;
|
---|
1496 | n1 = (long)tb1 & 3;
|
---|
1497 | tb1 = (TranslationBlock *)((long)tb1 & ~3);
|
---|
1498 | if (n1 == n && tb1 == tb)
|
---|
1499 | break;
|
---|
1500 | ptb = &tb1->jmp_next[n1];
|
---|
1501 | }
|
---|
1502 | *ptb = tb->jmp_next[n];
|
---|
1503 | tb->jmp_next[n] = NULL;
|
---|
1504 |
|
---|
1505 | /* suppress the jump to next tb in generated code */
|
---|
1506 | tb_reset_jump(tb, n);
|
---|
1507 |
|
---|
1508 | /* suppress jumps in the tb on which we could have jumped */
|
---|
1509 | tb_reset_jump_recursive(tb_next);
|
---|
1510 | }
|
---|
1511 | }
|
---|
1512 |
|
---|
1513 | static void tb_reset_jump_recursive(TranslationBlock *tb)
|
---|
1514 | {
|
---|
1515 | tb_reset_jump_recursive2(tb, 0);
|
---|
1516 | tb_reset_jump_recursive2(tb, 1);
|
---|
1517 | }
|
---|
1518 |
|
---|
1519 | #if defined(TARGET_HAS_ICE)
|
---|
1520 | static void breakpoint_invalidate(CPUState *env, target_ulong pc)
|
---|
1521 | {
|
---|
1522 | target_phys_addr_t addr;
|
---|
1523 | target_ulong pd;
|
---|
1524 | ram_addr_t ram_addr;
|
---|
1525 | PhysPageDesc *p;
|
---|
1526 |
|
---|
1527 | addr = cpu_get_phys_page_debug(env, pc);
|
---|
1528 | p = phys_page_find(addr >> TARGET_PAGE_BITS);
|
---|
1529 | if (!p) {
|
---|
1530 | pd = IO_MEM_UNASSIGNED;
|
---|
1531 | } else {
|
---|
1532 | pd = p->phys_offset;
|
---|
1533 | }
|
---|
1534 | ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
|
---|
1535 | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
|
---|
1536 | }
|
---|
1537 | #endif
|
---|
1538 |
|
---|
1539 | /* Add a watchpoint. */
|
---|
1540 | int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
|
---|
1541 | int flags, CPUWatchpoint **watchpoint)
|
---|
1542 | {
|
---|
1543 | target_ulong len_mask = ~(len - 1);
|
---|
1544 | CPUWatchpoint *wp;
|
---|
1545 |
|
---|
1546 | /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
|
---|
1547 | if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
|
---|
1548 | fprintf(stderr, "qemu: tried to set invalid watchpoint at "
|
---|
1549 | TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
|
---|
1550 | #ifndef VBOX
|
---|
1551 | return -EINVAL;
|
---|
1552 | #else
|
---|
1553 | return VERR_INVALID_PARAMETER;
|
---|
1554 | #endif
|
---|
1555 | }
|
---|
1556 | wp = qemu_malloc(sizeof(*wp));
|
---|
1557 |
|
---|
1558 | wp->vaddr = addr;
|
---|
1559 | wp->len_mask = len_mask;
|
---|
1560 | wp->flags = flags;
|
---|
1561 |
|
---|
1562 | /* keep all GDB-injected watchpoints in front */
|
---|
1563 | if (flags & BP_GDB)
|
---|
1564 | TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
|
---|
1565 | else
|
---|
1566 | TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
|
---|
1567 |
|
---|
1568 | tlb_flush_page(env, addr);
|
---|
1569 |
|
---|
1570 | if (watchpoint)
|
---|
1571 | *watchpoint = wp;
|
---|
1572 | return 0;
|
---|
1573 | }
|
---|
1574 |
|
---|
1575 | /* Remove a specific watchpoint. */
|
---|
1576 | int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
|
---|
1577 | int flags)
|
---|
1578 | {
|
---|
1579 | target_ulong len_mask = ~(len - 1);
|
---|
1580 | CPUWatchpoint *wp;
|
---|
1581 |
|
---|
1582 | TAILQ_FOREACH(wp, &env->watchpoints, entry) {
|
---|
1583 | if (addr == wp->vaddr && len_mask == wp->len_mask
|
---|
1584 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
|
---|
1585 | cpu_watchpoint_remove_by_ref(env, wp);
|
---|
1586 | return 0;
|
---|
1587 | }
|
---|
1588 | }
|
---|
1589 | #ifndef VBOX
|
---|
1590 | return -ENOENT;
|
---|
1591 | #else
|
---|
1592 | return VERR_NOT_FOUND;
|
---|
1593 | #endif
|
---|
1594 | }
|
---|
1595 |
|
---|
1596 | /* Remove a specific watchpoint by reference. */
|
---|
1597 | void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
|
---|
1598 | {
|
---|
1599 | TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
|
---|
1600 |
|
---|
1601 | tlb_flush_page(env, watchpoint->vaddr);
|
---|
1602 |
|
---|
1603 | qemu_free(watchpoint);
|
---|
1604 | }
|
---|
1605 |
|
---|
1606 | /* Remove all matching watchpoints. */
|
---|
1607 | void cpu_watchpoint_remove_all(CPUState *env, int mask)
|
---|
1608 | {
|
---|
1609 | CPUWatchpoint *wp, *next;
|
---|
1610 |
|
---|
1611 | TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
|
---|
1612 | if (wp->flags & mask)
|
---|
1613 | cpu_watchpoint_remove_by_ref(env, wp);
|
---|
1614 | }
|
---|
1615 | }
|
---|
1616 |
|
---|
1617 | /* Add a breakpoint. */
|
---|
1618 | int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
|
---|
1619 | CPUBreakpoint **breakpoint)
|
---|
1620 | {
|
---|
1621 | #if defined(TARGET_HAS_ICE)
|
---|
1622 | CPUBreakpoint *bp;
|
---|
1623 |
|
---|
1624 | bp = qemu_malloc(sizeof(*bp));
|
---|
1625 |
|
---|
1626 | bp->pc = pc;
|
---|
1627 | bp->flags = flags;
|
---|
1628 |
|
---|
1629 | /* keep all GDB-injected breakpoints in front */
|
---|
1630 | if (flags & BP_GDB)
|
---|
1631 | TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
|
---|
1632 | else
|
---|
1633 | TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
|
---|
1634 |
|
---|
1635 | breakpoint_invalidate(env, pc);
|
---|
1636 |
|
---|
1637 | if (breakpoint)
|
---|
1638 | *breakpoint = bp;
|
---|
1639 | return 0;
|
---|
1640 | #else
|
---|
1641 | return -ENOSYS;
|
---|
1642 | #endif
|
---|
1643 | }
|
---|
1644 |
|
---|
1645 | /* Remove a specific breakpoint. */
|
---|
1646 | int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
|
---|
1647 | {
|
---|
1648 | #if defined(TARGET_HAS_ICE)
|
---|
1649 | CPUBreakpoint *bp;
|
---|
1650 |
|
---|
1651 | TAILQ_FOREACH(bp, &env->breakpoints, entry) {
|
---|
1652 | if (bp->pc == pc && bp->flags == flags) {
|
---|
1653 | cpu_breakpoint_remove_by_ref(env, bp);
|
---|
1654 | return 0;
|
---|
1655 | }
|
---|
1656 | }
|
---|
1657 | # ifndef VBOX
|
---|
1658 | return -ENOENT;
|
---|
1659 | # else
|
---|
1660 | return VERR_NOT_FOUND;
|
---|
1661 | # endif
|
---|
1662 | #else
|
---|
1663 | return -ENOSYS;
|
---|
1664 | #endif
|
---|
1665 | }
|
---|
1666 |
|
---|
1667 | /* Remove a specific breakpoint by reference. */
|
---|
1668 | void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
|
---|
1669 | {
|
---|
1670 | #if defined(TARGET_HAS_ICE)
|
---|
1671 | TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
|
---|
1672 |
|
---|
1673 | breakpoint_invalidate(env, breakpoint->pc);
|
---|
1674 |
|
---|
1675 | qemu_free(breakpoint);
|
---|
1676 | #endif
|
---|
1677 | }
|
---|
1678 |
|
---|
1679 | /* Remove all matching breakpoints. */
|
---|
1680 | void cpu_breakpoint_remove_all(CPUState *env, int mask)
|
---|
1681 | {
|
---|
1682 | #if defined(TARGET_HAS_ICE)
|
---|
1683 | CPUBreakpoint *bp, *next;
|
---|
1684 |
|
---|
1685 | TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
|
---|
1686 | if (bp->flags & mask)
|
---|
1687 | cpu_breakpoint_remove_by_ref(env, bp);
|
---|
1688 | }
|
---|
1689 | #endif
|
---|
1690 | }
|
---|
1691 |
|
---|
1692 | /* enable or disable single step mode. EXCP_DEBUG is returned by the
|
---|
1693 | CPU loop after each instruction */
|
---|
1694 | void cpu_single_step(CPUState *env, int enabled)
|
---|
1695 | {
|
---|
1696 | #if defined(TARGET_HAS_ICE)
|
---|
1697 | if (env->singlestep_enabled != enabled) {
|
---|
1698 | env->singlestep_enabled = enabled;
|
---|
1699 | if (kvm_enabled())
|
---|
1700 | kvm_update_guest_debug(env, 0);
|
---|
1701 | else {
|
---|
1702 | /* must flush all the translated code to avoid inconsistencies */
|
---|
1703 | /* XXX: only flush what is necessary */
|
---|
1704 | tb_flush(env);
|
---|
1705 | }
|
---|
1706 | }
|
---|
1707 | #endif
|
---|
1708 | }
|
---|
1709 |
|
---|
1710 | #ifndef VBOX
|
---|
1711 |
|
---|
1712 | /* enable or disable low levels log */
|
---|
1713 | void cpu_set_log(int log_flags)
|
---|
1714 | {
|
---|
1715 | loglevel = log_flags;
|
---|
1716 | if (loglevel && !logfile) {
|
---|
1717 | logfile = fopen(logfilename, log_append ? "a" : "w");
|
---|
1718 | if (!logfile) {
|
---|
1719 | perror(logfilename);
|
---|
1720 | _exit(1);
|
---|
1721 | }
|
---|
1722 | #if !defined(CONFIG_SOFTMMU)
|
---|
1723 | /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
|
---|
1724 | {
|
---|
1725 | static char logfile_buf[4096];
|
---|
1726 | setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
|
---|
1727 | }
|
---|
1728 | #else
|
---|
1729 | setvbuf(logfile, NULL, _IOLBF, 0);
|
---|
1730 | #endif
|
---|
1731 | log_append = 1;
|
---|
1732 | }
|
---|
1733 | if (!loglevel && logfile) {
|
---|
1734 | fclose(logfile);
|
---|
1735 | logfile = NULL;
|
---|
1736 | }
|
---|
1737 | }
|
---|
1738 |
|
---|
1739 | void cpu_set_log_filename(const char *filename)
|
---|
1740 | {
|
---|
1741 | logfilename = strdup(filename);
|
---|
1742 | if (logfile) {
|
---|
1743 | fclose(logfile);
|
---|
1744 | logfile = NULL;
|
---|
1745 | }
|
---|
1746 | cpu_set_log(loglevel);
|
---|
1747 | }
|
---|
1748 |
|
---|
1749 | #endif /* !VBOX */
|
---|
1750 |
|
---|
1751 | static void cpu_unlink_tb(CPUState *env)
|
---|
1752 | {
|
---|
1753 | #if defined(USE_NPTL)
|
---|
1754 | /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
|
---|
1755 | problem and hope the cpu will stop of its own accord. For userspace
|
---|
1756 | emulation this often isn't actually as bad as it sounds. Often
|
---|
1757 | signals are used primarily to interrupt blocking syscalls. */
|
---|
1758 | #else
|
---|
1759 | TranslationBlock *tb;
|
---|
1760 | static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
|
---|
1761 |
|
---|
1762 | tb = env->current_tb;
|
---|
1763 | /* if the cpu is currently executing code, we must unlink it and
|
---|
1764 | all the potentially executing TB */
|
---|
1765 | if (tb && !testandset(&interrupt_lock)) {
|
---|
1766 | env->current_tb = NULL;
|
---|
1767 | tb_reset_jump_recursive(tb);
|
---|
1768 | resetlock(&interrupt_lock);
|
---|
1769 | }
|
---|
1770 | #endif
|
---|
1771 | }
|
---|
1772 |
|
---|
1773 | /* mask must never be zero, except for A20 change call */
|
---|
1774 | void cpu_interrupt(CPUState *env, int mask)
|
---|
1775 | {
|
---|
1776 | int old_mask;
|
---|
1777 |
|
---|
1778 | old_mask = env->interrupt_request;
|
---|
1779 | #ifndef VBOX
|
---|
1780 | env->interrupt_request |= mask;
|
---|
1781 | #else /* VBOX */
|
---|
1782 | VM_ASSERT_EMT(env->pVM);
|
---|
1783 | ASMAtomicOrS32((int32_t volatile *)&env->interrupt_request, mask);
|
---|
1784 | #endif /* VBOX */
|
---|
1785 |
|
---|
1786 | #ifndef VBOX
|
---|
1787 | #ifndef CONFIG_USER_ONLY
|
---|
1788 | /*
|
---|
1789 | * If called from iothread context, wake the target cpu in
|
---|
1790 | * case its halted.
|
---|
1791 | */
|
---|
1792 | if (!qemu_cpu_self(env)) {
|
---|
1793 | qemu_cpu_kick(env);
|
---|
1794 | return;
|
---|
1795 | }
|
---|
1796 | #endif
|
---|
1797 | #endif /* !VBOX */
|
---|
1798 |
|
---|
1799 | if (use_icount) {
|
---|
1800 | env->icount_decr.u16.high = 0xffff;
|
---|
1801 | #ifndef CONFIG_USER_ONLY
|
---|
1802 | if (!can_do_io(env)
|
---|
1803 | && (mask & ~old_mask) != 0) {
|
---|
1804 | cpu_abort(env, "Raised interrupt while not in I/O function");
|
---|
1805 | }
|
---|
1806 | #endif
|
---|
1807 | } else {
|
---|
1808 | cpu_unlink_tb(env);
|
---|
1809 | }
|
---|
1810 | }
|
---|
1811 |
|
---|
1812 | void cpu_reset_interrupt(CPUState *env, int mask)
|
---|
1813 | {
|
---|
1814 | #ifdef VBOX
|
---|
1815 | /*
|
---|
1816 | * Note: the current implementation can be executed by another thread without problems; make sure this remains true
|
---|
1817 | * for future changes!
|
---|
1818 | */
|
---|
1819 | ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~mask);
|
---|
1820 | #else /* !VBOX */
|
---|
1821 | env->interrupt_request &= ~mask;
|
---|
1822 | #endif /* !VBOX */
|
---|
1823 | }
|
---|
1824 |
|
---|
1825 | void cpu_exit(CPUState *env)
|
---|
1826 | {
|
---|
1827 | env->exit_request = 1;
|
---|
1828 | cpu_unlink_tb(env);
|
---|
1829 | }
|
---|
1830 |
|
---|
1831 | #ifndef VBOX
|
---|
1832 | const CPULogItem cpu_log_items[] = {
|
---|
1833 | { CPU_LOG_TB_OUT_ASM, "out_asm",
|
---|
1834 | "show generated host assembly code for each compiled TB" },
|
---|
1835 | { CPU_LOG_TB_IN_ASM, "in_asm",
|
---|
1836 | "show target assembly code for each compiled TB" },
|
---|
1837 | { CPU_LOG_TB_OP, "op",
|
---|
1838 | "show micro ops for each compiled TB" },
|
---|
1839 | { CPU_LOG_TB_OP_OPT, "op_opt",
|
---|
1840 | "show micro ops "
|
---|
1841 | #ifdef TARGET_I386
|
---|
1842 | "before eflags optimization and "
|
---|
1843 | #endif
|
---|
1844 | "after liveness analysis" },
|
---|
1845 | { CPU_LOG_INT, "int",
|
---|
1846 | "show interrupts/exceptions in short format" },
|
---|
1847 | { CPU_LOG_EXEC, "exec",
|
---|
1848 | "show trace before each executed TB (lots of logs)" },
|
---|
1849 | { CPU_LOG_TB_CPU, "cpu",
|
---|
1850 | "show CPU state before block translation" },
|
---|
1851 | #ifdef TARGET_I386
|
---|
1852 | { CPU_LOG_PCALL, "pcall",
|
---|
1853 | "show protected mode far calls/returns/exceptions" },
|
---|
1854 | { CPU_LOG_RESET, "cpu_reset",
|
---|
1855 | "show CPU state before CPU resets" },
|
---|
1856 | #endif
|
---|
1857 | #ifdef DEBUG_IOPORT
|
---|
1858 | { CPU_LOG_IOPORT, "ioport",
|
---|
1859 | "show all i/o ports accesses" },
|
---|
1860 | #endif
|
---|
1861 | { 0, NULL, NULL },
|
---|
1862 | };
|
---|
1863 |
|
---|
1864 | static int cmp1(const char *s1, int n, const char *s2)
|
---|
1865 | {
|
---|
1866 | if (strlen(s2) != n)
|
---|
1867 | return 0;
|
---|
1868 | return memcmp(s1, s2, n) == 0;
|
---|
1869 | }
|
---|
1870 |
|
---|
1871 | /* takes a comma separated list of log masks. Return 0 if error. */
|
---|
1872 | int cpu_str_to_log_mask(const char *str)
|
---|
1873 | {
|
---|
1874 | const CPULogItem *item;
|
---|
1875 | int mask;
|
---|
1876 | const char *p, *p1;
|
---|
1877 |
|
---|
1878 | p = str;
|
---|
1879 | mask = 0;
|
---|
1880 | for(;;) {
|
---|
1881 | p1 = strchr(p, ',');
|
---|
1882 | if (!p1)
|
---|
1883 | p1 = p + strlen(p);
|
---|
1884 | if(cmp1(p,p1-p,"all")) {
|
---|
1885 | for(item = cpu_log_items; item->mask != 0; item++) {
|
---|
1886 | mask |= item->mask;
|
---|
1887 | }
|
---|
1888 | } else {
|
---|
1889 | for(item = cpu_log_items; item->mask != 0; item++) {
|
---|
1890 | if (cmp1(p, p1 - p, item->name))
|
---|
1891 | goto found;
|
---|
1892 | }
|
---|
1893 | return 0;
|
---|
1894 | }
|
---|
1895 | found:
|
---|
1896 | mask |= item->mask;
|
---|
1897 | if (*p1 != ',')
|
---|
1898 | break;
|
---|
1899 | p = p1 + 1;
|
---|
1900 | }
|
---|
1901 | return mask;
|
---|
1902 | }
|
---|
1903 | #endif /* !VBOX */
|
---|
1904 |
|
---|
1905 | #ifndef VBOX /* VBOX: we have our own routine. */
|
---|
1906 | void cpu_abort(CPUState *env, const char *fmt, ...)
|
---|
1907 | {
|
---|
1908 | va_list ap;
|
---|
1909 | va_list ap2;
|
---|
1910 |
|
---|
1911 | va_start(ap, fmt);
|
---|
1912 | va_copy(ap2, ap);
|
---|
1913 | fprintf(stderr, "qemu: fatal: ");
|
---|
1914 | vfprintf(stderr, fmt, ap);
|
---|
1915 | fprintf(stderr, "\n");
|
---|
1916 | #ifdef TARGET_I386
|
---|
1917 | cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
|
---|
1918 | #else
|
---|
1919 | cpu_dump_state(env, stderr, fprintf, 0);
|
---|
1920 | #endif
|
---|
1921 | if (qemu_log_enabled()) {
|
---|
1922 | qemu_log("qemu: fatal: ");
|
---|
1923 | qemu_log_vprintf(fmt, ap2);
|
---|
1924 | qemu_log("\n");
|
---|
1925 | #ifdef TARGET_I386
|
---|
1926 | log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
|
---|
1927 | #else
|
---|
1928 | log_cpu_state(env, 0);
|
---|
1929 | #endif
|
---|
1930 | qemu_log_flush();
|
---|
1931 | qemu_log_close();
|
---|
1932 | }
|
---|
1933 | va_end(ap2);
|
---|
1934 | va_end(ap);
|
---|
1935 | abort();
|
---|
1936 | }
|
---|
1937 | #endif /* !VBOX */
|
---|
1938 |
|
---|
1939 | #ifndef VBOX
|
---|
1940 | CPUState *cpu_copy(CPUState *env)
|
---|
1941 | {
|
---|
1942 | CPUState *new_env = cpu_init(env->cpu_model_str);
|
---|
1943 | CPUState *next_cpu = new_env->next_cpu;
|
---|
1944 | int cpu_index = new_env->cpu_index;
|
---|
1945 | #if defined(TARGET_HAS_ICE)
|
---|
1946 | CPUBreakpoint *bp;
|
---|
1947 | CPUWatchpoint *wp;
|
---|
1948 | #endif
|
---|
1949 |
|
---|
1950 | memcpy(new_env, env, sizeof(CPUState));
|
---|
1951 |
|
---|
1952 | /* Preserve chaining and index. */
|
---|
1953 | new_env->next_cpu = next_cpu;
|
---|
1954 | new_env->cpu_index = cpu_index;
|
---|
1955 |
|
---|
1956 | /* Clone all break/watchpoints.
|
---|
1957 | Note: Once we support ptrace with hw-debug register access, make sure
|
---|
1958 | BP_CPU break/watchpoints are handled correctly on clone. */
|
---|
1959 | TAILQ_INIT(&env->breakpoints);
|
---|
1960 | TAILQ_INIT(&env->watchpoints);
|
---|
1961 | #if defined(TARGET_HAS_ICE)
|
---|
1962 | TAILQ_FOREACH(bp, &env->breakpoints, entry) {
|
---|
1963 | cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
|
---|
1964 | }
|
---|
1965 | TAILQ_FOREACH(wp, &env->watchpoints, entry) {
|
---|
1966 | cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
|
---|
1967 | wp->flags, NULL);
|
---|
1968 | }
|
---|
1969 | #endif
|
---|
1970 |
|
---|
1971 | return new_env;
|
---|
1972 | }
|
---|
1973 | #endif /* !VBOX */
|
---|
1974 |
|
---|
1975 | #if !defined(CONFIG_USER_ONLY)
|
---|
1976 |
|
---|
1977 | static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
|
---|
1978 | {
|
---|
1979 | unsigned int i;
|
---|
1980 |
|
---|
1981 | /* Discard jump cache entries for any tb which might potentially
|
---|
1982 | overlap the flushed page. */
|
---|
1983 | i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
|
---|
1984 | memset (&env->tb_jmp_cache[i], 0,
|
---|
1985 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
|
---|
1986 |
|
---|
1987 | i = tb_jmp_cache_hash_page(addr);
|
---|
1988 | memset (&env->tb_jmp_cache[i], 0,
|
---|
1989 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
|
---|
1990 |
|
---|
1991 | #ifdef VBOX
|
---|
1992 | /* inform raw mode about TLB page flush */
|
---|
1993 | remR3FlushPage(env, addr);
|
---|
1994 | #endif /* VBOX */
|
---|
1995 | }
|
---|
1996 |
|
---|
1997 | static CPUTLBEntry s_cputlb_empty_entry = {
|
---|
1998 | .addr_read = -1,
|
---|
1999 | .addr_write = -1,
|
---|
2000 | .addr_code = -1,
|
---|
2001 | .addend = -1,
|
---|
2002 | };
|
---|
2003 |
|
---|
2004 | /* NOTE: if flush_global is true, also flush global entries (not
|
---|
2005 | implemented yet) */
|
---|
2006 | void tlb_flush(CPUState *env, int flush_global)
|
---|
2007 | {
|
---|
2008 | int i;
|
---|
2009 |
|
---|
2010 | #if defined(DEBUG_TLB)
|
---|
2011 | printf("tlb_flush:\n");
|
---|
2012 | #endif
|
---|
2013 | /* must reset current TB so that interrupts cannot modify the
|
---|
2014 | links while we are modifying them */
|
---|
2015 | env->current_tb = NULL;
|
---|
2016 |
|
---|
2017 | for(i = 0; i < CPU_TLB_SIZE; i++) {
|
---|
2018 | int mmu_idx;
|
---|
2019 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
---|
2020 | env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
|
---|
2021 | }
|
---|
2022 | }
|
---|
2023 |
|
---|
2024 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
|
---|
2025 |
|
---|
2026 | #ifdef CONFIG_KQEMU
|
---|
2027 | if (env->kqemu_enabled) {
|
---|
2028 | kqemu_flush(env, flush_global);
|
---|
2029 | }
|
---|
2030 | #endif
|
---|
2031 | #ifdef VBOX
|
---|
2032 | /* inform raw mode about TLB flush */
|
---|
2033 | remR3FlushTLB(env, flush_global);
|
---|
2034 | #endif
|
---|
2035 | tlb_flush_count++;
|
---|
2036 | }
|
---|
2037 |
|
---|
2038 | static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
|
---|
2039 | {
|
---|
2040 | if (addr == (tlb_entry->addr_read &
|
---|
2041 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
|
---|
2042 | addr == (tlb_entry->addr_write &
|
---|
2043 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
|
---|
2044 | addr == (tlb_entry->addr_code &
|
---|
2045 | (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
|
---|
2046 | *tlb_entry = s_cputlb_empty_entry;
|
---|
2047 | }
|
---|
2048 | }
|
---|
2049 |
|
---|
2050 | void tlb_flush_page(CPUState *env, target_ulong addr)
|
---|
2051 | {
|
---|
2052 | int i;
|
---|
2053 | int mmu_idx;
|
---|
2054 |
|
---|
2055 | #if defined(DEBUG_TLB)
|
---|
2056 | printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
|
---|
2057 | #endif
|
---|
2058 | /* must reset current TB so that interrupts cannot modify the
|
---|
2059 | links while we are modifying them */
|
---|
2060 | env->current_tb = NULL;
|
---|
2061 |
|
---|
2062 | addr &= TARGET_PAGE_MASK;
|
---|
2063 | i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
---|
2064 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
|
---|
2065 | tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
|
---|
2066 |
|
---|
2067 | tlb_flush_jmp_cache(env, addr);
|
---|
2068 |
|
---|
2069 | #ifdef CONFIG_KQEMU
|
---|
2070 | if (env->kqemu_enabled) {
|
---|
2071 | kqemu_flush_page(env, addr);
|
---|
2072 | }
|
---|
2073 | #endif
|
---|
2074 | }
|
---|
2075 |
|
---|
2076 | /* update the TLBs so that writes to code in the virtual page 'addr'
|
---|
2077 | can be detected */
|
---|
2078 | static void tlb_protect_code(ram_addr_t ram_addr)
|
---|
2079 | {
|
---|
2080 | cpu_physical_memory_reset_dirty(ram_addr,
|
---|
2081 | ram_addr + TARGET_PAGE_SIZE,
|
---|
2082 | CODE_DIRTY_FLAG);
|
---|
2083 | #if defined(VBOX) && defined(REM_MONITOR_CODE_PAGES)
|
---|
2084 | /** @todo Retest this? This function has changed... */
|
---|
2085 | remR3ProtectCode(cpu_single_env, ram_addr);
|
---|
2086 | #endif
|
---|
2087 | }
|
---|
2088 |
|
---|
2089 | /* update the TLB so that writes in physical page 'phys_addr' are no longer
|
---|
2090 | tested for self modifying code */
|
---|
2091 | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
|
---|
2092 | target_ulong vaddr)
|
---|
2093 | {
|
---|
2094 | #ifdef VBOX
|
---|
2095 | if (RT_LIKELY((ram_addr >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
|
---|
2096 | #endif
|
---|
2097 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
|
---|
2098 | }
|
---|
2099 |
|
---|
2100 | static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
|
---|
2101 | unsigned long start, unsigned long length)
|
---|
2102 | {
|
---|
2103 | unsigned long addr;
|
---|
2104 |
|
---|
2105 | #ifdef VBOX
|
---|
2106 | if (start & 3)
|
---|
2107 | return;
|
---|
2108 | #endif
|
---|
2109 | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
|
---|
2110 | addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
|
---|
2111 | if ((addr - start) < length) {
|
---|
2112 | tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
|
---|
2113 | }
|
---|
2114 | }
|
---|
2115 | }
|
---|
2116 |
|
---|
2117 | /* Note: start and end must be within the same ram block. */
|
---|
2118 | void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
|
---|
2119 | int dirty_flags)
|
---|
2120 | {
|
---|
2121 | CPUState *env;
|
---|
2122 | unsigned long length, start1;
|
---|
2123 | int i, mask, len;
|
---|
2124 | uint8_t *p;
|
---|
2125 |
|
---|
2126 | start &= TARGET_PAGE_MASK;
|
---|
2127 | end = TARGET_PAGE_ALIGN(end);
|
---|
2128 |
|
---|
2129 | length = end - start;
|
---|
2130 | if (length == 0)
|
---|
2131 | return;
|
---|
2132 | len = length >> TARGET_PAGE_BITS;
|
---|
2133 | #ifdef CONFIG_KQEMU
|
---|
2134 | /* XXX: should not depend on cpu context */
|
---|
2135 | env = first_cpu;
|
---|
2136 | if (env->kqemu_enabled) {
|
---|
2137 | ram_addr_t addr;
|
---|
2138 | addr = start;
|
---|
2139 | for(i = 0; i < len; i++) {
|
---|
2140 | kqemu_set_notdirty(env, addr);
|
---|
2141 | addr += TARGET_PAGE_SIZE;
|
---|
2142 | }
|
---|
2143 | }
|
---|
2144 | #endif
|
---|
2145 | mask = ~dirty_flags;
|
---|
2146 | p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
|
---|
2147 | #ifdef VBOX
|
---|
2148 | if (RT_LIKELY((start >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
|
---|
2149 | #endif
|
---|
2150 | for(i = 0; i < len; i++)
|
---|
2151 | p[i] &= mask;
|
---|
2152 |
|
---|
2153 | /* we modify the TLB cache so that the dirty bit will be set again
|
---|
2154 | when accessing the range */
|
---|
2155 | #if defined(VBOX) && defined(REM_PHYS_ADDR_IN_TLB)
|
---|
2156 | start1 = start;
|
---|
2157 | #elif !defined(VBOX)
|
---|
2158 | start1 = (unsigned long)qemu_get_ram_ptr(start);
|
---|
2159 | /* Chek that we don't span multiple blocks - this breaks the
|
---|
2160 | address comparisons below. */
|
---|
2161 | if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
|
---|
2162 | != (end - 1) - start) {
|
---|
2163 | abort();
|
---|
2164 | }
|
---|
2165 | #else
|
---|
2166 | start1 = (unsigned long)remR3TlbGCPhys2Ptr(first_cpu, start, 1 /*fWritable*/); /** @todo page replacing (sharing or read only) may cause trouble, fix interface/whatever. */
|
---|
2167 | #endif
|
---|
2168 |
|
---|
2169 | for(env = first_cpu; env != NULL; env = env->next_cpu) {
|
---|
2170 | int mmu_idx;
|
---|
2171 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
---|
2172 | for(i = 0; i < CPU_TLB_SIZE; i++)
|
---|
2173 | tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
|
---|
2174 | start1, length);
|
---|
2175 | }
|
---|
2176 | }
|
---|
2177 | }
|
---|
2178 |
|
---|
2179 | #ifndef VBOX
|
---|
2180 | int cpu_physical_memory_set_dirty_tracking(int enable)
|
---|
2181 | {
|
---|
2182 | in_migration = enable;
|
---|
2183 | if (kvm_enabled()) {
|
---|
2184 | return kvm_set_migration_log(enable);
|
---|
2185 | }
|
---|
2186 | return 0;
|
---|
2187 | }
|
---|
2188 |
|
---|
2189 | int cpu_physical_memory_get_dirty_tracking(void)
|
---|
2190 | {
|
---|
2191 | return in_migration;
|
---|
2192 | }
|
---|
2193 | #endif /* !VBOX */
|
---|
2194 |
|
---|
2195 | int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
|
---|
2196 | target_phys_addr_t end_addr)
|
---|
2197 | {
|
---|
2198 | int ret = 0;
|
---|
2199 |
|
---|
2200 | if (kvm_enabled())
|
---|
2201 | ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
|
---|
2202 | return ret;
|
---|
2203 | }
|
---|
2204 |
|
---|
2205 | #if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
2206 | DECLINLINE(void) tlb_update_dirty(CPUTLBEntry *tlb_entry, target_phys_addr_t phys_addend)
|
---|
2207 | #else
|
---|
2208 | static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
|
---|
2209 | #endif
|
---|
2210 | {
|
---|
2211 | ram_addr_t ram_addr;
|
---|
2212 | void *p;
|
---|
2213 |
|
---|
2214 | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
|
---|
2215 | #if defined(VBOX) && defined(REM_PHYS_ADDR_IN_TLB)
|
---|
2216 | ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
|
---|
2217 | #elif !defined(VBOX)
|
---|
2218 | p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
|
---|
2219 | + tlb_entry->addend);
|
---|
2220 | ram_addr = qemu_ram_addr_from_host(p);
|
---|
2221 | #else
|
---|
2222 | Assert(phys_addend != -1);
|
---|
2223 | ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + phys_addend;
|
---|
2224 | #endif
|
---|
2225 | if (!cpu_physical_memory_is_dirty(ram_addr)) {
|
---|
2226 | tlb_entry->addr_write |= TLB_NOTDIRTY;
|
---|
2227 | }
|
---|
2228 | }
|
---|
2229 | }
|
---|
2230 |
|
---|
2231 | /* update the TLB according to the current state of the dirty bits */
|
---|
2232 | void cpu_tlb_update_dirty(CPUState *env)
|
---|
2233 | {
|
---|
2234 | int i;
|
---|
2235 | int mmu_idx;
|
---|
2236 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
---|
2237 | for(i = 0; i < CPU_TLB_SIZE; i++)
|
---|
2238 | #if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
2239 | tlb_update_dirty(&env->tlb_table[mmu_idx][i], env->phys_addends[mmu_idx][i]);
|
---|
2240 | #else
|
---|
2241 | tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
|
---|
2242 | #endif
|
---|
2243 | }
|
---|
2244 | }
|
---|
2245 |
|
---|
2246 | static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
|
---|
2247 | {
|
---|
2248 | if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
|
---|
2249 | tlb_entry->addr_write = vaddr;
|
---|
2250 | }
|
---|
2251 |
|
---|
2252 | /* update the TLB corresponding to virtual page vaddr
|
---|
2253 | so that it is no longer dirty */
|
---|
2254 | static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
|
---|
2255 | {
|
---|
2256 | int i;
|
---|
2257 | int mmu_idx;
|
---|
2258 |
|
---|
2259 | vaddr &= TARGET_PAGE_MASK;
|
---|
2260 | i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
---|
2261 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
|
---|
2262 | tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
|
---|
2263 | }
|
---|
2264 |
|
---|
2265 | /* add a new TLB entry. At most one entry for a given virtual address
|
---|
2266 | is permitted. Return 0 if OK or 2 if the page could not be mapped
|
---|
2267 | (can only happen in non SOFTMMU mode for I/O pages or pages
|
---|
2268 | conflicting with the host address space). */
|
---|
2269 | int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
|
---|
2270 | target_phys_addr_t paddr, int prot,
|
---|
2271 | int mmu_idx, int is_softmmu)
|
---|
2272 | {
|
---|
2273 | PhysPageDesc *p;
|
---|
2274 | unsigned long pd;
|
---|
2275 | unsigned int index;
|
---|
2276 | target_ulong address;
|
---|
2277 | target_ulong code_address;
|
---|
2278 | target_phys_addr_t addend;
|
---|
2279 | int ret;
|
---|
2280 | CPUTLBEntry *te;
|
---|
2281 | CPUWatchpoint *wp;
|
---|
2282 | target_phys_addr_t iotlb;
|
---|
2283 | #if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
2284 | int read_mods = 0, write_mods = 0, code_mods = 0;
|
---|
2285 | #endif
|
---|
2286 |
|
---|
2287 | p = phys_page_find(paddr >> TARGET_PAGE_BITS);
|
---|
2288 | if (!p) {
|
---|
2289 | pd = IO_MEM_UNASSIGNED;
|
---|
2290 | } else {
|
---|
2291 | pd = p->phys_offset;
|
---|
2292 | }
|
---|
2293 | #if defined(DEBUG_TLB)
|
---|
2294 | printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
|
---|
2295 | vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
|
---|
2296 | #endif
|
---|
2297 |
|
---|
2298 | ret = 0;
|
---|
2299 | address = vaddr;
|
---|
2300 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
|
---|
2301 | /* IO memory case (romd handled later) */
|
---|
2302 | address |= TLB_MMIO;
|
---|
2303 | }
|
---|
2304 | #if defined(VBOX) && defined(REM_PHYS_ADDR_IN_TLB)
|
---|
2305 | addend = pd & TARGET_PAGE_MASK;
|
---|
2306 | #elif !defined(VBOX)
|
---|
2307 | addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
|
---|
2308 | #else
|
---|
2309 | /** @todo this is racing the phys_page_find call above since it may register
|
---|
2310 | * a new chunk of memory... */
|
---|
2311 | addend = (unsigned long)remR3TlbGCPhys2Ptr(env, pd & TARGET_PAGE_MASK, !!(prot & PAGE_WRITE));
|
---|
2312 | #endif
|
---|
2313 |
|
---|
2314 | if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
|
---|
2315 | /* Normal RAM. */
|
---|
2316 | iotlb = pd & TARGET_PAGE_MASK;
|
---|
2317 | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
|
---|
2318 | iotlb |= IO_MEM_NOTDIRTY;
|
---|
2319 | else
|
---|
2320 | iotlb |= IO_MEM_ROM;
|
---|
2321 | } else {
|
---|
2322 | /* IO handlers are currently passed a physical address.
|
---|
2323 | It would be nice to pass an offset from the base address
|
---|
2324 | of that region. This would avoid having to special case RAM,
|
---|
2325 | and avoid full address decoding in every device.
|
---|
2326 | We can't use the high bits of pd for this because
|
---|
2327 | IO_MEM_ROMD uses these as a ram address. */
|
---|
2328 | iotlb = (pd & ~TARGET_PAGE_MASK);
|
---|
2329 | #ifndef VBOX
|
---|
2330 | if (p) {
|
---|
2331 | #else
|
---|
2332 | if ( p->phys_offset
|
---|
2333 | && (pd & ~TARGET_PAGE_MASK) != env->pVM->rem.s.iMMIOMemType
|
---|
2334 | && (pd & ~TARGET_PAGE_MASK) != env->pVM->rem.s.iHandlerMemType) {
|
---|
2335 | #endif
|
---|
2336 | iotlb += p->region_offset;
|
---|
2337 | } else {
|
---|
2338 | iotlb += paddr;
|
---|
2339 | }
|
---|
2340 | }
|
---|
2341 |
|
---|
2342 | code_address = address;
|
---|
2343 | #if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
2344 |
|
---|
2345 | if (addend & 0x3)
|
---|
2346 | {
|
---|
2347 | if (addend & 0x2)
|
---|
2348 | {
|
---|
2349 | /* catch write */
|
---|
2350 | if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM)
|
---|
2351 | write_mods |= TLB_MMIO;
|
---|
2352 | }
|
---|
2353 | else if (addend & 0x1)
|
---|
2354 | {
|
---|
2355 | /* catch all */
|
---|
2356 | if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM)
|
---|
2357 | {
|
---|
2358 | read_mods |= TLB_MMIO;
|
---|
2359 | write_mods |= TLB_MMIO;
|
---|
2360 | code_mods |= TLB_MMIO;
|
---|
2361 | }
|
---|
2362 | }
|
---|
2363 | if ((iotlb & ~TARGET_PAGE_MASK) == 0)
|
---|
2364 | iotlb = env->pVM->rem.s.iHandlerMemType + paddr;
|
---|
2365 | addend &= ~(target_ulong)0x3;
|
---|
2366 | }
|
---|
2367 |
|
---|
2368 | #endif
|
---|
2369 | /* Make accesses to pages with watchpoints go via the
|
---|
2370 | watchpoint trap routines. */
|
---|
2371 | TAILQ_FOREACH(wp, &env->watchpoints, entry) {
|
---|
2372 | if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
|
---|
2373 | iotlb = io_mem_watch + paddr;
|
---|
2374 | /* TODO: The memory case can be optimized by not trapping
|
---|
2375 | reads of pages with a write breakpoint. */
|
---|
2376 | address |= TLB_MMIO;
|
---|
2377 | }
|
---|
2378 | }
|
---|
2379 |
|
---|
2380 | index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
---|
2381 | env->iotlb[mmu_idx][index] = iotlb - vaddr;
|
---|
2382 | te = &env->tlb_table[mmu_idx][index];
|
---|
2383 | te->addend = addend - vaddr;
|
---|
2384 | if (prot & PAGE_READ) {
|
---|
2385 | te->addr_read = address;
|
---|
2386 | } else {
|
---|
2387 | te->addr_read = -1;
|
---|
2388 | }
|
---|
2389 |
|
---|
2390 | if (prot & PAGE_EXEC) {
|
---|
2391 | te->addr_code = code_address;
|
---|
2392 | } else {
|
---|
2393 | te->addr_code = -1;
|
---|
2394 | }
|
---|
2395 | if (prot & PAGE_WRITE) {
|
---|
2396 | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
|
---|
2397 | (pd & IO_MEM_ROMD)) {
|
---|
2398 | /* Write access calls the I/O callback. */
|
---|
2399 | te->addr_write = address | TLB_MMIO;
|
---|
2400 | } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
|
---|
2401 | !cpu_physical_memory_is_dirty(pd)) {
|
---|
2402 | te->addr_write = address | TLB_NOTDIRTY;
|
---|
2403 | } else {
|
---|
2404 | te->addr_write = address;
|
---|
2405 | }
|
---|
2406 | } else {
|
---|
2407 | te->addr_write = -1;
|
---|
2408 | }
|
---|
2409 |
|
---|
2410 | #if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
2411 | if (prot & PAGE_READ)
|
---|
2412 | te->addr_read |= read_mods;
|
---|
2413 | if (prot & PAGE_EXEC)
|
---|
2414 | te->addr_code |= code_mods;
|
---|
2415 | if (prot & PAGE_WRITE)
|
---|
2416 | te->addr_write |= write_mods;
|
---|
2417 |
|
---|
2418 | env->phys_addends[mmu_idx][index] = (pd & TARGET_PAGE_MASK)- vaddr;
|
---|
2419 | #endif
|
---|
2420 |
|
---|
2421 | #ifdef VBOX
|
---|
2422 | /* inform raw mode about TLB page change */
|
---|
2423 | remR3FlushPage(env, vaddr);
|
---|
2424 | #endif
|
---|
2425 | return ret;
|
---|
2426 | }
|
---|
2427 |
|
---|
2428 | #else
|
---|
2429 |
|
---|
2430 | void tlb_flush(CPUState *env, int flush_global)
|
---|
2431 | {
|
---|
2432 | }
|
---|
2433 |
|
---|
2434 | void tlb_flush_page(CPUState *env, target_ulong addr)
|
---|
2435 | {
|
---|
2436 | }
|
---|
2437 |
|
---|
2438 | int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
|
---|
2439 | target_phys_addr_t paddr, int prot,
|
---|
2440 | int mmu_idx, int is_softmmu)
|
---|
2441 | {
|
---|
2442 | return 0;
|
---|
2443 | }
|
---|
2444 |
|
---|
2445 | #ifndef VBOX
|
---|
2446 |
|
---|
2447 | /*
|
---|
2448 | * Walks guest process memory "regions" one by one
|
---|
2449 | * and calls callback function 'fn' for each region.
|
---|
2450 | */
|
---|
2451 | int walk_memory_regions(void *priv,
|
---|
2452 | int (*fn)(void *, unsigned long, unsigned long, unsigned long))
|
---|
2453 | {
|
---|
2454 | unsigned long start, end;
|
---|
2455 | PageDesc *p = NULL;
|
---|
2456 | int i, j, prot, prot1;
|
---|
2457 | int rc = 0;
|
---|
2458 |
|
---|
2459 | start = end = -1;
|
---|
2460 | prot = 0;
|
---|
2461 |
|
---|
2462 | for (i = 0; i <= L1_SIZE; i++) {
|
---|
2463 | p = (i < L1_SIZE) ? l1_map[i] : NULL;
|
---|
2464 | for (j = 0; j < L2_SIZE; j++) {
|
---|
2465 | prot1 = (p == NULL) ? 0 : p[j].flags;
|
---|
2466 | /*
|
---|
2467 | * "region" is one continuous chunk of memory
|
---|
2468 | * that has same protection flags set.
|
---|
2469 | */
|
---|
2470 | if (prot1 != prot) {
|
---|
2471 | end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
|
---|
2472 | if (start != -1) {
|
---|
2473 | rc = (*fn)(priv, start, end, prot);
|
---|
2474 | /* callback can stop iteration by returning != 0 */
|
---|
2475 | if (rc != 0)
|
---|
2476 | return (rc);
|
---|
2477 | }
|
---|
2478 | if (prot1 != 0)
|
---|
2479 | start = end;
|
---|
2480 | else
|
---|
2481 | start = -1;
|
---|
2482 | prot = prot1;
|
---|
2483 | }
|
---|
2484 | if (p == NULL)
|
---|
2485 | break;
|
---|
2486 | }
|
---|
2487 | }
|
---|
2488 | return (rc);
|
---|
2489 | }
|
---|
2490 |
|
---|
2491 | static int dump_region(void *priv, unsigned long start,
|
---|
2492 | unsigned long end, unsigned long prot)
|
---|
2493 | {
|
---|
2494 | FILE *f = (FILE *)priv;
|
---|
2495 |
|
---|
2496 | (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
|
---|
2497 | start, end, end - start,
|
---|
2498 | ((prot & PAGE_READ) ? 'r' : '-'),
|
---|
2499 | ((prot & PAGE_WRITE) ? 'w' : '-'),
|
---|
2500 | ((prot & PAGE_EXEC) ? 'x' : '-'));
|
---|
2501 |
|
---|
2502 | return (0);
|
---|
2503 | }
|
---|
2504 |
|
---|
2505 | /* dump memory mappings */
|
---|
2506 | void page_dump(FILE *f)
|
---|
2507 | {
|
---|
2508 | (void) fprintf(f, "%-8s %-8s %-8s %s\n",
|
---|
2509 | "start", "end", "size", "prot");
|
---|
2510 | walk_memory_regions(f, dump_region);
|
---|
2511 | }
|
---|
2512 |
|
---|
2513 | #endif /* !VBOX */
|
---|
2514 |
|
---|
2515 | int page_get_flags(target_ulong address)
|
---|
2516 | {
|
---|
2517 | PageDesc *p;
|
---|
2518 |
|
---|
2519 | p = page_find(address >> TARGET_PAGE_BITS);
|
---|
2520 | if (!p)
|
---|
2521 | return 0;
|
---|
2522 | return p->flags;
|
---|
2523 | }
|
---|
2524 |
|
---|
2525 | /* modify the flags of a page and invalidate the code if
|
---|
2526 | necessary. The flag PAGE_WRITE_ORG is positioned automatically
|
---|
2527 | depending on PAGE_WRITE */
|
---|
2528 | void page_set_flags(target_ulong start, target_ulong end, int flags)
|
---|
2529 | {
|
---|
2530 | PageDesc *p;
|
---|
2531 | target_ulong addr;
|
---|
2532 |
|
---|
2533 | /* mmap_lock should already be held. */
|
---|
2534 | start = start & TARGET_PAGE_MASK;
|
---|
2535 | end = TARGET_PAGE_ALIGN(end);
|
---|
2536 | if (flags & PAGE_WRITE)
|
---|
2537 | flags |= PAGE_WRITE_ORG;
|
---|
2538 | #ifdef VBOX
|
---|
2539 | AssertMsgFailed(("We shouldn't be here, and if we should, we must have an env to do the proper locking!\n"));
|
---|
2540 | #endif
|
---|
2541 | for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
|
---|
2542 | p = page_find_alloc(addr >> TARGET_PAGE_BITS);
|
---|
2543 | /* We may be called for host regions that are outside guest
|
---|
2544 | address space. */
|
---|
2545 | if (!p)
|
---|
2546 | return;
|
---|
2547 | /* if the write protection is set, then we invalidate the code
|
---|
2548 | inside */
|
---|
2549 | if (!(p->flags & PAGE_WRITE) &&
|
---|
2550 | (flags & PAGE_WRITE) &&
|
---|
2551 | p->first_tb) {
|
---|
2552 | tb_invalidate_phys_page(addr, 0, NULL);
|
---|
2553 | }
|
---|
2554 | p->flags = flags;
|
---|
2555 | }
|
---|
2556 | }
|
---|
2557 |
|
---|
2558 | int page_check_range(target_ulong start, target_ulong len, int flags)
|
---|
2559 | {
|
---|
2560 | PageDesc *p;
|
---|
2561 | target_ulong end;
|
---|
2562 | target_ulong addr;
|
---|
2563 |
|
---|
2564 | if (start + len < start)
|
---|
2565 | /* we've wrapped around */
|
---|
2566 | return -1;
|
---|
2567 |
|
---|
2568 | end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
|
---|
2569 | start = start & TARGET_PAGE_MASK;
|
---|
2570 |
|
---|
2571 | for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
|
---|
2572 | p = page_find(addr >> TARGET_PAGE_BITS);
|
---|
2573 | if( !p )
|
---|
2574 | return -1;
|
---|
2575 | if( !(p->flags & PAGE_VALID) )
|
---|
2576 | return -1;
|
---|
2577 |
|
---|
2578 | if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
|
---|
2579 | return -1;
|
---|
2580 | if (flags & PAGE_WRITE) {
|
---|
2581 | if (!(p->flags & PAGE_WRITE_ORG))
|
---|
2582 | return -1;
|
---|
2583 | /* unprotect the page if it was put read-only because it
|
---|
2584 | contains translated code */
|
---|
2585 | if (!(p->flags & PAGE_WRITE)) {
|
---|
2586 | if (!page_unprotect(addr, 0, NULL))
|
---|
2587 | return -1;
|
---|
2588 | }
|
---|
2589 | return 0;
|
---|
2590 | }
|
---|
2591 | }
|
---|
2592 | return 0;
|
---|
2593 | }
|
---|
2594 |
|
---|
2595 | /* called from signal handler: invalidate the code and unprotect the
|
---|
2596 | page. Return TRUE if the fault was successfully handled. */
|
---|
2597 | int page_unprotect(target_ulong address, unsigned long pc, void *puc)
|
---|
2598 | {
|
---|
2599 | unsigned int page_index, prot, pindex;
|
---|
2600 | PageDesc *p, *p1;
|
---|
2601 | target_ulong host_start, host_end, addr;
|
---|
2602 |
|
---|
2603 | /* Technically this isn't safe inside a signal handler. However we
|
---|
2604 | know this only ever happens in a synchronous SEGV handler, so in
|
---|
2605 | practice it seems to be ok. */
|
---|
2606 | mmap_lock();
|
---|
2607 |
|
---|
2608 | host_start = address & qemu_host_page_mask;
|
---|
2609 | page_index = host_start >> TARGET_PAGE_BITS;
|
---|
2610 | p1 = page_find(page_index);
|
---|
2611 | if (!p1) {
|
---|
2612 | mmap_unlock();
|
---|
2613 | return 0;
|
---|
2614 | }
|
---|
2615 | host_end = host_start + qemu_host_page_size;
|
---|
2616 | p = p1;
|
---|
2617 | prot = 0;
|
---|
2618 | for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
|
---|
2619 | prot |= p->flags;
|
---|
2620 | p++;
|
---|
2621 | }
|
---|
2622 | /* if the page was really writable, then we change its
|
---|
2623 | protection back to writable */
|
---|
2624 | if (prot & PAGE_WRITE_ORG) {
|
---|
2625 | pindex = (address - host_start) >> TARGET_PAGE_BITS;
|
---|
2626 | if (!(p1[pindex].flags & PAGE_WRITE)) {
|
---|
2627 | mprotect((void *)g2h(host_start), qemu_host_page_size,
|
---|
2628 | (prot & PAGE_BITS) | PAGE_WRITE);
|
---|
2629 | p1[pindex].flags |= PAGE_WRITE;
|
---|
2630 | /* and since the content will be modified, we must invalidate
|
---|
2631 | the corresponding translated code. */
|
---|
2632 | tb_invalidate_phys_page(address, pc, puc);
|
---|
2633 | #ifdef DEBUG_TB_CHECK
|
---|
2634 | tb_invalidate_check(address);
|
---|
2635 | #endif
|
---|
2636 | mmap_unlock();
|
---|
2637 | return 1;
|
---|
2638 | }
|
---|
2639 | }
|
---|
2640 | mmap_unlock();
|
---|
2641 | return 0;
|
---|
2642 | }
|
---|
2643 |
|
---|
2644 | static inline void tlb_set_dirty(CPUState *env,
|
---|
2645 | unsigned long addr, target_ulong vaddr)
|
---|
2646 | {
|
---|
2647 | }
|
---|
2648 | #endif /* defined(CONFIG_USER_ONLY) */
|
---|
2649 |
|
---|
2650 | #if !defined(CONFIG_USER_ONLY)
|
---|
2651 |
|
---|
2652 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
|
---|
2653 | ram_addr_t memory, ram_addr_t region_offset);
|
---|
2654 | static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
|
---|
2655 | ram_addr_t orig_memory, ram_addr_t region_offset);
|
---|
2656 | #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
|
---|
2657 | need_subpage) \
|
---|
2658 | do { \
|
---|
2659 | if (addr > start_addr) \
|
---|
2660 | start_addr2 = 0; \
|
---|
2661 | else { \
|
---|
2662 | start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
|
---|
2663 | if (start_addr2 > 0) \
|
---|
2664 | need_subpage = 1; \
|
---|
2665 | } \
|
---|
2666 | \
|
---|
2667 | if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
|
---|
2668 | end_addr2 = TARGET_PAGE_SIZE - 1; \
|
---|
2669 | else { \
|
---|
2670 | end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
|
---|
2671 | if (end_addr2 < TARGET_PAGE_SIZE - 1) \
|
---|
2672 | need_subpage = 1; \
|
---|
2673 | } \
|
---|
2674 | } while (0)
|
---|
2675 |
|
---|
2676 | /* register physical memory. 'size' must be a multiple of the target
|
---|
2677 | page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
|
---|
2678 | io memory page. The address used when calling the IO function is
|
---|
2679 | the offset from the start of the region, plus region_offset. Both
|
---|
2680 | start_addr and region_offset are rounded down to a page boundary
|
---|
2681 | before calculating this offset. This should not be a problem unless
|
---|
2682 | the low bits of start_addr and region_offset differ. */
|
---|
2683 | void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
|
---|
2684 | ram_addr_t size,
|
---|
2685 | ram_addr_t phys_offset,
|
---|
2686 | ram_addr_t region_offset)
|
---|
2687 | {
|
---|
2688 | target_phys_addr_t addr, end_addr;
|
---|
2689 | PhysPageDesc *p;
|
---|
2690 | CPUState *env;
|
---|
2691 | ram_addr_t orig_size = size;
|
---|
2692 | void *subpage;
|
---|
2693 |
|
---|
2694 | #ifdef CONFIG_KQEMU
|
---|
2695 | /* XXX: should not depend on cpu context */
|
---|
2696 | env = first_cpu;
|
---|
2697 | if (env->kqemu_enabled) {
|
---|
2698 | kqemu_set_phys_mem(start_addr, size, phys_offset);
|
---|
2699 | }
|
---|
2700 | #endif
|
---|
2701 | if (kvm_enabled())
|
---|
2702 | kvm_set_phys_mem(start_addr, size, phys_offset);
|
---|
2703 |
|
---|
2704 | if (phys_offset == IO_MEM_UNASSIGNED) {
|
---|
2705 | region_offset = start_addr;
|
---|
2706 | }
|
---|
2707 | region_offset &= TARGET_PAGE_MASK;
|
---|
2708 | size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
|
---|
2709 | end_addr = start_addr + (target_phys_addr_t)size;
|
---|
2710 | for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
|
---|
2711 | p = phys_page_find(addr >> TARGET_PAGE_BITS);
|
---|
2712 | if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
|
---|
2713 | ram_addr_t orig_memory = p->phys_offset;
|
---|
2714 | target_phys_addr_t start_addr2, end_addr2;
|
---|
2715 | int need_subpage = 0;
|
---|
2716 |
|
---|
2717 | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
|
---|
2718 | need_subpage);
|
---|
2719 | if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
|
---|
2720 | if (!(orig_memory & IO_MEM_SUBPAGE)) {
|
---|
2721 | subpage = subpage_init((addr & TARGET_PAGE_MASK),
|
---|
2722 | &p->phys_offset, orig_memory,
|
---|
2723 | p->region_offset);
|
---|
2724 | } else {
|
---|
2725 | subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
|
---|
2726 | >> IO_MEM_SHIFT];
|
---|
2727 | }
|
---|
2728 | subpage_register(subpage, start_addr2, end_addr2, phys_offset,
|
---|
2729 | region_offset);
|
---|
2730 | p->region_offset = 0;
|
---|
2731 | } else {
|
---|
2732 | p->phys_offset = phys_offset;
|
---|
2733 | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
|
---|
2734 | (phys_offset & IO_MEM_ROMD))
|
---|
2735 | phys_offset += TARGET_PAGE_SIZE;
|
---|
2736 | }
|
---|
2737 | } else {
|
---|
2738 | p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
|
---|
2739 | p->phys_offset = phys_offset;
|
---|
2740 | p->region_offset = region_offset;
|
---|
2741 | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
|
---|
2742 | (phys_offset & IO_MEM_ROMD)) {
|
---|
2743 | phys_offset += TARGET_PAGE_SIZE;
|
---|
2744 | } else {
|
---|
2745 | target_phys_addr_t start_addr2, end_addr2;
|
---|
2746 | int need_subpage = 0;
|
---|
2747 |
|
---|
2748 | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
|
---|
2749 | end_addr2, need_subpage);
|
---|
2750 |
|
---|
2751 | if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
|
---|
2752 | subpage = subpage_init((addr & TARGET_PAGE_MASK),
|
---|
2753 | &p->phys_offset, IO_MEM_UNASSIGNED,
|
---|
2754 | addr & TARGET_PAGE_MASK);
|
---|
2755 | subpage_register(subpage, start_addr2, end_addr2,
|
---|
2756 | phys_offset, region_offset);
|
---|
2757 | p->region_offset = 0;
|
---|
2758 | }
|
---|
2759 | }
|
---|
2760 | }
|
---|
2761 | region_offset += TARGET_PAGE_SIZE;
|
---|
2762 | }
|
---|
2763 |
|
---|
2764 | /* since each CPU stores ram addresses in its TLB cache, we must
|
---|
2765 | reset the modified entries */
|
---|
2766 | /* XXX: slow ! */
|
---|
2767 | for(env = first_cpu; env != NULL; env = env->next_cpu) {
|
---|
2768 | tlb_flush(env, 1);
|
---|
2769 | }
|
---|
2770 | }
|
---|
2771 |
|
---|
2772 | /* XXX: temporary until new memory mapping API */
|
---|
2773 | ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
|
---|
2774 | {
|
---|
2775 | PhysPageDesc *p;
|
---|
2776 |
|
---|
2777 | p = phys_page_find(addr >> TARGET_PAGE_BITS);
|
---|
2778 | if (!p)
|
---|
2779 | return IO_MEM_UNASSIGNED;
|
---|
2780 | return p->phys_offset;
|
---|
2781 | }
|
---|
2782 |
|
---|
2783 | #ifndef VBOX
|
---|
2784 | void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
|
---|
2785 | {
|
---|
2786 | if (kvm_enabled())
|
---|
2787 | kvm_coalesce_mmio_region(addr, size);
|
---|
2788 | }
|
---|
2789 |
|
---|
2790 | void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
|
---|
2791 | {
|
---|
2792 | if (kvm_enabled())
|
---|
2793 | kvm_uncoalesce_mmio_region(addr, size);
|
---|
2794 | }
|
---|
2795 |
|
---|
2796 | #ifdef CONFIG_KQEMU
|
---|
2797 | /* XXX: better than nothing */
|
---|
2798 | static ram_addr_t kqemu_ram_alloc(ram_addr_t size)
|
---|
2799 | {
|
---|
2800 | ram_addr_t addr;
|
---|
2801 | if ((last_ram_offset + size) > kqemu_phys_ram_size) {
|
---|
2802 | fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
|
---|
2803 | (uint64_t)size, (uint64_t)kqemu_phys_ram_size);
|
---|
2804 | abort();
|
---|
2805 | }
|
---|
2806 | addr = last_ram_offset;
|
---|
2807 | last_ram_offset = TARGET_PAGE_ALIGN(last_ram_offset + size);
|
---|
2808 | return addr;
|
---|
2809 | }
|
---|
2810 | #endif
|
---|
2811 |
|
---|
2812 | ram_addr_t qemu_ram_alloc(ram_addr_t size)
|
---|
2813 | {
|
---|
2814 | RAMBlock *new_block;
|
---|
2815 |
|
---|
2816 | #ifdef CONFIG_KQEMU
|
---|
2817 | if (kqemu_phys_ram_base) {
|
---|
2818 | return kqemu_ram_alloc(size);
|
---|
2819 | }
|
---|
2820 | #endif
|
---|
2821 |
|
---|
2822 | size = TARGET_PAGE_ALIGN(size);
|
---|
2823 | new_block = qemu_malloc(sizeof(*new_block));
|
---|
2824 |
|
---|
2825 | new_block->host = qemu_vmalloc(size);
|
---|
2826 | new_block->offset = last_ram_offset;
|
---|
2827 | new_block->length = size;
|
---|
2828 |
|
---|
2829 | new_block->next = ram_blocks;
|
---|
2830 | ram_blocks = new_block;
|
---|
2831 |
|
---|
2832 | phys_ram_dirty = qemu_realloc(phys_ram_dirty,
|
---|
2833 | (last_ram_offset + size) >> TARGET_PAGE_BITS);
|
---|
2834 | memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
|
---|
2835 | 0xff, size >> TARGET_PAGE_BITS);
|
---|
2836 |
|
---|
2837 | last_ram_offset += size;
|
---|
2838 |
|
---|
2839 | if (kvm_enabled())
|
---|
2840 | kvm_setup_guest_memory(new_block->host, size);
|
---|
2841 |
|
---|
2842 | return new_block->offset;
|
---|
2843 | }
|
---|
2844 |
|
---|
2845 | void qemu_ram_free(ram_addr_t addr)
|
---|
2846 | {
|
---|
2847 | /* TODO: implement this. */
|
---|
2848 | }
|
---|
2849 |
|
---|
2850 | /* Return a host pointer to ram allocated with qemu_ram_alloc.
|
---|
2851 | With the exception of the softmmu code in this file, this should
|
---|
2852 | only be used for local memory (e.g. video ram) that the device owns,
|
---|
2853 | and knows it isn't going to access beyond the end of the block.
|
---|
2854 |
|
---|
2855 | It should not be used for general purpose DMA.
|
---|
2856 | Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
|
---|
2857 | */
|
---|
2858 | void *qemu_get_ram_ptr(ram_addr_t addr)
|
---|
2859 | {
|
---|
2860 | RAMBlock *prev;
|
---|
2861 | RAMBlock **prevp;
|
---|
2862 | RAMBlock *block;
|
---|
2863 |
|
---|
2864 | #ifdef CONFIG_KQEMU
|
---|
2865 | if (kqemu_phys_ram_base) {
|
---|
2866 | return kqemu_phys_ram_base + addr;
|
---|
2867 | }
|
---|
2868 | #endif
|
---|
2869 |
|
---|
2870 | prev = NULL;
|
---|
2871 | prevp = &ram_blocks;
|
---|
2872 | block = ram_blocks;
|
---|
2873 | while (block && (block->offset > addr
|
---|
2874 | || block->offset + block->length <= addr)) {
|
---|
2875 | if (prev)
|
---|
2876 | prevp = &prev->next;
|
---|
2877 | prev = block;
|
---|
2878 | block = block->next;
|
---|
2879 | }
|
---|
2880 | if (!block) {
|
---|
2881 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
|
---|
2882 | abort();
|
---|
2883 | }
|
---|
2884 | /* Move this entry to to start of the list. */
|
---|
2885 | if (prev) {
|
---|
2886 | prev->next = block->next;
|
---|
2887 | block->next = *prevp;
|
---|
2888 | *prevp = block;
|
---|
2889 | }
|
---|
2890 | return block->host + (addr - block->offset);
|
---|
2891 | }
|
---|
2892 |
|
---|
2893 | /* Some of the softmmu routines need to translate from a host pointer
|
---|
2894 | (typically a TLB entry) back to a ram offset. */
|
---|
2895 | ram_addr_t qemu_ram_addr_from_host(void *ptr)
|
---|
2896 | {
|
---|
2897 | RAMBlock *prev;
|
---|
2898 | RAMBlock **prevp;
|
---|
2899 | RAMBlock *block;
|
---|
2900 | uint8_t *host = ptr;
|
---|
2901 |
|
---|
2902 | #ifdef CONFIG_KQEMU
|
---|
2903 | if (kqemu_phys_ram_base) {
|
---|
2904 | return host - kqemu_phys_ram_base;
|
---|
2905 | }
|
---|
2906 | #endif
|
---|
2907 |
|
---|
2908 | prev = NULL;
|
---|
2909 | prevp = &ram_blocks;
|
---|
2910 | block = ram_blocks;
|
---|
2911 | while (block && (block->host > host
|
---|
2912 | || block->host + block->length <= host)) {
|
---|
2913 | if (prev)
|
---|
2914 | prevp = &prev->next;
|
---|
2915 | prev = block;
|
---|
2916 | block = block->next;
|
---|
2917 | }
|
---|
2918 | if (!block) {
|
---|
2919 | fprintf(stderr, "Bad ram pointer %p\n", ptr);
|
---|
2920 | abort();
|
---|
2921 | }
|
---|
2922 | return block->offset + (host - block->host);
|
---|
2923 | }
|
---|
2924 |
|
---|
2925 | #endif /* !VBOX */
|
---|
2926 |
|
---|
2927 | static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
|
---|
2928 | {
|
---|
2929 | #ifdef DEBUG_UNASSIGNED
|
---|
2930 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
|
---|
2931 | #endif
|
---|
2932 | #if defined(TARGET_SPARC)
|
---|
2933 | do_unassigned_access(addr, 0, 0, 0, 1);
|
---|
2934 | #endif
|
---|
2935 | return 0;
|
---|
2936 | }
|
---|
2937 |
|
---|
2938 | static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
|
---|
2939 | {
|
---|
2940 | #ifdef DEBUG_UNASSIGNED
|
---|
2941 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
|
---|
2942 | #endif
|
---|
2943 | #if defined(TARGET_SPARC)
|
---|
2944 | do_unassigned_access(addr, 0, 0, 0, 2);
|
---|
2945 | #endif
|
---|
2946 | return 0;
|
---|
2947 | }
|
---|
2948 |
|
---|
2949 | static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
|
---|
2950 | {
|
---|
2951 | #ifdef DEBUG_UNASSIGNED
|
---|
2952 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
|
---|
2953 | #endif
|
---|
2954 | #if defined(TARGET_SPARC)
|
---|
2955 | do_unassigned_access(addr, 0, 0, 0, 4);
|
---|
2956 | #endif
|
---|
2957 | return 0;
|
---|
2958 | }
|
---|
2959 |
|
---|
2960 | static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
|
---|
2961 | {
|
---|
2962 | #ifdef DEBUG_UNASSIGNED
|
---|
2963 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
|
---|
2964 | #endif
|
---|
2965 | #if defined(TARGET_SPARC)
|
---|
2966 | do_unassigned_access(addr, 1, 0, 0, 1);
|
---|
2967 | #endif
|
---|
2968 | }
|
---|
2969 |
|
---|
2970 | static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
|
---|
2971 | {
|
---|
2972 | #ifdef DEBUG_UNASSIGNED
|
---|
2973 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
|
---|
2974 | #endif
|
---|
2975 | #if defined(TARGET_SPARC)
|
---|
2976 | do_unassigned_access(addr, 1, 0, 0, 2);
|
---|
2977 | #endif
|
---|
2978 | }
|
---|
2979 |
|
---|
2980 | static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
|
---|
2981 | {
|
---|
2982 | #ifdef DEBUG_UNASSIGNED
|
---|
2983 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
|
---|
2984 | #endif
|
---|
2985 | #if defined(TARGET_SPARC)
|
---|
2986 | do_unassigned_access(addr, 1, 0, 0, 4);
|
---|
2987 | #endif
|
---|
2988 | }
|
---|
2989 |
|
---|
2990 | static CPUReadMemoryFunc *unassigned_mem_read[3] = {
|
---|
2991 | unassigned_mem_readb,
|
---|
2992 | unassigned_mem_readw,
|
---|
2993 | unassigned_mem_readl,
|
---|
2994 | };
|
---|
2995 |
|
---|
2996 | static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
|
---|
2997 | unassigned_mem_writeb,
|
---|
2998 | unassigned_mem_writew,
|
---|
2999 | unassigned_mem_writel,
|
---|
3000 | };
|
---|
3001 |
|
---|
3002 | static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
|
---|
3003 | uint32_t val)
|
---|
3004 | {
|
---|
3005 | int dirty_flags;
|
---|
3006 | #ifdef VBOX
|
---|
3007 | if (RT_UNLIKELY((ram_addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
|
---|
3008 | dirty_flags = 0xff;
|
---|
3009 | else
|
---|
3010 | #endif /* VBOX */
|
---|
3011 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
|
---|
3012 | if (!(dirty_flags & CODE_DIRTY_FLAG)) {
|
---|
3013 | #if !defined(CONFIG_USER_ONLY)
|
---|
3014 | tb_invalidate_phys_page_fast(ram_addr, 1);
|
---|
3015 | # ifdef VBOX
|
---|
3016 | if (RT_UNLIKELY((ram_addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
|
---|
3017 | dirty_flags = 0xff;
|
---|
3018 | else
|
---|
3019 | # endif /* VBOX */
|
---|
3020 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
|
---|
3021 | #endif
|
---|
3022 | }
|
---|
3023 | #if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
3024 | remR3PhysWriteU8(ram_addr, val);
|
---|
3025 | #else
|
---|
3026 | stb_p(qemu_get_ram_ptr(ram_addr), val);
|
---|
3027 | #endif
|
---|
3028 | #ifdef CONFIG_KQEMU
|
---|
3029 | if (cpu_single_env->kqemu_enabled &&
|
---|
3030 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
|
---|
3031 | kqemu_modify_page(cpu_single_env, ram_addr);
|
---|
3032 | #endif
|
---|
3033 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
|
---|
3034 | #ifdef VBOX
|
---|
3035 | if (RT_LIKELY((ram_addr >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
|
---|
3036 | #endif /* !VBOX */
|
---|
3037 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
|
---|
3038 | /* we remove the notdirty callback only if the code has been
|
---|
3039 | flushed */
|
---|
3040 | if (dirty_flags == 0xff)
|
---|
3041 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
|
---|
3042 | }
|
---|
3043 |
|
---|
3044 | static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
|
---|
3045 | uint32_t val)
|
---|
3046 | {
|
---|
3047 | int dirty_flags;
|
---|
3048 | #ifdef VBOX
|
---|
3049 | if (RT_UNLIKELY((ram_addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
|
---|
3050 | dirty_flags = 0xff;
|
---|
3051 | else
|
---|
3052 | #endif /* VBOX */
|
---|
3053 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
|
---|
3054 | if (!(dirty_flags & CODE_DIRTY_FLAG)) {
|
---|
3055 | #if !defined(CONFIG_USER_ONLY)
|
---|
3056 | tb_invalidate_phys_page_fast(ram_addr, 2);
|
---|
3057 | # ifdef VBOX
|
---|
3058 | if (RT_UNLIKELY((ram_addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
|
---|
3059 | dirty_flags = 0xff;
|
---|
3060 | else
|
---|
3061 | # endif /* VBOX */
|
---|
3062 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
|
---|
3063 | #endif
|
---|
3064 | }
|
---|
3065 | #if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
3066 | remR3PhysWriteU16(ram_addr, val);
|
---|
3067 | #else
|
---|
3068 | stw_p(qemu_get_ram_ptr(ram_addr), val);
|
---|
3069 | #endif
|
---|
3070 | #ifdef CONFIG_KQEMU
|
---|
3071 | if (cpu_single_env->kqemu_enabled &&
|
---|
3072 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
|
---|
3073 | kqemu_modify_page(cpu_single_env, ram_addr);
|
---|
3074 | #endif
|
---|
3075 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
|
---|
3076 | #ifdef VBOX
|
---|
3077 | if (RT_LIKELY((ram_addr >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
|
---|
3078 | #endif
|
---|
3079 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
|
---|
3080 | /* we remove the notdirty callback only if the code has been
|
---|
3081 | flushed */
|
---|
3082 | if (dirty_flags == 0xff)
|
---|
3083 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
|
---|
3084 | }
|
---|
3085 |
|
---|
3086 | static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
|
---|
3087 | uint32_t val)
|
---|
3088 | {
|
---|
3089 | int dirty_flags;
|
---|
3090 | #ifdef VBOX
|
---|
3091 | if (RT_UNLIKELY((ram_addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
|
---|
3092 | dirty_flags = 0xff;
|
---|
3093 | else
|
---|
3094 | #endif /* VBOX */
|
---|
3095 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
|
---|
3096 | if (!(dirty_flags & CODE_DIRTY_FLAG)) {
|
---|
3097 | #if !defined(CONFIG_USER_ONLY)
|
---|
3098 | tb_invalidate_phys_page_fast(ram_addr, 4);
|
---|
3099 | # ifdef VBOX
|
---|
3100 | if (RT_UNLIKELY((ram_addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
|
---|
3101 | dirty_flags = 0xff;
|
---|
3102 | else
|
---|
3103 | # endif /* VBOX */
|
---|
3104 | dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
|
---|
3105 | #endif
|
---|
3106 | }
|
---|
3107 | #if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
3108 | remR3PhysWriteU32(ram_addr, val);
|
---|
3109 | #else
|
---|
3110 | stl_p(qemu_get_ram_ptr(ram_addr), val);
|
---|
3111 | #endif
|
---|
3112 | #ifdef CONFIG_KQEMU
|
---|
3113 | if (cpu_single_env->kqemu_enabled &&
|
---|
3114 | (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
|
---|
3115 | kqemu_modify_page(cpu_single_env, ram_addr);
|
---|
3116 | #endif
|
---|
3117 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
|
---|
3118 | #ifdef VBOX
|
---|
3119 | if (RT_LIKELY((ram_addr >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
|
---|
3120 | #endif
|
---|
3121 | phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
|
---|
3122 | /* we remove the notdirty callback only if the code has been
|
---|
3123 | flushed */
|
---|
3124 | if (dirty_flags == 0xff)
|
---|
3125 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
|
---|
3126 | }
|
---|
3127 |
|
---|
3128 | static CPUReadMemoryFunc *error_mem_read[3] = {
|
---|
3129 | NULL, /* never used */
|
---|
3130 | NULL, /* never used */
|
---|
3131 | NULL, /* never used */
|
---|
3132 | };
|
---|
3133 |
|
---|
3134 | static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
|
---|
3135 | notdirty_mem_writeb,
|
---|
3136 | notdirty_mem_writew,
|
---|
3137 | notdirty_mem_writel,
|
---|
3138 | };
|
---|
3139 |
|
---|
3140 | /* Generate a debug exception if a watchpoint has been hit. */
|
---|
3141 | static void check_watchpoint(int offset, int len_mask, int flags)
|
---|
3142 | {
|
---|
3143 | CPUState *env = cpu_single_env;
|
---|
3144 | target_ulong pc, cs_base;
|
---|
3145 | TranslationBlock *tb;
|
---|
3146 | target_ulong vaddr;
|
---|
3147 | CPUWatchpoint *wp;
|
---|
3148 | int cpu_flags;
|
---|
3149 |
|
---|
3150 | if (env->watchpoint_hit) {
|
---|
3151 | /* We re-entered the check after replacing the TB. Now raise
|
---|
3152 | * the debug interrupt so that is will trigger after the
|
---|
3153 | * current instruction. */
|
---|
3154 | cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
|
---|
3155 | return;
|
---|
3156 | }
|
---|
3157 | vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
|
---|
3158 | TAILQ_FOREACH(wp, &env->watchpoints, entry) {
|
---|
3159 | if ((vaddr == (wp->vaddr & len_mask) ||
|
---|
3160 | (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
|
---|
3161 | wp->flags |= BP_WATCHPOINT_HIT;
|
---|
3162 | if (!env->watchpoint_hit) {
|
---|
3163 | env->watchpoint_hit = wp;
|
---|
3164 | tb = tb_find_pc(env->mem_io_pc);
|
---|
3165 | if (!tb) {
|
---|
3166 | cpu_abort(env, "check_watchpoint: could not find TB for "
|
---|
3167 | "pc=%p", (void *)env->mem_io_pc);
|
---|
3168 | }
|
---|
3169 | cpu_restore_state(tb, env, env->mem_io_pc, NULL);
|
---|
3170 | tb_phys_invalidate(tb, -1);
|
---|
3171 | if (wp->flags & BP_STOP_BEFORE_ACCESS) {
|
---|
3172 | env->exception_index = EXCP_DEBUG;
|
---|
3173 | } else {
|
---|
3174 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
|
---|
3175 | tb_gen_code(env, pc, cs_base, cpu_flags, 1);
|
---|
3176 | }
|
---|
3177 | cpu_resume_from_signal(env, NULL);
|
---|
3178 | }
|
---|
3179 | } else {
|
---|
3180 | wp->flags &= ~BP_WATCHPOINT_HIT;
|
---|
3181 | }
|
---|
3182 | }
|
---|
3183 | }
|
---|
3184 |
|
---|
3185 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
|
---|
3186 | so these check for a hit then pass through to the normal out-of-line
|
---|
3187 | phys routines. */
|
---|
3188 | static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
|
---|
3189 | {
|
---|
3190 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
|
---|
3191 | return ldub_phys(addr);
|
---|
3192 | }
|
---|
3193 |
|
---|
3194 | static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
|
---|
3195 | {
|
---|
3196 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
|
---|
3197 | return lduw_phys(addr);
|
---|
3198 | }
|
---|
3199 |
|
---|
3200 | static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
|
---|
3201 | {
|
---|
3202 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
|
---|
3203 | return ldl_phys(addr);
|
---|
3204 | }
|
---|
3205 |
|
---|
3206 | static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
|
---|
3207 | uint32_t val)
|
---|
3208 | {
|
---|
3209 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
|
---|
3210 | stb_phys(addr, val);
|
---|
3211 | }
|
---|
3212 |
|
---|
3213 | static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
|
---|
3214 | uint32_t val)
|
---|
3215 | {
|
---|
3216 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
|
---|
3217 | stw_phys(addr, val);
|
---|
3218 | }
|
---|
3219 |
|
---|
3220 | static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
|
---|
3221 | uint32_t val)
|
---|
3222 | {
|
---|
3223 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
|
---|
3224 | stl_phys(addr, val);
|
---|
3225 | }
|
---|
3226 |
|
---|
3227 | static CPUReadMemoryFunc *watch_mem_read[3] = {
|
---|
3228 | watch_mem_readb,
|
---|
3229 | watch_mem_readw,
|
---|
3230 | watch_mem_readl,
|
---|
3231 | };
|
---|
3232 |
|
---|
3233 | static CPUWriteMemoryFunc *watch_mem_write[3] = {
|
---|
3234 | watch_mem_writeb,
|
---|
3235 | watch_mem_writew,
|
---|
3236 | watch_mem_writel,
|
---|
3237 | };
|
---|
3238 |
|
---|
3239 | static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
|
---|
3240 | unsigned int len)
|
---|
3241 | {
|
---|
3242 | uint32_t ret;
|
---|
3243 | unsigned int idx;
|
---|
3244 |
|
---|
3245 | idx = SUBPAGE_IDX(addr);
|
---|
3246 | #if defined(DEBUG_SUBPAGE)
|
---|
3247 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
|
---|
3248 | mmio, len, addr, idx);
|
---|
3249 | #endif
|
---|
3250 | ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
|
---|
3251 | addr + mmio->region_offset[idx][0][len]);
|
---|
3252 |
|
---|
3253 | return ret;
|
---|
3254 | }
|
---|
3255 |
|
---|
3256 | static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
|
---|
3257 | uint32_t value, unsigned int len)
|
---|
3258 | {
|
---|
3259 | unsigned int idx;
|
---|
3260 |
|
---|
3261 | idx = SUBPAGE_IDX(addr);
|
---|
3262 | #if defined(DEBUG_SUBPAGE)
|
---|
3263 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
|
---|
3264 | mmio, len, addr, idx, value);
|
---|
3265 | #endif
|
---|
3266 | (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
|
---|
3267 | addr + mmio->region_offset[idx][1][len],
|
---|
3268 | value);
|
---|
3269 | }
|
---|
3270 |
|
---|
3271 | static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
|
---|
3272 | {
|
---|
3273 | #if defined(DEBUG_SUBPAGE)
|
---|
3274 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
|
---|
3275 | #endif
|
---|
3276 |
|
---|
3277 | return subpage_readlen(opaque, addr, 0);
|
---|
3278 | }
|
---|
3279 |
|
---|
3280 | static void subpage_writeb (void *opaque, target_phys_addr_t addr,
|
---|
3281 | uint32_t value)
|
---|
3282 | {
|
---|
3283 | #if defined(DEBUG_SUBPAGE)
|
---|
3284 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
|
---|
3285 | #endif
|
---|
3286 | subpage_writelen(opaque, addr, value, 0);
|
---|
3287 | }
|
---|
3288 |
|
---|
3289 | static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
|
---|
3290 | {
|
---|
3291 | #if defined(DEBUG_SUBPAGE)
|
---|
3292 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
|
---|
3293 | #endif
|
---|
3294 |
|
---|
3295 | return subpage_readlen(opaque, addr, 1);
|
---|
3296 | }
|
---|
3297 |
|
---|
3298 | static void subpage_writew (void *opaque, target_phys_addr_t addr,
|
---|
3299 | uint32_t value)
|
---|
3300 | {
|
---|
3301 | #if defined(DEBUG_SUBPAGE)
|
---|
3302 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
|
---|
3303 | #endif
|
---|
3304 | subpage_writelen(opaque, addr, value, 1);
|
---|
3305 | }
|
---|
3306 |
|
---|
3307 | static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
|
---|
3308 | {
|
---|
3309 | #if defined(DEBUG_SUBPAGE)
|
---|
3310 | printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
|
---|
3311 | #endif
|
---|
3312 |
|
---|
3313 | return subpage_readlen(opaque, addr, 2);
|
---|
3314 | }
|
---|
3315 |
|
---|
3316 | static void subpage_writel (void *opaque,
|
---|
3317 | target_phys_addr_t addr, uint32_t value)
|
---|
3318 | {
|
---|
3319 | #if defined(DEBUG_SUBPAGE)
|
---|
3320 | printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
|
---|
3321 | #endif
|
---|
3322 | subpage_writelen(opaque, addr, value, 2);
|
---|
3323 | }
|
---|
3324 |
|
---|
3325 | static CPUReadMemoryFunc *subpage_read[] = {
|
---|
3326 | &subpage_readb,
|
---|
3327 | &subpage_readw,
|
---|
3328 | &subpage_readl,
|
---|
3329 | };
|
---|
3330 |
|
---|
3331 | static CPUWriteMemoryFunc *subpage_write[] = {
|
---|
3332 | &subpage_writeb,
|
---|
3333 | &subpage_writew,
|
---|
3334 | &subpage_writel,
|
---|
3335 | };
|
---|
3336 |
|
---|
3337 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
|
---|
3338 | ram_addr_t memory, ram_addr_t region_offset)
|
---|
3339 | {
|
---|
3340 | int idx, eidx;
|
---|
3341 | unsigned int i;
|
---|
3342 |
|
---|
3343 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
|
---|
3344 | return -1;
|
---|
3345 | idx = SUBPAGE_IDX(start);
|
---|
3346 | eidx = SUBPAGE_IDX(end);
|
---|
3347 | #if defined(DEBUG_SUBPAGE)
|
---|
3348 | printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
|
---|
3349 | mmio, start, end, idx, eidx, memory);
|
---|
3350 | #endif
|
---|
3351 | memory >>= IO_MEM_SHIFT;
|
---|
3352 | for (; idx <= eidx; idx++) {
|
---|
3353 | for (i = 0; i < 4; i++) {
|
---|
3354 | if (io_mem_read[memory][i]) {
|
---|
3355 | mmio->mem_read[idx][i] = &io_mem_read[memory][i];
|
---|
3356 | mmio->opaque[idx][0][i] = io_mem_opaque[memory];
|
---|
3357 | mmio->region_offset[idx][0][i] = region_offset;
|
---|
3358 | }
|
---|
3359 | if (io_mem_write[memory][i]) {
|
---|
3360 | mmio->mem_write[idx][i] = &io_mem_write[memory][i];
|
---|
3361 | mmio->opaque[idx][1][i] = io_mem_opaque[memory];
|
---|
3362 | mmio->region_offset[idx][1][i] = region_offset;
|
---|
3363 | }
|
---|
3364 | }
|
---|
3365 | }
|
---|
3366 |
|
---|
3367 | return 0;
|
---|
3368 | }
|
---|
3369 |
|
---|
3370 | static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
|
---|
3371 | ram_addr_t orig_memory, ram_addr_t region_offset)
|
---|
3372 | {
|
---|
3373 | subpage_t *mmio;
|
---|
3374 | int subpage_memory;
|
---|
3375 |
|
---|
3376 | mmio = qemu_mallocz(sizeof(subpage_t));
|
---|
3377 |
|
---|
3378 | mmio->base = base;
|
---|
3379 | subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
|
---|
3380 | #if defined(DEBUG_SUBPAGE)
|
---|
3381 | printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
|
---|
3382 | mmio, base, TARGET_PAGE_SIZE, subpage_memory);
|
---|
3383 | #endif
|
---|
3384 | *phys = subpage_memory | IO_MEM_SUBPAGE;
|
---|
3385 | subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
|
---|
3386 | region_offset);
|
---|
3387 |
|
---|
3388 | return mmio;
|
---|
3389 | }
|
---|
3390 |
|
---|
3391 | static int get_free_io_mem_idx(void)
|
---|
3392 | {
|
---|
3393 | int i;
|
---|
3394 |
|
---|
3395 | for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
|
---|
3396 | if (!io_mem_used[i]) {
|
---|
3397 | io_mem_used[i] = 1;
|
---|
3398 | return i;
|
---|
3399 | }
|
---|
3400 |
|
---|
3401 | return -1;
|
---|
3402 | }
|
---|
3403 |
|
---|
3404 | /* mem_read and mem_write are arrays of functions containing the
|
---|
3405 | function to access byte (index 0), word (index 1) and dword (index
|
---|
3406 | 2). Functions can be omitted with a NULL function pointer.
|
---|
3407 | If io_index is non zero, the corresponding io zone is
|
---|
3408 | modified. If it is zero, a new io zone is allocated. The return
|
---|
3409 | value can be used with cpu_register_physical_memory(). (-1) is
|
---|
3410 | returned if error. */
|
---|
3411 | static int cpu_register_io_memory_fixed(int io_index,
|
---|
3412 | CPUReadMemoryFunc **mem_read,
|
---|
3413 | CPUWriteMemoryFunc **mem_write,
|
---|
3414 | void *opaque)
|
---|
3415 | {
|
---|
3416 | int i, subwidth = 0;
|
---|
3417 |
|
---|
3418 | if (io_index <= 0) {
|
---|
3419 | io_index = get_free_io_mem_idx();
|
---|
3420 | if (io_index == -1)
|
---|
3421 | return io_index;
|
---|
3422 | } else {
|
---|
3423 | io_index >>= IO_MEM_SHIFT;
|
---|
3424 | if (io_index >= IO_MEM_NB_ENTRIES)
|
---|
3425 | return -1;
|
---|
3426 | }
|
---|
3427 |
|
---|
3428 | for(i = 0;i < 3; i++) {
|
---|
3429 | if (!mem_read[i] || !mem_write[i])
|
---|
3430 | subwidth = IO_MEM_SUBWIDTH;
|
---|
3431 | io_mem_read[io_index][i] = mem_read[i];
|
---|
3432 | io_mem_write[io_index][i] = mem_write[i];
|
---|
3433 | }
|
---|
3434 | io_mem_opaque[io_index] = opaque;
|
---|
3435 | return (io_index << IO_MEM_SHIFT) | subwidth;
|
---|
3436 | }
|
---|
3437 |
|
---|
3438 | int cpu_register_io_memory(CPUReadMemoryFunc **mem_read,
|
---|
3439 | CPUWriteMemoryFunc **mem_write,
|
---|
3440 | void *opaque)
|
---|
3441 | {
|
---|
3442 | return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
|
---|
3443 | }
|
---|
3444 |
|
---|
3445 | void cpu_unregister_io_memory(int io_table_address)
|
---|
3446 | {
|
---|
3447 | int i;
|
---|
3448 | int io_index = io_table_address >> IO_MEM_SHIFT;
|
---|
3449 |
|
---|
3450 | for (i=0;i < 3; i++) {
|
---|
3451 | io_mem_read[io_index][i] = unassigned_mem_read[i];
|
---|
3452 | io_mem_write[io_index][i] = unassigned_mem_write[i];
|
---|
3453 | }
|
---|
3454 | io_mem_opaque[io_index] = NULL;
|
---|
3455 | io_mem_used[io_index] = 0;
|
---|
3456 | }
|
---|
3457 |
|
---|
3458 | static void io_mem_init(void)
|
---|
3459 | {
|
---|
3460 | int i;
|
---|
3461 |
|
---|
3462 | cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
|
---|
3463 | cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
|
---|
3464 | cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
|
---|
3465 | for (i=0; i<5; i++)
|
---|
3466 | io_mem_used[i] = 1;
|
---|
3467 |
|
---|
3468 | io_mem_watch = cpu_register_io_memory(watch_mem_read,
|
---|
3469 | watch_mem_write, NULL);
|
---|
3470 | #ifdef CONFIG_KQEMU
|
---|
3471 | if (kqemu_phys_ram_base) {
|
---|
3472 | /* alloc dirty bits array */
|
---|
3473 | phys_ram_dirty = qemu_vmalloc(kqemu_phys_ram_size >> TARGET_PAGE_BITS);
|
---|
3474 | memset(phys_ram_dirty, 0xff, kqemu_phys_ram_size >> TARGET_PAGE_BITS);
|
---|
3475 | }
|
---|
3476 | #endif
|
---|
3477 | }
|
---|
3478 |
|
---|
3479 | #endif /* !defined(CONFIG_USER_ONLY) */
|
---|
3480 |
|
---|
3481 | /* physical memory access (slow version, mainly for debug) */
|
---|
3482 | #if defined(CONFIG_USER_ONLY)
|
---|
3483 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
|
---|
3484 | int len, int is_write)
|
---|
3485 | {
|
---|
3486 | int l, flags;
|
---|
3487 | target_ulong page;
|
---|
3488 | void * p;
|
---|
3489 |
|
---|
3490 | while (len > 0) {
|
---|
3491 | page = addr & TARGET_PAGE_MASK;
|
---|
3492 | l = (page + TARGET_PAGE_SIZE) - addr;
|
---|
3493 | if (l > len)
|
---|
3494 | l = len;
|
---|
3495 | flags = page_get_flags(page);
|
---|
3496 | if (!(flags & PAGE_VALID))
|
---|
3497 | return;
|
---|
3498 | if (is_write) {
|
---|
3499 | if (!(flags & PAGE_WRITE))
|
---|
3500 | return;
|
---|
3501 | /* XXX: this code should not depend on lock_user */
|
---|
3502 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
|
---|
3503 | /* FIXME - should this return an error rather than just fail? */
|
---|
3504 | return;
|
---|
3505 | memcpy(p, buf, l);
|
---|
3506 | unlock_user(p, addr, l);
|
---|
3507 | } else {
|
---|
3508 | if (!(flags & PAGE_READ))
|
---|
3509 | return;
|
---|
3510 | /* XXX: this code should not depend on lock_user */
|
---|
3511 | if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
|
---|
3512 | /* FIXME - should this return an error rather than just fail? */
|
---|
3513 | return;
|
---|
3514 | memcpy(buf, p, l);
|
---|
3515 | unlock_user(p, addr, 0);
|
---|
3516 | }
|
---|
3517 | len -= l;
|
---|
3518 | buf += l;
|
---|
3519 | addr += l;
|
---|
3520 | }
|
---|
3521 | }
|
---|
3522 |
|
---|
3523 | #else
|
---|
3524 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
|
---|
3525 | int len, int is_write)
|
---|
3526 | {
|
---|
3527 | int l, io_index;
|
---|
3528 | uint8_t *ptr;
|
---|
3529 | uint32_t val;
|
---|
3530 | target_phys_addr_t page;
|
---|
3531 | unsigned long pd;
|
---|
3532 | PhysPageDesc *p;
|
---|
3533 |
|
---|
3534 | while (len > 0) {
|
---|
3535 | page = addr & TARGET_PAGE_MASK;
|
---|
3536 | l = (page + TARGET_PAGE_SIZE) - addr;
|
---|
3537 | if (l > len)
|
---|
3538 | l = len;
|
---|
3539 | p = phys_page_find(page >> TARGET_PAGE_BITS);
|
---|
3540 | if (!p) {
|
---|
3541 | pd = IO_MEM_UNASSIGNED;
|
---|
3542 | } else {
|
---|
3543 | pd = p->phys_offset;
|
---|
3544 | }
|
---|
3545 |
|
---|
3546 | if (is_write) {
|
---|
3547 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
|
---|
3548 | target_phys_addr_t addr1 = addr;
|
---|
3549 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
|
---|
3550 | if (p)
|
---|
3551 | addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
|
---|
3552 | /* XXX: could force cpu_single_env to NULL to avoid
|
---|
3553 | potential bugs */
|
---|
3554 | if (l >= 4 && ((addr1 & 3) == 0)) {
|
---|
3555 | /* 32 bit write access */
|
---|
3556 | #if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
3557 | val = ldl_p(buf);
|
---|
3558 | #else
|
---|
3559 | val = *(const uint32_t *)buf;
|
---|
3560 | #endif
|
---|
3561 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
|
---|
3562 | l = 4;
|
---|
3563 | } else if (l >= 2 && ((addr1 & 1) == 0)) {
|
---|
3564 | /* 16 bit write access */
|
---|
3565 | #if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
3566 | val = lduw_p(buf);
|
---|
3567 | #else
|
---|
3568 | val = *(const uint16_t *)buf;
|
---|
3569 | #endif
|
---|
3570 | io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
|
---|
3571 | l = 2;
|
---|
3572 | } else {
|
---|
3573 | /* 8 bit write access */
|
---|
3574 | #if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
3575 | val = ldub_p(buf);
|
---|
3576 | #else
|
---|
3577 | val = *(const uint8_t *)buf;
|
---|
3578 | #endif
|
---|
3579 | io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
|
---|
3580 | l = 1;
|
---|
3581 | }
|
---|
3582 | } else {
|
---|
3583 | unsigned long addr1;
|
---|
3584 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
|
---|
3585 | /* RAM case */
|
---|
3586 | #ifdef VBOX
|
---|
3587 | remR3PhysWrite(addr1, buf, l); NOREF(ptr);
|
---|
3588 | #else
|
---|
3589 | ptr = qemu_get_ram_ptr(addr1);
|
---|
3590 | memcpy(ptr, buf, l);
|
---|
3591 | #endif
|
---|
3592 | if (!cpu_physical_memory_is_dirty(addr1)) {
|
---|
3593 | /* invalidate code */
|
---|
3594 | tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
|
---|
3595 | /* set dirty bit */
|
---|
3596 | #ifdef VBOX
|
---|
3597 | if (RT_LIKELY((addr1 >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
|
---|
3598 | #endif
|
---|
3599 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
|
---|
3600 | (0xff & ~CODE_DIRTY_FLAG);
|
---|
3601 | }
|
---|
3602 | }
|
---|
3603 | } else {
|
---|
3604 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
|
---|
3605 | !(pd & IO_MEM_ROMD)) {
|
---|
3606 | target_phys_addr_t addr1 = addr;
|
---|
3607 | /* I/O case */
|
---|
3608 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
|
---|
3609 | if (p)
|
---|
3610 | addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
|
---|
3611 | if (l >= 4 && ((addr1 & 3) == 0)) {
|
---|
3612 | /* 32 bit read access */
|
---|
3613 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
|
---|
3614 | #if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
3615 | stl_p(buf, val);
|
---|
3616 | #else
|
---|
3617 | *(uint32_t *)buf = val;
|
---|
3618 | #endif
|
---|
3619 | l = 4;
|
---|
3620 | } else if (l >= 2 && ((addr1 & 1) == 0)) {
|
---|
3621 | /* 16 bit read access */
|
---|
3622 | val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
|
---|
3623 | #if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
3624 | stw_p(buf, val);
|
---|
3625 | #else
|
---|
3626 | *(uint16_t *)buf = val;
|
---|
3627 | #endif
|
---|
3628 | l = 2;
|
---|
3629 | } else {
|
---|
3630 | /* 8 bit read access */
|
---|
3631 | val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
|
---|
3632 | #if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
3633 | stb_p(buf, val);
|
---|
3634 | #else
|
---|
3635 | *(uint8_t *)buf = val;
|
---|
3636 | #endif
|
---|
3637 | l = 1;
|
---|
3638 | }
|
---|
3639 | } else {
|
---|
3640 | /* RAM case */
|
---|
3641 | #ifdef VBOX
|
---|
3642 | remR3PhysRead((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), buf, l); NOREF(ptr);
|
---|
3643 | #else
|
---|
3644 | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
|
---|
3645 | (addr & ~TARGET_PAGE_MASK);
|
---|
3646 | memcpy(buf, ptr, l);
|
---|
3647 | #endif
|
---|
3648 | }
|
---|
3649 | }
|
---|
3650 | len -= l;
|
---|
3651 | buf += l;
|
---|
3652 | addr += l;
|
---|
3653 | }
|
---|
3654 | }
|
---|
3655 |
|
---|
3656 | #ifndef VBOX
|
---|
3657 |
|
---|
3658 | /* used for ROM loading : can write in RAM and ROM */
|
---|
3659 | void cpu_physical_memory_write_rom(target_phys_addr_t addr,
|
---|
3660 | const uint8_t *buf, int len)
|
---|
3661 | {
|
---|
3662 | int l;
|
---|
3663 | uint8_t *ptr;
|
---|
3664 | target_phys_addr_t page;
|
---|
3665 | unsigned long pd;
|
---|
3666 | PhysPageDesc *p;
|
---|
3667 |
|
---|
3668 | while (len > 0) {
|
---|
3669 | page = addr & TARGET_PAGE_MASK;
|
---|
3670 | l = (page + TARGET_PAGE_SIZE) - addr;
|
---|
3671 | if (l > len)
|
---|
3672 | l = len;
|
---|
3673 | p = phys_page_find(page >> TARGET_PAGE_BITS);
|
---|
3674 | if (!p) {
|
---|
3675 | pd = IO_MEM_UNASSIGNED;
|
---|
3676 | } else {
|
---|
3677 | pd = p->phys_offset;
|
---|
3678 | }
|
---|
3679 |
|
---|
3680 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
|
---|
3681 | (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
|
---|
3682 | !(pd & IO_MEM_ROMD)) {
|
---|
3683 | /* do nothing */
|
---|
3684 | } else {
|
---|
3685 | unsigned long addr1;
|
---|
3686 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
|
---|
3687 | /* ROM/RAM case */
|
---|
3688 | ptr = qemu_get_ram_ptr(addr1);
|
---|
3689 | memcpy(ptr, buf, l);
|
---|
3690 | }
|
---|
3691 | len -= l;
|
---|
3692 | buf += l;
|
---|
3693 | addr += l;
|
---|
3694 | }
|
---|
3695 | }
|
---|
3696 |
|
---|
3697 | typedef struct {
|
---|
3698 | void *buffer;
|
---|
3699 | target_phys_addr_t addr;
|
---|
3700 | target_phys_addr_t len;
|
---|
3701 | } BounceBuffer;
|
---|
3702 |
|
---|
3703 | static BounceBuffer bounce;
|
---|
3704 |
|
---|
3705 | typedef struct MapClient {
|
---|
3706 | void *opaque;
|
---|
3707 | void (*callback)(void *opaque);
|
---|
3708 | LIST_ENTRY(MapClient) link;
|
---|
3709 | } MapClient;
|
---|
3710 |
|
---|
3711 | static LIST_HEAD(map_client_list, MapClient) map_client_list
|
---|
3712 | = LIST_HEAD_INITIALIZER(map_client_list);
|
---|
3713 |
|
---|
3714 | void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
|
---|
3715 | {
|
---|
3716 | MapClient *client = qemu_malloc(sizeof(*client));
|
---|
3717 |
|
---|
3718 | client->opaque = opaque;
|
---|
3719 | client->callback = callback;
|
---|
3720 | LIST_INSERT_HEAD(&map_client_list, client, link);
|
---|
3721 | return client;
|
---|
3722 | }
|
---|
3723 |
|
---|
3724 | void cpu_unregister_map_client(void *_client)
|
---|
3725 | {
|
---|
3726 | MapClient *client = (MapClient *)_client;
|
---|
3727 |
|
---|
3728 | LIST_REMOVE(client, link);
|
---|
3729 | qemu_free(client);
|
---|
3730 | }
|
---|
3731 |
|
---|
3732 | static void cpu_notify_map_clients(void)
|
---|
3733 | {
|
---|
3734 | MapClient *client;
|
---|
3735 |
|
---|
3736 | while (!LIST_EMPTY(&map_client_list)) {
|
---|
3737 | client = LIST_FIRST(&map_client_list);
|
---|
3738 | client->callback(client->opaque);
|
---|
3739 | cpu_unregister_map_client(client);
|
---|
3740 | }
|
---|
3741 | }
|
---|
3742 |
|
---|
3743 | /* Map a physical memory region into a host virtual address.
|
---|
3744 | * May map a subset of the requested range, given by and returned in *plen.
|
---|
3745 | * May return NULL if resources needed to perform the mapping are exhausted.
|
---|
3746 | * Use only for reads OR writes - not for read-modify-write operations.
|
---|
3747 | * Use cpu_register_map_client() to know when retrying the map operation is
|
---|
3748 | * likely to succeed.
|
---|
3749 | */
|
---|
3750 | void *cpu_physical_memory_map(target_phys_addr_t addr,
|
---|
3751 | target_phys_addr_t *plen,
|
---|
3752 | int is_write)
|
---|
3753 | {
|
---|
3754 | target_phys_addr_t len = *plen;
|
---|
3755 | target_phys_addr_t done = 0;
|
---|
3756 | int l;
|
---|
3757 | uint8_t *ret = NULL;
|
---|
3758 | uint8_t *ptr;
|
---|
3759 | target_phys_addr_t page;
|
---|
3760 | unsigned long pd;
|
---|
3761 | PhysPageDesc *p;
|
---|
3762 | unsigned long addr1;
|
---|
3763 |
|
---|
3764 | while (len > 0) {
|
---|
3765 | page = addr & TARGET_PAGE_MASK;
|
---|
3766 | l = (page + TARGET_PAGE_SIZE) - addr;
|
---|
3767 | if (l > len)
|
---|
3768 | l = len;
|
---|
3769 | p = phys_page_find(page >> TARGET_PAGE_BITS);
|
---|
3770 | if (!p) {
|
---|
3771 | pd = IO_MEM_UNASSIGNED;
|
---|
3772 | } else {
|
---|
3773 | pd = p->phys_offset;
|
---|
3774 | }
|
---|
3775 |
|
---|
3776 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
|
---|
3777 | if (done || bounce.buffer) {
|
---|
3778 | break;
|
---|
3779 | }
|
---|
3780 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
|
---|
3781 | bounce.addr = addr;
|
---|
3782 | bounce.len = l;
|
---|
3783 | if (!is_write) {
|
---|
3784 | cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
|
---|
3785 | }
|
---|
3786 | ptr = bounce.buffer;
|
---|
3787 | } else {
|
---|
3788 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
|
---|
3789 | ptr = qemu_get_ram_ptr(addr1);
|
---|
3790 | }
|
---|
3791 | if (!done) {
|
---|
3792 | ret = ptr;
|
---|
3793 | } else if (ret + done != ptr) {
|
---|
3794 | break;
|
---|
3795 | }
|
---|
3796 |
|
---|
3797 | len -= l;
|
---|
3798 | addr += l;
|
---|
3799 | done += l;
|
---|
3800 | }
|
---|
3801 | *plen = done;
|
---|
3802 | return ret;
|
---|
3803 | }
|
---|
3804 |
|
---|
3805 | /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
|
---|
3806 | * Will also mark the memory as dirty if is_write == 1. access_len gives
|
---|
3807 | * the amount of memory that was actually read or written by the caller.
|
---|
3808 | */
|
---|
3809 | void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
|
---|
3810 | int is_write, target_phys_addr_t access_len)
|
---|
3811 | {
|
---|
3812 | if (buffer != bounce.buffer) {
|
---|
3813 | if (is_write) {
|
---|
3814 | ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
|
---|
3815 | while (access_len) {
|
---|
3816 | unsigned l;
|
---|
3817 | l = TARGET_PAGE_SIZE;
|
---|
3818 | if (l > access_len)
|
---|
3819 | l = access_len;
|
---|
3820 | if (!cpu_physical_memory_is_dirty(addr1)) {
|
---|
3821 | /* invalidate code */
|
---|
3822 | tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
|
---|
3823 | /* set dirty bit */
|
---|
3824 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
|
---|
3825 | (0xff & ~CODE_DIRTY_FLAG);
|
---|
3826 | }
|
---|
3827 | addr1 += l;
|
---|
3828 | access_len -= l;
|
---|
3829 | }
|
---|
3830 | }
|
---|
3831 | return;
|
---|
3832 | }
|
---|
3833 | if (is_write) {
|
---|
3834 | cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
|
---|
3835 | }
|
---|
3836 | qemu_free(bounce.buffer);
|
---|
3837 | bounce.buffer = NULL;
|
---|
3838 | cpu_notify_map_clients();
|
---|
3839 | }
|
---|
3840 |
|
---|
3841 | #endif /* !VBOX */
|
---|
3842 |
|
---|
3843 | /* warning: addr must be aligned */
|
---|
3844 | uint32_t ldl_phys(target_phys_addr_t addr)
|
---|
3845 | {
|
---|
3846 | int io_index;
|
---|
3847 | uint8_t *ptr;
|
---|
3848 | uint32_t val;
|
---|
3849 | unsigned long pd;
|
---|
3850 | PhysPageDesc *p;
|
---|
3851 |
|
---|
3852 | p = phys_page_find(addr >> TARGET_PAGE_BITS);
|
---|
3853 | if (!p) {
|
---|
3854 | pd = IO_MEM_UNASSIGNED;
|
---|
3855 | } else {
|
---|
3856 | pd = p->phys_offset;
|
---|
3857 | }
|
---|
3858 |
|
---|
3859 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
|
---|
3860 | !(pd & IO_MEM_ROMD)) {
|
---|
3861 | /* I/O case */
|
---|
3862 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
|
---|
3863 | if (p)
|
---|
3864 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
|
---|
3865 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
|
---|
3866 | } else {
|
---|
3867 | /* RAM case */
|
---|
3868 | #ifndef VBOX
|
---|
3869 | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
|
---|
3870 | (addr & ~TARGET_PAGE_MASK);
|
---|
3871 | val = ldl_p(ptr);
|
---|
3872 | #else
|
---|
3873 | val = remR3PhysReadU32((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK)); NOREF(ptr);
|
---|
3874 | #endif
|
---|
3875 | }
|
---|
3876 | return val;
|
---|
3877 | }
|
---|
3878 |
|
---|
3879 | /* warning: addr must be aligned */
|
---|
3880 | uint64_t ldq_phys(target_phys_addr_t addr)
|
---|
3881 | {
|
---|
3882 | int io_index;
|
---|
3883 | uint8_t *ptr;
|
---|
3884 | uint64_t val;
|
---|
3885 | unsigned long pd;
|
---|
3886 | PhysPageDesc *p;
|
---|
3887 |
|
---|
3888 | p = phys_page_find(addr >> TARGET_PAGE_BITS);
|
---|
3889 | if (!p) {
|
---|
3890 | pd = IO_MEM_UNASSIGNED;
|
---|
3891 | } else {
|
---|
3892 | pd = p->phys_offset;
|
---|
3893 | }
|
---|
3894 |
|
---|
3895 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
|
---|
3896 | !(pd & IO_MEM_ROMD)) {
|
---|
3897 | /* I/O case */
|
---|
3898 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
|
---|
3899 | if (p)
|
---|
3900 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
|
---|
3901 | #ifdef TARGET_WORDS_BIGENDIAN
|
---|
3902 | val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
|
---|
3903 | val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
|
---|
3904 | #else
|
---|
3905 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
|
---|
3906 | val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
|
---|
3907 | #endif
|
---|
3908 | } else {
|
---|
3909 | /* RAM case */
|
---|
3910 | #ifndef VBOX
|
---|
3911 | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
|
---|
3912 | (addr & ~TARGET_PAGE_MASK);
|
---|
3913 | val = ldq_p(ptr);
|
---|
3914 | #else
|
---|
3915 | val = remR3PhysReadU64((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK)); NOREF(ptr);
|
---|
3916 | #endif
|
---|
3917 | }
|
---|
3918 | return val;
|
---|
3919 | }
|
---|
3920 |
|
---|
3921 | /* XXX: optimize */
|
---|
3922 | uint32_t ldub_phys(target_phys_addr_t addr)
|
---|
3923 | {
|
---|
3924 | uint8_t val;
|
---|
3925 | cpu_physical_memory_read(addr, &val, 1);
|
---|
3926 | return val;
|
---|
3927 | }
|
---|
3928 |
|
---|
3929 | /* XXX: optimize */
|
---|
3930 | uint32_t lduw_phys(target_phys_addr_t addr)
|
---|
3931 | {
|
---|
3932 | uint16_t val;
|
---|
3933 | cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
|
---|
3934 | return tswap16(val);
|
---|
3935 | }
|
---|
3936 |
|
---|
3937 | /* warning: addr must be aligned. The ram page is not masked as dirty
|
---|
3938 | and the code inside is not invalidated. It is useful if the dirty
|
---|
3939 | bits are used to track modified PTEs */
|
---|
3940 | void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
|
---|
3941 | {
|
---|
3942 | int io_index;
|
---|
3943 | uint8_t *ptr;
|
---|
3944 | unsigned long pd;
|
---|
3945 | PhysPageDesc *p;
|
---|
3946 |
|
---|
3947 | p = phys_page_find(addr >> TARGET_PAGE_BITS);
|
---|
3948 | if (!p) {
|
---|
3949 | pd = IO_MEM_UNASSIGNED;
|
---|
3950 | } else {
|
---|
3951 | pd = p->phys_offset;
|
---|
3952 | }
|
---|
3953 |
|
---|
3954 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
|
---|
3955 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
|
---|
3956 | if (p)
|
---|
3957 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
|
---|
3958 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
|
---|
3959 | } else {
|
---|
3960 | #ifndef VBOX
|
---|
3961 | unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
|
---|
3962 | ptr = qemu_get_ram_ptr(addr1);
|
---|
3963 | stl_p(ptr, val);
|
---|
3964 | #else
|
---|
3965 | remR3PhysWriteU32((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), val); NOREF(ptr);
|
---|
3966 | #endif
|
---|
3967 |
|
---|
3968 | #ifndef VBOX
|
---|
3969 | if (unlikely(in_migration)) {
|
---|
3970 | if (!cpu_physical_memory_is_dirty(addr1)) {
|
---|
3971 | /* invalidate code */
|
---|
3972 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
|
---|
3973 | /* set dirty bit */
|
---|
3974 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
|
---|
3975 | (0xff & ~CODE_DIRTY_FLAG);
|
---|
3976 | }
|
---|
3977 | }
|
---|
3978 | #endif /* !VBOX */
|
---|
3979 | }
|
---|
3980 | }
|
---|
3981 |
|
---|
3982 | void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
|
---|
3983 | {
|
---|
3984 | int io_index;
|
---|
3985 | uint8_t *ptr;
|
---|
3986 | unsigned long pd;
|
---|
3987 | PhysPageDesc *p;
|
---|
3988 |
|
---|
3989 | p = phys_page_find(addr >> TARGET_PAGE_BITS);
|
---|
3990 | if (!p) {
|
---|
3991 | pd = IO_MEM_UNASSIGNED;
|
---|
3992 | } else {
|
---|
3993 | pd = p->phys_offset;
|
---|
3994 | }
|
---|
3995 |
|
---|
3996 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
|
---|
3997 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
|
---|
3998 | if (p)
|
---|
3999 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
|
---|
4000 | #ifdef TARGET_WORDS_BIGENDIAN
|
---|
4001 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
|
---|
4002 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
|
---|
4003 | #else
|
---|
4004 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
|
---|
4005 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
|
---|
4006 | #endif
|
---|
4007 | } else {
|
---|
4008 | #ifndef VBOX
|
---|
4009 | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
|
---|
4010 | (addr & ~TARGET_PAGE_MASK);
|
---|
4011 | stq_p(ptr, val);
|
---|
4012 | #else
|
---|
4013 | remR3PhysWriteU64((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), val); NOREF(ptr);
|
---|
4014 | #endif
|
---|
4015 | }
|
---|
4016 | }
|
---|
4017 |
|
---|
4018 | /* warning: addr must be aligned */
|
---|
4019 | void stl_phys(target_phys_addr_t addr, uint32_t val)
|
---|
4020 | {
|
---|
4021 | int io_index;
|
---|
4022 | uint8_t *ptr;
|
---|
4023 | unsigned long pd;
|
---|
4024 | PhysPageDesc *p;
|
---|
4025 |
|
---|
4026 | p = phys_page_find(addr >> TARGET_PAGE_BITS);
|
---|
4027 | if (!p) {
|
---|
4028 | pd = IO_MEM_UNASSIGNED;
|
---|
4029 | } else {
|
---|
4030 | pd = p->phys_offset;
|
---|
4031 | }
|
---|
4032 |
|
---|
4033 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
|
---|
4034 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
|
---|
4035 | if (p)
|
---|
4036 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
|
---|
4037 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
|
---|
4038 | } else {
|
---|
4039 | unsigned long addr1;
|
---|
4040 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
|
---|
4041 | /* RAM case */
|
---|
4042 | #ifndef VBOX
|
---|
4043 | ptr = qemu_get_ram_ptr(addr1);
|
---|
4044 | stl_p(ptr, val);
|
---|
4045 | #else
|
---|
4046 | remR3PhysWriteU32((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), val); NOREF(ptr);
|
---|
4047 | #endif
|
---|
4048 | if (!cpu_physical_memory_is_dirty(addr1)) {
|
---|
4049 | /* invalidate code */
|
---|
4050 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
|
---|
4051 | /* set dirty bit */
|
---|
4052 | #ifdef VBOX
|
---|
4053 | if (RT_LIKELY((addr1 >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
|
---|
4054 | #endif
|
---|
4055 | phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
|
---|
4056 | (0xff & ~CODE_DIRTY_FLAG);
|
---|
4057 | }
|
---|
4058 | }
|
---|
4059 | }
|
---|
4060 |
|
---|
4061 | /* XXX: optimize */
|
---|
4062 | void stb_phys(target_phys_addr_t addr, uint32_t val)
|
---|
4063 | {
|
---|
4064 | uint8_t v = val;
|
---|
4065 | cpu_physical_memory_write(addr, &v, 1);
|
---|
4066 | }
|
---|
4067 |
|
---|
4068 | /* XXX: optimize */
|
---|
4069 | void stw_phys(target_phys_addr_t addr, uint32_t val)
|
---|
4070 | {
|
---|
4071 | uint16_t v = tswap16(val);
|
---|
4072 | cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
|
---|
4073 | }
|
---|
4074 |
|
---|
4075 | /* XXX: optimize */
|
---|
4076 | void stq_phys(target_phys_addr_t addr, uint64_t val)
|
---|
4077 | {
|
---|
4078 | val = tswap64(val);
|
---|
4079 | cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
|
---|
4080 | }
|
---|
4081 |
|
---|
4082 | #endif
|
---|
4083 |
|
---|
4084 | #ifndef VBOX
|
---|
4085 | /* virtual memory access for debug (includes writing to ROM) */
|
---|
4086 | int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
|
---|
4087 | uint8_t *buf, int len, int is_write)
|
---|
4088 | {
|
---|
4089 | int l;
|
---|
4090 | target_phys_addr_t phys_addr;
|
---|
4091 | target_ulong page;
|
---|
4092 |
|
---|
4093 | while (len > 0) {
|
---|
4094 | page = addr & TARGET_PAGE_MASK;
|
---|
4095 | phys_addr = cpu_get_phys_page_debug(env, page);
|
---|
4096 | /* if no physical page mapped, return an error */
|
---|
4097 | if (phys_addr == -1)
|
---|
4098 | return -1;
|
---|
4099 | l = (page + TARGET_PAGE_SIZE) - addr;
|
---|
4100 | if (l > len)
|
---|
4101 | l = len;
|
---|
4102 | phys_addr += (addr & ~TARGET_PAGE_MASK);
|
---|
4103 | #if !defined(CONFIG_USER_ONLY)
|
---|
4104 | if (is_write)
|
---|
4105 | cpu_physical_memory_write_rom(phys_addr, buf, l);
|
---|
4106 | else
|
---|
4107 | #endif
|
---|
4108 | cpu_physical_memory_rw(phys_addr, buf, l, is_write);
|
---|
4109 | len -= l;
|
---|
4110 | buf += l;
|
---|
4111 | addr += l;
|
---|
4112 | }
|
---|
4113 | return 0;
|
---|
4114 | }
|
---|
4115 | #endif /* !VBOX */
|
---|
4116 |
|
---|
4117 | /* in deterministic execution mode, instructions doing device I/Os
|
---|
4118 | must be at the end of the TB */
|
---|
4119 | void cpu_io_recompile(CPUState *env, void *retaddr)
|
---|
4120 | {
|
---|
4121 | TranslationBlock *tb;
|
---|
4122 | uint32_t n, cflags;
|
---|
4123 | target_ulong pc, cs_base;
|
---|
4124 | uint64_t flags;
|
---|
4125 |
|
---|
4126 | tb = tb_find_pc((unsigned long)retaddr);
|
---|
4127 | if (!tb) {
|
---|
4128 | cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
|
---|
4129 | retaddr);
|
---|
4130 | }
|
---|
4131 | n = env->icount_decr.u16.low + tb->icount;
|
---|
4132 | cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
|
---|
4133 | /* Calculate how many instructions had been executed before the fault
|
---|
4134 | occurred. */
|
---|
4135 | n = n - env->icount_decr.u16.low;
|
---|
4136 | /* Generate a new TB ending on the I/O insn. */
|
---|
4137 | n++;
|
---|
4138 | /* On MIPS and SH, delay slot instructions can only be restarted if
|
---|
4139 | they were already the first instruction in the TB. If this is not
|
---|
4140 | the first instruction in a TB then re-execute the preceding
|
---|
4141 | branch. */
|
---|
4142 | #if defined(TARGET_MIPS)
|
---|
4143 | if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
|
---|
4144 | env->active_tc.PC -= 4;
|
---|
4145 | env->icount_decr.u16.low++;
|
---|
4146 | env->hflags &= ~MIPS_HFLAG_BMASK;
|
---|
4147 | }
|
---|
4148 | #elif defined(TARGET_SH4)
|
---|
4149 | if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
|
---|
4150 | && n > 1) {
|
---|
4151 | env->pc -= 2;
|
---|
4152 | env->icount_decr.u16.low++;
|
---|
4153 | env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
|
---|
4154 | }
|
---|
4155 | #endif
|
---|
4156 | /* This should never happen. */
|
---|
4157 | if (n > CF_COUNT_MASK)
|
---|
4158 | cpu_abort(env, "TB too big during recompile");
|
---|
4159 |
|
---|
4160 | cflags = n | CF_LAST_IO;
|
---|
4161 | pc = tb->pc;
|
---|
4162 | cs_base = tb->cs_base;
|
---|
4163 | flags = tb->flags;
|
---|
4164 | tb_phys_invalidate(tb, -1);
|
---|
4165 | /* FIXME: In theory this could raise an exception. In practice
|
---|
4166 | we have already translated the block once so it's probably ok. */
|
---|
4167 | tb_gen_code(env, pc, cs_base, flags, cflags);
|
---|
4168 | /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
|
---|
4169 | the first in the TB) then we end up generating a whole new TB and
|
---|
4170 | repeating the fault, which is horribly inefficient.
|
---|
4171 | Better would be to execute just this insn uncached, or generate a
|
---|
4172 | second new TB. */
|
---|
4173 | cpu_resume_from_signal(env, NULL);
|
---|
4174 | }
|
---|
4175 |
|
---|
4176 | #ifndef VBOX
|
---|
4177 | void dump_exec_info(FILE *f,
|
---|
4178 | int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
|
---|
4179 | {
|
---|
4180 | int i, target_code_size, max_target_code_size;
|
---|
4181 | int direct_jmp_count, direct_jmp2_count, cross_page;
|
---|
4182 | TranslationBlock *tb;
|
---|
4183 |
|
---|
4184 | target_code_size = 0;
|
---|
4185 | max_target_code_size = 0;
|
---|
4186 | cross_page = 0;
|
---|
4187 | direct_jmp_count = 0;
|
---|
4188 | direct_jmp2_count = 0;
|
---|
4189 | for(i = 0; i < nb_tbs; i++) {
|
---|
4190 | tb = &tbs[i];
|
---|
4191 | target_code_size += tb->size;
|
---|
4192 | if (tb->size > max_target_code_size)
|
---|
4193 | max_target_code_size = tb->size;
|
---|
4194 | if (tb->page_addr[1] != -1)
|
---|
4195 | cross_page++;
|
---|
4196 | if (tb->tb_next_offset[0] != 0xffff) {
|
---|
4197 | direct_jmp_count++;
|
---|
4198 | if (tb->tb_next_offset[1] != 0xffff) {
|
---|
4199 | direct_jmp2_count++;
|
---|
4200 | }
|
---|
4201 | }
|
---|
4202 | }
|
---|
4203 | /* XXX: avoid using doubles ? */
|
---|
4204 | cpu_fprintf(f, "Translation buffer state:\n");
|
---|
4205 | cpu_fprintf(f, "gen code size %ld/%ld\n",
|
---|
4206 | code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
|
---|
4207 | cpu_fprintf(f, "TB count %d/%d\n",
|
---|
4208 | nb_tbs, code_gen_max_blocks);
|
---|
4209 | cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
|
---|
4210 | nb_tbs ? target_code_size / nb_tbs : 0,
|
---|
4211 | max_target_code_size);
|
---|
4212 | cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
|
---|
4213 | nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
|
---|
4214 | target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
|
---|
4215 | cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
|
---|
4216 | cross_page,
|
---|
4217 | nb_tbs ? (cross_page * 100) / nb_tbs : 0);
|
---|
4218 | cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
|
---|
4219 | direct_jmp_count,
|
---|
4220 | nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
|
---|
4221 | direct_jmp2_count,
|
---|
4222 | nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
|
---|
4223 | cpu_fprintf(f, "\nStatistics:\n");
|
---|
4224 | cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
|
---|
4225 | cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
|
---|
4226 | cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
|
---|
4227 | tcg_dump_info(f, cpu_fprintf);
|
---|
4228 | }
|
---|
4229 | #endif /* !VBOX */
|
---|
4230 |
|
---|
4231 | #if !defined(CONFIG_USER_ONLY)
|
---|
4232 |
|
---|
4233 | #define MMUSUFFIX _cmmu
|
---|
4234 | #define GETPC() NULL
|
---|
4235 | #define env cpu_single_env
|
---|
4236 | #define SOFTMMU_CODE_ACCESS
|
---|
4237 |
|
---|
4238 | #define SHIFT 0
|
---|
4239 | #include "softmmu_template.h"
|
---|
4240 |
|
---|
4241 | #define SHIFT 1
|
---|
4242 | #include "softmmu_template.h"
|
---|
4243 |
|
---|
4244 | #define SHIFT 2
|
---|
4245 | #include "softmmu_template.h"
|
---|
4246 |
|
---|
4247 | #define SHIFT 3
|
---|
4248 | #include "softmmu_template.h"
|
---|
4249 |
|
---|
4250 | #undef env
|
---|
4251 |
|
---|
4252 | #endif
|
---|