VirtualBox

source: vbox/trunk/src/recompiler/fpu/softfloat-native.c@ 36147

Last change on this file since 36147 was 36140, checked in by vboxsync, 14 years ago

rem: Re-synced to svn://svn.savannah.nongnu.org/qemu/trunk@5495 (repo UUID c046a42c-6fe2-441c-8c8c-71466251a162).

  • Property svn:eol-style set to native
File size: 10.9 KB
Line 
1/* Native implementation of soft float functions. Only a single status
2 context is supported */
3#include "softfloat.h"
4#include <math.h>
5
6void set_float_rounding_mode(int val STATUS_PARAM)
7{
8 STATUS(float_rounding_mode) = val;
9#if defined(_BSD) && !defined(__APPLE__) || (defined(HOST_SOLARIS) && (HOST_SOLARIS < 10 || HOST_SOLARIS == 11)) /* VBOX adds sol 11 */
10 fpsetround(val);
11#elif defined(__arm__)
12 /* nothing to do */
13#else
14 fesetround(val);
15#endif
16}
17
18#ifdef FLOATX80
19void set_floatx80_rounding_precision(int val STATUS_PARAM)
20{
21 STATUS(floatx80_rounding_precision) = val;
22}
23#endif
24
25#if defined(_BSD) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
26#define lrint(d) ((int32_t)rint(d))
27#define llrint(d) ((int64_t)rint(d))
28#define lrintf(f) ((int32_t)rint(f))
29#define llrintf(f) ((int64_t)rint(f))
30#define sqrtf(f) ((float)sqrt(f))
31#define remainderf(fa, fb) ((float)remainder(fa, fb))
32#define rintf(f) ((float)rint(f))
33/* Some defines which only apply to *BSD */
34# if defined(VBOX) && defined(_BSD)
35# define lrintl(f) ((int32_t)rint(f))
36# define llrintl(f) ((int64_t)rint(f))
37# define rintl(d) ((int32_t)rint(d))
38# define sqrtl(f) (sqrt(f))
39# define remainderl(fa, fb) (remainder(fa, fb))
40# endif /* VBOX && _BSD */
41
42#if !defined(__sparc__) && defined(HOST_SOLARIS) && HOST_SOLARIS < 10
43extern long double rintl(long double);
44extern long double scalbnl(long double, int);
45
46long long
47llrintl(long double x) {
48 return ((long long) rintl(x));
49}
50
51long
52lrintl(long double x) {
53 return ((long) rintl(x));
54}
55
56long double
57ldexpl(long double x, int n) {
58 return (scalbnl(x, n));
59}
60#endif
61#endif
62
63#if defined(__powerpc__)
64
65/* correct (but slow) PowerPC rint() (glibc version is incorrect) */
66double qemu_rint(double x)
67{
68 double y = 4503599627370496.0;
69 if (fabs(x) >= y)
70 return x;
71 if (x < 0)
72 y = -y;
73 y = (x + y) - y;
74 if (y == 0.0)
75 y = copysign(y, x);
76 return y;
77}
78
79#define rint qemu_rint
80#endif
81
82/*----------------------------------------------------------------------------
83| Software IEC/IEEE integer-to-floating-point conversion routines.
84*----------------------------------------------------------------------------*/
85float32 int32_to_float32(int v STATUS_PARAM)
86{
87 return (float32)v;
88}
89
90float32 uint32_to_float32(unsigned int v STATUS_PARAM)
91{
92 return (float32)v;
93}
94
95float64 int32_to_float64(int v STATUS_PARAM)
96{
97 return (float64)v;
98}
99
100float64 uint32_to_float64(unsigned int v STATUS_PARAM)
101{
102 return (float64)v;
103}
104
105#ifdef FLOATX80
106floatx80 int32_to_floatx80(int v STATUS_PARAM)
107{
108 return (floatx80)v;
109}
110#endif
111float32 int64_to_float32( int64_t v STATUS_PARAM)
112{
113 return (float32)v;
114}
115float32 uint64_to_float32( uint64_t v STATUS_PARAM)
116{
117 return (float32)v;
118}
119float64 int64_to_float64( int64_t v STATUS_PARAM)
120{
121 return (float64)v;
122}
123float64 uint64_to_float64( uint64_t v STATUS_PARAM)
124{
125 return (float64)v;
126}
127#ifdef FLOATX80
128floatx80 int64_to_floatx80( int64_t v STATUS_PARAM)
129{
130 return (floatx80)v;
131}
132#endif
133
134/* XXX: this code implements the x86 behaviour, not the IEEE one. */
135#if HOST_LONG_BITS == 32
136static inline int long_to_int32(long a)
137{
138 return a;
139}
140#else
141static inline int long_to_int32(long a)
142{
143 if (a != (int32_t)a)
144 a = 0x80000000;
145 return a;
146}
147#endif
148
149/*----------------------------------------------------------------------------
150| Software IEC/IEEE single-precision conversion routines.
151*----------------------------------------------------------------------------*/
152int float32_to_int32( float32 a STATUS_PARAM)
153{
154 return long_to_int32(lrintf(a));
155}
156int float32_to_int32_round_to_zero( float32 a STATUS_PARAM)
157{
158 return (int)a;
159}
160int64_t float32_to_int64( float32 a STATUS_PARAM)
161{
162 return llrintf(a);
163}
164
165int64_t float32_to_int64_round_to_zero( float32 a STATUS_PARAM)
166{
167 return (int64_t)a;
168}
169
170float64 float32_to_float64( float32 a STATUS_PARAM)
171{
172 return a;
173}
174#ifdef FLOATX80
175floatx80 float32_to_floatx80( float32 a STATUS_PARAM)
176{
177 return a;
178}
179#endif
180
181unsigned int float32_to_uint32( float32 a STATUS_PARAM)
182{
183 int64_t v;
184 unsigned int res;
185
186 v = llrintf(a);
187 if (v < 0) {
188 res = 0;
189 } else if (v > 0xffffffff) {
190 res = 0xffffffff;
191 } else {
192 res = v;
193 }
194 return res;
195}
196unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM)
197{
198 int64_t v;
199 unsigned int res;
200
201 v = (int64_t)a;
202 if (v < 0) {
203 res = 0;
204 } else if (v > 0xffffffff) {
205 res = 0xffffffff;
206 } else {
207 res = v;
208 }
209 return res;
210}
211
212/*----------------------------------------------------------------------------
213| Software IEC/IEEE single-precision operations.
214*----------------------------------------------------------------------------*/
215float32 float32_round_to_int( float32 a STATUS_PARAM)
216{
217 return rintf(a);
218}
219
220float32 float32_rem( float32 a, float32 b STATUS_PARAM)
221{
222 return remainderf(a, b);
223}
224
225float32 float32_sqrt( float32 a STATUS_PARAM)
226{
227 return sqrtf(a);
228}
229int float32_compare( float32 a, float32 b STATUS_PARAM )
230{
231 if (a < b) {
232 return -1;
233 } else if (a == b) {
234 return 0;
235 } else if (a > b) {
236 return 1;
237 } else {
238 return 2;
239 }
240}
241int float32_compare_quiet( float32 a, float32 b STATUS_PARAM )
242{
243 if (isless(a, b)) {
244 return -1;
245 } else if (a == b) {
246 return 0;
247 } else if (isgreater(a, b)) {
248 return 1;
249 } else {
250 return 2;
251 }
252}
253int float32_is_signaling_nan( float32 a1)
254{
255 float32u u;
256 uint32_t a;
257 u.f = a1;
258 a = u.i;
259 return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
260}
261
262/*----------------------------------------------------------------------------
263| Software IEC/IEEE double-precision conversion routines.
264*----------------------------------------------------------------------------*/
265int float64_to_int32( float64 a STATUS_PARAM)
266{
267 return long_to_int32(lrint(a));
268}
269int float64_to_int32_round_to_zero( float64 a STATUS_PARAM)
270{
271 return (int)a;
272}
273int64_t float64_to_int64( float64 a STATUS_PARAM)
274{
275 return llrint(a);
276}
277int64_t float64_to_int64_round_to_zero( float64 a STATUS_PARAM)
278{
279 return (int64_t)a;
280}
281float32 float64_to_float32( float64 a STATUS_PARAM)
282{
283 return a;
284}
285#ifdef FLOATX80
286floatx80 float64_to_floatx80( float64 a STATUS_PARAM)
287{
288 return a;
289}
290#endif
291#ifdef FLOAT128
292float128 float64_to_float128( float64 a STATUS_PARAM)
293{
294 return a;
295}
296#endif
297
298unsigned int float64_to_uint32( float64 a STATUS_PARAM)
299{
300 int64_t v;
301 unsigned int res;
302
303 v = llrint(a);
304 if (v < 0) {
305 res = 0;
306 } else if (v > 0xffffffff) {
307 res = 0xffffffff;
308 } else {
309 res = v;
310 }
311 return res;
312}
313unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM)
314{
315 int64_t v;
316 unsigned int res;
317
318 v = (int64_t)a;
319 if (v < 0) {
320 res = 0;
321 } else if (v > 0xffffffff) {
322 res = 0xffffffff;
323 } else {
324 res = v;
325 }
326 return res;
327}
328uint64_t float64_to_uint64 (float64 a STATUS_PARAM)
329{
330 int64_t v;
331
332 v = llrint(a + (float64)INT64_MIN);
333
334 return v - INT64_MIN;
335}
336uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM)
337{
338 int64_t v;
339
340 v = (int64_t)(a + (float64)INT64_MIN);
341
342 return v - INT64_MIN;
343}
344
345/*----------------------------------------------------------------------------
346| Software IEC/IEEE double-precision operations.
347*----------------------------------------------------------------------------*/
348#if defined(__sun__) && defined(HOST_SOLARIS) && HOST_SOLARIS < 10
349static inline float64 trunc(float64 x)
350{
351 return x < 0 ? -floor(-x) : floor(x);
352}
353#endif
354float64 float64_trunc_to_int( float64 a STATUS_PARAM )
355{
356 return trunc(a);
357}
358
359float64 float64_round_to_int( float64 a STATUS_PARAM )
360{
361#if defined(__arm__)
362 switch(STATUS(float_rounding_mode)) {
363 default:
364 case float_round_nearest_even:
365 asm("rndd %0, %1" : "=f" (a) : "f"(a));
366 break;
367 case float_round_down:
368 asm("rnddm %0, %1" : "=f" (a) : "f"(a));
369 break;
370 case float_round_up:
371 asm("rnddp %0, %1" : "=f" (a) : "f"(a));
372 break;
373 case float_round_to_zero:
374 asm("rnddz %0, %1" : "=f" (a) : "f"(a));
375 break;
376 }
377#else
378 return rint(a);
379#endif
380}
381
382float64 float64_rem( float64 a, float64 b STATUS_PARAM)
383{
384 return remainder(a, b);
385}
386
387float64 float64_sqrt( float64 a STATUS_PARAM)
388{
389 return sqrt(a);
390}
391int float64_compare( float64 a, float64 b STATUS_PARAM )
392{
393 if (a < b) {
394 return -1;
395 } else if (a == b) {
396 return 0;
397 } else if (a > b) {
398 return 1;
399 } else {
400 return 2;
401 }
402}
403int float64_compare_quiet( float64 a, float64 b STATUS_PARAM )
404{
405 if (isless(a, b)) {
406 return -1;
407 } else if (a == b) {
408 return 0;
409 } else if (isgreater(a, b)) {
410 return 1;
411 } else {
412 return 2;
413 }
414}
415int float64_is_signaling_nan( float64 a1)
416{
417 float64u u;
418 uint64_t a;
419 u.f = a1;
420 a = u.i;
421 return
422 ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
423 && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
424
425}
426
427int float64_is_nan( float64 a1 )
428{
429 float64u u;
430 uint64_t a;
431 u.f = a1;
432 a = u.i;
433
434 return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
435
436}
437
438#ifdef FLOATX80
439
440/*----------------------------------------------------------------------------
441| Software IEC/IEEE extended double-precision conversion routines.
442*----------------------------------------------------------------------------*/
443int floatx80_to_int32( floatx80 a STATUS_PARAM)
444{
445 return long_to_int32(lrintl(a));
446}
447int floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM)
448{
449 return (int)a;
450}
451int64_t floatx80_to_int64( floatx80 a STATUS_PARAM)
452{
453 return llrintl(a);
454}
455int64_t floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM)
456{
457 return (int64_t)a;
458}
459float32 floatx80_to_float32( floatx80 a STATUS_PARAM)
460{
461 return a;
462}
463float64 floatx80_to_float64( floatx80 a STATUS_PARAM)
464{
465 return a;
466}
467
468/*----------------------------------------------------------------------------
469| Software IEC/IEEE extended double-precision operations.
470*----------------------------------------------------------------------------*/
471floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM)
472{
473 return rintl(a);
474}
475floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM)
476{
477 return remainderl(a, b);
478}
479floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM)
480{
481 return sqrtl(a);
482}
483int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM )
484{
485 if (a < b) {
486 return -1;
487 } else if (a == b) {
488 return 0;
489 } else if (a > b) {
490 return 1;
491 } else {
492 return 2;
493 }
494}
495int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM )
496{
497 if (isless(a, b)) {
498 return -1;
499 } else if (a == b) {
500 return 0;
501 } else if (isgreater(a, b)) {
502 return 1;
503 } else {
504 return 2;
505 }
506}
507int floatx80_is_signaling_nan( floatx80 a1)
508{
509 floatx80u u;
510 u.f = a1;
511 return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( u.i.low<<1 );
512}
513
514#endif
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette