1 | /*============================================================================
|
---|
2 |
|
---|
3 | This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
|
---|
4 | Package, Release 2b.
|
---|
5 |
|
---|
6 | Written by John R. Hauser. This work was made possible in part by the
|
---|
7 | International Computer Science Institute, located at Suite 600, 1947 Center
|
---|
8 | Street, Berkeley, California 94704. Funding was partially provided by the
|
---|
9 | National Science Foundation under grant MIP-9311980. The original version
|
---|
10 | of this code was written as part of a project to build a fixed-point vector
|
---|
11 | processor in collaboration with the University of California at Berkeley,
|
---|
12 | overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
---|
13 | is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
---|
14 | arithmetic/SoftFloat.html'.
|
---|
15 |
|
---|
16 | THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
---|
17 | been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
---|
18 | RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
---|
19 | AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
---|
20 | COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
---|
21 | EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
---|
22 | INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
---|
23 | OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
---|
24 |
|
---|
25 | Derivative works are acceptable, even for commercial purposes, so long as
|
---|
26 | (1) the source code for the derivative work includes prominent notice that
|
---|
27 | the work is derivative, and (2) the source code includes prominent notice with
|
---|
28 | these four paragraphs for those parts of this code that are retained.
|
---|
29 |
|
---|
30 | =============================================================================*/
|
---|
31 |
|
---|
32 | #ifndef SOFTFLOAT_H
|
---|
33 | #define SOFTFLOAT_H
|
---|
34 |
|
---|
35 | #ifdef VBOX
|
---|
36 | #include <VBox/types.h>
|
---|
37 | #endif
|
---|
38 |
|
---|
39 | #if defined(HOST_SOLARIS) && defined(NEEDS_LIBSUNMATH)
|
---|
40 | #include <sunmath.h>
|
---|
41 | #endif
|
---|
42 |
|
---|
43 | #include <inttypes.h>
|
---|
44 | #include "config.h"
|
---|
45 |
|
---|
46 | /*----------------------------------------------------------------------------
|
---|
47 | | Each of the following `typedef's defines the most convenient type that holds
|
---|
48 | | integers of at least as many bits as specified. For example, `uint8' should
|
---|
49 | | be the most convenient type that can hold unsigned integers of as many as
|
---|
50 | | 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
|
---|
51 | | implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
|
---|
52 | | to the same as `int'.
|
---|
53 | *----------------------------------------------------------------------------*/
|
---|
54 | typedef uint8_t flag;
|
---|
55 | typedef uint8_t uint8;
|
---|
56 | typedef int8_t int8;
|
---|
57 | #ifndef _AIX
|
---|
58 | typedef int uint16;
|
---|
59 | typedef int int16;
|
---|
60 | #endif
|
---|
61 | typedef unsigned int uint32;
|
---|
62 | typedef signed int int32;
|
---|
63 | typedef uint64_t uint64;
|
---|
64 | typedef int64_t int64;
|
---|
65 |
|
---|
66 | /*----------------------------------------------------------------------------
|
---|
67 | | Each of the following `typedef's defines a type that holds integers
|
---|
68 | | of _exactly_ the number of bits specified. For instance, for most
|
---|
69 | | implementation of C, `bits16' and `sbits16' should be `typedef'ed to
|
---|
70 | | `unsigned short int' and `signed short int' (or `short int'), respectively.
|
---|
71 | *----------------------------------------------------------------------------*/
|
---|
72 | typedef uint8_t bits8;
|
---|
73 | typedef int8_t sbits8;
|
---|
74 | typedef uint16_t bits16;
|
---|
75 | typedef int16_t sbits16;
|
---|
76 | typedef uint32_t bits32;
|
---|
77 | typedef int32_t sbits32;
|
---|
78 | typedef uint64_t bits64;
|
---|
79 | typedef int64_t sbits64;
|
---|
80 |
|
---|
81 | #define LIT64( a ) a##LL
|
---|
82 | #define INLINE static inline
|
---|
83 |
|
---|
84 | /*----------------------------------------------------------------------------
|
---|
85 | | The macro `FLOATX80' must be defined to enable the extended double-precision
|
---|
86 | | floating-point format `floatx80'. If this macro is not defined, the
|
---|
87 | | `floatx80' type will not be defined, and none of the functions that either
|
---|
88 | | input or output the `floatx80' type will be defined. The same applies to
|
---|
89 | | the `FLOAT128' macro and the quadruple-precision format `float128'.
|
---|
90 | *----------------------------------------------------------------------------*/
|
---|
91 | #ifdef CONFIG_SOFTFLOAT
|
---|
92 | /* bit exact soft float support */
|
---|
93 | #define FLOATX80
|
---|
94 | #define FLOAT128
|
---|
95 | #else
|
---|
96 | /* native float support */
|
---|
97 | #if (defined(__i386__) || defined(__x86_64__)) && (!defined(_BSD) || defined(VBOX))
|
---|
98 | #define FLOATX80
|
---|
99 | #endif
|
---|
100 | #endif /* !CONFIG_SOFTFLOAT */
|
---|
101 |
|
---|
102 | #if defined(VBOX) && (!defined(FLOATX80) || defined(CONFIG_SOFTFLOAT))
|
---|
103 | # error misconfigured
|
---|
104 | #endif
|
---|
105 |
|
---|
106 | #define STATUS_PARAM , float_status *status
|
---|
107 | #define STATUS(field) status->field
|
---|
108 | #define STATUS_VAR , status
|
---|
109 |
|
---|
110 | /*----------------------------------------------------------------------------
|
---|
111 | | Software IEC/IEEE floating-point ordering relations
|
---|
112 | *----------------------------------------------------------------------------*/
|
---|
113 | enum {
|
---|
114 | float_relation_less = -1,
|
---|
115 | float_relation_equal = 0,
|
---|
116 | float_relation_greater = 1,
|
---|
117 | float_relation_unordered = 2
|
---|
118 | };
|
---|
119 |
|
---|
120 | #ifdef CONFIG_SOFTFLOAT
|
---|
121 | /*----------------------------------------------------------------------------
|
---|
122 | | Software IEC/IEEE floating-point types.
|
---|
123 | *----------------------------------------------------------------------------*/
|
---|
124 | /* Use structures for soft-float types. This prevents accidentally mixing
|
---|
125 | them with native int/float types. A sufficiently clever compiler and
|
---|
126 | sane ABI should be able to see though these structs. However
|
---|
127 | x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */
|
---|
128 | //#define USE_SOFTFLOAT_STRUCT_TYPES
|
---|
129 | #ifdef USE_SOFTFLOAT_STRUCT_TYPES
|
---|
130 | typedef struct {
|
---|
131 | uint32_t v;
|
---|
132 | } float32;
|
---|
133 | /* The cast ensures an error if the wrong type is passed. */
|
---|
134 | #define float32_val(x) (((float32)(x)).v)
|
---|
135 | #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
|
---|
136 | typedef struct {
|
---|
137 | uint64_t v;
|
---|
138 | } float64;
|
---|
139 | #define float64_val(x) (((float64)(x)).v)
|
---|
140 | #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
|
---|
141 | #else
|
---|
142 | typedef uint32_t float32;
|
---|
143 | typedef uint64_t float64;
|
---|
144 | #define float32_val(x) (x)
|
---|
145 | #define float64_val(x) (x)
|
---|
146 | #define make_float32(x) (x)
|
---|
147 | #define make_float64(x) (x)
|
---|
148 | #endif
|
---|
149 | #ifdef FLOATX80
|
---|
150 | typedef struct {
|
---|
151 | uint64_t low;
|
---|
152 | uint16_t high;
|
---|
153 | } floatx80;
|
---|
154 | #endif
|
---|
155 | #ifdef FLOAT128
|
---|
156 | typedef struct {
|
---|
157 | #ifdef WORDS_BIGENDIAN
|
---|
158 | uint64_t high, low;
|
---|
159 | #else
|
---|
160 | uint64_t low, high;
|
---|
161 | #endif
|
---|
162 | } float128;
|
---|
163 | #endif
|
---|
164 |
|
---|
165 | /*----------------------------------------------------------------------------
|
---|
166 | | Software IEC/IEEE floating-point underflow tininess-detection mode.
|
---|
167 | *----------------------------------------------------------------------------*/
|
---|
168 | enum {
|
---|
169 | float_tininess_after_rounding = 0,
|
---|
170 | float_tininess_before_rounding = 1
|
---|
171 | };
|
---|
172 |
|
---|
173 | /*----------------------------------------------------------------------------
|
---|
174 | | Software IEC/IEEE floating-point rounding mode.
|
---|
175 | *----------------------------------------------------------------------------*/
|
---|
176 | enum {
|
---|
177 | float_round_nearest_even = 0,
|
---|
178 | float_round_down = 1,
|
---|
179 | float_round_up = 2,
|
---|
180 | float_round_to_zero = 3
|
---|
181 | };
|
---|
182 |
|
---|
183 | /*----------------------------------------------------------------------------
|
---|
184 | | Software IEC/IEEE floating-point exception flags.
|
---|
185 | *----------------------------------------------------------------------------*/
|
---|
186 | enum {
|
---|
187 | float_flag_invalid = 1,
|
---|
188 | float_flag_divbyzero = 4,
|
---|
189 | float_flag_overflow = 8,
|
---|
190 | float_flag_underflow = 16,
|
---|
191 | float_flag_inexact = 32
|
---|
192 | };
|
---|
193 |
|
---|
194 | typedef struct float_status {
|
---|
195 | signed char float_detect_tininess;
|
---|
196 | signed char float_rounding_mode;
|
---|
197 | signed char float_exception_flags;
|
---|
198 | #ifdef FLOATX80
|
---|
199 | signed char floatx80_rounding_precision;
|
---|
200 | #endif
|
---|
201 | flag flush_to_zero;
|
---|
202 | flag default_nan_mode;
|
---|
203 | } float_status;
|
---|
204 |
|
---|
205 | void set_float_rounding_mode(int val STATUS_PARAM);
|
---|
206 | void set_float_exception_flags(int val STATUS_PARAM);
|
---|
207 | INLINE void set_flush_to_zero(flag val STATUS_PARAM)
|
---|
208 | {
|
---|
209 | STATUS(flush_to_zero) = val;
|
---|
210 | }
|
---|
211 | INLINE void set_default_nan_mode(flag val STATUS_PARAM)
|
---|
212 | {
|
---|
213 | STATUS(default_nan_mode) = val;
|
---|
214 | }
|
---|
215 | INLINE int get_float_exception_flags(float_status *status)
|
---|
216 | {
|
---|
217 | return STATUS(float_exception_flags);
|
---|
218 | }
|
---|
219 | #ifdef FLOATX80
|
---|
220 | void set_floatx80_rounding_precision(int val STATUS_PARAM);
|
---|
221 | #endif
|
---|
222 |
|
---|
223 | /*----------------------------------------------------------------------------
|
---|
224 | | Routine to raise any or all of the software IEC/IEEE floating-point
|
---|
225 | | exception flags.
|
---|
226 | *----------------------------------------------------------------------------*/
|
---|
227 | void float_raise( int8 flags STATUS_PARAM);
|
---|
228 |
|
---|
229 | /*----------------------------------------------------------------------------
|
---|
230 | | Software IEC/IEEE integer-to-floating-point conversion routines.
|
---|
231 | *----------------------------------------------------------------------------*/
|
---|
232 | float32 int32_to_float32( int STATUS_PARAM );
|
---|
233 | float64 int32_to_float64( int STATUS_PARAM );
|
---|
234 | float32 uint32_to_float32( unsigned int STATUS_PARAM );
|
---|
235 | float64 uint32_to_float64( unsigned int STATUS_PARAM );
|
---|
236 | #ifdef FLOATX80
|
---|
237 | floatx80 int32_to_floatx80( int STATUS_PARAM );
|
---|
238 | #endif
|
---|
239 | #ifdef FLOAT128
|
---|
240 | float128 int32_to_float128( int STATUS_PARAM );
|
---|
241 | #endif
|
---|
242 | float32 int64_to_float32( int64_t STATUS_PARAM );
|
---|
243 | float32 uint64_to_float32( uint64_t STATUS_PARAM );
|
---|
244 | float64 int64_to_float64( int64_t STATUS_PARAM );
|
---|
245 | float64 uint64_to_float64( uint64_t STATUS_PARAM );
|
---|
246 | #ifdef FLOATX80
|
---|
247 | floatx80 int64_to_floatx80( int64_t STATUS_PARAM );
|
---|
248 | #endif
|
---|
249 | #ifdef FLOAT128
|
---|
250 | float128 int64_to_float128( int64_t STATUS_PARAM );
|
---|
251 | #endif
|
---|
252 |
|
---|
253 | /*----------------------------------------------------------------------------
|
---|
254 | | Software IEC/IEEE single-precision conversion routines.
|
---|
255 | *----------------------------------------------------------------------------*/
|
---|
256 | int float32_to_int32( float32 STATUS_PARAM );
|
---|
257 | int float32_to_int32_round_to_zero( float32 STATUS_PARAM );
|
---|
258 | unsigned int float32_to_uint32( float32 STATUS_PARAM );
|
---|
259 | unsigned int float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
|
---|
260 | int64_t float32_to_int64( float32 STATUS_PARAM );
|
---|
261 | int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM );
|
---|
262 | float64 float32_to_float64( float32 STATUS_PARAM );
|
---|
263 | #ifdef FLOATX80
|
---|
264 | floatx80 float32_to_floatx80( float32 STATUS_PARAM );
|
---|
265 | #endif
|
---|
266 | #ifdef FLOAT128
|
---|
267 | float128 float32_to_float128( float32 STATUS_PARAM );
|
---|
268 | #endif
|
---|
269 |
|
---|
270 | /*----------------------------------------------------------------------------
|
---|
271 | | Software IEC/IEEE single-precision operations.
|
---|
272 | *----------------------------------------------------------------------------*/
|
---|
273 | float32 float32_round_to_int( float32 STATUS_PARAM );
|
---|
274 | float32 float32_add( float32, float32 STATUS_PARAM );
|
---|
275 | float32 float32_sub( float32, float32 STATUS_PARAM );
|
---|
276 | float32 float32_mul( float32, float32 STATUS_PARAM );
|
---|
277 | float32 float32_div( float32, float32 STATUS_PARAM );
|
---|
278 | float32 float32_rem( float32, float32 STATUS_PARAM );
|
---|
279 | float32 float32_sqrt( float32 STATUS_PARAM );
|
---|
280 | float32 float32_log2( float32 STATUS_PARAM );
|
---|
281 | int float32_eq( float32, float32 STATUS_PARAM );
|
---|
282 | int float32_le( float32, float32 STATUS_PARAM );
|
---|
283 | int float32_lt( float32, float32 STATUS_PARAM );
|
---|
284 | int float32_eq_signaling( float32, float32 STATUS_PARAM );
|
---|
285 | int float32_le_quiet( float32, float32 STATUS_PARAM );
|
---|
286 | int float32_lt_quiet( float32, float32 STATUS_PARAM );
|
---|
287 | int float32_compare( float32, float32 STATUS_PARAM );
|
---|
288 | int float32_compare_quiet( float32, float32 STATUS_PARAM );
|
---|
289 | int float32_is_nan( float32 );
|
---|
290 | int float32_is_signaling_nan( float32 );
|
---|
291 | float32 float32_scalbn( float32, int STATUS_PARAM );
|
---|
292 |
|
---|
293 | INLINE float32 float32_abs(float32 a)
|
---|
294 | {
|
---|
295 | return make_float32(float32_val(a) & 0x7fffffff);
|
---|
296 | }
|
---|
297 |
|
---|
298 | INLINE float32 float32_chs(float32 a)
|
---|
299 | {
|
---|
300 | return make_float32(float32_val(a) ^ 0x80000000);
|
---|
301 | }
|
---|
302 |
|
---|
303 | INLINE int float32_is_infinity(float32 a)
|
---|
304 | {
|
---|
305 | return (float32_val(a) & 0x7fffffff) == 0x7f800000;
|
---|
306 | }
|
---|
307 |
|
---|
308 | INLINE int float32_is_neg(float32 a)
|
---|
309 | {
|
---|
310 | return float32_val(a) >> 31;
|
---|
311 | }
|
---|
312 |
|
---|
313 | INLINE int float32_is_zero(float32 a)
|
---|
314 | {
|
---|
315 | return (float32_val(a) & 0x7fffffff) == 0;
|
---|
316 | }
|
---|
317 |
|
---|
318 | #define float32_zero make_float32(0)
|
---|
319 | #define float32_one make_float32(0x3f800000)
|
---|
320 |
|
---|
321 | /*----------------------------------------------------------------------------
|
---|
322 | | Software IEC/IEEE double-precision conversion routines.
|
---|
323 | *----------------------------------------------------------------------------*/
|
---|
324 | int float64_to_int32( float64 STATUS_PARAM );
|
---|
325 | int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
|
---|
326 | unsigned int float64_to_uint32( float64 STATUS_PARAM );
|
---|
327 | unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
|
---|
328 | int64_t float64_to_int64( float64 STATUS_PARAM );
|
---|
329 | int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
|
---|
330 | uint64_t float64_to_uint64 (float64 a STATUS_PARAM);
|
---|
331 | uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
|
---|
332 | float32 float64_to_float32( float64 STATUS_PARAM );
|
---|
333 | #ifdef FLOATX80
|
---|
334 | floatx80 float64_to_floatx80( float64 STATUS_PARAM );
|
---|
335 | #endif
|
---|
336 | #ifdef FLOAT128
|
---|
337 | float128 float64_to_float128( float64 STATUS_PARAM );
|
---|
338 | #endif
|
---|
339 |
|
---|
340 | /*----------------------------------------------------------------------------
|
---|
341 | | Software IEC/IEEE double-precision operations.
|
---|
342 | *----------------------------------------------------------------------------*/
|
---|
343 | float64 float64_round_to_int( float64 STATUS_PARAM );
|
---|
344 | float64 float64_trunc_to_int( float64 STATUS_PARAM );
|
---|
345 | float64 float64_add( float64, float64 STATUS_PARAM );
|
---|
346 | float64 float64_sub( float64, float64 STATUS_PARAM );
|
---|
347 | float64 float64_mul( float64, float64 STATUS_PARAM );
|
---|
348 | float64 float64_div( float64, float64 STATUS_PARAM );
|
---|
349 | float64 float64_rem( float64, float64 STATUS_PARAM );
|
---|
350 | float64 float64_sqrt( float64 STATUS_PARAM );
|
---|
351 | float64 float64_log2( float64 STATUS_PARAM );
|
---|
352 | int float64_eq( float64, float64 STATUS_PARAM );
|
---|
353 | int float64_le( float64, float64 STATUS_PARAM );
|
---|
354 | int float64_lt( float64, float64 STATUS_PARAM );
|
---|
355 | int float64_eq_signaling( float64, float64 STATUS_PARAM );
|
---|
356 | int float64_le_quiet( float64, float64 STATUS_PARAM );
|
---|
357 | int float64_lt_quiet( float64, float64 STATUS_PARAM );
|
---|
358 | int float64_compare( float64, float64 STATUS_PARAM );
|
---|
359 | int float64_compare_quiet( float64, float64 STATUS_PARAM );
|
---|
360 | int float64_is_nan( float64 a );
|
---|
361 | int float64_is_signaling_nan( float64 );
|
---|
362 | float64 float64_scalbn( float64, int STATUS_PARAM );
|
---|
363 |
|
---|
364 | INLINE float64 float64_abs(float64 a)
|
---|
365 | {
|
---|
366 | return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
|
---|
367 | }
|
---|
368 |
|
---|
369 | INLINE float64 float64_chs(float64 a)
|
---|
370 | {
|
---|
371 | return make_float64(float64_val(a) ^ 0x8000000000000000LL);
|
---|
372 | }
|
---|
373 |
|
---|
374 | INLINE int float64_is_infinity(float64 a)
|
---|
375 | {
|
---|
376 | return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
|
---|
377 | }
|
---|
378 |
|
---|
379 | INLINE int float64_is_neg(float64 a)
|
---|
380 | {
|
---|
381 | return float64_val(a) >> 63;
|
---|
382 | }
|
---|
383 |
|
---|
384 | INLINE int float64_is_zero(float64 a)
|
---|
385 | {
|
---|
386 | return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
|
---|
387 | }
|
---|
388 |
|
---|
389 | #define float64_zero make_float64(0)
|
---|
390 | #define float64_one make_float64(0x3ff0000000000000LL)
|
---|
391 |
|
---|
392 | #ifdef FLOATX80
|
---|
393 |
|
---|
394 | /*----------------------------------------------------------------------------
|
---|
395 | | Software IEC/IEEE extended double-precision conversion routines.
|
---|
396 | *----------------------------------------------------------------------------*/
|
---|
397 | int floatx80_to_int32( floatx80 STATUS_PARAM );
|
---|
398 | int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
|
---|
399 | int64_t floatx80_to_int64( floatx80 STATUS_PARAM );
|
---|
400 | int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
|
---|
401 | float32 floatx80_to_float32( floatx80 STATUS_PARAM );
|
---|
402 | float64 floatx80_to_float64( floatx80 STATUS_PARAM );
|
---|
403 | #ifdef FLOAT128
|
---|
404 | float128 floatx80_to_float128( floatx80 STATUS_PARAM );
|
---|
405 | #endif
|
---|
406 |
|
---|
407 | /*----------------------------------------------------------------------------
|
---|
408 | | Software IEC/IEEE extended double-precision operations.
|
---|
409 | *----------------------------------------------------------------------------*/
|
---|
410 | floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
|
---|
411 | floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
|
---|
412 | floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
|
---|
413 | floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
|
---|
414 | floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
|
---|
415 | floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
|
---|
416 | floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
|
---|
417 | int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
|
---|
418 | int floatx80_le( floatx80, floatx80 STATUS_PARAM );
|
---|
419 | int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
|
---|
420 | int floatx80_eq_signaling( floatx80, floatx80 STATUS_PARAM );
|
---|
421 | int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
|
---|
422 | int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
|
---|
423 | int floatx80_is_nan( floatx80 );
|
---|
424 | int floatx80_is_signaling_nan( floatx80 );
|
---|
425 | floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
|
---|
426 |
|
---|
427 | INLINE floatx80 floatx80_abs(floatx80 a)
|
---|
428 | {
|
---|
429 | a.high &= 0x7fff;
|
---|
430 | return a;
|
---|
431 | }
|
---|
432 |
|
---|
433 | INLINE floatx80 floatx80_chs(floatx80 a)
|
---|
434 | {
|
---|
435 | a.high ^= 0x8000;
|
---|
436 | return a;
|
---|
437 | }
|
---|
438 |
|
---|
439 | INLINE int floatx80_is_infinity(floatx80 a)
|
---|
440 | {
|
---|
441 | return (a.high & 0x7fff) == 0x7fff && a.low == 0;
|
---|
442 | }
|
---|
443 |
|
---|
444 | INLINE int floatx80_is_neg(floatx80 a)
|
---|
445 | {
|
---|
446 | return a.high >> 15;
|
---|
447 | }
|
---|
448 |
|
---|
449 | INLINE int floatx80_is_zero(floatx80 a)
|
---|
450 | {
|
---|
451 | return (a.high & 0x7fff) == 0 && a.low == 0;
|
---|
452 | }
|
---|
453 |
|
---|
454 | #endif
|
---|
455 |
|
---|
456 | #ifdef FLOAT128
|
---|
457 |
|
---|
458 | /*----------------------------------------------------------------------------
|
---|
459 | | Software IEC/IEEE quadruple-precision conversion routines.
|
---|
460 | *----------------------------------------------------------------------------*/
|
---|
461 | int float128_to_int32( float128 STATUS_PARAM );
|
---|
462 | int float128_to_int32_round_to_zero( float128 STATUS_PARAM );
|
---|
463 | int64_t float128_to_int64( float128 STATUS_PARAM );
|
---|
464 | int64_t float128_to_int64_round_to_zero( float128 STATUS_PARAM );
|
---|
465 | float32 float128_to_float32( float128 STATUS_PARAM );
|
---|
466 | float64 float128_to_float64( float128 STATUS_PARAM );
|
---|
467 | #ifdef FLOATX80
|
---|
468 | floatx80 float128_to_floatx80( float128 STATUS_PARAM );
|
---|
469 | #endif
|
---|
470 |
|
---|
471 | /*----------------------------------------------------------------------------
|
---|
472 | | Software IEC/IEEE quadruple-precision operations.
|
---|
473 | *----------------------------------------------------------------------------*/
|
---|
474 | float128 float128_round_to_int( float128 STATUS_PARAM );
|
---|
475 | float128 float128_add( float128, float128 STATUS_PARAM );
|
---|
476 | float128 float128_sub( float128, float128 STATUS_PARAM );
|
---|
477 | float128 float128_mul( float128, float128 STATUS_PARAM );
|
---|
478 | float128 float128_div( float128, float128 STATUS_PARAM );
|
---|
479 | float128 float128_rem( float128, float128 STATUS_PARAM );
|
---|
480 | float128 float128_sqrt( float128 STATUS_PARAM );
|
---|
481 | int float128_eq( float128, float128 STATUS_PARAM );
|
---|
482 | int float128_le( float128, float128 STATUS_PARAM );
|
---|
483 | int float128_lt( float128, float128 STATUS_PARAM );
|
---|
484 | int float128_eq_signaling( float128, float128 STATUS_PARAM );
|
---|
485 | int float128_le_quiet( float128, float128 STATUS_PARAM );
|
---|
486 | int float128_lt_quiet( float128, float128 STATUS_PARAM );
|
---|
487 | int float128_compare( float128, float128 STATUS_PARAM );
|
---|
488 | int float128_compare_quiet( float128, float128 STATUS_PARAM );
|
---|
489 | int float128_is_nan( float128 );
|
---|
490 | int float128_is_signaling_nan( float128 );
|
---|
491 | float128 float128_scalbn( float128, int STATUS_PARAM );
|
---|
492 |
|
---|
493 | INLINE float128 float128_abs(float128 a)
|
---|
494 | {
|
---|
495 | a.high &= 0x7fffffffffffffffLL;
|
---|
496 | return a;
|
---|
497 | }
|
---|
498 |
|
---|
499 | INLINE float128 float128_chs(float128 a)
|
---|
500 | {
|
---|
501 | a.high ^= 0x8000000000000000LL;
|
---|
502 | return a;
|
---|
503 | }
|
---|
504 |
|
---|
505 | INLINE int float128_is_infinity(float128 a)
|
---|
506 | {
|
---|
507 | return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
|
---|
508 | }
|
---|
509 |
|
---|
510 | INLINE int float128_is_neg(float128 a)
|
---|
511 | {
|
---|
512 | return a.high >> 63;
|
---|
513 | }
|
---|
514 |
|
---|
515 | INLINE int float128_is_zero(float128 a)
|
---|
516 | {
|
---|
517 | return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
|
---|
518 | }
|
---|
519 |
|
---|
520 | #endif
|
---|
521 |
|
---|
522 | #else /* CONFIG_SOFTFLOAT */
|
---|
523 |
|
---|
524 | #include "softfloat-native.h"
|
---|
525 |
|
---|
526 | #endif /* !CONFIG_SOFTFLOAT */
|
---|
527 |
|
---|
528 | #endif /* !SOFTFLOAT_H */
|
---|