VirtualBox

source: vbox/trunk/src/recompiler/new/VBoxRecompiler.c@ 1952

Last change on this file since 1952 was 1952, checked in by vboxsync, 18 years ago

more debug code removed

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 170.6 KB
Line 
1/* $Id: VBoxRecompiler.c 1952 2007-04-05 12:33:18Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006 InnoTek Systemberatung GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License as published by the Free Software Foundation,
13 * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
14 * distribution. VirtualBox OSE is distributed in the hope that it will
15 * be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * If you received this file as part of a commercial VirtualBox
18 * distribution, then only the terms of your commercial VirtualBox
19 * license agreement apply instead of the previous paragraph.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "exec-all.h"
29
30#include <VBox/rem.h>
31#include <VBox/vmapi.h>
32#include <VBox/tm.h>
33#include <VBox/ssm.h>
34#include <VBox/em.h>
35#include <VBox/trpm.h>
36#include <VBox/iom.h>
37#include <VBox/mm.h>
38#include <VBox/pgm.h>
39#include <VBox/pdm.h>
40#include <VBox/dbgf.h>
41#include <VBox/dbg.h>
42#include <VBox/hwaccm.h>
43#include <VBox/patm.h>
44#include <VBox/csam.h>
45#include "REMInternal.h"
46#include <VBox/vm.h>
47#include <VBox/param.h>
48#include <VBox/err.h>
49
50#include <VBox/log.h>
51#include <iprt/semaphore.h>
52#include <iprt/asm.h>
53#include <iprt/assert.h>
54#include <iprt/thread.h>
55#include <iprt/string.h>
56
57/* Don't wanna include everything. */
58extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
59extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
60extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
61extern void tlb_flush_page(CPUX86State *env, uint32_t addr);
62extern void tlb_flush(CPUState *env, int flush_global);
63extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
64extern void sync_ldtr(CPUX86State *env1, int selector);
65extern int sync_tr(CPUX86State *env1, int selector);
66
67#ifdef VBOX_STRICT
68unsigned long get_phys_page_offset(target_ulong addr);
69#endif
70
71
72/*******************************************************************************
73* Defined Constants And Macros *
74*******************************************************************************/
75
76/** Copy 80-bit fpu register at pSrc to pDst.
77 * This is probably faster than *calling* memcpy.
78 */
79#define REM_COPY_FPU_REG(pDst, pSrc) \
80 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
81
82
83/*******************************************************************************
84* Internal Functions *
85*******************************************************************************/
86static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
87static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
88static void remR3StateUpdate(PVM pVM);
89
90#if defined(PGM_DYNAMIC_RAM_ALLOC) && !defined(REM_PHYS_ADDR_IN_TLB)
91DECLINLINE(target_ulong) remR3HCVirt2GCPhysInlined(PVM pVM, void *addr);
92DECLINLINE(void *) remR3GCPhys2HCVirtInlined(PVM pVM, target_ulong addr);
93#endif
94
95static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
96static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
97static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
98static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
99static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
100static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
101
102static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
103static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
104static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
105static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
106static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
107static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
108
109
110/*******************************************************************************
111* Global Variables *
112*******************************************************************************/
113
114/** @todo Move stats to REM::s some rainy day we have nothing do to. */
115#ifdef VBOX_WITH_STATISTICS
116static STAMPROFILEADV gStatExecuteSingleInstr;
117static STAMPROFILEADV gStatCompilationQEmu;
118static STAMPROFILEADV gStatRunCodeQEmu;
119static STAMPROFILEADV gStatTotalTimeQEmu;
120static STAMPROFILEADV gStatTimers;
121static STAMPROFILEADV gStatTBLookup;
122static STAMPROFILEADV gStatIRQ;
123static STAMPROFILEADV gStatRawCheck;
124static STAMPROFILEADV gStatMemRead;
125static STAMPROFILEADV gStatMemWrite;
126#ifndef REM_PHYS_ADDR_IN_TLB
127static STAMPROFILEADV gStatMemReadHCPtr;
128static STAMPROFILEADV gStatMemWriteHCPtr;
129#endif
130#ifdef PGM_DYNAMIC_RAM_ALLOC
131static STAMPROFILE gStatGCPhys2HCVirt;
132static STAMPROFILE gStatHCVirt2GCPhys;
133#endif
134static STAMCOUNTER gStatCpuGetTSC;
135static STAMCOUNTER gStatRefuseTFInhibit;
136static STAMCOUNTER gStatRefuseVM86;
137static STAMCOUNTER gStatRefusePaging;
138static STAMCOUNTER gStatRefusePAE;
139static STAMCOUNTER gStatRefuseIOPLNot0;
140static STAMCOUNTER gStatRefuseIF0;
141static STAMCOUNTER gStatRefuseCode16;
142static STAMCOUNTER gStatRefuseWP0;
143static STAMCOUNTER gStatRefuseRing1or2;
144static STAMCOUNTER gStatRefuseCanExecute;
145static STAMCOUNTER gStatREMGDTChange;
146static STAMCOUNTER gStatREMIDTChange;
147static STAMCOUNTER gStatREMLDTRChange;
148static STAMCOUNTER gStatREMTRChange;
149static STAMCOUNTER gStatSelOutOfSync[6];
150static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
151#endif
152
153/*
154 * Global stuff.
155 */
156
157/** MMIO read callbacks. */
158CPUReadMemoryFunc *g_apfnMMIORead[3] =
159{
160 remR3MMIOReadU8,
161 remR3MMIOReadU16,
162 remR3MMIOReadU32
163};
164
165/** MMIO write callbacks. */
166CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
167{
168 remR3MMIOWriteU8,
169 remR3MMIOWriteU16,
170 remR3MMIOWriteU32
171};
172
173/** Handler read callbacks. */
174CPUReadMemoryFunc *g_apfnHandlerRead[3] =
175{
176 remR3HandlerReadU8,
177 remR3HandlerReadU16,
178 remR3HandlerReadU32
179};
180
181/** Handler write callbacks. */
182CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
183{
184 remR3HandlerWriteU8,
185 remR3HandlerWriteU16,
186 remR3HandlerWriteU32
187};
188
189
190#ifdef VBOX_WITH_DEBUGGER
191/*
192 * Debugger commands.
193 */
194static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
195
196/** '.remstep' arguments. */
197static const DBGCVARDESC g_aArgRemStep[] =
198{
199 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
200 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
201};
202
203/** Command descriptors. */
204static const DBGCCMD g_aCmds[] =
205{
206 {
207 .pszCmd ="remstep",
208 .cArgsMin = 0,
209 .cArgsMax = 1,
210 .paArgDescs = &g_aArgRemStep[0],
211 .cArgDescs = ELEMENTS(g_aArgRemStep),
212 .pResultDesc = NULL,
213 .fFlags = 0,
214 .pfnHandler = remR3CmdDisasEnableStepping,
215 .pszSyntax = "[on/off]",
216 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
217 "If no arguments show the current state."
218 }
219};
220#endif
221
222
223/* Instantiate the structure signatures. */
224#define REM_STRUCT_OP 0
225#include "InnoTek/structs.h"
226
227
228
229/*******************************************************************************
230* Internal Functions *
231*******************************************************************************/
232static void remAbort(int rc, const char *pszTip);
233extern int testmath(void);
234
235/* Put them here to avoid unused variable warning. */
236AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
237#if !defined(IPRT_NO_CRT) && (defined(__LINUX__) || defined(__DARWIN__) || defined(__WIN__))
238AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
239#else
240AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
241#endif
242
243
244/**
245 * Initializes the REM.
246 *
247 * @returns VBox status code.
248 * @param pVM The VM to operate on.
249 */
250REMR3DECL(int) REMR3Init(PVM pVM)
251{
252 uint32_t u32Dummy;
253 unsigned i;
254
255 /*
256 * Assert sanity.
257 */
258 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
259 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
260 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
261 Assert(!testmath());
262 ASSERT_STRUCT_TABLE(Misc);
263 ASSERT_STRUCT_TABLE(TLB);
264 ASSERT_STRUCT_TABLE(SegmentCache);
265 ASSERT_STRUCT_TABLE(XMMReg);
266 ASSERT_STRUCT_TABLE(MMXReg);
267 ASSERT_STRUCT_TABLE(float_status);
268 ASSERT_STRUCT_TABLE(float32u);
269 ASSERT_STRUCT_TABLE(float64u);
270 ASSERT_STRUCT_TABLE(floatx80u);
271 ASSERT_STRUCT_TABLE(CPUState);
272
273 /*
274 * Init some internal data members.
275 */
276 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
277 pVM->rem.s.Env.pVM = pVM;
278#ifdef CPU_RAW_MODE_INIT
279 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
280#endif
281
282 /* ctx. */
283 int rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
284 if (VBOX_FAILURE(rc))
285 {
286 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
287 return rc;
288 }
289 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
290
291 /* ignore all notifications */
292 pVM->rem.s.fIgnoreAll = true;
293
294 /*
295 * Init the recompiler.
296 */
297 if (!cpu_x86_init(&pVM->rem.s.Env))
298 {
299 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
300 return VERR_GENERAL_FAILURE;
301 }
302 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
303 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
304
305 /* allocate code buffer for single instruction emulation. */
306 pVM->rem.s.Env.cbCodeBuffer = 4096;
307 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
308 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
309
310 /* finally, set the cpu_single_env global. */
311 cpu_single_env = &pVM->rem.s.Env;
312
313 /* Nothing is pending by default */
314 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
315
316 /*
317 * Register ram types.
318 */
319 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
320 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
321 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
322 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
323 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
324
325 /* stop ignoring. */
326 pVM->rem.s.fIgnoreAll = false;
327
328 /*
329 * Register the saved state data unit.
330 */
331 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
332 NULL, remR3Save, NULL,
333 NULL, remR3Load, NULL);
334 if (VBOX_FAILURE(rc))
335 return rc;
336
337#ifdef VBOX_WITH_DEBUGGER
338 /*
339 * Debugger commands.
340 */
341 static bool fRegisteredCmds = false;
342 if (!fRegisteredCmds)
343 {
344 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
345 if (VBOX_SUCCESS(rc))
346 fRegisteredCmds = true;
347 }
348#endif
349
350#ifdef VBOX_WITH_STATISTICS
351 /*
352 * Statistics.
353 */
354 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
355 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
356 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
357 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
358 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
359 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
360 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
361 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
362 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
363 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
364#ifndef REM_PHYS_ADDR_IN_TLB
365 STAM_REG(pVM, &gStatMemReadHCPtr, STAMTYPE_PROFILE, "/PROF/REM/MemReadHCPtr", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
366 STAM_REG(pVM, &gStatMemWriteHCPtr, STAMTYPE_PROFILE, "/PROF/REM/MemWriteHCPtr", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
367#endif
368#ifdef PGM_DYNAMIC_RAM_ALLOC
369 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
370 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
371#endif
372
373 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
374
375 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
376 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
377 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
378 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
379 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
380 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
381 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
382 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
383 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
384 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
385
386 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
387 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
388 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
389 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
390
391 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
392 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
393 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
394 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
395 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
396 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
397
398 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
399 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
400 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
401 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
402 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
403 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
404
405
406#endif
407
408#ifdef DEBUG_ALL_LOGGING
409 loglevel = ~0;
410#endif
411
412 return rc;
413}
414
415
416/**
417 * Terminates the REM.
418 *
419 * Termination means cleaning up and freeing all resources,
420 * the VM it self is at this point powered off or suspended.
421 *
422 * @returns VBox status code.
423 * @param pVM The VM to operate on.
424 */
425REMR3DECL(int) REMR3Term(PVM pVM)
426{
427 return VINF_SUCCESS;
428}
429
430
431/**
432 * The VM is being reset.
433 *
434 * For the REM component this means to call the cpu_reset() and
435 * reinitialize some state variables.
436 *
437 * @param pVM VM handle.
438 */
439REMR3DECL(void) REMR3Reset(PVM pVM)
440{
441 /*
442 * Reset the REM cpu.
443 */
444 pVM->rem.s.fIgnoreAll = true;
445 cpu_reset(&pVM->rem.s.Env);
446 pVM->rem.s.cInvalidatedPages = 0;
447 pVM->rem.s.fIgnoreAll = false;
448}
449
450
451/**
452 * Execute state save operation.
453 *
454 * @returns VBox status code.
455 * @param pVM VM Handle.
456 * @param pSSM SSM operation handle.
457 */
458static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
459{
460 LogFlow(("remR3Save:\n"));
461
462 /*
463 * Save the required CPU Env bits.
464 * (Not much because we're never in REM when doing the save.)
465 */
466 PREM pRem = &pVM->rem.s;
467 Assert(!pRem->fInREM);
468 SSMR3PutU32(pSSM, pRem->Env.hflags);
469 SSMR3PutMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
470 SSMR3PutU32(pSSM, ~0); /* separator */
471
472 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
473 SSMR3PutBool(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
474
475 /*
476 * Save the REM stuff.
477 */
478 SSMR3PutUInt(pSSM, pRem->cInvalidatedPages);
479 unsigned i;
480 for (i = 0; i < pRem->cInvalidatedPages; i++)
481 SSMR3PutGCPtr(pSSM, pRem->aGCPtrInvalidatedPages[i]);
482
483 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
484
485 return SSMR3PutU32(pSSM, ~0); /* terminator */
486}
487
488
489/**
490 * Execute state load operation.
491 *
492 * @returns VBox status code.
493 * @param pVM VM Handle.
494 * @param pSSM SSM operation handle.
495 * @param u32Version Data layout version.
496 */
497static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
498{
499 uint32_t u32Dummy;
500 bool fRawRing0 = false;
501 LogFlow(("remR3Load:\n"));
502
503 /*
504 * Validate version.
505 */
506 if (u32Version != REM_SAVED_STATE_VERSION)
507 {
508 Log(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
509 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
510 }
511
512 /*
513 * Do a reset to be on the safe side...
514 */
515 REMR3Reset(pVM);
516
517 /*
518 * Ignore all ignorable notifications.
519 * (Not doing this will cause serious trouble.)
520 */
521 pVM->rem.s.fIgnoreAll = true;
522
523 /*
524 * Load the required CPU Env bits.
525 * (Not much because we're never in REM when doing the save.)
526 */
527 PREM pRem = &pVM->rem.s;
528 Assert(!pRem->fInREM);
529 SSMR3GetU32(pSSM, &pRem->Env.hflags);
530 SSMR3GetMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
531 uint32_t u32Sep;
532 int rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
533 if (VBOX_FAILURE(rc))
534 return rc;
535 if (u32Sep != ~0)
536 {
537 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
538 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
539 }
540
541 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
542 SSMR3GetBool(pSSM, &fRawRing0);
543 if (fRawRing0)
544 pRem->Env.state |= CPU_RAW_RING0;
545
546 /*
547 * Load the REM stuff.
548 */
549 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
550 if (VBOX_FAILURE(rc))
551 return rc;
552 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
553 {
554 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
555 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
556 }
557 unsigned i;
558 for (i = 0; i < pRem->cInvalidatedPages; i++)
559 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
560
561 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
562 if (VBOX_FAILURE(rc))
563 return rc;
564
565 /* check the terminator. */
566 rc = SSMR3GetU32(pSSM, &u32Sep);
567 if (VBOX_FAILURE(rc))
568 return rc;
569 if (u32Sep != ~0)
570 {
571 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
572 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
573 }
574
575 /*
576 * Get the CPUID features.
577 */
578 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
579 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
580
581 /*
582 * Sync the Load Flush the TLB
583 */
584 tlb_flush(&pRem->Env, 1);
585
586#if 0 /** @todo r=bird: this doesn't make sense. WHY? */
587 /*
588 * Clear all lazy flags (only FPU sync for now).
589 */
590 CPUMGetAndClearFPUUsedREM(pVM);
591#endif
592
593 /*
594 * Stop ignoring ignornable notifications.
595 */
596 pVM->rem.s.fIgnoreAll = false;
597
598 return VINF_SUCCESS;
599}
600
601
602
603#undef LOG_GROUP
604#define LOG_GROUP LOG_GROUP_REM_RUN
605
606/**
607 * Single steps an instruction in recompiled mode.
608 *
609 * Before calling this function the REM state needs to be in sync with
610 * the VM. Call REMR3State() to perform the sync. It's only necessary
611 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
612 * and after calling REMR3StateBack().
613 *
614 * @returns VBox status code.
615 *
616 * @param pVM VM Handle.
617 */
618REMR3DECL(int) REMR3Step(PVM pVM)
619{
620 /*
621 * Lock the REM - we don't wanna have anyone interrupting us
622 * while stepping - and enabled single stepping. We also ignore
623 * pending interrupts and suchlike.
624 */
625 int interrupt_request = pVM->rem.s.Env.interrupt_request;
626 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
627 pVM->rem.s.Env.interrupt_request = 0;
628 cpu_single_step(&pVM->rem.s.Env, 1);
629
630 /*
631 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
632 */
633 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
634 bool fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
635
636 /*
637 * Execute and handle the return code.
638 * We execute without enabling the cpu tick, so on success we'll
639 * just flip it on and off to make sure it moves
640 */
641 int rc = cpu_exec(&pVM->rem.s.Env);
642 if (rc == EXCP_DEBUG)
643 {
644 TMCpuTickResume(pVM);
645 TMCpuTickPause(pVM);
646 TMVirtualResume(pVM);
647 TMVirtualPause(pVM);
648 rc = VINF_EM_DBG_STEPPED;
649 }
650 else
651 {
652 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
653 switch (rc)
654 {
655 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
656 case EXCP_HLT:
657 case EXCP_HALTED: rc = VINF_EM_HALT; break;
658 case EXCP_RC:
659 rc = pVM->rem.s.rc;
660 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
661 break;
662 default:
663 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
664 rc = VERR_INTERNAL_ERROR;
665 break;
666 }
667 }
668
669 /*
670 * Restore the stuff we changed to prevent interruption.
671 * Unlock the REM.
672 */
673 if (fBp)
674 {
675 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
676 Assert(rc2 == 0); NOREF(rc2);
677 }
678 cpu_single_step(&pVM->rem.s.Env, 0);
679 pVM->rem.s.Env.interrupt_request = interrupt_request;
680
681 return rc;
682}
683
684
685/**
686 * Set a breakpoint using the REM facilities.
687 *
688 * @returns VBox status code.
689 * @param pVM The VM handle.
690 * @param Address The breakpoint address.
691 * @thread The emulation thread.
692 */
693REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
694{
695 VM_ASSERT_EMT(pVM);
696 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
697 {
698 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
699 return VINF_SUCCESS;
700 }
701 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
702 return VERR_REM_NO_MORE_BP_SLOTS;
703}
704
705
706/**
707 * Clears a breakpoint set by REMR3BreakpointSet().
708 *
709 * @returns VBox status code.
710 * @param pVM The VM handle.
711 * @param Address The breakpoint address.
712 * @thread The emulation thread.
713 */
714REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
715{
716 VM_ASSERT_EMT(pVM);
717 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
718 {
719 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
720 return VINF_SUCCESS;
721 }
722 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
723 return VERR_REM_BP_NOT_FOUND;
724}
725
726
727/**
728 * Emulate an instruction.
729 *
730 * This function executes one instruction without letting anyone
731 * interrupt it. This is intended for being called while being in
732 * raw mode and thus will take care of all the state syncing between
733 * REM and the rest.
734 *
735 * @returns VBox status code.
736 * @param pVM VM handle.
737 */
738REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
739{
740 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", pVM->rem.s.pCtx->cs, pVM->rem.s.pCtx->eip));
741
742 /*
743 * Sync the state and enable single instruction / single stepping.
744 */
745 int rc = REMR3State(pVM);
746 if (VBOX_SUCCESS(rc))
747 {
748 int interrupt_request = pVM->rem.s.Env.interrupt_request;
749 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
750 Assert(!pVM->rem.s.Env.singlestep_enabled);
751#if 1
752
753 /*
754 * Now we set the execute single instruction flag and enter the cpu_exec loop.
755 */
756 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
757 rc = cpu_exec(&pVM->rem.s.Env);
758 switch (rc)
759 {
760 /*
761 * Executed without anything out of the way happening.
762 */
763 case EXCP_SINGLE_INSTR:
764 rc = VINF_EM_RESCHEDULE;
765 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
766 break;
767
768 /*
769 * If we take a trap or start servicing a pending interrupt, we might end up here.
770 * (Timer thread or some other thread wishing EMT's attention.)
771 */
772 case EXCP_INTERRUPT:
773 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
774 rc = VINF_EM_RESCHEDULE;
775 break;
776
777 /*
778 * Single step, we assume!
779 * If there was a breakpoint there we're fucked now.
780 */
781 case EXCP_DEBUG:
782 {
783 /* breakpoint or single step? */
784 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
785 int iBP;
786 rc = VINF_EM_DBG_STEPPED;
787 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
788 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
789 {
790 rc = VINF_EM_DBG_BREAKPOINT;
791 break;
792 }
793 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
794 break;
795 }
796
797 /*
798 * hlt instruction.
799 */
800 case EXCP_HLT:
801 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
802 rc = VINF_EM_HALT;
803 break;
804
805 /*
806 * The VM has halted.
807 */
808 case EXCP_HALTED:
809 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
810 rc = VINF_EM_HALT;
811 break;
812
813 /*
814 * Switch to RAW-mode.
815 */
816 case EXCP_EXECUTE_RAW:
817 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
818 rc = VINF_EM_RESCHEDULE_RAW;
819 break;
820
821 /*
822 * Switch to hardware accelerated RAW-mode.
823 */
824 case EXCP_EXECUTE_HWACC:
825 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
826 rc = VINF_EM_RESCHEDULE_HWACC;
827 break;
828
829 /*
830 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
831 */
832 case EXCP_RC:
833 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
834 rc = pVM->rem.s.rc;
835 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
836 break;
837
838 /*
839 * Figure out the rest when they arrive....
840 */
841 default:
842 AssertMsgFailed(("rc=%d\n", rc));
843 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
844 rc = VINF_EM_RESCHEDULE;
845 break;
846 }
847
848 /*
849 * Switch back the state.
850 */
851#else
852 pVM->rem.s.Env.interrupt_request = 0;
853 cpu_single_step(&pVM->rem.s.Env, 1);
854
855 /*
856 * Execute and handle the return code.
857 * We execute without enabling the cpu tick, so on success we'll
858 * just flip it on and off to make sure it moves.
859 *
860 * (We do not use emulate_single_instr() because that doesn't enter the
861 * right way in will cause serious trouble if a longjmp was attempted.)
862 */
863# ifdef DEBUG_bird
864 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
865# endif
866 int cTimesMax = 16384;
867 uint32_t eip = pVM->rem.s.Env.eip;
868 do
869 {
870 rc = cpu_exec(&pVM->rem.s.Env);
871
872 } while ( eip == pVM->rem.s.Env.eip
873 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
874 && --cTimesMax > 0);
875 switch (rc)
876 {
877 /*
878 * Single step, we assume!
879 * If there was a breakpoint there we're fucked now.
880 */
881 case EXCP_DEBUG:
882 {
883 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
884 rc = VINF_EM_RESCHEDULE;
885 break;
886 }
887
888 /*
889 * We cannot be interrupted!
890 */
891 case EXCP_INTERRUPT:
892 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
893 rc = VERR_INTERNAL_ERROR;
894 break;
895
896 /*
897 * hlt instruction.
898 */
899 case EXCP_HLT:
900 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
901 rc = VINF_EM_HALT;
902 break;
903
904 /*
905 * The VM has halted.
906 */
907 case EXCP_HALTED:
908 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
909 rc = VINF_EM_HALT;
910 break;
911
912 /*
913 * Switch to RAW-mode.
914 */
915 case EXCP_EXECUTE_RAW:
916 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
917 rc = VINF_EM_RESCHEDULE_RAW;
918 break;
919
920 /*
921 * Switch to hardware accelerated RAW-mode.
922 */
923 case EXCP_EXECUTE_HWACC:
924 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
925 rc = VINF_EM_RESCHEDULE_HWACC;
926 break;
927
928 /*
929 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
930 */
931 case EXCP_RC:
932 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
933 rc = pVM->rem.s.rc;
934 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
935 break;
936
937 /*
938 * Figure out the rest when they arrive....
939 */
940 default:
941 AssertMsgFailed(("rc=%d\n", rc));
942 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
943 rc = VINF_SUCCESS;
944 break;
945 }
946
947 /*
948 * Switch back the state.
949 */
950 cpu_single_step(&pVM->rem.s.Env, 0);
951#endif
952 pVM->rem.s.Env.interrupt_request = interrupt_request;
953 int rc2 = REMR3StateBack(pVM);
954 AssertRC(rc2);
955 }
956
957 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%08x)\n",
958 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
959 return rc;
960}
961
962
963/**
964 * Runs code in recompiled mode.
965 *
966 * Before calling this function the REM state needs to be in sync with
967 * the VM. Call REMR3State() to perform the sync. It's only necessary
968 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
969 * and after calling REMR3StateBack().
970 *
971 * @returns VBox status code.
972 *
973 * @param pVM VM Handle.
974 */
975REMR3DECL(int) REMR3Run(PVM pVM)
976{
977 Log2(("REMR3Run: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
978 Assert(pVM->rem.s.fInREM);
979////Keyboard / tb stuff:
980//if ( pVM->rem.s.Env.segs[R_CS].selector == 0xf000
981// && pVM->rem.s.Env.eip >= 0xe860
982// && pVM->rem.s.Env.eip <= 0xe880)
983// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
984////A20:
985//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x9020
986// && pVM->rem.s.Env.eip >= 0x970
987// && pVM->rem.s.Env.eip <= 0x9a0)
988// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
989////Speaker (port 61h)
990//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x0010
991// && ( (pVM->rem.s.Env.eip >= 0x90278c10 && pVM->rem.s.Env.eip <= 0x90278c30)
992// || (pVM->rem.s.Env.eip >= 0x9010e250 && pVM->rem.s.Env.eip <= 0x9010e260)
993// )
994// )
995// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
996//DBGFR3InfoLog(pVM, "timers", NULL);
997
998
999 int rc = cpu_exec(&pVM->rem.s.Env);
1000 switch (rc)
1001 {
1002 /*
1003 * This happens when the execution was interrupted
1004 * by an external event, like pending timers.
1005 */
1006 case EXCP_INTERRUPT:
1007 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
1008 rc = VINF_SUCCESS;
1009 break;
1010
1011 /*
1012 * hlt instruction.
1013 */
1014 case EXCP_HLT:
1015 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
1016 rc = VINF_EM_HALT;
1017 break;
1018
1019 /*
1020 * The VM has halted.
1021 */
1022 case EXCP_HALTED:
1023 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1024 rc = VINF_EM_HALT;
1025 break;
1026
1027 /*
1028 * Breakpoint/single step.
1029 */
1030 case EXCP_DEBUG:
1031 {
1032#if 0//def DEBUG_bird
1033 static int iBP = 0;
1034 printf("howdy, breakpoint! iBP=%d\n", iBP);
1035 switch (iBP)
1036 {
1037 case 0:
1038 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1039 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1040 //pVM->rem.s.Env.interrupt_request = 0;
1041 //pVM->rem.s.Env.exception_index = -1;
1042 //g_fInterruptDisabled = 1;
1043 rc = VINF_SUCCESS;
1044 asm("int3");
1045 break;
1046 default:
1047 asm("int3");
1048 break;
1049 }
1050 iBP++;
1051#else
1052 /* breakpoint or single step? */
1053 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1054 int iBP;
1055 rc = VINF_EM_DBG_STEPPED;
1056 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1057 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1058 {
1059 rc = VINF_EM_DBG_BREAKPOINT;
1060 break;
1061 }
1062 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1063#endif
1064 break;
1065 }
1066
1067 /*
1068 * Switch to RAW-mode.
1069 */
1070 case EXCP_EXECUTE_RAW:
1071 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1072 rc = VINF_EM_RESCHEDULE_RAW;
1073 break;
1074
1075 /*
1076 * Switch to hardware accelerated RAW-mode.
1077 */
1078 case EXCP_EXECUTE_HWACC:
1079 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1080 rc = VINF_EM_RESCHEDULE_HWACC;
1081 break;
1082
1083 /*
1084 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
1085 */
1086 case EXCP_RC:
1087 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1088 rc = pVM->rem.s.rc;
1089 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1090 break;
1091
1092 /*
1093 * Figure out the rest when they arrive....
1094 */
1095 default:
1096 AssertMsgFailed(("rc=%d\n", rc));
1097 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1098 rc = VINF_SUCCESS;
1099 break;
1100 }
1101
1102 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%08x)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1103 return rc;
1104}
1105
1106
1107/**
1108 * Check if the cpu state is suitable for Raw execution.
1109 *
1110 * @returns boolean
1111 * @param env The CPU env struct.
1112 * @param eip The EIP to check this for (might differ from env->eip).
1113 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1114 * @param pExceptionIndex Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1115 *
1116 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1117 */
1118bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, uint32_t *pExceptionIndex)
1119{
1120 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1121 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1122 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1123
1124 /* Update counter. */
1125 env->pVM->rem.s.cCanExecuteRaw++;
1126
1127 if (HWACCMIsEnabled(env->pVM))
1128 {
1129 env->state |= CPU_RAW_HWACC;
1130
1131 /*
1132 * Create partial context for HWACCMR3CanExecuteGuest
1133 */
1134 CPUMCTX Ctx;
1135 Ctx.cr0 = env->cr[0];
1136 Ctx.cr3 = env->cr[3];
1137 Ctx.cr4 = env->cr[4];
1138
1139 Ctx.tr = env->tr.selector;
1140 Ctx.trHid.u32Base = (uint32_t)env->tr.base;
1141 Ctx.trHid.u32Limit = env->tr.limit;
1142 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1143
1144 Ctx.idtr.cbIdt = env->idt.limit;
1145 Ctx.idtr.pIdt = (uint32_t)env->idt.base;
1146
1147 Ctx.eflags.u32 = env->eflags;
1148
1149 Ctx.cs = env->segs[R_CS].selector;
1150 Ctx.csHid.u32Base = (uint32_t)env->segs[R_CS].base;
1151 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1152 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1153
1154 Ctx.ss = env->segs[R_SS].selector;
1155 Ctx.ssHid.u32Base = (uint32_t)env->segs[R_SS].base;
1156 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1157 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1158
1159 /* Hardware accelerated raw-mode:
1160 *
1161 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1162 */
1163 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1164 {
1165 *pExceptionIndex = EXCP_EXECUTE_HWACC;
1166 return true;
1167 }
1168 return false;
1169 }
1170
1171 /*
1172 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1173 * or 32 bits protected mode ring 0 code
1174 *
1175 * The tests are ordered by the likelyhood of being true during normal execution.
1176 */
1177 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1178 {
1179 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1180 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1181 return false;
1182 }
1183
1184#ifndef VBOX_RAW_V86
1185 if (fFlags & VM_MASK) {
1186 STAM_COUNTER_INC(&gStatRefuseVM86);
1187 Log2(("raw mode refused: VM_MASK\n"));
1188 return false;
1189 }
1190#endif
1191
1192 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1193 {
1194#ifndef DEBUG_bird
1195 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1196#endif
1197 return false;
1198 }
1199
1200 if (env->singlestep_enabled)
1201 {
1202 //Log2(("raw mode refused: Single step\n"));
1203 return false;
1204 }
1205
1206 if (env->nb_breakpoints > 0)
1207 {
1208 //Log2(("raw mode refused: Breakpoints\n"));
1209 return false;
1210 }
1211
1212 uint32_t u32CR0 = env->cr[0];
1213 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1214 {
1215 STAM_COUNTER_INC(&gStatRefusePaging);
1216 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1217 return false;
1218 }
1219
1220 if (env->cr[4] & CR4_PAE_MASK)
1221 {
1222 STAM_COUNTER_INC(&gStatRefusePAE);
1223 //Log2(("raw mode refused: PAE\n"));
1224 return false;
1225 }
1226
1227 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1228 {
1229 if (!EMIsRawRing3Enabled(env->pVM))
1230 return false;
1231
1232 if (!(env->eflags & IF_MASK))
1233 {
1234 STAM_COUNTER_INC(&gStatRefuseIF0);
1235 Log2(("raw mode refused: IF (RawR3)\n"));
1236 return false;
1237 }
1238
1239 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1240 {
1241 STAM_COUNTER_INC(&gStatRefuseWP0);
1242 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1243 return false;
1244 }
1245 }
1246 else
1247 {
1248 if (!EMIsRawRing0Enabled(env->pVM))
1249 return false;
1250
1251 // Let's start with pure 32 bits ring 0 code first
1252 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1253 {
1254 STAM_COUNTER_INC(&gStatRefuseCode16);
1255 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1256 return false;
1257 }
1258
1259 // Only R0
1260 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1261 {
1262 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1263 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1264 return false;
1265 }
1266
1267 if (!(u32CR0 & CR0_WP_MASK))
1268 {
1269 STAM_COUNTER_INC(&gStatRefuseWP0);
1270 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1271 return false;
1272 }
1273
1274 if (PATMIsPatchGCAddr(env->pVM, eip))
1275 {
1276 Log2(("raw r0 mode forced: patch code\n"));
1277 *pExceptionIndex = EXCP_EXECUTE_RAW;
1278 return true;
1279 }
1280
1281#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1282 if (!(env->eflags & IF_MASK))
1283 {
1284 STAM_COUNTER_INC(&gStatRefuseIF0);
1285 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1286 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1287 return false;
1288 }
1289#endif
1290
1291 env->state |= CPU_RAW_RING0;
1292 }
1293
1294 /*
1295 * Don't reschedule the first time we're called, because there might be
1296 * special reasons why we're here that is not covered by the above checks.
1297 */
1298 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1299 {
1300 Log2(("raw mode refused: first scheduling\n"));
1301 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1302 return false;
1303 }
1304
1305 Assert(PGMPhysIsA20Enabled(env->pVM));
1306 *pExceptionIndex = EXCP_EXECUTE_RAW;
1307 return true;
1308}
1309
1310
1311/**
1312 * Fetches a code byte.
1313 *
1314 * @returns Success indicator (bool) for ease of use.
1315 * @param env The CPU environment structure.
1316 * @param GCPtrInstr Where to fetch code.
1317 * @param pu8Byte Where to store the byte on success
1318 */
1319bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1320{
1321 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1322 if (VBOX_SUCCESS(rc))
1323 return true;
1324 return false;
1325}
1326
1327
1328/**
1329 * Flush (or invalidate if you like) page table/dir entry.
1330 *
1331 * (invlpg instruction; tlb_flush_page)
1332 *
1333 * @param env Pointer to cpu environment.
1334 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1335 */
1336void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1337{
1338 PVM pVM = env->pVM;
1339
1340 /*
1341 * When we're replaying invlpg instructions or restoring a saved
1342 * state we disable this path.
1343 */
1344 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1345 return;
1346 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1347 Assert(pVM->rem.s.fInREM);
1348
1349 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1350
1351 /*
1352 * Update the control registers before calling PGMFlushPage.
1353 */
1354 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1355 pCtx->cr0 = env->cr[0];
1356 pCtx->cr3 = env->cr[3];
1357 pCtx->cr4 = env->cr[4];
1358
1359 /*
1360 * Let PGM do the rest.
1361 */
1362 int rc = PGMInvalidatePage(pVM, GCPtr);
1363 if (VBOX_FAILURE(rc))
1364 {
1365 AssertMsgFailed(("remR3FlushPage %x %x %x %d failed!!\n", GCPtr));
1366 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1367 }
1368 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1369}
1370
1371/**
1372 * Set page table/dir entry. (called from tlb_set_page)
1373 *
1374 * @param env Pointer to cpu environment.
1375 */
1376void remR3SetPage(CPUState *env, CPUTLBEntry *pTLBEntry, CPUTLBEntry *pTLBEntryIgnored, int prot, int is_user)
1377{
1378 target_ulong virt_addr;
1379 if (env->pVM->rem.s.fIgnoreSetPage || env->pVM->rem.s.fIgnoreAll)
1380 return;
1381 Assert(env->pVM->rem.s.fInREM || env->pVM->rem.s.fInStateSync);
1382
1383#ifndef PGM_DYNAMIC_RAM_ALLOC
1384 if(!is_user && !(env->state & CPU_RAW_RING0))
1385 return; /* We are currently not interested in kernel pages */
1386#endif
1387
1388#if !defined(PGM_DYNAMIC_RAM_ALLOC) && !defined(REM_PHYS_ADDR_IN_TLB)
1389 Log2(("tlb_set_page_raw (r=%x|w=%x)-%x prot %x is_user %d phys base %x\n",
1390 pTLBEntry->addr_read, pTLBEntry->addr_write, pTLBEntry->addend, prot, is_user, phys_ram_base));
1391#else /* PGM_DYNAMIC_RAM_ALLOC */
1392 Log2(("tlb_set_page_raw (r=%x|w=%x)-%x prot %x is_user %d\n",
1393 pTLBEntry->addr_read, pTLBEntry->addr_write, pTLBEntry->addend, prot, is_user));
1394#endif/* PGM_DYNAMIC_RAM_ALLOC */
1395
1396 /*
1397 * Extract the virtual address.
1398 */
1399 if (prot & PAGE_WRITE)
1400 virt_addr = pTLBEntry->addr_write;
1401 else if (prot & PAGE_READ)
1402 virt_addr = pTLBEntry->addr_read;
1403 else
1404 AssertMsgFailedReturnVoid(("tlb_set_page_raw unexpected protection flags %x\n", prot));
1405 virt_addr &= TARGET_PAGE_MASK;
1406
1407 /*
1408 * Update the control registers before calling PGMFlushPage.
1409 */
1410 PCPUMCTX pCtx = (PCPUMCTX)env->pVM->rem.s.pCtx;
1411 pCtx->cr0 = env->cr[0];
1412 pCtx->cr3 = env->cr[3];
1413 pCtx->cr4 = env->cr[4];
1414
1415 /*
1416 * Let PGM do the rest.
1417 */
1418 int rc = PGMInvalidatePage(env->pVM, (RTGCPTR)virt_addr);
1419 if (VBOX_FAILURE(rc))
1420 {
1421#ifdef VBOX_STRICT
1422 target_ulong addend = pTLBEntry->addend;
1423 target_ulong phys_addr;
1424
1425 if (!(addend & IO_MEM_ROM))
1426# ifdef REM_PHYS_ADDR_IN_TLB
1427 phys_addr = virt_addr + addend;
1428# elif defined(PGM_DYNAMIC_RAM_ALLOC)
1429 phys_addr = remR3HCVirt2GCPhysInlined(env->pVM, (void *)(virt_addr + addend));
1430# else
1431 phys_addr = virt_addr - (uintptr_t)phys_ram_base + addend;
1432# endif
1433 else
1434 phys_addr = addend;
1435 AssertMsgFailed(("RAWEx_SetPageEntry %x %x %x %d failed!!\n", virt_addr, phys_addr, prot, is_user));
1436#endif /* VBOX_STRICT */
1437 VM_FF_SET(env->pVM, VM_FF_PGM_SYNC_CR3);
1438 }
1439}
1440
1441/**
1442 * Called from tlb_protect_code in order to write monitor a code page.
1443 *
1444 * @param env Pointer to the CPU environment.
1445 * @param GCPtr Code page to monitor
1446 */
1447void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1448{
1449 Assert(env->pVM->rem.s.fInREM);
1450 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1451 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1452 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1453 && !(env->eflags & VM_MASK) /* no V86 mode */
1454 && !HWACCMIsEnabled(env->pVM))
1455 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1456}
1457
1458/**
1459 * Called when the CPU is initialized, any of the CRx registers are changed or
1460 * when the A20 line is modified.
1461 *
1462 * @param env Pointer to the CPU environment.
1463 * @param fGlobal Set if the flush is global.
1464 */
1465void remR3FlushTLB(CPUState *env, bool fGlobal)
1466{
1467 PVM pVM = env->pVM;
1468
1469 /*
1470 * When we're replaying invlpg instructions or restoring a saved
1471 * state we disable this path.
1472 */
1473 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1474 return;
1475 Assert(pVM->rem.s.fInREM);
1476
1477 /*
1478 * The caller doesn't check cr4, so we have to do that for ourselves.
1479 */
1480 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1481 fGlobal = true;
1482 Log(("remR3FlushTLB: CR0=%VGp CR3=%VGp CR4=%VGp %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1483
1484 /*
1485 * Update the control registers before calling PGMR3FlushTLB.
1486 */
1487 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1488 pCtx->cr0 = env->cr[0];
1489 pCtx->cr3 = env->cr[3];
1490 pCtx->cr4 = env->cr[4];
1491
1492 /*
1493 * Let PGM do the rest.
1494 */
1495 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1496}
1497
1498
1499/**
1500 * Called when any of the cr0, cr4 or efer registers is updated.
1501 *
1502 * @param env Pointer to the CPU environment.
1503 */
1504void remR3ChangeCpuMode(CPUState *env)
1505{
1506 int rc;
1507 PVM pVM = env->pVM;
1508
1509 /*
1510 * When we're replaying loads or restoring a saved
1511 * state this path is disabled.
1512 */
1513 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1514 return;
1515 Assert(pVM->rem.s.fInREM);
1516
1517 /*
1518 * Update the control registers before calling PGMR3ChangeMode()
1519 * as it may need to map whatever cr3 is pointing to.
1520 */
1521 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1522 pCtx->cr0 = env->cr[0];
1523 pCtx->cr3 = env->cr[3];
1524 pCtx->cr4 = env->cr[4];
1525
1526#ifdef TARGET_X86_64
1527 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1528 if (rc != VINF_SUCCESS)
1529 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1530#else
1531 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1532 if (rc != VINF_SUCCESS)
1533 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1534#endif
1535}
1536
1537
1538/**
1539 * Called from compiled code to run dma.
1540 *
1541 * @param env Pointer to the CPU environment.
1542 */
1543void remR3DmaRun(CPUState *env)
1544{
1545 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1546 PDMR3DmaRun(env->pVM);
1547 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1548}
1549
1550/**
1551 * Called from compiled code to schedule pending timers in VMM
1552 *
1553 * @param env Pointer to the CPU environment.
1554 */
1555void remR3TimersRun(CPUState *env)
1556{
1557 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1558 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1559 TMR3TimerQueuesDo(env->pVM);
1560 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1561 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1562}
1563
1564/**
1565 * Record trap occurance
1566 *
1567 * @returns VBox status code
1568 * @param env Pointer to the CPU environment.
1569 * @param uTrap Trap nr
1570 * @param uErrorCode Error code
1571 * @param pvNextEIP Next EIP
1572 */
1573int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1574{
1575 PVM pVM = (PVM)env->pVM;
1576#ifdef VBOX_WITH_STATISTICS
1577 static STAMCOUNTER aStatTrap[255];
1578 static bool aRegisters[ELEMENTS(aStatTrap)];
1579#endif
1580
1581#ifdef VBOX_WITH_STATISTICS
1582 if (uTrap < 255)
1583 {
1584 if (!aRegisters[uTrap])
1585 {
1586 aRegisters[uTrap] = true;
1587 char szStatName[64];
1588 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1589 STAM_REG(env->pVM, &aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1590 }
1591 STAM_COUNTER_INC(&aStatTrap[uTrap]);
1592 }
1593#endif
1594 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1595 if(uTrap < 0x20)
1596 {
1597 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1598
1599 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 128)
1600 {
1601 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1602 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1603 return VERR_REM_TOO_MANY_TRAPS;
1604 }
1605 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1606 pVM->rem.s.cPendingExceptions = 1;
1607 pVM->rem.s.uPendingException = uTrap;
1608 pVM->rem.s.uPendingExcptEIP = env->eip;
1609 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1610 }
1611 else
1612 {
1613 pVM->rem.s.cPendingExceptions = 0;
1614 pVM->rem.s.uPendingException = uTrap;
1615 pVM->rem.s.uPendingExcptEIP = env->eip;
1616 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1617 }
1618 return VINF_SUCCESS;
1619}
1620
1621/*
1622 * Clear current active trap
1623 *
1624 * @param pVM VM Handle.
1625 */
1626void remR3TrapClear(PVM pVM)
1627{
1628 pVM->rem.s.cPendingExceptions = 0;
1629 pVM->rem.s.uPendingException = 0;
1630 pVM->rem.s.uPendingExcptEIP = 0;
1631 pVM->rem.s.uPendingExcptCR2 = 0;
1632}
1633
1634
1635/**
1636 * Syncs the internal REM state with the VM.
1637 *
1638 * This must be called before REMR3Run() is invoked whenever when the REM
1639 * state is not up to date. Calling it several times in a row is not
1640 * permitted.
1641 *
1642 * @returns VBox status code.
1643 *
1644 * @param pVM VM Handle.
1645 *
1646 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1647 * no do this since the majority of the callers don't want any unnecessary of events
1648 * pending that would immediatly interrupt execution.
1649 */
1650REMR3DECL(int) REMR3State(PVM pVM)
1651{
1652 Log2(("REMR3State:\n"));
1653 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1654 register const CPUMCTX *pCtx = pVM->rem.s.pCtx;
1655 register unsigned fFlags;
1656
1657 Assert(!pVM->rem.s.fInREM);
1658 pVM->rem.s.fInStateSync = true;
1659
1660 /*
1661 * Copy the registers which requires no special handling.
1662 */
1663 Assert(R_EAX == 0);
1664 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1665 Assert(R_ECX == 1);
1666 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1667 Assert(R_EDX == 2);
1668 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1669 Assert(R_EBX == 3);
1670 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1671 Assert(R_ESP == 4);
1672 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1673 Assert(R_EBP == 5);
1674 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1675 Assert(R_ESI == 6);
1676 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1677 Assert(R_EDI == 7);
1678 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1679 pVM->rem.s.Env.eip = pCtx->eip;
1680
1681 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1682
1683 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1684
1685 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1686 pVM->rem.s.Env.dr[0] = pCtx->dr0;
1687 pVM->rem.s.Env.dr[1] = pCtx->dr1;
1688 pVM->rem.s.Env.dr[2] = pCtx->dr2;
1689 pVM->rem.s.Env.dr[3] = pCtx->dr3;
1690 pVM->rem.s.Env.dr[4] = pCtx->dr4;
1691 pVM->rem.s.Env.dr[5] = pCtx->dr5;
1692 pVM->rem.s.Env.dr[6] = pCtx->dr6;
1693 pVM->rem.s.Env.dr[7] = pCtx->dr7;
1694
1695 /*
1696 * Clear the halted hidden flag (the interrupt waking up the CPU can
1697 * have been dispatched in raw mode).
1698 */
1699 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1700
1701 /*
1702 * Replay invlpg?
1703 */
1704 if (pVM->rem.s.cInvalidatedPages)
1705 {
1706 pVM->rem.s.fIgnoreInvlPg = true;
1707 RTUINT i;
1708 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1709 {
1710 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1711 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1712 }
1713 pVM->rem.s.fIgnoreInvlPg = false;
1714 pVM->rem.s.cInvalidatedPages = 0;
1715 }
1716
1717 /*
1718 * Registers which are rarely changed and require special handling / order when changed.
1719 */
1720 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1721 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1722 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1723 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR))
1724 {
1725 if (fFlags & CPUM_CHANGED_FPU_REM)
1726 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1727
1728 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1729 {
1730 pVM->rem.s.fIgnoreCR3Load = true;
1731 tlb_flush(&pVM->rem.s.Env, true);
1732 pVM->rem.s.fIgnoreCR3Load = false;
1733 }
1734
1735 if (fFlags & CPUM_CHANGED_CR4)
1736 {
1737 pVM->rem.s.fIgnoreCR3Load = true;
1738 pVM->rem.s.fIgnoreCpuMode = true;
1739 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1740 pVM->rem.s.fIgnoreCpuMode = false;
1741 pVM->rem.s.fIgnoreCR3Load = false;
1742 }
1743
1744 if (fFlags & CPUM_CHANGED_CR0)
1745 {
1746 pVM->rem.s.fIgnoreCR3Load = true;
1747 pVM->rem.s.fIgnoreCpuMode = true;
1748 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1749 pVM->rem.s.fIgnoreCpuMode = false;
1750 pVM->rem.s.fIgnoreCR3Load = false;
1751 }
1752
1753 if (fFlags & CPUM_CHANGED_CR3)
1754 {
1755 pVM->rem.s.fIgnoreCR3Load = true;
1756 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1757 pVM->rem.s.fIgnoreCR3Load = false;
1758 }
1759
1760 if (fFlags & CPUM_CHANGED_GDTR)
1761 {
1762 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1763 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1764 }
1765
1766 if (fFlags & CPUM_CHANGED_IDTR)
1767 {
1768 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1769 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1770 }
1771
1772 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1773 {
1774 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1775 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1776 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1777 }
1778
1779 if (fFlags & CPUM_CHANGED_LDTR)
1780 {
1781 if (fFlags & CPUM_CHANGED_HIDDEN_SEL_REGS)
1782 {
1783 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1784 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u32Base;
1785 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1786 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1787 }
1788 else
1789 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1790 }
1791
1792 if (fFlags & CPUM_CHANGED_TR)
1793 {
1794 if (fFlags & CPUM_CHANGED_HIDDEN_SEL_REGS)
1795 {
1796 pVM->rem.s.Env.tr.selector = pCtx->tr;
1797 pVM->rem.s.Env.tr.base = pCtx->trHid.u32Base;
1798 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1799 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1800 }
1801 else
1802 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1803
1804 /** @note do_interrupt will fault if the busy flag is still set.... */
1805 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1806 }
1807 }
1808
1809 /*
1810 * Update selector registers.
1811 * This must be done *after* we've synced gdt, ldt and crX registers
1812 * since we're reading the GDT/LDT om sync_seg. This will happen with
1813 * saved state which takes a quick dip into rawmode for instance.
1814 */
1815 /*
1816 * Stack; Note first check this one as the CPL might have changed. The
1817 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1818 */
1819
1820 if (fFlags & CPUM_CHANGED_HIDDEN_SEL_REGS)
1821 {
1822 /* The hidden selector registers are valid in the CPU context. */
1823 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1824
1825 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u32Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1826 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u32Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1827 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u32Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1828 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u32Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1829 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u32Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1830 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u32Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1831
1832 /* Set current CPL. */
1833 if (pCtx->eflags.Bits.u1VM == 1)
1834 cpu_x86_set_cpl(&pVM->rem.s.Env, 3);
1835 else
1836 cpu_x86_set_cpl(&pVM->rem.s.Env, pCtx->ss & 3);
1837 }
1838 else
1839 {
1840 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1841 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1842 {
1843 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1844
1845 cpu_x86_set_cpl(&pVM->rem.s.Env, (pCtx->eflags.Bits.u1VM) ? 3 : (pCtx->ss & 3));
1846 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1847#ifdef VBOX_WITH_STATISTICS
1848 if (pVM->rem.s.Env.segs[R_SS].newselector)
1849 {
1850 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1851 }
1852#endif
1853 }
1854 else
1855 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1856
1857 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1858 {
1859 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1860 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1861#ifdef VBOX_WITH_STATISTICS
1862 if (pVM->rem.s.Env.segs[R_ES].newselector)
1863 {
1864 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1865 }
1866#endif
1867 }
1868 else
1869 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1870
1871 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1872 {
1873 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1874 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1875#ifdef VBOX_WITH_STATISTICS
1876 if (pVM->rem.s.Env.segs[R_CS].newselector)
1877 {
1878 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1879 }
1880#endif
1881 }
1882 else
1883 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1884
1885 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1886 {
1887 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1888 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1889#ifdef VBOX_WITH_STATISTICS
1890 if (pVM->rem.s.Env.segs[R_DS].newselector)
1891 {
1892 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1893 }
1894#endif
1895 }
1896 else
1897 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1898
1899 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1900 * be the same but not the base/limit. */
1901 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1902 {
1903 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1904 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1905#ifdef VBOX_WITH_STATISTICS
1906 if (pVM->rem.s.Env.segs[R_FS].newselector)
1907 {
1908 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1909 }
1910#endif
1911 }
1912 else
1913 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1914
1915 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1916 {
1917 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1918 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1919#ifdef VBOX_WITH_STATISTICS
1920 if (pVM->rem.s.Env.segs[R_GS].newselector)
1921 {
1922 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1923 }
1924#endif
1925 }
1926 else
1927 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1928 }
1929
1930 /*
1931 * Check for traps.
1932 */
1933 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1934 bool fIsSoftwareInterrupt;
1935 uint8_t u8TrapNo;
1936 int rc = TRPMQueryTrap(pVM, &u8TrapNo, &fIsSoftwareInterrupt);
1937 if (VBOX_SUCCESS(rc))
1938 {
1939 #ifdef DEBUG
1940 if (u8TrapNo == 0x80)
1941 {
1942 remR3DumpLnxSyscall(pVM);
1943 remR3DumpOBsdSyscall(pVM);
1944 }
1945 #endif
1946
1947 pVM->rem.s.Env.exception_index = u8TrapNo;
1948 if (!fIsSoftwareInterrupt)
1949 {
1950 pVM->rem.s.Env.exception_is_int = 0;
1951 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
1952 }
1953 else
1954 {
1955 /*
1956 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
1957 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
1958 * for int03 and into.
1959 */
1960 pVM->rem.s.Env.exception_is_int = 1;
1961 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 2;
1962 /* int 3 may be generated by one-byte 0xcc */
1963 if (u8TrapNo == 3)
1964 {
1965 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xcc)
1966 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1967 }
1968 /* int 4 may be generated by one-byte 0xce */
1969 else if (u8TrapNo == 4)
1970 {
1971 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xce)
1972 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1973 }
1974 }
1975
1976 /* get error code and cr2 if needed. */
1977 switch (u8TrapNo)
1978 {
1979 case 0x0e:
1980 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
1981 /* fallthru */
1982 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
1983 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
1984 break;
1985
1986 case 0x11: case 0x08:
1987 default:
1988 pVM->rem.s.Env.error_code = 0;
1989 break;
1990 }
1991
1992 /*
1993 * We can now reset the active trap since the recompiler is gonna have a go at it.
1994 */
1995 rc = TRPMResetTrap(pVM);
1996 AssertRC(rc);
1997 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
1998 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
1999 }
2000
2001 /*
2002 * Clear old interrupt request flags; Check for pending hardware interrupts.
2003 * (See @remark for why we don't check for other FFs.)
2004 */
2005 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2006 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2007 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
2008 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2009
2010 /*
2011 * We're now in REM mode.
2012 */
2013 pVM->rem.s.fInREM = true;
2014 pVM->rem.s.fInStateSync = false;
2015 pVM->rem.s.cCanExecuteRaw = 0;
2016 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2017 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2018 return VINF_SUCCESS;
2019}
2020
2021
2022/**
2023 * Syncs back changes in the REM state to the the VM state.
2024 *
2025 * This must be called after invoking REMR3Run().
2026 * Calling it several times in a row is not permitted.
2027 *
2028 * @returns VBox status code.
2029 *
2030 * @param pVM VM Handle.
2031 */
2032REMR3DECL(int) REMR3StateBack(PVM pVM)
2033{
2034 Log2(("REMR3StateBack:\n"));
2035 Assert(pVM->rem.s.fInREM);
2036 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2037 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2038
2039 /*
2040 * Copy back the registers.
2041 * This is done in the order they are declared in the CPUMCTX structure.
2042 */
2043
2044 /** @todo FOP */
2045 /** @todo FPUIP */
2046 /** @todo CS */
2047 /** @todo FPUDP */
2048 /** @todo DS */
2049 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2050 pCtx->fpu.MXCSR = 0;
2051 pCtx->fpu.MXCSR_MASK = 0;
2052
2053 /** @todo check if FPU/XMM was actually used in the recompiler */
2054 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2055//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2056
2057 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2058 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2059 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2060 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2061 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2062 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2063 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2064
2065 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2066 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2067
2068#ifdef VBOX_WITH_STATISTICS
2069 if (pVM->rem.s.Env.segs[R_SS].newselector)
2070 {
2071 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2072 }
2073 if (pVM->rem.s.Env.segs[R_GS].newselector)
2074 {
2075 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2076 }
2077 if (pVM->rem.s.Env.segs[R_FS].newselector)
2078 {
2079 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2080 }
2081 if (pVM->rem.s.Env.segs[R_ES].newselector)
2082 {
2083 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2084 }
2085 if (pVM->rem.s.Env.segs[R_DS].newselector)
2086 {
2087 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2088 }
2089 if (pVM->rem.s.Env.segs[R_CS].newselector)
2090 {
2091 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2092 }
2093#endif
2094 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2095 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2096 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2097 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2098 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2099
2100 pCtx->eip = pVM->rem.s.Env.eip;
2101 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2102
2103 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2104 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2105 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2106 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2107
2108 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2109 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2110 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2111 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2112 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2113 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2114 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2115 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2116
2117 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2118 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2119 {
2120 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2121 STAM_COUNTER_INC(&gStatREMGDTChange);
2122 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2123 }
2124
2125 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2126 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2127 {
2128 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2129 STAM_COUNTER_INC(&gStatREMIDTChange);
2130 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2131 }
2132
2133 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2134 {
2135 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2136 STAM_COUNTER_INC(&gStatREMLDTRChange);
2137 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2138 }
2139 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2140 {
2141 pCtx->tr = pVM->rem.s.Env.tr.selector;
2142 STAM_COUNTER_INC(&gStatREMTRChange);
2143 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2144 }
2145
2146 /** @todo These values could still be out of sync! */
2147 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2148 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2149 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2150 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2151
2152 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2153 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2154 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2155
2156 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2157 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2158 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2159
2160 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2161 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2162 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2163
2164 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2165 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2166 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2167
2168 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2169 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2170 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2171
2172 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2173 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2174 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2175
2176 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2177 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2178 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2179
2180 /* Sysenter MSR */
2181 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2182 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2183 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2184
2185 remR3TrapClear(pVM);
2186
2187 /*
2188 * Check for traps.
2189 */
2190 if ( pVM->rem.s.Env.exception_index >= 0
2191 && pVM->rem.s.Env.exception_index < 256)
2192 {
2193 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2194 int rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int);
2195 AssertRC(rc);
2196 switch (pVM->rem.s.Env.exception_index)
2197 {
2198 case 0x0e:
2199 TRPMSetFaultAddress(pVM, pCtx->cr2);
2200 /* fallthru */
2201 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2202 case 0x11: case 0x08: /* 0 */
2203 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2204 break;
2205 }
2206
2207 }
2208
2209 /*
2210 * We're not longer in REM mode.
2211 */
2212 pVM->rem.s.fInREM = false;
2213 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2214 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2215 return VINF_SUCCESS;
2216}
2217
2218
2219/**
2220 * This is called by the disassembler when it wants to update the cpu state
2221 * before for instance doing a register dump.
2222 */
2223static void remR3StateUpdate(PVM pVM)
2224{
2225 Assert(pVM->rem.s.fInREM);
2226 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2227
2228 /*
2229 * Copy back the registers.
2230 * This is done in the order they are declared in the CPUMCTX structure.
2231 */
2232
2233 /** @todo FOP */
2234 /** @todo FPUIP */
2235 /** @todo CS */
2236 /** @todo FPUDP */
2237 /** @todo DS */
2238 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2239 pCtx->fpu.MXCSR = 0;
2240 pCtx->fpu.MXCSR_MASK = 0;
2241
2242 /** @todo check if FPU/XMM was actually used in the recompiler */
2243 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2244//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2245
2246 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2247 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2248 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2249 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2250 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2251 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2252 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2253
2254 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2255 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2256
2257 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2258 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2259 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2260 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2261 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2262
2263 pCtx->eip = pVM->rem.s.Env.eip;
2264 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2265
2266 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2267 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2268 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2269 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2270
2271 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2272 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2273 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2274 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2275 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2276 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2277 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2278 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2279
2280 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2281 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2282 {
2283 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2284 STAM_COUNTER_INC(&gStatREMGDTChange);
2285 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2286 }
2287
2288 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2289 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2290 {
2291 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2292 STAM_COUNTER_INC(&gStatREMIDTChange);
2293 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2294 }
2295
2296 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2297 {
2298 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2299 STAM_COUNTER_INC(&gStatREMLDTRChange);
2300 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2301 }
2302 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2303 {
2304 pCtx->tr = pVM->rem.s.Env.tr.selector;
2305 STAM_COUNTER_INC(&gStatREMTRChange);
2306 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2307 }
2308
2309 /** @todo These values could still be out of sync! */
2310 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2311 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2312 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2313 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2314
2315 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2316 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2317 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2318
2319 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2320 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2321 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2322
2323 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2324 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2325 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2326
2327 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2328 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2329 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2330
2331 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2332 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2333 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2334
2335 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2336 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2337 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2338
2339 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2340 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2341 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2342
2343 /* Sysenter MSR */
2344 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2345 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2346 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2347}
2348
2349
2350/**
2351 * Update the VMM state information if we're currently in REM.
2352 *
2353 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2354 * we're currently executing in REM and the VMM state is invalid. This method will of
2355 * course check that we're executing in REM before syncing any data over to the VMM.
2356 *
2357 * @param pVM The VM handle.
2358 */
2359REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2360{
2361 if (pVM->rem.s.fInREM)
2362 remR3StateUpdate(pVM);
2363}
2364
2365
2366#undef LOG_GROUP
2367#define LOG_GROUP LOG_GROUP_REM
2368
2369
2370/**
2371 * Notify the recompiler about Address Gate 20 state change.
2372 *
2373 * This notification is required since A20 gate changes are
2374 * initialized from a device driver and the VM might just as
2375 * well be in REM mode as in RAW mode.
2376 *
2377 * @param pVM VM handle.
2378 * @param fEnable True if the gate should be enabled.
2379 * False if the gate should be disabled.
2380 */
2381REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2382{
2383 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2384 VM_ASSERT_EMT(pVM);
2385 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2386}
2387
2388
2389/**
2390 * Replays the invalidated recorded pages.
2391 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2392 *
2393 * @param pVM VM handle.
2394 */
2395REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2396{
2397 VM_ASSERT_EMT(pVM);
2398
2399 /*
2400 * Sync the required registers.
2401 */
2402 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2403 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2404 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2405 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2406
2407 /*
2408 * Replay the flushes.
2409 */
2410 pVM->rem.s.fIgnoreInvlPg = true;
2411 RTUINT i;
2412 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2413 {
2414 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2415 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2416 }
2417 pVM->rem.s.fIgnoreInvlPg = false;
2418 pVM->rem.s.cInvalidatedPages = 0;
2419}
2420
2421
2422/**
2423 * Replays the invalidated recorded pages.
2424 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2425 *
2426 * @param pVM VM handle.
2427 */
2428REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2429{
2430 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2431 VM_ASSERT_EMT(pVM);
2432
2433 /*
2434 * Replay the flushes.
2435 */
2436 RTUINT i;
2437 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2438 pVM->rem.s.cHandlerNotifications = 0;
2439 for (i = 0; i < c; i++)
2440 {
2441 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2442 switch (pRec->enmKind)
2443 {
2444 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2445 REMR3NotifyHandlerPhysicalRegister(pVM,
2446 pRec->u.PhysicalRegister.enmType,
2447 pRec->u.PhysicalRegister.GCPhys,
2448 pRec->u.PhysicalRegister.cb,
2449 pRec->u.PhysicalRegister.fHasHCHandler);
2450 break;
2451
2452 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2453 REMR3NotifyHandlerPhysicalDeregister(pVM,
2454 pRec->u.PhysicalDeregister.enmType,
2455 pRec->u.PhysicalDeregister.GCPhys,
2456 pRec->u.PhysicalDeregister.cb,
2457 pRec->u.PhysicalDeregister.fHasHCHandler,
2458 pRec->u.PhysicalDeregister.pvHCPtr);
2459 break;
2460
2461 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2462 REMR3NotifyHandlerPhysicalModify(pVM,
2463 pRec->u.PhysicalModify.enmType,
2464 pRec->u.PhysicalModify.GCPhysOld,
2465 pRec->u.PhysicalModify.GCPhysNew,
2466 pRec->u.PhysicalModify.cb,
2467 pRec->u.PhysicalModify.fHasHCHandler,
2468 pRec->u.PhysicalModify.pvHCPtr);
2469 break;
2470
2471 default:
2472 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2473 break;
2474 }
2475 }
2476}
2477
2478
2479/**
2480 * Notify REM about changed code page.
2481 *
2482 * @returns VBox status code.
2483 * @param pVM VM handle.
2484 * @param pvCodePage Code page address
2485 */
2486REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2487{
2488 int rc;
2489 RTGCPHYS PhysGC;
2490 uint64_t flags;
2491
2492 VM_ASSERT_EMT(pVM);
2493
2494 /*
2495 * Get the physical page address.
2496 */
2497 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2498 if (rc == VINF_SUCCESS)
2499 {
2500 /*
2501 * Sync the required registers and flush the whole page.
2502 * (Easier to do the whole page than notifying it about each physical
2503 * byte that was changed.
2504 */
2505 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2506 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2507 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2508 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2509
2510 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2511 }
2512 return VINF_SUCCESS;
2513}
2514
2515/**
2516 * Notification about a successful MMR3PhysRegister() call.
2517 *
2518 * @param pVM VM handle.
2519 * @param GCPhys The physical address the RAM.
2520 * @param cb Size of the memory.
2521 * @param pvRam The HC address of the RAM.
2522 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2523 */
2524REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvRam, unsigned fFlags)
2525{
2526 LogFlow(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2527 VM_ASSERT_EMT(pVM);
2528
2529 /*
2530 * Validate input - we trust the caller.
2531 */
2532 Assert(!GCPhys || pvRam);
2533 Assert(RT_ALIGN_P(pvRam, PAGE_SIZE) == pvRam);
2534 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2535 Assert(cb);
2536 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2537
2538 /*
2539 * Base ram?
2540 */
2541 if (!GCPhys)
2542 {
2543#if !defined(PGM_DYNAMIC_RAM_ALLOC) && !defined(REM_PHYS_ADDR_IN_TLB)
2544 AssertRelease(!phys_ram_base);
2545 phys_ram_base = pvRam;
2546#endif
2547 phys_ram_size = cb;
2548 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2549#ifndef VBOX_STRICT
2550 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2551 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2552#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2553 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2554 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2555 uint32_t cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2556 int rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2557 AssertRC(rc);
2558 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2559#endif
2560 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2561 }
2562
2563 /*
2564 * Register the ram.
2565 */
2566 Assert(!pVM->rem.s.fIgnoreAll);
2567 pVM->rem.s.fIgnoreAll = true;
2568
2569#ifdef PGM_DYNAMIC_RAM_ALLOC
2570 if (!GCPhys)
2571 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2572 else
2573 {
2574# ifndef REM_PHYS_ADDR_IN_TLB
2575 uint32_t i;
2576# endif
2577
2578 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2579
2580# ifndef REM_PHYS_ADDR_IN_TLB
2581 AssertRelease(pVM->rem.s.cPhysRegistrations < REM_MAX_PHYS_REGISTRATIONS);
2582 for (i = 0; i < pVM->rem.s.cPhysRegistrations; i++)
2583 {
2584 if (pVM->rem.s.aPhysReg[i].GCPhys == GCPhys)
2585 {
2586 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvRam;
2587 pVM->rem.s.aPhysReg[i].cb = cb;
2588 break;
2589 }
2590 }
2591 if (i == pVM->rem.s.cPhysRegistrations)
2592 {
2593 pVM->rem.s.aPhysReg[i].GCPhys = GCPhys;
2594 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvRam;
2595 pVM->rem.s.aPhysReg[i].cb = cb;
2596 pVM->rem.s.cPhysRegistrations++;
2597 }
2598# endif /* !REM_PHYS_ADDR_IN_TLB */
2599 }
2600#elif defined(REM_PHYS_ADDR_IN_TLB)
2601 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2602#else
2603 AssertRelease(phys_ram_base);
2604 cpu_register_physical_memory(GCPhys, cb, ((uintptr_t)pvRam - (uintptr_t)phys_ram_base)
2605 | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2606#endif
2607 Assert(pVM->rem.s.fIgnoreAll);
2608 pVM->rem.s.fIgnoreAll = false;
2609}
2610
2611
2612/**
2613 * Notification about a successful PGMR3PhysRegisterChunk() call.
2614 *
2615 * @param pVM VM handle.
2616 * @param GCPhys The physical address the RAM.
2617 * @param cb Size of the memory.
2618 * @param pvRam The HC address of the RAM.
2619 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2620 */
2621REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2622{
2623#ifdef PGM_DYNAMIC_RAM_ALLOC
2624# ifndef REM_PHYS_ADDR_IN_TLB
2625 uint32_t idx;
2626#endif
2627
2628 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2629 VM_ASSERT_EMT(pVM);
2630
2631 /*
2632 * Validate input - we trust the caller.
2633 */
2634 Assert(pvRam);
2635 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2636 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2637 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2638 Assert(fFlags == 0 /* normal RAM */);
2639
2640# ifndef REM_PHYS_ADDR_IN_TLB
2641 if (!pVM->rem.s.paHCVirtToGCPhys)
2642 {
2643 uint32_t size = (_4G >> PGM_DYNAMIC_CHUNK_SHIFT) * sizeof(REMCHUNKINFO);
2644
2645 Assert(phys_ram_size);
2646
2647 pVM->rem.s.paHCVirtToGCPhys = (PREMCHUNKINFO)MMR3HeapAllocZ(pVM, MM_TAG_REM, size);
2648 pVM->rem.s.paGCPhysToHCVirt = (RTHCPTR)MMR3HeapAllocZ(pVM, MM_TAG_REM, (phys_ram_size >> PGM_DYNAMIC_CHUNK_SHIFT)*sizeof(RTHCPTR));
2649 }
2650 pVM->rem.s.paGCPhysToHCVirt[GCPhys >> PGM_DYNAMIC_CHUNK_SHIFT] = pvRam;
2651
2652 idx = (pvRam >> PGM_DYNAMIC_CHUNK_SHIFT);
2653 if (!pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1)
2654 {
2655 pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1 = pvRam;
2656 pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 = GCPhys;
2657 }
2658 else
2659 {
2660 Assert(!pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2);
2661 pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2 = pvRam;
2662 pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 = GCPhys;
2663 }
2664 /* Does the region spawn two chunks? */
2665 if (pvRam & PGM_DYNAMIC_CHUNK_OFFSET_MASK)
2666 {
2667 if (!pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk1)
2668 {
2669 pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk1 = pvRam;
2670 pVM->rem.s.paHCVirtToGCPhys[idx+1].GCPhys1 = GCPhys;
2671 }
2672 else
2673 {
2674 Assert(!pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk2);
2675 pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk2 = pvRam;
2676 pVM->rem.s.paHCVirtToGCPhys[idx+1].GCPhys2 = GCPhys;
2677 }
2678 }
2679# endif /* !REM_PHYS_ADDR_IN_TLB */
2680
2681 Assert(!pVM->rem.s.fIgnoreAll);
2682 pVM->rem.s.fIgnoreAll = true;
2683
2684 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2685
2686 Assert(pVM->rem.s.fIgnoreAll);
2687 pVM->rem.s.fIgnoreAll = false;
2688
2689#else
2690 AssertReleaseFailed();
2691#endif
2692}
2693
2694
2695#ifdef PGM_DYNAMIC_RAM_ALLOC
2696# ifndef REM_PHYS_ADDR_IN_TLB
2697#if 0
2698static const uint8_t gabZeroPage[PAGE_SIZE];
2699#endif
2700
2701/**
2702 * Convert GC physical address to HC virt
2703 *
2704 * @returns The HC virt address corresponding to addr.
2705 * @param env The cpu environment.
2706 * @param addr The physical address.
2707 */
2708DECLINLINE(void *) remR3GCPhys2HCVirtInlined(PVM pVM, target_ulong addr)
2709{
2710 uint32_t i;
2711 void *pv;
2712 STAM_PROFILE_START(&gStatGCPhys2HCVirt, a);
2713
2714#if 1
2715 /* lookup in pVM->rem.s.aPhysReg array first (for ROM range(s) inside the guest's RAM) */
2716 for (i = 0; i < pVM->rem.s.cPhysRegistrations; i++)
2717 {
2718 RTGCPHYS off = addr - pVM->rem.s.aPhysReg[i].GCPhys;
2719 if (off < pVM->rem.s.aPhysReg[i].cb)
2720 {
2721 pv = (void *)(pVM->rem.s.aPhysReg[i].HCVirt + off);
2722 Log2(("remR3GCPhys2HCVirt: %x -> %x\n", addr, pv));
2723 STAM_PROFILE_STOP(&gStatGCPhys2HCVirt, a);
2724 return pv;
2725 }
2726 }
2727 AssertMsg(addr < phys_ram_size, ("remR3GCPhys2HCVirt: unknown physical address %x\n", addr));
2728 pv = (void *)(pVM->rem.s.paGCPhysToHCVirt[addr >> PGM_DYNAMIC_CHUNK_SHIFT] + (addr & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
2729 Log2(("remR3GCPhys2HCVirt: %x -> %x\n", addr, pv));
2730#else
2731 /** @todo figure out why this is faster than the above code. */
2732 int rc = PGMPhysGCPhys2HCPtr(pVM, addr & X86_PTE_PAE_PG_MASK, PAGE_SIZE, &pv);
2733 if (RT_FAILURE(rc))
2734 {
2735 AssertMsgFailed(("remR3GCPhys2HCVirt: unknown physical address %x\n", addr));
2736 pv = gabZeroPage;
2737 }
2738 pv = (void *)((uintptr_t)pv | (addr & PAGE_OFFSET_MASK));
2739#endif
2740 return pv;
2741}
2742
2743
2744/**
2745 * Convert GC physical address to HC virt
2746 *
2747 * @returns The HC virt address corresponding to addr.
2748 * @param env The cpu environment.
2749 * @param addr The physical address.
2750 */
2751DECLINLINE(target_ulong) remR3HCVirt2GCPhysInlined(PVM pVM, void *addr)
2752{
2753 RTHCUINTPTR HCVirt = (RTHCUINTPTR)addr;
2754 uint32_t idx = (HCVirt >> PGM_DYNAMIC_CHUNK_SHIFT);
2755 RTHCUINTPTR off;
2756 RTUINT i;
2757 target_ulong GCPhys;
2758
2759 off = HCVirt - pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1;
2760
2761 if ( pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1
2762 && off < PGM_DYNAMIC_CHUNK_SIZE)
2763 {
2764 GCPhys = pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 + off;
2765 Log2(("remR3HCVirt2GCPhys %x -> %x\n", addr, GCPhys));
2766 return GCPhys;
2767 }
2768
2769 off = HCVirt - pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2;
2770 if ( pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2
2771 && off < PGM_DYNAMIC_CHUNK_SIZE)
2772 {
2773 GCPhys = pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 + off;
2774 Log2(("remR3HCVirt2GCPhys %x -> %x\n", addr, GCPhys));
2775 return GCPhys;
2776 }
2777
2778 /* Must be externally registered RAM/ROM range */
2779 for (i = 0; i < pVM->rem.s.cPhysRegistrations; i++)
2780 {
2781 uint32_t off = HCVirt - pVM->rem.s.aPhysReg[i].HCVirt;
2782 if (off < pVM->rem.s.aPhysReg[i].cb)
2783 {
2784 GCPhys = pVM->rem.s.aPhysReg[i].GCPhys + off;
2785 Log2(("remR3HCVirt2GCPhys %x -> %x\n", addr, GCPhys));
2786 return GCPhys;
2787 }
2788 }
2789 AssertReleaseMsgFailed(("No translation for physical address %VHv???\n", addr));
2790 return 0;
2791}
2792
2793/**
2794 * Convert GC physical address to HC virt
2795 *
2796 * @returns The HC virt address corresponding to addr.
2797 * @param env The cpu environment.
2798 * @param addr The physical address.
2799 */
2800void *remR3GCPhys2HCVirt(void *env, target_ulong addr)
2801{
2802 PVM pVM = ((CPUState *)env)->pVM;
2803 void *pv;
2804 STAM_PROFILE_START(&gStatGCPhys2HCVirt, a);
2805 pv = remR3GCPhys2HCVirtInlined(pVM, addr);
2806 STAM_PROFILE_STOP(&gStatGCPhys2HCVirt, a);
2807 return pv;
2808}
2809
2810
2811/**
2812 * Convert GC physical address to HC virt
2813 *
2814 * @returns The HC virt address corresponding to addr.
2815 * @param env The cpu environment.
2816 * @param addr The physical address.
2817 */
2818target_ulong remR3HCVirt2GCPhys(void *env, void *addr)
2819{
2820 PVM pVM = ((CPUState *)env)->pVM;
2821 target_ulong GCPhys;
2822 STAM_PROFILE_START(&gStatHCVirt2GCPhys, a);
2823 GCPhys = remR3HCVirt2GCPhysInlined(pVM, addr);
2824 STAM_PROFILE_STOP(&gStatHCVirt2GCPhys, a);
2825 return GCPhys;
2826}
2827
2828# endif /* !REM_PHYS_ADDR_IN_TLB */
2829
2830/**
2831 * Grows dynamically allocated guest RAM.
2832 * Will raise a fatal error if the operation fails.
2833 *
2834 * @param physaddr The physical address.
2835 */
2836void remR3GrowDynRange(unsigned long physaddr)
2837{
2838 int rc;
2839 PVM pVM = cpu_single_env->pVM;
2840
2841 Log(("remR3GrowDynRange %VGp\n", physaddr));
2842 rc = PGM3PhysGrowRange(pVM, (RTGCPHYS)physaddr);
2843 if (VBOX_SUCCESS(rc))
2844 return;
2845
2846 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2847 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2848 AssertFatalFailed();
2849}
2850
2851#endif /* PGM_DYNAMIC_RAM_ALLOC */
2852
2853
2854/**
2855 * Notification about a successful MMR3PhysRomRegister() call.
2856 *
2857 * @param pVM VM handle.
2858 * @param GCPhys The physical address of the ROM.
2859 * @param cb The size of the ROM.
2860 * @param pvCopy Pointer to the ROM copy.
2861 */
2862REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy)
2863{
2864#if defined(PGM_DYNAMIC_RAM_ALLOC) && !defined(REM_PHYS_ADDR_IN_TLB)
2865 uint32_t i;
2866#endif
2867 LogFlow(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p\n", GCPhys, cb, pvCopy));
2868 VM_ASSERT_EMT(pVM);
2869
2870 /*
2871 * Validate input - we trust the caller.
2872 */
2873 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2874 Assert(cb);
2875 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2876 Assert(pvCopy);
2877 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2878
2879 /*
2880 * Register the rom.
2881 */
2882 Assert(!pVM->rem.s.fIgnoreAll);
2883 pVM->rem.s.fIgnoreAll = true;
2884
2885#ifdef REM_PHYS_ADDR_IN_TLB
2886 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_ROM);
2887#elif defined(PGM_DYNAMIC_RAM_ALLOC)
2888 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_ROM);
2889 AssertRelease(pVM->rem.s.cPhysRegistrations < REM_MAX_PHYS_REGISTRATIONS);
2890 for (i = 0; i < pVM->rem.s.cPhysRegistrations; i++)
2891 {
2892 if (pVM->rem.s.aPhysReg[i].GCPhys == GCPhys)
2893 {
2894 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvCopy;
2895 pVM->rem.s.aPhysReg[i].cb = cb;
2896 break;
2897 }
2898 }
2899 if (i == pVM->rem.s.cPhysRegistrations)
2900 {
2901 pVM->rem.s.aPhysReg[i].GCPhys = GCPhys;
2902 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvCopy;
2903 pVM->rem.s.aPhysReg[i].cb = cb;
2904 pVM->rem.s.cPhysRegistrations++;
2905 }
2906#else
2907 AssertRelease(phys_ram_base);
2908 cpu_register_physical_memory(GCPhys, cb, ((uintptr_t)pvCopy - (uintptr_t)phys_ram_base) | IO_MEM_ROM);
2909#endif
2910
2911 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2912
2913 Assert(pVM->rem.s.fIgnoreAll);
2914 pVM->rem.s.fIgnoreAll = false;
2915}
2916
2917
2918/**
2919 * Notification about a successful MMR3PhysRegister() call.
2920 *
2921 * @param pVM VM Handle.
2922 * @param GCPhys Start physical address.
2923 * @param cb The size of the range.
2924 */
2925REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2926{
2927 LogFlow(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2928 VM_ASSERT_EMT(pVM);
2929
2930 /*
2931 * Validate input - we trust the caller.
2932 */
2933 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2934 Assert(cb);
2935 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2936
2937 /*
2938 * Unassigning the memory.
2939 */
2940 Assert(!pVM->rem.s.fIgnoreAll);
2941 pVM->rem.s.fIgnoreAll = true;
2942
2943 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2944
2945 Assert(pVM->rem.s.fIgnoreAll);
2946 pVM->rem.s.fIgnoreAll = false;
2947}
2948
2949
2950/**
2951 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2952 *
2953 * @param pVM VM Handle.
2954 * @param enmType Handler type.
2955 * @param GCPhys Handler range address.
2956 * @param cb Size of the handler range.
2957 * @param fHasHCHandler Set if the handler has a HC callback function.
2958 *
2959 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2960 * Handler memory type to memory which has no HC handler.
2961 */
2962REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2963{
2964 LogFlow(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d\n",
2965 enmType, GCPhys, cb, fHasHCHandler));
2966 VM_ASSERT_EMT(pVM);
2967 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2968 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2969
2970 if (pVM->rem.s.cHandlerNotifications)
2971 REMR3ReplayHandlerNotifications(pVM);
2972
2973 Assert(!pVM->rem.s.fIgnoreAll);
2974 pVM->rem.s.fIgnoreAll = true;
2975
2976 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2977 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2978 else if (fHasHCHandler)
2979 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2980
2981 Assert(pVM->rem.s.fIgnoreAll);
2982 pVM->rem.s.fIgnoreAll = false;
2983}
2984
2985
2986/**
2987 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2988 *
2989 * @param pVM VM Handle.
2990 * @param enmType Handler type.
2991 * @param GCPhys Handler range address.
2992 * @param cb Size of the handler range.
2993 * @param fHasHCHandler Set if the handler has a HC callback function.
2994 * @param pvHCPtr The HC virtual address corresponding to GCPhys if available.
2995 */
2996REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, void *pvHCPtr)
2997{
2998 LogFlow(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d pvHCPtr=%p RAM=%08x\n",
2999 enmType, GCPhys, cb, fHasHCHandler, pvHCPtr, MMR3PhysGetRamSize(pVM)));
3000 VM_ASSERT_EMT(pVM);
3001
3002 if (pVM->rem.s.cHandlerNotifications)
3003 REMR3ReplayHandlerNotifications(pVM);
3004
3005 Assert(!pVM->rem.s.fIgnoreAll);
3006 pVM->rem.s.fIgnoreAll = true;
3007
3008 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
3009 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
3010 else if (fHasHCHandler)
3011 {
3012 if (!pvHCPtr)
3013 {
3014 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
3015 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
3016 }
3017 else
3018 {
3019 /* This is not perfect, but it'll do for PD monitoring... */
3020 Assert(cb == PAGE_SIZE);
3021 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
3022#ifdef REM_PHYS_ADDR_IN_TLB
3023 cpu_register_physical_memory(GCPhys, cb, GCPhys);
3024#elif defined(PGM_DYNAMIC_RAM_ALLOC)
3025 Assert(remR3HCVirt2GCPhysInlined(pVM, pvHCPtr) < MMR3PhysGetRamSize(pVM));
3026 cpu_register_physical_memory(GCPhys, cb, GCPhys);
3027#else
3028 Assert((uintptr_t)pvHCPtr - (uintptr_t)phys_ram_base < MMR3PhysGetRamSize(pVM));
3029 cpu_register_physical_memory(GCPhys, cb, (uintptr_t)pvHCPtr - (uintptr_t)phys_ram_base);
3030#endif
3031 }
3032 }
3033
3034 Assert(pVM->rem.s.fIgnoreAll);
3035 pVM->rem.s.fIgnoreAll = false;
3036}
3037
3038
3039/**
3040 * Notification about a successful PGMR3HandlerPhysicalModify() call.
3041 *
3042 * @param pVM VM Handle.
3043 * @param enmType Handler type.
3044 * @param GCPhysOld Old handler range address.
3045 * @param GCPhysNew New handler range address.
3046 * @param cb Size of the handler range.
3047 * @param fHasHCHandler Set if the handler has a HC callback function.
3048 * @param pvHCPtr The HC virtual address corresponding to GCPhys if available.
3049 */
3050REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, void *pvHCPtr)
3051{
3052 LogFlow(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%d fHasHCHandler=%d pvHCPtr=%p\n",
3053 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, pvHCPtr));
3054 VM_ASSERT_EMT(pVM);
3055 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
3056
3057 if (pVM->rem.s.cHandlerNotifications)
3058 REMR3ReplayHandlerNotifications(pVM);
3059
3060 if (fHasHCHandler)
3061 {
3062 Assert(!pVM->rem.s.fIgnoreAll);
3063 pVM->rem.s.fIgnoreAll = true;
3064
3065 /*
3066 * Reset the old page.
3067 */
3068 if (!pvHCPtr)
3069 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
3070 else
3071 {
3072 /* This is not perfect, but it'll do for PD monitoring... */
3073 Assert(cb == PAGE_SIZE);
3074 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
3075#ifdef REM_PHYS_ADDR_IN_TLB
3076 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
3077#elif defined(PGM_DYNAMIC_RAM_ALLOC)
3078 Assert(remR3HCVirt2GCPhysInlined(pVM, pvHCPtr) < MMR3PhysGetRamSize(pVM));
3079 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
3080#else
3081 AssertMsg((uintptr_t)pvHCPtr - (uintptr_t)phys_ram_base < MMR3PhysGetRamSize(pVM),
3082 ("pvHCPtr=%p phys_ram_base=%p size=%RX64 cb=%RGp\n", pvHCPtr, phys_ram_base, MMR3PhysGetRamSize(pVM), cb));
3083 cpu_register_physical_memory(GCPhysOld, cb, (uintptr_t)pvHCPtr - (uintptr_t)phys_ram_base);
3084#endif
3085 }
3086
3087 /*
3088 * Update the new page.
3089 */
3090 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
3091 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
3092 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
3093
3094 Assert(pVM->rem.s.fIgnoreAll);
3095 pVM->rem.s.fIgnoreAll = false;
3096 }
3097}
3098
3099
3100/**
3101 * Checks if we're handling access to this page or not.
3102 *
3103 * @returns true if we're trapping access.
3104 * @returns false if we aren't.
3105 * @param pVM The VM handle.
3106 * @param GCPhys The physical address.
3107 *
3108 * @remark This function will only work correctly in VBOX_STRICT builds!
3109 */
3110REMDECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
3111{
3112#ifdef VBOX_STRICT
3113 if (pVM->rem.s.cHandlerNotifications)
3114 REMR3ReplayHandlerNotifications(pVM);
3115
3116 unsigned long off = get_phys_page_offset(GCPhys);
3117 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
3118 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
3119 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
3120#else
3121 return false;
3122#endif
3123}
3124
3125
3126/**
3127 * Deals with a rare case in get_phys_addr_code where the code
3128 * is being monitored.
3129 *
3130 * It could also be an MMIO page, in which case we will raise a fatal error.
3131 *
3132 * @returns The physical address corresponding to addr.
3133 * @param env The cpu environment.
3134 * @param addr The virtual address.
3135 * @param pTLBEntry The TLB entry.
3136 */
3137target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
3138{
3139 PVM pVM = env->pVM;
3140 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
3141 {
3142 target_ulong ret = pTLBEntry->addend + addr;
3143 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv addr_code=%VGv addend=%VGp ret=%VGp\n",
3144 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
3145 return ret;
3146 }
3147 LogRel(("\nTrying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
3148 "*** handlers\n",
3149 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
3150 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
3151 LogRel(("*** mmio\n"));
3152 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
3153 LogRel(("*** phys\n"));
3154 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
3155 cpu_abort(env, "Trying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
3156 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
3157 AssertFatalFailed();
3158}
3159
3160
3161/** Validate the physical address passed to the read functions.
3162 * Useful for finding non-guest-ram reads/writes. */
3163#if 1 /* disable if it becomes bothersome... */
3164# define VBOX_CHECK_ADDR(GCPhys) AssertMsg(PGMPhysIsGCPhysValid(cpu_single_env->pVM, (GCPhys)), ("%VGp\n", (GCPhys)))
3165#else
3166# define VBOX_CHECK_ADDR(GCPhys) do { } while (0)
3167#endif
3168
3169/**
3170 * Read guest RAM and ROM.
3171 *
3172 * @param SrcGCPhys The source address (guest physical).
3173 * @param pvDst The destination address.
3174 * @param cb Number of bytes
3175 */
3176void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3177{
3178 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3179 VBOX_CHECK_ADDR(SrcGCPhys);
3180 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3181 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3182}
3183
3184
3185/**
3186 * Read guest RAM and ROM, unsigned 8-bit.
3187 *
3188 * @param SrcGCPhys The source address (guest physical).
3189 */
3190uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3191{
3192 uint8_t val;
3193 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3194 VBOX_CHECK_ADDR(SrcGCPhys);
3195 val = PGMR3PhysReadByte(cpu_single_env->pVM, SrcGCPhys);
3196 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3197 return val;
3198}
3199
3200
3201/**
3202 * Read guest RAM and ROM, signed 8-bit.
3203 *
3204 * @param SrcGCPhys The source address (guest physical).
3205 */
3206int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3207{
3208 int8_t val;
3209 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3210 VBOX_CHECK_ADDR(SrcGCPhys);
3211 val = PGMR3PhysReadByte(cpu_single_env->pVM, SrcGCPhys);
3212 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3213 return val;
3214}
3215
3216
3217/**
3218 * Read guest RAM and ROM, unsigned 16-bit.
3219 *
3220 * @param SrcGCPhys The source address (guest physical).
3221 */
3222uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3223{
3224 uint16_t val;
3225 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3226 VBOX_CHECK_ADDR(SrcGCPhys);
3227 val = PGMR3PhysReadWord(cpu_single_env->pVM, SrcGCPhys);
3228 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3229 return val;
3230}
3231
3232
3233/**
3234 * Read guest RAM and ROM, signed 16-bit.
3235 *
3236 * @param SrcGCPhys The source address (guest physical).
3237 */
3238int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3239{
3240 uint16_t val;
3241 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3242 VBOX_CHECK_ADDR(SrcGCPhys);
3243 val = PGMR3PhysReadWord(cpu_single_env->pVM, SrcGCPhys);
3244 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3245 return val;
3246}
3247
3248
3249/**
3250 * Read guest RAM and ROM, unsigned 32-bit.
3251 *
3252 * @param SrcGCPhys The source address (guest physical).
3253 */
3254uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3255{
3256 uint32_t val;
3257 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3258 VBOX_CHECK_ADDR(SrcGCPhys);
3259 val = PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys);
3260 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3261 return val;
3262}
3263
3264
3265/**
3266 * Read guest RAM and ROM, signed 32-bit.
3267 *
3268 * @param SrcGCPhys The source address (guest physical).
3269 */
3270int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3271{
3272 int32_t val;
3273 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3274 VBOX_CHECK_ADDR(SrcGCPhys);
3275 val = PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys);
3276 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3277 return val;
3278}
3279
3280
3281/**
3282 * Read guest RAM and ROM, unsigned 64-bit.
3283 *
3284 * @param SrcGCPhys The source address (guest physical).
3285 */
3286uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3287{
3288 uint64_t val;
3289 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3290 VBOX_CHECK_ADDR(SrcGCPhys);
3291 val = PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys)
3292 | ((uint64_t)PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys + 4) << 32); /** @todo fix me! */
3293 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3294 return val;
3295}
3296
3297
3298/**
3299 * Write guest RAM.
3300 *
3301 * @param DstGCPhys The destination address (guest physical).
3302 * @param pvSrc The source address.
3303 * @param cb Number of bytes to write
3304 */
3305void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3306{
3307 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3308 VBOX_CHECK_ADDR(DstGCPhys);
3309 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3310 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3311}
3312
3313
3314/**
3315 * Write guest RAM, unsigned 8-bit.
3316 *
3317 * @param DstGCPhys The destination address (guest physical).
3318 * @param val Value
3319 */
3320void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3321{
3322 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3323 VBOX_CHECK_ADDR(DstGCPhys);
3324 PGMR3PhysWriteByte(cpu_single_env->pVM, DstGCPhys, val);
3325 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3326}
3327
3328
3329/**
3330 * Write guest RAM, unsigned 8-bit.
3331 *
3332 * @param DstGCPhys The destination address (guest physical).
3333 * @param val Value
3334 */
3335void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3336{
3337 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3338 VBOX_CHECK_ADDR(DstGCPhys);
3339 PGMR3PhysWriteWord(cpu_single_env->pVM, DstGCPhys, val);
3340 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3341}
3342
3343
3344/**
3345 * Write guest RAM, unsigned 32-bit.
3346 *
3347 * @param DstGCPhys The destination address (guest physical).
3348 * @param val Value
3349 */
3350void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3351{
3352 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3353 VBOX_CHECK_ADDR(DstGCPhys);
3354 PGMR3PhysWriteDword(cpu_single_env->pVM, DstGCPhys, val);
3355 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3356}
3357
3358
3359/**
3360 * Write guest RAM, unsigned 64-bit.
3361 *
3362 * @param DstGCPhys The destination address (guest physical).
3363 * @param val Value
3364 */
3365void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3366{
3367 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3368 VBOX_CHECK_ADDR(DstGCPhys);
3369 PGMR3PhysWriteDword(cpu_single_env->pVM, DstGCPhys, (uint32_t)val); /** @todo add U64 interface. */
3370 PGMR3PhysWriteDword(cpu_single_env->pVM, DstGCPhys + 4, val >> 32);
3371 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3372}
3373
3374
3375#ifndef REM_PHYS_ADDR_IN_TLB
3376
3377/**
3378 * Read guest RAM and ROM.
3379 *
3380 * @param pbSrcPhys The source address. Relative to guest RAM.
3381 * @param pvDst The destination address.
3382 * @param cb Number of bytes
3383 */
3384void remR3PhysReadHCPtr(uint8_t *pbSrcPhys, void *pvDst, unsigned cb)
3385{
3386 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3387
3388 /*
3389 * Calc the physical address ('off') and check that it's within the RAM.
3390 * ROM is accessed this way, even if it's not part of the RAM.
3391 */
3392 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3393#ifdef PGM_DYNAMIC_RAM_ALLOC
3394 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3395#else
3396 uintptr_t off = pbSrcPhys - phys_ram_base;
3397#endif
3398 if (off < (uintptr_t)phys_ram_size)
3399 PGMPhysRead(cpu_single_env->pVM, (RTGCPHYS)off, pvDst, cb);
3400 else
3401 {
3402 /* ROM range outside physical RAM, HC address passed directly */
3403 Log4(("remR3PhysRead ROM: %p\n", pbSrcPhys));
3404 memcpy(pvDst, pbSrcPhys, cb);
3405 }
3406 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3407}
3408
3409
3410/**
3411 * Read guest RAM and ROM, unsigned 8-bit.
3412 *
3413 * @param pbSrcPhys The source address. Relative to guest RAM.
3414 */
3415uint8_t remR3PhysReadHCPtrU8(uint8_t *pbSrcPhys)
3416{
3417 uint8_t val;
3418
3419 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3420
3421 /*
3422 * Calc the physical address ('off') and check that it's within the RAM.
3423 * ROM is accessed this way, even if it's not part of the RAM.
3424 */
3425#ifdef PGM_DYNAMIC_RAM_ALLOC
3426 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3427#else
3428 uintptr_t off = pbSrcPhys - phys_ram_base;
3429#endif
3430 if (off < (uintptr_t)phys_ram_size)
3431 val = PGMR3PhysReadByte(cpu_single_env->pVM, (RTGCPHYS)off);
3432 else
3433 {
3434 /* ROM range outside physical RAM, HC address passed directly */
3435 Log4(("remR3PhysReadU8 ROM: %p\n", pbSrcPhys));
3436 val = *pbSrcPhys;
3437 }
3438 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3439 return val;
3440}
3441
3442
3443/**
3444 * Read guest RAM and ROM, signed 8-bit.
3445 *
3446 * @param pbSrcPhys The source address. Relative to guest RAM.
3447 */
3448int8_t remR3PhysReadHCPtrS8(uint8_t *pbSrcPhys)
3449{
3450 int8_t val;
3451
3452 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3453
3454 /*
3455 * Calc the physical address ('off') and check that it's within the RAM.
3456 * ROM is accessed this way, even if it's not part of the RAM.
3457 */
3458#ifdef PGM_DYNAMIC_RAM_ALLOC
3459 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3460#else
3461 uintptr_t off = pbSrcPhys - phys_ram_base;
3462#endif
3463 if (off < (uintptr_t)phys_ram_size)
3464 val = PGMR3PhysReadByte(cpu_single_env->pVM, (RTGCPHYS)off);
3465 else
3466 {
3467 /* ROM range outside physical RAM, HC address passed directly */
3468 Log4(("remR3PhysReadS8 ROM: %p\n", pbSrcPhys));
3469 val = *(int8_t *)pbSrcPhys;
3470 }
3471 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3472 return val;
3473}
3474
3475
3476/**
3477 * Read guest RAM and ROM, unsigned 16-bit.
3478 *
3479 * @param pbSrcPhys The source address. Relative to guest RAM.
3480 */
3481uint16_t remR3PhysReadHCPtrU16(uint8_t *pbSrcPhys)
3482{
3483 uint16_t val;
3484
3485 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3486
3487 /*
3488 * Calc the physical address ('off') and check that it's within the RAM.
3489 * ROM is accessed this way, even if it's not part of the RAM.
3490 */
3491#ifdef PGM_DYNAMIC_RAM_ALLOC
3492 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3493#else
3494 uintptr_t off = pbSrcPhys - phys_ram_base;
3495#endif
3496 if (off < (uintptr_t)phys_ram_size)
3497 val = PGMR3PhysReadWord(cpu_single_env->pVM, (RTGCPHYS)off);
3498 else
3499 {
3500 /* ROM range outside physical RAM, HC address passed directly */
3501 Log4(("remR3PhysReadU16 ROM: %p\n", pbSrcPhys));
3502 val = *(uint16_t *)pbSrcPhys;
3503 }
3504 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3505 return val;
3506}
3507
3508
3509/**
3510 * Read guest RAM and ROM, signed 16-bit.
3511 *
3512 * @param pbSrcPhys The source address. Relative to guest RAM.
3513 */
3514int16_t remR3PhysReadHCPtrS16(uint8_t *pbSrcPhys)
3515{
3516 int16_t val;
3517
3518 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3519
3520 /*
3521 * Calc the physical address ('off') and check that it's within the RAM.
3522 * ROM is accessed this way, even if it's not part of the RAM.
3523 */
3524 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3525#ifdef PGM_DYNAMIC_RAM_ALLOC
3526 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3527#else
3528 uintptr_t off = pbSrcPhys - phys_ram_base;
3529#endif
3530 if (off < (uintptr_t)phys_ram_size)
3531 val = PGMR3PhysReadWord(cpu_single_env->pVM, (RTGCPHYS)off);
3532 else
3533 {
3534 /* ROM range outside physical RAM, HC address passed directly */
3535 Log4(("remR3PhysReadS16 ROM: %p\n", pbSrcPhys));
3536 val = *(int16_t *)pbSrcPhys;
3537 }
3538 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3539 return val;
3540}
3541
3542
3543/**
3544 * Read guest RAM and ROM, unsigned 32-bit.
3545 *
3546 * @param pbSrcPhys The source address. Relative to guest RAM.
3547 */
3548uint32_t remR3PhysReadHCPtrU32(uint8_t *pbSrcPhys)
3549{
3550 uint32_t val;
3551
3552 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3553
3554 /*
3555 * Calc the physical address ('off') and check that it's within the RAM.
3556 * ROM is accessed this way, even if it's not part of the RAM.
3557 */
3558#ifdef PGM_DYNAMIC_RAM_ALLOC
3559 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3560#else
3561 uintptr_t off = pbSrcPhys - phys_ram_base;
3562#endif
3563 if (off < (uintptr_t)phys_ram_size)
3564 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off);
3565 else
3566 {
3567 /* ROM range outside physical RAM, HC address passed directly */
3568 Log4(("remR3PhysReadU32 ROM: %p\n", pbSrcPhys));
3569 val = *(uint32_t *)pbSrcPhys;
3570 }
3571 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3572 return val;
3573}
3574
3575
3576/**
3577 * Read guest RAM and ROM, signed 32-bit.
3578 *
3579 * @param pbSrcPhys The source address. Relative to guest RAM.
3580 */
3581int32_t remR3PhysReadHCPtrS32(uint8_t *pbSrcPhys)
3582{
3583 int32_t val;
3584
3585 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3586
3587 /*
3588 * Calc the physical address ('off') and check that it's within the RAM.
3589 * ROM is accessed this way, even if it's not part of the RAM.
3590 */
3591#ifdef PGM_DYNAMIC_RAM_ALLOC
3592 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3593#else
3594 uintptr_t off = pbSrcPhys - phys_ram_base;
3595#endif
3596 if (off < (uintptr_t)phys_ram_size)
3597 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off);
3598 else
3599 {
3600 /* ROM range outside physical RAM, HC address passed directly */
3601 Log4(("remR3PhysReadS32 ROM: %p\n", pbSrcPhys));
3602 val = *(int32_t *)pbSrcPhys;
3603 }
3604 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3605 return val;
3606}
3607
3608
3609/**
3610 * Read guest RAM and ROM, unsigned 64-bit.
3611 *
3612 * @param pbSrcPhys The source address. Relative to guest RAM.
3613 */
3614uint64_t remR3PhysReadHCPtrU64(uint8_t *pbSrcPhys)
3615{
3616 uint64_t val;
3617
3618 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3619
3620 /*
3621 * Calc the physical address ('off') and check that it's within the RAM.
3622 * ROM is accessed this way, even if it's not part of the RAM.
3623 */
3624#ifdef PGM_DYNAMIC_RAM_ALLOC
3625 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3626#else
3627 uintptr_t off = pbSrcPhys - phys_ram_base;
3628#endif
3629 if (off < (uintptr_t)phys_ram_size)
3630 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off)
3631 | ((uint64_t)PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off + 4) << 32); /** @todo fix me! */
3632 else
3633 {
3634 /* ROM range outside physical RAM, HC address passed directly */
3635 Log4(("remR3PhysReadU64 ROM: %p\n", pbSrcPhys));
3636 val = *(uint32_t *)pbSrcPhys;
3637 }
3638 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3639 return val;
3640}
3641
3642
3643/**
3644 * Write guest RAM.
3645 *
3646 * @param pbDstPhys The destination address. Relative to guest RAM.
3647 * @param pvSrc The source address.
3648 * @param cb Number of bytes to write
3649 */
3650void remR3PhysWriteHCPtr(uint8_t *pbDstPhys, const void *pvSrc, unsigned cb)
3651{
3652 STAM_PROFILE_ADV_START(&gStatMemWriteHCPtr, a);
3653 /*
3654 * Calc the physical address ('off') and check that it's within the RAM.
3655 */
3656#ifdef PGM_DYNAMIC_RAM_ALLOC
3657 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbDstPhys);
3658#else
3659 uintptr_t off = pbDstPhys - phys_ram_base;
3660#endif
3661 if (off < (uintptr_t)phys_ram_size)
3662 PGMPhysWrite(cpu_single_env->pVM, (RTGCPHYS)off, pvSrc, cb);
3663 else
3664 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, cb));
3665 STAM_PROFILE_ADV_STOP(&gStatMemWriteHCPtr, a);
3666}
3667
3668
3669/**
3670 * Write guest RAM, unsigned 8-bit.
3671 *
3672 * @param pbDstPhys The destination address. Relative to guest RAM.
3673 * @param val Value
3674 */
3675void remR3PhysWriteHCPtrU8(uint8_t *pbDstPhys, uint8_t val)
3676{
3677 STAM_PROFILE_ADV_START(&gStatMemWriteHCPtr, a);
3678 /*
3679 * Calc the physical address ('off') and check that it's within the RAM.
3680 */
3681#ifdef PGM_DYNAMIC_RAM_ALLOC
3682 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbDstPhys);
3683#else
3684 uintptr_t off = pbDstPhys - phys_ram_base;
3685#endif
3686 if (off < (uintptr_t)phys_ram_size)
3687 PGMR3PhysWriteByte(cpu_single_env->pVM, (RTGCPHYS)off, val);
3688 else
3689 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, 1));
3690 STAM_PROFILE_ADV_STOP(&gStatMemWriteHCPtr, a);
3691}
3692
3693
3694/**
3695 * Write guest RAM, unsigned 16-bit.
3696 *
3697 * @param pbDstPhys The destination address. Relative to guest RAM.
3698 * @param val Value
3699 */
3700void remR3PhysWriteHCPtrU16(uint8_t *pbDstPhys, uint16_t val)
3701{
3702 STAM_PROFILE_ADV_START(&gStatMemWriteHCPtr, a);
3703 /*
3704 * Calc the physical address ('off') and check that it's within the RAM.
3705 */
3706#ifdef PGM_DYNAMIC_RAM_ALLOC
3707 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbDstPhys);
3708#else
3709 uintptr_t off = pbDstPhys - phys_ram_base;
3710#endif
3711 if (off < (uintptr_t)phys_ram_size)
3712 PGMR3PhysWriteWord(cpu_single_env->pVM, (RTGCPHYS)off, val);
3713 else
3714 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, 2));
3715 STAM_PROFILE_ADV_STOP(&gStatMemWriteHCPtr, a);
3716}
3717
3718
3719/**
3720 * Write guest RAM, unsigned 32-bit.
3721 *
3722 * @param pbDstPhys The destination address. Relative to guest RAM.
3723 * @param val Value
3724 */
3725void remR3PhysWriteHCPtrU32(uint8_t *pbDstPhys, uint32_t val)
3726{
3727 STAM_PROFILE_ADV_START(&gStatMemWriteHCPtr, a);
3728 /*
3729 * Calc the physical address ('off') and check that it's within the RAM.
3730 */
3731#ifdef PGM_DYNAMIC_RAM_ALLOC
3732 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbDstPhys);
3733#else
3734 uintptr_t off = pbDstPhys - phys_ram_base;
3735#endif
3736 if (off < (uintptr_t)phys_ram_size)
3737 PGMR3PhysWriteDword(cpu_single_env->pVM, (RTGCPHYS)off, val);
3738 else
3739 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, 4));
3740 STAM_PROFILE_ADV_STOP(&gStatMemWriteHCPtr, a);
3741}
3742
3743
3744/**
3745 * Write guest RAM, unsigned 64-bit.
3746 *
3747 * @param pbDstPhys The destination address. Relative to guest RAM.
3748 * @param val Value
3749 */
3750void remR3PhysWriteHCPtrU64(uint8_t *pbDstPhys, uint64_t val)
3751{
3752 STAM_PROFILE_ADV_START(&gStatMemWriteHCPtr, a);
3753 /*
3754 * Calc the physical address ('off') and check that it's within the RAM.
3755 */
3756#ifdef PGM_DYNAMIC_RAM_ALLOC
3757 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbDstPhys);
3758#else
3759 uintptr_t off = pbDstPhys - phys_ram_base;
3760#endif
3761 if (off < (uintptr_t)phys_ram_size)
3762 {
3763 PGMR3PhysWriteDword(cpu_single_env->pVM, (RTGCPHYS)off, (uint32_t)val); /** @todo add U64 interface. */
3764 PGMR3PhysWriteDword(cpu_single_env->pVM, (RTGCPHYS)off + 4, val >> 32);
3765 }
3766 else
3767 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, 4));
3768 STAM_PROFILE_ADV_STOP(&gStatMemWriteHCPtr, a);
3769}
3770
3771#endif /* !REM_PHYS_ADDR_IN_TLB */
3772
3773
3774#undef LOG_GROUP
3775#define LOG_GROUP LOG_GROUP_REM_MMIO
3776
3777/** Read MMIO memory. */
3778static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3779{
3780 uint32_t u32 = 0;
3781 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3782 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3783 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3784 return u32;
3785}
3786
3787/** Read MMIO memory. */
3788static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3789{
3790 uint32_t u32 = 0;
3791 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3792 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3793 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3794 return u32;
3795}
3796
3797/** Read MMIO memory. */
3798static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3799{
3800 uint32_t u32 = 0;
3801 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3802 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3803 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3804 return u32;
3805}
3806
3807/** Write to MMIO memory. */
3808static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3809{
3810 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3811 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3812 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3813}
3814
3815/** Write to MMIO memory. */
3816static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3817{
3818 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3819 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3820 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3821}
3822
3823/** Write to MMIO memory. */
3824static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3825{
3826 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3827 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3828 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3829}
3830
3831
3832#undef LOG_GROUP
3833#define LOG_GROUP LOG_GROUP_REM_HANDLER
3834
3835/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3836
3837static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3838{
3839 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3840 uint8_t u8;
3841 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3842 return u8;
3843}
3844
3845static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3846{
3847 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3848 uint16_t u16;
3849 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3850 return u16;
3851}
3852
3853static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3854{
3855 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3856 uint32_t u32;
3857 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3858 return u32;
3859}
3860
3861static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3862{
3863 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3864 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3865}
3866
3867static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3868{
3869 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3870 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3871}
3872
3873static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3874{
3875 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3876 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3877}
3878
3879/* -+- disassembly -+- */
3880
3881#undef LOG_GROUP
3882#define LOG_GROUP LOG_GROUP_REM_DISAS
3883
3884
3885/**
3886 * Enables or disables singled stepped disassembly.
3887 *
3888 * @returns VBox status code.
3889 * @param pVM VM handle.
3890 * @param fEnable To enable set this flag, to disable clear it.
3891 */
3892static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3893{
3894 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3895 VM_ASSERT_EMT(pVM);
3896
3897 if (fEnable)
3898 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3899 else
3900 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3901 return VINF_SUCCESS;
3902}
3903
3904
3905/**
3906 * Enables or disables singled stepped disassembly.
3907 *
3908 * @returns VBox status code.
3909 * @param pVM VM handle.
3910 * @param fEnable To enable set this flag, to disable clear it.
3911 */
3912REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3913{
3914 PVMREQ pReq;
3915 int rc;
3916
3917 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3918 if (VM_IS_EMT(pVM))
3919 return remR3DisasEnableStepping(pVM, fEnable);
3920
3921 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3922 AssertRC(rc);
3923 if (VBOX_SUCCESS(rc))
3924 rc = pReq->iStatus;
3925 VMR3ReqFree(pReq);
3926 return rc;
3927}
3928
3929
3930#ifdef VBOX_WITH_DEBUGGER
3931/**
3932 * External Debugger Command: .remstep [on|off|1|0]
3933 */
3934static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3935{
3936 bool fEnable;
3937 int rc;
3938
3939 /* print status */
3940 if (cArgs == 0)
3941 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3942 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3943
3944 /* convert the argument and change the mode. */
3945 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3946 if (VBOX_FAILURE(rc))
3947 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3948 rc = REMR3DisasEnableStepping(pVM, fEnable);
3949 if (VBOX_FAILURE(rc))
3950 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3951 return rc;
3952}
3953#endif
3954
3955
3956/**
3957 * Disassembles n instructions and prints them to the log.
3958 *
3959 * @returns Success indicator.
3960 * @param env Pointer to the recompiler CPU structure.
3961 * @param f32BitCode Indicates that whether or not the code should
3962 * be disassembled as 16 or 32 bit. If -1 the CS
3963 * selector will be inspected.
3964 * @param nrInstructions Nr of instructions to disassemble
3965 * @param pszPrefix
3966 * @remark not currently used for anything but ad-hoc debugging.
3967 */
3968bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3969{
3970 int i;
3971
3972 /*
3973 * Determin 16/32 bit mode.
3974 */
3975 if (f32BitCode == -1)
3976 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3977
3978 /*
3979 * Convert cs:eip to host context address.
3980 * We don't care to much about cross page correctness presently.
3981 */
3982 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3983 void *pvPC;
3984 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3985 {
3986 /* convert eip to physical address. */
3987 int rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3988 GCPtrPC,
3989 env->cr[3],
3990 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3991 &pvPC);
3992 if (VBOX_FAILURE(rc))
3993 {
3994 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3995 return false;
3996 pvPC = (char *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3997 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3998 }
3999 }
4000 else
4001 {
4002 /* physical address */
4003 int rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16, &pvPC);
4004 if (VBOX_FAILURE(rc))
4005 return false;
4006 }
4007
4008 /*
4009 * Disassemble.
4010 */
4011 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
4012 DISCPUSTATE Cpu;
4013 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
4014 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
4015 //Cpu.dwUserData[0] = (uintptr_t)pVM;
4016 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
4017 //Cpu.dwUserData[2] = GCPtrPC;
4018
4019 for (i=0;i<nrInstructions;i++)
4020 {
4021 char szOutput[256];
4022 uint32_t cbOp;
4023 if (!DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0]))
4024 return false;
4025 if (pszPrefix)
4026 Log(("%s: %s", pszPrefix, szOutput));
4027 else
4028 Log(("%s", szOutput));
4029
4030 pvPC += cbOp;
4031 }
4032 return true;
4033}
4034
4035
4036/** @todo need to test the new code, using the old code in the mean while. */
4037#define USE_OLD_DUMP_AND_DISASSEMBLY
4038
4039/**
4040 * Disassembles one instruction and prints it to the log.
4041 *
4042 * @returns Success indicator.
4043 * @param env Pointer to the recompiler CPU structure.
4044 * @param f32BitCode Indicates that whether or not the code should
4045 * be disassembled as 16 or 32 bit. If -1 the CS
4046 * selector will be inspected.
4047 * @param pszPrefix
4048 */
4049bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
4050{
4051#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
4052 PVM pVM = env->pVM;
4053
4054 /*
4055 * Determin 16/32 bit mode.
4056 */
4057 if (f32BitCode == -1)
4058 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
4059
4060 /*
4061 * Log registers
4062 */
4063 if (LogIs2Enabled())
4064 {
4065 remR3StateUpdate(pVM);
4066 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
4067 }
4068
4069 /*
4070 * Convert cs:eip to host context address.
4071 * We don't care to much about cross page correctness presently.
4072 */
4073 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
4074 void *pvPC;
4075 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
4076 {
4077 /* convert eip to physical address. */
4078 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
4079 GCPtrPC,
4080 env->cr[3],
4081 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
4082 &pvPC);
4083 if (VBOX_FAILURE(rc))
4084 {
4085 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
4086 return false;
4087 pvPC = (char *)PATMR3QueryPatchMemHC(pVM, NULL)
4088 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
4089 }
4090 }
4091 else
4092 {
4093
4094 /* physical address */
4095 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, &pvPC);
4096 if (VBOX_FAILURE(rc))
4097 return false;
4098 }
4099
4100 /*
4101 * Disassemble.
4102 */
4103 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
4104 DISCPUSTATE Cpu;
4105 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
4106 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
4107 //Cpu.dwUserData[0] = (uintptr_t)pVM;
4108 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
4109 //Cpu.dwUserData[2] = GCPtrPC;
4110 char szOutput[256];
4111 uint32_t cbOp;
4112 if (!DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0]))
4113 return false;
4114
4115 if (!f32BitCode)
4116 {
4117 if (pszPrefix)
4118 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
4119 else
4120 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
4121 }
4122 else
4123 {
4124 if (pszPrefix)
4125 Log(("%s: %s", pszPrefix, szOutput));
4126 else
4127 Log(("%s", szOutput));
4128 }
4129 return true;
4130
4131#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
4132 PVM pVM = env->pVM;
4133 const bool fLog = LogIsEnabled();
4134 const bool fLog2 = LogIs2Enabled();
4135 int rc = VINF_SUCCESS;
4136
4137 /*
4138 * Don't bother if there ain't any log output to do.
4139 */
4140 if (!fLog && !fLog2)
4141 return true;
4142
4143 /*
4144 * Update the state so DBGF reads the correct register values.
4145 */
4146 remR3StateUpdate(pVM);
4147
4148 /*
4149 * Log registers if requested.
4150 */
4151 if (!fLog2)
4152 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
4153
4154 /*
4155 * Disassemble to log.
4156 */
4157 if (fLog)
4158 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
4159
4160 return VBOX_SUCCESS(rc);
4161#endif
4162}
4163
4164
4165/**
4166 * Disassemble recompiled code.
4167 *
4168 * @param phFileIgnored Ignored, logfile usually.
4169 * @param pvCode Pointer to the code block.
4170 * @param cb Size of the code block.
4171 */
4172void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
4173{
4174 if (LogIs2Enabled())
4175 {
4176 unsigned off = 0;
4177 char szOutput[256];
4178 DISCPUSTATE Cpu = {0};
4179 Cpu.mode = CPUMODE_32BIT;
4180
4181 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
4182 while (off < cb)
4183 {
4184 uint32_t cbInstr;
4185 if (DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput))
4186 RTLogPrintf("%s", szOutput);
4187 else
4188 {
4189 RTLogPrintf("disas error\n");
4190 cbInstr = 1;
4191 }
4192 off += cbInstr;
4193 }
4194 }
4195 NOREF(phFileIgnored);
4196}
4197
4198
4199/**
4200 * Disassemble guest code.
4201 *
4202 * @param phFileIgnored Ignored, logfile usually.
4203 * @param uCode The guest address of the code to disassemble. (flat?)
4204 * @param cb Number of bytes to disassemble.
4205 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
4206 */
4207void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
4208{
4209 if (LogIs2Enabled())
4210 {
4211 PVM pVM = cpu_single_env->pVM;
4212
4213 /*
4214 * Update the state so DBGF reads the correct register values (flags).
4215 */
4216 remR3StateUpdate(pVM);
4217
4218 /*
4219 * Do the disassembling.
4220 */
4221 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
4222 RTSEL cs = cpu_single_env->segs[R_CS].selector;
4223 RTGCUINTPTR eip = uCode - cpu_single_env->segs[R_CS].base;
4224 for (;;)
4225 {
4226 char szBuf[256];
4227 uint32_t cbInstr;
4228 int rc = DBGFR3DisasInstrEx(pVM,
4229 cs,
4230 eip,
4231 0,
4232 szBuf, sizeof(szBuf),
4233 &cbInstr);
4234 if (VBOX_SUCCESS(rc))
4235 RTLogPrintf("%VGp %s\n", uCode, szBuf);
4236 else
4237 {
4238 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
4239 cbInstr = 1;
4240 }
4241
4242 /* next */
4243 if (cb <= cbInstr)
4244 break;
4245 cb -= cbInstr;
4246 uCode += cbInstr;
4247 eip += cbInstr;
4248 }
4249 }
4250 NOREF(phFileIgnored);
4251}
4252
4253
4254/**
4255 * Looks up a guest symbol.
4256 *
4257 * @returns Pointer to symbol name. This is a static buffer.
4258 * @param orig_addr The address in question.
4259 */
4260const char *lookup_symbol(target_ulong orig_addr)
4261{
4262 RTGCINTPTR off = 0;
4263 DBGFSYMBOL Sym;
4264 PVM pVM = cpu_single_env->pVM;
4265 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
4266 if (VBOX_SUCCESS(rc))
4267 {
4268 static char szSym[sizeof(Sym.szName) + 48];
4269 if (!off)
4270 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
4271 else if (off > 0)
4272 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
4273 else
4274 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
4275 return szSym;
4276 }
4277 return "<N/A>";
4278}
4279
4280
4281#undef LOG_GROUP
4282#define LOG_GROUP LOG_GROUP_REM
4283
4284
4285/* -+- FF notifications -+- */
4286
4287
4288/**
4289 * Notification about a pending interrupt.
4290 *
4291 * @param pVM VM Handle.
4292 * @param u8Interrupt Interrupt
4293 * @thread The emulation thread.
4294 */
4295REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
4296{
4297 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
4298 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
4299}
4300
4301/**
4302 * Notification about a pending interrupt.
4303 *
4304 * @returns Pending interrupt or REM_NO_PENDING_IRQ
4305 * @param pVM VM Handle.
4306 * @thread The emulation thread.
4307 */
4308REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
4309{
4310 return pVM->rem.s.u32PendingInterrupt;
4311}
4312
4313/**
4314 * Notification about the interrupt FF being set.
4315 *
4316 * @param pVM VM Handle.
4317 * @thread The emulation thread.
4318 */
4319REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
4320{
4321 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
4322 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
4323 if (pVM->rem.s.fInREM)
4324 {
4325 if (VM_IS_EMT(pVM))
4326 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
4327 else
4328 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_HARD);
4329 }
4330}
4331
4332
4333/**
4334 * Notification about the interrupt FF being set.
4335 *
4336 * @param pVM VM Handle.
4337 * @thread The emulation thread.
4338 */
4339REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
4340{
4341 LogFlow(("REMR3NotifyInterruptClear:\n"));
4342 VM_ASSERT_EMT(pVM);
4343 if (pVM->rem.s.fInREM)
4344 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
4345}
4346
4347
4348/**
4349 * Notification about pending timer(s).
4350 *
4351 * @param pVM VM Handle.
4352 * @thread Any.
4353 */
4354REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
4355{
4356#ifndef DEBUG_bird
4357 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
4358#endif
4359 if (pVM->rem.s.fInREM)
4360 {
4361 if (VM_IS_EMT(pVM))
4362 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
4363 else
4364 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_TIMER);
4365 }
4366}
4367
4368
4369/**
4370 * Notification about pending DMA transfers.
4371 *
4372 * @param pVM VM Handle.
4373 * @thread Any.
4374 */
4375REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
4376{
4377 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
4378 if (pVM->rem.s.fInREM)
4379 {
4380 if (VM_IS_EMT(pVM))
4381 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
4382 else
4383 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_DMA);
4384 }
4385}
4386
4387
4388/**
4389 * Notification about pending timer(s).
4390 *
4391 * @param pVM VM Handle.
4392 * @thread Any.
4393 */
4394REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
4395{
4396 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
4397 if (pVM->rem.s.fInREM)
4398 {
4399 if (VM_IS_EMT(pVM))
4400 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
4401 else
4402 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
4403 }
4404}
4405
4406
4407/**
4408 * Notification about pending FF set by an external thread.
4409 *
4410 * @param pVM VM handle.
4411 * @thread Any.
4412 */
4413REMR3DECL(void) REMR3NotifyFF(PVM pVM)
4414{
4415 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
4416 if (pVM->rem.s.fInREM)
4417 {
4418 if (VM_IS_EMT(pVM))
4419 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
4420 else
4421 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
4422 }
4423}
4424
4425
4426#ifdef VBOX_WITH_STATISTICS
4427void remR3ProfileStart(int statcode)
4428{
4429 STAMPROFILEADV *pStat;
4430 switch(statcode)
4431 {
4432 case STATS_EMULATE_SINGLE_INSTR:
4433 pStat = &gStatExecuteSingleInstr;
4434 break;
4435 case STATS_QEMU_COMPILATION:
4436 pStat = &gStatCompilationQEmu;
4437 break;
4438 case STATS_QEMU_RUN_EMULATED_CODE:
4439 pStat = &gStatRunCodeQEmu;
4440 break;
4441 case STATS_QEMU_TOTAL:
4442 pStat = &gStatTotalTimeQEmu;
4443 break;
4444 case STATS_QEMU_RUN_TIMERS:
4445 pStat = &gStatTimers;
4446 break;
4447 case STATS_TLB_LOOKUP:
4448 pStat= &gStatTBLookup;
4449 break;
4450 case STATS_IRQ_HANDLING:
4451 pStat= &gStatIRQ;
4452 break;
4453 case STATS_RAW_CHECK:
4454 pStat = &gStatRawCheck;
4455 break;
4456
4457 default:
4458 AssertMsgFailed(("unknown stat %d\n", statcode));
4459 return;
4460 }
4461 STAM_PROFILE_ADV_START(pStat, a);
4462}
4463
4464
4465void remR3ProfileStop(int statcode)
4466{
4467 STAMPROFILEADV *pStat;
4468 switch(statcode)
4469 {
4470 case STATS_EMULATE_SINGLE_INSTR:
4471 pStat = &gStatExecuteSingleInstr;
4472 break;
4473 case STATS_QEMU_COMPILATION:
4474 pStat = &gStatCompilationQEmu;
4475 break;
4476 case STATS_QEMU_RUN_EMULATED_CODE:
4477 pStat = &gStatRunCodeQEmu;
4478 break;
4479 case STATS_QEMU_TOTAL:
4480 pStat = &gStatTotalTimeQEmu;
4481 break;
4482 case STATS_QEMU_RUN_TIMERS:
4483 pStat = &gStatTimers;
4484 break;
4485 case STATS_TLB_LOOKUP:
4486 pStat= &gStatTBLookup;
4487 break;
4488 case STATS_IRQ_HANDLING:
4489 pStat= &gStatIRQ;
4490 break;
4491 case STATS_RAW_CHECK:
4492 pStat = &gStatRawCheck;
4493 break;
4494 default:
4495 AssertMsgFailed(("unknown stat %d\n", statcode));
4496 return;
4497 }
4498 STAM_PROFILE_ADV_STOP(pStat, a);
4499}
4500#endif
4501
4502/**
4503 * Raise an RC, force rem exit.
4504 *
4505 * @param pVM VM handle.
4506 * @param rc The rc.
4507 */
4508void remR3RaiseRC(PVM pVM, int rc)
4509{
4510 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
4511 Assert(pVM->rem.s.fInREM);
4512 VM_ASSERT_EMT(pVM);
4513 pVM->rem.s.rc = rc;
4514 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
4515}
4516
4517
4518/* -+- timers -+- */
4519
4520uint64_t cpu_get_tsc(CPUX86State *env)
4521{
4522 STAM_COUNTER_INC(&gStatCpuGetTSC);
4523 return TMCpuTickGet(env->pVM);
4524}
4525
4526
4527/* -+- interrupts -+- */
4528
4529void cpu_set_ferr(CPUX86State *env)
4530{
4531 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
4532 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4533}
4534
4535int cpu_get_pic_interrupt(CPUState *env)
4536{
4537 uint8_t u8Interrupt;
4538 int rc;
4539
4540 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4541 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4542 * with the (a)pic.
4543 */
4544 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4545 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4546 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4547 * remove this kludge. */
4548 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4549 {
4550 rc = VINF_SUCCESS;
4551 Assert(env->pVM->rem.s.u32PendingInterrupt >= 0 && env->pVM->rem.s.u32PendingInterrupt <= 255);
4552 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4553 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4554 }
4555 else
4556 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4557
4558 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
4559 if (VBOX_SUCCESS(rc))
4560 {
4561 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4562 env->interrupt_request |= CPU_INTERRUPT_HARD;
4563 return u8Interrupt;
4564 }
4565 return -1;
4566}
4567
4568
4569/* -+- local apic -+- */
4570
4571void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4572{
4573 int rc = PDMApicSetBase(env->pVM, val);
4574 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
4575}
4576
4577uint64_t cpu_get_apic_base(CPUX86State *env)
4578{
4579 uint64_t u64;
4580 int rc = PDMApicGetBase(env->pVM, &u64);
4581 if (VBOX_SUCCESS(rc))
4582 {
4583 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4584 return u64;
4585 }
4586 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
4587 return 0;
4588}
4589
4590void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4591{
4592 int rc = PDMApicSetTPR(env->pVM, val);
4593 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
4594}
4595
4596uint8_t cpu_get_apic_tpr(CPUX86State *env)
4597{
4598 uint8_t u8;
4599 int rc = PDMApicGetTPR(env->pVM, &u8);
4600 if (VBOX_SUCCESS(rc))
4601 {
4602 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4603 return u8;
4604 }
4605 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
4606 return 0;
4607}
4608
4609
4610/* -+- I/O Ports -+- */
4611
4612#undef LOG_GROUP
4613#define LOG_GROUP LOG_GROUP_REM_IOPORT
4614
4615void cpu_outb(CPUState *env, int addr, int val)
4616{
4617 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4618 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4619
4620 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4621 if (rc == VINF_SUCCESS)
4622 return;
4623 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4624 {
4625 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4626 remR3RaiseRC(env->pVM, rc);
4627 return;
4628 }
4629 remAbort(rc, __FUNCTION__);
4630}
4631
4632void cpu_outw(CPUState *env, int addr, int val)
4633{
4634 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4635 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4636 if (rc == VINF_SUCCESS)
4637 return;
4638 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4639 {
4640 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4641 remR3RaiseRC(env->pVM, rc);
4642 return;
4643 }
4644 remAbort(rc, __FUNCTION__);
4645}
4646
4647void cpu_outl(CPUState *env, int addr, int val)
4648{
4649 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4650 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4651 if (rc == VINF_SUCCESS)
4652 return;
4653 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4654 {
4655 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4656 remR3RaiseRC(env->pVM, rc);
4657 return;
4658 }
4659 remAbort(rc, __FUNCTION__);
4660}
4661
4662int cpu_inb(CPUState *env, int addr)
4663{
4664 uint32_t u32 = 0;
4665 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4666 if (rc == VINF_SUCCESS)
4667 {
4668 if (/*addr != 0x61 && */addr != 0x71)
4669 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4670 return (int)u32;
4671 }
4672 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4673 {
4674 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4675 remR3RaiseRC(env->pVM, rc);
4676 return (int)u32;
4677 }
4678 remAbort(rc, __FUNCTION__);
4679 return 0xff;
4680}
4681
4682int cpu_inw(CPUState *env, int addr)
4683{
4684 uint32_t u32 = 0;
4685 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4686 if (rc == VINF_SUCCESS)
4687 {
4688 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4689 return (int)u32;
4690 }
4691 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4692 {
4693 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4694 remR3RaiseRC(env->pVM, rc);
4695 return (int)u32;
4696 }
4697 remAbort(rc, __FUNCTION__);
4698 return 0xffff;
4699}
4700
4701int cpu_inl(CPUState *env, int addr)
4702{
4703 uint32_t u32 = 0;
4704 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4705 if (rc == VINF_SUCCESS)
4706 {
4707//if (addr==0x01f0 && u32 == 0x6b6d)
4708// loglevel = ~0;
4709 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4710 return (int)u32;
4711 }
4712 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4713 {
4714 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4715 remR3RaiseRC(env->pVM, rc);
4716 return (int)u32;
4717 }
4718 remAbort(rc, __FUNCTION__);
4719 return 0xffffffff;
4720}
4721
4722#undef LOG_GROUP
4723#define LOG_GROUP LOG_GROUP_REM
4724
4725
4726/* -+- helpers and misc other interfaces -+- */
4727
4728/**
4729 * Perform the CPUID instruction.
4730 *
4731 * ASMCpuId cannot be invoked from some source files where this is used because of global
4732 * register allocations.
4733 *
4734 * @param env Pointer to the recompiler CPU structure.
4735 * @param uOperator CPUID operation (eax).
4736 * @param pvEAX Where to store eax.
4737 * @param pvEBX Where to store ebx.
4738 * @param pvECX Where to store ecx.
4739 * @param pvEDX Where to store edx.
4740 */
4741void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4742{
4743 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4744}
4745
4746
4747#if 0 /* not used */
4748/**
4749 * Interface for qemu hardware to report back fatal errors.
4750 */
4751void hw_error(const char *pszFormat, ...)
4752{
4753 /*
4754 * Bitch about it.
4755 */
4756 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4757 * this in my Odin32 tree at home! */
4758 va_list args;
4759 va_start(args, pszFormat);
4760 RTLogPrintf("fatal error in virtual hardware:");
4761 RTLogPrintfV(pszFormat, args);
4762 va_end(args);
4763 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4764
4765 /*
4766 * If we're in REM context we'll sync back the state before 'jumping' to
4767 * the EMs failure handling.
4768 */
4769 PVM pVM = cpu_single_env->pVM;
4770 if (pVM->rem.s.fInREM)
4771 REMR3StateBack(pVM);
4772 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4773 AssertMsgFailed(("EMR3FatalError returned!\n"));
4774}
4775#endif
4776
4777/**
4778 * Interface for the qemu cpu to report unhandled situation
4779 * raising a fatal VM error.
4780 */
4781void cpu_abort(CPUState *env, const char *pszFormat, ...)
4782{
4783 /*
4784 * Bitch about it.
4785 */
4786 RTLogFlags(NULL, "nodisabled nobuffered");
4787 va_list args;
4788 va_start(args, pszFormat);
4789 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4790 va_end(args);
4791 va_start(args, pszFormat);
4792 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4793 va_end(args);
4794
4795 /*
4796 * If we're in REM context we'll sync back the state before 'jumping' to
4797 * the EMs failure handling.
4798 */
4799 PVM pVM = cpu_single_env->pVM;
4800 if (pVM->rem.s.fInREM)
4801 REMR3StateBack(pVM);
4802 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4803 AssertMsgFailed(("EMR3FatalError returned!\n"));
4804}
4805
4806
4807/**
4808 * Aborts the VM.
4809 *
4810 * @param rc VBox error code.
4811 * @param pszTip Hint about why/when this happend.
4812 */
4813static void remAbort(int rc, const char *pszTip)
4814{
4815 /*
4816 * Bitch about it.
4817 */
4818 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4819 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4820
4821 /*
4822 * Jump back to where we entered the recompiler.
4823 */
4824 PVM pVM = cpu_single_env->pVM;
4825 if (pVM->rem.s.fInREM)
4826 REMR3StateBack(pVM);
4827 EMR3FatalError(pVM, rc);
4828 AssertMsgFailed(("EMR3FatalError returned!\n"));
4829}
4830
4831
4832/**
4833 * Dumps a linux system call.
4834 * @param pVM VM handle.
4835 */
4836void remR3DumpLnxSyscall(PVM pVM)
4837{
4838 static const char *apsz[] =
4839 {
4840 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4841 "sys_exit",
4842 "sys_fork",
4843 "sys_read",
4844 "sys_write",
4845 "sys_open", /* 5 */
4846 "sys_close",
4847 "sys_waitpid",
4848 "sys_creat",
4849 "sys_link",
4850 "sys_unlink", /* 10 */
4851 "sys_execve",
4852 "sys_chdir",
4853 "sys_time",
4854 "sys_mknod",
4855 "sys_chmod", /* 15 */
4856 "sys_lchown16",
4857 "sys_ni_syscall", /* old break syscall holder */
4858 "sys_stat",
4859 "sys_lseek",
4860 "sys_getpid", /* 20 */
4861 "sys_mount",
4862 "sys_oldumount",
4863 "sys_setuid16",
4864 "sys_getuid16",
4865 "sys_stime", /* 25 */
4866 "sys_ptrace",
4867 "sys_alarm",
4868 "sys_fstat",
4869 "sys_pause",
4870 "sys_utime", /* 30 */
4871 "sys_ni_syscall", /* old stty syscall holder */
4872 "sys_ni_syscall", /* old gtty syscall holder */
4873 "sys_access",
4874 "sys_nice",
4875 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4876 "sys_sync",
4877 "sys_kill",
4878 "sys_rename",
4879 "sys_mkdir",
4880 "sys_rmdir", /* 40 */
4881 "sys_dup",
4882 "sys_pipe",
4883 "sys_times",
4884 "sys_ni_syscall", /* old prof syscall holder */
4885 "sys_brk", /* 45 */
4886 "sys_setgid16",
4887 "sys_getgid16",
4888 "sys_signal",
4889 "sys_geteuid16",
4890 "sys_getegid16", /* 50 */
4891 "sys_acct",
4892 "sys_umount", /* recycled never used phys() */
4893 "sys_ni_syscall", /* old lock syscall holder */
4894 "sys_ioctl",
4895 "sys_fcntl", /* 55 */
4896 "sys_ni_syscall", /* old mpx syscall holder */
4897 "sys_setpgid",
4898 "sys_ni_syscall", /* old ulimit syscall holder */
4899 "sys_olduname",
4900 "sys_umask", /* 60 */
4901 "sys_chroot",
4902 "sys_ustat",
4903 "sys_dup2",
4904 "sys_getppid",
4905 "sys_getpgrp", /* 65 */
4906 "sys_setsid",
4907 "sys_sigaction",
4908 "sys_sgetmask",
4909 "sys_ssetmask",
4910 "sys_setreuid16", /* 70 */
4911 "sys_setregid16",
4912 "sys_sigsuspend",
4913 "sys_sigpending",
4914 "sys_sethostname",
4915 "sys_setrlimit", /* 75 */
4916 "sys_old_getrlimit",
4917 "sys_getrusage",
4918 "sys_gettimeofday",
4919 "sys_settimeofday",
4920 "sys_getgroups16", /* 80 */
4921 "sys_setgroups16",
4922 "old_select",
4923 "sys_symlink",
4924 "sys_lstat",
4925 "sys_readlink", /* 85 */
4926 "sys_uselib",
4927 "sys_swapon",
4928 "sys_reboot",
4929 "old_readdir",
4930 "old_mmap", /* 90 */
4931 "sys_munmap",
4932 "sys_truncate",
4933 "sys_ftruncate",
4934 "sys_fchmod",
4935 "sys_fchown16", /* 95 */
4936 "sys_getpriority",
4937 "sys_setpriority",
4938 "sys_ni_syscall", /* old profil syscall holder */
4939 "sys_statfs",
4940 "sys_fstatfs", /* 100 */
4941 "sys_ioperm",
4942 "sys_socketcall",
4943 "sys_syslog",
4944 "sys_setitimer",
4945 "sys_getitimer", /* 105 */
4946 "sys_newstat",
4947 "sys_newlstat",
4948 "sys_newfstat",
4949 "sys_uname",
4950 "sys_iopl", /* 110 */
4951 "sys_vhangup",
4952 "sys_ni_syscall", /* old "idle" system call */
4953 "sys_vm86old",
4954 "sys_wait4",
4955 "sys_swapoff", /* 115 */
4956 "sys_sysinfo",
4957 "sys_ipc",
4958 "sys_fsync",
4959 "sys_sigreturn",
4960 "sys_clone", /* 120 */
4961 "sys_setdomainname",
4962 "sys_newuname",
4963 "sys_modify_ldt",
4964 "sys_adjtimex",
4965 "sys_mprotect", /* 125 */
4966 "sys_sigprocmask",
4967 "sys_ni_syscall", /* old "create_module" */
4968 "sys_init_module",
4969 "sys_delete_module",
4970 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4971 "sys_quotactl",
4972 "sys_getpgid",
4973 "sys_fchdir",
4974 "sys_bdflush",
4975 "sys_sysfs", /* 135 */
4976 "sys_personality",
4977 "sys_ni_syscall", /* reserved for afs_syscall */
4978 "sys_setfsuid16",
4979 "sys_setfsgid16",
4980 "sys_llseek", /* 140 */
4981 "sys_getdents",
4982 "sys_select",
4983 "sys_flock",
4984 "sys_msync",
4985 "sys_readv", /* 145 */
4986 "sys_writev",
4987 "sys_getsid",
4988 "sys_fdatasync",
4989 "sys_sysctl",
4990 "sys_mlock", /* 150 */
4991 "sys_munlock",
4992 "sys_mlockall",
4993 "sys_munlockall",
4994 "sys_sched_setparam",
4995 "sys_sched_getparam", /* 155 */
4996 "sys_sched_setscheduler",
4997 "sys_sched_getscheduler",
4998 "sys_sched_yield",
4999 "sys_sched_get_priority_max",
5000 "sys_sched_get_priority_min", /* 160 */
5001 "sys_sched_rr_get_interval",
5002 "sys_nanosleep",
5003 "sys_mremap",
5004 "sys_setresuid16",
5005 "sys_getresuid16", /* 165 */
5006 "sys_vm86",
5007 "sys_ni_syscall", /* Old sys_query_module */
5008 "sys_poll",
5009 "sys_nfsservctl",
5010 "sys_setresgid16", /* 170 */
5011 "sys_getresgid16",
5012 "sys_prctl",
5013 "sys_rt_sigreturn",
5014 "sys_rt_sigaction",
5015 "sys_rt_sigprocmask", /* 175 */
5016 "sys_rt_sigpending",
5017 "sys_rt_sigtimedwait",
5018 "sys_rt_sigqueueinfo",
5019 "sys_rt_sigsuspend",
5020 "sys_pread64", /* 180 */
5021 "sys_pwrite64",
5022 "sys_chown16",
5023 "sys_getcwd",
5024 "sys_capget",
5025 "sys_capset", /* 185 */
5026 "sys_sigaltstack",
5027 "sys_sendfile",
5028 "sys_ni_syscall", /* reserved for streams1 */
5029 "sys_ni_syscall", /* reserved for streams2 */
5030 "sys_vfork", /* 190 */
5031 "sys_getrlimit",
5032 "sys_mmap2",
5033 "sys_truncate64",
5034 "sys_ftruncate64",
5035 "sys_stat64", /* 195 */
5036 "sys_lstat64",
5037 "sys_fstat64",
5038 "sys_lchown",
5039 "sys_getuid",
5040 "sys_getgid", /* 200 */
5041 "sys_geteuid",
5042 "sys_getegid",
5043 "sys_setreuid",
5044 "sys_setregid",
5045 "sys_getgroups", /* 205 */
5046 "sys_setgroups",
5047 "sys_fchown",
5048 "sys_setresuid",
5049 "sys_getresuid",
5050 "sys_setresgid", /* 210 */
5051 "sys_getresgid",
5052 "sys_chown",
5053 "sys_setuid",
5054 "sys_setgid",
5055 "sys_setfsuid", /* 215 */
5056 "sys_setfsgid",
5057 "sys_pivot_root",
5058 "sys_mincore",
5059 "sys_madvise",
5060 "sys_getdents64", /* 220 */
5061 "sys_fcntl64",
5062 "sys_ni_syscall", /* reserved for TUX */
5063 "sys_ni_syscall",
5064 "sys_gettid",
5065 "sys_readahead", /* 225 */
5066 "sys_setxattr",
5067 "sys_lsetxattr",
5068 "sys_fsetxattr",
5069 "sys_getxattr",
5070 "sys_lgetxattr", /* 230 */
5071 "sys_fgetxattr",
5072 "sys_listxattr",
5073 "sys_llistxattr",
5074 "sys_flistxattr",
5075 "sys_removexattr", /* 235 */
5076 "sys_lremovexattr",
5077 "sys_fremovexattr",
5078 "sys_tkill",
5079 "sys_sendfile64",
5080 "sys_futex", /* 240 */
5081 "sys_sched_setaffinity",
5082 "sys_sched_getaffinity",
5083 "sys_set_thread_area",
5084 "sys_get_thread_area",
5085 "sys_io_setup", /* 245 */
5086 "sys_io_destroy",
5087 "sys_io_getevents",
5088 "sys_io_submit",
5089 "sys_io_cancel",
5090 "sys_fadvise64", /* 250 */
5091 "sys_ni_syscall",
5092 "sys_exit_group",
5093 "sys_lookup_dcookie",
5094 "sys_epoll_create",
5095 "sys_epoll_ctl", /* 255 */
5096 "sys_epoll_wait",
5097 "sys_remap_file_pages",
5098 "sys_set_tid_address",
5099 "sys_timer_create",
5100 "sys_timer_settime", /* 260 */
5101 "sys_timer_gettime",
5102 "sys_timer_getoverrun",
5103 "sys_timer_delete",
5104 "sys_clock_settime",
5105 "sys_clock_gettime", /* 265 */
5106 "sys_clock_getres",
5107 "sys_clock_nanosleep",
5108 "sys_statfs64",
5109 "sys_fstatfs64",
5110 "sys_tgkill", /* 270 */
5111 "sys_utimes",
5112 "sys_fadvise64_64",
5113 "sys_ni_syscall" /* sys_vserver */
5114 };
5115
5116 uint32_t uEAX = CPUMGetGuestEAX(pVM);
5117 switch (uEAX)
5118 {
5119 default:
5120 if (uEAX < ELEMENTS(apsz))
5121 Log(("REM: linux syscall %3d: %s (eip=%VGv ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
5122 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
5123 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
5124 else
5125 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
5126 break;
5127
5128 }
5129}
5130
5131
5132/**
5133 * Dumps an OpenBSD system call.
5134 * @param pVM VM handle.
5135 */
5136void remR3DumpOBsdSyscall(PVM pVM)
5137{
5138 static const char *apsz[] =
5139 {
5140 "SYS_syscall", //0
5141 "SYS_exit", //1
5142 "SYS_fork", //2
5143 "SYS_read", //3
5144 "SYS_write", //4
5145 "SYS_open", //5
5146 "SYS_close", //6
5147 "SYS_wait4", //7
5148 "SYS_8",
5149 "SYS_link", //9
5150 "SYS_unlink", //10
5151 "SYS_11",
5152 "SYS_chdir", //12
5153 "SYS_fchdir", //13
5154 "SYS_mknod", //14
5155 "SYS_chmod", //15
5156 "SYS_chown", //16
5157 "SYS_break", //17
5158 "SYS_18",
5159 "SYS_19",
5160 "SYS_getpid", //20
5161 "SYS_mount", //21
5162 "SYS_unmount", //22
5163 "SYS_setuid", //23
5164 "SYS_getuid", //24
5165 "SYS_geteuid", //25
5166 "SYS_ptrace", //26
5167 "SYS_recvmsg", //27
5168 "SYS_sendmsg", //28
5169 "SYS_recvfrom", //29
5170 "SYS_accept", //30
5171 "SYS_getpeername", //31
5172 "SYS_getsockname", //32
5173 "SYS_access", //33
5174 "SYS_chflags", //34
5175 "SYS_fchflags", //35
5176 "SYS_sync", //36
5177 "SYS_kill", //37
5178 "SYS_38",
5179 "SYS_getppid", //39
5180 "SYS_40",
5181 "SYS_dup", //41
5182 "SYS_opipe", //42
5183 "SYS_getegid", //43
5184 "SYS_profil", //44
5185 "SYS_ktrace", //45
5186 "SYS_sigaction", //46
5187 "SYS_getgid", //47
5188 "SYS_sigprocmask", //48
5189 "SYS_getlogin", //49
5190 "SYS_setlogin", //50
5191 "SYS_acct", //51
5192 "SYS_sigpending", //52
5193 "SYS_osigaltstack", //53
5194 "SYS_ioctl", //54
5195 "SYS_reboot", //55
5196 "SYS_revoke", //56
5197 "SYS_symlink", //57
5198 "SYS_readlink", //58
5199 "SYS_execve", //59
5200 "SYS_umask", //60
5201 "SYS_chroot", //61
5202 "SYS_62",
5203 "SYS_63",
5204 "SYS_64",
5205 "SYS_65",
5206 "SYS_vfork", //66
5207 "SYS_67",
5208 "SYS_68",
5209 "SYS_sbrk", //69
5210 "SYS_sstk", //70
5211 "SYS_61",
5212 "SYS_vadvise", //72
5213 "SYS_munmap", //73
5214 "SYS_mprotect", //74
5215 "SYS_madvise", //75
5216 "SYS_76",
5217 "SYS_77",
5218 "SYS_mincore", //78
5219 "SYS_getgroups", //79
5220 "SYS_setgroups", //80
5221 "SYS_getpgrp", //81
5222 "SYS_setpgid", //82
5223 "SYS_setitimer", //83
5224 "SYS_84",
5225 "SYS_85",
5226 "SYS_getitimer", //86
5227 "SYS_87",
5228 "SYS_88",
5229 "SYS_89",
5230 "SYS_dup2", //90
5231 "SYS_91",
5232 "SYS_fcntl", //92
5233 "SYS_select", //93
5234 "SYS_94",
5235 "SYS_fsync", //95
5236 "SYS_setpriority", //96
5237 "SYS_socket", //97
5238 "SYS_connect", //98
5239 "SYS_99",
5240 "SYS_getpriority", //100
5241 "SYS_101",
5242 "SYS_102",
5243 "SYS_sigreturn", //103
5244 "SYS_bind", //104
5245 "SYS_setsockopt", //105
5246 "SYS_listen", //106
5247 "SYS_107",
5248 "SYS_108",
5249 "SYS_109",
5250 "SYS_110",
5251 "SYS_sigsuspend", //111
5252 "SYS_112",
5253 "SYS_113",
5254 "SYS_114",
5255 "SYS_115",
5256 "SYS_gettimeofday", //116
5257 "SYS_getrusage", //117
5258 "SYS_getsockopt", //118
5259 "SYS_119",
5260 "SYS_readv", //120
5261 "SYS_writev", //121
5262 "SYS_settimeofday", //122
5263 "SYS_fchown", //123
5264 "SYS_fchmod", //124
5265 "SYS_125",
5266 "SYS_setreuid", //126
5267 "SYS_setregid", //127
5268 "SYS_rename", //128
5269 "SYS_129",
5270 "SYS_130",
5271 "SYS_flock", //131
5272 "SYS_mkfifo", //132
5273 "SYS_sendto", //133
5274 "SYS_shutdown", //134
5275 "SYS_socketpair", //135
5276 "SYS_mkdir", //136
5277 "SYS_rmdir", //137
5278 "SYS_utimes", //138
5279 "SYS_139",
5280 "SYS_adjtime", //140
5281 "SYS_141",
5282 "SYS_142",
5283 "SYS_143",
5284 "SYS_144",
5285 "SYS_145",
5286 "SYS_146",
5287 "SYS_setsid", //147
5288 "SYS_quotactl", //148
5289 "SYS_149",
5290 "SYS_150",
5291 "SYS_151",
5292 "SYS_152",
5293 "SYS_153",
5294 "SYS_154",
5295 "SYS_nfssvc", //155
5296 "SYS_156",
5297 "SYS_157",
5298 "SYS_158",
5299 "SYS_159",
5300 "SYS_160",
5301 "SYS_getfh", //161
5302 "SYS_162",
5303 "SYS_163",
5304 "SYS_164",
5305 "SYS_sysarch", //165
5306 "SYS_166",
5307 "SYS_167",
5308 "SYS_168",
5309 "SYS_169",
5310 "SYS_170",
5311 "SYS_171",
5312 "SYS_172",
5313 "SYS_pread", //173
5314 "SYS_pwrite", //174
5315 "SYS_175",
5316 "SYS_176",
5317 "SYS_177",
5318 "SYS_178",
5319 "SYS_179",
5320 "SYS_180",
5321 "SYS_setgid", //181
5322 "SYS_setegid", //182
5323 "SYS_seteuid", //183
5324 "SYS_lfs_bmapv", //184
5325 "SYS_lfs_markv", //185
5326 "SYS_lfs_segclean", //186
5327 "SYS_lfs_segwait", //187
5328 "SYS_188",
5329 "SYS_189",
5330 "SYS_190",
5331 "SYS_pathconf", //191
5332 "SYS_fpathconf", //192
5333 "SYS_swapctl", //193
5334 "SYS_getrlimit", //194
5335 "SYS_setrlimit", //195
5336 "SYS_getdirentries", //196
5337 "SYS_mmap", //197
5338 "SYS___syscall", //198
5339 "SYS_lseek", //199
5340 "SYS_truncate", //200
5341 "SYS_ftruncate", //201
5342 "SYS___sysctl", //202
5343 "SYS_mlock", //203
5344 "SYS_munlock", //204
5345 "SYS_205",
5346 "SYS_futimes", //206
5347 "SYS_getpgid", //207
5348 "SYS_xfspioctl", //208
5349 "SYS_209",
5350 "SYS_210",
5351 "SYS_211",
5352 "SYS_212",
5353 "SYS_213",
5354 "SYS_214",
5355 "SYS_215",
5356 "SYS_216",
5357 "SYS_217",
5358 "SYS_218",
5359 "SYS_219",
5360 "SYS_220",
5361 "SYS_semget", //221
5362 "SYS_222",
5363 "SYS_223",
5364 "SYS_224",
5365 "SYS_msgget", //225
5366 "SYS_msgsnd", //226
5367 "SYS_msgrcv", //227
5368 "SYS_shmat", //228
5369 "SYS_229",
5370 "SYS_shmdt", //230
5371 "SYS_231",
5372 "SYS_clock_gettime", //232
5373 "SYS_clock_settime", //233
5374 "SYS_clock_getres", //234
5375 "SYS_235",
5376 "SYS_236",
5377 "SYS_237",
5378 "SYS_238",
5379 "SYS_239",
5380 "SYS_nanosleep", //240
5381 "SYS_241",
5382 "SYS_242",
5383 "SYS_243",
5384 "SYS_244",
5385 "SYS_245",
5386 "SYS_246",
5387 "SYS_247",
5388 "SYS_248",
5389 "SYS_249",
5390 "SYS_minherit", //250
5391 "SYS_rfork", //251
5392 "SYS_poll", //252
5393 "SYS_issetugid", //253
5394 "SYS_lchown", //254
5395 "SYS_getsid", //255
5396 "SYS_msync", //256
5397 "SYS_257",
5398 "SYS_258",
5399 "SYS_259",
5400 "SYS_getfsstat", //260
5401 "SYS_statfs", //261
5402 "SYS_fstatfs", //262
5403 "SYS_pipe", //263
5404 "SYS_fhopen", //264
5405 "SYS_265",
5406 "SYS_fhstatfs", //266
5407 "SYS_preadv", //267
5408 "SYS_pwritev", //268
5409 "SYS_kqueue", //269
5410 "SYS_kevent", //270
5411 "SYS_mlockall", //271
5412 "SYS_munlockall", //272
5413 "SYS_getpeereid", //273
5414 "SYS_274",
5415 "SYS_275",
5416 "SYS_276",
5417 "SYS_277",
5418 "SYS_278",
5419 "SYS_279",
5420 "SYS_280",
5421 "SYS_getresuid", //281
5422 "SYS_setresuid", //282
5423 "SYS_getresgid", //283
5424 "SYS_setresgid", //284
5425 "SYS_285",
5426 "SYS_mquery", //286
5427 "SYS_closefrom", //287
5428 "SYS_sigaltstack", //288
5429 "SYS_shmget", //289
5430 "SYS_semop", //290
5431 "SYS_stat", //291
5432 "SYS_fstat", //292
5433 "SYS_lstat", //293
5434 "SYS_fhstat", //294
5435 "SYS___semctl", //295
5436 "SYS_shmctl", //296
5437 "SYS_msgctl", //297
5438 "SYS_MAXSYSCALL", //298
5439 //299
5440 //300
5441 };
5442 uint32_t uEAX;
5443 if (!LogIsEnabled())
5444 return;
5445 uEAX = CPUMGetGuestEAX(pVM);
5446 switch (uEAX)
5447 {
5448 default:
5449 if (uEAX < ELEMENTS(apsz))
5450 {
5451 uint32_t au32Args[8] = {0};
5452 PGMPhysReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
5453 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
5454 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
5455 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
5456 }
5457 else
5458 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
5459 break;
5460 }
5461}
5462
5463
5464#if defined(IPRT_NO_CRT) && defined(__WIN__) && defined(__X86__)
5465/**
5466 * The Dll main entry point (stub).
5467 */
5468bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
5469{
5470 return true;
5471}
5472
5473void *memcpy(void *dst, const void *src, size_t size)
5474{
5475 uint8_t*pbDst = dst, *pbSrc = src;
5476 while (size-- > 0)
5477 *pbDst++ = *pbSrc++;
5478 return dst;
5479}
5480
5481#endif
5482
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette