VirtualBox

source: vbox/trunk/src/recompiler/new/VBoxRecompiler.c@ 2009

Last change on this file since 2009 was 2006, checked in by vboxsync, 18 years ago

SSMR3Get/PutBool replaced by UInt. Missing exports.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 170.6 KB
Line 
1/* $Id: VBoxRecompiler.c 2006 2007-04-10 12:38:44Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006 InnoTek Systemberatung GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License as published by the Free Software Foundation,
13 * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
14 * distribution. VirtualBox OSE is distributed in the hope that it will
15 * be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * If you received this file as part of a commercial VirtualBox
18 * distribution, then only the terms of your commercial VirtualBox
19 * license agreement apply instead of the previous paragraph.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "exec-all.h"
29
30#include <VBox/rem.h>
31#include <VBox/vmapi.h>
32#include <VBox/tm.h>
33#include <VBox/ssm.h>
34#include <VBox/em.h>
35#include <VBox/trpm.h>
36#include <VBox/iom.h>
37#include <VBox/mm.h>
38#include <VBox/pgm.h>
39#include <VBox/pdm.h>
40#include <VBox/dbgf.h>
41#include <VBox/dbg.h>
42#include <VBox/hwaccm.h>
43#include <VBox/patm.h>
44#include <VBox/csam.h>
45#include "REMInternal.h"
46#include <VBox/vm.h>
47#include <VBox/param.h>
48#include <VBox/err.h>
49
50#include <VBox/log.h>
51#include <iprt/semaphore.h>
52#include <iprt/asm.h>
53#include <iprt/assert.h>
54#include <iprt/thread.h>
55#include <iprt/string.h>
56
57/* Don't wanna include everything. */
58extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
59extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
60extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
61extern void tlb_flush_page(CPUX86State *env, uint32_t addr);
62extern void tlb_flush(CPUState *env, int flush_global);
63extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
64extern void sync_ldtr(CPUX86State *env1, int selector);
65extern int sync_tr(CPUX86State *env1, int selector);
66
67#ifdef VBOX_STRICT
68unsigned long get_phys_page_offset(target_ulong addr);
69#endif
70
71
72/*******************************************************************************
73* Defined Constants And Macros *
74*******************************************************************************/
75
76/** Copy 80-bit fpu register at pSrc to pDst.
77 * This is probably faster than *calling* memcpy.
78 */
79#define REM_COPY_FPU_REG(pDst, pSrc) \
80 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
81
82
83/*******************************************************************************
84* Internal Functions *
85*******************************************************************************/
86static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
87static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
88static void remR3StateUpdate(PVM pVM);
89
90#if defined(PGM_DYNAMIC_RAM_ALLOC) && !defined(REM_PHYS_ADDR_IN_TLB)
91DECLINLINE(target_ulong) remR3HCVirt2GCPhysInlined(PVM pVM, void *addr);
92DECLINLINE(void *) remR3GCPhys2HCVirtInlined(PVM pVM, target_ulong addr);
93#endif
94
95static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
96static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
97static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
98static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
99static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
100static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
101
102static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
103static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
104static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
105static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
106static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
107static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
108
109
110/*******************************************************************************
111* Global Variables *
112*******************************************************************************/
113
114/** @todo Move stats to REM::s some rainy day we have nothing do to. */
115#ifdef VBOX_WITH_STATISTICS
116static STAMPROFILEADV gStatExecuteSingleInstr;
117static STAMPROFILEADV gStatCompilationQEmu;
118static STAMPROFILEADV gStatRunCodeQEmu;
119static STAMPROFILEADV gStatTotalTimeQEmu;
120static STAMPROFILEADV gStatTimers;
121static STAMPROFILEADV gStatTBLookup;
122static STAMPROFILEADV gStatIRQ;
123static STAMPROFILEADV gStatRawCheck;
124static STAMPROFILEADV gStatMemRead;
125static STAMPROFILEADV gStatMemWrite;
126#ifndef REM_PHYS_ADDR_IN_TLB
127static STAMPROFILEADV gStatMemReadHCPtr;
128static STAMPROFILEADV gStatMemWriteHCPtr;
129#endif
130#ifdef PGM_DYNAMIC_RAM_ALLOC
131static STAMPROFILE gStatGCPhys2HCVirt;
132static STAMPROFILE gStatHCVirt2GCPhys;
133#endif
134static STAMCOUNTER gStatCpuGetTSC;
135static STAMCOUNTER gStatRefuseTFInhibit;
136static STAMCOUNTER gStatRefuseVM86;
137static STAMCOUNTER gStatRefusePaging;
138static STAMCOUNTER gStatRefusePAE;
139static STAMCOUNTER gStatRefuseIOPLNot0;
140static STAMCOUNTER gStatRefuseIF0;
141static STAMCOUNTER gStatRefuseCode16;
142static STAMCOUNTER gStatRefuseWP0;
143static STAMCOUNTER gStatRefuseRing1or2;
144static STAMCOUNTER gStatRefuseCanExecute;
145static STAMCOUNTER gStatREMGDTChange;
146static STAMCOUNTER gStatREMIDTChange;
147static STAMCOUNTER gStatREMLDTRChange;
148static STAMCOUNTER gStatREMTRChange;
149static STAMCOUNTER gStatSelOutOfSync[6];
150static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
151#endif
152
153/*
154 * Global stuff.
155 */
156
157/** MMIO read callbacks. */
158CPUReadMemoryFunc *g_apfnMMIORead[3] =
159{
160 remR3MMIOReadU8,
161 remR3MMIOReadU16,
162 remR3MMIOReadU32
163};
164
165/** MMIO write callbacks. */
166CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
167{
168 remR3MMIOWriteU8,
169 remR3MMIOWriteU16,
170 remR3MMIOWriteU32
171};
172
173/** Handler read callbacks. */
174CPUReadMemoryFunc *g_apfnHandlerRead[3] =
175{
176 remR3HandlerReadU8,
177 remR3HandlerReadU16,
178 remR3HandlerReadU32
179};
180
181/** Handler write callbacks. */
182CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
183{
184 remR3HandlerWriteU8,
185 remR3HandlerWriteU16,
186 remR3HandlerWriteU32
187};
188
189
190#ifdef VBOX_WITH_DEBUGGER
191/*
192 * Debugger commands.
193 */
194static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
195
196/** '.remstep' arguments. */
197static const DBGCVARDESC g_aArgRemStep[] =
198{
199 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
200 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
201};
202
203/** Command descriptors. */
204static const DBGCCMD g_aCmds[] =
205{
206 {
207 .pszCmd ="remstep",
208 .cArgsMin = 0,
209 .cArgsMax = 1,
210 .paArgDescs = &g_aArgRemStep[0],
211 .cArgDescs = ELEMENTS(g_aArgRemStep),
212 .pResultDesc = NULL,
213 .fFlags = 0,
214 .pfnHandler = remR3CmdDisasEnableStepping,
215 .pszSyntax = "[on/off]",
216 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
217 "If no arguments show the current state."
218 }
219};
220#endif
221
222
223/* Instantiate the structure signatures. */
224#define REM_STRUCT_OP 0
225#include "InnoTek/structs.h"
226
227
228
229/*******************************************************************************
230* Internal Functions *
231*******************************************************************************/
232static void remAbort(int rc, const char *pszTip);
233extern int testmath(void);
234
235/* Put them here to avoid unused variable warning. */
236AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
237#if !defined(IPRT_NO_CRT) && (defined(__LINUX__) || defined(__DARWIN__) || defined(__WIN__))
238AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
239#else
240AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
241#endif
242
243
244/**
245 * Initializes the REM.
246 *
247 * @returns VBox status code.
248 * @param pVM The VM to operate on.
249 */
250REMR3DECL(int) REMR3Init(PVM pVM)
251{
252 uint32_t u32Dummy;
253 unsigned i;
254
255 /*
256 * Assert sanity.
257 */
258 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
259 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
260 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
261 Assert(!testmath());
262 ASSERT_STRUCT_TABLE(Misc);
263 ASSERT_STRUCT_TABLE(TLB);
264 ASSERT_STRUCT_TABLE(SegmentCache);
265 ASSERT_STRUCT_TABLE(XMMReg);
266 ASSERT_STRUCT_TABLE(MMXReg);
267 ASSERT_STRUCT_TABLE(float_status);
268 ASSERT_STRUCT_TABLE(float32u);
269 ASSERT_STRUCT_TABLE(float64u);
270 ASSERT_STRUCT_TABLE(floatx80u);
271 ASSERT_STRUCT_TABLE(CPUState);
272
273 /*
274 * Init some internal data members.
275 */
276 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
277 pVM->rem.s.Env.pVM = pVM;
278#ifdef CPU_RAW_MODE_INIT
279 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
280#endif
281
282 /* ctx. */
283 int rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
284 if (VBOX_FAILURE(rc))
285 {
286 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
287 return rc;
288 }
289 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
290
291 /* ignore all notifications */
292 pVM->rem.s.fIgnoreAll = true;
293
294 /*
295 * Init the recompiler.
296 */
297 if (!cpu_x86_init(&pVM->rem.s.Env))
298 {
299 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
300 return VERR_GENERAL_FAILURE;
301 }
302 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
303 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
304
305 /* allocate code buffer for single instruction emulation. */
306 pVM->rem.s.Env.cbCodeBuffer = 4096;
307 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
308 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
309
310 /* finally, set the cpu_single_env global. */
311 cpu_single_env = &pVM->rem.s.Env;
312
313 /* Nothing is pending by default */
314 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
315
316 /*
317 * Register ram types.
318 */
319 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
320 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
321 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
322 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
323 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
324
325 /* stop ignoring. */
326 pVM->rem.s.fIgnoreAll = false;
327
328 /*
329 * Register the saved state data unit.
330 */
331 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
332 NULL, remR3Save, NULL,
333 NULL, remR3Load, NULL);
334 if (VBOX_FAILURE(rc))
335 return rc;
336
337#ifdef VBOX_WITH_DEBUGGER
338 /*
339 * Debugger commands.
340 */
341 static bool fRegisteredCmds = false;
342 if (!fRegisteredCmds)
343 {
344 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
345 if (VBOX_SUCCESS(rc))
346 fRegisteredCmds = true;
347 }
348#endif
349
350#ifdef VBOX_WITH_STATISTICS
351 /*
352 * Statistics.
353 */
354 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
355 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
356 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
357 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
358 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
359 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
360 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
361 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
362 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
363 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
364#ifndef REM_PHYS_ADDR_IN_TLB
365 STAM_REG(pVM, &gStatMemReadHCPtr, STAMTYPE_PROFILE, "/PROF/REM/MemReadHCPtr", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
366 STAM_REG(pVM, &gStatMemWriteHCPtr, STAMTYPE_PROFILE, "/PROF/REM/MemWriteHCPtr", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
367#endif
368#ifdef PGM_DYNAMIC_RAM_ALLOC
369 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
370 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
371#endif
372
373 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
374
375 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
376 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
377 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
378 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
379 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
380 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
381 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
382 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
383 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
384 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
385
386 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
387 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
388 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
389 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
390
391 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
392 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
393 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
394 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
395 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
396 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
397
398 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
399 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
400 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
401 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
402 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
403 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
404
405
406#endif
407
408#ifdef DEBUG_ALL_LOGGING
409 loglevel = ~0;
410#endif
411
412 return rc;
413}
414
415
416/**
417 * Terminates the REM.
418 *
419 * Termination means cleaning up and freeing all resources,
420 * the VM it self is at this point powered off or suspended.
421 *
422 * @returns VBox status code.
423 * @param pVM The VM to operate on.
424 */
425REMR3DECL(int) REMR3Term(PVM pVM)
426{
427 return VINF_SUCCESS;
428}
429
430
431/**
432 * The VM is being reset.
433 *
434 * For the REM component this means to call the cpu_reset() and
435 * reinitialize some state variables.
436 *
437 * @param pVM VM handle.
438 */
439REMR3DECL(void) REMR3Reset(PVM pVM)
440{
441 /*
442 * Reset the REM cpu.
443 */
444 pVM->rem.s.fIgnoreAll = true;
445 cpu_reset(&pVM->rem.s.Env);
446 pVM->rem.s.cInvalidatedPages = 0;
447 pVM->rem.s.fIgnoreAll = false;
448}
449
450
451/**
452 * Execute state save operation.
453 *
454 * @returns VBox status code.
455 * @param pVM VM Handle.
456 * @param pSSM SSM operation handle.
457 */
458static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
459{
460 LogFlow(("remR3Save:\n"));
461
462 /*
463 * Save the required CPU Env bits.
464 * (Not much because we're never in REM when doing the save.)
465 */
466 PREM pRem = &pVM->rem.s;
467 Assert(!pRem->fInREM);
468 SSMR3PutU32(pSSM, pRem->Env.hflags);
469 SSMR3PutMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
470 SSMR3PutU32(pSSM, ~0); /* separator */
471
472 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
473 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
474
475 /*
476 * Save the REM stuff.
477 */
478 SSMR3PutUInt(pSSM, pRem->cInvalidatedPages);
479 unsigned i;
480 for (i = 0; i < pRem->cInvalidatedPages; i++)
481 SSMR3PutGCPtr(pSSM, pRem->aGCPtrInvalidatedPages[i]);
482
483 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
484
485 return SSMR3PutU32(pSSM, ~0); /* terminator */
486}
487
488
489/**
490 * Execute state load operation.
491 *
492 * @returns VBox status code.
493 * @param pVM VM Handle.
494 * @param pSSM SSM operation handle.
495 * @param u32Version Data layout version.
496 */
497static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
498{
499 uint32_t u32Dummy;
500 uint32_t fRawRing0 = false;
501 LogFlow(("remR3Load:\n"));
502
503 /*
504 * Validate version.
505 */
506 if (u32Version != REM_SAVED_STATE_VERSION)
507 {
508 Log(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
509 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
510 }
511
512 /*
513 * Do a reset to be on the safe side...
514 */
515 REMR3Reset(pVM);
516
517 /*
518 * Ignore all ignorable notifications.
519 * (Not doing this will cause serious trouble.)
520 */
521 pVM->rem.s.fIgnoreAll = true;
522
523 /*
524 * Load the required CPU Env bits.
525 * (Not much because we're never in REM when doing the save.)
526 */
527 PREM pRem = &pVM->rem.s;
528 Assert(!pRem->fInREM);
529 SSMR3GetU32(pSSM, &pRem->Env.hflags);
530 SSMR3GetMem(pSSM, &pRem->Env, RT_OFFSETOF(CPUState, jmp_env));
531 uint32_t u32Sep;
532 int rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
533 if (VBOX_FAILURE(rc))
534 return rc;
535 if (u32Sep != ~0)
536 {
537 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
538 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
539 }
540
541 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
542 SSMR3GetUInt(pSSM, &fRawRing0);
543 if (fRawRing0)
544 pRem->Env.state |= CPU_RAW_RING0;
545
546 /*
547 * Load the REM stuff.
548 */
549 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
550 if (VBOX_FAILURE(rc))
551 return rc;
552 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
553 {
554 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
555 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
556 }
557 unsigned i;
558 for (i = 0; i < pRem->cInvalidatedPages; i++)
559 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
560
561 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
562 if (VBOX_FAILURE(rc))
563 return rc;
564
565 /* check the terminator. */
566 rc = SSMR3GetU32(pSSM, &u32Sep);
567 if (VBOX_FAILURE(rc))
568 return rc;
569 if (u32Sep != ~0)
570 {
571 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
572 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
573 }
574
575 /*
576 * Get the CPUID features.
577 */
578 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
579 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
580
581 /*
582 * Sync the Load Flush the TLB
583 */
584 tlb_flush(&pRem->Env, 1);
585
586#if 0 /** @todo r=bird: this doesn't make sense. WHY? */
587 /*
588 * Clear all lazy flags (only FPU sync for now).
589 */
590 CPUMGetAndClearFPUUsedREM(pVM);
591#endif
592
593 /*
594 * Stop ignoring ignornable notifications.
595 */
596 pVM->rem.s.fIgnoreAll = false;
597
598 return VINF_SUCCESS;
599}
600
601
602
603#undef LOG_GROUP
604#define LOG_GROUP LOG_GROUP_REM_RUN
605
606/**
607 * Single steps an instruction in recompiled mode.
608 *
609 * Before calling this function the REM state needs to be in sync with
610 * the VM. Call REMR3State() to perform the sync. It's only necessary
611 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
612 * and after calling REMR3StateBack().
613 *
614 * @returns VBox status code.
615 *
616 * @param pVM VM Handle.
617 */
618REMR3DECL(int) REMR3Step(PVM pVM)
619{
620 /*
621 * Lock the REM - we don't wanna have anyone interrupting us
622 * while stepping - and enabled single stepping. We also ignore
623 * pending interrupts and suchlike.
624 */
625 int interrupt_request = pVM->rem.s.Env.interrupt_request;
626 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
627 pVM->rem.s.Env.interrupt_request = 0;
628 cpu_single_step(&pVM->rem.s.Env, 1);
629
630 /*
631 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
632 */
633 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
634 bool fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
635
636 /*
637 * Execute and handle the return code.
638 * We execute without enabling the cpu tick, so on success we'll
639 * just flip it on and off to make sure it moves
640 */
641 int rc = cpu_exec(&pVM->rem.s.Env);
642 if (rc == EXCP_DEBUG)
643 {
644 TMCpuTickResume(pVM);
645 TMCpuTickPause(pVM);
646 TMVirtualResume(pVM);
647 TMVirtualPause(pVM);
648 rc = VINF_EM_DBG_STEPPED;
649 }
650 else
651 {
652 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
653 switch (rc)
654 {
655 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
656 case EXCP_HLT:
657 case EXCP_HALTED: rc = VINF_EM_HALT; break;
658 case EXCP_RC:
659 rc = pVM->rem.s.rc;
660 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
661 break;
662 default:
663 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
664 rc = VERR_INTERNAL_ERROR;
665 break;
666 }
667 }
668
669 /*
670 * Restore the stuff we changed to prevent interruption.
671 * Unlock the REM.
672 */
673 if (fBp)
674 {
675 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
676 Assert(rc2 == 0); NOREF(rc2);
677 }
678 cpu_single_step(&pVM->rem.s.Env, 0);
679 pVM->rem.s.Env.interrupt_request = interrupt_request;
680
681 return rc;
682}
683
684
685/**
686 * Set a breakpoint using the REM facilities.
687 *
688 * @returns VBox status code.
689 * @param pVM The VM handle.
690 * @param Address The breakpoint address.
691 * @thread The emulation thread.
692 */
693REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
694{
695 VM_ASSERT_EMT(pVM);
696 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
697 {
698 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
699 return VINF_SUCCESS;
700 }
701 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
702 return VERR_REM_NO_MORE_BP_SLOTS;
703}
704
705
706/**
707 * Clears a breakpoint set by REMR3BreakpointSet().
708 *
709 * @returns VBox status code.
710 * @param pVM The VM handle.
711 * @param Address The breakpoint address.
712 * @thread The emulation thread.
713 */
714REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
715{
716 VM_ASSERT_EMT(pVM);
717 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
718 {
719 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
720 return VINF_SUCCESS;
721 }
722 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
723 return VERR_REM_BP_NOT_FOUND;
724}
725
726
727/**
728 * Emulate an instruction.
729 *
730 * This function executes one instruction without letting anyone
731 * interrupt it. This is intended for being called while being in
732 * raw mode and thus will take care of all the state syncing between
733 * REM and the rest.
734 *
735 * @returns VBox status code.
736 * @param pVM VM handle.
737 */
738REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
739{
740 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", pVM->rem.s.pCtx->cs, pVM->rem.s.pCtx->eip));
741
742 /*
743 * Sync the state and enable single instruction / single stepping.
744 */
745 int rc = REMR3State(pVM);
746 if (VBOX_SUCCESS(rc))
747 {
748 int interrupt_request = pVM->rem.s.Env.interrupt_request;
749 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
750 Assert(!pVM->rem.s.Env.singlestep_enabled);
751#if 1
752
753 /*
754 * Now we set the execute single instruction flag and enter the cpu_exec loop.
755 */
756 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
757 rc = cpu_exec(&pVM->rem.s.Env);
758 switch (rc)
759 {
760 /*
761 * Executed without anything out of the way happening.
762 */
763 case EXCP_SINGLE_INSTR:
764 rc = VINF_EM_RESCHEDULE;
765 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
766 break;
767
768 /*
769 * If we take a trap or start servicing a pending interrupt, we might end up here.
770 * (Timer thread or some other thread wishing EMT's attention.)
771 */
772 case EXCP_INTERRUPT:
773 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
774 rc = VINF_EM_RESCHEDULE;
775 break;
776
777 /*
778 * Single step, we assume!
779 * If there was a breakpoint there we're fucked now.
780 */
781 case EXCP_DEBUG:
782 {
783 /* breakpoint or single step? */
784 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
785 int iBP;
786 rc = VINF_EM_DBG_STEPPED;
787 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
788 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
789 {
790 rc = VINF_EM_DBG_BREAKPOINT;
791 break;
792 }
793 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
794 break;
795 }
796
797 /*
798 * hlt instruction.
799 */
800 case EXCP_HLT:
801 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
802 rc = VINF_EM_HALT;
803 break;
804
805 /*
806 * The VM has halted.
807 */
808 case EXCP_HALTED:
809 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
810 rc = VINF_EM_HALT;
811 break;
812
813 /*
814 * Switch to RAW-mode.
815 */
816 case EXCP_EXECUTE_RAW:
817 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
818 rc = VINF_EM_RESCHEDULE_RAW;
819 break;
820
821 /*
822 * Switch to hardware accelerated RAW-mode.
823 */
824 case EXCP_EXECUTE_HWACC:
825 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
826 rc = VINF_EM_RESCHEDULE_HWACC;
827 break;
828
829 /*
830 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
831 */
832 case EXCP_RC:
833 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
834 rc = pVM->rem.s.rc;
835 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
836 break;
837
838 /*
839 * Figure out the rest when they arrive....
840 */
841 default:
842 AssertMsgFailed(("rc=%d\n", rc));
843 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
844 rc = VINF_EM_RESCHEDULE;
845 break;
846 }
847
848 /*
849 * Switch back the state.
850 */
851#else
852 pVM->rem.s.Env.interrupt_request = 0;
853 cpu_single_step(&pVM->rem.s.Env, 1);
854
855 /*
856 * Execute and handle the return code.
857 * We execute without enabling the cpu tick, so on success we'll
858 * just flip it on and off to make sure it moves.
859 *
860 * (We do not use emulate_single_instr() because that doesn't enter the
861 * right way in will cause serious trouble if a longjmp was attempted.)
862 */
863# ifdef DEBUG_bird
864 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
865# endif
866 int cTimesMax = 16384;
867 uint32_t eip = pVM->rem.s.Env.eip;
868 do
869 {
870 rc = cpu_exec(&pVM->rem.s.Env);
871
872 } while ( eip == pVM->rem.s.Env.eip
873 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
874 && --cTimesMax > 0);
875 switch (rc)
876 {
877 /*
878 * Single step, we assume!
879 * If there was a breakpoint there we're fucked now.
880 */
881 case EXCP_DEBUG:
882 {
883 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
884 rc = VINF_EM_RESCHEDULE;
885 break;
886 }
887
888 /*
889 * We cannot be interrupted!
890 */
891 case EXCP_INTERRUPT:
892 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
893 rc = VERR_INTERNAL_ERROR;
894 break;
895
896 /*
897 * hlt instruction.
898 */
899 case EXCP_HLT:
900 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
901 rc = VINF_EM_HALT;
902 break;
903
904 /*
905 * The VM has halted.
906 */
907 case EXCP_HALTED:
908 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
909 rc = VINF_EM_HALT;
910 break;
911
912 /*
913 * Switch to RAW-mode.
914 */
915 case EXCP_EXECUTE_RAW:
916 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
917 rc = VINF_EM_RESCHEDULE_RAW;
918 break;
919
920 /*
921 * Switch to hardware accelerated RAW-mode.
922 */
923 case EXCP_EXECUTE_HWACC:
924 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
925 rc = VINF_EM_RESCHEDULE_HWACC;
926 break;
927
928 /*
929 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
930 */
931 case EXCP_RC:
932 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
933 rc = pVM->rem.s.rc;
934 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
935 break;
936
937 /*
938 * Figure out the rest when they arrive....
939 */
940 default:
941 AssertMsgFailed(("rc=%d\n", rc));
942 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
943 rc = VINF_SUCCESS;
944 break;
945 }
946
947 /*
948 * Switch back the state.
949 */
950 cpu_single_step(&pVM->rem.s.Env, 0);
951#endif
952 pVM->rem.s.Env.interrupt_request = interrupt_request;
953 int rc2 = REMR3StateBack(pVM);
954 AssertRC(rc2);
955 }
956
957 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%08x)\n",
958 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
959 return rc;
960}
961
962
963/**
964 * Runs code in recompiled mode.
965 *
966 * Before calling this function the REM state needs to be in sync with
967 * the VM. Call REMR3State() to perform the sync. It's only necessary
968 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
969 * and after calling REMR3StateBack().
970 *
971 * @returns VBox status code.
972 *
973 * @param pVM VM Handle.
974 */
975REMR3DECL(int) REMR3Run(PVM pVM)
976{
977 Log2(("REMR3Run: (cs:eip=%04x:%08x)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
978 Assert(pVM->rem.s.fInREM);
979////Keyboard / tb stuff:
980//if ( pVM->rem.s.Env.segs[R_CS].selector == 0xf000
981// && pVM->rem.s.Env.eip >= 0xe860
982// && pVM->rem.s.Env.eip <= 0xe880)
983// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
984////A20:
985//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x9020
986// && pVM->rem.s.Env.eip >= 0x970
987// && pVM->rem.s.Env.eip <= 0x9a0)
988// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
989////Speaker (port 61h)
990//if ( pVM->rem.s.Env.segs[R_CS].selector == 0x0010
991// && ( (pVM->rem.s.Env.eip >= 0x90278c10 && pVM->rem.s.Env.eip <= 0x90278c30)
992// || (pVM->rem.s.Env.eip >= 0x9010e250 && pVM->rem.s.Env.eip <= 0x9010e260)
993// )
994// )
995// pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
996//DBGFR3InfoLog(pVM, "timers", NULL);
997
998
999 int rc = cpu_exec(&pVM->rem.s.Env);
1000 switch (rc)
1001 {
1002 /*
1003 * This happens when the execution was interrupted
1004 * by an external event, like pending timers.
1005 */
1006 case EXCP_INTERRUPT:
1007 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
1008 rc = VINF_SUCCESS;
1009 break;
1010
1011 /*
1012 * hlt instruction.
1013 */
1014 case EXCP_HLT:
1015 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
1016 rc = VINF_EM_HALT;
1017 break;
1018
1019 /*
1020 * The VM has halted.
1021 */
1022 case EXCP_HALTED:
1023 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1024 rc = VINF_EM_HALT;
1025 break;
1026
1027 /*
1028 * Breakpoint/single step.
1029 */
1030 case EXCP_DEBUG:
1031 {
1032#if 0//def DEBUG_bird
1033 static int iBP = 0;
1034 printf("howdy, breakpoint! iBP=%d\n", iBP);
1035 switch (iBP)
1036 {
1037 case 0:
1038 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1039 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1040 //pVM->rem.s.Env.interrupt_request = 0;
1041 //pVM->rem.s.Env.exception_index = -1;
1042 //g_fInterruptDisabled = 1;
1043 rc = VINF_SUCCESS;
1044 asm("int3");
1045 break;
1046 default:
1047 asm("int3");
1048 break;
1049 }
1050 iBP++;
1051#else
1052 /* breakpoint or single step? */
1053 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1054 int iBP;
1055 rc = VINF_EM_DBG_STEPPED;
1056 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1057 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1058 {
1059 rc = VINF_EM_DBG_BREAKPOINT;
1060 break;
1061 }
1062 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1063#endif
1064 break;
1065 }
1066
1067 /*
1068 * Switch to RAW-mode.
1069 */
1070 case EXCP_EXECUTE_RAW:
1071 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1072 rc = VINF_EM_RESCHEDULE_RAW;
1073 break;
1074
1075 /*
1076 * Switch to hardware accelerated RAW-mode.
1077 */
1078 case EXCP_EXECUTE_HWACC:
1079 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1080 rc = VINF_EM_RESCHEDULE_HWACC;
1081 break;
1082
1083 /*
1084 * An EM RC was raised (VMR3Reset/Suspend/PowerOff).
1085 */
1086 case EXCP_RC:
1087 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1088 rc = pVM->rem.s.rc;
1089 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1090 break;
1091
1092 /*
1093 * Figure out the rest when they arrive....
1094 */
1095 default:
1096 AssertMsgFailed(("rc=%d\n", rc));
1097 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1098 rc = VINF_SUCCESS;
1099 break;
1100 }
1101
1102 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%08x)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1103 return rc;
1104}
1105
1106
1107/**
1108 * Check if the cpu state is suitable for Raw execution.
1109 *
1110 * @returns boolean
1111 * @param env The CPU env struct.
1112 * @param eip The EIP to check this for (might differ from env->eip).
1113 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1114 * @param pExceptionIndex Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1115 *
1116 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1117 */
1118bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, uint32_t *pExceptionIndex)
1119{
1120 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1121 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1122 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1123
1124 /* Update counter. */
1125 env->pVM->rem.s.cCanExecuteRaw++;
1126
1127 if (HWACCMIsEnabled(env->pVM))
1128 {
1129 env->state |= CPU_RAW_HWACC;
1130
1131 /*
1132 * Create partial context for HWACCMR3CanExecuteGuest
1133 */
1134 CPUMCTX Ctx;
1135 Ctx.cr0 = env->cr[0];
1136 Ctx.cr3 = env->cr[3];
1137 Ctx.cr4 = env->cr[4];
1138
1139 Ctx.tr = env->tr.selector;
1140 Ctx.trHid.u32Base = (uint32_t)env->tr.base;
1141 Ctx.trHid.u32Limit = env->tr.limit;
1142 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1143
1144 Ctx.idtr.cbIdt = env->idt.limit;
1145 Ctx.idtr.pIdt = (uint32_t)env->idt.base;
1146
1147 Ctx.eflags.u32 = env->eflags;
1148
1149 Ctx.cs = env->segs[R_CS].selector;
1150 Ctx.csHid.u32Base = (uint32_t)env->segs[R_CS].base;
1151 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1152 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1153
1154 Ctx.ss = env->segs[R_SS].selector;
1155 Ctx.ssHid.u32Base = (uint32_t)env->segs[R_SS].base;
1156 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1157 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1158
1159 /* Hardware accelerated raw-mode:
1160 *
1161 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1162 */
1163 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1164 {
1165 *pExceptionIndex = EXCP_EXECUTE_HWACC;
1166 return true;
1167 }
1168 return false;
1169 }
1170
1171 /*
1172 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1173 * or 32 bits protected mode ring 0 code
1174 *
1175 * The tests are ordered by the likelyhood of being true during normal execution.
1176 */
1177 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1178 {
1179 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1180 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1181 return false;
1182 }
1183
1184#ifndef VBOX_RAW_V86
1185 if (fFlags & VM_MASK) {
1186 STAM_COUNTER_INC(&gStatRefuseVM86);
1187 Log2(("raw mode refused: VM_MASK\n"));
1188 return false;
1189 }
1190#endif
1191
1192 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1193 {
1194#ifndef DEBUG_bird
1195 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1196#endif
1197 return false;
1198 }
1199
1200 if (env->singlestep_enabled)
1201 {
1202 //Log2(("raw mode refused: Single step\n"));
1203 return false;
1204 }
1205
1206 if (env->nb_breakpoints > 0)
1207 {
1208 //Log2(("raw mode refused: Breakpoints\n"));
1209 return false;
1210 }
1211
1212 uint32_t u32CR0 = env->cr[0];
1213 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1214 {
1215 STAM_COUNTER_INC(&gStatRefusePaging);
1216 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1217 return false;
1218 }
1219
1220 if (env->cr[4] & CR4_PAE_MASK)
1221 {
1222 STAM_COUNTER_INC(&gStatRefusePAE);
1223 //Log2(("raw mode refused: PAE\n"));
1224 return false;
1225 }
1226
1227 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1228 {
1229 if (!EMIsRawRing3Enabled(env->pVM))
1230 return false;
1231
1232 if (!(env->eflags & IF_MASK))
1233 {
1234 STAM_COUNTER_INC(&gStatRefuseIF0);
1235 Log2(("raw mode refused: IF (RawR3)\n"));
1236 return false;
1237 }
1238
1239 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1240 {
1241 STAM_COUNTER_INC(&gStatRefuseWP0);
1242 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1243 return false;
1244 }
1245 }
1246 else
1247 {
1248 if (!EMIsRawRing0Enabled(env->pVM))
1249 return false;
1250
1251 // Let's start with pure 32 bits ring 0 code first
1252 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1253 {
1254 STAM_COUNTER_INC(&gStatRefuseCode16);
1255 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1256 return false;
1257 }
1258
1259 // Only R0
1260 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1261 {
1262 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1263 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1264 return false;
1265 }
1266
1267 if (!(u32CR0 & CR0_WP_MASK))
1268 {
1269 STAM_COUNTER_INC(&gStatRefuseWP0);
1270 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1271 return false;
1272 }
1273
1274 if (PATMIsPatchGCAddr(env->pVM, eip))
1275 {
1276 Log2(("raw r0 mode forced: patch code\n"));
1277 *pExceptionIndex = EXCP_EXECUTE_RAW;
1278 return true;
1279 }
1280
1281#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1282 if (!(env->eflags & IF_MASK))
1283 {
1284 STAM_COUNTER_INC(&gStatRefuseIF0);
1285 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1286 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1287 return false;
1288 }
1289#endif
1290
1291 env->state |= CPU_RAW_RING0;
1292 }
1293
1294 /*
1295 * Don't reschedule the first time we're called, because there might be
1296 * special reasons why we're here that is not covered by the above checks.
1297 */
1298 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1299 {
1300 Log2(("raw mode refused: first scheduling\n"));
1301 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1302 return false;
1303 }
1304
1305 Assert(PGMPhysIsA20Enabled(env->pVM));
1306 *pExceptionIndex = EXCP_EXECUTE_RAW;
1307 return true;
1308}
1309
1310
1311/**
1312 * Fetches a code byte.
1313 *
1314 * @returns Success indicator (bool) for ease of use.
1315 * @param env The CPU environment structure.
1316 * @param GCPtrInstr Where to fetch code.
1317 * @param pu8Byte Where to store the byte on success
1318 */
1319bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1320{
1321 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1322 if (VBOX_SUCCESS(rc))
1323 return true;
1324 return false;
1325}
1326
1327
1328/**
1329 * Flush (or invalidate if you like) page table/dir entry.
1330 *
1331 * (invlpg instruction; tlb_flush_page)
1332 *
1333 * @param env Pointer to cpu environment.
1334 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1335 */
1336void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1337{
1338 PVM pVM = env->pVM;
1339
1340 /*
1341 * When we're replaying invlpg instructions or restoring a saved
1342 * state we disable this path.
1343 */
1344 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1345 return;
1346 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1347 Assert(pVM->rem.s.fInREM);
1348
1349 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1350
1351 /*
1352 * Update the control registers before calling PGMFlushPage.
1353 */
1354 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1355 pCtx->cr0 = env->cr[0];
1356 pCtx->cr3 = env->cr[3];
1357 pCtx->cr4 = env->cr[4];
1358
1359 /*
1360 * Let PGM do the rest.
1361 */
1362 int rc = PGMInvalidatePage(pVM, GCPtr);
1363 if (VBOX_FAILURE(rc))
1364 {
1365 AssertMsgFailed(("remR3FlushPage %x %x %x %d failed!!\n", GCPtr));
1366 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1367 }
1368 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1369}
1370
1371/**
1372 * Set page table/dir entry. (called from tlb_set_page)
1373 *
1374 * @param env Pointer to cpu environment.
1375 */
1376void remR3SetPage(CPUState *env, CPUTLBEntry *pTLBEntry, CPUTLBEntry *pTLBEntryIgnored, int prot, int is_user)
1377{
1378 target_ulong virt_addr;
1379 if (env->pVM->rem.s.fIgnoreSetPage || env->pVM->rem.s.fIgnoreAll)
1380 return;
1381 Assert(env->pVM->rem.s.fInREM || env->pVM->rem.s.fInStateSync);
1382
1383#ifndef PGM_DYNAMIC_RAM_ALLOC
1384 if(!is_user && !(env->state & CPU_RAW_RING0))
1385 return; /* We are currently not interested in kernel pages */
1386#endif
1387
1388#if !defined(PGM_DYNAMIC_RAM_ALLOC) && !defined(REM_PHYS_ADDR_IN_TLB)
1389 Log2(("tlb_set_page_raw (r=%x|w=%x)-%x prot %x is_user %d phys base %x\n",
1390 pTLBEntry->addr_read, pTLBEntry->addr_write, pTLBEntry->addend, prot, is_user, phys_ram_base));
1391#else /* PGM_DYNAMIC_RAM_ALLOC */
1392 Log2(("tlb_set_page_raw (r=%x|w=%x)-%x prot %x is_user %d\n",
1393 pTLBEntry->addr_read, pTLBEntry->addr_write, pTLBEntry->addend, prot, is_user));
1394#endif/* PGM_DYNAMIC_RAM_ALLOC */
1395
1396 /*
1397 * Extract the virtual address.
1398 */
1399 if (prot & PAGE_WRITE)
1400 virt_addr = pTLBEntry->addr_write;
1401 else if (prot & PAGE_READ)
1402 virt_addr = pTLBEntry->addr_read;
1403 else
1404 AssertMsgFailedReturnVoid(("tlb_set_page_raw unexpected protection flags %x\n", prot));
1405 virt_addr &= TARGET_PAGE_MASK;
1406
1407 /*
1408 * Update the control registers before calling PGMFlushPage.
1409 */
1410 PCPUMCTX pCtx = (PCPUMCTX)env->pVM->rem.s.pCtx;
1411 pCtx->cr0 = env->cr[0];
1412 pCtx->cr3 = env->cr[3];
1413 pCtx->cr4 = env->cr[4];
1414
1415 /*
1416 * Let PGM do the rest.
1417 */
1418 int rc = PGMInvalidatePage(env->pVM, (RTGCPTR)virt_addr);
1419 if (VBOX_FAILURE(rc))
1420 {
1421#ifdef VBOX_STRICT
1422 target_ulong addend = pTLBEntry->addend;
1423 target_ulong phys_addr;
1424
1425 if (!(addend & IO_MEM_ROM))
1426# ifdef REM_PHYS_ADDR_IN_TLB
1427 phys_addr = virt_addr + addend;
1428# elif defined(PGM_DYNAMIC_RAM_ALLOC)
1429 phys_addr = remR3HCVirt2GCPhysInlined(env->pVM, (void *)(virt_addr + addend));
1430# else
1431 phys_addr = virt_addr - (uintptr_t)phys_ram_base + addend;
1432# endif
1433 else
1434 phys_addr = addend;
1435 AssertMsgFailed(("RAWEx_SetPageEntry %x %x %x %d failed!!\n", virt_addr, phys_addr, prot, is_user));
1436#endif /* VBOX_STRICT */
1437 VM_FF_SET(env->pVM, VM_FF_PGM_SYNC_CR3);
1438 }
1439}
1440
1441/**
1442 * Called from tlb_protect_code in order to write monitor a code page.
1443 *
1444 * @param env Pointer to the CPU environment.
1445 * @param GCPtr Code page to monitor
1446 */
1447void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1448{
1449 Assert(env->pVM->rem.s.fInREM);
1450 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1451 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1452 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1453 && !(env->eflags & VM_MASK) /* no V86 mode */
1454 && !HWACCMIsEnabled(env->pVM))
1455 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1456}
1457
1458/**
1459 * Called when the CPU is initialized, any of the CRx registers are changed or
1460 * when the A20 line is modified.
1461 *
1462 * @param env Pointer to the CPU environment.
1463 * @param fGlobal Set if the flush is global.
1464 */
1465void remR3FlushTLB(CPUState *env, bool fGlobal)
1466{
1467 PVM pVM = env->pVM;
1468
1469 /*
1470 * When we're replaying invlpg instructions or restoring a saved
1471 * state we disable this path.
1472 */
1473 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1474 return;
1475 Assert(pVM->rem.s.fInREM);
1476
1477 /*
1478 * The caller doesn't check cr4, so we have to do that for ourselves.
1479 */
1480 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1481 fGlobal = true;
1482 Log(("remR3FlushTLB: CR0=%VGp CR3=%VGp CR4=%VGp %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1483
1484 /*
1485 * Update the control registers before calling PGMR3FlushTLB.
1486 */
1487 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1488 pCtx->cr0 = env->cr[0];
1489 pCtx->cr3 = env->cr[3];
1490 pCtx->cr4 = env->cr[4];
1491
1492 /*
1493 * Let PGM do the rest.
1494 */
1495 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1496}
1497
1498
1499/**
1500 * Called when any of the cr0, cr4 or efer registers is updated.
1501 *
1502 * @param env Pointer to the CPU environment.
1503 */
1504void remR3ChangeCpuMode(CPUState *env)
1505{
1506 int rc;
1507 PVM pVM = env->pVM;
1508
1509 /*
1510 * When we're replaying loads or restoring a saved
1511 * state this path is disabled.
1512 */
1513 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1514 return;
1515 Assert(pVM->rem.s.fInREM);
1516
1517 /*
1518 * Update the control registers before calling PGMR3ChangeMode()
1519 * as it may need to map whatever cr3 is pointing to.
1520 */
1521 PCPUMCTX pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1522 pCtx->cr0 = env->cr[0];
1523 pCtx->cr3 = env->cr[3];
1524 pCtx->cr4 = env->cr[4];
1525
1526#ifdef TARGET_X86_64
1527 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1528 if (rc != VINF_SUCCESS)
1529 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1530#else
1531 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1532 if (rc != VINF_SUCCESS)
1533 cpu_abort(env, "PGMChangeMode(, %08x, %08x, %016llx) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1534#endif
1535}
1536
1537
1538/**
1539 * Called from compiled code to run dma.
1540 *
1541 * @param env Pointer to the CPU environment.
1542 */
1543void remR3DmaRun(CPUState *env)
1544{
1545 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1546 PDMR3DmaRun(env->pVM);
1547 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1548}
1549
1550/**
1551 * Called from compiled code to schedule pending timers in VMM
1552 *
1553 * @param env Pointer to the CPU environment.
1554 */
1555void remR3TimersRun(CPUState *env)
1556{
1557 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1558 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1559 TMR3TimerQueuesDo(env->pVM);
1560 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1561 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1562}
1563
1564/**
1565 * Record trap occurance
1566 *
1567 * @returns VBox status code
1568 * @param env Pointer to the CPU environment.
1569 * @param uTrap Trap nr
1570 * @param uErrorCode Error code
1571 * @param pvNextEIP Next EIP
1572 */
1573int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1574{
1575 PVM pVM = (PVM)env->pVM;
1576#ifdef VBOX_WITH_STATISTICS
1577 static STAMCOUNTER aStatTrap[255];
1578 static bool aRegisters[ELEMENTS(aStatTrap)];
1579#endif
1580
1581#ifdef VBOX_WITH_STATISTICS
1582 if (uTrap < 255)
1583 {
1584 if (!aRegisters[uTrap])
1585 {
1586 aRegisters[uTrap] = true;
1587 char szStatName[64];
1588 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1589 STAM_REG(env->pVM, &aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1590 }
1591 STAM_COUNTER_INC(&aStatTrap[uTrap]);
1592 }
1593#endif
1594 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1595 if(uTrap < 0x20)
1596 {
1597#ifdef DEBUG
1598 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1599#endif
1600 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 128)
1601 {
1602 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%08x\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1603 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1604 return VERR_REM_TOO_MANY_TRAPS;
1605 }
1606 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1607 pVM->rem.s.cPendingExceptions = 1;
1608 pVM->rem.s.uPendingException = uTrap;
1609 pVM->rem.s.uPendingExcptEIP = env->eip;
1610 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1611 }
1612 else
1613 {
1614 pVM->rem.s.cPendingExceptions = 0;
1615 pVM->rem.s.uPendingException = uTrap;
1616 pVM->rem.s.uPendingExcptEIP = env->eip;
1617 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1618 }
1619 return VINF_SUCCESS;
1620}
1621
1622/*
1623 * Clear current active trap
1624 *
1625 * @param pVM VM Handle.
1626 */
1627void remR3TrapClear(PVM pVM)
1628{
1629 pVM->rem.s.cPendingExceptions = 0;
1630 pVM->rem.s.uPendingException = 0;
1631 pVM->rem.s.uPendingExcptEIP = 0;
1632 pVM->rem.s.uPendingExcptCR2 = 0;
1633}
1634
1635
1636/**
1637 * Syncs the internal REM state with the VM.
1638 *
1639 * This must be called before REMR3Run() is invoked whenever when the REM
1640 * state is not up to date. Calling it several times in a row is not
1641 * permitted.
1642 *
1643 * @returns VBox status code.
1644 *
1645 * @param pVM VM Handle.
1646 *
1647 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1648 * no do this since the majority of the callers don't want any unnecessary of events
1649 * pending that would immediatly interrupt execution.
1650 */
1651REMR3DECL(int) REMR3State(PVM pVM)
1652{
1653 Log2(("REMR3State:\n"));
1654 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1655 register const CPUMCTX *pCtx = pVM->rem.s.pCtx;
1656 register unsigned fFlags;
1657
1658 Assert(!pVM->rem.s.fInREM);
1659 pVM->rem.s.fInStateSync = true;
1660
1661 /*
1662 * Copy the registers which requires no special handling.
1663 */
1664 Assert(R_EAX == 0);
1665 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1666 Assert(R_ECX == 1);
1667 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1668 Assert(R_EDX == 2);
1669 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1670 Assert(R_EBX == 3);
1671 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1672 Assert(R_ESP == 4);
1673 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1674 Assert(R_EBP == 5);
1675 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1676 Assert(R_ESI == 6);
1677 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1678 Assert(R_EDI == 7);
1679 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1680 pVM->rem.s.Env.eip = pCtx->eip;
1681
1682 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1683
1684 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1685
1686 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1687 pVM->rem.s.Env.dr[0] = pCtx->dr0;
1688 pVM->rem.s.Env.dr[1] = pCtx->dr1;
1689 pVM->rem.s.Env.dr[2] = pCtx->dr2;
1690 pVM->rem.s.Env.dr[3] = pCtx->dr3;
1691 pVM->rem.s.Env.dr[4] = pCtx->dr4;
1692 pVM->rem.s.Env.dr[5] = pCtx->dr5;
1693 pVM->rem.s.Env.dr[6] = pCtx->dr6;
1694 pVM->rem.s.Env.dr[7] = pCtx->dr7;
1695
1696 /*
1697 * Clear the halted hidden flag (the interrupt waking up the CPU can
1698 * have been dispatched in raw mode).
1699 */
1700 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1701
1702 /*
1703 * Replay invlpg?
1704 */
1705 if (pVM->rem.s.cInvalidatedPages)
1706 {
1707 pVM->rem.s.fIgnoreInvlPg = true;
1708 RTUINT i;
1709 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1710 {
1711 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1712 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1713 }
1714 pVM->rem.s.fIgnoreInvlPg = false;
1715 pVM->rem.s.cInvalidatedPages = 0;
1716 }
1717
1718 /*
1719 * Registers which are rarely changed and require special handling / order when changed.
1720 */
1721 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1722 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1723 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1724 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR))
1725 {
1726 if (fFlags & CPUM_CHANGED_FPU_REM)
1727 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1728
1729 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1730 {
1731 pVM->rem.s.fIgnoreCR3Load = true;
1732 tlb_flush(&pVM->rem.s.Env, true);
1733 pVM->rem.s.fIgnoreCR3Load = false;
1734 }
1735
1736 if (fFlags & CPUM_CHANGED_CR4)
1737 {
1738 pVM->rem.s.fIgnoreCR3Load = true;
1739 pVM->rem.s.fIgnoreCpuMode = true;
1740 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1741 pVM->rem.s.fIgnoreCpuMode = false;
1742 pVM->rem.s.fIgnoreCR3Load = false;
1743 }
1744
1745 if (fFlags & CPUM_CHANGED_CR0)
1746 {
1747 pVM->rem.s.fIgnoreCR3Load = true;
1748 pVM->rem.s.fIgnoreCpuMode = true;
1749 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1750 pVM->rem.s.fIgnoreCpuMode = false;
1751 pVM->rem.s.fIgnoreCR3Load = false;
1752 }
1753
1754 if (fFlags & CPUM_CHANGED_CR3)
1755 {
1756 pVM->rem.s.fIgnoreCR3Load = true;
1757 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1758 pVM->rem.s.fIgnoreCR3Load = false;
1759 }
1760
1761 if (fFlags & CPUM_CHANGED_GDTR)
1762 {
1763 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1764 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1765 }
1766
1767 if (fFlags & CPUM_CHANGED_IDTR)
1768 {
1769 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1770 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1771 }
1772
1773 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1774 {
1775 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1776 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1777 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1778 }
1779
1780 if (fFlags & CPUM_CHANGED_LDTR)
1781 {
1782 if (fFlags & CPUM_CHANGED_HIDDEN_SEL_REGS)
1783 {
1784 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1785 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u32Base;
1786 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1787 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1788 }
1789 else
1790 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1791 }
1792
1793 if (fFlags & CPUM_CHANGED_TR)
1794 {
1795 if (fFlags & CPUM_CHANGED_HIDDEN_SEL_REGS)
1796 {
1797 pVM->rem.s.Env.tr.selector = pCtx->tr;
1798 pVM->rem.s.Env.tr.base = pCtx->trHid.u32Base;
1799 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1800 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1801 }
1802 else
1803 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1804
1805 /** @note do_interrupt will fault if the busy flag is still set.... */
1806 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1807 }
1808 }
1809
1810 /*
1811 * Update selector registers.
1812 * This must be done *after* we've synced gdt, ldt and crX registers
1813 * since we're reading the GDT/LDT om sync_seg. This will happen with
1814 * saved state which takes a quick dip into rawmode for instance.
1815 */
1816 /*
1817 * Stack; Note first check this one as the CPL might have changed. The
1818 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1819 */
1820
1821 if (fFlags & CPUM_CHANGED_HIDDEN_SEL_REGS)
1822 {
1823 /* The hidden selector registers are valid in the CPU context. */
1824 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1825
1826 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u32Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1827 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u32Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1828 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u32Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1829 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u32Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1830 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u32Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1831 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u32Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1832
1833 /* Set current CPL. */
1834 if (pCtx->eflags.Bits.u1VM == 1)
1835 cpu_x86_set_cpl(&pVM->rem.s.Env, 3);
1836 else
1837 cpu_x86_set_cpl(&pVM->rem.s.Env, pCtx->ss & 3);
1838 }
1839 else
1840 {
1841 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1842 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1843 {
1844 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1845
1846 cpu_x86_set_cpl(&pVM->rem.s.Env, (pCtx->eflags.Bits.u1VM) ? 3 : (pCtx->ss & 3));
1847 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1848#ifdef VBOX_WITH_STATISTICS
1849 if (pVM->rem.s.Env.segs[R_SS].newselector)
1850 {
1851 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1852 }
1853#endif
1854 }
1855 else
1856 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1857
1858 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1859 {
1860 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1861 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1862#ifdef VBOX_WITH_STATISTICS
1863 if (pVM->rem.s.Env.segs[R_ES].newselector)
1864 {
1865 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1866 }
1867#endif
1868 }
1869 else
1870 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1871
1872 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1873 {
1874 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1875 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1876#ifdef VBOX_WITH_STATISTICS
1877 if (pVM->rem.s.Env.segs[R_CS].newselector)
1878 {
1879 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1880 }
1881#endif
1882 }
1883 else
1884 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1885
1886 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1887 {
1888 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1889 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1890#ifdef VBOX_WITH_STATISTICS
1891 if (pVM->rem.s.Env.segs[R_DS].newselector)
1892 {
1893 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1894 }
1895#endif
1896 }
1897 else
1898 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1899
1900 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1901 * be the same but not the base/limit. */
1902 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1903 {
1904 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1905 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1906#ifdef VBOX_WITH_STATISTICS
1907 if (pVM->rem.s.Env.segs[R_FS].newselector)
1908 {
1909 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1910 }
1911#endif
1912 }
1913 else
1914 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1915
1916 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1917 {
1918 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1919 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1920#ifdef VBOX_WITH_STATISTICS
1921 if (pVM->rem.s.Env.segs[R_GS].newselector)
1922 {
1923 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1924 }
1925#endif
1926 }
1927 else
1928 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1929 }
1930
1931 /*
1932 * Check for traps.
1933 */
1934 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1935 bool fIsSoftwareInterrupt;
1936 uint8_t u8TrapNo;
1937 int rc = TRPMQueryTrap(pVM, &u8TrapNo, &fIsSoftwareInterrupt);
1938 if (VBOX_SUCCESS(rc))
1939 {
1940 #ifdef DEBUG
1941 if (u8TrapNo == 0x80)
1942 {
1943 remR3DumpLnxSyscall(pVM);
1944 remR3DumpOBsdSyscall(pVM);
1945 }
1946 #endif
1947
1948 pVM->rem.s.Env.exception_index = u8TrapNo;
1949 if (!fIsSoftwareInterrupt)
1950 {
1951 pVM->rem.s.Env.exception_is_int = 0;
1952 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
1953 }
1954 else
1955 {
1956 /*
1957 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
1958 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
1959 * for int03 and into.
1960 */
1961 pVM->rem.s.Env.exception_is_int = 1;
1962 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 2;
1963 /* int 3 may be generated by one-byte 0xcc */
1964 if (u8TrapNo == 3)
1965 {
1966 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xcc)
1967 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1968 }
1969 /* int 4 may be generated by one-byte 0xce */
1970 else if (u8TrapNo == 4)
1971 {
1972 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->eip) == 0xce)
1973 pVM->rem.s.Env.exception_next_eip = pCtx->eip + 1;
1974 }
1975 }
1976
1977 /* get error code and cr2 if needed. */
1978 switch (u8TrapNo)
1979 {
1980 case 0x0e:
1981 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
1982 /* fallthru */
1983 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
1984 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
1985 break;
1986
1987 case 0x11: case 0x08:
1988 default:
1989 pVM->rem.s.Env.error_code = 0;
1990 break;
1991 }
1992
1993 /*
1994 * We can now reset the active trap since the recompiler is gonna have a go at it.
1995 */
1996 rc = TRPMResetTrap(pVM);
1997 AssertRC(rc);
1998 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
1999 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
2000 }
2001
2002 /*
2003 * Clear old interrupt request flags; Check for pending hardware interrupts.
2004 * (See @remark for why we don't check for other FFs.)
2005 */
2006 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2007 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2008 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
2009 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2010
2011 /*
2012 * We're now in REM mode.
2013 */
2014 pVM->rem.s.fInREM = true;
2015 pVM->rem.s.fInStateSync = false;
2016 pVM->rem.s.cCanExecuteRaw = 0;
2017 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2018 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2019 return VINF_SUCCESS;
2020}
2021
2022
2023/**
2024 * Syncs back changes in the REM state to the the VM state.
2025 *
2026 * This must be called after invoking REMR3Run().
2027 * Calling it several times in a row is not permitted.
2028 *
2029 * @returns VBox status code.
2030 *
2031 * @param pVM VM Handle.
2032 */
2033REMR3DECL(int) REMR3StateBack(PVM pVM)
2034{
2035 Log2(("REMR3StateBack:\n"));
2036 Assert(pVM->rem.s.fInREM);
2037 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2038 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2039
2040 /*
2041 * Copy back the registers.
2042 * This is done in the order they are declared in the CPUMCTX structure.
2043 */
2044
2045 /** @todo FOP */
2046 /** @todo FPUIP */
2047 /** @todo CS */
2048 /** @todo FPUDP */
2049 /** @todo DS */
2050 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2051 pCtx->fpu.MXCSR = 0;
2052 pCtx->fpu.MXCSR_MASK = 0;
2053
2054 /** @todo check if FPU/XMM was actually used in the recompiler */
2055 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2056//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2057
2058 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2059 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2060 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2061 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2062 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2063 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2064 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2065
2066 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2067 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2068
2069#ifdef VBOX_WITH_STATISTICS
2070 if (pVM->rem.s.Env.segs[R_SS].newselector)
2071 {
2072 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2073 }
2074 if (pVM->rem.s.Env.segs[R_GS].newselector)
2075 {
2076 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2077 }
2078 if (pVM->rem.s.Env.segs[R_FS].newselector)
2079 {
2080 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2081 }
2082 if (pVM->rem.s.Env.segs[R_ES].newselector)
2083 {
2084 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2085 }
2086 if (pVM->rem.s.Env.segs[R_DS].newselector)
2087 {
2088 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2089 }
2090 if (pVM->rem.s.Env.segs[R_CS].newselector)
2091 {
2092 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2093 }
2094#endif
2095 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2096 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2097 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2098 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2099 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2100
2101 pCtx->eip = pVM->rem.s.Env.eip;
2102 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2103
2104 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2105 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2106 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2107 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2108
2109 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2110 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2111 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2112 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2113 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2114 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2115 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2116 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2117
2118 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2119 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2120 {
2121 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2122 STAM_COUNTER_INC(&gStatREMGDTChange);
2123 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2124 }
2125
2126 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2127 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2128 {
2129 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2130 STAM_COUNTER_INC(&gStatREMIDTChange);
2131 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2132 }
2133
2134 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2135 {
2136 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2137 STAM_COUNTER_INC(&gStatREMLDTRChange);
2138 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2139 }
2140 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2141 {
2142 pCtx->tr = pVM->rem.s.Env.tr.selector;
2143 STAM_COUNTER_INC(&gStatREMTRChange);
2144 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2145 }
2146
2147 /** @todo These values could still be out of sync! */
2148 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2149 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2150 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2151 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2152
2153 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2154 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2155 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2156
2157 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2158 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2159 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2160
2161 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2162 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2163 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2164
2165 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2166 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2167 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2168
2169 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2170 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2171 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2172
2173 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2174 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2175 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2176
2177 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2178 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2179 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2180
2181 /* Sysenter MSR */
2182 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2183 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2184 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2185
2186 remR3TrapClear(pVM);
2187
2188 /*
2189 * Check for traps.
2190 */
2191 if ( pVM->rem.s.Env.exception_index >= 0
2192 && pVM->rem.s.Env.exception_index < 256)
2193 {
2194 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2195 int rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int);
2196 AssertRC(rc);
2197 switch (pVM->rem.s.Env.exception_index)
2198 {
2199 case 0x0e:
2200 TRPMSetFaultAddress(pVM, pCtx->cr2);
2201 /* fallthru */
2202 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2203 case 0x11: case 0x08: /* 0 */
2204 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2205 break;
2206 }
2207
2208 }
2209
2210 /*
2211 * We're not longer in REM mode.
2212 */
2213 pVM->rem.s.fInREM = false;
2214 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2215 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2216 return VINF_SUCCESS;
2217}
2218
2219
2220/**
2221 * This is called by the disassembler when it wants to update the cpu state
2222 * before for instance doing a register dump.
2223 */
2224static void remR3StateUpdate(PVM pVM)
2225{
2226 Assert(pVM->rem.s.fInREM);
2227 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2228
2229 /*
2230 * Copy back the registers.
2231 * This is done in the order they are declared in the CPUMCTX structure.
2232 */
2233
2234 /** @todo FOP */
2235 /** @todo FPUIP */
2236 /** @todo CS */
2237 /** @todo FPUDP */
2238 /** @todo DS */
2239 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2240 pCtx->fpu.MXCSR = 0;
2241 pCtx->fpu.MXCSR_MASK = 0;
2242
2243 /** @todo check if FPU/XMM was actually used in the recompiler */
2244 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2245//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2246
2247 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2248 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2249 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2250 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2251 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2252 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2253 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2254
2255 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2256 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2257
2258 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2259 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2260 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2261 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2262 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2263
2264 pCtx->eip = pVM->rem.s.Env.eip;
2265 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2266
2267 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2268 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2269 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2270 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2271
2272 pCtx->dr0 = pVM->rem.s.Env.dr[0];
2273 pCtx->dr1 = pVM->rem.s.Env.dr[1];
2274 pCtx->dr2 = pVM->rem.s.Env.dr[2];
2275 pCtx->dr3 = pVM->rem.s.Env.dr[3];
2276 pCtx->dr4 = pVM->rem.s.Env.dr[4];
2277 pCtx->dr5 = pVM->rem.s.Env.dr[5];
2278 pCtx->dr6 = pVM->rem.s.Env.dr[6];
2279 pCtx->dr7 = pVM->rem.s.Env.dr[7];
2280
2281 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2282 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2283 {
2284 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2285 STAM_COUNTER_INC(&gStatREMGDTChange);
2286 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2287 }
2288
2289 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2290 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2291 {
2292 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2293 STAM_COUNTER_INC(&gStatREMIDTChange);
2294 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2295 }
2296
2297 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2298 {
2299 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2300 STAM_COUNTER_INC(&gStatREMLDTRChange);
2301 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2302 }
2303 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2304 {
2305 pCtx->tr = pVM->rem.s.Env.tr.selector;
2306 STAM_COUNTER_INC(&gStatREMTRChange);
2307 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2308 }
2309
2310 /** @todo These values could still be out of sync! */
2311 pCtx->csHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_CS].base;
2312 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2313 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2314 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2315
2316 pCtx->dsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_DS].base;
2317 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2318 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2319
2320 pCtx->esHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_ES].base;
2321 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2322 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2323
2324 pCtx->fsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_FS].base;
2325 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2326 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2327
2328 pCtx->gsHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_GS].base;
2329 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2330 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2331
2332 pCtx->ssHid.u32Base = (uint32_t)pVM->rem.s.Env.segs[R_SS].base;
2333 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2334 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2335
2336 pCtx->ldtrHid.u32Base = (uint32_t)pVM->rem.s.Env.ldt.base;
2337 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2338 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2339
2340 pCtx->trHid.u32Base = (uint32_t)pVM->rem.s.Env.tr.base;
2341 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2342 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2343
2344 /* Sysenter MSR */
2345 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2346 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2347 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2348}
2349
2350
2351/**
2352 * Update the VMM state information if we're currently in REM.
2353 *
2354 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2355 * we're currently executing in REM and the VMM state is invalid. This method will of
2356 * course check that we're executing in REM before syncing any data over to the VMM.
2357 *
2358 * @param pVM The VM handle.
2359 */
2360REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2361{
2362 if (pVM->rem.s.fInREM)
2363 remR3StateUpdate(pVM);
2364}
2365
2366
2367#undef LOG_GROUP
2368#define LOG_GROUP LOG_GROUP_REM
2369
2370
2371/**
2372 * Notify the recompiler about Address Gate 20 state change.
2373 *
2374 * This notification is required since A20 gate changes are
2375 * initialized from a device driver and the VM might just as
2376 * well be in REM mode as in RAW mode.
2377 *
2378 * @param pVM VM handle.
2379 * @param fEnable True if the gate should be enabled.
2380 * False if the gate should be disabled.
2381 */
2382REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2383{
2384 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2385 VM_ASSERT_EMT(pVM);
2386 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2387}
2388
2389
2390/**
2391 * Replays the invalidated recorded pages.
2392 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2393 *
2394 * @param pVM VM handle.
2395 */
2396REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2397{
2398 VM_ASSERT_EMT(pVM);
2399
2400 /*
2401 * Sync the required registers.
2402 */
2403 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2404 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2405 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2406 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2407
2408 /*
2409 * Replay the flushes.
2410 */
2411 pVM->rem.s.fIgnoreInvlPg = true;
2412 RTUINT i;
2413 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2414 {
2415 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2416 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2417 }
2418 pVM->rem.s.fIgnoreInvlPg = false;
2419 pVM->rem.s.cInvalidatedPages = 0;
2420}
2421
2422
2423/**
2424 * Replays the invalidated recorded pages.
2425 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2426 *
2427 * @param pVM VM handle.
2428 */
2429REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2430{
2431 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2432 VM_ASSERT_EMT(pVM);
2433
2434 /*
2435 * Replay the flushes.
2436 */
2437 RTUINT i;
2438 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2439 pVM->rem.s.cHandlerNotifications = 0;
2440 for (i = 0; i < c; i++)
2441 {
2442 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2443 switch (pRec->enmKind)
2444 {
2445 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2446 REMR3NotifyHandlerPhysicalRegister(pVM,
2447 pRec->u.PhysicalRegister.enmType,
2448 pRec->u.PhysicalRegister.GCPhys,
2449 pRec->u.PhysicalRegister.cb,
2450 pRec->u.PhysicalRegister.fHasHCHandler);
2451 break;
2452
2453 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2454 REMR3NotifyHandlerPhysicalDeregister(pVM,
2455 pRec->u.PhysicalDeregister.enmType,
2456 pRec->u.PhysicalDeregister.GCPhys,
2457 pRec->u.PhysicalDeregister.cb,
2458 pRec->u.PhysicalDeregister.fHasHCHandler,
2459 pRec->u.PhysicalDeregister.pvHCPtr);
2460 break;
2461
2462 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2463 REMR3NotifyHandlerPhysicalModify(pVM,
2464 pRec->u.PhysicalModify.enmType,
2465 pRec->u.PhysicalModify.GCPhysOld,
2466 pRec->u.PhysicalModify.GCPhysNew,
2467 pRec->u.PhysicalModify.cb,
2468 pRec->u.PhysicalModify.fHasHCHandler,
2469 pRec->u.PhysicalModify.pvHCPtr);
2470 break;
2471
2472 default:
2473 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2474 break;
2475 }
2476 }
2477}
2478
2479
2480/**
2481 * Notify REM about changed code page.
2482 *
2483 * @returns VBox status code.
2484 * @param pVM VM handle.
2485 * @param pvCodePage Code page address
2486 */
2487REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2488{
2489 int rc;
2490 RTGCPHYS PhysGC;
2491 uint64_t flags;
2492
2493 VM_ASSERT_EMT(pVM);
2494
2495 /*
2496 * Get the physical page address.
2497 */
2498 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2499 if (rc == VINF_SUCCESS)
2500 {
2501 /*
2502 * Sync the required registers and flush the whole page.
2503 * (Easier to do the whole page than notifying it about each physical
2504 * byte that was changed.
2505 */
2506 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2507 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2508 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2509 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2510
2511 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2512 }
2513 return VINF_SUCCESS;
2514}
2515
2516/**
2517 * Notification about a successful MMR3PhysRegister() call.
2518 *
2519 * @param pVM VM handle.
2520 * @param GCPhys The physical address the RAM.
2521 * @param cb Size of the memory.
2522 * @param pvRam The HC address of the RAM.
2523 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2524 */
2525REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvRam, unsigned fFlags)
2526{
2527 LogFlow(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2528 VM_ASSERT_EMT(pVM);
2529
2530 /*
2531 * Validate input - we trust the caller.
2532 */
2533 Assert(!GCPhys || pvRam);
2534 Assert(RT_ALIGN_P(pvRam, PAGE_SIZE) == pvRam);
2535 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2536 Assert(cb);
2537 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2538
2539 /*
2540 * Base ram?
2541 */
2542 if (!GCPhys)
2543 {
2544#if !defined(PGM_DYNAMIC_RAM_ALLOC) && !defined(REM_PHYS_ADDR_IN_TLB)
2545 AssertRelease(!phys_ram_base);
2546 phys_ram_base = pvRam;
2547#endif
2548 phys_ram_size = cb;
2549 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2550#ifndef VBOX_STRICT
2551 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2552 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2553#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2554 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2555 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2556 uint32_t cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2557 int rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2558 AssertRC(rc);
2559 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2560#endif
2561 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2562 }
2563
2564 /*
2565 * Register the ram.
2566 */
2567 Assert(!pVM->rem.s.fIgnoreAll);
2568 pVM->rem.s.fIgnoreAll = true;
2569
2570#ifdef PGM_DYNAMIC_RAM_ALLOC
2571 if (!GCPhys)
2572 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2573 else
2574 {
2575# ifndef REM_PHYS_ADDR_IN_TLB
2576 uint32_t i;
2577# endif
2578
2579 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2580
2581# ifndef REM_PHYS_ADDR_IN_TLB
2582 AssertRelease(pVM->rem.s.cPhysRegistrations < REM_MAX_PHYS_REGISTRATIONS);
2583 for (i = 0; i < pVM->rem.s.cPhysRegistrations; i++)
2584 {
2585 if (pVM->rem.s.aPhysReg[i].GCPhys == GCPhys)
2586 {
2587 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvRam;
2588 pVM->rem.s.aPhysReg[i].cb = cb;
2589 break;
2590 }
2591 }
2592 if (i == pVM->rem.s.cPhysRegistrations)
2593 {
2594 pVM->rem.s.aPhysReg[i].GCPhys = GCPhys;
2595 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvRam;
2596 pVM->rem.s.aPhysReg[i].cb = cb;
2597 pVM->rem.s.cPhysRegistrations++;
2598 }
2599# endif /* !REM_PHYS_ADDR_IN_TLB */
2600 }
2601#elif defined(REM_PHYS_ADDR_IN_TLB)
2602 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2603#else
2604 AssertRelease(phys_ram_base);
2605 cpu_register_physical_memory(GCPhys, cb, ((uintptr_t)pvRam - (uintptr_t)phys_ram_base)
2606 | (fFlags & MM_RAM_FLAGS_RESERVED ? IO_MEM_UNASSIGNED : 0));
2607#endif
2608 Assert(pVM->rem.s.fIgnoreAll);
2609 pVM->rem.s.fIgnoreAll = false;
2610}
2611
2612
2613/**
2614 * Notification about a successful PGMR3PhysRegisterChunk() call.
2615 *
2616 * @param pVM VM handle.
2617 * @param GCPhys The physical address the RAM.
2618 * @param cb Size of the memory.
2619 * @param pvRam The HC address of the RAM.
2620 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2621 */
2622REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2623{
2624#ifdef PGM_DYNAMIC_RAM_ALLOC
2625# ifndef REM_PHYS_ADDR_IN_TLB
2626 uint32_t idx;
2627#endif
2628
2629 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2630 VM_ASSERT_EMT(pVM);
2631
2632 /*
2633 * Validate input - we trust the caller.
2634 */
2635 Assert(pvRam);
2636 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2637 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2638 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2639 Assert(fFlags == 0 /* normal RAM */);
2640
2641# ifndef REM_PHYS_ADDR_IN_TLB
2642 if (!pVM->rem.s.paHCVirtToGCPhys)
2643 {
2644 uint32_t size = (_4G >> PGM_DYNAMIC_CHUNK_SHIFT) * sizeof(REMCHUNKINFO);
2645
2646 Assert(phys_ram_size);
2647
2648 pVM->rem.s.paHCVirtToGCPhys = (PREMCHUNKINFO)MMR3HeapAllocZ(pVM, MM_TAG_REM, size);
2649 pVM->rem.s.paGCPhysToHCVirt = (RTHCPTR)MMR3HeapAllocZ(pVM, MM_TAG_REM, (phys_ram_size >> PGM_DYNAMIC_CHUNK_SHIFT)*sizeof(RTHCPTR));
2650 }
2651 pVM->rem.s.paGCPhysToHCVirt[GCPhys >> PGM_DYNAMIC_CHUNK_SHIFT] = pvRam;
2652
2653 idx = (pvRam >> PGM_DYNAMIC_CHUNK_SHIFT);
2654 if (!pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1)
2655 {
2656 pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1 = pvRam;
2657 pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 = GCPhys;
2658 }
2659 else
2660 {
2661 Assert(!pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2);
2662 pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2 = pvRam;
2663 pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 = GCPhys;
2664 }
2665 /* Does the region spawn two chunks? */
2666 if (pvRam & PGM_DYNAMIC_CHUNK_OFFSET_MASK)
2667 {
2668 if (!pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk1)
2669 {
2670 pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk1 = pvRam;
2671 pVM->rem.s.paHCVirtToGCPhys[idx+1].GCPhys1 = GCPhys;
2672 }
2673 else
2674 {
2675 Assert(!pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk2);
2676 pVM->rem.s.paHCVirtToGCPhys[idx+1].pChunk2 = pvRam;
2677 pVM->rem.s.paHCVirtToGCPhys[idx+1].GCPhys2 = GCPhys;
2678 }
2679 }
2680# endif /* !REM_PHYS_ADDR_IN_TLB */
2681
2682 Assert(!pVM->rem.s.fIgnoreAll);
2683 pVM->rem.s.fIgnoreAll = true;
2684
2685 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2686
2687 Assert(pVM->rem.s.fIgnoreAll);
2688 pVM->rem.s.fIgnoreAll = false;
2689
2690#else
2691 AssertReleaseFailed();
2692#endif
2693}
2694
2695
2696#ifdef PGM_DYNAMIC_RAM_ALLOC
2697# ifndef REM_PHYS_ADDR_IN_TLB
2698#if 0
2699static const uint8_t gabZeroPage[PAGE_SIZE];
2700#endif
2701
2702/**
2703 * Convert GC physical address to HC virt
2704 *
2705 * @returns The HC virt address corresponding to addr.
2706 * @param env The cpu environment.
2707 * @param addr The physical address.
2708 */
2709DECLINLINE(void *) remR3GCPhys2HCVirtInlined(PVM pVM, target_ulong addr)
2710{
2711 uint32_t i;
2712 void *pv;
2713 STAM_PROFILE_START(&gStatGCPhys2HCVirt, a);
2714
2715#if 1
2716 /* lookup in pVM->rem.s.aPhysReg array first (for ROM range(s) inside the guest's RAM) */
2717 for (i = 0; i < pVM->rem.s.cPhysRegistrations; i++)
2718 {
2719 RTGCPHYS off = addr - pVM->rem.s.aPhysReg[i].GCPhys;
2720 if (off < pVM->rem.s.aPhysReg[i].cb)
2721 {
2722 pv = (void *)(pVM->rem.s.aPhysReg[i].HCVirt + off);
2723 Log2(("remR3GCPhys2HCVirt: %x -> %x\n", addr, pv));
2724 STAM_PROFILE_STOP(&gStatGCPhys2HCVirt, a);
2725 return pv;
2726 }
2727 }
2728 AssertMsg(addr < phys_ram_size, ("remR3GCPhys2HCVirt: unknown physical address %x\n", addr));
2729 pv = (void *)(pVM->rem.s.paGCPhysToHCVirt[addr >> PGM_DYNAMIC_CHUNK_SHIFT] + (addr & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
2730 Log2(("remR3GCPhys2HCVirt: %x -> %x\n", addr, pv));
2731#else
2732 /** @todo figure out why this is faster than the above code. */
2733 int rc = PGMPhysGCPhys2HCPtr(pVM, addr & X86_PTE_PAE_PG_MASK, PAGE_SIZE, &pv);
2734 if (RT_FAILURE(rc))
2735 {
2736 AssertMsgFailed(("remR3GCPhys2HCVirt: unknown physical address %x\n", addr));
2737 pv = gabZeroPage;
2738 }
2739 pv = (void *)((uintptr_t)pv | (addr & PAGE_OFFSET_MASK));
2740#endif
2741 return pv;
2742}
2743
2744
2745/**
2746 * Convert GC physical address to HC virt
2747 *
2748 * @returns The HC virt address corresponding to addr.
2749 * @param env The cpu environment.
2750 * @param addr The physical address.
2751 */
2752DECLINLINE(target_ulong) remR3HCVirt2GCPhysInlined(PVM pVM, void *addr)
2753{
2754 RTHCUINTPTR HCVirt = (RTHCUINTPTR)addr;
2755 uint32_t idx = (HCVirt >> PGM_DYNAMIC_CHUNK_SHIFT);
2756 RTHCUINTPTR off;
2757 RTUINT i;
2758 target_ulong GCPhys;
2759
2760 off = HCVirt - pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1;
2761
2762 if ( pVM->rem.s.paHCVirtToGCPhys[idx].pChunk1
2763 && off < PGM_DYNAMIC_CHUNK_SIZE)
2764 {
2765 GCPhys = pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys1 + off;
2766 Log2(("remR3HCVirt2GCPhys %x -> %x\n", addr, GCPhys));
2767 return GCPhys;
2768 }
2769
2770 off = HCVirt - pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2;
2771 if ( pVM->rem.s.paHCVirtToGCPhys[idx].pChunk2
2772 && off < PGM_DYNAMIC_CHUNK_SIZE)
2773 {
2774 GCPhys = pVM->rem.s.paHCVirtToGCPhys[idx].GCPhys2 + off;
2775 Log2(("remR3HCVirt2GCPhys %x -> %x\n", addr, GCPhys));
2776 return GCPhys;
2777 }
2778
2779 /* Must be externally registered RAM/ROM range */
2780 for (i = 0; i < pVM->rem.s.cPhysRegistrations; i++)
2781 {
2782 uint32_t off = HCVirt - pVM->rem.s.aPhysReg[i].HCVirt;
2783 if (off < pVM->rem.s.aPhysReg[i].cb)
2784 {
2785 GCPhys = pVM->rem.s.aPhysReg[i].GCPhys + off;
2786 Log2(("remR3HCVirt2GCPhys %x -> %x\n", addr, GCPhys));
2787 return GCPhys;
2788 }
2789 }
2790 AssertReleaseMsgFailed(("No translation for physical address %VHv???\n", addr));
2791 return 0;
2792}
2793
2794/**
2795 * Convert GC physical address to HC virt
2796 *
2797 * @returns The HC virt address corresponding to addr.
2798 * @param env The cpu environment.
2799 * @param addr The physical address.
2800 */
2801void *remR3GCPhys2HCVirt(void *env, target_ulong addr)
2802{
2803 PVM pVM = ((CPUState *)env)->pVM;
2804 void *pv;
2805 STAM_PROFILE_START(&gStatGCPhys2HCVirt, a);
2806 pv = remR3GCPhys2HCVirtInlined(pVM, addr);
2807 STAM_PROFILE_STOP(&gStatGCPhys2HCVirt, a);
2808 return pv;
2809}
2810
2811
2812/**
2813 * Convert GC physical address to HC virt
2814 *
2815 * @returns The HC virt address corresponding to addr.
2816 * @param env The cpu environment.
2817 * @param addr The physical address.
2818 */
2819target_ulong remR3HCVirt2GCPhys(void *env, void *addr)
2820{
2821 PVM pVM = ((CPUState *)env)->pVM;
2822 target_ulong GCPhys;
2823 STAM_PROFILE_START(&gStatHCVirt2GCPhys, a);
2824 GCPhys = remR3HCVirt2GCPhysInlined(pVM, addr);
2825 STAM_PROFILE_STOP(&gStatHCVirt2GCPhys, a);
2826 return GCPhys;
2827}
2828
2829# endif /* !REM_PHYS_ADDR_IN_TLB */
2830
2831/**
2832 * Grows dynamically allocated guest RAM.
2833 * Will raise a fatal error if the operation fails.
2834 *
2835 * @param physaddr The physical address.
2836 */
2837void remR3GrowDynRange(unsigned long physaddr)
2838{
2839 int rc;
2840 PVM pVM = cpu_single_env->pVM;
2841
2842 Log(("remR3GrowDynRange %VGp\n", physaddr));
2843 rc = PGM3PhysGrowRange(pVM, (RTGCPHYS)physaddr);
2844 if (VBOX_SUCCESS(rc))
2845 return;
2846
2847 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2848 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2849 AssertFatalFailed();
2850}
2851
2852#endif /* PGM_DYNAMIC_RAM_ALLOC */
2853
2854
2855/**
2856 * Notification about a successful MMR3PhysRomRegister() call.
2857 *
2858 * @param pVM VM handle.
2859 * @param GCPhys The physical address of the ROM.
2860 * @param cb The size of the ROM.
2861 * @param pvCopy Pointer to the ROM copy.
2862 */
2863REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy)
2864{
2865#if defined(PGM_DYNAMIC_RAM_ALLOC) && !defined(REM_PHYS_ADDR_IN_TLB)
2866 uint32_t i;
2867#endif
2868 LogFlow(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p\n", GCPhys, cb, pvCopy));
2869 VM_ASSERT_EMT(pVM);
2870
2871 /*
2872 * Validate input - we trust the caller.
2873 */
2874 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2875 Assert(cb);
2876 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2877 Assert(pvCopy);
2878 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2879
2880 /*
2881 * Register the rom.
2882 */
2883 Assert(!pVM->rem.s.fIgnoreAll);
2884 pVM->rem.s.fIgnoreAll = true;
2885
2886#ifdef REM_PHYS_ADDR_IN_TLB
2887 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_ROM);
2888#elif defined(PGM_DYNAMIC_RAM_ALLOC)
2889 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_ROM);
2890 AssertRelease(pVM->rem.s.cPhysRegistrations < REM_MAX_PHYS_REGISTRATIONS);
2891 for (i = 0; i < pVM->rem.s.cPhysRegistrations; i++)
2892 {
2893 if (pVM->rem.s.aPhysReg[i].GCPhys == GCPhys)
2894 {
2895 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvCopy;
2896 pVM->rem.s.aPhysReg[i].cb = cb;
2897 break;
2898 }
2899 }
2900 if (i == pVM->rem.s.cPhysRegistrations)
2901 {
2902 pVM->rem.s.aPhysReg[i].GCPhys = GCPhys;
2903 pVM->rem.s.aPhysReg[i].HCVirt = (RTHCUINTPTR)pvCopy;
2904 pVM->rem.s.aPhysReg[i].cb = cb;
2905 pVM->rem.s.cPhysRegistrations++;
2906 }
2907#else
2908 AssertRelease(phys_ram_base);
2909 cpu_register_physical_memory(GCPhys, cb, ((uintptr_t)pvCopy - (uintptr_t)phys_ram_base) | IO_MEM_ROM);
2910#endif
2911
2912 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2913
2914 Assert(pVM->rem.s.fIgnoreAll);
2915 pVM->rem.s.fIgnoreAll = false;
2916}
2917
2918
2919/**
2920 * Notification about a successful MMR3PhysRegister() call.
2921 *
2922 * @param pVM VM Handle.
2923 * @param GCPhys Start physical address.
2924 * @param cb The size of the range.
2925 */
2926REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2927{
2928 LogFlow(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2929 VM_ASSERT_EMT(pVM);
2930
2931 /*
2932 * Validate input - we trust the caller.
2933 */
2934 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2935 Assert(cb);
2936 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2937
2938 /*
2939 * Unassigning the memory.
2940 */
2941 Assert(!pVM->rem.s.fIgnoreAll);
2942 pVM->rem.s.fIgnoreAll = true;
2943
2944 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2945
2946 Assert(pVM->rem.s.fIgnoreAll);
2947 pVM->rem.s.fIgnoreAll = false;
2948}
2949
2950
2951/**
2952 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2953 *
2954 * @param pVM VM Handle.
2955 * @param enmType Handler type.
2956 * @param GCPhys Handler range address.
2957 * @param cb Size of the handler range.
2958 * @param fHasHCHandler Set if the handler has a HC callback function.
2959 *
2960 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2961 * Handler memory type to memory which has no HC handler.
2962 */
2963REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2964{
2965 LogFlow(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d\n",
2966 enmType, GCPhys, cb, fHasHCHandler));
2967 VM_ASSERT_EMT(pVM);
2968 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2969 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2970
2971 if (pVM->rem.s.cHandlerNotifications)
2972 REMR3ReplayHandlerNotifications(pVM);
2973
2974 Assert(!pVM->rem.s.fIgnoreAll);
2975 pVM->rem.s.fIgnoreAll = true;
2976
2977 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2978 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2979 else if (fHasHCHandler)
2980 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2981
2982 Assert(pVM->rem.s.fIgnoreAll);
2983 pVM->rem.s.fIgnoreAll = false;
2984}
2985
2986
2987/**
2988 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2989 *
2990 * @param pVM VM Handle.
2991 * @param enmType Handler type.
2992 * @param GCPhys Handler range address.
2993 * @param cb Size of the handler range.
2994 * @param fHasHCHandler Set if the handler has a HC callback function.
2995 * @param pvHCPtr The HC virtual address corresponding to GCPhys if available.
2996 */
2997REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, void *pvHCPtr)
2998{
2999 LogFlow(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%d fHasHCHandler=%d pvHCPtr=%p RAM=%08x\n",
3000 enmType, GCPhys, cb, fHasHCHandler, pvHCPtr, MMR3PhysGetRamSize(pVM)));
3001 VM_ASSERT_EMT(pVM);
3002
3003 if (pVM->rem.s.cHandlerNotifications)
3004 REMR3ReplayHandlerNotifications(pVM);
3005
3006 Assert(!pVM->rem.s.fIgnoreAll);
3007 pVM->rem.s.fIgnoreAll = true;
3008
3009 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
3010 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
3011 else if (fHasHCHandler)
3012 {
3013 if (!pvHCPtr)
3014 {
3015 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
3016 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
3017 }
3018 else
3019 {
3020 /* This is not perfect, but it'll do for PD monitoring... */
3021 Assert(cb == PAGE_SIZE);
3022 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
3023#ifdef REM_PHYS_ADDR_IN_TLB
3024 cpu_register_physical_memory(GCPhys, cb, GCPhys);
3025#elif defined(PGM_DYNAMIC_RAM_ALLOC)
3026 Assert(remR3HCVirt2GCPhysInlined(pVM, pvHCPtr) < MMR3PhysGetRamSize(pVM));
3027 cpu_register_physical_memory(GCPhys, cb, GCPhys);
3028#else
3029 Assert((uintptr_t)pvHCPtr - (uintptr_t)phys_ram_base < MMR3PhysGetRamSize(pVM));
3030 cpu_register_physical_memory(GCPhys, cb, (uintptr_t)pvHCPtr - (uintptr_t)phys_ram_base);
3031#endif
3032 }
3033 }
3034
3035 Assert(pVM->rem.s.fIgnoreAll);
3036 pVM->rem.s.fIgnoreAll = false;
3037}
3038
3039
3040/**
3041 * Notification about a successful PGMR3HandlerPhysicalModify() call.
3042 *
3043 * @param pVM VM Handle.
3044 * @param enmType Handler type.
3045 * @param GCPhysOld Old handler range address.
3046 * @param GCPhysNew New handler range address.
3047 * @param cb Size of the handler range.
3048 * @param fHasHCHandler Set if the handler has a HC callback function.
3049 * @param pvHCPtr The HC virtual address corresponding to GCPhys if available.
3050 */
3051REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, void *pvHCPtr)
3052{
3053 LogFlow(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%d fHasHCHandler=%d pvHCPtr=%p\n",
3054 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, pvHCPtr));
3055 VM_ASSERT_EMT(pVM);
3056 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
3057
3058 if (pVM->rem.s.cHandlerNotifications)
3059 REMR3ReplayHandlerNotifications(pVM);
3060
3061 if (fHasHCHandler)
3062 {
3063 Assert(!pVM->rem.s.fIgnoreAll);
3064 pVM->rem.s.fIgnoreAll = true;
3065
3066 /*
3067 * Reset the old page.
3068 */
3069 if (!pvHCPtr)
3070 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
3071 else
3072 {
3073 /* This is not perfect, but it'll do for PD monitoring... */
3074 Assert(cb == PAGE_SIZE);
3075 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
3076#ifdef REM_PHYS_ADDR_IN_TLB
3077 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
3078#elif defined(PGM_DYNAMIC_RAM_ALLOC)
3079 Assert(remR3HCVirt2GCPhysInlined(pVM, pvHCPtr) < MMR3PhysGetRamSize(pVM));
3080 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
3081#else
3082 AssertMsg((uintptr_t)pvHCPtr - (uintptr_t)phys_ram_base < MMR3PhysGetRamSize(pVM),
3083 ("pvHCPtr=%p phys_ram_base=%p size=%RX64 cb=%RGp\n", pvHCPtr, phys_ram_base, MMR3PhysGetRamSize(pVM), cb));
3084 cpu_register_physical_memory(GCPhysOld, cb, (uintptr_t)pvHCPtr - (uintptr_t)phys_ram_base);
3085#endif
3086 }
3087
3088 /*
3089 * Update the new page.
3090 */
3091 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
3092 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
3093 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
3094
3095 Assert(pVM->rem.s.fIgnoreAll);
3096 pVM->rem.s.fIgnoreAll = false;
3097 }
3098}
3099
3100
3101/**
3102 * Checks if we're handling access to this page or not.
3103 *
3104 * @returns true if we're trapping access.
3105 * @returns false if we aren't.
3106 * @param pVM The VM handle.
3107 * @param GCPhys The physical address.
3108 *
3109 * @remark This function will only work correctly in VBOX_STRICT builds!
3110 */
3111REMDECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
3112{
3113#ifdef VBOX_STRICT
3114 if (pVM->rem.s.cHandlerNotifications)
3115 REMR3ReplayHandlerNotifications(pVM);
3116
3117 unsigned long off = get_phys_page_offset(GCPhys);
3118 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
3119 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
3120 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
3121#else
3122 return false;
3123#endif
3124}
3125
3126
3127/**
3128 * Deals with a rare case in get_phys_addr_code where the code
3129 * is being monitored.
3130 *
3131 * It could also be an MMIO page, in which case we will raise a fatal error.
3132 *
3133 * @returns The physical address corresponding to addr.
3134 * @param env The cpu environment.
3135 * @param addr The virtual address.
3136 * @param pTLBEntry The TLB entry.
3137 */
3138target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
3139{
3140 PVM pVM = env->pVM;
3141 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
3142 {
3143 target_ulong ret = pTLBEntry->addend + addr;
3144 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv addr_code=%VGv addend=%VGp ret=%VGp\n",
3145 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
3146 return ret;
3147 }
3148 LogRel(("\nTrying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
3149 "*** handlers\n",
3150 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
3151 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
3152 LogRel(("*** mmio\n"));
3153 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
3154 LogRel(("*** phys\n"));
3155 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
3156 cpu_abort(env, "Trying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
3157 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
3158 AssertFatalFailed();
3159}
3160
3161
3162/** Validate the physical address passed to the read functions.
3163 * Useful for finding non-guest-ram reads/writes. */
3164#if 1 /* disable if it becomes bothersome... */
3165# define VBOX_CHECK_ADDR(GCPhys) AssertMsg(PGMPhysIsGCPhysValid(cpu_single_env->pVM, (GCPhys)), ("%VGp\n", (GCPhys)))
3166#else
3167# define VBOX_CHECK_ADDR(GCPhys) do { } while (0)
3168#endif
3169
3170/**
3171 * Read guest RAM and ROM.
3172 *
3173 * @param SrcGCPhys The source address (guest physical).
3174 * @param pvDst The destination address.
3175 * @param cb Number of bytes
3176 */
3177void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3178{
3179 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3180 VBOX_CHECK_ADDR(SrcGCPhys);
3181 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3182 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3183}
3184
3185
3186/**
3187 * Read guest RAM and ROM, unsigned 8-bit.
3188 *
3189 * @param SrcGCPhys The source address (guest physical).
3190 */
3191uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3192{
3193 uint8_t val;
3194 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3195 VBOX_CHECK_ADDR(SrcGCPhys);
3196 val = PGMR3PhysReadByte(cpu_single_env->pVM, SrcGCPhys);
3197 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3198 return val;
3199}
3200
3201
3202/**
3203 * Read guest RAM and ROM, signed 8-bit.
3204 *
3205 * @param SrcGCPhys The source address (guest physical).
3206 */
3207int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3208{
3209 int8_t val;
3210 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3211 VBOX_CHECK_ADDR(SrcGCPhys);
3212 val = PGMR3PhysReadByte(cpu_single_env->pVM, SrcGCPhys);
3213 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3214 return val;
3215}
3216
3217
3218/**
3219 * Read guest RAM and ROM, unsigned 16-bit.
3220 *
3221 * @param SrcGCPhys The source address (guest physical).
3222 */
3223uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3224{
3225 uint16_t val;
3226 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3227 VBOX_CHECK_ADDR(SrcGCPhys);
3228 val = PGMR3PhysReadWord(cpu_single_env->pVM, SrcGCPhys);
3229 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3230 return val;
3231}
3232
3233
3234/**
3235 * Read guest RAM and ROM, signed 16-bit.
3236 *
3237 * @param SrcGCPhys The source address (guest physical).
3238 */
3239int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3240{
3241 uint16_t val;
3242 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3243 VBOX_CHECK_ADDR(SrcGCPhys);
3244 val = PGMR3PhysReadWord(cpu_single_env->pVM, SrcGCPhys);
3245 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3246 return val;
3247}
3248
3249
3250/**
3251 * Read guest RAM and ROM, unsigned 32-bit.
3252 *
3253 * @param SrcGCPhys The source address (guest physical).
3254 */
3255uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3256{
3257 uint32_t val;
3258 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3259 VBOX_CHECK_ADDR(SrcGCPhys);
3260 val = PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys);
3261 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3262 return val;
3263}
3264
3265
3266/**
3267 * Read guest RAM and ROM, signed 32-bit.
3268 *
3269 * @param SrcGCPhys The source address (guest physical).
3270 */
3271int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3272{
3273 int32_t val;
3274 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3275 VBOX_CHECK_ADDR(SrcGCPhys);
3276 val = PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys);
3277 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3278 return val;
3279}
3280
3281
3282/**
3283 * Read guest RAM and ROM, unsigned 64-bit.
3284 *
3285 * @param SrcGCPhys The source address (guest physical).
3286 */
3287uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3288{
3289 uint64_t val;
3290 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3291 VBOX_CHECK_ADDR(SrcGCPhys);
3292 val = PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys)
3293 | ((uint64_t)PGMR3PhysReadDword(cpu_single_env->pVM, SrcGCPhys + 4) << 32); /** @todo fix me! */
3294 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3295 return val;
3296}
3297
3298
3299/**
3300 * Write guest RAM.
3301 *
3302 * @param DstGCPhys The destination address (guest physical).
3303 * @param pvSrc The source address.
3304 * @param cb Number of bytes to write
3305 */
3306void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3307{
3308 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3309 VBOX_CHECK_ADDR(DstGCPhys);
3310 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3311 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3312}
3313
3314
3315/**
3316 * Write guest RAM, unsigned 8-bit.
3317 *
3318 * @param DstGCPhys The destination address (guest physical).
3319 * @param val Value
3320 */
3321void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3322{
3323 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3324 VBOX_CHECK_ADDR(DstGCPhys);
3325 PGMR3PhysWriteByte(cpu_single_env->pVM, DstGCPhys, val);
3326 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3327}
3328
3329
3330/**
3331 * Write guest RAM, unsigned 8-bit.
3332 *
3333 * @param DstGCPhys The destination address (guest physical).
3334 * @param val Value
3335 */
3336void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3337{
3338 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3339 VBOX_CHECK_ADDR(DstGCPhys);
3340 PGMR3PhysWriteWord(cpu_single_env->pVM, DstGCPhys, val);
3341 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3342}
3343
3344
3345/**
3346 * Write guest RAM, unsigned 32-bit.
3347 *
3348 * @param DstGCPhys The destination address (guest physical).
3349 * @param val Value
3350 */
3351void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3352{
3353 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3354 VBOX_CHECK_ADDR(DstGCPhys);
3355 PGMR3PhysWriteDword(cpu_single_env->pVM, DstGCPhys, val);
3356 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3357}
3358
3359
3360/**
3361 * Write guest RAM, unsigned 64-bit.
3362 *
3363 * @param DstGCPhys The destination address (guest physical).
3364 * @param val Value
3365 */
3366void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3367{
3368 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3369 VBOX_CHECK_ADDR(DstGCPhys);
3370 PGMR3PhysWriteDword(cpu_single_env->pVM, DstGCPhys, (uint32_t)val); /** @todo add U64 interface. */
3371 PGMR3PhysWriteDword(cpu_single_env->pVM, DstGCPhys + 4, val >> 32);
3372 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3373}
3374
3375
3376#ifndef REM_PHYS_ADDR_IN_TLB
3377
3378/**
3379 * Read guest RAM and ROM.
3380 *
3381 * @param pbSrcPhys The source address. Relative to guest RAM.
3382 * @param pvDst The destination address.
3383 * @param cb Number of bytes
3384 */
3385void remR3PhysReadHCPtr(uint8_t *pbSrcPhys, void *pvDst, unsigned cb)
3386{
3387 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3388
3389 /*
3390 * Calc the physical address ('off') and check that it's within the RAM.
3391 * ROM is accessed this way, even if it's not part of the RAM.
3392 */
3393 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3394#ifdef PGM_DYNAMIC_RAM_ALLOC
3395 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3396#else
3397 uintptr_t off = pbSrcPhys - phys_ram_base;
3398#endif
3399 if (off < (uintptr_t)phys_ram_size)
3400 PGMPhysRead(cpu_single_env->pVM, (RTGCPHYS)off, pvDst, cb);
3401 else
3402 {
3403 /* ROM range outside physical RAM, HC address passed directly */
3404 Log4(("remR3PhysRead ROM: %p\n", pbSrcPhys));
3405 memcpy(pvDst, pbSrcPhys, cb);
3406 }
3407 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3408}
3409
3410
3411/**
3412 * Read guest RAM and ROM, unsigned 8-bit.
3413 *
3414 * @param pbSrcPhys The source address. Relative to guest RAM.
3415 */
3416uint8_t remR3PhysReadHCPtrU8(uint8_t *pbSrcPhys)
3417{
3418 uint8_t val;
3419
3420 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3421
3422 /*
3423 * Calc the physical address ('off') and check that it's within the RAM.
3424 * ROM is accessed this way, even if it's not part of the RAM.
3425 */
3426#ifdef PGM_DYNAMIC_RAM_ALLOC
3427 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3428#else
3429 uintptr_t off = pbSrcPhys - phys_ram_base;
3430#endif
3431 if (off < (uintptr_t)phys_ram_size)
3432 val = PGMR3PhysReadByte(cpu_single_env->pVM, (RTGCPHYS)off);
3433 else
3434 {
3435 /* ROM range outside physical RAM, HC address passed directly */
3436 Log4(("remR3PhysReadU8 ROM: %p\n", pbSrcPhys));
3437 val = *pbSrcPhys;
3438 }
3439 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3440 return val;
3441}
3442
3443
3444/**
3445 * Read guest RAM and ROM, signed 8-bit.
3446 *
3447 * @param pbSrcPhys The source address. Relative to guest RAM.
3448 */
3449int8_t remR3PhysReadHCPtrS8(uint8_t *pbSrcPhys)
3450{
3451 int8_t val;
3452
3453 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3454
3455 /*
3456 * Calc the physical address ('off') and check that it's within the RAM.
3457 * ROM is accessed this way, even if it's not part of the RAM.
3458 */
3459#ifdef PGM_DYNAMIC_RAM_ALLOC
3460 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3461#else
3462 uintptr_t off = pbSrcPhys - phys_ram_base;
3463#endif
3464 if (off < (uintptr_t)phys_ram_size)
3465 val = PGMR3PhysReadByte(cpu_single_env->pVM, (RTGCPHYS)off);
3466 else
3467 {
3468 /* ROM range outside physical RAM, HC address passed directly */
3469 Log4(("remR3PhysReadS8 ROM: %p\n", pbSrcPhys));
3470 val = *(int8_t *)pbSrcPhys;
3471 }
3472 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3473 return val;
3474}
3475
3476
3477/**
3478 * Read guest RAM and ROM, unsigned 16-bit.
3479 *
3480 * @param pbSrcPhys The source address. Relative to guest RAM.
3481 */
3482uint16_t remR3PhysReadHCPtrU16(uint8_t *pbSrcPhys)
3483{
3484 uint16_t val;
3485
3486 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3487
3488 /*
3489 * Calc the physical address ('off') and check that it's within the RAM.
3490 * ROM is accessed this way, even if it's not part of the RAM.
3491 */
3492#ifdef PGM_DYNAMIC_RAM_ALLOC
3493 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3494#else
3495 uintptr_t off = pbSrcPhys - phys_ram_base;
3496#endif
3497 if (off < (uintptr_t)phys_ram_size)
3498 val = PGMR3PhysReadWord(cpu_single_env->pVM, (RTGCPHYS)off);
3499 else
3500 {
3501 /* ROM range outside physical RAM, HC address passed directly */
3502 Log4(("remR3PhysReadU16 ROM: %p\n", pbSrcPhys));
3503 val = *(uint16_t *)pbSrcPhys;
3504 }
3505 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3506 return val;
3507}
3508
3509
3510/**
3511 * Read guest RAM and ROM, signed 16-bit.
3512 *
3513 * @param pbSrcPhys The source address. Relative to guest RAM.
3514 */
3515int16_t remR3PhysReadHCPtrS16(uint8_t *pbSrcPhys)
3516{
3517 int16_t val;
3518
3519 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3520
3521 /*
3522 * Calc the physical address ('off') and check that it's within the RAM.
3523 * ROM is accessed this way, even if it's not part of the RAM.
3524 */
3525 /** @todo This is rather ugly, but there's no other way when we don't wish to touch *many* other files. */
3526#ifdef PGM_DYNAMIC_RAM_ALLOC
3527 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3528#else
3529 uintptr_t off = pbSrcPhys - phys_ram_base;
3530#endif
3531 if (off < (uintptr_t)phys_ram_size)
3532 val = PGMR3PhysReadWord(cpu_single_env->pVM, (RTGCPHYS)off);
3533 else
3534 {
3535 /* ROM range outside physical RAM, HC address passed directly */
3536 Log4(("remR3PhysReadS16 ROM: %p\n", pbSrcPhys));
3537 val = *(int16_t *)pbSrcPhys;
3538 }
3539 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3540 return val;
3541}
3542
3543
3544/**
3545 * Read guest RAM and ROM, unsigned 32-bit.
3546 *
3547 * @param pbSrcPhys The source address. Relative to guest RAM.
3548 */
3549uint32_t remR3PhysReadHCPtrU32(uint8_t *pbSrcPhys)
3550{
3551 uint32_t val;
3552
3553 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3554
3555 /*
3556 * Calc the physical address ('off') and check that it's within the RAM.
3557 * ROM is accessed this way, even if it's not part of the RAM.
3558 */
3559#ifdef PGM_DYNAMIC_RAM_ALLOC
3560 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3561#else
3562 uintptr_t off = pbSrcPhys - phys_ram_base;
3563#endif
3564 if (off < (uintptr_t)phys_ram_size)
3565 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off);
3566 else
3567 {
3568 /* ROM range outside physical RAM, HC address passed directly */
3569 Log4(("remR3PhysReadU32 ROM: %p\n", pbSrcPhys));
3570 val = *(uint32_t *)pbSrcPhys;
3571 }
3572 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3573 return val;
3574}
3575
3576
3577/**
3578 * Read guest RAM and ROM, signed 32-bit.
3579 *
3580 * @param pbSrcPhys The source address. Relative to guest RAM.
3581 */
3582int32_t remR3PhysReadHCPtrS32(uint8_t *pbSrcPhys)
3583{
3584 int32_t val;
3585
3586 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3587
3588 /*
3589 * Calc the physical address ('off') and check that it's within the RAM.
3590 * ROM is accessed this way, even if it's not part of the RAM.
3591 */
3592#ifdef PGM_DYNAMIC_RAM_ALLOC
3593 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3594#else
3595 uintptr_t off = pbSrcPhys - phys_ram_base;
3596#endif
3597 if (off < (uintptr_t)phys_ram_size)
3598 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off);
3599 else
3600 {
3601 /* ROM range outside physical RAM, HC address passed directly */
3602 Log4(("remR3PhysReadS32 ROM: %p\n", pbSrcPhys));
3603 val = *(int32_t *)pbSrcPhys;
3604 }
3605 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3606 return val;
3607}
3608
3609
3610/**
3611 * Read guest RAM and ROM, unsigned 64-bit.
3612 *
3613 * @param pbSrcPhys The source address. Relative to guest RAM.
3614 */
3615uint64_t remR3PhysReadHCPtrU64(uint8_t *pbSrcPhys)
3616{
3617 uint64_t val;
3618
3619 STAM_PROFILE_ADV_START(&gStatMemReadHCPtr, a);
3620
3621 /*
3622 * Calc the physical address ('off') and check that it's within the RAM.
3623 * ROM is accessed this way, even if it's not part of the RAM.
3624 */
3625#ifdef PGM_DYNAMIC_RAM_ALLOC
3626 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbSrcPhys);
3627#else
3628 uintptr_t off = pbSrcPhys - phys_ram_base;
3629#endif
3630 if (off < (uintptr_t)phys_ram_size)
3631 val = PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off)
3632 | ((uint64_t)PGMR3PhysReadDword(cpu_single_env->pVM, (RTGCPHYS)off + 4) << 32); /** @todo fix me! */
3633 else
3634 {
3635 /* ROM range outside physical RAM, HC address passed directly */
3636 Log4(("remR3PhysReadU64 ROM: %p\n", pbSrcPhys));
3637 val = *(uint32_t *)pbSrcPhys;
3638 }
3639 STAM_PROFILE_ADV_STOP(&gStatMemReadHCPtr, a);
3640 return val;
3641}
3642
3643
3644/**
3645 * Write guest RAM.
3646 *
3647 * @param pbDstPhys The destination address. Relative to guest RAM.
3648 * @param pvSrc The source address.
3649 * @param cb Number of bytes to write
3650 */
3651void remR3PhysWriteHCPtr(uint8_t *pbDstPhys, const void *pvSrc, unsigned cb)
3652{
3653 STAM_PROFILE_ADV_START(&gStatMemWriteHCPtr, a);
3654 /*
3655 * Calc the physical address ('off') and check that it's within the RAM.
3656 */
3657#ifdef PGM_DYNAMIC_RAM_ALLOC
3658 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbDstPhys);
3659#else
3660 uintptr_t off = pbDstPhys - phys_ram_base;
3661#endif
3662 if (off < (uintptr_t)phys_ram_size)
3663 PGMPhysWrite(cpu_single_env->pVM, (RTGCPHYS)off, pvSrc, cb);
3664 else
3665 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, cb));
3666 STAM_PROFILE_ADV_STOP(&gStatMemWriteHCPtr, a);
3667}
3668
3669
3670/**
3671 * Write guest RAM, unsigned 8-bit.
3672 *
3673 * @param pbDstPhys The destination address. Relative to guest RAM.
3674 * @param val Value
3675 */
3676void remR3PhysWriteHCPtrU8(uint8_t *pbDstPhys, uint8_t val)
3677{
3678 STAM_PROFILE_ADV_START(&gStatMemWriteHCPtr, a);
3679 /*
3680 * Calc the physical address ('off') and check that it's within the RAM.
3681 */
3682#ifdef PGM_DYNAMIC_RAM_ALLOC
3683 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbDstPhys);
3684#else
3685 uintptr_t off = pbDstPhys - phys_ram_base;
3686#endif
3687 if (off < (uintptr_t)phys_ram_size)
3688 PGMR3PhysWriteByte(cpu_single_env->pVM, (RTGCPHYS)off, val);
3689 else
3690 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, 1));
3691 STAM_PROFILE_ADV_STOP(&gStatMemWriteHCPtr, a);
3692}
3693
3694
3695/**
3696 * Write guest RAM, unsigned 16-bit.
3697 *
3698 * @param pbDstPhys The destination address. Relative to guest RAM.
3699 * @param val Value
3700 */
3701void remR3PhysWriteHCPtrU16(uint8_t *pbDstPhys, uint16_t val)
3702{
3703 STAM_PROFILE_ADV_START(&gStatMemWriteHCPtr, a);
3704 /*
3705 * Calc the physical address ('off') and check that it's within the RAM.
3706 */
3707#ifdef PGM_DYNAMIC_RAM_ALLOC
3708 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbDstPhys);
3709#else
3710 uintptr_t off = pbDstPhys - phys_ram_base;
3711#endif
3712 if (off < (uintptr_t)phys_ram_size)
3713 PGMR3PhysWriteWord(cpu_single_env->pVM, (RTGCPHYS)off, val);
3714 else
3715 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, 2));
3716 STAM_PROFILE_ADV_STOP(&gStatMemWriteHCPtr, a);
3717}
3718
3719
3720/**
3721 * Write guest RAM, unsigned 32-bit.
3722 *
3723 * @param pbDstPhys The destination address. Relative to guest RAM.
3724 * @param val Value
3725 */
3726void remR3PhysWriteHCPtrU32(uint8_t *pbDstPhys, uint32_t val)
3727{
3728 STAM_PROFILE_ADV_START(&gStatMemWriteHCPtr, a);
3729 /*
3730 * Calc the physical address ('off') and check that it's within the RAM.
3731 */
3732#ifdef PGM_DYNAMIC_RAM_ALLOC
3733 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbDstPhys);
3734#else
3735 uintptr_t off = pbDstPhys - phys_ram_base;
3736#endif
3737 if (off < (uintptr_t)phys_ram_size)
3738 PGMR3PhysWriteDword(cpu_single_env->pVM, (RTGCPHYS)off, val);
3739 else
3740 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, 4));
3741 STAM_PROFILE_ADV_STOP(&gStatMemWriteHCPtr, a);
3742}
3743
3744
3745/**
3746 * Write guest RAM, unsigned 64-bit.
3747 *
3748 * @param pbDstPhys The destination address. Relative to guest RAM.
3749 * @param val Value
3750 */
3751void remR3PhysWriteHCPtrU64(uint8_t *pbDstPhys, uint64_t val)
3752{
3753 STAM_PROFILE_ADV_START(&gStatMemWriteHCPtr, a);
3754 /*
3755 * Calc the physical address ('off') and check that it's within the RAM.
3756 */
3757#ifdef PGM_DYNAMIC_RAM_ALLOC
3758 uintptr_t off = remR3HCVirt2GCPhysInlined(cpu_single_env->pVM, pbDstPhys);
3759#else
3760 uintptr_t off = pbDstPhys - phys_ram_base;
3761#endif
3762 if (off < (uintptr_t)phys_ram_size)
3763 {
3764 PGMR3PhysWriteDword(cpu_single_env->pVM, (RTGCPHYS)off, (uint32_t)val); /** @todo add U64 interface. */
3765 PGMR3PhysWriteDword(cpu_single_env->pVM, (RTGCPHYS)off + 4, val >> 32);
3766 }
3767 else
3768 AssertMsgFailed(("pbDstPhys=%p off=%p cb=%d\n", pbDstPhys, off, 4));
3769 STAM_PROFILE_ADV_STOP(&gStatMemWriteHCPtr, a);
3770}
3771
3772#endif /* !REM_PHYS_ADDR_IN_TLB */
3773
3774
3775#undef LOG_GROUP
3776#define LOG_GROUP LOG_GROUP_REM_MMIO
3777
3778/** Read MMIO memory. */
3779static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3780{
3781 uint32_t u32 = 0;
3782 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3783 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3784 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3785 return u32;
3786}
3787
3788/** Read MMIO memory. */
3789static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3790{
3791 uint32_t u32 = 0;
3792 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3793 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3794 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3795 return u32;
3796}
3797
3798/** Read MMIO memory. */
3799static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3800{
3801 uint32_t u32 = 0;
3802 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3803 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3804 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3805 return u32;
3806}
3807
3808/** Write to MMIO memory. */
3809static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3810{
3811 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3812 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3813 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3814}
3815
3816/** Write to MMIO memory. */
3817static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3818{
3819 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3820 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3821 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3822}
3823
3824/** Write to MMIO memory. */
3825static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3826{
3827 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3828 int rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3829 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3830}
3831
3832
3833#undef LOG_GROUP
3834#define LOG_GROUP LOG_GROUP_REM_HANDLER
3835
3836/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3837
3838static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3839{
3840 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3841 uint8_t u8;
3842 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3843 return u8;
3844}
3845
3846static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3847{
3848 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3849 uint16_t u16;
3850 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3851 return u16;
3852}
3853
3854static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3855{
3856 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3857 uint32_t u32;
3858 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3859 return u32;
3860}
3861
3862static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3863{
3864 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3865 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3866}
3867
3868static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3869{
3870 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3871 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3872}
3873
3874static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3875{
3876 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3877 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3878}
3879
3880/* -+- disassembly -+- */
3881
3882#undef LOG_GROUP
3883#define LOG_GROUP LOG_GROUP_REM_DISAS
3884
3885
3886/**
3887 * Enables or disables singled stepped disassembly.
3888 *
3889 * @returns VBox status code.
3890 * @param pVM VM handle.
3891 * @param fEnable To enable set this flag, to disable clear it.
3892 */
3893static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3894{
3895 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3896 VM_ASSERT_EMT(pVM);
3897
3898 if (fEnable)
3899 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3900 else
3901 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3902 return VINF_SUCCESS;
3903}
3904
3905
3906/**
3907 * Enables or disables singled stepped disassembly.
3908 *
3909 * @returns VBox status code.
3910 * @param pVM VM handle.
3911 * @param fEnable To enable set this flag, to disable clear it.
3912 */
3913REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3914{
3915 PVMREQ pReq;
3916 int rc;
3917
3918 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3919 if (VM_IS_EMT(pVM))
3920 return remR3DisasEnableStepping(pVM, fEnable);
3921
3922 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3923 AssertRC(rc);
3924 if (VBOX_SUCCESS(rc))
3925 rc = pReq->iStatus;
3926 VMR3ReqFree(pReq);
3927 return rc;
3928}
3929
3930
3931#ifdef VBOX_WITH_DEBUGGER
3932/**
3933 * External Debugger Command: .remstep [on|off|1|0]
3934 */
3935static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3936{
3937 bool fEnable;
3938 int rc;
3939
3940 /* print status */
3941 if (cArgs == 0)
3942 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3943 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3944
3945 /* convert the argument and change the mode. */
3946 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3947 if (VBOX_FAILURE(rc))
3948 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3949 rc = REMR3DisasEnableStepping(pVM, fEnable);
3950 if (VBOX_FAILURE(rc))
3951 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3952 return rc;
3953}
3954#endif
3955
3956
3957/**
3958 * Disassembles n instructions and prints them to the log.
3959 *
3960 * @returns Success indicator.
3961 * @param env Pointer to the recompiler CPU structure.
3962 * @param f32BitCode Indicates that whether or not the code should
3963 * be disassembled as 16 or 32 bit. If -1 the CS
3964 * selector will be inspected.
3965 * @param nrInstructions Nr of instructions to disassemble
3966 * @param pszPrefix
3967 * @remark not currently used for anything but ad-hoc debugging.
3968 */
3969bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3970{
3971 int i;
3972
3973 /*
3974 * Determin 16/32 bit mode.
3975 */
3976 if (f32BitCode == -1)
3977 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3978
3979 /*
3980 * Convert cs:eip to host context address.
3981 * We don't care to much about cross page correctness presently.
3982 */
3983 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
3984 void *pvPC;
3985 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3986 {
3987 /* convert eip to physical address. */
3988 int rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3989 GCPtrPC,
3990 env->cr[3],
3991 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3992 &pvPC);
3993 if (VBOX_FAILURE(rc))
3994 {
3995 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3996 return false;
3997 pvPC = (char *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3998 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3999 }
4000 }
4001 else
4002 {
4003 /* physical address */
4004 int rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16, &pvPC);
4005 if (VBOX_FAILURE(rc))
4006 return false;
4007 }
4008
4009 /*
4010 * Disassemble.
4011 */
4012 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
4013 DISCPUSTATE Cpu;
4014 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
4015 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
4016 //Cpu.dwUserData[0] = (uintptr_t)pVM;
4017 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
4018 //Cpu.dwUserData[2] = GCPtrPC;
4019
4020 for (i=0;i<nrInstructions;i++)
4021 {
4022 char szOutput[256];
4023 uint32_t cbOp;
4024 if (!DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0]))
4025 return false;
4026 if (pszPrefix)
4027 Log(("%s: %s", pszPrefix, szOutput));
4028 else
4029 Log(("%s", szOutput));
4030
4031 pvPC += cbOp;
4032 }
4033 return true;
4034}
4035
4036
4037/** @todo need to test the new code, using the old code in the mean while. */
4038#define USE_OLD_DUMP_AND_DISASSEMBLY
4039
4040/**
4041 * Disassembles one instruction and prints it to the log.
4042 *
4043 * @returns Success indicator.
4044 * @param env Pointer to the recompiler CPU structure.
4045 * @param f32BitCode Indicates that whether or not the code should
4046 * be disassembled as 16 or 32 bit. If -1 the CS
4047 * selector will be inspected.
4048 * @param pszPrefix
4049 */
4050bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
4051{
4052#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
4053 PVM pVM = env->pVM;
4054
4055 /*
4056 * Determin 16/32 bit mode.
4057 */
4058 if (f32BitCode == -1)
4059 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
4060
4061 /*
4062 * Log registers
4063 */
4064 if (LogIs2Enabled())
4065 {
4066 remR3StateUpdate(pVM);
4067 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
4068 }
4069
4070 /*
4071 * Convert cs:eip to host context address.
4072 * We don't care to much about cross page correctness presently.
4073 */
4074 RTGCPTR GCPtrPC = env->segs[R_CS].base + env->eip;
4075 void *pvPC;
4076 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
4077 {
4078 /* convert eip to physical address. */
4079 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
4080 GCPtrPC,
4081 env->cr[3],
4082 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
4083 &pvPC);
4084 if (VBOX_FAILURE(rc))
4085 {
4086 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
4087 return false;
4088 pvPC = (char *)PATMR3QueryPatchMemHC(pVM, NULL)
4089 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
4090 }
4091 }
4092 else
4093 {
4094
4095 /* physical address */
4096 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, &pvPC);
4097 if (VBOX_FAILURE(rc))
4098 return false;
4099 }
4100
4101 /*
4102 * Disassemble.
4103 */
4104 RTINTPTR off = env->eip - (RTINTPTR)pvPC;
4105 DISCPUSTATE Cpu;
4106 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
4107 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
4108 //Cpu.dwUserData[0] = (uintptr_t)pVM;
4109 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
4110 //Cpu.dwUserData[2] = GCPtrPC;
4111 char szOutput[256];
4112 uint32_t cbOp;
4113 if (!DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0]))
4114 return false;
4115
4116 if (!f32BitCode)
4117 {
4118 if (pszPrefix)
4119 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
4120 else
4121 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
4122 }
4123 else
4124 {
4125 if (pszPrefix)
4126 Log(("%s: %s", pszPrefix, szOutput));
4127 else
4128 Log(("%s", szOutput));
4129 }
4130 return true;
4131
4132#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
4133 PVM pVM = env->pVM;
4134 const bool fLog = LogIsEnabled();
4135 const bool fLog2 = LogIs2Enabled();
4136 int rc = VINF_SUCCESS;
4137
4138 /*
4139 * Don't bother if there ain't any log output to do.
4140 */
4141 if (!fLog && !fLog2)
4142 return true;
4143
4144 /*
4145 * Update the state so DBGF reads the correct register values.
4146 */
4147 remR3StateUpdate(pVM);
4148
4149 /*
4150 * Log registers if requested.
4151 */
4152 if (!fLog2)
4153 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
4154
4155 /*
4156 * Disassemble to log.
4157 */
4158 if (fLog)
4159 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
4160
4161 return VBOX_SUCCESS(rc);
4162#endif
4163}
4164
4165
4166/**
4167 * Disassemble recompiled code.
4168 *
4169 * @param phFileIgnored Ignored, logfile usually.
4170 * @param pvCode Pointer to the code block.
4171 * @param cb Size of the code block.
4172 */
4173void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
4174{
4175 if (LogIs2Enabled())
4176 {
4177 unsigned off = 0;
4178 char szOutput[256];
4179 DISCPUSTATE Cpu = {0};
4180 Cpu.mode = CPUMODE_32BIT;
4181
4182 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
4183 while (off < cb)
4184 {
4185 uint32_t cbInstr;
4186 if (DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput))
4187 RTLogPrintf("%s", szOutput);
4188 else
4189 {
4190 RTLogPrintf("disas error\n");
4191 cbInstr = 1;
4192 }
4193 off += cbInstr;
4194 }
4195 }
4196 NOREF(phFileIgnored);
4197}
4198
4199
4200/**
4201 * Disassemble guest code.
4202 *
4203 * @param phFileIgnored Ignored, logfile usually.
4204 * @param uCode The guest address of the code to disassemble. (flat?)
4205 * @param cb Number of bytes to disassemble.
4206 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
4207 */
4208void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
4209{
4210 if (LogIs2Enabled())
4211 {
4212 PVM pVM = cpu_single_env->pVM;
4213
4214 /*
4215 * Update the state so DBGF reads the correct register values (flags).
4216 */
4217 remR3StateUpdate(pVM);
4218
4219 /*
4220 * Do the disassembling.
4221 */
4222 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
4223 RTSEL cs = cpu_single_env->segs[R_CS].selector;
4224 RTGCUINTPTR eip = uCode - cpu_single_env->segs[R_CS].base;
4225 for (;;)
4226 {
4227 char szBuf[256];
4228 uint32_t cbInstr;
4229 int rc = DBGFR3DisasInstrEx(pVM,
4230 cs,
4231 eip,
4232 0,
4233 szBuf, sizeof(szBuf),
4234 &cbInstr);
4235 if (VBOX_SUCCESS(rc))
4236 RTLogPrintf("%VGp %s\n", uCode, szBuf);
4237 else
4238 {
4239 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
4240 cbInstr = 1;
4241 }
4242
4243 /* next */
4244 if (cb <= cbInstr)
4245 break;
4246 cb -= cbInstr;
4247 uCode += cbInstr;
4248 eip += cbInstr;
4249 }
4250 }
4251 NOREF(phFileIgnored);
4252}
4253
4254
4255/**
4256 * Looks up a guest symbol.
4257 *
4258 * @returns Pointer to symbol name. This is a static buffer.
4259 * @param orig_addr The address in question.
4260 */
4261const char *lookup_symbol(target_ulong orig_addr)
4262{
4263 RTGCINTPTR off = 0;
4264 DBGFSYMBOL Sym;
4265 PVM pVM = cpu_single_env->pVM;
4266 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
4267 if (VBOX_SUCCESS(rc))
4268 {
4269 static char szSym[sizeof(Sym.szName) + 48];
4270 if (!off)
4271 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
4272 else if (off > 0)
4273 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
4274 else
4275 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
4276 return szSym;
4277 }
4278 return "<N/A>";
4279}
4280
4281
4282#undef LOG_GROUP
4283#define LOG_GROUP LOG_GROUP_REM
4284
4285
4286/* -+- FF notifications -+- */
4287
4288
4289/**
4290 * Notification about a pending interrupt.
4291 *
4292 * @param pVM VM Handle.
4293 * @param u8Interrupt Interrupt
4294 * @thread The emulation thread.
4295 */
4296REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
4297{
4298 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
4299 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
4300}
4301
4302/**
4303 * Notification about a pending interrupt.
4304 *
4305 * @returns Pending interrupt or REM_NO_PENDING_IRQ
4306 * @param pVM VM Handle.
4307 * @thread The emulation thread.
4308 */
4309REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
4310{
4311 return pVM->rem.s.u32PendingInterrupt;
4312}
4313
4314/**
4315 * Notification about the interrupt FF being set.
4316 *
4317 * @param pVM VM Handle.
4318 * @thread The emulation thread.
4319 */
4320REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
4321{
4322 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
4323 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
4324 if (pVM->rem.s.fInREM)
4325 {
4326 if (VM_IS_EMT(pVM))
4327 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
4328 else
4329 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_HARD);
4330 }
4331}
4332
4333
4334/**
4335 * Notification about the interrupt FF being set.
4336 *
4337 * @param pVM VM Handle.
4338 * @thread The emulation thread.
4339 */
4340REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
4341{
4342 LogFlow(("REMR3NotifyInterruptClear:\n"));
4343 VM_ASSERT_EMT(pVM);
4344 if (pVM->rem.s.fInREM)
4345 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
4346}
4347
4348
4349/**
4350 * Notification about pending timer(s).
4351 *
4352 * @param pVM VM Handle.
4353 * @thread Any.
4354 */
4355REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
4356{
4357#ifndef DEBUG_bird
4358 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
4359#endif
4360 if (pVM->rem.s.fInREM)
4361 {
4362 if (VM_IS_EMT(pVM))
4363 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
4364 else
4365 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_TIMER);
4366 }
4367}
4368
4369
4370/**
4371 * Notification about pending DMA transfers.
4372 *
4373 * @param pVM VM Handle.
4374 * @thread Any.
4375 */
4376REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
4377{
4378 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
4379 if (pVM->rem.s.fInREM)
4380 {
4381 if (VM_IS_EMT(pVM))
4382 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
4383 else
4384 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_DMA);
4385 }
4386}
4387
4388
4389/**
4390 * Notification about pending timer(s).
4391 *
4392 * @param pVM VM Handle.
4393 * @thread Any.
4394 */
4395REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
4396{
4397 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
4398 if (pVM->rem.s.fInREM)
4399 {
4400 if (VM_IS_EMT(pVM))
4401 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
4402 else
4403 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
4404 }
4405}
4406
4407
4408/**
4409 * Notification about pending FF set by an external thread.
4410 *
4411 * @param pVM VM handle.
4412 * @thread Any.
4413 */
4414REMR3DECL(void) REMR3NotifyFF(PVM pVM)
4415{
4416 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
4417 if (pVM->rem.s.fInREM)
4418 {
4419 if (VM_IS_EMT(pVM))
4420 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
4421 else
4422 ASMAtomicOrS32(&cpu_single_env->interrupt_request, CPU_INTERRUPT_EXTERNAL_EXIT);
4423 }
4424}
4425
4426
4427#ifdef VBOX_WITH_STATISTICS
4428void remR3ProfileStart(int statcode)
4429{
4430 STAMPROFILEADV *pStat;
4431 switch(statcode)
4432 {
4433 case STATS_EMULATE_SINGLE_INSTR:
4434 pStat = &gStatExecuteSingleInstr;
4435 break;
4436 case STATS_QEMU_COMPILATION:
4437 pStat = &gStatCompilationQEmu;
4438 break;
4439 case STATS_QEMU_RUN_EMULATED_CODE:
4440 pStat = &gStatRunCodeQEmu;
4441 break;
4442 case STATS_QEMU_TOTAL:
4443 pStat = &gStatTotalTimeQEmu;
4444 break;
4445 case STATS_QEMU_RUN_TIMERS:
4446 pStat = &gStatTimers;
4447 break;
4448 case STATS_TLB_LOOKUP:
4449 pStat= &gStatTBLookup;
4450 break;
4451 case STATS_IRQ_HANDLING:
4452 pStat= &gStatIRQ;
4453 break;
4454 case STATS_RAW_CHECK:
4455 pStat = &gStatRawCheck;
4456 break;
4457
4458 default:
4459 AssertMsgFailed(("unknown stat %d\n", statcode));
4460 return;
4461 }
4462 STAM_PROFILE_ADV_START(pStat, a);
4463}
4464
4465
4466void remR3ProfileStop(int statcode)
4467{
4468 STAMPROFILEADV *pStat;
4469 switch(statcode)
4470 {
4471 case STATS_EMULATE_SINGLE_INSTR:
4472 pStat = &gStatExecuteSingleInstr;
4473 break;
4474 case STATS_QEMU_COMPILATION:
4475 pStat = &gStatCompilationQEmu;
4476 break;
4477 case STATS_QEMU_RUN_EMULATED_CODE:
4478 pStat = &gStatRunCodeQEmu;
4479 break;
4480 case STATS_QEMU_TOTAL:
4481 pStat = &gStatTotalTimeQEmu;
4482 break;
4483 case STATS_QEMU_RUN_TIMERS:
4484 pStat = &gStatTimers;
4485 break;
4486 case STATS_TLB_LOOKUP:
4487 pStat= &gStatTBLookup;
4488 break;
4489 case STATS_IRQ_HANDLING:
4490 pStat= &gStatIRQ;
4491 break;
4492 case STATS_RAW_CHECK:
4493 pStat = &gStatRawCheck;
4494 break;
4495 default:
4496 AssertMsgFailed(("unknown stat %d\n", statcode));
4497 return;
4498 }
4499 STAM_PROFILE_ADV_STOP(pStat, a);
4500}
4501#endif
4502
4503/**
4504 * Raise an RC, force rem exit.
4505 *
4506 * @param pVM VM handle.
4507 * @param rc The rc.
4508 */
4509void remR3RaiseRC(PVM pVM, int rc)
4510{
4511 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
4512 Assert(pVM->rem.s.fInREM);
4513 VM_ASSERT_EMT(pVM);
4514 pVM->rem.s.rc = rc;
4515 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
4516}
4517
4518
4519/* -+- timers -+- */
4520
4521uint64_t cpu_get_tsc(CPUX86State *env)
4522{
4523 STAM_COUNTER_INC(&gStatCpuGetTSC);
4524 return TMCpuTickGet(env->pVM);
4525}
4526
4527
4528/* -+- interrupts -+- */
4529
4530void cpu_set_ferr(CPUX86State *env)
4531{
4532 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
4533 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4534}
4535
4536int cpu_get_pic_interrupt(CPUState *env)
4537{
4538 uint8_t u8Interrupt;
4539 int rc;
4540
4541 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4542 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4543 * with the (a)pic.
4544 */
4545 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4546 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4547 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4548 * remove this kludge. */
4549 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4550 {
4551 rc = VINF_SUCCESS;
4552 Assert(env->pVM->rem.s.u32PendingInterrupt >= 0 && env->pVM->rem.s.u32PendingInterrupt <= 255);
4553 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4554 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4555 }
4556 else
4557 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4558
4559 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
4560 if (VBOX_SUCCESS(rc))
4561 {
4562 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4563 env->interrupt_request |= CPU_INTERRUPT_HARD;
4564 return u8Interrupt;
4565 }
4566 return -1;
4567}
4568
4569
4570/* -+- local apic -+- */
4571
4572void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4573{
4574 int rc = PDMApicSetBase(env->pVM, val);
4575 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
4576}
4577
4578uint64_t cpu_get_apic_base(CPUX86State *env)
4579{
4580 uint64_t u64;
4581 int rc = PDMApicGetBase(env->pVM, &u64);
4582 if (VBOX_SUCCESS(rc))
4583 {
4584 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4585 return u64;
4586 }
4587 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
4588 return 0;
4589}
4590
4591void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4592{
4593 int rc = PDMApicSetTPR(env->pVM, val);
4594 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
4595}
4596
4597uint8_t cpu_get_apic_tpr(CPUX86State *env)
4598{
4599 uint8_t u8;
4600 int rc = PDMApicGetTPR(env->pVM, &u8);
4601 if (VBOX_SUCCESS(rc))
4602 {
4603 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4604 return u8;
4605 }
4606 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
4607 return 0;
4608}
4609
4610
4611/* -+- I/O Ports -+- */
4612
4613#undef LOG_GROUP
4614#define LOG_GROUP LOG_GROUP_REM_IOPORT
4615
4616void cpu_outb(CPUState *env, int addr, int val)
4617{
4618 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4619 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4620
4621 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4622 if (rc == VINF_SUCCESS)
4623 return;
4624 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4625 {
4626 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4627 remR3RaiseRC(env->pVM, rc);
4628 return;
4629 }
4630 remAbort(rc, __FUNCTION__);
4631}
4632
4633void cpu_outw(CPUState *env, int addr, int val)
4634{
4635 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4636 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4637 if (rc == VINF_SUCCESS)
4638 return;
4639 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4640 {
4641 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4642 remR3RaiseRC(env->pVM, rc);
4643 return;
4644 }
4645 remAbort(rc, __FUNCTION__);
4646}
4647
4648void cpu_outl(CPUState *env, int addr, int val)
4649{
4650 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4651 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4652 if (rc == VINF_SUCCESS)
4653 return;
4654 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4655 {
4656 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4657 remR3RaiseRC(env->pVM, rc);
4658 return;
4659 }
4660 remAbort(rc, __FUNCTION__);
4661}
4662
4663int cpu_inb(CPUState *env, int addr)
4664{
4665 uint32_t u32 = 0;
4666 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4667 if (rc == VINF_SUCCESS)
4668 {
4669 if (/*addr != 0x61 && */addr != 0x71)
4670 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4671 return (int)u32;
4672 }
4673 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4674 {
4675 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4676 remR3RaiseRC(env->pVM, rc);
4677 return (int)u32;
4678 }
4679 remAbort(rc, __FUNCTION__);
4680 return 0xff;
4681}
4682
4683int cpu_inw(CPUState *env, int addr)
4684{
4685 uint32_t u32 = 0;
4686 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4687 if (rc == VINF_SUCCESS)
4688 {
4689 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4690 return (int)u32;
4691 }
4692 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4693 {
4694 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4695 remR3RaiseRC(env->pVM, rc);
4696 return (int)u32;
4697 }
4698 remAbort(rc, __FUNCTION__);
4699 return 0xffff;
4700}
4701
4702int cpu_inl(CPUState *env, int addr)
4703{
4704 uint32_t u32 = 0;
4705 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4706 if (rc == VINF_SUCCESS)
4707 {
4708//if (addr==0x01f0 && u32 == 0x6b6d)
4709// loglevel = ~0;
4710 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4711 return (int)u32;
4712 }
4713 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4714 {
4715 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4716 remR3RaiseRC(env->pVM, rc);
4717 return (int)u32;
4718 }
4719 remAbort(rc, __FUNCTION__);
4720 return 0xffffffff;
4721}
4722
4723#undef LOG_GROUP
4724#define LOG_GROUP LOG_GROUP_REM
4725
4726
4727/* -+- helpers and misc other interfaces -+- */
4728
4729/**
4730 * Perform the CPUID instruction.
4731 *
4732 * ASMCpuId cannot be invoked from some source files where this is used because of global
4733 * register allocations.
4734 *
4735 * @param env Pointer to the recompiler CPU structure.
4736 * @param uOperator CPUID operation (eax).
4737 * @param pvEAX Where to store eax.
4738 * @param pvEBX Where to store ebx.
4739 * @param pvECX Where to store ecx.
4740 * @param pvEDX Where to store edx.
4741 */
4742void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4743{
4744 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4745}
4746
4747
4748#if 0 /* not used */
4749/**
4750 * Interface for qemu hardware to report back fatal errors.
4751 */
4752void hw_error(const char *pszFormat, ...)
4753{
4754 /*
4755 * Bitch about it.
4756 */
4757 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4758 * this in my Odin32 tree at home! */
4759 va_list args;
4760 va_start(args, pszFormat);
4761 RTLogPrintf("fatal error in virtual hardware:");
4762 RTLogPrintfV(pszFormat, args);
4763 va_end(args);
4764 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4765
4766 /*
4767 * If we're in REM context we'll sync back the state before 'jumping' to
4768 * the EMs failure handling.
4769 */
4770 PVM pVM = cpu_single_env->pVM;
4771 if (pVM->rem.s.fInREM)
4772 REMR3StateBack(pVM);
4773 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4774 AssertMsgFailed(("EMR3FatalError returned!\n"));
4775}
4776#endif
4777
4778/**
4779 * Interface for the qemu cpu to report unhandled situation
4780 * raising a fatal VM error.
4781 */
4782void cpu_abort(CPUState *env, const char *pszFormat, ...)
4783{
4784 /*
4785 * Bitch about it.
4786 */
4787 RTLogFlags(NULL, "nodisabled nobuffered");
4788 va_list args;
4789 va_start(args, pszFormat);
4790 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4791 va_end(args);
4792 va_start(args, pszFormat);
4793 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4794 va_end(args);
4795
4796 /*
4797 * If we're in REM context we'll sync back the state before 'jumping' to
4798 * the EMs failure handling.
4799 */
4800 PVM pVM = cpu_single_env->pVM;
4801 if (pVM->rem.s.fInREM)
4802 REMR3StateBack(pVM);
4803 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4804 AssertMsgFailed(("EMR3FatalError returned!\n"));
4805}
4806
4807
4808/**
4809 * Aborts the VM.
4810 *
4811 * @param rc VBox error code.
4812 * @param pszTip Hint about why/when this happend.
4813 */
4814static void remAbort(int rc, const char *pszTip)
4815{
4816 /*
4817 * Bitch about it.
4818 */
4819 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4820 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4821
4822 /*
4823 * Jump back to where we entered the recompiler.
4824 */
4825 PVM pVM = cpu_single_env->pVM;
4826 if (pVM->rem.s.fInREM)
4827 REMR3StateBack(pVM);
4828 EMR3FatalError(pVM, rc);
4829 AssertMsgFailed(("EMR3FatalError returned!\n"));
4830}
4831
4832
4833/**
4834 * Dumps a linux system call.
4835 * @param pVM VM handle.
4836 */
4837void remR3DumpLnxSyscall(PVM pVM)
4838{
4839 static const char *apsz[] =
4840 {
4841 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4842 "sys_exit",
4843 "sys_fork",
4844 "sys_read",
4845 "sys_write",
4846 "sys_open", /* 5 */
4847 "sys_close",
4848 "sys_waitpid",
4849 "sys_creat",
4850 "sys_link",
4851 "sys_unlink", /* 10 */
4852 "sys_execve",
4853 "sys_chdir",
4854 "sys_time",
4855 "sys_mknod",
4856 "sys_chmod", /* 15 */
4857 "sys_lchown16",
4858 "sys_ni_syscall", /* old break syscall holder */
4859 "sys_stat",
4860 "sys_lseek",
4861 "sys_getpid", /* 20 */
4862 "sys_mount",
4863 "sys_oldumount",
4864 "sys_setuid16",
4865 "sys_getuid16",
4866 "sys_stime", /* 25 */
4867 "sys_ptrace",
4868 "sys_alarm",
4869 "sys_fstat",
4870 "sys_pause",
4871 "sys_utime", /* 30 */
4872 "sys_ni_syscall", /* old stty syscall holder */
4873 "sys_ni_syscall", /* old gtty syscall holder */
4874 "sys_access",
4875 "sys_nice",
4876 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4877 "sys_sync",
4878 "sys_kill",
4879 "sys_rename",
4880 "sys_mkdir",
4881 "sys_rmdir", /* 40 */
4882 "sys_dup",
4883 "sys_pipe",
4884 "sys_times",
4885 "sys_ni_syscall", /* old prof syscall holder */
4886 "sys_brk", /* 45 */
4887 "sys_setgid16",
4888 "sys_getgid16",
4889 "sys_signal",
4890 "sys_geteuid16",
4891 "sys_getegid16", /* 50 */
4892 "sys_acct",
4893 "sys_umount", /* recycled never used phys() */
4894 "sys_ni_syscall", /* old lock syscall holder */
4895 "sys_ioctl",
4896 "sys_fcntl", /* 55 */
4897 "sys_ni_syscall", /* old mpx syscall holder */
4898 "sys_setpgid",
4899 "sys_ni_syscall", /* old ulimit syscall holder */
4900 "sys_olduname",
4901 "sys_umask", /* 60 */
4902 "sys_chroot",
4903 "sys_ustat",
4904 "sys_dup2",
4905 "sys_getppid",
4906 "sys_getpgrp", /* 65 */
4907 "sys_setsid",
4908 "sys_sigaction",
4909 "sys_sgetmask",
4910 "sys_ssetmask",
4911 "sys_setreuid16", /* 70 */
4912 "sys_setregid16",
4913 "sys_sigsuspend",
4914 "sys_sigpending",
4915 "sys_sethostname",
4916 "sys_setrlimit", /* 75 */
4917 "sys_old_getrlimit",
4918 "sys_getrusage",
4919 "sys_gettimeofday",
4920 "sys_settimeofday",
4921 "sys_getgroups16", /* 80 */
4922 "sys_setgroups16",
4923 "old_select",
4924 "sys_symlink",
4925 "sys_lstat",
4926 "sys_readlink", /* 85 */
4927 "sys_uselib",
4928 "sys_swapon",
4929 "sys_reboot",
4930 "old_readdir",
4931 "old_mmap", /* 90 */
4932 "sys_munmap",
4933 "sys_truncate",
4934 "sys_ftruncate",
4935 "sys_fchmod",
4936 "sys_fchown16", /* 95 */
4937 "sys_getpriority",
4938 "sys_setpriority",
4939 "sys_ni_syscall", /* old profil syscall holder */
4940 "sys_statfs",
4941 "sys_fstatfs", /* 100 */
4942 "sys_ioperm",
4943 "sys_socketcall",
4944 "sys_syslog",
4945 "sys_setitimer",
4946 "sys_getitimer", /* 105 */
4947 "sys_newstat",
4948 "sys_newlstat",
4949 "sys_newfstat",
4950 "sys_uname",
4951 "sys_iopl", /* 110 */
4952 "sys_vhangup",
4953 "sys_ni_syscall", /* old "idle" system call */
4954 "sys_vm86old",
4955 "sys_wait4",
4956 "sys_swapoff", /* 115 */
4957 "sys_sysinfo",
4958 "sys_ipc",
4959 "sys_fsync",
4960 "sys_sigreturn",
4961 "sys_clone", /* 120 */
4962 "sys_setdomainname",
4963 "sys_newuname",
4964 "sys_modify_ldt",
4965 "sys_adjtimex",
4966 "sys_mprotect", /* 125 */
4967 "sys_sigprocmask",
4968 "sys_ni_syscall", /* old "create_module" */
4969 "sys_init_module",
4970 "sys_delete_module",
4971 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4972 "sys_quotactl",
4973 "sys_getpgid",
4974 "sys_fchdir",
4975 "sys_bdflush",
4976 "sys_sysfs", /* 135 */
4977 "sys_personality",
4978 "sys_ni_syscall", /* reserved for afs_syscall */
4979 "sys_setfsuid16",
4980 "sys_setfsgid16",
4981 "sys_llseek", /* 140 */
4982 "sys_getdents",
4983 "sys_select",
4984 "sys_flock",
4985 "sys_msync",
4986 "sys_readv", /* 145 */
4987 "sys_writev",
4988 "sys_getsid",
4989 "sys_fdatasync",
4990 "sys_sysctl",
4991 "sys_mlock", /* 150 */
4992 "sys_munlock",
4993 "sys_mlockall",
4994 "sys_munlockall",
4995 "sys_sched_setparam",
4996 "sys_sched_getparam", /* 155 */
4997 "sys_sched_setscheduler",
4998 "sys_sched_getscheduler",
4999 "sys_sched_yield",
5000 "sys_sched_get_priority_max",
5001 "sys_sched_get_priority_min", /* 160 */
5002 "sys_sched_rr_get_interval",
5003 "sys_nanosleep",
5004 "sys_mremap",
5005 "sys_setresuid16",
5006 "sys_getresuid16", /* 165 */
5007 "sys_vm86",
5008 "sys_ni_syscall", /* Old sys_query_module */
5009 "sys_poll",
5010 "sys_nfsservctl",
5011 "sys_setresgid16", /* 170 */
5012 "sys_getresgid16",
5013 "sys_prctl",
5014 "sys_rt_sigreturn",
5015 "sys_rt_sigaction",
5016 "sys_rt_sigprocmask", /* 175 */
5017 "sys_rt_sigpending",
5018 "sys_rt_sigtimedwait",
5019 "sys_rt_sigqueueinfo",
5020 "sys_rt_sigsuspend",
5021 "sys_pread64", /* 180 */
5022 "sys_pwrite64",
5023 "sys_chown16",
5024 "sys_getcwd",
5025 "sys_capget",
5026 "sys_capset", /* 185 */
5027 "sys_sigaltstack",
5028 "sys_sendfile",
5029 "sys_ni_syscall", /* reserved for streams1 */
5030 "sys_ni_syscall", /* reserved for streams2 */
5031 "sys_vfork", /* 190 */
5032 "sys_getrlimit",
5033 "sys_mmap2",
5034 "sys_truncate64",
5035 "sys_ftruncate64",
5036 "sys_stat64", /* 195 */
5037 "sys_lstat64",
5038 "sys_fstat64",
5039 "sys_lchown",
5040 "sys_getuid",
5041 "sys_getgid", /* 200 */
5042 "sys_geteuid",
5043 "sys_getegid",
5044 "sys_setreuid",
5045 "sys_setregid",
5046 "sys_getgroups", /* 205 */
5047 "sys_setgroups",
5048 "sys_fchown",
5049 "sys_setresuid",
5050 "sys_getresuid",
5051 "sys_setresgid", /* 210 */
5052 "sys_getresgid",
5053 "sys_chown",
5054 "sys_setuid",
5055 "sys_setgid",
5056 "sys_setfsuid", /* 215 */
5057 "sys_setfsgid",
5058 "sys_pivot_root",
5059 "sys_mincore",
5060 "sys_madvise",
5061 "sys_getdents64", /* 220 */
5062 "sys_fcntl64",
5063 "sys_ni_syscall", /* reserved for TUX */
5064 "sys_ni_syscall",
5065 "sys_gettid",
5066 "sys_readahead", /* 225 */
5067 "sys_setxattr",
5068 "sys_lsetxattr",
5069 "sys_fsetxattr",
5070 "sys_getxattr",
5071 "sys_lgetxattr", /* 230 */
5072 "sys_fgetxattr",
5073 "sys_listxattr",
5074 "sys_llistxattr",
5075 "sys_flistxattr",
5076 "sys_removexattr", /* 235 */
5077 "sys_lremovexattr",
5078 "sys_fremovexattr",
5079 "sys_tkill",
5080 "sys_sendfile64",
5081 "sys_futex", /* 240 */
5082 "sys_sched_setaffinity",
5083 "sys_sched_getaffinity",
5084 "sys_set_thread_area",
5085 "sys_get_thread_area",
5086 "sys_io_setup", /* 245 */
5087 "sys_io_destroy",
5088 "sys_io_getevents",
5089 "sys_io_submit",
5090 "sys_io_cancel",
5091 "sys_fadvise64", /* 250 */
5092 "sys_ni_syscall",
5093 "sys_exit_group",
5094 "sys_lookup_dcookie",
5095 "sys_epoll_create",
5096 "sys_epoll_ctl", /* 255 */
5097 "sys_epoll_wait",
5098 "sys_remap_file_pages",
5099 "sys_set_tid_address",
5100 "sys_timer_create",
5101 "sys_timer_settime", /* 260 */
5102 "sys_timer_gettime",
5103 "sys_timer_getoverrun",
5104 "sys_timer_delete",
5105 "sys_clock_settime",
5106 "sys_clock_gettime", /* 265 */
5107 "sys_clock_getres",
5108 "sys_clock_nanosleep",
5109 "sys_statfs64",
5110 "sys_fstatfs64",
5111 "sys_tgkill", /* 270 */
5112 "sys_utimes",
5113 "sys_fadvise64_64",
5114 "sys_ni_syscall" /* sys_vserver */
5115 };
5116
5117 uint32_t uEAX = CPUMGetGuestEAX(pVM);
5118 switch (uEAX)
5119 {
5120 default:
5121 if (uEAX < ELEMENTS(apsz))
5122 Log(("REM: linux syscall %3d: %s (eip=%VGv ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
5123 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
5124 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
5125 else
5126 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
5127 break;
5128
5129 }
5130}
5131
5132
5133/**
5134 * Dumps an OpenBSD system call.
5135 * @param pVM VM handle.
5136 */
5137void remR3DumpOBsdSyscall(PVM pVM)
5138{
5139 static const char *apsz[] =
5140 {
5141 "SYS_syscall", //0
5142 "SYS_exit", //1
5143 "SYS_fork", //2
5144 "SYS_read", //3
5145 "SYS_write", //4
5146 "SYS_open", //5
5147 "SYS_close", //6
5148 "SYS_wait4", //7
5149 "SYS_8",
5150 "SYS_link", //9
5151 "SYS_unlink", //10
5152 "SYS_11",
5153 "SYS_chdir", //12
5154 "SYS_fchdir", //13
5155 "SYS_mknod", //14
5156 "SYS_chmod", //15
5157 "SYS_chown", //16
5158 "SYS_break", //17
5159 "SYS_18",
5160 "SYS_19",
5161 "SYS_getpid", //20
5162 "SYS_mount", //21
5163 "SYS_unmount", //22
5164 "SYS_setuid", //23
5165 "SYS_getuid", //24
5166 "SYS_geteuid", //25
5167 "SYS_ptrace", //26
5168 "SYS_recvmsg", //27
5169 "SYS_sendmsg", //28
5170 "SYS_recvfrom", //29
5171 "SYS_accept", //30
5172 "SYS_getpeername", //31
5173 "SYS_getsockname", //32
5174 "SYS_access", //33
5175 "SYS_chflags", //34
5176 "SYS_fchflags", //35
5177 "SYS_sync", //36
5178 "SYS_kill", //37
5179 "SYS_38",
5180 "SYS_getppid", //39
5181 "SYS_40",
5182 "SYS_dup", //41
5183 "SYS_opipe", //42
5184 "SYS_getegid", //43
5185 "SYS_profil", //44
5186 "SYS_ktrace", //45
5187 "SYS_sigaction", //46
5188 "SYS_getgid", //47
5189 "SYS_sigprocmask", //48
5190 "SYS_getlogin", //49
5191 "SYS_setlogin", //50
5192 "SYS_acct", //51
5193 "SYS_sigpending", //52
5194 "SYS_osigaltstack", //53
5195 "SYS_ioctl", //54
5196 "SYS_reboot", //55
5197 "SYS_revoke", //56
5198 "SYS_symlink", //57
5199 "SYS_readlink", //58
5200 "SYS_execve", //59
5201 "SYS_umask", //60
5202 "SYS_chroot", //61
5203 "SYS_62",
5204 "SYS_63",
5205 "SYS_64",
5206 "SYS_65",
5207 "SYS_vfork", //66
5208 "SYS_67",
5209 "SYS_68",
5210 "SYS_sbrk", //69
5211 "SYS_sstk", //70
5212 "SYS_61",
5213 "SYS_vadvise", //72
5214 "SYS_munmap", //73
5215 "SYS_mprotect", //74
5216 "SYS_madvise", //75
5217 "SYS_76",
5218 "SYS_77",
5219 "SYS_mincore", //78
5220 "SYS_getgroups", //79
5221 "SYS_setgroups", //80
5222 "SYS_getpgrp", //81
5223 "SYS_setpgid", //82
5224 "SYS_setitimer", //83
5225 "SYS_84",
5226 "SYS_85",
5227 "SYS_getitimer", //86
5228 "SYS_87",
5229 "SYS_88",
5230 "SYS_89",
5231 "SYS_dup2", //90
5232 "SYS_91",
5233 "SYS_fcntl", //92
5234 "SYS_select", //93
5235 "SYS_94",
5236 "SYS_fsync", //95
5237 "SYS_setpriority", //96
5238 "SYS_socket", //97
5239 "SYS_connect", //98
5240 "SYS_99",
5241 "SYS_getpriority", //100
5242 "SYS_101",
5243 "SYS_102",
5244 "SYS_sigreturn", //103
5245 "SYS_bind", //104
5246 "SYS_setsockopt", //105
5247 "SYS_listen", //106
5248 "SYS_107",
5249 "SYS_108",
5250 "SYS_109",
5251 "SYS_110",
5252 "SYS_sigsuspend", //111
5253 "SYS_112",
5254 "SYS_113",
5255 "SYS_114",
5256 "SYS_115",
5257 "SYS_gettimeofday", //116
5258 "SYS_getrusage", //117
5259 "SYS_getsockopt", //118
5260 "SYS_119",
5261 "SYS_readv", //120
5262 "SYS_writev", //121
5263 "SYS_settimeofday", //122
5264 "SYS_fchown", //123
5265 "SYS_fchmod", //124
5266 "SYS_125",
5267 "SYS_setreuid", //126
5268 "SYS_setregid", //127
5269 "SYS_rename", //128
5270 "SYS_129",
5271 "SYS_130",
5272 "SYS_flock", //131
5273 "SYS_mkfifo", //132
5274 "SYS_sendto", //133
5275 "SYS_shutdown", //134
5276 "SYS_socketpair", //135
5277 "SYS_mkdir", //136
5278 "SYS_rmdir", //137
5279 "SYS_utimes", //138
5280 "SYS_139",
5281 "SYS_adjtime", //140
5282 "SYS_141",
5283 "SYS_142",
5284 "SYS_143",
5285 "SYS_144",
5286 "SYS_145",
5287 "SYS_146",
5288 "SYS_setsid", //147
5289 "SYS_quotactl", //148
5290 "SYS_149",
5291 "SYS_150",
5292 "SYS_151",
5293 "SYS_152",
5294 "SYS_153",
5295 "SYS_154",
5296 "SYS_nfssvc", //155
5297 "SYS_156",
5298 "SYS_157",
5299 "SYS_158",
5300 "SYS_159",
5301 "SYS_160",
5302 "SYS_getfh", //161
5303 "SYS_162",
5304 "SYS_163",
5305 "SYS_164",
5306 "SYS_sysarch", //165
5307 "SYS_166",
5308 "SYS_167",
5309 "SYS_168",
5310 "SYS_169",
5311 "SYS_170",
5312 "SYS_171",
5313 "SYS_172",
5314 "SYS_pread", //173
5315 "SYS_pwrite", //174
5316 "SYS_175",
5317 "SYS_176",
5318 "SYS_177",
5319 "SYS_178",
5320 "SYS_179",
5321 "SYS_180",
5322 "SYS_setgid", //181
5323 "SYS_setegid", //182
5324 "SYS_seteuid", //183
5325 "SYS_lfs_bmapv", //184
5326 "SYS_lfs_markv", //185
5327 "SYS_lfs_segclean", //186
5328 "SYS_lfs_segwait", //187
5329 "SYS_188",
5330 "SYS_189",
5331 "SYS_190",
5332 "SYS_pathconf", //191
5333 "SYS_fpathconf", //192
5334 "SYS_swapctl", //193
5335 "SYS_getrlimit", //194
5336 "SYS_setrlimit", //195
5337 "SYS_getdirentries", //196
5338 "SYS_mmap", //197
5339 "SYS___syscall", //198
5340 "SYS_lseek", //199
5341 "SYS_truncate", //200
5342 "SYS_ftruncate", //201
5343 "SYS___sysctl", //202
5344 "SYS_mlock", //203
5345 "SYS_munlock", //204
5346 "SYS_205",
5347 "SYS_futimes", //206
5348 "SYS_getpgid", //207
5349 "SYS_xfspioctl", //208
5350 "SYS_209",
5351 "SYS_210",
5352 "SYS_211",
5353 "SYS_212",
5354 "SYS_213",
5355 "SYS_214",
5356 "SYS_215",
5357 "SYS_216",
5358 "SYS_217",
5359 "SYS_218",
5360 "SYS_219",
5361 "SYS_220",
5362 "SYS_semget", //221
5363 "SYS_222",
5364 "SYS_223",
5365 "SYS_224",
5366 "SYS_msgget", //225
5367 "SYS_msgsnd", //226
5368 "SYS_msgrcv", //227
5369 "SYS_shmat", //228
5370 "SYS_229",
5371 "SYS_shmdt", //230
5372 "SYS_231",
5373 "SYS_clock_gettime", //232
5374 "SYS_clock_settime", //233
5375 "SYS_clock_getres", //234
5376 "SYS_235",
5377 "SYS_236",
5378 "SYS_237",
5379 "SYS_238",
5380 "SYS_239",
5381 "SYS_nanosleep", //240
5382 "SYS_241",
5383 "SYS_242",
5384 "SYS_243",
5385 "SYS_244",
5386 "SYS_245",
5387 "SYS_246",
5388 "SYS_247",
5389 "SYS_248",
5390 "SYS_249",
5391 "SYS_minherit", //250
5392 "SYS_rfork", //251
5393 "SYS_poll", //252
5394 "SYS_issetugid", //253
5395 "SYS_lchown", //254
5396 "SYS_getsid", //255
5397 "SYS_msync", //256
5398 "SYS_257",
5399 "SYS_258",
5400 "SYS_259",
5401 "SYS_getfsstat", //260
5402 "SYS_statfs", //261
5403 "SYS_fstatfs", //262
5404 "SYS_pipe", //263
5405 "SYS_fhopen", //264
5406 "SYS_265",
5407 "SYS_fhstatfs", //266
5408 "SYS_preadv", //267
5409 "SYS_pwritev", //268
5410 "SYS_kqueue", //269
5411 "SYS_kevent", //270
5412 "SYS_mlockall", //271
5413 "SYS_munlockall", //272
5414 "SYS_getpeereid", //273
5415 "SYS_274",
5416 "SYS_275",
5417 "SYS_276",
5418 "SYS_277",
5419 "SYS_278",
5420 "SYS_279",
5421 "SYS_280",
5422 "SYS_getresuid", //281
5423 "SYS_setresuid", //282
5424 "SYS_getresgid", //283
5425 "SYS_setresgid", //284
5426 "SYS_285",
5427 "SYS_mquery", //286
5428 "SYS_closefrom", //287
5429 "SYS_sigaltstack", //288
5430 "SYS_shmget", //289
5431 "SYS_semop", //290
5432 "SYS_stat", //291
5433 "SYS_fstat", //292
5434 "SYS_lstat", //293
5435 "SYS_fhstat", //294
5436 "SYS___semctl", //295
5437 "SYS_shmctl", //296
5438 "SYS_msgctl", //297
5439 "SYS_MAXSYSCALL", //298
5440 //299
5441 //300
5442 };
5443 uint32_t uEAX;
5444 if (!LogIsEnabled())
5445 return;
5446 uEAX = CPUMGetGuestEAX(pVM);
5447 switch (uEAX)
5448 {
5449 default:
5450 if (uEAX < ELEMENTS(apsz))
5451 {
5452 uint32_t au32Args[8] = {0};
5453 PGMPhysReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
5454 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
5455 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
5456 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
5457 }
5458 else
5459 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
5460 break;
5461 }
5462}
5463
5464
5465#if defined(IPRT_NO_CRT) && defined(__WIN__) && defined(__X86__)
5466/**
5467 * The Dll main entry point (stub).
5468 */
5469bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
5470{
5471 return true;
5472}
5473
5474void *memcpy(void *dst, const void *src, size_t size)
5475{
5476 uint8_t*pbDst = dst, *pbSrc = src;
5477 while (size-- > 0)
5478 *pbDst++ = *pbSrc++;
5479 return dst;
5480}
5481
5482#endif
5483
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette