1 | /*
|
---|
2 | * virtual page mapping and translated block handling
|
---|
3 | *
|
---|
4 | * Copyright (c) 2003 Fabrice Bellard
|
---|
5 | *
|
---|
6 | * This library is free software; you can redistribute it and/or
|
---|
7 | * modify it under the terms of the GNU Lesser General Public
|
---|
8 | * License as published by the Free Software Foundation; either
|
---|
9 | * version 2 of the License, or (at your option) any later version.
|
---|
10 | *
|
---|
11 | * This library is distributed in the hope that it will be useful,
|
---|
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
14 | * Lesser General Public License for more details.
|
---|
15 | *
|
---|
16 | * You should have received a copy of the GNU Lesser General Public
|
---|
17 | * License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
---|
18 | */
|
---|
19 |
|
---|
20 | /*
|
---|
21 | * Oracle LGPL Disclaimer: For the avoidance of doubt, except that if any license choice
|
---|
22 | * other than GPL or LGPL is available it will apply instead, Oracle elects to use only
|
---|
23 | * the Lesser General Public License version 2.1 (LGPLv2) at this time for any software where
|
---|
24 | * a choice of LGPL license versions is made available with the language indicating
|
---|
25 | * that LGPLv2 or any later version may be used, or where a choice of which version
|
---|
26 | * of the LGPL is applied is otherwise unspecified.
|
---|
27 | */
|
---|
28 |
|
---|
29 | #include "config.h"
|
---|
30 | #ifndef VBOX
|
---|
31 | #ifdef _WIN32
|
---|
32 | #include <windows.h>
|
---|
33 | #else
|
---|
34 | #include <sys/types.h>
|
---|
35 | #include <sys/mman.h>
|
---|
36 | #endif
|
---|
37 | #include <stdlib.h>
|
---|
38 | #include <stdio.h>
|
---|
39 | #include <stdarg.h>
|
---|
40 | #include <string.h>
|
---|
41 | #include <errno.h>
|
---|
42 | #include <unistd.h>
|
---|
43 | #include <inttypes.h>
|
---|
44 | #else /* VBOX */
|
---|
45 | # include <stdlib.h>
|
---|
46 | # include <stdio.h>
|
---|
47 | # include <iprt/alloc.h>
|
---|
48 | # include <iprt/string.h>
|
---|
49 | # include <iprt/param.h>
|
---|
50 | # include <VBox/vmm/pgm.h> /* PGM_DYNAMIC_RAM_ALLOC */
|
---|
51 | # include <iprt/errcore.h>
|
---|
52 | #endif /* VBOX */
|
---|
53 |
|
---|
54 | #include "cpu.h"
|
---|
55 | #include "exec-all.h"
|
---|
56 | #include "qemu-common.h"
|
---|
57 | #include "tcg.h"
|
---|
58 | #ifndef VBOX
|
---|
59 | #include "hw/hw.h"
|
---|
60 | #include "hw/qdev.h"
|
---|
61 | #endif /* !VBOX */
|
---|
62 | #include "osdep.h"
|
---|
63 | #include "kvm.h"
|
---|
64 | #include "qemu-timer.h"
|
---|
65 | #if defined(CONFIG_USER_ONLY)
|
---|
66 | #include <qemu.h>
|
---|
67 | #include <signal.h>
|
---|
68 | #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
|
---|
69 | #include <sys/param.h>
|
---|
70 | #if __FreeBSD_version >= 700104
|
---|
71 | #define HAVE_KINFO_GETVMMAP
|
---|
72 | #define sigqueue sigqueue_freebsd /* avoid redefinition */
|
---|
73 | #include <sys/time.h>
|
---|
74 | #include <sys/proc.h>
|
---|
75 | #include <machine/profile.h>
|
---|
76 | #define _KERNEL
|
---|
77 | #include <sys/user.h>
|
---|
78 | #undef _KERNEL
|
---|
79 | #undef sigqueue
|
---|
80 | #include <libutil.h>
|
---|
81 | #endif
|
---|
82 | #endif
|
---|
83 | #endif
|
---|
84 |
|
---|
85 | //#define DEBUG_TB_INVALIDATE
|
---|
86 | //#define DEBUG_FLUSH
|
---|
87 | //#define DEBUG_TLB
|
---|
88 | //#define DEBUG_UNASSIGNED
|
---|
89 |
|
---|
90 | /* make various TB consistency checks */
|
---|
91 | //#define DEBUG_TB_CHECK
|
---|
92 | //#define DEBUG_TLB_CHECK
|
---|
93 |
|
---|
94 | //#define DEBUG_IOPORT
|
---|
95 | //#define DEBUG_SUBPAGE
|
---|
96 |
|
---|
97 | #if !defined(CONFIG_USER_ONLY)
|
---|
98 | /* TB consistency checks only implemented for usermode emulation. */
|
---|
99 | #undef DEBUG_TB_CHECK
|
---|
100 | #endif
|
---|
101 |
|
---|
102 | #define SMC_BITMAP_USE_THRESHOLD 10
|
---|
103 |
|
---|
104 | static TranslationBlock *tbs;
|
---|
105 | static int code_gen_max_blocks;
|
---|
106 | TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
|
---|
107 | static int nb_tbs;
|
---|
108 | /* any access to the tbs or the page table must use this lock */
|
---|
109 | spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
|
---|
110 |
|
---|
111 | #ifndef VBOX
|
---|
112 | #if defined(__arm__) || defined(__sparc_v9__)
|
---|
113 | /* The prologue must be reachable with a direct jump. ARM and Sparc64
|
---|
114 | have limited branch ranges (possibly also PPC) so place it in a
|
---|
115 | section close to code segment. */
|
---|
116 | #define code_gen_section \
|
---|
117 | __attribute__((__section__(".gen_code"))) \
|
---|
118 | __attribute__((aligned (32)))
|
---|
119 | #elif defined(_WIN32)
|
---|
120 | /* Maximum alignment for Win32 is 16. */
|
---|
121 | #define code_gen_section \
|
---|
122 | __attribute__((aligned (16)))
|
---|
123 | #else
|
---|
124 | #define code_gen_section \
|
---|
125 | __attribute__((aligned (32)))
|
---|
126 | #endif
|
---|
127 |
|
---|
128 | uint8_t code_gen_prologue[1024] code_gen_section;
|
---|
129 | #else /* VBOX */
|
---|
130 | extern uint8_t *code_gen_prologue;
|
---|
131 | #endif /* VBOX */
|
---|
132 | static uint8_t *code_gen_buffer;
|
---|
133 | static size_t code_gen_buffer_size;
|
---|
134 | /* threshold to flush the translated code buffer */
|
---|
135 | static size_t code_gen_buffer_max_size;
|
---|
136 | static uint8_t *code_gen_ptr;
|
---|
137 |
|
---|
138 | #if !defined(CONFIG_USER_ONLY)
|
---|
139 | # ifndef VBOX
|
---|
140 | int phys_ram_fd;
|
---|
141 | static int in_migration;
|
---|
142 | # endif /* !VBOX */
|
---|
143 |
|
---|
144 | RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list) };
|
---|
145 | #endif
|
---|
146 |
|
---|
147 | CPUState *first_cpu;
|
---|
148 | /* current CPU in the current thread. It is only valid inside
|
---|
149 | cpu_exec() */
|
---|
150 | CPUState *cpu_single_env;
|
---|
151 | /* 0 = Do not count executed instructions.
|
---|
152 | 1 = Precise instruction counting.
|
---|
153 | 2 = Adaptive rate instruction counting. */
|
---|
154 | int use_icount = 0;
|
---|
155 | /* Current instruction counter. While executing translated code this may
|
---|
156 | include some instructions that have not yet been executed. */
|
---|
157 | int64_t qemu_icount;
|
---|
158 |
|
---|
159 | typedef struct PageDesc {
|
---|
160 | /* list of TBs intersecting this ram page */
|
---|
161 | TranslationBlock *first_tb;
|
---|
162 | /* in order to optimize self modifying code, we count the number
|
---|
163 | of lookups we do to a given page to use a bitmap */
|
---|
164 | unsigned int code_write_count;
|
---|
165 | uint8_t *code_bitmap;
|
---|
166 | #if defined(CONFIG_USER_ONLY)
|
---|
167 | unsigned long flags;
|
---|
168 | #endif
|
---|
169 | } PageDesc;
|
---|
170 |
|
---|
171 | /* In system mode we want L1_MAP to be based on ram offsets,
|
---|
172 | while in user mode we want it to be based on virtual addresses. */
|
---|
173 | #if !defined(CONFIG_USER_ONLY)
|
---|
174 | #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
|
---|
175 | # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
|
---|
176 | #else
|
---|
177 | # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
|
---|
178 | #endif
|
---|
179 | #else
|
---|
180 | # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
|
---|
181 | #endif
|
---|
182 |
|
---|
183 | /* Size of the L2 (and L3, etc) page tables. */
|
---|
184 | #define L2_BITS 10
|
---|
185 | #define L2_SIZE (1 << L2_BITS)
|
---|
186 |
|
---|
187 | /* The bits remaining after N lower levels of page tables. */
|
---|
188 | #define P_L1_BITS_REM \
|
---|
189 | ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
|
---|
190 | #define V_L1_BITS_REM \
|
---|
191 | ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
|
---|
192 |
|
---|
193 | /* Size of the L1 page table. Avoid silly small sizes. */
|
---|
194 | #if P_L1_BITS_REM < 4
|
---|
195 | #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
|
---|
196 | #else
|
---|
197 | #define P_L1_BITS P_L1_BITS_REM
|
---|
198 | #endif
|
---|
199 |
|
---|
200 | #if V_L1_BITS_REM < 4
|
---|
201 | #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
|
---|
202 | #else
|
---|
203 | #define V_L1_BITS V_L1_BITS_REM
|
---|
204 | #endif
|
---|
205 |
|
---|
206 | #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
|
---|
207 | #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
|
---|
208 |
|
---|
209 | #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
|
---|
210 | #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
|
---|
211 |
|
---|
212 | size_t qemu_real_host_page_size;
|
---|
213 | size_t qemu_host_page_bits;
|
---|
214 | size_t qemu_host_page_size;
|
---|
215 | uintptr_t qemu_host_page_mask;
|
---|
216 |
|
---|
217 | /* This is a multi-level map on the virtual address space.
|
---|
218 | The bottom level has pointers to PageDesc. */
|
---|
219 | static void *l1_map[V_L1_SIZE];
|
---|
220 |
|
---|
221 | #if !defined(CONFIG_USER_ONLY)
|
---|
222 | typedef struct PhysPageDesc {
|
---|
223 | /* offset in host memory of the page + io_index in the low bits */
|
---|
224 | ram_addr_t phys_offset;
|
---|
225 | ram_addr_t region_offset;
|
---|
226 | } PhysPageDesc;
|
---|
227 |
|
---|
228 | /* This is a multi-level map on the physical address space.
|
---|
229 | The bottom level has pointers to PhysPageDesc. */
|
---|
230 | static void *l1_phys_map[P_L1_SIZE];
|
---|
231 |
|
---|
232 | static void io_mem_init(void);
|
---|
233 |
|
---|
234 | /* io memory support */
|
---|
235 | CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
|
---|
236 | CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
|
---|
237 | void *io_mem_opaque[IO_MEM_NB_ENTRIES];
|
---|
238 | static char io_mem_used[IO_MEM_NB_ENTRIES];
|
---|
239 | static int io_mem_watch;
|
---|
240 | #endif
|
---|
241 |
|
---|
242 | #ifndef VBOX
|
---|
243 | /* log support */
|
---|
244 | #ifdef WIN32
|
---|
245 | static const char *logfilename = "qemu.log";
|
---|
246 | #else
|
---|
247 | static const char *logfilename = "/tmp/qemu.log";
|
---|
248 | #endif
|
---|
249 | #endif /* !VBOX */
|
---|
250 | FILE *logfile;
|
---|
251 | int loglevel;
|
---|
252 | #ifndef VBOX
|
---|
253 | static int log_append = 0;
|
---|
254 | #endif /* !VBOX */
|
---|
255 |
|
---|
256 | /* statistics */
|
---|
257 | #ifndef VBOX
|
---|
258 | #if !defined(CONFIG_USER_ONLY)
|
---|
259 | static int tlb_flush_count;
|
---|
260 | #endif
|
---|
261 | static int tb_flush_count;
|
---|
262 | static int tb_phys_invalidate_count;
|
---|
263 | #else /* VBOX - Resettable U32 stats, see VBoxRecompiler.c. */
|
---|
264 | uint32_t tlb_flush_count;
|
---|
265 | uint32_t tb_flush_count;
|
---|
266 | uint32_t tb_phys_invalidate_count;
|
---|
267 | #endif /* VBOX */
|
---|
268 |
|
---|
269 | #ifndef VBOX
|
---|
270 | #ifdef _WIN32
|
---|
271 | static void map_exec(void *addr, size_t size)
|
---|
272 | {
|
---|
273 | DWORD old_protect;
|
---|
274 | VirtualProtect(addr, size,
|
---|
275 | PAGE_EXECUTE_READWRITE, &old_protect);
|
---|
276 |
|
---|
277 | }
|
---|
278 | #else
|
---|
279 | static void map_exec(void *addr, size_t size)
|
---|
280 | {
|
---|
281 | uintptr_t start, end, page_size;
|
---|
282 |
|
---|
283 | page_size = getpagesize();
|
---|
284 | start = (uintptr_t)addr;
|
---|
285 | start &= ~(page_size - 1);
|
---|
286 |
|
---|
287 | end = (uintptr_t)addr + size;
|
---|
288 | end += page_size - 1;
|
---|
289 | end &= ~(page_size - 1);
|
---|
290 |
|
---|
291 | mprotect((void *)start, end - start,
|
---|
292 | PROT_READ | PROT_WRITE | PROT_EXEC);
|
---|
293 | }
|
---|
294 | #endif
|
---|
295 | #else /* VBOX */
|
---|
296 | static void map_exec(void *addr, size_t size)
|
---|
297 | {
|
---|
298 | RTMemProtect(addr, size,
|
---|
299 | RTMEM_PROT_EXEC | RTMEM_PROT_READ | RTMEM_PROT_WRITE);
|
---|
300 | }
|
---|
301 | #endif /* VBOX */
|
---|
302 |
|
---|
303 | static void page_init(void)
|
---|
304 | {
|
---|
305 | /* NOTE: we can always suppose that qemu_host_page_size >=
|
---|
306 | TARGET_PAGE_SIZE */
|
---|
307 | #ifdef VBOX
|
---|
308 | RTMemProtect(code_gen_buffer, code_gen_buffer_size,
|
---|
309 | RTMEM_PROT_EXEC | RTMEM_PROT_READ | RTMEM_PROT_WRITE);
|
---|
310 | qemu_real_host_page_size = PAGE_SIZE;
|
---|
311 | #else /* !VBOX */
|
---|
312 | #ifdef _WIN32
|
---|
313 | {
|
---|
314 | SYSTEM_INFO system_info;
|
---|
315 |
|
---|
316 | GetSystemInfo(&system_info);
|
---|
317 | qemu_real_host_page_size = system_info.dwPageSize;
|
---|
318 | }
|
---|
319 | #else
|
---|
320 | qemu_real_host_page_size = getpagesize();
|
---|
321 | #endif
|
---|
322 | #endif /* !VBOX */
|
---|
323 | if (qemu_host_page_size == 0)
|
---|
324 | qemu_host_page_size = qemu_real_host_page_size;
|
---|
325 | if (qemu_host_page_size < TARGET_PAGE_SIZE)
|
---|
326 | qemu_host_page_size = TARGET_PAGE_SIZE;
|
---|
327 | qemu_host_page_bits = 0;
|
---|
328 | while ((1 << qemu_host_page_bits) < VBOX_ONLY((int))qemu_host_page_size)
|
---|
329 | qemu_host_page_bits++;
|
---|
330 | qemu_host_page_mask = ~(qemu_host_page_size - 1);
|
---|
331 |
|
---|
332 | #ifndef VBOX /* We use other means to set reserved bit on our pages */
|
---|
333 | #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
|
---|
334 | {
|
---|
335 | #ifdef HAVE_KINFO_GETVMMAP
|
---|
336 | struct kinfo_vmentry *freep;
|
---|
337 | int i, cnt;
|
---|
338 |
|
---|
339 | freep = kinfo_getvmmap(getpid(), &cnt);
|
---|
340 | if (freep) {
|
---|
341 | mmap_lock();
|
---|
342 | for (i = 0; i < cnt; i++) {
|
---|
343 | uintptr_t startaddr, endaddr;
|
---|
344 |
|
---|
345 | startaddr = freep[i].kve_start;
|
---|
346 | endaddr = freep[i].kve_end;
|
---|
347 | if (h2g_valid(startaddr)) {
|
---|
348 | startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
|
---|
349 |
|
---|
350 | if (h2g_valid(endaddr)) {
|
---|
351 | endaddr = h2g(endaddr);
|
---|
352 | page_set_flags(startaddr, endaddr, PAGE_RESERVED);
|
---|
353 | } else {
|
---|
354 | #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
|
---|
355 | endaddr = ~0ul;
|
---|
356 | page_set_flags(startaddr, endaddr, PAGE_RESERVED);
|
---|
357 | #endif
|
---|
358 | }
|
---|
359 | }
|
---|
360 | }
|
---|
361 | free(freep);
|
---|
362 | mmap_unlock();
|
---|
363 | }
|
---|
364 | #else
|
---|
365 | FILE *f;
|
---|
366 |
|
---|
367 | last_brk = (uintptr_t)sbrk(0);
|
---|
368 |
|
---|
369 | f = fopen("/compat/linux/proc/self/maps", "r");
|
---|
370 | if (f) {
|
---|
371 | mmap_lock();
|
---|
372 |
|
---|
373 | do {
|
---|
374 | uintptr_t startaddr, endaddr;
|
---|
375 | int n;
|
---|
376 |
|
---|
377 | n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
|
---|
378 |
|
---|
379 | if (n == 2 && h2g_valid(startaddr)) {
|
---|
380 | startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
|
---|
381 |
|
---|
382 | if (h2g_valid(endaddr)) {
|
---|
383 | endaddr = h2g(endaddr);
|
---|
384 | } else {
|
---|
385 | endaddr = ~0ul;
|
---|
386 | }
|
---|
387 | page_set_flags(startaddr, endaddr, PAGE_RESERVED);
|
---|
388 | }
|
---|
389 | } while (!feof(f));
|
---|
390 |
|
---|
391 | fclose(f);
|
---|
392 | mmap_unlock();
|
---|
393 | }
|
---|
394 | #endif
|
---|
395 | }
|
---|
396 | #endif
|
---|
397 | #endif /* !VBOX */
|
---|
398 | }
|
---|
399 |
|
---|
400 | static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
|
---|
401 | {
|
---|
402 | PageDesc *pd;
|
---|
403 | void **lp;
|
---|
404 | int i;
|
---|
405 |
|
---|
406 | #if defined(CONFIG_USER_ONLY)
|
---|
407 | /* We can't use qemu_malloc because it may recurse into a locked mutex. */
|
---|
408 | # define ALLOC(P, SIZE) \
|
---|
409 | do { \
|
---|
410 | P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
|
---|
411 | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
|
---|
412 | } while (0)
|
---|
413 | #else
|
---|
414 | # define ALLOC(P, SIZE) \
|
---|
415 | do { P = qemu_mallocz(SIZE); } while (0)
|
---|
416 | #endif
|
---|
417 |
|
---|
418 | /* Level 1. Always allocated. */
|
---|
419 | lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
|
---|
420 |
|
---|
421 | /* Level 2..N-1. */
|
---|
422 | for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
|
---|
423 | void **p = *lp;
|
---|
424 |
|
---|
425 | if (p == NULL) {
|
---|
426 | if (!alloc) {
|
---|
427 | return NULL;
|
---|
428 | }
|
---|
429 | ALLOC(p, sizeof(void *) * L2_SIZE);
|
---|
430 | *lp = p;
|
---|
431 | }
|
---|
432 |
|
---|
433 | lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
|
---|
434 | }
|
---|
435 |
|
---|
436 | pd = *lp;
|
---|
437 | if (pd == NULL) {
|
---|
438 | if (!alloc) {
|
---|
439 | return NULL;
|
---|
440 | }
|
---|
441 | ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
|
---|
442 | *lp = pd;
|
---|
443 | }
|
---|
444 |
|
---|
445 | #undef ALLOC
|
---|
446 |
|
---|
447 | return pd + (index & (L2_SIZE - 1));
|
---|
448 | }
|
---|
449 |
|
---|
450 | static inline PageDesc *page_find(tb_page_addr_t index)
|
---|
451 | {
|
---|
452 | return page_find_alloc(index, 0);
|
---|
453 | }
|
---|
454 |
|
---|
455 | #if !defined(CONFIG_USER_ONLY)
|
---|
456 | static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
|
---|
457 | {
|
---|
458 | PhysPageDesc *pd;
|
---|
459 | void **lp;
|
---|
460 | int i;
|
---|
461 |
|
---|
462 | /* Level 1. Always allocated. */
|
---|
463 | lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
|
---|
464 |
|
---|
465 | /* Level 2..N-1. */
|
---|
466 | for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
|
---|
467 | void **p = *lp;
|
---|
468 | if (p == NULL) {
|
---|
469 | if (!alloc) {
|
---|
470 | return NULL;
|
---|
471 | }
|
---|
472 | *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
|
---|
473 | }
|
---|
474 | lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
|
---|
475 | }
|
---|
476 |
|
---|
477 | pd = *lp;
|
---|
478 | if (pd == NULL) {
|
---|
479 | int i;
|
---|
480 |
|
---|
481 | if (!alloc) {
|
---|
482 | return NULL;
|
---|
483 | }
|
---|
484 |
|
---|
485 | *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
|
---|
486 |
|
---|
487 | for (i = 0; i < L2_SIZE; i++) {
|
---|
488 | pd[i].phys_offset = IO_MEM_UNASSIGNED;
|
---|
489 | pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
|
---|
490 | }
|
---|
491 | }
|
---|
492 |
|
---|
493 | return pd + (index & (L2_SIZE - 1));
|
---|
494 | }
|
---|
495 |
|
---|
496 | static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
|
---|
497 | {
|
---|
498 | return phys_page_find_alloc(index, 0);
|
---|
499 | }
|
---|
500 |
|
---|
501 | static void tlb_protect_code(ram_addr_t ram_addr);
|
---|
502 | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
|
---|
503 | target_ulong vaddr);
|
---|
504 | #define mmap_lock() do { } while(0)
|
---|
505 | #define mmap_unlock() do { } while(0)
|
---|
506 | #endif
|
---|
507 |
|
---|
508 | #ifdef VBOX /* We don't need such huge codegen buffer size, as execute
|
---|
509 | most of the code in raw or hm mode. */
|
---|
510 | #define DEFAULT_CODE_GEN_BUFFER_SIZE (8 * 1024 * 1024)
|
---|
511 | #else /* !VBOX */
|
---|
512 | #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
|
---|
513 | #endif /* !VBOX */
|
---|
514 |
|
---|
515 | #if defined(CONFIG_USER_ONLY)
|
---|
516 | /* Currently it is not recommended to allocate big chunks of data in
|
---|
517 | user mode. It will change when a dedicated libc will be used */
|
---|
518 | #define USE_STATIC_CODE_GEN_BUFFER
|
---|
519 | #endif
|
---|
520 |
|
---|
521 | #if defined(VBOX) && defined(USE_STATIC_CODE_GEN_BUFFER)
|
---|
522 | # error "VBox allocates codegen buffer dynamically"
|
---|
523 | #endif
|
---|
524 |
|
---|
525 | #ifdef USE_STATIC_CODE_GEN_BUFFER
|
---|
526 | static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
|
---|
527 | __attribute__((aligned (CODE_GEN_ALIGN)));
|
---|
528 | #endif
|
---|
529 |
|
---|
530 | static void code_gen_alloc(uintptr_t tb_size)
|
---|
531 | {
|
---|
532 | #ifdef USE_STATIC_CODE_GEN_BUFFER
|
---|
533 | code_gen_buffer = static_code_gen_buffer;
|
---|
534 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
|
---|
535 | map_exec(code_gen_buffer, code_gen_buffer_size);
|
---|
536 | #else
|
---|
537 | # ifdef VBOX
|
---|
538 | /* We cannot use phys_ram_size here, as it's 0 now,
|
---|
539 | * it only gets initialized once RAM registration callback
|
---|
540 | * (REMR3NotifyPhysRamRegister()) called.
|
---|
541 | */
|
---|
542 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
|
---|
543 | # else /* !VBOX */
|
---|
544 | code_gen_buffer_size = tb_size;
|
---|
545 | if (code_gen_buffer_size == 0) {
|
---|
546 | #if defined(CONFIG_USER_ONLY)
|
---|
547 | /* in user mode, phys_ram_size is not meaningful */
|
---|
548 | code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
|
---|
549 | #else
|
---|
550 | /* XXX: needs adjustments */
|
---|
551 | code_gen_buffer_size = (uintptr_t)(ram_size / 4);
|
---|
552 | #endif
|
---|
553 | }
|
---|
554 | if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
|
---|
555 | code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
|
---|
556 | # endif /* !VBOX */
|
---|
557 | /* The code gen buffer location may have constraints depending on
|
---|
558 | the host cpu and OS */
|
---|
559 | # ifdef VBOX
|
---|
560 | code_gen_buffer = RTMemExecAlloc(code_gen_buffer_size);
|
---|
561 |
|
---|
562 | if (!code_gen_buffer) {
|
---|
563 | LogRel(("REM: failed allocate codegen buffer %lld\n",
|
---|
564 | code_gen_buffer_size));
|
---|
565 | return;
|
---|
566 | }
|
---|
567 | # else /* !VBOX */
|
---|
568 | #if defined(__linux__)
|
---|
569 | {
|
---|
570 | int flags;
|
---|
571 | void *start = NULL;
|
---|
572 |
|
---|
573 | flags = MAP_PRIVATE | MAP_ANONYMOUS;
|
---|
574 | #if defined(__x86_64__)
|
---|
575 | flags |= MAP_32BIT;
|
---|
576 | /* Cannot map more than that */
|
---|
577 | if (code_gen_buffer_size > (800 * 1024 * 1024))
|
---|
578 | code_gen_buffer_size = (800 * 1024 * 1024);
|
---|
579 | #elif defined(__sparc_v9__)
|
---|
580 | // Map the buffer below 2G, so we can use direct calls and branches
|
---|
581 | flags |= MAP_FIXED;
|
---|
582 | start = (void *) 0x60000000UL;
|
---|
583 | if (code_gen_buffer_size > (512 * 1024 * 1024))
|
---|
584 | code_gen_buffer_size = (512 * 1024 * 1024);
|
---|
585 | #elif defined(__arm__)
|
---|
586 | /* Map the buffer below 32M, so we can use direct calls and branches */
|
---|
587 | flags |= MAP_FIXED;
|
---|
588 | start = (void *) 0x01000000UL;
|
---|
589 | if (code_gen_buffer_size > 16 * 1024 * 1024)
|
---|
590 | code_gen_buffer_size = 16 * 1024 * 1024;
|
---|
591 | #elif defined(__s390x__)
|
---|
592 | /* Map the buffer so that we can use direct calls and branches. */
|
---|
593 | /* We have a +- 4GB range on the branches; leave some slop. */
|
---|
594 | if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
|
---|
595 | code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
|
---|
596 | }
|
---|
597 | start = (void *)0x90000000UL;
|
---|
598 | #endif
|
---|
599 | code_gen_buffer = mmap(start, code_gen_buffer_size,
|
---|
600 | PROT_WRITE | PROT_READ | PROT_EXEC,
|
---|
601 | flags, -1, 0);
|
---|
602 | if (code_gen_buffer == MAP_FAILED) {
|
---|
603 | fprintf(stderr, "Could not allocate dynamic translator buffer\n");
|
---|
604 | exit(1);
|
---|
605 | }
|
---|
606 | }
|
---|
607 | #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
|
---|
608 | {
|
---|
609 | int flags;
|
---|
610 | void *addr = NULL;
|
---|
611 | flags = MAP_PRIVATE | MAP_ANONYMOUS;
|
---|
612 | #if defined(__x86_64__)
|
---|
613 | /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
|
---|
614 | * 0x40000000 is free */
|
---|
615 | flags |= MAP_FIXED;
|
---|
616 | addr = (void *)0x40000000;
|
---|
617 | /* Cannot map more than that */
|
---|
618 | if (code_gen_buffer_size > (800 * 1024 * 1024))
|
---|
619 | code_gen_buffer_size = (800 * 1024 * 1024);
|
---|
620 | #endif
|
---|
621 | code_gen_buffer = mmap(addr, code_gen_buffer_size,
|
---|
622 | PROT_WRITE | PROT_READ | PROT_EXEC,
|
---|
623 | flags, -1, 0);
|
---|
624 | if (code_gen_buffer == MAP_FAILED) {
|
---|
625 | fprintf(stderr, "Could not allocate dynamic translator buffer\n");
|
---|
626 | exit(1);
|
---|
627 | }
|
---|
628 | }
|
---|
629 | #else
|
---|
630 | code_gen_buffer = qemu_malloc(code_gen_buffer_size);
|
---|
631 | map_exec(code_gen_buffer, code_gen_buffer_size);
|
---|
632 | #endif
|
---|
633 | # endif /* !VBOX */
|
---|
634 | #endif /* !USE_STATIC_CODE_GEN_BUFFER */
|
---|
635 | #ifndef VBOX /** @todo r=bird: why are we different? */
|
---|
636 | map_exec(code_gen_prologue, sizeof(code_gen_prologue));
|
---|
637 | #else
|
---|
638 | map_exec(code_gen_prologue, _1K);
|
---|
639 | #endif
|
---|
640 | code_gen_buffer_max_size = code_gen_buffer_size -
|
---|
641 | (TCG_MAX_OP_SIZE * OPC_MAX_SIZE);
|
---|
642 | code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
|
---|
643 | tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
|
---|
644 | }
|
---|
645 |
|
---|
646 | /* Must be called before using the QEMU cpus. 'tb_size' is the size
|
---|
647 | (in bytes) allocated to the translation buffer. Zero means default
|
---|
648 | size. */
|
---|
649 | void cpu_exec_init_all(uintptr_t tb_size)
|
---|
650 | {
|
---|
651 | cpu_gen_init();
|
---|
652 | code_gen_alloc(tb_size);
|
---|
653 | code_gen_ptr = code_gen_buffer;
|
---|
654 | page_init();
|
---|
655 | #if !defined(CONFIG_USER_ONLY)
|
---|
656 | io_mem_init();
|
---|
657 | #endif
|
---|
658 | #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
|
---|
659 | /* There's no guest base to take into account, so go ahead and
|
---|
660 | initialize the prologue now. */
|
---|
661 | tcg_prologue_init(&tcg_ctx);
|
---|
662 | #endif
|
---|
663 | }
|
---|
664 |
|
---|
665 | #ifndef VBOX
|
---|
666 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
|
---|
667 |
|
---|
668 | static int cpu_common_post_load(void *opaque, int version_id)
|
---|
669 | {
|
---|
670 | CPUState *env = opaque;
|
---|
671 |
|
---|
672 | /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
|
---|
673 | version_id is increased. */
|
---|
674 | env->interrupt_request &= ~0x01;
|
---|
675 | tlb_flush(env, 1);
|
---|
676 |
|
---|
677 | return 0;
|
---|
678 | }
|
---|
679 |
|
---|
680 | static const VMStateDescription vmstate_cpu_common = {
|
---|
681 | .name = "cpu_common",
|
---|
682 | .version_id = 1,
|
---|
683 | .minimum_version_id = 1,
|
---|
684 | .minimum_version_id_old = 1,
|
---|
685 | .post_load = cpu_common_post_load,
|
---|
686 | .fields = (VMStateField []) {
|
---|
687 | VMSTATE_UINT32(halted, CPUState),
|
---|
688 | VMSTATE_UINT32(interrupt_request, CPUState),
|
---|
689 | VMSTATE_END_OF_LIST()
|
---|
690 | }
|
---|
691 | };
|
---|
692 | #endif
|
---|
693 |
|
---|
694 | CPUState *qemu_get_cpu(int cpu)
|
---|
695 | {
|
---|
696 | CPUState *env = first_cpu;
|
---|
697 |
|
---|
698 | while (env) {
|
---|
699 | if (env->cpu_index == cpu)
|
---|
700 | break;
|
---|
701 | env = env->next_cpu;
|
---|
702 | }
|
---|
703 |
|
---|
704 | return env;
|
---|
705 | }
|
---|
706 |
|
---|
707 | #endif /* !VBOX */
|
---|
708 |
|
---|
709 | void cpu_exec_init(CPUState *env)
|
---|
710 | {
|
---|
711 | CPUState **penv;
|
---|
712 | int cpu_index;
|
---|
713 |
|
---|
714 | #if defined(CONFIG_USER_ONLY)
|
---|
715 | cpu_list_lock();
|
---|
716 | #endif
|
---|
717 | env->next_cpu = NULL;
|
---|
718 | penv = &first_cpu;
|
---|
719 | cpu_index = 0;
|
---|
720 | while (*penv != NULL) {
|
---|
721 | penv = &(*penv)->next_cpu;
|
---|
722 | cpu_index++;
|
---|
723 | }
|
---|
724 | env->cpu_index = cpu_index;
|
---|
725 | env->numa_node = 0;
|
---|
726 | QTAILQ_INIT(&env->breakpoints);
|
---|
727 | QTAILQ_INIT(&env->watchpoints);
|
---|
728 | *penv = env;
|
---|
729 | #ifndef VBOX
|
---|
730 | #if defined(CONFIG_USER_ONLY)
|
---|
731 | cpu_list_unlock();
|
---|
732 | #endif
|
---|
733 | #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
|
---|
734 | vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
|
---|
735 | register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
|
---|
736 | cpu_save, cpu_load, env);
|
---|
737 | #endif
|
---|
738 | #endif /* !VBOX */
|
---|
739 | }
|
---|
740 |
|
---|
741 | static inline void invalidate_page_bitmap(PageDesc *p)
|
---|
742 | {
|
---|
743 | if (p->code_bitmap) {
|
---|
744 | qemu_free(p->code_bitmap);
|
---|
745 | p->code_bitmap = NULL;
|
---|
746 | }
|
---|
747 | p->code_write_count = 0;
|
---|
748 | }
|
---|
749 |
|
---|
750 | /* Set to NULL all the 'first_tb' fields in all PageDescs. */
|
---|
751 |
|
---|
752 | static void page_flush_tb_1 (int level, void **lp)
|
---|
753 | {
|
---|
754 | int i;
|
---|
755 |
|
---|
756 | if (*lp == NULL) {
|
---|
757 | return;
|
---|
758 | }
|
---|
759 | if (level == 0) {
|
---|
760 | PageDesc *pd = *lp;
|
---|
761 | for (i = 0; i < L2_SIZE; ++i) {
|
---|
762 | pd[i].first_tb = NULL;
|
---|
763 | invalidate_page_bitmap(pd + i);
|
---|
764 | }
|
---|
765 | } else {
|
---|
766 | void **pp = *lp;
|
---|
767 | for (i = 0; i < L2_SIZE; ++i) {
|
---|
768 | page_flush_tb_1 (level - 1, pp + i);
|
---|
769 | }
|
---|
770 | }
|
---|
771 | }
|
---|
772 |
|
---|
773 | static void page_flush_tb(void)
|
---|
774 | {
|
---|
775 | int i;
|
---|
776 | for (i = 0; i < V_L1_SIZE; i++) {
|
---|
777 | page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
|
---|
778 | }
|
---|
779 | }
|
---|
780 |
|
---|
781 | /* flush all the translation blocks */
|
---|
782 | /* XXX: tb_flush is currently not thread safe */
|
---|
783 | void tb_flush(CPUState *env1)
|
---|
784 | {
|
---|
785 | CPUState *env;
|
---|
786 | #ifdef VBOX
|
---|
787 | STAM_PROFILE_START(&env1->StatTbFlush, a);
|
---|
788 | #endif
|
---|
789 | #if defined(DEBUG_FLUSH)
|
---|
790 | printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
|
---|
791 | (unsigned long)(code_gen_ptr - code_gen_buffer),
|
---|
792 | nb_tbs, nb_tbs > 0 ?
|
---|
793 | ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
|
---|
794 | #endif
|
---|
795 | if ((uintptr_t)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
|
---|
796 | cpu_abort(env1, "Internal error: code buffer overflow\n");
|
---|
797 |
|
---|
798 | nb_tbs = 0;
|
---|
799 |
|
---|
800 | for(env = first_cpu; env != NULL; env = env->next_cpu) {
|
---|
801 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
|
---|
802 | }
|
---|
803 |
|
---|
804 | memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
|
---|
805 | page_flush_tb();
|
---|
806 |
|
---|
807 | code_gen_ptr = code_gen_buffer;
|
---|
808 | /* XXX: flush processor icache at this point if cache flush is
|
---|
809 | expensive */
|
---|
810 | tb_flush_count++;
|
---|
811 | #ifdef VBOX
|
---|
812 | STAM_PROFILE_STOP(&env1->StatTbFlush, a);
|
---|
813 | #endif
|
---|
814 | }
|
---|
815 |
|
---|
816 | #ifdef DEBUG_TB_CHECK
|
---|
817 |
|
---|
818 | static void tb_invalidate_check(target_ulong address)
|
---|
819 | {
|
---|
820 | TranslationBlock *tb;
|
---|
821 | int i;
|
---|
822 | address &= TARGET_PAGE_MASK;
|
---|
823 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
|
---|
824 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
|
---|
825 | if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
|
---|
826 | address >= tb->pc + tb->size)) {
|
---|
827 | printf("ERROR invalidate: address=" TARGET_FMT_lx
|
---|
828 | " PC=%08lx size=%04x\n",
|
---|
829 | address, (long)tb->pc, tb->size);
|
---|
830 | }
|
---|
831 | }
|
---|
832 | }
|
---|
833 | }
|
---|
834 |
|
---|
835 | /* verify that all the pages have correct rights for code */
|
---|
836 | static void tb_page_check(void)
|
---|
837 | {
|
---|
838 | TranslationBlock *tb;
|
---|
839 | int i, flags1, flags2;
|
---|
840 |
|
---|
841 | for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
|
---|
842 | for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
|
---|
843 | flags1 = page_get_flags(tb->pc);
|
---|
844 | flags2 = page_get_flags(tb->pc + tb->size - 1);
|
---|
845 | if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
|
---|
846 | printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
|
---|
847 | (long)tb->pc, tb->size, flags1, flags2);
|
---|
848 | }
|
---|
849 | }
|
---|
850 | }
|
---|
851 | }
|
---|
852 |
|
---|
853 | #endif
|
---|
854 |
|
---|
855 | /* invalidate one TB */
|
---|
856 | static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
|
---|
857 | int next_offset)
|
---|
858 | {
|
---|
859 | TranslationBlock *tb1;
|
---|
860 | for(;;) {
|
---|
861 | tb1 = *ptb;
|
---|
862 | if (tb1 == tb) {
|
---|
863 | *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
|
---|
864 | break;
|
---|
865 | }
|
---|
866 | ptb = (TranslationBlock **)((char *)tb1 + next_offset);
|
---|
867 | }
|
---|
868 | }
|
---|
869 |
|
---|
870 | static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
|
---|
871 | {
|
---|
872 | TranslationBlock *tb1;
|
---|
873 | unsigned int n1;
|
---|
874 |
|
---|
875 | for(;;) {
|
---|
876 | tb1 = *ptb;
|
---|
877 | n1 = (intptr_t)tb1 & 3;
|
---|
878 | tb1 = (TranslationBlock *)((intptr_t)tb1 & ~3);
|
---|
879 | if (tb1 == tb) {
|
---|
880 | *ptb = tb1->page_next[n1];
|
---|
881 | break;
|
---|
882 | }
|
---|
883 | ptb = &tb1->page_next[n1];
|
---|
884 | }
|
---|
885 | }
|
---|
886 |
|
---|
887 | static inline void tb_jmp_remove(TranslationBlock *tb, int n)
|
---|
888 | {
|
---|
889 | TranslationBlock *tb1, **ptb;
|
---|
890 | unsigned int n1;
|
---|
891 |
|
---|
892 | ptb = &tb->jmp_next[n];
|
---|
893 | tb1 = *ptb;
|
---|
894 | if (tb1) {
|
---|
895 | /* find tb(n) in circular list */
|
---|
896 | for(;;) {
|
---|
897 | tb1 = *ptb;
|
---|
898 | n1 = (intptr_t)tb1 & 3;
|
---|
899 | tb1 = (TranslationBlock *)((intptr_t)tb1 & ~3);
|
---|
900 | if (n1 == n && tb1 == tb)
|
---|
901 | break;
|
---|
902 | if (n1 == 2) {
|
---|
903 | ptb = &tb1->jmp_first;
|
---|
904 | } else {
|
---|
905 | ptb = &tb1->jmp_next[n1];
|
---|
906 | }
|
---|
907 | }
|
---|
908 | /* now we can suppress tb(n) from the list */
|
---|
909 | *ptb = tb->jmp_next[n];
|
---|
910 |
|
---|
911 | tb->jmp_next[n] = NULL;
|
---|
912 | }
|
---|
913 | }
|
---|
914 |
|
---|
915 | /* reset the jump entry 'n' of a TB so that it is not chained to
|
---|
916 | another TB */
|
---|
917 | static inline void tb_reset_jump(TranslationBlock *tb, int n)
|
---|
918 | {
|
---|
919 | tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
|
---|
920 | }
|
---|
921 |
|
---|
922 | void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
|
---|
923 | {
|
---|
924 | CPUState *env;
|
---|
925 | PageDesc *p;
|
---|
926 | unsigned int h, n1;
|
---|
927 | tb_page_addr_t phys_pc;
|
---|
928 | TranslationBlock *tb1, *tb2;
|
---|
929 |
|
---|
930 | /* remove the TB from the hash list */
|
---|
931 | phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
|
---|
932 | h = tb_phys_hash_func(phys_pc);
|
---|
933 | tb_remove(&tb_phys_hash[h], tb,
|
---|
934 | offsetof(TranslationBlock, phys_hash_next));
|
---|
935 |
|
---|
936 | /* remove the TB from the page list */
|
---|
937 | if (tb->page_addr[0] != page_addr) {
|
---|
938 | p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
|
---|
939 | tb_page_remove(&p->first_tb, tb);
|
---|
940 | invalidate_page_bitmap(p);
|
---|
941 | }
|
---|
942 | if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
|
---|
943 | p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
|
---|
944 | tb_page_remove(&p->first_tb, tb);
|
---|
945 | invalidate_page_bitmap(p);
|
---|
946 | }
|
---|
947 |
|
---|
948 | tb_invalidated_flag = 1;
|
---|
949 |
|
---|
950 | /* remove the TB from the hash list */
|
---|
951 | h = tb_jmp_cache_hash_func(tb->pc);
|
---|
952 | for(env = first_cpu; env != NULL; env = env->next_cpu) {
|
---|
953 | if (env->tb_jmp_cache[h] == tb)
|
---|
954 | env->tb_jmp_cache[h] = NULL;
|
---|
955 | }
|
---|
956 |
|
---|
957 | /* suppress this TB from the two jump lists */
|
---|
958 | tb_jmp_remove(tb, 0);
|
---|
959 | tb_jmp_remove(tb, 1);
|
---|
960 |
|
---|
961 | /* suppress any remaining jumps to this TB */
|
---|
962 | tb1 = tb->jmp_first;
|
---|
963 | for(;;) {
|
---|
964 | n1 = (intptr_t)tb1 & 3;
|
---|
965 | if (n1 == 2)
|
---|
966 | break;
|
---|
967 | tb1 = (TranslationBlock *)((intptr_t)tb1 & ~3);
|
---|
968 | tb2 = tb1->jmp_next[n1];
|
---|
969 | tb_reset_jump(tb1, n1);
|
---|
970 | tb1->jmp_next[n1] = NULL;
|
---|
971 | tb1 = tb2;
|
---|
972 | }
|
---|
973 | tb->jmp_first = (TranslationBlock *)((intptr_t)tb | 2); /* fail safe */
|
---|
974 |
|
---|
975 | tb_phys_invalidate_count++;
|
---|
976 | }
|
---|
977 |
|
---|
978 | #ifdef VBOX
|
---|
979 |
|
---|
980 | void tb_invalidate_virt(CPUState *env, uint32_t eip)
|
---|
981 | {
|
---|
982 | # if 1
|
---|
983 | tb_flush(env);
|
---|
984 | # else
|
---|
985 | uint8_t *cs_base, *pc;
|
---|
986 | unsigned int flags, h, phys_pc;
|
---|
987 | TranslationBlock *tb, **ptb;
|
---|
988 |
|
---|
989 | flags = env->hflags;
|
---|
990 | flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
|
---|
991 | cs_base = env->segs[R_CS].base;
|
---|
992 | pc = cs_base + eip;
|
---|
993 |
|
---|
994 | tb = tb_find(&ptb, (uintptr_t)pc, (uintptr_t)cs_base,
|
---|
995 | flags);
|
---|
996 |
|
---|
997 | if(tb)
|
---|
998 | {
|
---|
999 | # ifdef DEBUG
|
---|
1000 | printf("invalidating TB (%08X) at %08X\n", tb, eip);
|
---|
1001 | # endif
|
---|
1002 | tb_invalidate(tb);
|
---|
1003 | //Note: this will leak TBs, but the whole cache will be flushed
|
---|
1004 | // when it happens too often
|
---|
1005 | tb->pc = 0;
|
---|
1006 | tb->cs_base = 0;
|
---|
1007 | tb->flags = 0;
|
---|
1008 | }
|
---|
1009 | # endif
|
---|
1010 | }
|
---|
1011 |
|
---|
1012 | # ifdef VBOX_STRICT
|
---|
1013 | /**
|
---|
1014 | * Gets the page offset.
|
---|
1015 | */
|
---|
1016 | ram_addr_t get_phys_page_offset(target_ulong addr)
|
---|
1017 | {
|
---|
1018 | PhysPageDesc *p = phys_page_find(addr >> TARGET_PAGE_BITS);
|
---|
1019 | return p ? p->phys_offset : 0;
|
---|
1020 | }
|
---|
1021 | # endif /* VBOX_STRICT */
|
---|
1022 |
|
---|
1023 | #endif /* VBOX */
|
---|
1024 |
|
---|
1025 | static inline void set_bits(uint8_t *tab, int start, int len)
|
---|
1026 | {
|
---|
1027 | int end, mask, end1;
|
---|
1028 |
|
---|
1029 | end = start + len;
|
---|
1030 | tab += start >> 3;
|
---|
1031 | mask = 0xff << (start & 7);
|
---|
1032 | if ((start & ~7) == (end & ~7)) {
|
---|
1033 | if (start < end) {
|
---|
1034 | mask &= ~(0xff << (end & 7));
|
---|
1035 | *tab |= mask;
|
---|
1036 | }
|
---|
1037 | } else {
|
---|
1038 | *tab++ |= mask;
|
---|
1039 | start = (start + 8) & ~7;
|
---|
1040 | end1 = end & ~7;
|
---|
1041 | while (start < end1) {
|
---|
1042 | *tab++ = 0xff;
|
---|
1043 | start += 8;
|
---|
1044 | }
|
---|
1045 | if (start < end) {
|
---|
1046 | mask = ~(0xff << (end & 7));
|
---|
1047 | *tab |= mask;
|
---|
1048 | }
|
---|
1049 | }
|
---|
1050 | }
|
---|
1051 |
|
---|
1052 | static void build_page_bitmap(PageDesc *p)
|
---|
1053 | {
|
---|
1054 | int n, tb_start, tb_end;
|
---|
1055 | TranslationBlock *tb;
|
---|
1056 |
|
---|
1057 | p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
|
---|
1058 |
|
---|
1059 | tb = p->first_tb;
|
---|
1060 | while (tb != NULL) {
|
---|
1061 | n = (intptr_t)tb & 3;
|
---|
1062 | tb = (TranslationBlock *)((intptr_t)tb & ~3);
|
---|
1063 | /* NOTE: this is subtle as a TB may span two physical pages */
|
---|
1064 | if (n == 0) {
|
---|
1065 | /* NOTE: tb_end may be after the end of the page, but
|
---|
1066 | it is not a problem */
|
---|
1067 | tb_start = tb->pc & ~TARGET_PAGE_MASK;
|
---|
1068 | tb_end = tb_start + tb->size;
|
---|
1069 | if (tb_end > TARGET_PAGE_SIZE)
|
---|
1070 | tb_end = TARGET_PAGE_SIZE;
|
---|
1071 | } else {
|
---|
1072 | tb_start = 0;
|
---|
1073 | tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
|
---|
1074 | }
|
---|
1075 | set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
|
---|
1076 | tb = tb->page_next[n];
|
---|
1077 | }
|
---|
1078 | }
|
---|
1079 |
|
---|
1080 | TranslationBlock *tb_gen_code(CPUState *env,
|
---|
1081 | target_ulong pc, target_ulong cs_base,
|
---|
1082 | int flags, int cflags)
|
---|
1083 | {
|
---|
1084 | TranslationBlock *tb;
|
---|
1085 | uint8_t *tc_ptr;
|
---|
1086 | tb_page_addr_t phys_pc, phys_page2;
|
---|
1087 | target_ulong virt_page2;
|
---|
1088 | int code_gen_size;
|
---|
1089 |
|
---|
1090 | phys_pc = get_page_addr_code(env, pc);
|
---|
1091 | tb = tb_alloc(pc);
|
---|
1092 | if (!tb) {
|
---|
1093 | /* flush must be done */
|
---|
1094 | tb_flush(env);
|
---|
1095 | /* cannot fail at this point */
|
---|
1096 | tb = tb_alloc(pc);
|
---|
1097 | /* Don't forget to invalidate previous TB info. */
|
---|
1098 | tb_invalidated_flag = 1;
|
---|
1099 | }
|
---|
1100 | tc_ptr = code_gen_ptr;
|
---|
1101 | tb->tc_ptr = tc_ptr;
|
---|
1102 | tb->cs_base = cs_base;
|
---|
1103 | tb->flags = flags;
|
---|
1104 | tb->cflags = cflags;
|
---|
1105 | cpu_gen_code(env, tb, &code_gen_size);
|
---|
1106 | code_gen_ptr = (void *)(((uintptr_t)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
|
---|
1107 |
|
---|
1108 | /* check next page if needed */
|
---|
1109 | virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
|
---|
1110 | phys_page2 = -1;
|
---|
1111 | if ((pc & TARGET_PAGE_MASK) != virt_page2) {
|
---|
1112 | phys_page2 = get_page_addr_code(env, virt_page2);
|
---|
1113 | }
|
---|
1114 | tb_link_page(tb, phys_pc, phys_page2);
|
---|
1115 | return tb;
|
---|
1116 | }
|
---|
1117 |
|
---|
1118 | /* invalidate all TBs which intersect with the target physical page
|
---|
1119 | starting in range [start;end[. NOTE: start and end must refer to
|
---|
1120 | the same physical page. 'is_cpu_write_access' should be true if called
|
---|
1121 | from a real cpu write access: the virtual CPU will exit the current
|
---|
1122 | TB if code is modified inside this TB. */
|
---|
1123 | void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
|
---|
1124 | int is_cpu_write_access)
|
---|
1125 | {
|
---|
1126 | TranslationBlock *tb, *tb_next, *saved_tb;
|
---|
1127 | CPUState *env = cpu_single_env;
|
---|
1128 | tb_page_addr_t tb_start, tb_end;
|
---|
1129 | PageDesc *p;
|
---|
1130 | int n;
|
---|
1131 | #ifdef TARGET_HAS_PRECISE_SMC
|
---|
1132 | int current_tb_not_found = is_cpu_write_access;
|
---|
1133 | TranslationBlock *current_tb = NULL;
|
---|
1134 | int current_tb_modified = 0;
|
---|
1135 | target_ulong current_pc = 0;
|
---|
1136 | target_ulong current_cs_base = 0;
|
---|
1137 | int current_flags = 0;
|
---|
1138 | #endif /* TARGET_HAS_PRECISE_SMC */
|
---|
1139 |
|
---|
1140 | p = page_find(start >> TARGET_PAGE_BITS);
|
---|
1141 | if (!p)
|
---|
1142 | return;
|
---|
1143 | if (!p->code_bitmap &&
|
---|
1144 | ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
|
---|
1145 | is_cpu_write_access) {
|
---|
1146 | /* build code bitmap */
|
---|
1147 | build_page_bitmap(p);
|
---|
1148 | }
|
---|
1149 |
|
---|
1150 | /* we remove all the TBs in the range [start, end[ */
|
---|
1151 | /* XXX: see if in some cases it could be faster to invalidate all the code */
|
---|
1152 | tb = p->first_tb;
|
---|
1153 | while (tb != NULL) {
|
---|
1154 | n = (intptr_t)tb & 3;
|
---|
1155 | tb = (TranslationBlock *)((intptr_t)tb & ~3);
|
---|
1156 | tb_next = tb->page_next[n];
|
---|
1157 | /* NOTE: this is subtle as a TB may span two physical pages */
|
---|
1158 | if (n == 0) {
|
---|
1159 | /* NOTE: tb_end may be after the end of the page, but
|
---|
1160 | it is not a problem */
|
---|
1161 | tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
|
---|
1162 | tb_end = tb_start + tb->size;
|
---|
1163 | } else {
|
---|
1164 | tb_start = tb->page_addr[1];
|
---|
1165 | tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
|
---|
1166 | }
|
---|
1167 | if (!(tb_end <= start || tb_start >= end)) {
|
---|
1168 | #ifdef TARGET_HAS_PRECISE_SMC
|
---|
1169 | if (current_tb_not_found) {
|
---|
1170 | current_tb_not_found = 0;
|
---|
1171 | current_tb = NULL;
|
---|
1172 | if (env->mem_io_pc) {
|
---|
1173 | /* now we have a real cpu fault */
|
---|
1174 | current_tb = tb_find_pc(env->mem_io_pc);
|
---|
1175 | }
|
---|
1176 | }
|
---|
1177 | if (current_tb == tb &&
|
---|
1178 | (current_tb->cflags & CF_COUNT_MASK) != 1) {
|
---|
1179 | /* If we are modifying the current TB, we must stop
|
---|
1180 | its execution. We could be more precise by checking
|
---|
1181 | that the modification is after the current PC, but it
|
---|
1182 | would require a specialized function to partially
|
---|
1183 | restore the CPU state */
|
---|
1184 |
|
---|
1185 | current_tb_modified = 1;
|
---|
1186 | cpu_restore_state(current_tb, env,
|
---|
1187 | env->mem_io_pc, NULL);
|
---|
1188 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
|
---|
1189 | ¤t_flags);
|
---|
1190 | }
|
---|
1191 | #endif /* TARGET_HAS_PRECISE_SMC */
|
---|
1192 | /* we need to do that to handle the case where a signal
|
---|
1193 | occurs while doing tb_phys_invalidate() */
|
---|
1194 | saved_tb = NULL;
|
---|
1195 | if (env) {
|
---|
1196 | saved_tb = env->current_tb;
|
---|
1197 | env->current_tb = NULL;
|
---|
1198 | }
|
---|
1199 | tb_phys_invalidate(tb, -1);
|
---|
1200 | if (env) {
|
---|
1201 | env->current_tb = saved_tb;
|
---|
1202 | if (env->interrupt_request && env->current_tb)
|
---|
1203 | cpu_interrupt(env, env->interrupt_request);
|
---|
1204 | }
|
---|
1205 | }
|
---|
1206 | tb = tb_next;
|
---|
1207 | }
|
---|
1208 | #if !defined(CONFIG_USER_ONLY)
|
---|
1209 | /* if no code remaining, no need to continue to use slow writes */
|
---|
1210 | if (!p->first_tb) {
|
---|
1211 | invalidate_page_bitmap(p);
|
---|
1212 | if (is_cpu_write_access) {
|
---|
1213 | tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
|
---|
1214 | }
|
---|
1215 | }
|
---|
1216 | #endif
|
---|
1217 | #ifdef TARGET_HAS_PRECISE_SMC
|
---|
1218 | if (current_tb_modified) {
|
---|
1219 | /* we generate a block containing just the instruction
|
---|
1220 | modifying the memory. It will ensure that it cannot modify
|
---|
1221 | itself */
|
---|
1222 | env->current_tb = NULL;
|
---|
1223 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
|
---|
1224 | cpu_resume_from_signal(env, NULL);
|
---|
1225 | }
|
---|
1226 | #endif
|
---|
1227 | }
|
---|
1228 |
|
---|
1229 | /* len must be <= 8 and start must be a multiple of len */
|
---|
1230 | static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
|
---|
1231 | {
|
---|
1232 | PageDesc *p;
|
---|
1233 | int offset, b;
|
---|
1234 | #if 0
|
---|
1235 | if (1) {
|
---|
1236 | qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
|
---|
1237 | cpu_single_env->mem_io_vaddr, len,
|
---|
1238 | cpu_single_env->eip,
|
---|
1239 | cpu_single_env->eip + (intptr_t)cpu_single_env->segs[R_CS].base);
|
---|
1240 | }
|
---|
1241 | #endif
|
---|
1242 | p = page_find(start >> TARGET_PAGE_BITS);
|
---|
1243 | if (!p)
|
---|
1244 | return;
|
---|
1245 | if (p->code_bitmap) {
|
---|
1246 | offset = start & ~TARGET_PAGE_MASK;
|
---|
1247 | b = p->code_bitmap[offset >> 3] >> (offset & 7);
|
---|
1248 | if (b & ((1 << len) - 1))
|
---|
1249 | goto do_invalidate;
|
---|
1250 | } else {
|
---|
1251 | do_invalidate:
|
---|
1252 | tb_invalidate_phys_page_range(start, start + len, 1);
|
---|
1253 | }
|
---|
1254 | }
|
---|
1255 |
|
---|
1256 | #if !defined(CONFIG_SOFTMMU)
|
---|
1257 | static void tb_invalidate_phys_page(tb_page_addr_t addr,
|
---|
1258 | uintptr_t pc, void *puc)
|
---|
1259 | {
|
---|
1260 | TranslationBlock *tb;
|
---|
1261 | PageDesc *p;
|
---|
1262 | int n;
|
---|
1263 | #ifdef TARGET_HAS_PRECISE_SMC
|
---|
1264 | TranslationBlock *current_tb = NULL;
|
---|
1265 | CPUState *env = cpu_single_env;
|
---|
1266 | int current_tb_modified = 0;
|
---|
1267 | target_ulong current_pc = 0;
|
---|
1268 | target_ulong current_cs_base = 0;
|
---|
1269 | int current_flags = 0;
|
---|
1270 | #endif
|
---|
1271 |
|
---|
1272 | addr &= TARGET_PAGE_MASK;
|
---|
1273 | p = page_find(addr >> TARGET_PAGE_BITS);
|
---|
1274 | if (!p)
|
---|
1275 | return;
|
---|
1276 | tb = p->first_tb;
|
---|
1277 | #ifdef TARGET_HAS_PRECISE_SMC
|
---|
1278 | if (tb && pc != 0) {
|
---|
1279 | current_tb = tb_find_pc(pc);
|
---|
1280 | }
|
---|
1281 | #endif
|
---|
1282 | while (tb != NULL) {
|
---|
1283 | n = (intptr_t)tb & 3;
|
---|
1284 | tb = (TranslationBlock *)((intptr_t)tb & ~3);
|
---|
1285 | #ifdef TARGET_HAS_PRECISE_SMC
|
---|
1286 | if (current_tb == tb &&
|
---|
1287 | (current_tb->cflags & CF_COUNT_MASK) != 1) {
|
---|
1288 | /* If we are modifying the current TB, we must stop
|
---|
1289 | its execution. We could be more precise by checking
|
---|
1290 | that the modification is after the current PC, but it
|
---|
1291 | would require a specialized function to partially
|
---|
1292 | restore the CPU state */
|
---|
1293 |
|
---|
1294 | current_tb_modified = 1;
|
---|
1295 | cpu_restore_state(current_tb, env, pc, puc);
|
---|
1296 | cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
|
---|
1297 | ¤t_flags);
|
---|
1298 | }
|
---|
1299 | #endif /* TARGET_HAS_PRECISE_SMC */
|
---|
1300 | tb_phys_invalidate(tb, addr);
|
---|
1301 | tb = tb->page_next[n];
|
---|
1302 | }
|
---|
1303 | p->first_tb = NULL;
|
---|
1304 | #ifdef TARGET_HAS_PRECISE_SMC
|
---|
1305 | if (current_tb_modified) {
|
---|
1306 | /* we generate a block containing just the instruction
|
---|
1307 | modifying the memory. It will ensure that it cannot modify
|
---|
1308 | itself */
|
---|
1309 | env->current_tb = NULL;
|
---|
1310 | tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
|
---|
1311 | cpu_resume_from_signal(env, puc);
|
---|
1312 | }
|
---|
1313 | #endif
|
---|
1314 | }
|
---|
1315 | #endif
|
---|
1316 |
|
---|
1317 | /* add the tb in the target page and protect it if necessary */
|
---|
1318 | static inline void tb_alloc_page(TranslationBlock *tb,
|
---|
1319 | unsigned int n, tb_page_addr_t page_addr)
|
---|
1320 | {
|
---|
1321 | PageDesc *p;
|
---|
1322 | TranslationBlock *last_first_tb;
|
---|
1323 |
|
---|
1324 | tb->page_addr[n] = page_addr;
|
---|
1325 | p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
|
---|
1326 | tb->page_next[n] = p->first_tb;
|
---|
1327 | last_first_tb = p->first_tb;
|
---|
1328 | p->first_tb = (TranslationBlock *)((intptr_t)tb | n);
|
---|
1329 | invalidate_page_bitmap(p);
|
---|
1330 |
|
---|
1331 | #if defined(TARGET_HAS_SMC) || 1
|
---|
1332 |
|
---|
1333 | #if defined(CONFIG_USER_ONLY)
|
---|
1334 | if (p->flags & PAGE_WRITE) {
|
---|
1335 | target_ulong addr;
|
---|
1336 | PageDesc *p2;
|
---|
1337 | int prot;
|
---|
1338 |
|
---|
1339 | /* force the host page as non writable (writes will have a
|
---|
1340 | page fault + mprotect overhead) */
|
---|
1341 | page_addr &= qemu_host_page_mask;
|
---|
1342 | prot = 0;
|
---|
1343 | for(addr = page_addr; addr < page_addr + qemu_host_page_size;
|
---|
1344 | addr += TARGET_PAGE_SIZE) {
|
---|
1345 |
|
---|
1346 | p2 = page_find (addr >> TARGET_PAGE_BITS);
|
---|
1347 | if (!p2)
|
---|
1348 | continue;
|
---|
1349 | prot |= p2->flags;
|
---|
1350 | p2->flags &= ~PAGE_WRITE;
|
---|
1351 | }
|
---|
1352 | mprotect(g2h(page_addr), qemu_host_page_size,
|
---|
1353 | (prot & PAGE_BITS) & ~PAGE_WRITE);
|
---|
1354 | #ifdef DEBUG_TB_INVALIDATE
|
---|
1355 | printf("protecting code page: 0x" TARGET_FMT_lx "\n",
|
---|
1356 | page_addr);
|
---|
1357 | #endif
|
---|
1358 | }
|
---|
1359 | #else
|
---|
1360 | /* if some code is already present, then the pages are already
|
---|
1361 | protected. So we handle the case where only the first TB is
|
---|
1362 | allocated in a physical page */
|
---|
1363 | if (!last_first_tb) {
|
---|
1364 | tlb_protect_code(page_addr);
|
---|
1365 | }
|
---|
1366 | #endif
|
---|
1367 |
|
---|
1368 | #endif /* TARGET_HAS_SMC */
|
---|
1369 | }
|
---|
1370 |
|
---|
1371 | /* Allocate a new translation block. Flush the translation buffer if
|
---|
1372 | too many translation blocks or too much generated code. */
|
---|
1373 | TranslationBlock *tb_alloc(target_ulong pc)
|
---|
1374 | {
|
---|
1375 | TranslationBlock *tb;
|
---|
1376 |
|
---|
1377 | if (nb_tbs >= code_gen_max_blocks ||
|
---|
1378 | (code_gen_ptr - code_gen_buffer) >= VBOX_ONLY((uintptr_t))code_gen_buffer_max_size)
|
---|
1379 | return NULL;
|
---|
1380 | tb = &tbs[nb_tbs++];
|
---|
1381 | tb->pc = pc;
|
---|
1382 | tb->cflags = 0;
|
---|
1383 | return tb;
|
---|
1384 | }
|
---|
1385 |
|
---|
1386 | void tb_free(TranslationBlock *tb)
|
---|
1387 | {
|
---|
1388 | /* In practice this is mostly used for single use temporary TB
|
---|
1389 | Ignore the hard cases and just back up if this TB happens to
|
---|
1390 | be the last one generated. */
|
---|
1391 | if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
|
---|
1392 | code_gen_ptr = tb->tc_ptr;
|
---|
1393 | nb_tbs--;
|
---|
1394 | }
|
---|
1395 | }
|
---|
1396 |
|
---|
1397 | /* add a new TB and link it to the physical page tables. phys_page2 is
|
---|
1398 | (-1) to indicate that only one page contains the TB. */
|
---|
1399 | void tb_link_page(TranslationBlock *tb,
|
---|
1400 | tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
|
---|
1401 | {
|
---|
1402 | unsigned int h;
|
---|
1403 | TranslationBlock **ptb;
|
---|
1404 |
|
---|
1405 | /* Grab the mmap lock to stop another thread invalidating this TB
|
---|
1406 | before we are done. */
|
---|
1407 | mmap_lock();
|
---|
1408 | /* add in the physical hash table */
|
---|
1409 | h = tb_phys_hash_func(phys_pc);
|
---|
1410 | ptb = &tb_phys_hash[h];
|
---|
1411 | tb->phys_hash_next = *ptb;
|
---|
1412 | *ptb = tb;
|
---|
1413 |
|
---|
1414 | /* add in the page list */
|
---|
1415 | tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
|
---|
1416 | if (phys_page2 != -1)
|
---|
1417 | tb_alloc_page(tb, 1, phys_page2);
|
---|
1418 | else
|
---|
1419 | tb->page_addr[1] = -1;
|
---|
1420 |
|
---|
1421 | tb->jmp_first = (TranslationBlock *)((intptr_t)tb | 2);
|
---|
1422 | tb->jmp_next[0] = NULL;
|
---|
1423 | tb->jmp_next[1] = NULL;
|
---|
1424 |
|
---|
1425 | /* init original jump addresses */
|
---|
1426 | if (tb->tb_next_offset[0] != 0xffff)
|
---|
1427 | tb_reset_jump(tb, 0);
|
---|
1428 | if (tb->tb_next_offset[1] != 0xffff)
|
---|
1429 | tb_reset_jump(tb, 1);
|
---|
1430 |
|
---|
1431 | #ifdef DEBUG_TB_CHECK
|
---|
1432 | tb_page_check();
|
---|
1433 | #endif
|
---|
1434 | mmap_unlock();
|
---|
1435 | }
|
---|
1436 |
|
---|
1437 | /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
|
---|
1438 | tb[1].tc_ptr. Return NULL if not found */
|
---|
1439 | TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
|
---|
1440 | {
|
---|
1441 | int m_min, m_max, m;
|
---|
1442 | uintptr_t v;
|
---|
1443 | TranslationBlock *tb;
|
---|
1444 |
|
---|
1445 | if (nb_tbs <= 0)
|
---|
1446 | return NULL;
|
---|
1447 | if (tc_ptr < (uintptr_t)code_gen_buffer ||
|
---|
1448 | tc_ptr >= (uintptr_t)code_gen_ptr)
|
---|
1449 | return NULL;
|
---|
1450 | /* binary search (cf Knuth) */
|
---|
1451 | m_min = 0;
|
---|
1452 | m_max = nb_tbs - 1;
|
---|
1453 | while (m_min <= m_max) {
|
---|
1454 | m = (m_min + m_max) >> 1;
|
---|
1455 | tb = &tbs[m];
|
---|
1456 | v = (uintptr_t)tb->tc_ptr;
|
---|
1457 | if (v == tc_ptr)
|
---|
1458 | return tb;
|
---|
1459 | else if (tc_ptr < v) {
|
---|
1460 | m_max = m - 1;
|
---|
1461 | } else {
|
---|
1462 | m_min = m + 1;
|
---|
1463 | }
|
---|
1464 | }
|
---|
1465 | return &tbs[m_max];
|
---|
1466 | }
|
---|
1467 |
|
---|
1468 | static void tb_reset_jump_recursive(TranslationBlock *tb);
|
---|
1469 |
|
---|
1470 | static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
|
---|
1471 | {
|
---|
1472 | TranslationBlock *tb1, *tb_next, **ptb;
|
---|
1473 | unsigned int n1;
|
---|
1474 |
|
---|
1475 | tb1 = tb->jmp_next[n];
|
---|
1476 | if (tb1 != NULL) {
|
---|
1477 | /* find head of list */
|
---|
1478 | for(;;) {
|
---|
1479 | n1 = (intptr_t)tb1 & 3;
|
---|
1480 | tb1 = (TranslationBlock *)((intptr_t)tb1 & ~3);
|
---|
1481 | if (n1 == 2)
|
---|
1482 | break;
|
---|
1483 | tb1 = tb1->jmp_next[n1];
|
---|
1484 | }
|
---|
1485 | /* we are now sure now that tb jumps to tb1 */
|
---|
1486 | tb_next = tb1;
|
---|
1487 |
|
---|
1488 | /* remove tb from the jmp_first list */
|
---|
1489 | ptb = &tb_next->jmp_first;
|
---|
1490 | for(;;) {
|
---|
1491 | tb1 = *ptb;
|
---|
1492 | n1 = (intptr_t)tb1 & 3;
|
---|
1493 | tb1 = (TranslationBlock *)((intptr_t)tb1 & ~3);
|
---|
1494 | if (n1 == n && tb1 == tb)
|
---|
1495 | break;
|
---|
1496 | ptb = &tb1->jmp_next[n1];
|
---|
1497 | }
|
---|
1498 | *ptb = tb->jmp_next[n];
|
---|
1499 | tb->jmp_next[n] = NULL;
|
---|
1500 |
|
---|
1501 | /* suppress the jump to next tb in generated code */
|
---|
1502 | tb_reset_jump(tb, n);
|
---|
1503 |
|
---|
1504 | /* suppress jumps in the tb on which we could have jumped */
|
---|
1505 | tb_reset_jump_recursive(tb_next);
|
---|
1506 | }
|
---|
1507 | }
|
---|
1508 |
|
---|
1509 | static void tb_reset_jump_recursive(TranslationBlock *tb)
|
---|
1510 | {
|
---|
1511 | tb_reset_jump_recursive2(tb, 0);
|
---|
1512 | tb_reset_jump_recursive2(tb, 1);
|
---|
1513 | }
|
---|
1514 |
|
---|
1515 | #if defined(TARGET_HAS_ICE)
|
---|
1516 | #if defined(CONFIG_USER_ONLY)
|
---|
1517 | static void breakpoint_invalidate(CPUState *env, target_ulong pc)
|
---|
1518 | {
|
---|
1519 | tb_invalidate_phys_page_range(pc, pc + 1, 0);
|
---|
1520 | }
|
---|
1521 | #else
|
---|
1522 | static void breakpoint_invalidate(CPUState *env, target_ulong pc)
|
---|
1523 | {
|
---|
1524 | target_phys_addr_t addr;
|
---|
1525 | target_ulong pd;
|
---|
1526 | ram_addr_t ram_addr;
|
---|
1527 | PhysPageDesc *p;
|
---|
1528 |
|
---|
1529 | addr = cpu_get_phys_page_debug(env, pc);
|
---|
1530 | p = phys_page_find(addr >> TARGET_PAGE_BITS);
|
---|
1531 | if (!p) {
|
---|
1532 | pd = IO_MEM_UNASSIGNED;
|
---|
1533 | } else {
|
---|
1534 | pd = p->phys_offset;
|
---|
1535 | }
|
---|
1536 | ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
|
---|
1537 | tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
|
---|
1538 | }
|
---|
1539 | #endif
|
---|
1540 | #endif /* TARGET_HAS_ICE */
|
---|
1541 |
|
---|
1542 | #if defined(CONFIG_USER_ONLY)
|
---|
1543 | void cpu_watchpoint_remove_all(CPUState *env, int mask)
|
---|
1544 |
|
---|
1545 | {
|
---|
1546 | }
|
---|
1547 |
|
---|
1548 | int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
|
---|
1549 | int flags, CPUWatchpoint **watchpoint)
|
---|
1550 | {
|
---|
1551 | return -ENOSYS;
|
---|
1552 | }
|
---|
1553 | #else
|
---|
1554 | /* Add a watchpoint. */
|
---|
1555 | int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
|
---|
1556 | int flags, CPUWatchpoint **watchpoint)
|
---|
1557 | {
|
---|
1558 | target_ulong len_mask = ~(len - 1);
|
---|
1559 | CPUWatchpoint *wp;
|
---|
1560 |
|
---|
1561 | /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
|
---|
1562 | if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
|
---|
1563 | fprintf(stderr, "qemu: tried to set invalid watchpoint at "
|
---|
1564 | TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
|
---|
1565 | #ifndef VBOX
|
---|
1566 | return -EINVAL;
|
---|
1567 | #else
|
---|
1568 | return VERR_INVALID_PARAMETER;
|
---|
1569 | #endif
|
---|
1570 | }
|
---|
1571 | wp = qemu_malloc(sizeof(*wp));
|
---|
1572 |
|
---|
1573 | wp->vaddr = addr;
|
---|
1574 | wp->len_mask = len_mask;
|
---|
1575 | wp->flags = flags;
|
---|
1576 |
|
---|
1577 | /* keep all GDB-injected watchpoints in front */
|
---|
1578 | if (flags & BP_GDB)
|
---|
1579 | QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
|
---|
1580 | else
|
---|
1581 | QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
|
---|
1582 |
|
---|
1583 | tlb_flush_page(env, addr);
|
---|
1584 |
|
---|
1585 | if (watchpoint)
|
---|
1586 | *watchpoint = wp;
|
---|
1587 | return 0;
|
---|
1588 | }
|
---|
1589 |
|
---|
1590 | /* Remove a specific watchpoint. */
|
---|
1591 | int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
|
---|
1592 | int flags)
|
---|
1593 | {
|
---|
1594 | target_ulong len_mask = ~(len - 1);
|
---|
1595 | CPUWatchpoint *wp;
|
---|
1596 |
|
---|
1597 | QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
|
---|
1598 | if (addr == wp->vaddr && len_mask == wp->len_mask
|
---|
1599 | && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
|
---|
1600 | cpu_watchpoint_remove_by_ref(env, wp);
|
---|
1601 | return 0;
|
---|
1602 | }
|
---|
1603 | }
|
---|
1604 | #ifndef VBOX
|
---|
1605 | return -ENOENT;
|
---|
1606 | #else
|
---|
1607 | return VERR_NOT_FOUND;
|
---|
1608 | #endif
|
---|
1609 | }
|
---|
1610 |
|
---|
1611 | /* Remove a specific watchpoint by reference. */
|
---|
1612 | void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
|
---|
1613 | {
|
---|
1614 | QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
|
---|
1615 |
|
---|
1616 | tlb_flush_page(env, watchpoint->vaddr);
|
---|
1617 |
|
---|
1618 | qemu_free(watchpoint);
|
---|
1619 | }
|
---|
1620 |
|
---|
1621 | /* Remove all matching watchpoints. */
|
---|
1622 | void cpu_watchpoint_remove_all(CPUState *env, int mask)
|
---|
1623 | {
|
---|
1624 | CPUWatchpoint *wp, *next;
|
---|
1625 |
|
---|
1626 | QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
|
---|
1627 | if (wp->flags & mask)
|
---|
1628 | cpu_watchpoint_remove_by_ref(env, wp);
|
---|
1629 | }
|
---|
1630 | }
|
---|
1631 | #endif
|
---|
1632 |
|
---|
1633 | /* Add a breakpoint. */
|
---|
1634 | int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
|
---|
1635 | CPUBreakpoint **breakpoint)
|
---|
1636 | {
|
---|
1637 | #if defined(TARGET_HAS_ICE)
|
---|
1638 | CPUBreakpoint *bp;
|
---|
1639 |
|
---|
1640 | bp = qemu_malloc(sizeof(*bp));
|
---|
1641 |
|
---|
1642 | bp->pc = pc;
|
---|
1643 | bp->flags = flags;
|
---|
1644 |
|
---|
1645 | /* keep all GDB-injected breakpoints in front */
|
---|
1646 | if (flags & BP_GDB)
|
---|
1647 | QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
|
---|
1648 | else
|
---|
1649 | QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
|
---|
1650 |
|
---|
1651 | breakpoint_invalidate(env, pc);
|
---|
1652 |
|
---|
1653 | if (breakpoint)
|
---|
1654 | *breakpoint = bp;
|
---|
1655 | return 0;
|
---|
1656 | #else
|
---|
1657 | return -ENOSYS;
|
---|
1658 | #endif
|
---|
1659 | }
|
---|
1660 |
|
---|
1661 | /* Remove a specific breakpoint. */
|
---|
1662 | int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
|
---|
1663 | {
|
---|
1664 | #if defined(TARGET_HAS_ICE)
|
---|
1665 | CPUBreakpoint *bp;
|
---|
1666 |
|
---|
1667 | QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
|
---|
1668 | if (bp->pc == pc && bp->flags == flags) {
|
---|
1669 | cpu_breakpoint_remove_by_ref(env, bp);
|
---|
1670 | return 0;
|
---|
1671 | }
|
---|
1672 | }
|
---|
1673 | # ifndef VBOX
|
---|
1674 | return -ENOENT;
|
---|
1675 | # else
|
---|
1676 | return VERR_NOT_FOUND;
|
---|
1677 | # endif
|
---|
1678 | #else
|
---|
1679 | return -ENOSYS;
|
---|
1680 | #endif
|
---|
1681 | }
|
---|
1682 |
|
---|
1683 | /* Remove a specific breakpoint by reference. */
|
---|
1684 | void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
|
---|
1685 | {
|
---|
1686 | #if defined(TARGET_HAS_ICE)
|
---|
1687 | QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
|
---|
1688 |
|
---|
1689 | breakpoint_invalidate(env, breakpoint->pc);
|
---|
1690 |
|
---|
1691 | qemu_free(breakpoint);
|
---|
1692 | #endif
|
---|
1693 | }
|
---|
1694 |
|
---|
1695 | /* Remove all matching breakpoints. */
|
---|
1696 | void cpu_breakpoint_remove_all(CPUState *env, int mask)
|
---|
1697 | {
|
---|
1698 | #if defined(TARGET_HAS_ICE)
|
---|
1699 | CPUBreakpoint *bp, *next;
|
---|
1700 |
|
---|
1701 | QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
|
---|
1702 | if (bp->flags & mask)
|
---|
1703 | cpu_breakpoint_remove_by_ref(env, bp);
|
---|
1704 | }
|
---|
1705 | #endif
|
---|
1706 | }
|
---|
1707 |
|
---|
1708 | /* enable or disable single step mode. EXCP_DEBUG is returned by the
|
---|
1709 | CPU loop after each instruction */
|
---|
1710 | void cpu_single_step(CPUState *env, int enabled)
|
---|
1711 | {
|
---|
1712 | #if defined(TARGET_HAS_ICE)
|
---|
1713 | if (env->singlestep_enabled != enabled) {
|
---|
1714 | env->singlestep_enabled = enabled;
|
---|
1715 | if (kvm_enabled())
|
---|
1716 | kvm_update_guest_debug(env, 0);
|
---|
1717 | else {
|
---|
1718 | /* must flush all the translated code to avoid inconsistencies */
|
---|
1719 | /* XXX: only flush what is necessary */
|
---|
1720 | tb_flush(env);
|
---|
1721 | }
|
---|
1722 | }
|
---|
1723 | #endif
|
---|
1724 | }
|
---|
1725 |
|
---|
1726 | #ifndef VBOX
|
---|
1727 |
|
---|
1728 | /* enable or disable low levels log */
|
---|
1729 | void cpu_set_log(int log_flags)
|
---|
1730 | {
|
---|
1731 | loglevel = log_flags;
|
---|
1732 | if (loglevel && !logfile) {
|
---|
1733 | logfile = fopen(logfilename, log_append ? "a" : "w");
|
---|
1734 | if (!logfile) {
|
---|
1735 | perror(logfilename);
|
---|
1736 | _exit(1);
|
---|
1737 | }
|
---|
1738 | #if !defined(CONFIG_SOFTMMU)
|
---|
1739 | /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
|
---|
1740 | {
|
---|
1741 | static char logfile_buf[4096];
|
---|
1742 | setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
|
---|
1743 | }
|
---|
1744 | #elif !defined(_WIN32)
|
---|
1745 | /* Win32 doesn't support line-buffering and requires size >= 2 */
|
---|
1746 | setvbuf(logfile, NULL, _IOLBF, 0);
|
---|
1747 | #endif
|
---|
1748 | log_append = 1;
|
---|
1749 | }
|
---|
1750 | if (!loglevel && logfile) {
|
---|
1751 | fclose(logfile);
|
---|
1752 | logfile = NULL;
|
---|
1753 | }
|
---|
1754 | }
|
---|
1755 |
|
---|
1756 | void cpu_set_log_filename(const char *filename)
|
---|
1757 | {
|
---|
1758 | logfilename = strdup(filename);
|
---|
1759 | if (logfile) {
|
---|
1760 | fclose(logfile);
|
---|
1761 | logfile = NULL;
|
---|
1762 | }
|
---|
1763 | cpu_set_log(loglevel);
|
---|
1764 | }
|
---|
1765 |
|
---|
1766 | #endif /* !VBOX */
|
---|
1767 |
|
---|
1768 | static void cpu_unlink_tb(CPUState *env)
|
---|
1769 | {
|
---|
1770 | /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
|
---|
1771 | problem and hope the cpu will stop of its own accord. For userspace
|
---|
1772 | emulation this often isn't actually as bad as it sounds. Often
|
---|
1773 | signals are used primarily to interrupt blocking syscalls. */
|
---|
1774 | TranslationBlock *tb;
|
---|
1775 | static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
|
---|
1776 |
|
---|
1777 | spin_lock(&interrupt_lock);
|
---|
1778 | tb = env->current_tb;
|
---|
1779 | /* if the cpu is currently executing code, we must unlink it and
|
---|
1780 | all the potentially executing TB */
|
---|
1781 | if (tb) {
|
---|
1782 | env->current_tb = NULL;
|
---|
1783 | tb_reset_jump_recursive(tb);
|
---|
1784 | }
|
---|
1785 | spin_unlock(&interrupt_lock);
|
---|
1786 | }
|
---|
1787 |
|
---|
1788 | /* mask must never be zero, except for A20 change call */
|
---|
1789 | void cpu_interrupt(CPUState *env, int mask)
|
---|
1790 | {
|
---|
1791 | int old_mask;
|
---|
1792 |
|
---|
1793 | old_mask = env->interrupt_request;
|
---|
1794 | #ifndef VBOX
|
---|
1795 | env->interrupt_request |= mask;
|
---|
1796 | #else /* VBOX */
|
---|
1797 | VM_ASSERT_EMT(env->pVM);
|
---|
1798 | ASMAtomicOrS32((int32_t volatile *)&env->interrupt_request, mask);
|
---|
1799 | #endif /* VBOX */
|
---|
1800 |
|
---|
1801 | #ifndef VBOX
|
---|
1802 | #ifndef CONFIG_USER_ONLY
|
---|
1803 | /*
|
---|
1804 | * If called from iothread context, wake the target cpu in
|
---|
1805 | * case its halted.
|
---|
1806 | */
|
---|
1807 | if (!qemu_cpu_self(env)) {
|
---|
1808 | qemu_cpu_kick(env);
|
---|
1809 | return;
|
---|
1810 | }
|
---|
1811 | #endif
|
---|
1812 | #endif /* !VBOX */
|
---|
1813 |
|
---|
1814 | if (use_icount) {
|
---|
1815 | env->icount_decr.u16.high = 0xffff;
|
---|
1816 | #ifndef CONFIG_USER_ONLY
|
---|
1817 | if (!can_do_io(env)
|
---|
1818 | && (mask & ~old_mask) != 0) {
|
---|
1819 | cpu_abort(env, "Raised interrupt while not in I/O function");
|
---|
1820 | }
|
---|
1821 | #endif
|
---|
1822 | } else {
|
---|
1823 | cpu_unlink_tb(env);
|
---|
1824 | }
|
---|
1825 | }
|
---|
1826 |
|
---|
1827 | void cpu_reset_interrupt(CPUState *env, int mask)
|
---|
1828 | {
|
---|
1829 | #ifdef VBOX
|
---|
1830 | /*
|
---|
1831 | * Note: the current implementation can be executed by another thread without problems; make sure this remains true
|
---|
1832 | * for future changes!
|
---|
1833 | */
|
---|
1834 | ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~mask);
|
---|
1835 | #else /* !VBOX */
|
---|
1836 | env->interrupt_request &= ~mask;
|
---|
1837 | #endif /* !VBOX */
|
---|
1838 | }
|
---|
1839 |
|
---|
1840 | void cpu_exit(CPUState *env)
|
---|
1841 | {
|
---|
1842 | env->exit_request = 1;
|
---|
1843 | cpu_unlink_tb(env);
|
---|
1844 | }
|
---|
1845 |
|
---|
1846 | #ifndef VBOX
|
---|
1847 | const CPULogItem cpu_log_items[] = {
|
---|
1848 | { CPU_LOG_TB_OUT_ASM, "out_asm",
|
---|
1849 | "show generated host assembly code for each compiled TB" },
|
---|
1850 | { CPU_LOG_TB_IN_ASM, "in_asm",
|
---|
1851 | "show target assembly code for each compiled TB" },
|
---|
1852 | { CPU_LOG_TB_OP, "op",
|
---|
1853 | "show micro ops for each compiled TB" },
|
---|
1854 | { CPU_LOG_TB_OP_OPT, "op_opt",
|
---|
1855 | "show micro ops "
|
---|
1856 | #ifdef TARGET_I386
|
---|
1857 | "before eflags optimization and "
|
---|
1858 | #endif
|
---|
1859 | "after liveness analysis" },
|
---|
1860 | { CPU_LOG_INT, "int",
|
---|
1861 | "show interrupts/exceptions in short format" },
|
---|
1862 | { CPU_LOG_EXEC, "exec",
|
---|
1863 | "show trace before each executed TB (lots of logs)" },
|
---|
1864 | { CPU_LOG_TB_CPU, "cpu",
|
---|
1865 | "show CPU state before block translation" },
|
---|
1866 | #ifdef TARGET_I386
|
---|
1867 | { CPU_LOG_PCALL, "pcall",
|
---|
1868 | "show protected mode far calls/returns/exceptions" },
|
---|
1869 | { CPU_LOG_RESET, "cpu_reset",
|
---|
1870 | "show CPU state before CPU resets" },
|
---|
1871 | #endif
|
---|
1872 | #ifdef DEBUG_IOPORT
|
---|
1873 | { CPU_LOG_IOPORT, "ioport",
|
---|
1874 | "show all i/o ports accesses" },
|
---|
1875 | #endif
|
---|
1876 | { 0, NULL, NULL },
|
---|
1877 | };
|
---|
1878 |
|
---|
1879 | #ifndef CONFIG_USER_ONLY
|
---|
1880 | static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
|
---|
1881 | = QLIST_HEAD_INITIALIZER(memory_client_list);
|
---|
1882 |
|
---|
1883 | static void cpu_notify_set_memory(target_phys_addr_t start_addr,
|
---|
1884 | ram_addr_t size,
|
---|
1885 | ram_addr_t phys_offset)
|
---|
1886 | {
|
---|
1887 | CPUPhysMemoryClient *client;
|
---|
1888 | QLIST_FOREACH(client, &memory_client_list, list) {
|
---|
1889 | client->set_memory(client, start_addr, size, phys_offset);
|
---|
1890 | }
|
---|
1891 | }
|
---|
1892 |
|
---|
1893 | static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
|
---|
1894 | target_phys_addr_t end)
|
---|
1895 | {
|
---|
1896 | CPUPhysMemoryClient *client;
|
---|
1897 | QLIST_FOREACH(client, &memory_client_list, list) {
|
---|
1898 | int r = client->sync_dirty_bitmap(client, start, end);
|
---|
1899 | if (r < 0)
|
---|
1900 | return r;
|
---|
1901 | }
|
---|
1902 | return 0;
|
---|
1903 | }
|
---|
1904 |
|
---|
1905 | static int cpu_notify_migration_log(int enable)
|
---|
1906 | {
|
---|
1907 | CPUPhysMemoryClient *client;
|
---|
1908 | QLIST_FOREACH(client, &memory_client_list, list) {
|
---|
1909 | int r = client->migration_log(client, enable);
|
---|
1910 | if (r < 0)
|
---|
1911 | return r;
|
---|
1912 | }
|
---|
1913 | return 0;
|
---|
1914 | }
|
---|
1915 |
|
---|
1916 | static void phys_page_for_each_1(CPUPhysMemoryClient *client,
|
---|
1917 | int level, void **lp)
|
---|
1918 | {
|
---|
1919 | int i;
|
---|
1920 |
|
---|
1921 | if (*lp == NULL) {
|
---|
1922 | return;
|
---|
1923 | }
|
---|
1924 | if (level == 0) {
|
---|
1925 | PhysPageDesc *pd = *lp;
|
---|
1926 | for (i = 0; i < L2_SIZE; ++i) {
|
---|
1927 | if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
|
---|
1928 | client->set_memory(client, pd[i].region_offset,
|
---|
1929 | TARGET_PAGE_SIZE, pd[i].phys_offset);
|
---|
1930 | }
|
---|
1931 | }
|
---|
1932 | } else {
|
---|
1933 | void **pp = *lp;
|
---|
1934 | for (i = 0; i < L2_SIZE; ++i) {
|
---|
1935 | phys_page_for_each_1(client, level - 1, pp + i);
|
---|
1936 | }
|
---|
1937 | }
|
---|
1938 | }
|
---|
1939 |
|
---|
1940 | static void phys_page_for_each(CPUPhysMemoryClient *client)
|
---|
1941 | {
|
---|
1942 | int i;
|
---|
1943 | for (i = 0; i < P_L1_SIZE; ++i) {
|
---|
1944 | phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
|
---|
1945 | l1_phys_map + 1);
|
---|
1946 | }
|
---|
1947 | }
|
---|
1948 |
|
---|
1949 | void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
|
---|
1950 | {
|
---|
1951 | QLIST_INSERT_HEAD(&memory_client_list, client, list);
|
---|
1952 | phys_page_for_each(client);
|
---|
1953 | }
|
---|
1954 |
|
---|
1955 | void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
|
---|
1956 | {
|
---|
1957 | QLIST_REMOVE(client, list);
|
---|
1958 | }
|
---|
1959 | #endif
|
---|
1960 |
|
---|
1961 | static int cmp1(const char *s1, int n, const char *s2)
|
---|
1962 | {
|
---|
1963 | if (strlen(s2) != n)
|
---|
1964 | return 0;
|
---|
1965 | return memcmp(s1, s2, n) == 0;
|
---|
1966 | }
|
---|
1967 |
|
---|
1968 | /* takes a comma separated list of log masks. Return 0 if error. */
|
---|
1969 | int cpu_str_to_log_mask(const char *str)
|
---|
1970 | {
|
---|
1971 | const CPULogItem *item;
|
---|
1972 | int mask;
|
---|
1973 | const char *p, *p1;
|
---|
1974 |
|
---|
1975 | p = str;
|
---|
1976 | mask = 0;
|
---|
1977 | for(;;) {
|
---|
1978 | p1 = strchr(p, ',');
|
---|
1979 | if (!p1)
|
---|
1980 | p1 = p + strlen(p);
|
---|
1981 | if(cmp1(p,p1-p,"all")) {
|
---|
1982 | for(item = cpu_log_items; item->mask != 0; item++) {
|
---|
1983 | mask |= item->mask;
|
---|
1984 | }
|
---|
1985 | } else {
|
---|
1986 | for(item = cpu_log_items; item->mask != 0; item++) {
|
---|
1987 | if (cmp1(p, p1 - p, item->name))
|
---|
1988 | goto found;
|
---|
1989 | }
|
---|
1990 | return 0;
|
---|
1991 | }
|
---|
1992 | found:
|
---|
1993 | mask |= item->mask;
|
---|
1994 | if (*p1 != ',')
|
---|
1995 | break;
|
---|
1996 | p = p1 + 1;
|
---|
1997 | }
|
---|
1998 | return mask;
|
---|
1999 | }
|
---|
2000 |
|
---|
2001 | void cpu_abort(CPUState *env, const char *fmt, ...)
|
---|
2002 | {
|
---|
2003 | va_list ap;
|
---|
2004 | va_list ap2;
|
---|
2005 |
|
---|
2006 | va_start(ap, fmt);
|
---|
2007 | va_copy(ap2, ap);
|
---|
2008 | fprintf(stderr, "qemu: fatal: ");
|
---|
2009 | vfprintf(stderr, fmt, ap);
|
---|
2010 | fprintf(stderr, "\n");
|
---|
2011 | #ifdef TARGET_I386
|
---|
2012 | cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
|
---|
2013 | #else
|
---|
2014 | cpu_dump_state(env, stderr, fprintf, 0);
|
---|
2015 | #endif
|
---|
2016 | if (qemu_log_enabled()) {
|
---|
2017 | qemu_log("qemu: fatal: ");
|
---|
2018 | qemu_log_vprintf(fmt, ap2);
|
---|
2019 | qemu_log("\n");
|
---|
2020 | #ifdef TARGET_I386
|
---|
2021 | log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
|
---|
2022 | #else
|
---|
2023 | log_cpu_state(env, 0);
|
---|
2024 | #endif
|
---|
2025 | qemu_log_flush();
|
---|
2026 | qemu_log_close();
|
---|
2027 | }
|
---|
2028 | va_end(ap2);
|
---|
2029 | va_end(ap);
|
---|
2030 | #if defined(CONFIG_USER_ONLY)
|
---|
2031 | {
|
---|
2032 | struct sigaction act;
|
---|
2033 | sigfillset(&act.sa_mask);
|
---|
2034 | act.sa_handler = SIG_DFL;
|
---|
2035 | sigaction(SIGABRT, &act, NULL);
|
---|
2036 | }
|
---|
2037 | #endif
|
---|
2038 | abort();
|
---|
2039 | }
|
---|
2040 |
|
---|
2041 | CPUState *cpu_copy(CPUState *env)
|
---|
2042 | {
|
---|
2043 | CPUState *new_env = cpu_init(env->cpu_model_str);
|
---|
2044 | CPUState *next_cpu = new_env->next_cpu;
|
---|
2045 | int cpu_index = new_env->cpu_index;
|
---|
2046 | #if defined(TARGET_HAS_ICE)
|
---|
2047 | CPUBreakpoint *bp;
|
---|
2048 | CPUWatchpoint *wp;
|
---|
2049 | #endif
|
---|
2050 |
|
---|
2051 | memcpy(new_env, env, sizeof(CPUState));
|
---|
2052 |
|
---|
2053 | /* Preserve chaining and index. */
|
---|
2054 | new_env->next_cpu = next_cpu;
|
---|
2055 | new_env->cpu_index = cpu_index;
|
---|
2056 |
|
---|
2057 | /* Clone all break/watchpoints.
|
---|
2058 | Note: Once we support ptrace with hw-debug register access, make sure
|
---|
2059 | BP_CPU break/watchpoints are handled correctly on clone. */
|
---|
2060 | QTAILQ_INIT(&env->breakpoints);
|
---|
2061 | QTAILQ_INIT(&env->watchpoints);
|
---|
2062 | #if defined(TARGET_HAS_ICE)
|
---|
2063 | QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
|
---|
2064 | cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
|
---|
2065 | }
|
---|
2066 | QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
|
---|
2067 | cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
|
---|
2068 | wp->flags, NULL);
|
---|
2069 | }
|
---|
2070 | #endif
|
---|
2071 |
|
---|
2072 | return new_env;
|
---|
2073 | }
|
---|
2074 |
|
---|
2075 | #endif /* !VBOX */
|
---|
2076 | #if !defined(CONFIG_USER_ONLY)
|
---|
2077 |
|
---|
2078 | static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
|
---|
2079 | {
|
---|
2080 | unsigned int i;
|
---|
2081 |
|
---|
2082 | /* Discard jump cache entries for any tb which might potentially
|
---|
2083 | overlap the flushed page. */
|
---|
2084 | i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
|
---|
2085 | memset (&env->tb_jmp_cache[i], 0,
|
---|
2086 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
|
---|
2087 |
|
---|
2088 | i = tb_jmp_cache_hash_page(addr);
|
---|
2089 | memset (&env->tb_jmp_cache[i], 0,
|
---|
2090 | TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
|
---|
2091 | #ifdef VBOX
|
---|
2092 |
|
---|
2093 | /* inform raw mode about TLB page flush */
|
---|
2094 | remR3FlushPage(env, addr);
|
---|
2095 | #endif /* VBOX */
|
---|
2096 | }
|
---|
2097 |
|
---|
2098 | static CPUTLBEntry s_cputlb_empty_entry = {
|
---|
2099 | .addr_read = -1,
|
---|
2100 | .addr_write = -1,
|
---|
2101 | .addr_code = -1,
|
---|
2102 | .addend = -1,
|
---|
2103 | };
|
---|
2104 |
|
---|
2105 | /* NOTE: if flush_global is true, also flush global entries (not
|
---|
2106 | implemented yet) */
|
---|
2107 | void tlb_flush(CPUState *env, int flush_global)
|
---|
2108 | {
|
---|
2109 | int i;
|
---|
2110 |
|
---|
2111 | #ifdef VBOX
|
---|
2112 | Assert(EMRemIsLockOwner(env->pVM));
|
---|
2113 | ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~CPU_INTERRUPT_EXTERNAL_FLUSH_TLB);
|
---|
2114 | #endif
|
---|
2115 |
|
---|
2116 | #if defined(DEBUG_TLB)
|
---|
2117 | printf("tlb_flush:\n");
|
---|
2118 | #endif
|
---|
2119 | /* must reset current TB so that interrupts cannot modify the
|
---|
2120 | links while we are modifying them */
|
---|
2121 | env->current_tb = NULL;
|
---|
2122 |
|
---|
2123 | for(i = 0; i < CPU_TLB_SIZE; i++) {
|
---|
2124 | int mmu_idx;
|
---|
2125 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
---|
2126 | env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
|
---|
2127 | }
|
---|
2128 | }
|
---|
2129 |
|
---|
2130 | memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
|
---|
2131 |
|
---|
2132 | env->tlb_flush_addr = -1;
|
---|
2133 | env->tlb_flush_mask = 0;
|
---|
2134 | tlb_flush_count++;
|
---|
2135 | #ifdef VBOX
|
---|
2136 |
|
---|
2137 | /* inform raw mode about TLB flush */
|
---|
2138 | remR3FlushTLB(env, flush_global);
|
---|
2139 | #endif /* VBOX */
|
---|
2140 | }
|
---|
2141 |
|
---|
2142 | static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
|
---|
2143 | {
|
---|
2144 | if (addr == (tlb_entry->addr_read &
|
---|
2145 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
|
---|
2146 | addr == (tlb_entry->addr_write &
|
---|
2147 | (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
|
---|
2148 | addr == (tlb_entry->addr_code &
|
---|
2149 | (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
|
---|
2150 | *tlb_entry = s_cputlb_empty_entry;
|
---|
2151 | }
|
---|
2152 | }
|
---|
2153 |
|
---|
2154 | void tlb_flush_page(CPUState *env, target_ulong addr)
|
---|
2155 | {
|
---|
2156 | int i;
|
---|
2157 | int mmu_idx;
|
---|
2158 |
|
---|
2159 | Assert(EMRemIsLockOwner(env->pVM));
|
---|
2160 | #if defined(DEBUG_TLB)
|
---|
2161 | printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
|
---|
2162 | #endif
|
---|
2163 | /* Check if we need to flush due to large pages. */
|
---|
2164 | if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
|
---|
2165 | #if defined(DEBUG_TLB)
|
---|
2166 | printf("tlb_flush_page: forced full flush ("
|
---|
2167 | TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
|
---|
2168 | env->tlb_flush_addr, env->tlb_flush_mask);
|
---|
2169 | #endif
|
---|
2170 | tlb_flush(env, 1);
|
---|
2171 | return;
|
---|
2172 | }
|
---|
2173 | /* must reset current TB so that interrupts cannot modify the
|
---|
2174 | links while we are modifying them */
|
---|
2175 | env->current_tb = NULL;
|
---|
2176 |
|
---|
2177 | addr &= TARGET_PAGE_MASK;
|
---|
2178 | i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
---|
2179 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
|
---|
2180 | tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
|
---|
2181 |
|
---|
2182 | tlb_flush_jmp_cache(env, addr);
|
---|
2183 | }
|
---|
2184 |
|
---|
2185 | /* update the TLBs so that writes to code in the virtual page 'addr'
|
---|
2186 | can be detected */
|
---|
2187 | static void tlb_protect_code(ram_addr_t ram_addr)
|
---|
2188 | {
|
---|
2189 | cpu_physical_memory_reset_dirty(ram_addr,
|
---|
2190 | ram_addr + TARGET_PAGE_SIZE,
|
---|
2191 | CODE_DIRTY_FLAG);
|
---|
2192 | #if defined(VBOX) && defined(REM_MONITOR_CODE_PAGES)
|
---|
2193 | /** @todo Retest this? This function has changed... */
|
---|
2194 | remR3ProtectCode(cpu_single_env, ram_addr);
|
---|
2195 | #endif /* VBOX */
|
---|
2196 | }
|
---|
2197 |
|
---|
2198 | /* update the TLB so that writes in physical page 'phys_addr' are no longer
|
---|
2199 | tested for self modifying code */
|
---|
2200 | static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
|
---|
2201 | target_ulong vaddr)
|
---|
2202 | {
|
---|
2203 | cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
|
---|
2204 | }
|
---|
2205 |
|
---|
2206 | static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
|
---|
2207 | uintptr_t start, uintptr_t length)
|
---|
2208 | {
|
---|
2209 | uintptr_t addr;
|
---|
2210 | #ifdef VBOX
|
---|
2211 |
|
---|
2212 | if (start & 3)
|
---|
2213 | return;
|
---|
2214 | #endif /* VBOX */
|
---|
2215 | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
|
---|
2216 | addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
|
---|
2217 | if ((addr - start) < length) {
|
---|
2218 | tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
|
---|
2219 | }
|
---|
2220 | }
|
---|
2221 | }
|
---|
2222 |
|
---|
2223 | /* Note: start and end must be within the same ram block. */
|
---|
2224 | void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
|
---|
2225 | int dirty_flags)
|
---|
2226 | {
|
---|
2227 | CPUState *env;
|
---|
2228 | uintptr_t length, start1;
|
---|
2229 | int i;
|
---|
2230 |
|
---|
2231 | start &= TARGET_PAGE_MASK;
|
---|
2232 | end = TARGET_PAGE_ALIGN(end);
|
---|
2233 |
|
---|
2234 | length = end - start;
|
---|
2235 | if (length == 0)
|
---|
2236 | return;
|
---|
2237 | cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
|
---|
2238 |
|
---|
2239 | /* we modify the TLB cache so that the dirty bit will be set again
|
---|
2240 | when accessing the range */
|
---|
2241 | #if defined(VBOX) && defined(REM_PHYS_ADDR_IN_TLB)
|
---|
2242 | start1 = start;
|
---|
2243 | #elif !defined(VBOX)
|
---|
2244 | start1 = (uintptr_t)qemu_get_ram_ptr(start);
|
---|
2245 | /* Chek that we don't span multiple blocks - this breaks the
|
---|
2246 | address comparisons below. */
|
---|
2247 | if ((uintptr_t)qemu_get_ram_ptr(end - 1) - start1
|
---|
2248 | != (end - 1) - start) {
|
---|
2249 | abort();
|
---|
2250 | }
|
---|
2251 | #else
|
---|
2252 | start1 = (uintptr_t)remR3TlbGCPhys2Ptr(first_cpu, start, 1 /*fWritable*/); /** @todo page replacing (sharing or read only) may cause trouble, fix interface/whatever. */
|
---|
2253 | #endif
|
---|
2254 |
|
---|
2255 | for(env = first_cpu; env != NULL; env = env->next_cpu) {
|
---|
2256 | int mmu_idx;
|
---|
2257 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
---|
2258 | for(i = 0; i < CPU_TLB_SIZE; i++)
|
---|
2259 | tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
|
---|
2260 | start1, length);
|
---|
2261 | }
|
---|
2262 | }
|
---|
2263 | }
|
---|
2264 |
|
---|
2265 | #ifndef VBOX
|
---|
2266 |
|
---|
2267 | int cpu_physical_memory_set_dirty_tracking(int enable)
|
---|
2268 | {
|
---|
2269 | int ret = 0;
|
---|
2270 | in_migration = enable;
|
---|
2271 | ret = cpu_notify_migration_log(!!enable);
|
---|
2272 | return ret;
|
---|
2273 | }
|
---|
2274 |
|
---|
2275 | int cpu_physical_memory_get_dirty_tracking(void)
|
---|
2276 | {
|
---|
2277 | return in_migration;
|
---|
2278 | }
|
---|
2279 |
|
---|
2280 | #endif /* !VBOX */
|
---|
2281 |
|
---|
2282 | int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
|
---|
2283 | target_phys_addr_t end_addr)
|
---|
2284 | {
|
---|
2285 | #ifndef VBOX
|
---|
2286 | int ret;
|
---|
2287 |
|
---|
2288 | ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
|
---|
2289 | return ret;
|
---|
2290 | #else /* VBOX */
|
---|
2291 | return 0;
|
---|
2292 | #endif /* VBOX */
|
---|
2293 | }
|
---|
2294 |
|
---|
2295 | #if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
2296 | DECLINLINE(void) tlb_update_dirty(CPUTLBEntry *tlb_entry, target_phys_addr_t phys_addend)
|
---|
2297 | #else
|
---|
2298 | static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
|
---|
2299 | #endif
|
---|
2300 | {
|
---|
2301 | ram_addr_t ram_addr;
|
---|
2302 | #ifndef VBOX
|
---|
2303 | void *p;
|
---|
2304 | #endif
|
---|
2305 |
|
---|
2306 | if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
|
---|
2307 | #if defined(VBOX) && defined(REM_PHYS_ADDR_IN_TLB)
|
---|
2308 | ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
|
---|
2309 | #elif !defined(VBOX)
|
---|
2310 | p = (void *)(uintptr_t)((tlb_entry->addr_write & TARGET_PAGE_MASK)
|
---|
2311 | + tlb_entry->addend);
|
---|
2312 | ram_addr = qemu_ram_addr_from_host(p);
|
---|
2313 | #else
|
---|
2314 | Assert(phys_addend != -1);
|
---|
2315 | ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + phys_addend;
|
---|
2316 | #endif
|
---|
2317 | if (!cpu_physical_memory_is_dirty(ram_addr)) {
|
---|
2318 | tlb_entry->addr_write |= TLB_NOTDIRTY;
|
---|
2319 | }
|
---|
2320 | }
|
---|
2321 | }
|
---|
2322 |
|
---|
2323 | /* update the TLB according to the current state of the dirty bits */
|
---|
2324 | void cpu_tlb_update_dirty(CPUState *env)
|
---|
2325 | {
|
---|
2326 | int i;
|
---|
2327 | int mmu_idx;
|
---|
2328 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
|
---|
2329 | for(i = 0; i < CPU_TLB_SIZE; i++)
|
---|
2330 | #if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
2331 | tlb_update_dirty(&env->tlb_table[mmu_idx][i], env->phys_addends[mmu_idx][i]);
|
---|
2332 | #else
|
---|
2333 | tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
|
---|
2334 | #endif
|
---|
2335 | }
|
---|
2336 | }
|
---|
2337 |
|
---|
2338 | static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
|
---|
2339 | {
|
---|
2340 | if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
|
---|
2341 | tlb_entry->addr_write = vaddr;
|
---|
2342 | }
|
---|
2343 |
|
---|
2344 | /* update the TLB corresponding to virtual page vaddr
|
---|
2345 | so that it is no longer dirty */
|
---|
2346 | static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
|
---|
2347 | {
|
---|
2348 | int i;
|
---|
2349 | int mmu_idx;
|
---|
2350 |
|
---|
2351 | vaddr &= TARGET_PAGE_MASK;
|
---|
2352 | i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
---|
2353 | for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
|
---|
2354 | tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
|
---|
2355 | }
|
---|
2356 |
|
---|
2357 | /* Our TLB does not support large pages, so remember the area covered by
|
---|
2358 | large pages and trigger a full TLB flush if these are invalidated. */
|
---|
2359 | static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
|
---|
2360 | target_ulong size)
|
---|
2361 | {
|
---|
2362 | target_ulong mask = ~(size - 1);
|
---|
2363 |
|
---|
2364 | if (env->tlb_flush_addr == (target_ulong)-1) {
|
---|
2365 | env->tlb_flush_addr = vaddr & mask;
|
---|
2366 | env->tlb_flush_mask = mask;
|
---|
2367 | return;
|
---|
2368 | }
|
---|
2369 | /* Extend the existing region to include the new page.
|
---|
2370 | This is a compromise between unnecessary flushes and the cost
|
---|
2371 | of maintaining a full variable size TLB. */
|
---|
2372 | mask &= env->tlb_flush_mask;
|
---|
2373 | while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
|
---|
2374 | mask <<= 1;
|
---|
2375 | }
|
---|
2376 | env->tlb_flush_addr &= mask;
|
---|
2377 | env->tlb_flush_mask = mask;
|
---|
2378 | }
|
---|
2379 |
|
---|
2380 | /* Add a new TLB entry. At most one entry for a given virtual address
|
---|
2381 | is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
|
---|
2382 | supplied size is only used by tlb_flush_page. */
|
---|
2383 | void tlb_set_page(CPUState *env, target_ulong vaddr,
|
---|
2384 | target_phys_addr_t paddr, int prot,
|
---|
2385 | int mmu_idx, target_ulong size)
|
---|
2386 | {
|
---|
2387 | PhysPageDesc *p;
|
---|
2388 | ram_addr_t pd;
|
---|
2389 | unsigned int index;
|
---|
2390 | target_ulong address;
|
---|
2391 | target_ulong code_address;
|
---|
2392 | uintptr_t addend;
|
---|
2393 | CPUTLBEntry *te;
|
---|
2394 | CPUWatchpoint *wp;
|
---|
2395 | target_phys_addr_t iotlb;
|
---|
2396 | #if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
2397 | int read_mods = 0, write_mods = 0, code_mods = 0;
|
---|
2398 | #endif
|
---|
2399 |
|
---|
2400 | assert(size >= TARGET_PAGE_SIZE);
|
---|
2401 | if (size != TARGET_PAGE_SIZE) {
|
---|
2402 | tlb_add_large_page(env, vaddr, size);
|
---|
2403 | }
|
---|
2404 | p = phys_page_find(paddr >> TARGET_PAGE_BITS);
|
---|
2405 | if (!p) {
|
---|
2406 | pd = IO_MEM_UNASSIGNED;
|
---|
2407 | } else {
|
---|
2408 | pd = p->phys_offset;
|
---|
2409 | }
|
---|
2410 | #if defined(DEBUG_TLB)
|
---|
2411 | printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d size=" TARGET_FMT_lx " pd=0x%08lx\n",
|
---|
2412 | vaddr, (int)paddr, prot, mmu_idx, size, (long)pd);
|
---|
2413 | #endif
|
---|
2414 |
|
---|
2415 | address = vaddr;
|
---|
2416 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
|
---|
2417 | /* IO memory case (romd handled later) */
|
---|
2418 | address |= TLB_MMIO;
|
---|
2419 | }
|
---|
2420 | #if defined(VBOX) && defined(REM_PHYS_ADDR_IN_TLB)
|
---|
2421 | addend = pd & TARGET_PAGE_MASK;
|
---|
2422 | #elif !defined(VBOX)
|
---|
2423 | addend = (uintptr_t)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
|
---|
2424 | #else
|
---|
2425 | /** @todo this is racing the phys_page_find call above since it may register
|
---|
2426 | * a new chunk of memory... */
|
---|
2427 | addend = (uintptr_t)remR3TlbGCPhys2Ptr(env, pd & TARGET_PAGE_MASK, !!(prot & PAGE_WRITE));
|
---|
2428 | #endif
|
---|
2429 |
|
---|
2430 | if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
|
---|
2431 | /* Normal RAM. */
|
---|
2432 | iotlb = pd & TARGET_PAGE_MASK;
|
---|
2433 | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
|
---|
2434 | iotlb |= IO_MEM_NOTDIRTY;
|
---|
2435 | else
|
---|
2436 | iotlb |= IO_MEM_ROM;
|
---|
2437 | } else {
|
---|
2438 | /* IO handlers are currently passed a physical address.
|
---|
2439 | It would be nice to pass an offset from the base address
|
---|
2440 | of that region. This would avoid having to special case RAM,
|
---|
2441 | and avoid full address decoding in every device.
|
---|
2442 | We can't use the high bits of pd for this because
|
---|
2443 | IO_MEM_ROMD uses these as a ram address. */
|
---|
2444 | iotlb = (pd & ~TARGET_PAGE_MASK);
|
---|
2445 | if (p) {
|
---|
2446 | iotlb += p->region_offset;
|
---|
2447 | } else {
|
---|
2448 | iotlb += paddr;
|
---|
2449 | }
|
---|
2450 | }
|
---|
2451 |
|
---|
2452 | code_address = address;
|
---|
2453 | #if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
2454 |
|
---|
2455 | if (addend & 0x3)
|
---|
2456 | {
|
---|
2457 | if (addend & 0x2)
|
---|
2458 | {
|
---|
2459 | /* catch write */
|
---|
2460 | if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM)
|
---|
2461 | write_mods |= TLB_MMIO;
|
---|
2462 | }
|
---|
2463 | else if (addend & 0x1)
|
---|
2464 | {
|
---|
2465 | /* catch all */
|
---|
2466 | if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM)
|
---|
2467 | {
|
---|
2468 | read_mods |= TLB_MMIO;
|
---|
2469 | write_mods |= TLB_MMIO;
|
---|
2470 | code_mods |= TLB_MMIO;
|
---|
2471 | }
|
---|
2472 | }
|
---|
2473 | if ((iotlb & ~TARGET_PAGE_MASK) == 0)
|
---|
2474 | iotlb = env->pVM->rem.s.iHandlerMemType + paddr;
|
---|
2475 | addend &= ~(target_ulong)0x3;
|
---|
2476 | }
|
---|
2477 |
|
---|
2478 | #endif
|
---|
2479 | /* Make accesses to pages with watchpoints go via the
|
---|
2480 | watchpoint trap routines. */
|
---|
2481 | QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
|
---|
2482 | if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
|
---|
2483 | /* Avoid trapping reads of pages with a write breakpoint. */
|
---|
2484 | if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
|
---|
2485 | iotlb = io_mem_watch + paddr;
|
---|
2486 | address |= TLB_MMIO;
|
---|
2487 | break;
|
---|
2488 | }
|
---|
2489 | }
|
---|
2490 | }
|
---|
2491 |
|
---|
2492 | index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
|
---|
2493 | env->iotlb[mmu_idx][index] = iotlb - vaddr;
|
---|
2494 | te = &env->tlb_table[mmu_idx][index];
|
---|
2495 | te->addend = addend - vaddr;
|
---|
2496 | if (prot & PAGE_READ) {
|
---|
2497 | te->addr_read = address;
|
---|
2498 | } else {
|
---|
2499 | te->addr_read = -1;
|
---|
2500 | }
|
---|
2501 |
|
---|
2502 | if (prot & PAGE_EXEC) {
|
---|
2503 | te->addr_code = code_address;
|
---|
2504 | } else {
|
---|
2505 | te->addr_code = -1;
|
---|
2506 | }
|
---|
2507 | if (prot & PAGE_WRITE) {
|
---|
2508 | if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
|
---|
2509 | (pd & IO_MEM_ROMD)) {
|
---|
2510 | /* Write access calls the I/O callback. */
|
---|
2511 | te->addr_write = address | TLB_MMIO;
|
---|
2512 | } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
|
---|
2513 | !cpu_physical_memory_is_dirty(pd)) {
|
---|
2514 | te->addr_write = address | TLB_NOTDIRTY;
|
---|
2515 | } else {
|
---|
2516 | te->addr_write = address;
|
---|
2517 | }
|
---|
2518 | } else {
|
---|
2519 | te->addr_write = -1;
|
---|
2520 | }
|
---|
2521 |
|
---|
2522 | #if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
2523 | if (prot & PAGE_READ)
|
---|
2524 | te->addr_read |= read_mods;
|
---|
2525 | if (prot & PAGE_EXEC)
|
---|
2526 | te->addr_code |= code_mods;
|
---|
2527 | if (prot & PAGE_WRITE)
|
---|
2528 | te->addr_write |= write_mods;
|
---|
2529 |
|
---|
2530 | env->phys_addends[mmu_idx][index] = (pd & TARGET_PAGE_MASK)- vaddr;
|
---|
2531 | #endif
|
---|
2532 |
|
---|
2533 | #ifdef VBOX
|
---|
2534 | /* inform raw mode about TLB page change */
|
---|
2535 | remR3FlushPage(env, vaddr);
|
---|
2536 | #endif
|
---|
2537 | }
|
---|
2538 |
|
---|
2539 | #else
|
---|
2540 |
|
---|
2541 | void tlb_flush(CPUState *env, int flush_global)
|
---|
2542 | {
|
---|
2543 | }
|
---|
2544 |
|
---|
2545 | void tlb_flush_page(CPUState *env, target_ulong addr)
|
---|
2546 | {
|
---|
2547 | }
|
---|
2548 |
|
---|
2549 | /*
|
---|
2550 | * Walks guest process memory "regions" one by one
|
---|
2551 | * and calls callback function 'fn' for each region.
|
---|
2552 | */
|
---|
2553 |
|
---|
2554 | struct walk_memory_regions_data
|
---|
2555 | {
|
---|
2556 | walk_memory_regions_fn fn;
|
---|
2557 | void *priv;
|
---|
2558 | uintptr_t start;
|
---|
2559 | int prot;
|
---|
2560 | };
|
---|
2561 |
|
---|
2562 | static int walk_memory_regions_end(struct walk_memory_regions_data *data,
|
---|
2563 | abi_ulong end, int new_prot)
|
---|
2564 | {
|
---|
2565 | if (data->start != -1ul) {
|
---|
2566 | int rc = data->fn(data->priv, data->start, end, data->prot);
|
---|
2567 | if (rc != 0) {
|
---|
2568 | return rc;
|
---|
2569 | }
|
---|
2570 | }
|
---|
2571 |
|
---|
2572 | data->start = (new_prot ? end : -1ul);
|
---|
2573 | data->prot = new_prot;
|
---|
2574 |
|
---|
2575 | return 0;
|
---|
2576 | }
|
---|
2577 |
|
---|
2578 | static int walk_memory_regions_1(struct walk_memory_regions_data *data,
|
---|
2579 | abi_ulong base, int level, void **lp)
|
---|
2580 | {
|
---|
2581 | abi_ulong pa;
|
---|
2582 | int i, rc;
|
---|
2583 |
|
---|
2584 | if (*lp == NULL) {
|
---|
2585 | return walk_memory_regions_end(data, base, 0);
|
---|
2586 | }
|
---|
2587 |
|
---|
2588 | if (level == 0) {
|
---|
2589 | PageDesc *pd = *lp;
|
---|
2590 | for (i = 0; i < L2_SIZE; ++i) {
|
---|
2591 | int prot = pd[i].flags;
|
---|
2592 |
|
---|
2593 | pa = base | (i << TARGET_PAGE_BITS);
|
---|
2594 | if (prot != data->prot) {
|
---|
2595 | rc = walk_memory_regions_end(data, pa, prot);
|
---|
2596 | if (rc != 0) {
|
---|
2597 | return rc;
|
---|
2598 | }
|
---|
2599 | }
|
---|
2600 | }
|
---|
2601 | } else {
|
---|
2602 | void **pp = *lp;
|
---|
2603 | for (i = 0; i < L2_SIZE; ++i) {
|
---|
2604 | pa = base | ((abi_ulong)i <<
|
---|
2605 | (TARGET_PAGE_BITS + L2_BITS * level));
|
---|
2606 | rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
|
---|
2607 | if (rc != 0) {
|
---|
2608 | return rc;
|
---|
2609 | }
|
---|
2610 | }
|
---|
2611 | }
|
---|
2612 |
|
---|
2613 | return 0;
|
---|
2614 | }
|
---|
2615 |
|
---|
2616 | int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
|
---|
2617 | {
|
---|
2618 | struct walk_memory_regions_data data;
|
---|
2619 | target_ulong i;
|
---|
2620 |
|
---|
2621 | data.fn = fn;
|
---|
2622 | data.priv = priv;
|
---|
2623 | data.start = -1ul;
|
---|
2624 | data.prot = 0;
|
---|
2625 |
|
---|
2626 | for (i = 0; i < V_L1_SIZE; i++) {
|
---|
2627 | int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
|
---|
2628 | V_L1_SHIFT / L2_BITS - 1, l1_map + i);
|
---|
2629 | if (rc != 0) {
|
---|
2630 | return rc;
|
---|
2631 | }
|
---|
2632 | }
|
---|
2633 |
|
---|
2634 | return walk_memory_regions_end(&data, 0, 0);
|
---|
2635 | }
|
---|
2636 |
|
---|
2637 | static int dump_region(void *priv, abi_ulong start,
|
---|
2638 | abi_ulong end, unsigned long prot)
|
---|
2639 | {
|
---|
2640 | FILE *f = (FILE *)priv;
|
---|
2641 |
|
---|
2642 | (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
|
---|
2643 | " "TARGET_ABI_FMT_lx" %c%c%c\n",
|
---|
2644 | start, end, end - start,
|
---|
2645 | ((prot & PAGE_READ) ? 'r' : '-'),
|
---|
2646 | ((prot & PAGE_WRITE) ? 'w' : '-'),
|
---|
2647 | ((prot & PAGE_EXEC) ? 'x' : '-'));
|
---|
2648 |
|
---|
2649 | return (0);
|
---|
2650 | }
|
---|
2651 |
|
---|
2652 | /* dump memory mappings */
|
---|
2653 | void page_dump(FILE *f)
|
---|
2654 | {
|
---|
2655 | (void) fprintf(f, "%-8s %-8s %-8s %s\n",
|
---|
2656 | "start", "end", "size", "prot");
|
---|
2657 | walk_memory_regions(f, dump_region);
|
---|
2658 | }
|
---|
2659 |
|
---|
2660 | int page_get_flags(target_ulong address)
|
---|
2661 | {
|
---|
2662 | PageDesc *p;
|
---|
2663 |
|
---|
2664 | p = page_find(address >> TARGET_PAGE_BITS);
|
---|
2665 | if (!p)
|
---|
2666 | return 0;
|
---|
2667 | return p->flags;
|
---|
2668 | }
|
---|
2669 |
|
---|
2670 | /* Modify the flags of a page and invalidate the code if necessary.
|
---|
2671 | The flag PAGE_WRITE_ORG is positioned automatically depending
|
---|
2672 | on PAGE_WRITE. The mmap_lock should already be held. */
|
---|
2673 | void page_set_flags(target_ulong start, target_ulong end, int flags)
|
---|
2674 | {
|
---|
2675 | target_ulong addr, len;
|
---|
2676 |
|
---|
2677 | /* This function should never be called with addresses outside the
|
---|
2678 | guest address space. If this assert fires, it probably indicates
|
---|
2679 | a missing call to h2g_valid. */
|
---|
2680 | #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
|
---|
2681 | assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
|
---|
2682 | #endif
|
---|
2683 | assert(start < end);
|
---|
2684 |
|
---|
2685 | start = start & TARGET_PAGE_MASK;
|
---|
2686 | end = TARGET_PAGE_ALIGN(end);
|
---|
2687 |
|
---|
2688 | if (flags & PAGE_WRITE) {
|
---|
2689 | flags |= PAGE_WRITE_ORG;
|
---|
2690 | }
|
---|
2691 |
|
---|
2692 | #ifdef VBOX
|
---|
2693 | AssertMsgFailed(("We shouldn't be here, and if we should, we must have an env to do the proper locking!\n"));
|
---|
2694 | #endif
|
---|
2695 | for (addr = start, len = end - start;
|
---|
2696 | len != 0;
|
---|
2697 | len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
|
---|
2698 | PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
|
---|
2699 |
|
---|
2700 | /* If the write protection bit is set, then we invalidate
|
---|
2701 | the code inside. */
|
---|
2702 | if (!(p->flags & PAGE_WRITE) &&
|
---|
2703 | (flags & PAGE_WRITE) &&
|
---|
2704 | p->first_tb) {
|
---|
2705 | tb_invalidate_phys_page(addr, 0, NULL);
|
---|
2706 | }
|
---|
2707 | p->flags = flags;
|
---|
2708 | }
|
---|
2709 | }
|
---|
2710 |
|
---|
2711 | int page_check_range(target_ulong start, target_ulong len, int flags)
|
---|
2712 | {
|
---|
2713 | PageDesc *p;
|
---|
2714 | target_ulong end;
|
---|
2715 | target_ulong addr;
|
---|
2716 |
|
---|
2717 | /* This function should never be called with addresses outside the
|
---|
2718 | guest address space. If this assert fires, it probably indicates
|
---|
2719 | a missing call to h2g_valid. */
|
---|
2720 | #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
|
---|
2721 | assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
|
---|
2722 | #endif
|
---|
2723 |
|
---|
2724 | if (len == 0) {
|
---|
2725 | return 0;
|
---|
2726 | }
|
---|
2727 | if (start + len - 1 < start) {
|
---|
2728 | /* We've wrapped around. */
|
---|
2729 | return -1;
|
---|
2730 | }
|
---|
2731 |
|
---|
2732 | end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
|
---|
2733 | start = start & TARGET_PAGE_MASK;
|
---|
2734 |
|
---|
2735 | for (addr = start, len = end - start;
|
---|
2736 | len != 0;
|
---|
2737 | len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
|
---|
2738 | p = page_find(addr >> TARGET_PAGE_BITS);
|
---|
2739 | if( !p )
|
---|
2740 | return -1;
|
---|
2741 | if( !(p->flags & PAGE_VALID) )
|
---|
2742 | return -1;
|
---|
2743 |
|
---|
2744 | if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
|
---|
2745 | return -1;
|
---|
2746 | if (flags & PAGE_WRITE) {
|
---|
2747 | if (!(p->flags & PAGE_WRITE_ORG))
|
---|
2748 | return -1;
|
---|
2749 | /* unprotect the page if it was put read-only because it
|
---|
2750 | contains translated code */
|
---|
2751 | if (!(p->flags & PAGE_WRITE)) {
|
---|
2752 | if (!page_unprotect(addr, 0, NULL))
|
---|
2753 | return -1;
|
---|
2754 | }
|
---|
2755 | return 0;
|
---|
2756 | }
|
---|
2757 | }
|
---|
2758 | return 0;
|
---|
2759 | }
|
---|
2760 |
|
---|
2761 | /* called from signal handler: invalidate the code and unprotect the
|
---|
2762 | page. Return TRUE if the fault was successfully handled. */
|
---|
2763 | int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
|
---|
2764 | {
|
---|
2765 | unsigned int prot;
|
---|
2766 | PageDesc *p;
|
---|
2767 | target_ulong host_start, host_end, addr;
|
---|
2768 |
|
---|
2769 | /* Technically this isn't safe inside a signal handler. However we
|
---|
2770 | know this only ever happens in a synchronous SEGV handler, so in
|
---|
2771 | practice it seems to be ok. */
|
---|
2772 | mmap_lock();
|
---|
2773 |
|
---|
2774 | p = page_find(address >> TARGET_PAGE_BITS);
|
---|
2775 | if (!p) {
|
---|
2776 | mmap_unlock();
|
---|
2777 | return 0;
|
---|
2778 | }
|
---|
2779 |
|
---|
2780 | /* if the page was really writable, then we change its
|
---|
2781 | protection back to writable */
|
---|
2782 | if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
|
---|
2783 | host_start = address & qemu_host_page_mask;
|
---|
2784 | host_end = host_start + qemu_host_page_size;
|
---|
2785 |
|
---|
2786 | prot = 0;
|
---|
2787 | for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
|
---|
2788 | p = page_find(addr >> TARGET_PAGE_BITS);
|
---|
2789 | p->flags |= PAGE_WRITE;
|
---|
2790 | prot |= p->flags;
|
---|
2791 |
|
---|
2792 | /* and since the content will be modified, we must invalidate
|
---|
2793 | the corresponding translated code. */
|
---|
2794 | tb_invalidate_phys_page(addr, pc, puc);
|
---|
2795 | #ifdef DEBUG_TB_CHECK
|
---|
2796 | tb_invalidate_check(addr);
|
---|
2797 | #endif
|
---|
2798 | }
|
---|
2799 | mprotect((void *)g2h(host_start), qemu_host_page_size,
|
---|
2800 | prot & PAGE_BITS);
|
---|
2801 |
|
---|
2802 | mmap_unlock();
|
---|
2803 | return 1;
|
---|
2804 | }
|
---|
2805 | mmap_unlock();
|
---|
2806 | return 0;
|
---|
2807 | }
|
---|
2808 |
|
---|
2809 | static inline void tlb_set_dirty(CPUState *env,
|
---|
2810 | uintptr_t addr, target_ulong vaddr)
|
---|
2811 | {
|
---|
2812 | }
|
---|
2813 | #endif /* defined(CONFIG_USER_ONLY) */
|
---|
2814 |
|
---|
2815 | #if !defined(CONFIG_USER_ONLY)
|
---|
2816 |
|
---|
2817 | #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
|
---|
2818 | typedef struct subpage_t {
|
---|
2819 | target_phys_addr_t base;
|
---|
2820 | ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
|
---|
2821 | ram_addr_t region_offset[TARGET_PAGE_SIZE];
|
---|
2822 | } subpage_t;
|
---|
2823 |
|
---|
2824 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
|
---|
2825 | ram_addr_t memory, ram_addr_t region_offset);
|
---|
2826 | static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
|
---|
2827 | ram_addr_t orig_memory,
|
---|
2828 | ram_addr_t region_offset);
|
---|
2829 | #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
|
---|
2830 | need_subpage) \
|
---|
2831 | do { \
|
---|
2832 | if (addr > start_addr) \
|
---|
2833 | start_addr2 = 0; \
|
---|
2834 | else { \
|
---|
2835 | start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
|
---|
2836 | if (start_addr2 > 0) \
|
---|
2837 | need_subpage = 1; \
|
---|
2838 | } \
|
---|
2839 | \
|
---|
2840 | if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
|
---|
2841 | end_addr2 = TARGET_PAGE_SIZE - 1; \
|
---|
2842 | else { \
|
---|
2843 | end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
|
---|
2844 | if (end_addr2 < TARGET_PAGE_SIZE - 1) \
|
---|
2845 | need_subpage = 1; \
|
---|
2846 | } \
|
---|
2847 | } while (0)
|
---|
2848 |
|
---|
2849 | /* register physical memory.
|
---|
2850 | For RAM, 'size' must be a multiple of the target page size.
|
---|
2851 | If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
|
---|
2852 | io memory page. The address used when calling the IO function is
|
---|
2853 | the offset from the start of the region, plus region_offset. Both
|
---|
2854 | start_addr and region_offset are rounded down to a page boundary
|
---|
2855 | before calculating this offset. This should not be a problem unless
|
---|
2856 | the low bits of start_addr and region_offset differ. */
|
---|
2857 | void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
|
---|
2858 | ram_addr_t size,
|
---|
2859 | ram_addr_t phys_offset,
|
---|
2860 | ram_addr_t region_offset)
|
---|
2861 | {
|
---|
2862 | target_phys_addr_t addr, end_addr;
|
---|
2863 | PhysPageDesc *p;
|
---|
2864 | CPUState *env;
|
---|
2865 | ram_addr_t orig_size = size;
|
---|
2866 | subpage_t *subpage;
|
---|
2867 |
|
---|
2868 | #ifndef VBOX
|
---|
2869 | cpu_notify_set_memory(start_addr, size, phys_offset);
|
---|
2870 | #endif /* !VBOX */
|
---|
2871 |
|
---|
2872 | if (phys_offset == IO_MEM_UNASSIGNED) {
|
---|
2873 | region_offset = start_addr;
|
---|
2874 | }
|
---|
2875 | region_offset &= TARGET_PAGE_MASK;
|
---|
2876 | size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
|
---|
2877 | end_addr = start_addr + (target_phys_addr_t)size;
|
---|
2878 | for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
|
---|
2879 | p = phys_page_find(addr >> TARGET_PAGE_BITS);
|
---|
2880 | if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
|
---|
2881 | ram_addr_t orig_memory = p->phys_offset;
|
---|
2882 | target_phys_addr_t start_addr2, end_addr2;
|
---|
2883 | int need_subpage = 0;
|
---|
2884 |
|
---|
2885 | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
|
---|
2886 | need_subpage);
|
---|
2887 | if (need_subpage) {
|
---|
2888 | if (!(orig_memory & IO_MEM_SUBPAGE)) {
|
---|
2889 | subpage = subpage_init((addr & TARGET_PAGE_MASK),
|
---|
2890 | &p->phys_offset, orig_memory,
|
---|
2891 | p->region_offset);
|
---|
2892 | } else {
|
---|
2893 | subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
|
---|
2894 | >> IO_MEM_SHIFT];
|
---|
2895 | }
|
---|
2896 | subpage_register(subpage, start_addr2, end_addr2, phys_offset,
|
---|
2897 | region_offset);
|
---|
2898 | p->region_offset = 0;
|
---|
2899 | } else {
|
---|
2900 | p->phys_offset = phys_offset;
|
---|
2901 | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
|
---|
2902 | (phys_offset & IO_MEM_ROMD))
|
---|
2903 | phys_offset += TARGET_PAGE_SIZE;
|
---|
2904 | }
|
---|
2905 | } else {
|
---|
2906 | p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
|
---|
2907 | p->phys_offset = phys_offset;
|
---|
2908 | p->region_offset = region_offset;
|
---|
2909 | if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
|
---|
2910 | (phys_offset & IO_MEM_ROMD)) {
|
---|
2911 | phys_offset += TARGET_PAGE_SIZE;
|
---|
2912 | } else {
|
---|
2913 | target_phys_addr_t start_addr2, end_addr2;
|
---|
2914 | int need_subpage = 0;
|
---|
2915 |
|
---|
2916 | CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
|
---|
2917 | end_addr2, need_subpage);
|
---|
2918 |
|
---|
2919 | if (need_subpage) {
|
---|
2920 | subpage = subpage_init((addr & TARGET_PAGE_MASK),
|
---|
2921 | &p->phys_offset, IO_MEM_UNASSIGNED,
|
---|
2922 | addr & TARGET_PAGE_MASK);
|
---|
2923 | subpage_register(subpage, start_addr2, end_addr2,
|
---|
2924 | phys_offset, region_offset);
|
---|
2925 | p->region_offset = 0;
|
---|
2926 | }
|
---|
2927 | }
|
---|
2928 | }
|
---|
2929 | region_offset += TARGET_PAGE_SIZE;
|
---|
2930 | }
|
---|
2931 |
|
---|
2932 | /* since each CPU stores ram addresses in its TLB cache, we must
|
---|
2933 | reset the modified entries */
|
---|
2934 | #ifndef VBOX
|
---|
2935 | /* XXX: slow ! */
|
---|
2936 | for(env = first_cpu; env != NULL; env = env->next_cpu) {
|
---|
2937 | tlb_flush(env, 1);
|
---|
2938 | }
|
---|
2939 | #else
|
---|
2940 | /* We have one thread per CPU, so, one of the other EMTs might be executing
|
---|
2941 | code right now and flushing the TLB may crash it. */
|
---|
2942 | env = first_cpu;
|
---|
2943 | if (EMRemIsLockOwner(env->pVM))
|
---|
2944 | tlb_flush(env, 1);
|
---|
2945 | else
|
---|
2946 | ASMAtomicOrS32((int32_t volatile *)&env->interrupt_request,
|
---|
2947 | CPU_INTERRUPT_EXTERNAL_FLUSH_TLB);
|
---|
2948 | #endif
|
---|
2949 | }
|
---|
2950 |
|
---|
2951 | /* XXX: temporary until new memory mapping API */
|
---|
2952 | ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
|
---|
2953 | {
|
---|
2954 | PhysPageDesc *p;
|
---|
2955 |
|
---|
2956 | p = phys_page_find(addr >> TARGET_PAGE_BITS);
|
---|
2957 | if (!p)
|
---|
2958 | return IO_MEM_UNASSIGNED;
|
---|
2959 | return p->phys_offset;
|
---|
2960 | }
|
---|
2961 |
|
---|
2962 | #ifndef VBOX
|
---|
2963 |
|
---|
2964 | void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
|
---|
2965 | {
|
---|
2966 | if (kvm_enabled())
|
---|
2967 | kvm_coalesce_mmio_region(addr, size);
|
---|
2968 | }
|
---|
2969 |
|
---|
2970 | void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
|
---|
2971 | {
|
---|
2972 | if (kvm_enabled())
|
---|
2973 | kvm_uncoalesce_mmio_region(addr, size);
|
---|
2974 | }
|
---|
2975 |
|
---|
2976 | void qemu_flush_coalesced_mmio_buffer(void)
|
---|
2977 | {
|
---|
2978 | if (kvm_enabled())
|
---|
2979 | kvm_flush_coalesced_mmio_buffer();
|
---|
2980 | }
|
---|
2981 |
|
---|
2982 | #if defined(__linux__) && !defined(TARGET_S390X)
|
---|
2983 |
|
---|
2984 | #include <sys/vfs.h>
|
---|
2985 |
|
---|
2986 | #define HUGETLBFS_MAGIC 0x958458f6
|
---|
2987 |
|
---|
2988 | static size_t gethugepagesize(const char *path)
|
---|
2989 | {
|
---|
2990 | struct statfs fs;
|
---|
2991 | int ret;
|
---|
2992 |
|
---|
2993 | do {
|
---|
2994 | ret = statfs(path, &fs);
|
---|
2995 | } while (ret != 0 && errno == EINTR);
|
---|
2996 |
|
---|
2997 | if (ret != 0) {
|
---|
2998 | perror(path);
|
---|
2999 | return 0;
|
---|
3000 | }
|
---|
3001 |
|
---|
3002 | if (fs.f_type != HUGETLBFS_MAGIC)
|
---|
3003 | fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
|
---|
3004 |
|
---|
3005 | return (size_t)fs.f_bsize;
|
---|
3006 | }
|
---|
3007 |
|
---|
3008 | static void *file_ram_alloc(RAMBlock *block,
|
---|
3009 | ram_addr_t memory,
|
---|
3010 | const char *path)
|
---|
3011 | {
|
---|
3012 | char *filename;
|
---|
3013 | void *area;
|
---|
3014 | int fd;
|
---|
3015 | #ifdef MAP_POPULATE
|
---|
3016 | int flags;
|
---|
3017 | #endif
|
---|
3018 | size_t hpagesize;
|
---|
3019 |
|
---|
3020 | hpagesize = gethugepagesize(path);
|
---|
3021 | if (!hpagesize) {
|
---|
3022 | return NULL;
|
---|
3023 | }
|
---|
3024 |
|
---|
3025 | if (memory < hpagesize) {
|
---|
3026 | return NULL;
|
---|
3027 | }
|
---|
3028 |
|
---|
3029 | if (kvm_enabled() && !kvm_has_sync_mmu()) {
|
---|
3030 | fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
|
---|
3031 | return NULL;
|
---|
3032 | }
|
---|
3033 |
|
---|
3034 | if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
|
---|
3035 | return NULL;
|
---|
3036 | }
|
---|
3037 |
|
---|
3038 | fd = mkstemp(filename);
|
---|
3039 | if (fd < 0) {
|
---|
3040 | perror("unable to create backing store for hugepages");
|
---|
3041 | free(filename);
|
---|
3042 | return NULL;
|
---|
3043 | }
|
---|
3044 | unlink(filename);
|
---|
3045 | free(filename);
|
---|
3046 |
|
---|
3047 | memory = (memory+hpagesize-1) & ~(hpagesize-1);
|
---|
3048 |
|
---|
3049 | /*
|
---|
3050 | * ftruncate is not supported by hugetlbfs in older
|
---|
3051 | * hosts, so don't bother bailing out on errors.
|
---|
3052 | * If anything goes wrong with it under other filesystems,
|
---|
3053 | * mmap will fail.
|
---|
3054 | */
|
---|
3055 | if (ftruncate(fd, memory))
|
---|
3056 | perror("ftruncate");
|
---|
3057 |
|
---|
3058 | #ifdef MAP_POPULATE
|
---|
3059 | /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
|
---|
3060 | * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
|
---|
3061 | * to sidestep this quirk.
|
---|
3062 | */
|
---|
3063 | flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
|
---|
3064 | area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
|
---|
3065 | #else
|
---|
3066 | area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
|
---|
3067 | #endif
|
---|
3068 | if (area == MAP_FAILED) {
|
---|
3069 | perror("file_ram_alloc: can't mmap RAM pages");
|
---|
3070 | close(fd);
|
---|
3071 | return (NULL);
|
---|
3072 | }
|
---|
3073 | block->fd = fd;
|
---|
3074 | return area;
|
---|
3075 | }
|
---|
3076 | #endif
|
---|
3077 |
|
---|
3078 | static ram_addr_t find_ram_offset(ram_addr_t size)
|
---|
3079 | {
|
---|
3080 | RAMBlock *block, *next_block;
|
---|
3081 | ram_addr_t offset = 0, mingap = ULONG_MAX;
|
---|
3082 |
|
---|
3083 | if (QLIST_EMPTY(&ram_list.blocks))
|
---|
3084 | return 0;
|
---|
3085 |
|
---|
3086 | QLIST_FOREACH(block, &ram_list.blocks, next) {
|
---|
3087 | ram_addr_t end, next = ULONG_MAX;
|
---|
3088 |
|
---|
3089 | end = block->offset + block->length;
|
---|
3090 |
|
---|
3091 | QLIST_FOREACH(next_block, &ram_list.blocks, next) {
|
---|
3092 | if (next_block->offset >= end) {
|
---|
3093 | next = MIN(next, next_block->offset);
|
---|
3094 | }
|
---|
3095 | }
|
---|
3096 | if (next - end >= size && next - end < mingap) {
|
---|
3097 | offset = end;
|
---|
3098 | mingap = next - end;
|
---|
3099 | }
|
---|
3100 | }
|
---|
3101 | return offset;
|
---|
3102 | }
|
---|
3103 |
|
---|
3104 | static ram_addr_t last_ram_offset(void)
|
---|
3105 | {
|
---|
3106 | RAMBlock *block;
|
---|
3107 | ram_addr_t last = 0;
|
---|
3108 |
|
---|
3109 | QLIST_FOREACH(block, &ram_list.blocks, next)
|
---|
3110 | last = MAX(last, block->offset + block->length);
|
---|
3111 |
|
---|
3112 | return last;
|
---|
3113 | }
|
---|
3114 |
|
---|
3115 | ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
|
---|
3116 | ram_addr_t size, void *host)
|
---|
3117 | {
|
---|
3118 | RAMBlock *new_block, *block;
|
---|
3119 |
|
---|
3120 | size = TARGET_PAGE_ALIGN(size);
|
---|
3121 | new_block = qemu_mallocz(sizeof(*new_block));
|
---|
3122 |
|
---|
3123 | if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
|
---|
3124 | char *id = dev->parent_bus->info->get_dev_path(dev);
|
---|
3125 | if (id) {
|
---|
3126 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
|
---|
3127 | qemu_free(id);
|
---|
3128 | }
|
---|
3129 | }
|
---|
3130 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
|
---|
3131 |
|
---|
3132 | QLIST_FOREACH(block, &ram_list.blocks, next) {
|
---|
3133 | if (!strcmp(block->idstr, new_block->idstr)) {
|
---|
3134 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
|
---|
3135 | new_block->idstr);
|
---|
3136 | abort();
|
---|
3137 | }
|
---|
3138 | }
|
---|
3139 |
|
---|
3140 | new_block->host = host;
|
---|
3141 |
|
---|
3142 | new_block->offset = find_ram_offset(size);
|
---|
3143 | new_block->length = size;
|
---|
3144 |
|
---|
3145 | QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
|
---|
3146 |
|
---|
3147 | ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
|
---|
3148 | last_ram_offset() >> TARGET_PAGE_BITS);
|
---|
3149 | memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
|
---|
3150 | 0xff, size >> TARGET_PAGE_BITS);
|
---|
3151 |
|
---|
3152 | if (kvm_enabled())
|
---|
3153 | kvm_setup_guest_memory(new_block->host, size);
|
---|
3154 |
|
---|
3155 | return new_block->offset;
|
---|
3156 | }
|
---|
3157 |
|
---|
3158 | ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size)
|
---|
3159 | {
|
---|
3160 | RAMBlock *new_block, *block;
|
---|
3161 |
|
---|
3162 | size = TARGET_PAGE_ALIGN(size);
|
---|
3163 | new_block = qemu_mallocz(sizeof(*new_block));
|
---|
3164 |
|
---|
3165 | if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
|
---|
3166 | char *id = dev->parent_bus->info->get_dev_path(dev);
|
---|
3167 | if (id) {
|
---|
3168 | snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
|
---|
3169 | qemu_free(id);
|
---|
3170 | }
|
---|
3171 | }
|
---|
3172 | pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
|
---|
3173 |
|
---|
3174 | QLIST_FOREACH(block, &ram_list.blocks, next) {
|
---|
3175 | if (!strcmp(block->idstr, new_block->idstr)) {
|
---|
3176 | fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
|
---|
3177 | new_block->idstr);
|
---|
3178 | abort();
|
---|
3179 | }
|
---|
3180 | }
|
---|
3181 |
|
---|
3182 | if (mem_path) {
|
---|
3183 | #if defined (__linux__) && !defined(TARGET_S390X)
|
---|
3184 | new_block->host = file_ram_alloc(new_block, size, mem_path);
|
---|
3185 | if (!new_block->host) {
|
---|
3186 | new_block->host = qemu_vmalloc(size);
|
---|
3187 | #ifdef MADV_MERGEABLE
|
---|
3188 | madvise(new_block->host, size, MADV_MERGEABLE);
|
---|
3189 | #endif
|
---|
3190 | }
|
---|
3191 | #else
|
---|
3192 | fprintf(stderr, "-mem-path option unsupported\n");
|
---|
3193 | exit(1);
|
---|
3194 | #endif
|
---|
3195 | } else {
|
---|
3196 | #if defined(TARGET_S390X) && defined(CONFIG_KVM)
|
---|
3197 | /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
|
---|
3198 | new_block->host = mmap((void*)0x1000000, size,
|
---|
3199 | PROT_EXEC|PROT_READ|PROT_WRITE,
|
---|
3200 | MAP_SHARED | MAP_ANONYMOUS, -1, 0);
|
---|
3201 | #else
|
---|
3202 | new_block->host = qemu_vmalloc(size);
|
---|
3203 | #endif
|
---|
3204 | #ifdef MADV_MERGEABLE
|
---|
3205 | madvise(new_block->host, size, MADV_MERGEABLE);
|
---|
3206 | #endif
|
---|
3207 | }
|
---|
3208 | new_block->offset = find_ram_offset(size);
|
---|
3209 | new_block->length = size;
|
---|
3210 |
|
---|
3211 | QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
|
---|
3212 |
|
---|
3213 | ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
|
---|
3214 | last_ram_offset() >> TARGET_PAGE_BITS);
|
---|
3215 | memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
|
---|
3216 | 0xff, size >> TARGET_PAGE_BITS);
|
---|
3217 |
|
---|
3218 | if (kvm_enabled())
|
---|
3219 | kvm_setup_guest_memory(new_block->host, size);
|
---|
3220 |
|
---|
3221 | return new_block->offset;
|
---|
3222 | }
|
---|
3223 |
|
---|
3224 | void qemu_ram_free(ram_addr_t addr)
|
---|
3225 | {
|
---|
3226 | RAMBlock *block;
|
---|
3227 |
|
---|
3228 | QLIST_FOREACH(block, &ram_list.blocks, next) {
|
---|
3229 | if (addr == block->offset) {
|
---|
3230 | QLIST_REMOVE(block, next);
|
---|
3231 | if (mem_path) {
|
---|
3232 | #if defined (__linux__) && !defined(TARGET_S390X)
|
---|
3233 | if (block->fd) {
|
---|
3234 | munmap(block->host, block->length);
|
---|
3235 | close(block->fd);
|
---|
3236 | } else {
|
---|
3237 | qemu_vfree(block->host);
|
---|
3238 | }
|
---|
3239 | #endif
|
---|
3240 | } else {
|
---|
3241 | #if defined(TARGET_S390X) && defined(CONFIG_KVM)
|
---|
3242 | munmap(block->host, block->length);
|
---|
3243 | #else
|
---|
3244 | qemu_vfree(block->host);
|
---|
3245 | #endif
|
---|
3246 | }
|
---|
3247 | qemu_free(block);
|
---|
3248 | return;
|
---|
3249 | }
|
---|
3250 | }
|
---|
3251 |
|
---|
3252 | }
|
---|
3253 |
|
---|
3254 | /* Return a host pointer to ram allocated with qemu_ram_alloc.
|
---|
3255 | With the exception of the softmmu code in this file, this should
|
---|
3256 | only be used for local memory (e.g. video ram) that the device owns,
|
---|
3257 | and knows it isn't going to access beyond the end of the block.
|
---|
3258 |
|
---|
3259 | It should not be used for general purpose DMA.
|
---|
3260 | Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
|
---|
3261 | */
|
---|
3262 | void *qemu_get_ram_ptr(ram_addr_t addr)
|
---|
3263 | {
|
---|
3264 | RAMBlock *block;
|
---|
3265 |
|
---|
3266 | QLIST_FOREACH(block, &ram_list.blocks, next) {
|
---|
3267 | if (addr - block->offset < block->length) {
|
---|
3268 | QLIST_REMOVE(block, next);
|
---|
3269 | QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
|
---|
3270 | return block->host + (addr - block->offset);
|
---|
3271 | }
|
---|
3272 | }
|
---|
3273 |
|
---|
3274 | fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
|
---|
3275 | abort();
|
---|
3276 |
|
---|
3277 | return NULL;
|
---|
3278 | }
|
---|
3279 |
|
---|
3280 | /* Some of the softmmu routines need to translate from a host pointer
|
---|
3281 | (typically a TLB entry) back to a ram offset. */
|
---|
3282 | ram_addr_t qemu_ram_addr_from_host(void *ptr)
|
---|
3283 | {
|
---|
3284 | RAMBlock *block;
|
---|
3285 | uint8_t *host = ptr;
|
---|
3286 |
|
---|
3287 | QLIST_FOREACH(block, &ram_list.blocks, next) {
|
---|
3288 | if (host - block->host < block->length) {
|
---|
3289 | return block->offset + (host - block->host);
|
---|
3290 | }
|
---|
3291 | }
|
---|
3292 |
|
---|
3293 | fprintf(stderr, "Bad ram pointer %p\n", ptr);
|
---|
3294 | abort();
|
---|
3295 |
|
---|
3296 | return 0;
|
---|
3297 | }
|
---|
3298 |
|
---|
3299 | #endif /* !VBOX */
|
---|
3300 |
|
---|
3301 | static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
|
---|
3302 | {
|
---|
3303 | #ifdef DEBUG_UNASSIGNED
|
---|
3304 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
|
---|
3305 | #endif
|
---|
3306 | #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
|
---|
3307 | do_unassigned_access(addr, 0, 0, 0, 1);
|
---|
3308 | #endif
|
---|
3309 | return 0;
|
---|
3310 | }
|
---|
3311 |
|
---|
3312 | static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
|
---|
3313 | {
|
---|
3314 | #ifdef DEBUG_UNASSIGNED
|
---|
3315 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
|
---|
3316 | #endif
|
---|
3317 | #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
|
---|
3318 | do_unassigned_access(addr, 0, 0, 0, 2);
|
---|
3319 | #endif
|
---|
3320 | return 0;
|
---|
3321 | }
|
---|
3322 |
|
---|
3323 | static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
|
---|
3324 | {
|
---|
3325 | #ifdef DEBUG_UNASSIGNED
|
---|
3326 | printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
|
---|
3327 | #endif
|
---|
3328 | #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
|
---|
3329 | do_unassigned_access(addr, 0, 0, 0, 4);
|
---|
3330 | #endif
|
---|
3331 | return 0;
|
---|
3332 | }
|
---|
3333 |
|
---|
3334 | static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
|
---|
3335 | {
|
---|
3336 | #ifdef DEBUG_UNASSIGNED
|
---|
3337 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
|
---|
3338 | #endif
|
---|
3339 | #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
|
---|
3340 | do_unassigned_access(addr, 1, 0, 0, 1);
|
---|
3341 | #endif
|
---|
3342 | }
|
---|
3343 |
|
---|
3344 | static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
|
---|
3345 | {
|
---|
3346 | #ifdef DEBUG_UNASSIGNED
|
---|
3347 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
|
---|
3348 | #endif
|
---|
3349 | #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
|
---|
3350 | do_unassigned_access(addr, 1, 0, 0, 2);
|
---|
3351 | #endif
|
---|
3352 | }
|
---|
3353 |
|
---|
3354 | static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
|
---|
3355 | {
|
---|
3356 | #ifdef DEBUG_UNASSIGNED
|
---|
3357 | printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
|
---|
3358 | #endif
|
---|
3359 | #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
|
---|
3360 | do_unassigned_access(addr, 1, 0, 0, 4);
|
---|
3361 | #endif
|
---|
3362 | }
|
---|
3363 |
|
---|
3364 | static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
|
---|
3365 | unassigned_mem_readb,
|
---|
3366 | unassigned_mem_readw,
|
---|
3367 | unassigned_mem_readl,
|
---|
3368 | };
|
---|
3369 |
|
---|
3370 | static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
|
---|
3371 | unassigned_mem_writeb,
|
---|
3372 | unassigned_mem_writew,
|
---|
3373 | unassigned_mem_writel,
|
---|
3374 | };
|
---|
3375 |
|
---|
3376 | static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
|
---|
3377 | uint32_t val)
|
---|
3378 | {
|
---|
3379 | int dirty_flags;
|
---|
3380 | dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
|
---|
3381 | if (!(dirty_flags & CODE_DIRTY_FLAG)) {
|
---|
3382 | #if !defined(CONFIG_USER_ONLY)
|
---|
3383 | tb_invalidate_phys_page_fast(ram_addr, 1);
|
---|
3384 | dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
|
---|
3385 | #endif
|
---|
3386 | }
|
---|
3387 | #if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
3388 | remR3PhysWriteU8(ram_addr, val);
|
---|
3389 | #else
|
---|
3390 | stb_p(qemu_get_ram_ptr(ram_addr), val);
|
---|
3391 | #endif
|
---|
3392 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
|
---|
3393 | cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
|
---|
3394 | /* we remove the notdirty callback only if the code has been
|
---|
3395 | flushed */
|
---|
3396 | if (dirty_flags == 0xff)
|
---|
3397 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
|
---|
3398 | }
|
---|
3399 |
|
---|
3400 | static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
|
---|
3401 | uint32_t val)
|
---|
3402 | {
|
---|
3403 | int dirty_flags;
|
---|
3404 | dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
|
---|
3405 | if (!(dirty_flags & CODE_DIRTY_FLAG)) {
|
---|
3406 | #if !defined(CONFIG_USER_ONLY)
|
---|
3407 | tb_invalidate_phys_page_fast(ram_addr, 2);
|
---|
3408 | dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
|
---|
3409 | #endif
|
---|
3410 | }
|
---|
3411 | #if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
3412 | remR3PhysWriteU16(ram_addr, val);
|
---|
3413 | #else
|
---|
3414 | stw_p(qemu_get_ram_ptr(ram_addr), val);
|
---|
3415 | #endif
|
---|
3416 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
|
---|
3417 | cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
|
---|
3418 | /* we remove the notdirty callback only if the code has been
|
---|
3419 | flushed */
|
---|
3420 | if (dirty_flags == 0xff)
|
---|
3421 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
|
---|
3422 | }
|
---|
3423 |
|
---|
3424 | static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
|
---|
3425 | uint32_t val)
|
---|
3426 | {
|
---|
3427 | int dirty_flags;
|
---|
3428 | dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
|
---|
3429 | if (!(dirty_flags & CODE_DIRTY_FLAG)) {
|
---|
3430 | #if !defined(CONFIG_USER_ONLY)
|
---|
3431 | tb_invalidate_phys_page_fast(ram_addr, 4);
|
---|
3432 | dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
|
---|
3433 | #endif
|
---|
3434 | }
|
---|
3435 | #if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
3436 | remR3PhysWriteU32(ram_addr, val);
|
---|
3437 | #else
|
---|
3438 | stl_p(qemu_get_ram_ptr(ram_addr), val);
|
---|
3439 | #endif
|
---|
3440 | dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
|
---|
3441 | cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
|
---|
3442 | /* we remove the notdirty callback only if the code has been
|
---|
3443 | flushed */
|
---|
3444 | if (dirty_flags == 0xff)
|
---|
3445 | tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
|
---|
3446 | }
|
---|
3447 |
|
---|
3448 | static CPUReadMemoryFunc * const error_mem_read[3] = {
|
---|
3449 | NULL, /* never used */
|
---|
3450 | NULL, /* never used */
|
---|
3451 | NULL, /* never used */
|
---|
3452 | };
|
---|
3453 |
|
---|
3454 | static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
|
---|
3455 | notdirty_mem_writeb,
|
---|
3456 | notdirty_mem_writew,
|
---|
3457 | notdirty_mem_writel,
|
---|
3458 | };
|
---|
3459 |
|
---|
3460 | /* Generate a debug exception if a watchpoint has been hit. */
|
---|
3461 | static void check_watchpoint(int offset, int len_mask, int flags)
|
---|
3462 | {
|
---|
3463 | CPUState *env = cpu_single_env;
|
---|
3464 | target_ulong pc, cs_base;
|
---|
3465 | TranslationBlock *tb;
|
---|
3466 | target_ulong vaddr;
|
---|
3467 | CPUWatchpoint *wp;
|
---|
3468 | int cpu_flags;
|
---|
3469 |
|
---|
3470 | if (env->watchpoint_hit) {
|
---|
3471 | /* We re-entered the check after replacing the TB. Now raise
|
---|
3472 | * the debug interrupt so that is will trigger after the
|
---|
3473 | * current instruction. */
|
---|
3474 | cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
|
---|
3475 | return;
|
---|
3476 | }
|
---|
3477 | vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
|
---|
3478 | QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
|
---|
3479 | if ((vaddr == (wp->vaddr & len_mask) ||
|
---|
3480 | (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
|
---|
3481 | wp->flags |= BP_WATCHPOINT_HIT;
|
---|
3482 | if (!env->watchpoint_hit) {
|
---|
3483 | env->watchpoint_hit = wp;
|
---|
3484 | tb = tb_find_pc(env->mem_io_pc);
|
---|
3485 | if (!tb) {
|
---|
3486 | cpu_abort(env, "check_watchpoint: could not find TB for "
|
---|
3487 | "pc=%p", (void *)env->mem_io_pc);
|
---|
3488 | }
|
---|
3489 | cpu_restore_state(tb, env, env->mem_io_pc, NULL);
|
---|
3490 | tb_phys_invalidate(tb, -1);
|
---|
3491 | if (wp->flags & BP_STOP_BEFORE_ACCESS) {
|
---|
3492 | env->exception_index = EXCP_DEBUG;
|
---|
3493 | } else {
|
---|
3494 | cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
|
---|
3495 | tb_gen_code(env, pc, cs_base, cpu_flags, 1);
|
---|
3496 | }
|
---|
3497 | cpu_resume_from_signal(env, NULL);
|
---|
3498 | }
|
---|
3499 | } else {
|
---|
3500 | wp->flags &= ~BP_WATCHPOINT_HIT;
|
---|
3501 | }
|
---|
3502 | }
|
---|
3503 | }
|
---|
3504 |
|
---|
3505 | /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
|
---|
3506 | so these check for a hit then pass through to the normal out-of-line
|
---|
3507 | phys routines. */
|
---|
3508 | static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
|
---|
3509 | {
|
---|
3510 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
|
---|
3511 | return ldub_phys(addr);
|
---|
3512 | }
|
---|
3513 |
|
---|
3514 | static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
|
---|
3515 | {
|
---|
3516 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
|
---|
3517 | return lduw_phys(addr);
|
---|
3518 | }
|
---|
3519 |
|
---|
3520 | static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
|
---|
3521 | {
|
---|
3522 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
|
---|
3523 | return ldl_phys(addr);
|
---|
3524 | }
|
---|
3525 |
|
---|
3526 | static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
|
---|
3527 | uint32_t val)
|
---|
3528 | {
|
---|
3529 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
|
---|
3530 | stb_phys(addr, val);
|
---|
3531 | }
|
---|
3532 |
|
---|
3533 | static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
|
---|
3534 | uint32_t val)
|
---|
3535 | {
|
---|
3536 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
|
---|
3537 | stw_phys(addr, val);
|
---|
3538 | }
|
---|
3539 |
|
---|
3540 | static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
|
---|
3541 | uint32_t val)
|
---|
3542 | {
|
---|
3543 | check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
|
---|
3544 | stl_phys(addr, val);
|
---|
3545 | }
|
---|
3546 |
|
---|
3547 | static CPUReadMemoryFunc * const watch_mem_read[3] = {
|
---|
3548 | watch_mem_readb,
|
---|
3549 | watch_mem_readw,
|
---|
3550 | watch_mem_readl,
|
---|
3551 | };
|
---|
3552 |
|
---|
3553 | static CPUWriteMemoryFunc * const watch_mem_write[3] = {
|
---|
3554 | watch_mem_writeb,
|
---|
3555 | watch_mem_writew,
|
---|
3556 | watch_mem_writel,
|
---|
3557 | };
|
---|
3558 |
|
---|
3559 | static inline uint32_t subpage_readlen (subpage_t *mmio,
|
---|
3560 | target_phys_addr_t addr,
|
---|
3561 | unsigned int len)
|
---|
3562 | {
|
---|
3563 | unsigned int idx = SUBPAGE_IDX(addr);
|
---|
3564 | #if defined(DEBUG_SUBPAGE)
|
---|
3565 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
|
---|
3566 | mmio, len, addr, idx);
|
---|
3567 | #endif
|
---|
3568 |
|
---|
3569 | addr += mmio->region_offset[idx];
|
---|
3570 | idx = mmio->sub_io_index[idx];
|
---|
3571 | return io_mem_read[idx][len](io_mem_opaque[idx], addr);
|
---|
3572 | }
|
---|
3573 |
|
---|
3574 | static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
|
---|
3575 | uint32_t value, unsigned int len)
|
---|
3576 | {
|
---|
3577 | unsigned int idx = SUBPAGE_IDX(addr);
|
---|
3578 | #if defined(DEBUG_SUBPAGE)
|
---|
3579 | printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
|
---|
3580 | __func__, mmio, len, addr, idx, value);
|
---|
3581 | #endif
|
---|
3582 |
|
---|
3583 | addr += mmio->region_offset[idx];
|
---|
3584 | idx = mmio->sub_io_index[idx];
|
---|
3585 | io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
|
---|
3586 | }
|
---|
3587 |
|
---|
3588 | static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
|
---|
3589 | {
|
---|
3590 | return subpage_readlen(opaque, addr, 0);
|
---|
3591 | }
|
---|
3592 |
|
---|
3593 | static void subpage_writeb (void *opaque, target_phys_addr_t addr,
|
---|
3594 | uint32_t value)
|
---|
3595 | {
|
---|
3596 | subpage_writelen(opaque, addr, value, 0);
|
---|
3597 | }
|
---|
3598 |
|
---|
3599 | static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
|
---|
3600 | {
|
---|
3601 | return subpage_readlen(opaque, addr, 1);
|
---|
3602 | }
|
---|
3603 |
|
---|
3604 | static void subpage_writew (void *opaque, target_phys_addr_t addr,
|
---|
3605 | uint32_t value)
|
---|
3606 | {
|
---|
3607 | subpage_writelen(opaque, addr, value, 1);
|
---|
3608 | }
|
---|
3609 |
|
---|
3610 | static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
|
---|
3611 | {
|
---|
3612 | return subpage_readlen(opaque, addr, 2);
|
---|
3613 | }
|
---|
3614 |
|
---|
3615 | static void subpage_writel (void *opaque, target_phys_addr_t addr,
|
---|
3616 | uint32_t value)
|
---|
3617 | {
|
---|
3618 | subpage_writelen(opaque, addr, value, 2);
|
---|
3619 | }
|
---|
3620 |
|
---|
3621 | static CPUReadMemoryFunc * const subpage_read[] = {
|
---|
3622 | &subpage_readb,
|
---|
3623 | &subpage_readw,
|
---|
3624 | &subpage_readl,
|
---|
3625 | };
|
---|
3626 |
|
---|
3627 | static CPUWriteMemoryFunc * const subpage_write[] = {
|
---|
3628 | &subpage_writeb,
|
---|
3629 | &subpage_writew,
|
---|
3630 | &subpage_writel,
|
---|
3631 | };
|
---|
3632 |
|
---|
3633 | static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
|
---|
3634 | ram_addr_t memory, ram_addr_t region_offset)
|
---|
3635 | {
|
---|
3636 | int idx, eidx;
|
---|
3637 |
|
---|
3638 | if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
|
---|
3639 | return -1;
|
---|
3640 | idx = SUBPAGE_IDX(start);
|
---|
3641 | eidx = SUBPAGE_IDX(end);
|
---|
3642 | #if defined(DEBUG_SUBPAGE)
|
---|
3643 | printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
|
---|
3644 | mmio, start, end, idx, eidx, memory);
|
---|
3645 | #endif
|
---|
3646 | memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
|
---|
3647 | for (; idx <= eidx; idx++) {
|
---|
3648 | mmio->sub_io_index[idx] = memory;
|
---|
3649 | mmio->region_offset[idx] = region_offset;
|
---|
3650 | }
|
---|
3651 |
|
---|
3652 | return 0;
|
---|
3653 | }
|
---|
3654 |
|
---|
3655 | static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
|
---|
3656 | ram_addr_t orig_memory,
|
---|
3657 | ram_addr_t region_offset)
|
---|
3658 | {
|
---|
3659 | subpage_t *mmio;
|
---|
3660 | int subpage_memory;
|
---|
3661 |
|
---|
3662 | mmio = qemu_mallocz(sizeof(subpage_t));
|
---|
3663 |
|
---|
3664 | mmio->base = base;
|
---|
3665 | subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
|
---|
3666 | #if defined(DEBUG_SUBPAGE)
|
---|
3667 | printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
|
---|
3668 | mmio, base, TARGET_PAGE_SIZE, subpage_memory);
|
---|
3669 | #endif
|
---|
3670 | *phys = subpage_memory | IO_MEM_SUBPAGE;
|
---|
3671 | subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
|
---|
3672 |
|
---|
3673 | return mmio;
|
---|
3674 | }
|
---|
3675 |
|
---|
3676 | static int get_free_io_mem_idx(void)
|
---|
3677 | {
|
---|
3678 | int i;
|
---|
3679 |
|
---|
3680 | for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
|
---|
3681 | if (!io_mem_used[i]) {
|
---|
3682 | io_mem_used[i] = 1;
|
---|
3683 | return i;
|
---|
3684 | }
|
---|
3685 | fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
|
---|
3686 | return -1;
|
---|
3687 | }
|
---|
3688 |
|
---|
3689 | /* mem_read and mem_write are arrays of functions containing the
|
---|
3690 | function to access byte (index 0), word (index 1) and dword (index
|
---|
3691 | 2). Functions can be omitted with a NULL function pointer.
|
---|
3692 | If io_index is non zero, the corresponding io zone is
|
---|
3693 | modified. If it is zero, a new io zone is allocated. The return
|
---|
3694 | value can be used with cpu_register_physical_memory(). (-1) is
|
---|
3695 | returned if error. */
|
---|
3696 | static int cpu_register_io_memory_fixed(int io_index,
|
---|
3697 | CPUReadMemoryFunc * const *mem_read,
|
---|
3698 | CPUWriteMemoryFunc * const *mem_write,
|
---|
3699 | void *opaque)
|
---|
3700 | {
|
---|
3701 | int i;
|
---|
3702 |
|
---|
3703 | if (io_index <= 0) {
|
---|
3704 | io_index = get_free_io_mem_idx();
|
---|
3705 | if (io_index == -1)
|
---|
3706 | return io_index;
|
---|
3707 | } else {
|
---|
3708 | io_index >>= IO_MEM_SHIFT;
|
---|
3709 | if (io_index >= IO_MEM_NB_ENTRIES)
|
---|
3710 | return -1;
|
---|
3711 | }
|
---|
3712 |
|
---|
3713 | for (i = 0; i < 3; ++i) {
|
---|
3714 | io_mem_read[io_index][i]
|
---|
3715 | = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
|
---|
3716 | }
|
---|
3717 | for (i = 0; i < 3; ++i) {
|
---|
3718 | io_mem_write[io_index][i]
|
---|
3719 | = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
|
---|
3720 | }
|
---|
3721 | io_mem_opaque[io_index] = opaque;
|
---|
3722 |
|
---|
3723 | return (io_index << IO_MEM_SHIFT);
|
---|
3724 | }
|
---|
3725 |
|
---|
3726 | int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
|
---|
3727 | CPUWriteMemoryFunc * const *mem_write,
|
---|
3728 | void *opaque)
|
---|
3729 | {
|
---|
3730 | return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
|
---|
3731 | }
|
---|
3732 |
|
---|
3733 | void cpu_unregister_io_memory(int io_table_address)
|
---|
3734 | {
|
---|
3735 | int i;
|
---|
3736 | int io_index = io_table_address >> IO_MEM_SHIFT;
|
---|
3737 |
|
---|
3738 | for (i=0;i < 3; i++) {
|
---|
3739 | io_mem_read[io_index][i] = unassigned_mem_read[i];
|
---|
3740 | io_mem_write[io_index][i] = unassigned_mem_write[i];
|
---|
3741 | }
|
---|
3742 | io_mem_opaque[io_index] = NULL;
|
---|
3743 | io_mem_used[io_index] = 0;
|
---|
3744 | }
|
---|
3745 |
|
---|
3746 | static void io_mem_init(void)
|
---|
3747 | {
|
---|
3748 | int i;
|
---|
3749 |
|
---|
3750 | cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
|
---|
3751 | cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
|
---|
3752 | cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
|
---|
3753 | for (i=0; i<5; i++)
|
---|
3754 | io_mem_used[i] = 1;
|
---|
3755 |
|
---|
3756 | io_mem_watch = cpu_register_io_memory(watch_mem_read,
|
---|
3757 | watch_mem_write, NULL);
|
---|
3758 | }
|
---|
3759 |
|
---|
3760 | #endif /* !defined(CONFIG_USER_ONLY) */
|
---|
3761 |
|
---|
3762 | /* physical memory access (slow version, mainly for debug) */
|
---|
3763 | #if defined(CONFIG_USER_ONLY)
|
---|
3764 | int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
|
---|
3765 | uint8_t *buf, int len, int is_write)
|
---|
3766 | {
|
---|
3767 | int l, flags;
|
---|
3768 | target_ulong page;
|
---|
3769 | void * p;
|
---|
3770 |
|
---|
3771 | while (len > 0) {
|
---|
3772 | page = addr & TARGET_PAGE_MASK;
|
---|
3773 | l = (page + TARGET_PAGE_SIZE) - addr;
|
---|
3774 | if (l > len)
|
---|
3775 | l = len;
|
---|
3776 | flags = page_get_flags(page);
|
---|
3777 | if (!(flags & PAGE_VALID))
|
---|
3778 | return -1;
|
---|
3779 | if (is_write) {
|
---|
3780 | if (!(flags & PAGE_WRITE))
|
---|
3781 | return -1;
|
---|
3782 | /* XXX: this code should not depend on lock_user */
|
---|
3783 | if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
|
---|
3784 | return -1;
|
---|
3785 | memcpy(p, buf, l);
|
---|
3786 | unlock_user(p, addr, l);
|
---|
3787 | } else {
|
---|
3788 | if (!(flags & PAGE_READ))
|
---|
3789 | return -1;
|
---|
3790 | /* XXX: this code should not depend on lock_user */
|
---|
3791 | if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
|
---|
3792 | return -1;
|
---|
3793 | memcpy(buf, p, l);
|
---|
3794 | unlock_user(p, addr, 0);
|
---|
3795 | }
|
---|
3796 | len -= l;
|
---|
3797 | buf += l;
|
---|
3798 | addr += l;
|
---|
3799 | }
|
---|
3800 | return 0;
|
---|
3801 | }
|
---|
3802 |
|
---|
3803 | #else
|
---|
3804 | void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
|
---|
3805 | int len, int is_write)
|
---|
3806 | {
|
---|
3807 | int l, io_index;
|
---|
3808 | uint8_t *ptr;
|
---|
3809 | uint32_t val;
|
---|
3810 | target_phys_addr_t page;
|
---|
3811 | ram_addr_t pd;
|
---|
3812 | PhysPageDesc *p;
|
---|
3813 |
|
---|
3814 | while (len > 0) {
|
---|
3815 | page = addr & TARGET_PAGE_MASK;
|
---|
3816 | l = (page + TARGET_PAGE_SIZE) - addr;
|
---|
3817 | if (l > len)
|
---|
3818 | l = len;
|
---|
3819 | p = phys_page_find(page >> TARGET_PAGE_BITS);
|
---|
3820 | if (!p) {
|
---|
3821 | pd = IO_MEM_UNASSIGNED;
|
---|
3822 | } else {
|
---|
3823 | pd = p->phys_offset;
|
---|
3824 | }
|
---|
3825 |
|
---|
3826 | if (is_write) {
|
---|
3827 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
|
---|
3828 | target_phys_addr_t addr1 = addr;
|
---|
3829 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
|
---|
3830 | if (p)
|
---|
3831 | addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
|
---|
3832 | /* XXX: could force cpu_single_env to NULL to avoid
|
---|
3833 | potential bugs */
|
---|
3834 | if (l >= 4 && ((addr1 & 3) == 0)) {
|
---|
3835 | /* 32 bit write access */
|
---|
3836 | #if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
3837 | val = ldl_p(buf);
|
---|
3838 | #else
|
---|
3839 | val = *(const uint32_t *)buf;
|
---|
3840 | #endif
|
---|
3841 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
|
---|
3842 | l = 4;
|
---|
3843 | } else if (l >= 2 && ((addr1 & 1) == 0)) {
|
---|
3844 | /* 16 bit write access */
|
---|
3845 | #if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
3846 | val = lduw_p(buf);
|
---|
3847 | #else
|
---|
3848 | val = *(const uint16_t *)buf;
|
---|
3849 | #endif
|
---|
3850 | io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
|
---|
3851 | l = 2;
|
---|
3852 | } else {
|
---|
3853 | /* 8 bit write access */
|
---|
3854 | #if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
3855 | val = ldub_p(buf);
|
---|
3856 | #else
|
---|
3857 | val = *(const uint8_t *)buf;
|
---|
3858 | #endif
|
---|
3859 | io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
|
---|
3860 | l = 1;
|
---|
3861 | }
|
---|
3862 | } else {
|
---|
3863 | ram_addr_t addr1;
|
---|
3864 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
|
---|
3865 | /* RAM case */
|
---|
3866 | #ifdef VBOX
|
---|
3867 | remR3PhysWrite(addr1, buf, l); NOREF(ptr);
|
---|
3868 | #else
|
---|
3869 | ptr = qemu_get_ram_ptr(addr1);
|
---|
3870 | memcpy(ptr, buf, l);
|
---|
3871 | #endif
|
---|
3872 | if (!cpu_physical_memory_is_dirty(addr1)) {
|
---|
3873 | /* invalidate code */
|
---|
3874 | tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
|
---|
3875 | /* set dirty bit */
|
---|
3876 | cpu_physical_memory_set_dirty_flags(
|
---|
3877 | addr1, (0xff & ~CODE_DIRTY_FLAG));
|
---|
3878 | }
|
---|
3879 | }
|
---|
3880 | } else {
|
---|
3881 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
|
---|
3882 | !(pd & IO_MEM_ROMD)) {
|
---|
3883 | target_phys_addr_t addr1 = addr;
|
---|
3884 | /* I/O case */
|
---|
3885 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
|
---|
3886 | if (p)
|
---|
3887 | addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
|
---|
3888 | if (l >= 4 && ((addr1 & 3) == 0)) {
|
---|
3889 | /* 32 bit read access */
|
---|
3890 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
|
---|
3891 | #if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
3892 | stl_p(buf, val);
|
---|
3893 | #else
|
---|
3894 | *(uint32_t *)buf = val;
|
---|
3895 | #endif
|
---|
3896 | l = 4;
|
---|
3897 | } else if (l >= 2 && ((addr1 & 1) == 0)) {
|
---|
3898 | /* 16 bit read access */
|
---|
3899 | val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
|
---|
3900 | #if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
3901 | stw_p(buf, val);
|
---|
3902 | #else
|
---|
3903 | *(uint16_t *)buf = val;
|
---|
3904 | #endif
|
---|
3905 | l = 2;
|
---|
3906 | } else {
|
---|
3907 | /* 8 bit read access */
|
---|
3908 | val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
|
---|
3909 | #if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
|
---|
3910 | stb_p(buf, val);
|
---|
3911 | #else
|
---|
3912 | *(uint8_t *)buf = val;
|
---|
3913 | #endif
|
---|
3914 | l = 1;
|
---|
3915 | }
|
---|
3916 | } else {
|
---|
3917 | /* RAM case */
|
---|
3918 | #ifdef VBOX
|
---|
3919 | remR3PhysRead((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), buf, l); NOREF(ptr);
|
---|
3920 | #else
|
---|
3921 | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
|
---|
3922 | (addr & ~TARGET_PAGE_MASK);
|
---|
3923 | memcpy(buf, ptr, l);
|
---|
3924 | #endif
|
---|
3925 | }
|
---|
3926 | }
|
---|
3927 | len -= l;
|
---|
3928 | buf += l;
|
---|
3929 | addr += l;
|
---|
3930 | }
|
---|
3931 | }
|
---|
3932 |
|
---|
3933 | #ifndef VBOX
|
---|
3934 |
|
---|
3935 | /* used for ROM loading : can write in RAM and ROM */
|
---|
3936 | void cpu_physical_memory_write_rom(target_phys_addr_t addr,
|
---|
3937 | const uint8_t *buf, int len)
|
---|
3938 | {
|
---|
3939 | int l;
|
---|
3940 | uint8_t *ptr;
|
---|
3941 | target_phys_addr_t page;
|
---|
3942 | ram_addr_t pd;
|
---|
3943 | PhysPageDesc *p;
|
---|
3944 |
|
---|
3945 | while (len > 0) {
|
---|
3946 | page = addr & TARGET_PAGE_MASK;
|
---|
3947 | l = (page + TARGET_PAGE_SIZE) - addr;
|
---|
3948 | if (l > len)
|
---|
3949 | l = len;
|
---|
3950 | p = phys_page_find(page >> TARGET_PAGE_BITS);
|
---|
3951 | if (!p) {
|
---|
3952 | pd = IO_MEM_UNASSIGNED;
|
---|
3953 | } else {
|
---|
3954 | pd = p->phys_offset;
|
---|
3955 | }
|
---|
3956 |
|
---|
3957 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
|
---|
3958 | (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
|
---|
3959 | !(pd & IO_MEM_ROMD)) {
|
---|
3960 | /* do nothing */
|
---|
3961 | } else {
|
---|
3962 | ram_addr_t addr1;
|
---|
3963 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
|
---|
3964 | /* ROM/RAM case */
|
---|
3965 | ptr = qemu_get_ram_ptr(addr1);
|
---|
3966 | memcpy(ptr, buf, l);
|
---|
3967 | }
|
---|
3968 | len -= l;
|
---|
3969 | buf += l;
|
---|
3970 | addr += l;
|
---|
3971 | }
|
---|
3972 | }
|
---|
3973 |
|
---|
3974 | typedef struct {
|
---|
3975 | void *buffer;
|
---|
3976 | target_phys_addr_t addr;
|
---|
3977 | target_phys_addr_t len;
|
---|
3978 | } BounceBuffer;
|
---|
3979 |
|
---|
3980 | static BounceBuffer bounce;
|
---|
3981 |
|
---|
3982 | typedef struct MapClient {
|
---|
3983 | void *opaque;
|
---|
3984 | void (*callback)(void *opaque);
|
---|
3985 | QLIST_ENTRY(MapClient) link;
|
---|
3986 | } MapClient;
|
---|
3987 |
|
---|
3988 | static QLIST_HEAD(map_client_list, MapClient) map_client_list
|
---|
3989 | = QLIST_HEAD_INITIALIZER(map_client_list);
|
---|
3990 |
|
---|
3991 | void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
|
---|
3992 | {
|
---|
3993 | MapClient *client = qemu_malloc(sizeof(*client));
|
---|
3994 |
|
---|
3995 | client->opaque = opaque;
|
---|
3996 | client->callback = callback;
|
---|
3997 | QLIST_INSERT_HEAD(&map_client_list, client, link);
|
---|
3998 | return client;
|
---|
3999 | }
|
---|
4000 |
|
---|
4001 | void cpu_unregister_map_client(void *_client)
|
---|
4002 | {
|
---|
4003 | MapClient *client = (MapClient *)_client;
|
---|
4004 |
|
---|
4005 | QLIST_REMOVE(client, link);
|
---|
4006 | qemu_free(client);
|
---|
4007 | }
|
---|
4008 |
|
---|
4009 | static void cpu_notify_map_clients(void)
|
---|
4010 | {
|
---|
4011 | MapClient *client;
|
---|
4012 |
|
---|
4013 | while (!QLIST_EMPTY(&map_client_list)) {
|
---|
4014 | client = QLIST_FIRST(&map_client_list);
|
---|
4015 | client->callback(client->opaque);
|
---|
4016 | cpu_unregister_map_client(client);
|
---|
4017 | }
|
---|
4018 | }
|
---|
4019 |
|
---|
4020 | /* Map a physical memory region into a host virtual address.
|
---|
4021 | * May map a subset of the requested range, given by and returned in *plen.
|
---|
4022 | * May return NULL if resources needed to perform the mapping are exhausted.
|
---|
4023 | * Use only for reads OR writes - not for read-modify-write operations.
|
---|
4024 | * Use cpu_register_map_client() to know when retrying the map operation is
|
---|
4025 | * likely to succeed.
|
---|
4026 | */
|
---|
4027 | void *cpu_physical_memory_map(target_phys_addr_t addr,
|
---|
4028 | target_phys_addr_t *plen,
|
---|
4029 | int is_write)
|
---|
4030 | {
|
---|
4031 | target_phys_addr_t len = *plen;
|
---|
4032 | target_phys_addr_t done = 0;
|
---|
4033 | int l;
|
---|
4034 | uint8_t *ret = NULL;
|
---|
4035 | uint8_t *ptr;
|
---|
4036 | target_phys_addr_t page;
|
---|
4037 | ram_addr_t pd;
|
---|
4038 | PhysPageDesc *p;
|
---|
4039 | ram_addr_t addr1;
|
---|
4040 |
|
---|
4041 | while (len > 0) {
|
---|
4042 | page = addr & TARGET_PAGE_MASK;
|
---|
4043 | l = (page + TARGET_PAGE_SIZE) - addr;
|
---|
4044 | if (l > len)
|
---|
4045 | l = len;
|
---|
4046 | p = phys_page_find(page >> TARGET_PAGE_BITS);
|
---|
4047 | if (!p) {
|
---|
4048 | pd = IO_MEM_UNASSIGNED;
|
---|
4049 | } else {
|
---|
4050 | pd = p->phys_offset;
|
---|
4051 | }
|
---|
4052 |
|
---|
4053 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
|
---|
4054 | if (done || bounce.buffer) {
|
---|
4055 | break;
|
---|
4056 | }
|
---|
4057 | bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
|
---|
4058 | bounce.addr = addr;
|
---|
4059 | bounce.len = l;
|
---|
4060 | if (!is_write) {
|
---|
4061 | cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
|
---|
4062 | }
|
---|
4063 | ptr = bounce.buffer;
|
---|
4064 | } else {
|
---|
4065 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
|
---|
4066 | ptr = qemu_get_ram_ptr(addr1);
|
---|
4067 | }
|
---|
4068 | if (!done) {
|
---|
4069 | ret = ptr;
|
---|
4070 | } else if (ret + done != ptr) {
|
---|
4071 | break;
|
---|
4072 | }
|
---|
4073 |
|
---|
4074 | len -= l;
|
---|
4075 | addr += l;
|
---|
4076 | done += l;
|
---|
4077 | }
|
---|
4078 | *plen = done;
|
---|
4079 | return ret;
|
---|
4080 | }
|
---|
4081 |
|
---|
4082 | /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
|
---|
4083 | * Will also mark the memory as dirty if is_write == 1. access_len gives
|
---|
4084 | * the amount of memory that was actually read or written by the caller.
|
---|
4085 | */
|
---|
4086 | void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
|
---|
4087 | int is_write, target_phys_addr_t access_len)
|
---|
4088 | {
|
---|
4089 | if (buffer != bounce.buffer) {
|
---|
4090 | if (is_write) {
|
---|
4091 | ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
|
---|
4092 | while (access_len) {
|
---|
4093 | unsigned l;
|
---|
4094 | l = TARGET_PAGE_SIZE;
|
---|
4095 | if (l > access_len)
|
---|
4096 | l = access_len;
|
---|
4097 | if (!cpu_physical_memory_is_dirty(addr1)) {
|
---|
4098 | /* invalidate code */
|
---|
4099 | tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
|
---|
4100 | /* set dirty bit */
|
---|
4101 | cpu_physical_memory_set_dirty_flags(
|
---|
4102 | addr1, (0xff & ~CODE_DIRTY_FLAG));
|
---|
4103 | }
|
---|
4104 | addr1 += l;
|
---|
4105 | access_len -= l;
|
---|
4106 | }
|
---|
4107 | }
|
---|
4108 | return;
|
---|
4109 | }
|
---|
4110 | if (is_write) {
|
---|
4111 | cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
|
---|
4112 | }
|
---|
4113 | qemu_vfree(bounce.buffer);
|
---|
4114 | bounce.buffer = NULL;
|
---|
4115 | cpu_notify_map_clients();
|
---|
4116 | }
|
---|
4117 |
|
---|
4118 | #endif /* !VBOX */
|
---|
4119 |
|
---|
4120 | /* warning: addr must be aligned */
|
---|
4121 | uint32_t ldl_phys(target_phys_addr_t addr)
|
---|
4122 | {
|
---|
4123 | int io_index;
|
---|
4124 | uint8_t *ptr;
|
---|
4125 | uint32_t val;
|
---|
4126 | ram_addr_t pd;
|
---|
4127 | PhysPageDesc *p;
|
---|
4128 |
|
---|
4129 | p = phys_page_find(addr >> TARGET_PAGE_BITS);
|
---|
4130 | if (!p) {
|
---|
4131 | pd = IO_MEM_UNASSIGNED;
|
---|
4132 | } else {
|
---|
4133 | pd = p->phys_offset;
|
---|
4134 | }
|
---|
4135 |
|
---|
4136 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
|
---|
4137 | !(pd & IO_MEM_ROMD)) {
|
---|
4138 | /* I/O case */
|
---|
4139 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
|
---|
4140 | if (p)
|
---|
4141 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
|
---|
4142 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
|
---|
4143 | } else {
|
---|
4144 | /* RAM case */
|
---|
4145 | #ifndef VBOX
|
---|
4146 | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
|
---|
4147 | (addr & ~TARGET_PAGE_MASK);
|
---|
4148 | val = ldl_p(ptr);
|
---|
4149 | #else
|
---|
4150 | val = remR3PhysReadU32((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK)); NOREF(ptr);
|
---|
4151 | #endif
|
---|
4152 | }
|
---|
4153 | return val;
|
---|
4154 | }
|
---|
4155 |
|
---|
4156 | /* warning: addr must be aligned */
|
---|
4157 | uint64_t ldq_phys(target_phys_addr_t addr)
|
---|
4158 | {
|
---|
4159 | int io_index;
|
---|
4160 | uint8_t *ptr;
|
---|
4161 | uint64_t val;
|
---|
4162 | ram_addr_t pd;
|
---|
4163 | PhysPageDesc *p;
|
---|
4164 |
|
---|
4165 | p = phys_page_find(addr >> TARGET_PAGE_BITS);
|
---|
4166 | if (!p) {
|
---|
4167 | pd = IO_MEM_UNASSIGNED;
|
---|
4168 | } else {
|
---|
4169 | pd = p->phys_offset;
|
---|
4170 | }
|
---|
4171 |
|
---|
4172 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
|
---|
4173 | !(pd & IO_MEM_ROMD)) {
|
---|
4174 | /* I/O case */
|
---|
4175 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
|
---|
4176 | if (p)
|
---|
4177 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
|
---|
4178 | #ifdef TARGET_WORDS_BIGENDIAN
|
---|
4179 | val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
|
---|
4180 | val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
|
---|
4181 | #else
|
---|
4182 | val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
|
---|
4183 | val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
|
---|
4184 | #endif
|
---|
4185 | } else {
|
---|
4186 | /* RAM case */
|
---|
4187 | #ifndef VBOX
|
---|
4188 | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
|
---|
4189 | (addr & ~TARGET_PAGE_MASK);
|
---|
4190 | val = ldq_p(ptr);
|
---|
4191 | #else
|
---|
4192 | val = remR3PhysReadU64((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK)); NOREF(ptr);
|
---|
4193 | #endif
|
---|
4194 | }
|
---|
4195 | return val;
|
---|
4196 | }
|
---|
4197 |
|
---|
4198 | /* XXX: optimize */
|
---|
4199 | uint32_t ldub_phys(target_phys_addr_t addr)
|
---|
4200 | {
|
---|
4201 | uint8_t val;
|
---|
4202 | cpu_physical_memory_read(addr, &val, 1);
|
---|
4203 | return val;
|
---|
4204 | }
|
---|
4205 |
|
---|
4206 | /* warning: addr must be aligned */
|
---|
4207 | uint32_t lduw_phys(target_phys_addr_t addr)
|
---|
4208 | {
|
---|
4209 | int io_index;
|
---|
4210 | #ifndef VBOX
|
---|
4211 | uint8_t *ptr;
|
---|
4212 | #endif
|
---|
4213 | uint64_t val;
|
---|
4214 | ram_addr_t pd;
|
---|
4215 | PhysPageDesc *p;
|
---|
4216 |
|
---|
4217 | p = phys_page_find(addr >> TARGET_PAGE_BITS);
|
---|
4218 | if (!p) {
|
---|
4219 | pd = IO_MEM_UNASSIGNED;
|
---|
4220 | } else {
|
---|
4221 | pd = p->phys_offset;
|
---|
4222 | }
|
---|
4223 |
|
---|
4224 | if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
|
---|
4225 | !(pd & IO_MEM_ROMD)) {
|
---|
4226 | /* I/O case */
|
---|
4227 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
|
---|
4228 | if (p)
|
---|
4229 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
|
---|
4230 | val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
|
---|
4231 | } else {
|
---|
4232 | /* RAM case */
|
---|
4233 | #ifndef VBOX
|
---|
4234 | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
|
---|
4235 | (addr & ~TARGET_PAGE_MASK);
|
---|
4236 | val = lduw_p(ptr);
|
---|
4237 | #else
|
---|
4238 | val = remR3PhysReadU16((pd & TARGET_PAGE_MASK) | (addr & ~TARGET_PAGE_MASK));
|
---|
4239 | #endif
|
---|
4240 | }
|
---|
4241 | return val;
|
---|
4242 | }
|
---|
4243 |
|
---|
4244 | /* warning: addr must be aligned. The ram page is not masked as dirty
|
---|
4245 | and the code inside is not invalidated. It is useful if the dirty
|
---|
4246 | bits are used to track modified PTEs */
|
---|
4247 | void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
|
---|
4248 | {
|
---|
4249 | int io_index;
|
---|
4250 | uint8_t *ptr;
|
---|
4251 | ram_addr_t pd;
|
---|
4252 | PhysPageDesc *p;
|
---|
4253 |
|
---|
4254 | p = phys_page_find(addr >> TARGET_PAGE_BITS);
|
---|
4255 | if (!p) {
|
---|
4256 | pd = IO_MEM_UNASSIGNED;
|
---|
4257 | } else {
|
---|
4258 | pd = p->phys_offset;
|
---|
4259 | }
|
---|
4260 |
|
---|
4261 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
|
---|
4262 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
|
---|
4263 | if (p)
|
---|
4264 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
|
---|
4265 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
|
---|
4266 | } else {
|
---|
4267 | #ifndef VBOX
|
---|
4268 | ram_addr_t addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
|
---|
4269 | ptr = qemu_get_ram_ptr(addr1);
|
---|
4270 | stl_p(ptr, val);
|
---|
4271 | #else
|
---|
4272 | remR3PhysWriteU32((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), val); NOREF(ptr);
|
---|
4273 | #endif
|
---|
4274 |
|
---|
4275 | #ifndef VBOX
|
---|
4276 | if (unlikely(in_migration)) {
|
---|
4277 | if (!cpu_physical_memory_is_dirty(addr1)) {
|
---|
4278 | /* invalidate code */
|
---|
4279 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
|
---|
4280 | /* set dirty bit */
|
---|
4281 | cpu_physical_memory_set_dirty_flags(
|
---|
4282 | addr1, (0xff & ~CODE_DIRTY_FLAG));
|
---|
4283 | }
|
---|
4284 | }
|
---|
4285 | #endif /* !VBOX */
|
---|
4286 | }
|
---|
4287 | }
|
---|
4288 |
|
---|
4289 | void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
|
---|
4290 | {
|
---|
4291 | int io_index;
|
---|
4292 | uint8_t *ptr;
|
---|
4293 | ram_addr_t pd;
|
---|
4294 | PhysPageDesc *p;
|
---|
4295 |
|
---|
4296 | p = phys_page_find(addr >> TARGET_PAGE_BITS);
|
---|
4297 | if (!p) {
|
---|
4298 | pd = IO_MEM_UNASSIGNED;
|
---|
4299 | } else {
|
---|
4300 | pd = p->phys_offset;
|
---|
4301 | }
|
---|
4302 |
|
---|
4303 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
|
---|
4304 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
|
---|
4305 | if (p)
|
---|
4306 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
|
---|
4307 | #ifdef TARGET_WORDS_BIGENDIAN
|
---|
4308 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
|
---|
4309 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
|
---|
4310 | #else
|
---|
4311 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
|
---|
4312 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
|
---|
4313 | #endif
|
---|
4314 | } else {
|
---|
4315 | #ifndef VBOX
|
---|
4316 | ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
|
---|
4317 | (addr & ~TARGET_PAGE_MASK);
|
---|
4318 | stq_p(ptr, val);
|
---|
4319 | #else
|
---|
4320 | remR3PhysWriteU64((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), val); NOREF(ptr);
|
---|
4321 | #endif
|
---|
4322 | }
|
---|
4323 | }
|
---|
4324 |
|
---|
4325 | /* warning: addr must be aligned */
|
---|
4326 | void stl_phys(target_phys_addr_t addr, uint32_t val)
|
---|
4327 | {
|
---|
4328 | int io_index;
|
---|
4329 | uint8_t *ptr;
|
---|
4330 | ram_addr_t pd;
|
---|
4331 | PhysPageDesc *p;
|
---|
4332 |
|
---|
4333 | p = phys_page_find(addr >> TARGET_PAGE_BITS);
|
---|
4334 | if (!p) {
|
---|
4335 | pd = IO_MEM_UNASSIGNED;
|
---|
4336 | } else {
|
---|
4337 | pd = p->phys_offset;
|
---|
4338 | }
|
---|
4339 |
|
---|
4340 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
|
---|
4341 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
|
---|
4342 | if (p)
|
---|
4343 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
|
---|
4344 | io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
|
---|
4345 | } else {
|
---|
4346 | ram_addr_t addr1;
|
---|
4347 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
|
---|
4348 | /* RAM case */
|
---|
4349 | #ifndef VBOX
|
---|
4350 | ptr = qemu_get_ram_ptr(addr1);
|
---|
4351 | stl_p(ptr, val);
|
---|
4352 | #else
|
---|
4353 | remR3PhysWriteU32((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), val); NOREF(ptr);
|
---|
4354 | #endif
|
---|
4355 | if (!cpu_physical_memory_is_dirty(addr1)) {
|
---|
4356 | /* invalidate code */
|
---|
4357 | tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
|
---|
4358 | /* set dirty bit */
|
---|
4359 | cpu_physical_memory_set_dirty_flags(addr1,
|
---|
4360 | (0xff & ~CODE_DIRTY_FLAG));
|
---|
4361 | }
|
---|
4362 | }
|
---|
4363 | }
|
---|
4364 |
|
---|
4365 | /* XXX: optimize */
|
---|
4366 | void stb_phys(target_phys_addr_t addr, uint32_t val)
|
---|
4367 | {
|
---|
4368 | uint8_t v = val;
|
---|
4369 | cpu_physical_memory_write(addr, &v, 1);
|
---|
4370 | }
|
---|
4371 |
|
---|
4372 | /* warning: addr must be aligned */
|
---|
4373 | void stw_phys(target_phys_addr_t addr, uint32_t val)
|
---|
4374 | {
|
---|
4375 | int io_index;
|
---|
4376 | uint8_t *ptr;
|
---|
4377 | ram_addr_t pd;
|
---|
4378 | PhysPageDesc *p;
|
---|
4379 |
|
---|
4380 | p = phys_page_find(addr >> TARGET_PAGE_BITS);
|
---|
4381 | if (!p) {
|
---|
4382 | pd = IO_MEM_UNASSIGNED;
|
---|
4383 | } else {
|
---|
4384 | pd = p->phys_offset;
|
---|
4385 | }
|
---|
4386 |
|
---|
4387 | if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
|
---|
4388 | io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
|
---|
4389 | if (p)
|
---|
4390 | addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
|
---|
4391 | io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
|
---|
4392 | } else {
|
---|
4393 | ram_addr_t addr1;
|
---|
4394 | addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
|
---|
4395 | /* RAM case */
|
---|
4396 | #ifndef VBOX
|
---|
4397 | ptr = qemu_get_ram_ptr(addr1);
|
---|
4398 | stw_p(ptr, val);
|
---|
4399 | #else
|
---|
4400 | remR3PhysWriteU16(addr1, val); NOREF(ptr);
|
---|
4401 | #endif
|
---|
4402 | if (!cpu_physical_memory_is_dirty(addr1)) {
|
---|
4403 | /* invalidate code */
|
---|
4404 | tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
|
---|
4405 | /* set dirty bit */
|
---|
4406 | cpu_physical_memory_set_dirty_flags(addr1,
|
---|
4407 | (0xff & ~CODE_DIRTY_FLAG));
|
---|
4408 | }
|
---|
4409 | }
|
---|
4410 | }
|
---|
4411 |
|
---|
4412 | /* XXX: optimize */
|
---|
4413 | void stq_phys(target_phys_addr_t addr, uint64_t val)
|
---|
4414 | {
|
---|
4415 | val = tswap64(val);
|
---|
4416 | cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
|
---|
4417 | }
|
---|
4418 |
|
---|
4419 | #ifndef VBOX
|
---|
4420 | /* virtual memory access for debug (includes writing to ROM) */
|
---|
4421 | int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
|
---|
4422 | uint8_t *buf, int len, int is_write)
|
---|
4423 | {
|
---|
4424 | int l;
|
---|
4425 | target_phys_addr_t phys_addr;
|
---|
4426 | target_ulong page;
|
---|
4427 |
|
---|
4428 | while (len > 0) {
|
---|
4429 | page = addr & TARGET_PAGE_MASK;
|
---|
4430 | phys_addr = cpu_get_phys_page_debug(env, page);
|
---|
4431 | /* if no physical page mapped, return an error */
|
---|
4432 | if (phys_addr == -1)
|
---|
4433 | return -1;
|
---|
4434 | l = (page + TARGET_PAGE_SIZE) - addr;
|
---|
4435 | if (l > len)
|
---|
4436 | l = len;
|
---|
4437 | phys_addr += (addr & ~TARGET_PAGE_MASK);
|
---|
4438 | if (is_write)
|
---|
4439 | cpu_physical_memory_write_rom(phys_addr, buf, l);
|
---|
4440 | else
|
---|
4441 | cpu_physical_memory_rw(phys_addr, buf, l, is_write);
|
---|
4442 | len -= l;
|
---|
4443 | buf += l;
|
---|
4444 | addr += l;
|
---|
4445 | }
|
---|
4446 | return 0;
|
---|
4447 | }
|
---|
4448 | #endif /* !VBOX */
|
---|
4449 | #endif
|
---|
4450 |
|
---|
4451 | /* in deterministic execution mode, instructions doing device I/Os
|
---|
4452 | must be at the end of the TB */
|
---|
4453 | void cpu_io_recompile(CPUState *env, void *retaddr)
|
---|
4454 | {
|
---|
4455 | TranslationBlock *tb;
|
---|
4456 | uint32_t n, cflags;
|
---|
4457 | target_ulong pc, cs_base;
|
---|
4458 | uint64_t flags;
|
---|
4459 |
|
---|
4460 | tb = tb_find_pc((uintptr_t)retaddr);
|
---|
4461 | if (!tb) {
|
---|
4462 | cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
|
---|
4463 | retaddr);
|
---|
4464 | }
|
---|
4465 | n = env->icount_decr.u16.low + tb->icount;
|
---|
4466 | cpu_restore_state(tb, env, (uintptr_t)retaddr, NULL);
|
---|
4467 | /* Calculate how many instructions had been executed before the fault
|
---|
4468 | occurred. */
|
---|
4469 | n = n - env->icount_decr.u16.low;
|
---|
4470 | /* Generate a new TB ending on the I/O insn. */
|
---|
4471 | n++;
|
---|
4472 | /* On MIPS and SH, delay slot instructions can only be restarted if
|
---|
4473 | they were already the first instruction in the TB. If this is not
|
---|
4474 | the first instruction in a TB then re-execute the preceding
|
---|
4475 | branch. */
|
---|
4476 | #if defined(TARGET_MIPS)
|
---|
4477 | if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
|
---|
4478 | env->active_tc.PC -= 4;
|
---|
4479 | env->icount_decr.u16.low++;
|
---|
4480 | env->hflags &= ~MIPS_HFLAG_BMASK;
|
---|
4481 | }
|
---|
4482 | #elif defined(TARGET_SH4)
|
---|
4483 | if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
|
---|
4484 | && n > 1) {
|
---|
4485 | env->pc -= 2;
|
---|
4486 | env->icount_decr.u16.low++;
|
---|
4487 | env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
|
---|
4488 | }
|
---|
4489 | #endif
|
---|
4490 | /* This should never happen. */
|
---|
4491 | if (n > CF_COUNT_MASK)
|
---|
4492 | cpu_abort(env, "TB too big during recompile");
|
---|
4493 |
|
---|
4494 | cflags = n | CF_LAST_IO;
|
---|
4495 | pc = tb->pc;
|
---|
4496 | cs_base = tb->cs_base;
|
---|
4497 | flags = tb->flags;
|
---|
4498 | tb_phys_invalidate(tb, -1);
|
---|
4499 | /* FIXME: In theory this could raise an exception. In practice
|
---|
4500 | we have already translated the block once so it's probably ok. */
|
---|
4501 | tb_gen_code(env, pc, cs_base, flags, cflags);
|
---|
4502 | /** @todo If env->pc != tb->pc (i.e. the faulting instruction was not
|
---|
4503 | the first in the TB) then we end up generating a whole new TB and
|
---|
4504 | repeating the fault, which is horribly inefficient.
|
---|
4505 | Better would be to execute just this insn uncached, or generate a
|
---|
4506 | second new TB. */
|
---|
4507 | cpu_resume_from_signal(env, NULL);
|
---|
4508 | }
|
---|
4509 |
|
---|
4510 | #if !defined(CONFIG_USER_ONLY)
|
---|
4511 |
|
---|
4512 | #ifndef VBOX
|
---|
4513 | void dump_exec_info(FILE *f,
|
---|
4514 | int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
|
---|
4515 | {
|
---|
4516 | int i, target_code_size, max_target_code_size;
|
---|
4517 | int direct_jmp_count, direct_jmp2_count, cross_page;
|
---|
4518 | TranslationBlock *tb;
|
---|
4519 |
|
---|
4520 | target_code_size = 0;
|
---|
4521 | max_target_code_size = 0;
|
---|
4522 | cross_page = 0;
|
---|
4523 | direct_jmp_count = 0;
|
---|
4524 | direct_jmp2_count = 0;
|
---|
4525 | for(i = 0; i < nb_tbs; i++) {
|
---|
4526 | tb = &tbs[i];
|
---|
4527 | target_code_size += tb->size;
|
---|
4528 | if (tb->size > max_target_code_size)
|
---|
4529 | max_target_code_size = tb->size;
|
---|
4530 | if (tb->page_addr[1] != -1)
|
---|
4531 | cross_page++;
|
---|
4532 | if (tb->tb_next_offset[0] != 0xffff) {
|
---|
4533 | direct_jmp_count++;
|
---|
4534 | if (tb->tb_next_offset[1] != 0xffff) {
|
---|
4535 | direct_jmp2_count++;
|
---|
4536 | }
|
---|
4537 | }
|
---|
4538 | }
|
---|
4539 | /* XXX: avoid using doubles ? */
|
---|
4540 | cpu_fprintf(f, "Translation buffer state:\n");
|
---|
4541 | cpu_fprintf(f, "gen code size %ld/%ld\n",
|
---|
4542 | code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
|
---|
4543 | cpu_fprintf(f, "TB count %d/%d\n",
|
---|
4544 | nb_tbs, code_gen_max_blocks);
|
---|
4545 | cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
|
---|
4546 | nb_tbs ? target_code_size / nb_tbs : 0,
|
---|
4547 | max_target_code_size);
|
---|
4548 | cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
|
---|
4549 | nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
|
---|
4550 | target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
|
---|
4551 | cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
|
---|
4552 | cross_page,
|
---|
4553 | nb_tbs ? (cross_page * 100) / nb_tbs : 0);
|
---|
4554 | cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
|
---|
4555 | direct_jmp_count,
|
---|
4556 | nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
|
---|
4557 | direct_jmp2_count,
|
---|
4558 | nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
|
---|
4559 | cpu_fprintf(f, "\nStatistics:\n");
|
---|
4560 | cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
|
---|
4561 | cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
|
---|
4562 | cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
|
---|
4563 | tcg_dump_info(f, cpu_fprintf);
|
---|
4564 | }
|
---|
4565 | #endif /* !VBOX */
|
---|
4566 |
|
---|
4567 | #define MMUSUFFIX _cmmu
|
---|
4568 | #define GETPC() NULL
|
---|
4569 | #define env cpu_single_env
|
---|
4570 | #define SOFTMMU_CODE_ACCESS
|
---|
4571 |
|
---|
4572 | #define SHIFT 0
|
---|
4573 | #include "softmmu_template.h"
|
---|
4574 |
|
---|
4575 | #define SHIFT 1
|
---|
4576 | #include "softmmu_template.h"
|
---|
4577 |
|
---|
4578 | #define SHIFT 2
|
---|
4579 | #include "softmmu_template.h"
|
---|
4580 |
|
---|
4581 | #define SHIFT 3
|
---|
4582 | #include "softmmu_template.h"
|
---|
4583 |
|
---|
4584 | #undef env
|
---|
4585 |
|
---|
4586 | #endif
|
---|