VirtualBox

source: vbox/trunk/src/recompiler_new/VBoxRecompiler.c@ 14562

Last change on this file since 14562 was 14475, checked in by vboxsync, 16 years ago

new REM works on Win/amd64 hosts

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 159.8 KB
Line 
1/* $Id: VBoxRecompiler.c 14475 2008-11-21 16:49:38Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "osdep.h"
29#include "exec-all.h"
30#include "config.h"
31#include "cpu-all.h"
32
33void cpu_exec_init_all(unsigned long tb_size);
34
35#include <VBox/rem.h>
36#include <VBox/vmapi.h>
37#include <VBox/tm.h>
38#include <VBox/ssm.h>
39#include <VBox/em.h>
40#include <VBox/trpm.h>
41#include <VBox/iom.h>
42#include <VBox/mm.h>
43#include <VBox/pgm.h>
44#include <VBox/pdm.h>
45#include <VBox/dbgf.h>
46#include <VBox/dbg.h>
47#include <VBox/hwaccm.h>
48#include <VBox/patm.h>
49#include <VBox/csam.h>
50#include "REMInternal.h"
51#include <VBox/vm.h>
52#include <VBox/param.h>
53#include <VBox/err.h>
54
55#include <VBox/log.h>
56#include <iprt/semaphore.h>
57#include <iprt/asm.h>
58#include <iprt/assert.h>
59#include <iprt/thread.h>
60#include <iprt/string.h>
61
62/* Don't wanna include everything. */
63extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
64extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
65extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
66extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
67extern void tlb_flush(CPUState *env, int flush_global);
68extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
69extern void sync_ldtr(CPUX86State *env1, int selector);
70extern int sync_tr(CPUX86State *env1, int selector);
71
72#ifdef VBOX_STRICT
73unsigned long get_phys_page_offset(target_ulong addr);
74#endif
75
76/*******************************************************************************
77* Defined Constants And Macros *
78*******************************************************************************/
79
80/** Copy 80-bit fpu register at pSrc to pDst.
81 * This is probably faster than *calling* memcpy.
82 */
83#define REM_COPY_FPU_REG(pDst, pSrc) \
84 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
85
86
87/*******************************************************************************
88* Internal Functions *
89*******************************************************************************/
90static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
91static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
92static void remR3StateUpdate(PVM pVM);
93
94static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
95static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
96static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
97static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
98static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
99static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
100
101static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
102static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
103static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
104static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
105static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
106static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
107
108
109/*******************************************************************************
110* Global Variables *
111*******************************************************************************/
112
113/** @todo Move stats to REM::s some rainy day we have nothing do to. */
114#ifdef VBOX_WITH_STATISTICS
115static STAMPROFILEADV gStatExecuteSingleInstr;
116static STAMPROFILEADV gStatCompilationQEmu;
117static STAMPROFILEADV gStatRunCodeQEmu;
118static STAMPROFILEADV gStatTotalTimeQEmu;
119static STAMPROFILEADV gStatTimers;
120static STAMPROFILEADV gStatTBLookup;
121static STAMPROFILEADV gStatIRQ;
122static STAMPROFILEADV gStatRawCheck;
123static STAMPROFILEADV gStatMemRead;
124static STAMPROFILEADV gStatMemWrite;
125static STAMPROFILE gStatGCPhys2HCVirt;
126static STAMPROFILE gStatHCVirt2GCPhys;
127static STAMCOUNTER gStatCpuGetTSC;
128static STAMCOUNTER gStatRefuseTFInhibit;
129static STAMCOUNTER gStatRefuseVM86;
130static STAMCOUNTER gStatRefusePaging;
131static STAMCOUNTER gStatRefusePAE;
132static STAMCOUNTER gStatRefuseIOPLNot0;
133static STAMCOUNTER gStatRefuseIF0;
134static STAMCOUNTER gStatRefuseCode16;
135static STAMCOUNTER gStatRefuseWP0;
136static STAMCOUNTER gStatRefuseRing1or2;
137static STAMCOUNTER gStatRefuseCanExecute;
138static STAMCOUNTER gStatREMGDTChange;
139static STAMCOUNTER gStatREMIDTChange;
140static STAMCOUNTER gStatREMLDTRChange;
141static STAMCOUNTER gStatREMTRChange;
142static STAMCOUNTER gStatSelOutOfSync[6];
143static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
144static STAMCOUNTER gStatFlushTBs;
145#endif
146
147/*
148 * Global stuff.
149 */
150
151/** MMIO read callbacks. */
152CPUReadMemoryFunc *g_apfnMMIORead[3] =
153{
154 remR3MMIOReadU8,
155 remR3MMIOReadU16,
156 remR3MMIOReadU32
157};
158
159/** MMIO write callbacks. */
160CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
161{
162 remR3MMIOWriteU8,
163 remR3MMIOWriteU16,
164 remR3MMIOWriteU32
165};
166
167/** Handler read callbacks. */
168CPUReadMemoryFunc *g_apfnHandlerRead[3] =
169{
170 remR3HandlerReadU8,
171 remR3HandlerReadU16,
172 remR3HandlerReadU32
173};
174
175/** Handler write callbacks. */
176CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
177{
178 remR3HandlerWriteU8,
179 remR3HandlerWriteU16,
180 remR3HandlerWriteU32
181};
182
183
184#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
185/*
186 * Debugger commands.
187 */
188static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
189
190/** '.remstep' arguments. */
191static const DBGCVARDESC g_aArgRemStep[] =
192{
193 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
194 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
195};
196
197/** Command descriptors. */
198static const DBGCCMD g_aCmds[] =
199{
200 {
201 .pszCmd ="remstep",
202 .cArgsMin = 0,
203 .cArgsMax = 1,
204 .paArgDescs = &g_aArgRemStep[0],
205 .cArgDescs = RT_ELEMENTS(g_aArgRemStep),
206 .pResultDesc = NULL,
207 .fFlags = 0,
208 .pfnHandler = remR3CmdDisasEnableStepping,
209 .pszSyntax = "[on/off]",
210 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
211 "If no arguments show the current state."
212 }
213};
214#endif
215
216
217/*******************************************************************************
218* Internal Functions *
219*******************************************************************************/
220void remAbort(int rc, const char *pszTip);
221extern int testmath(void);
222
223/* Put them here to avoid unused variable warning. */
224AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
225#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
226//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
227/* Why did this have to be identical?? */
228AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
229#else
230AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
231#endif
232
233
234/* Prologue code, must be in lower 4G to simplify jumps to/from generated code */
235uint8_t* code_gen_prologue;
236
237/**
238 * Initializes the REM.
239 *
240 * @returns VBox status code.
241 * @param pVM The VM to operate on.
242 */
243REMR3DECL(int) REMR3Init(PVM pVM)
244{
245 uint32_t u32Dummy;
246 unsigned i;
247 int rc;
248
249 /*
250 * Assert sanity.
251 */
252 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
253 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
254 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
255#if defined(DEBUG) && !defined(RT_OS_SOLARIS) /// @todo fix the solaris math stuff.
256 Assert(!testmath());
257#endif
258 /*
259 * Init some internal data members.
260 */
261 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
262 pVM->rem.s.Env.pVM = pVM;
263#ifdef CPU_RAW_MODE_INIT
264 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
265#endif
266
267 /* ctx. */
268 pVM->rem.s.pCtx = CPUMQueryGuestCtxPtr(pVM);
269 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
270
271 /* ignore all notifications */
272 pVM->rem.s.fIgnoreAll = true;
273
274 code_gen_prologue = RTMemExecAlloc(_1K);
275
276 cpu_exec_init_all(0);
277
278 /*
279 * Init the recompiler.
280 */
281 if (!cpu_x86_init(&pVM->rem.s.Env, "vbox"))
282 {
283 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
284 return VERR_GENERAL_FAILURE;
285 }
286 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
287 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
288
289 /* allocate code buffer for single instruction emulation. */
290 pVM->rem.s.Env.cbCodeBuffer = 4096;
291 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
292 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
293
294 /* finally, set the cpu_single_env global. */
295 cpu_single_env = &pVM->rem.s.Env;
296
297 /* Nothing is pending by default */
298 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
299
300 /*
301 * Register ram types.
302 */
303 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
304 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
305 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
306 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
307 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
308
309 /* stop ignoring. */
310 pVM->rem.s.fIgnoreAll = false;
311
312 /*
313 * Register the saved state data unit.
314 */
315 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
316 NULL, remR3Save, NULL,
317 NULL, remR3Load, NULL);
318 if (RT_FAILURE(rc))
319 return rc;
320
321#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
322 /*
323 * Debugger commands.
324 */
325 static bool fRegisteredCmds = false;
326 if (!fRegisteredCmds)
327 {
328 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
329 if (RT_SUCCESS(rc))
330 fRegisteredCmds = true;
331 }
332#endif
333
334#ifdef VBOX_WITH_STATISTICS
335 /*
336 * Statistics.
337 */
338 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
339 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
340 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
341 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
342 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
343 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
344 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
345 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
346 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
347 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
348 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
349 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
350
351 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
352
353 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
354 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
355 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
356 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
357 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
358 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
359 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
360 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
361 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
362 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
363 STAM_REG(pVM, &gStatFlushTBs, STAMTYPE_COUNTER, "/REM/FlushTB", STAMUNIT_OCCURENCES, "Number of TB flushes");
364
365 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
366 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
367 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
368 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
369
370 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
371 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
372 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
373 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
374 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
375 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
376
377 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
378 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
379 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
380 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
381 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
382 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
383
384
385#endif
386
387#ifdef DEBUG_ALL_LOGGING
388 loglevel = ~0;
389 logfile = fopen("/tmp/vbox-qemu.log", "w");
390#endif
391
392 return rc;
393}
394
395
396/**
397 * Terminates the REM.
398 *
399 * Termination means cleaning up and freeing all resources,
400 * the VM it self is at this point powered off or suspended.
401 *
402 * @returns VBox status code.
403 * @param pVM The VM to operate on.
404 */
405REMR3DECL(int) REMR3Term(PVM pVM)
406{
407 return VINF_SUCCESS;
408}
409
410
411/**
412 * The VM is being reset.
413 *
414 * For the REM component this means to call the cpu_reset() and
415 * reinitialize some state variables.
416 *
417 * @param pVM VM handle.
418 */
419REMR3DECL(void) REMR3Reset(PVM pVM)
420{
421 /*
422 * Reset the REM cpu.
423 */
424 pVM->rem.s.fIgnoreAll = true;
425 cpu_reset(&pVM->rem.s.Env);
426 pVM->rem.s.cInvalidatedPages = 0;
427 pVM->rem.s.fIgnoreAll = false;
428
429 /* Clear raw ring 0 init state */
430 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
431
432 /* Flush the TBs the next time we execute code here. */
433 pVM->rem.s.fFlushTBs = true;
434}
435
436
437/**
438 * Execute state save operation.
439 *
440 * @returns VBox status code.
441 * @param pVM VM Handle.
442 * @param pSSM SSM operation handle.
443 */
444static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
445{
446 /*
447 * Save the required CPU Env bits.
448 * (Not much because we're never in REM when doing the save.)
449 */
450 PREM pRem = &pVM->rem.s;
451 LogFlow(("remR3Save:\n"));
452 Assert(!pRem->fInREM);
453 SSMR3PutU32(pSSM, pRem->Env.hflags);
454 SSMR3PutU32(pSSM, ~0); /* separator */
455
456 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
457 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
458 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
459
460 return SSMR3PutU32(pSSM, ~0); /* terminator */
461}
462
463
464/**
465 * Execute state load operation.
466 *
467 * @returns VBox status code.
468 * @param pVM VM Handle.
469 * @param pSSM SSM operation handle.
470 * @param u32Version Data layout version.
471 */
472static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
473{
474 uint32_t u32Dummy;
475 uint32_t fRawRing0 = false;
476 uint32_t u32Sep;
477 int rc;
478 PREM pRem;
479 LogFlow(("remR3Load:\n"));
480
481 /*
482 * Validate version.
483 */
484 if ( u32Version != REM_SAVED_STATE_VERSION
485 && u32Version != REM_SAVED_STATE_VERSION_VER1_6)
486 {
487 AssertMsgFailed(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
488 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
489 }
490
491 /*
492 * Do a reset to be on the safe side...
493 */
494 REMR3Reset(pVM);
495
496 /*
497 * Ignore all ignorable notifications.
498 * (Not doing this will cause serious trouble.)
499 */
500 pVM->rem.s.fIgnoreAll = true;
501
502 /*
503 * Load the required CPU Env bits.
504 * (Not much because we're never in REM when doing the save.)
505 */
506 pRem = &pVM->rem.s;
507 Assert(!pRem->fInREM);
508 SSMR3GetU32(pSSM, &pRem->Env.hflags);
509 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
510 {
511 /* Redundant REM CPU state has to be loaded, but can be ignored. */
512 CPUX86State_Ver16 temp;
513 SSMR3GetMem(pSSM, &temp, RT_OFFSETOF(CPUX86State_Ver16, jmp_env));
514 }
515
516 rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
517 if (RT_FAILURE(rc))
518 return rc;
519 if (u32Sep != ~0U)
520 {
521 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
522 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
523 }
524
525 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
526 SSMR3GetUInt(pSSM, &fRawRing0);
527 if (fRawRing0)
528 pRem->Env.state |= CPU_RAW_RING0;
529
530 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
531 {
532 unsigned i;
533
534 /*
535 * Load the REM stuff.
536 */
537 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
538 if (RT_FAILURE(rc))
539 return rc;
540 if (pRem->cInvalidatedPages > RT_ELEMENTS(pRem->aGCPtrInvalidatedPages))
541 {
542 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
543 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
544 }
545 for (i = 0; i < pRem->cInvalidatedPages; i++)
546 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
547 }
548
549 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
550 if (RT_FAILURE(rc))
551 return rc;
552
553 /* check the terminator. */
554 rc = SSMR3GetU32(pSSM, &u32Sep);
555 if (RT_FAILURE(rc))
556 return rc;
557 if (u32Sep != ~0U)
558 {
559 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
560 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
561 }
562
563 /*
564 * Get the CPUID features.
565 */
566 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
567 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
568
569 /*
570 * Sync the Load Flush the TLB
571 */
572 tlb_flush(&pRem->Env, 1);
573
574 /*
575 * Stop ignoring ignornable notifications.
576 */
577 pVM->rem.s.fIgnoreAll = false;
578
579 /*
580 * Sync the whole CPU state when executing code in the recompiler.
581 */
582 CPUMSetChangedFlags(pVM, CPUM_CHANGED_ALL);
583 return VINF_SUCCESS;
584}
585
586
587
588#undef LOG_GROUP
589#define LOG_GROUP LOG_GROUP_REM_RUN
590
591/**
592 * Single steps an instruction in recompiled mode.
593 *
594 * Before calling this function the REM state needs to be in sync with
595 * the VM. Call REMR3State() to perform the sync. It's only necessary
596 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
597 * and after calling REMR3StateBack().
598 *
599 * @returns VBox status code.
600 *
601 * @param pVM VM Handle.
602 */
603REMR3DECL(int) REMR3Step(PVM pVM)
604{
605 int rc, interrupt_request;
606 RTGCPTR GCPtrPC;
607 bool fBp;
608
609 /*
610 * Lock the REM - we don't wanna have anyone interrupting us
611 * while stepping - and enabled single stepping. We also ignore
612 * pending interrupts and suchlike.
613 */
614 interrupt_request = pVM->rem.s.Env.interrupt_request;
615 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
616 pVM->rem.s.Env.interrupt_request = 0;
617 cpu_single_step(&pVM->rem.s.Env, 1);
618
619 /*
620 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
621 */
622 GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
623 fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
624
625 /*
626 * Execute and handle the return code.
627 * We execute without enabling the cpu tick, so on success we'll
628 * just flip it on and off to make sure it moves
629 */
630 rc = cpu_exec(&pVM->rem.s.Env);
631 if (rc == EXCP_DEBUG)
632 {
633 TMCpuTickResume(pVM);
634 TMCpuTickPause(pVM);
635 TMVirtualResume(pVM);
636 TMVirtualPause(pVM);
637 rc = VINF_EM_DBG_STEPPED;
638 }
639 else
640 {
641 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
642 switch (rc)
643 {
644 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
645 case EXCP_HLT:
646 case EXCP_HALTED: rc = VINF_EM_HALT; break;
647 case EXCP_RC:
648 rc = pVM->rem.s.rc;
649 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
650 break;
651 default:
652 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
653 rc = VERR_INTERNAL_ERROR;
654 break;
655 }
656 }
657
658 /*
659 * Restore the stuff we changed to prevent interruption.
660 * Unlock the REM.
661 */
662 if (fBp)
663 {
664 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
665 Assert(rc2 == 0); NOREF(rc2);
666 }
667 cpu_single_step(&pVM->rem.s.Env, 0);
668 pVM->rem.s.Env.interrupt_request = interrupt_request;
669
670 return rc;
671}
672
673
674/**
675 * Set a breakpoint using the REM facilities.
676 *
677 * @returns VBox status code.
678 * @param pVM The VM handle.
679 * @param Address The breakpoint address.
680 * @thread The emulation thread.
681 */
682REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
683{
684 VM_ASSERT_EMT(pVM);
685 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
686 {
687 LogFlow(("REMR3BreakpointSet: Address=%RGv\n", Address));
688 return VINF_SUCCESS;
689 }
690 LogFlow(("REMR3BreakpointSet: Address=%RGv - failed!\n", Address));
691 return VERR_REM_NO_MORE_BP_SLOTS;
692}
693
694
695/**
696 * Clears a breakpoint set by REMR3BreakpointSet().
697 *
698 * @returns VBox status code.
699 * @param pVM The VM handle.
700 * @param Address The breakpoint address.
701 * @thread The emulation thread.
702 */
703REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
704{
705 VM_ASSERT_EMT(pVM);
706 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
707 {
708 LogFlow(("REMR3BreakpointClear: Address=%RGv\n", Address));
709 return VINF_SUCCESS;
710 }
711 LogFlow(("REMR3BreakpointClear: Address=%RGv - not found!\n", Address));
712 return VERR_REM_BP_NOT_FOUND;
713}
714
715
716/**
717 * Emulate an instruction.
718 *
719 * This function executes one instruction without letting anyone
720 * interrupt it. This is intended for being called while being in
721 * raw mode and thus will take care of all the state syncing between
722 * REM and the rest.
723 *
724 * @returns VBox status code.
725 * @param pVM VM handle.
726 */
727REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
728{
729 bool fFlushTBs;
730
731 int rc, rc2;
732 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
733
734 /* Make sure this flag is set; we might never execute remR3CanExecuteRaw in the AMD-V case.
735 * CPU_RAW_HWACC makes sure we never execute interrupt handlers in the recompiler.
736 */
737 if (HWACCMIsEnabled(pVM))
738 pVM->rem.s.Env.state |= CPU_RAW_HWACC;
739
740 /* Skip the TB flush as that's rather expensive and not necessary for single instruction emulation. */
741 fFlushTBs = pVM->rem.s.fFlushTBs;
742 pVM->rem.s.fFlushTBs = false;
743
744 /*
745 * Sync the state and enable single instruction / single stepping.
746 */
747 rc = REMR3State(pVM);
748 pVM->rem.s.fFlushTBs = fFlushTBs;
749 if (RT_SUCCESS(rc))
750 {
751 int interrupt_request = pVM->rem.s.Env.interrupt_request;
752 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
753 Assert(!pVM->rem.s.Env.singlestep_enabled);
754#if 1
755
756 /*
757 * Now we set the execute single instruction flag and enter the cpu_exec loop.
758 */
759 TMNotifyStartOfExecution(pVM);
760 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
761 rc = cpu_exec(&pVM->rem.s.Env);
762 TMNotifyEndOfExecution(pVM);
763 switch (rc)
764 {
765 /*
766 * Executed without anything out of the way happening.
767 */
768 case EXCP_SINGLE_INSTR:
769 rc = VINF_EM_RESCHEDULE;
770 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
771 break;
772
773 /*
774 * If we take a trap or start servicing a pending interrupt, we might end up here.
775 * (Timer thread or some other thread wishing EMT's attention.)
776 */
777 case EXCP_INTERRUPT:
778 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
779 rc = VINF_EM_RESCHEDULE;
780 break;
781
782 /*
783 * Single step, we assume!
784 * If there was a breakpoint there we're fucked now.
785 */
786 case EXCP_DEBUG:
787 {
788 /* breakpoint or single step? */
789 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
790 int iBP;
791 rc = VINF_EM_DBG_STEPPED;
792 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
793 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
794 {
795 rc = VINF_EM_DBG_BREAKPOINT;
796 break;
797 }
798 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Rrc iBP=%d GCPtrPC=%RGv\n", rc, iBP, GCPtrPC));
799 break;
800 }
801
802 /*
803 * hlt instruction.
804 */
805 case EXCP_HLT:
806 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
807 rc = VINF_EM_HALT;
808 break;
809
810 /*
811 * The VM has halted.
812 */
813 case EXCP_HALTED:
814 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
815 rc = VINF_EM_HALT;
816 break;
817
818 /*
819 * Switch to RAW-mode.
820 */
821 case EXCP_EXECUTE_RAW:
822 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
823 rc = VINF_EM_RESCHEDULE_RAW;
824 break;
825
826 /*
827 * Switch to hardware accelerated RAW-mode.
828 */
829 case EXCP_EXECUTE_HWACC:
830 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
831 rc = VINF_EM_RESCHEDULE_HWACC;
832 break;
833
834 /*
835 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
836 */
837 case EXCP_RC:
838 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
839 rc = pVM->rem.s.rc;
840 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
841 break;
842
843 /*
844 * Figure out the rest when they arrive....
845 */
846 default:
847 AssertMsgFailed(("rc=%d\n", rc));
848 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
849 rc = VINF_EM_RESCHEDULE;
850 break;
851 }
852
853 /*
854 * Switch back the state.
855 */
856#else
857 pVM->rem.s.Env.interrupt_request = 0;
858 cpu_single_step(&pVM->rem.s.Env, 1);
859
860 /*
861 * Execute and handle the return code.
862 * We execute without enabling the cpu tick, so on success we'll
863 * just flip it on and off to make sure it moves.
864 *
865 * (We do not use emulate_single_instr() because that doesn't enter the
866 * right way in will cause serious trouble if a longjmp was attempted.)
867 */
868# ifdef DEBUG_bird
869 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
870# endif
871 TMNotifyStartOfExecution(pVM);
872 int cTimesMax = 16384;
873 uint32_t eip = pVM->rem.s.Env.eip;
874 do
875 {
876 rc = cpu_exec(&pVM->rem.s.Env);
877
878 } while ( eip == pVM->rem.s.Env.eip
879 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
880 && --cTimesMax > 0);
881 TMNotifyEndOfExecution(pVM);
882 switch (rc)
883 {
884 /*
885 * Single step, we assume!
886 * If there was a breakpoint there we're fucked now.
887 */
888 case EXCP_DEBUG:
889 {
890 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
891 rc = VINF_EM_RESCHEDULE;
892 break;
893 }
894
895 /*
896 * We cannot be interrupted!
897 */
898 case EXCP_INTERRUPT:
899 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
900 rc = VERR_INTERNAL_ERROR;
901 break;
902
903 /*
904 * hlt instruction.
905 */
906 case EXCP_HLT:
907 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
908 rc = VINF_EM_HALT;
909 break;
910
911 /*
912 * The VM has halted.
913 */
914 case EXCP_HALTED:
915 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
916 rc = VINF_EM_HALT;
917 break;
918
919 /*
920 * Switch to RAW-mode.
921 */
922 case EXCP_EXECUTE_RAW:
923 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
924 rc = VINF_EM_RESCHEDULE_RAW;
925 break;
926
927 /*
928 * Switch to hardware accelerated RAW-mode.
929 */
930 case EXCP_EXECUTE_HWACC:
931 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
932 rc = VINF_EM_RESCHEDULE_HWACC;
933 break;
934
935 /*
936 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
937 */
938 case EXCP_RC:
939 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Rrc\n", pVM->rem.s.rc));
940 rc = pVM->rem.s.rc;
941 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
942 break;
943
944 /*
945 * Figure out the rest when they arrive....
946 */
947 default:
948 AssertMsgFailed(("rc=%d\n", rc));
949 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
950 rc = VINF_SUCCESS;
951 break;
952 }
953
954 /*
955 * Switch back the state.
956 */
957 cpu_single_step(&pVM->rem.s.Env, 0);
958#endif
959 pVM->rem.s.Env.interrupt_request = interrupt_request;
960 rc2 = REMR3StateBack(pVM);
961 AssertRC(rc2);
962 }
963
964 Log2(("REMR3EmulateInstruction: returns %Rrc (cs:eip=%04x:%RGv)\n",
965 rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
966 return rc;
967}
968
969
970/**
971 * Runs code in recompiled mode.
972 *
973 * Before calling this function the REM state needs to be in sync with
974 * the VM. Call REMR3State() to perform the sync. It's only necessary
975 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
976 * and after calling REMR3StateBack().
977 *
978 * @returns VBox status code.
979 *
980 * @param pVM VM Handle.
981 */
982REMR3DECL(int) REMR3Run(PVM pVM)
983{
984 int rc;
985 Log2(("REMR3Run: (cs:eip=%04x:%RGv)\n", pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
986 Assert(pVM->rem.s.fInREM);
987
988 TMNotifyStartOfExecution(pVM);
989 rc = cpu_exec(&pVM->rem.s.Env);
990 TMNotifyEndOfExecution(pVM);
991 switch (rc)
992 {
993 /*
994 * This happens when the execution was interrupted
995 * by an external event, like pending timers.
996 */
997 case EXCP_INTERRUPT:
998 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
999 rc = VINF_SUCCESS;
1000 break;
1001
1002 /*
1003 * hlt instruction.
1004 */
1005 case EXCP_HLT:
1006 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
1007 rc = VINF_EM_HALT;
1008 break;
1009
1010 /*
1011 * The VM has halted.
1012 */
1013 case EXCP_HALTED:
1014 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1015 rc = VINF_EM_HALT;
1016 break;
1017
1018 /*
1019 * Breakpoint/single step.
1020 */
1021 case EXCP_DEBUG:
1022 {
1023#if 0//def DEBUG_bird
1024 static int iBP = 0;
1025 printf("howdy, breakpoint! iBP=%d\n", iBP);
1026 switch (iBP)
1027 {
1028 case 0:
1029 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1030 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1031 //pVM->rem.s.Env.interrupt_request = 0;
1032 //pVM->rem.s.Env.exception_index = -1;
1033 //g_fInterruptDisabled = 1;
1034 rc = VINF_SUCCESS;
1035 asm("int3");
1036 break;
1037 default:
1038 asm("int3");
1039 break;
1040 }
1041 iBP++;
1042#else
1043 /* breakpoint or single step? */
1044 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1045 int iBP;
1046 rc = VINF_EM_DBG_STEPPED;
1047 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1048 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1049 {
1050 rc = VINF_EM_DBG_BREAKPOINT;
1051 break;
1052 }
1053 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Rrc iBP=%d GCPtrPC=%RGv\n", rc, iBP, GCPtrPC));
1054#endif
1055 break;
1056 }
1057
1058 /*
1059 * Switch to RAW-mode.
1060 */
1061 case EXCP_EXECUTE_RAW:
1062 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1063 rc = VINF_EM_RESCHEDULE_RAW;
1064 break;
1065
1066 /*
1067 * Switch to hardware accelerated RAW-mode.
1068 */
1069 case EXCP_EXECUTE_HWACC:
1070 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1071 rc = VINF_EM_RESCHEDULE_HWACC;
1072 break;
1073
1074 /*
1075 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1076 */
1077 case EXCP_RC:
1078 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Rrc\n", pVM->rem.s.rc));
1079 rc = pVM->rem.s.rc;
1080 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1081 break;
1082
1083 /*
1084 * Figure out the rest when they arrive....
1085 */
1086 default:
1087 AssertMsgFailed(("rc=%d\n", rc));
1088 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1089 rc = VINF_SUCCESS;
1090 break;
1091 }
1092
1093 Log2(("REMR3Run: returns %Rrc (cs:eip=%04x:%RGv)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
1094 return rc;
1095}
1096
1097
1098/**
1099 * Check if the cpu state is suitable for Raw execution.
1100 *
1101 * @returns boolean
1102 * @param env The CPU env struct.
1103 * @param eip The EIP to check this for (might differ from env->eip).
1104 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1105 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1106 *
1107 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1108 */
1109bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1110{
1111 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1112 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1113 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1114 uint32_t u32CR0;
1115
1116 /* Update counter. */
1117 env->pVM->rem.s.cCanExecuteRaw++;
1118
1119 if (HWACCMIsEnabled(env->pVM))
1120 {
1121 CPUMCTX Ctx;
1122
1123 env->state |= CPU_RAW_HWACC;
1124
1125 /*
1126 * Create partial context for HWACCMR3CanExecuteGuest
1127 */
1128 Ctx.cr0 = env->cr[0];
1129 Ctx.cr3 = env->cr[3];
1130 Ctx.cr4 = env->cr[4];
1131
1132 Ctx.tr = env->tr.selector;
1133 Ctx.trHid.u64Base = env->tr.base;
1134 Ctx.trHid.u32Limit = env->tr.limit;
1135 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1136
1137 Ctx.idtr.cbIdt = env->idt.limit;
1138 Ctx.idtr.pIdt = env->idt.base;
1139
1140 Ctx.eflags.u32 = env->eflags;
1141
1142 Ctx.cs = env->segs[R_CS].selector;
1143 Ctx.csHid.u64Base = env->segs[R_CS].base;
1144 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1145 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1146
1147 Ctx.ds = env->segs[R_DS].selector;
1148 Ctx.dsHid.u64Base = env->segs[R_DS].base;
1149 Ctx.dsHid.u32Limit = env->segs[R_DS].limit;
1150 Ctx.dsHid.Attr.u = (env->segs[R_DS].flags >> 8) & 0xF0FF;
1151
1152 Ctx.es = env->segs[R_ES].selector;
1153 Ctx.esHid.u64Base = env->segs[R_ES].base;
1154 Ctx.esHid.u32Limit = env->segs[R_ES].limit;
1155 Ctx.esHid.Attr.u = (env->segs[R_ES].flags >> 8) & 0xF0FF;
1156
1157 Ctx.fs = env->segs[R_FS].selector;
1158 Ctx.fsHid.u64Base = env->segs[R_FS].base;
1159 Ctx.fsHid.u32Limit = env->segs[R_FS].limit;
1160 Ctx.fsHid.Attr.u = (env->segs[R_FS].flags >> 8) & 0xF0FF;
1161
1162 Ctx.gs = env->segs[R_GS].selector;
1163 Ctx.gsHid.u64Base = env->segs[R_GS].base;
1164 Ctx.gsHid.u32Limit = env->segs[R_GS].limit;
1165 Ctx.gsHid.Attr.u = (env->segs[R_GS].flags >> 8) & 0xF0FF;
1166
1167 Ctx.ss = env->segs[R_SS].selector;
1168 Ctx.ssHid.u64Base = env->segs[R_SS].base;
1169 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1170 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1171
1172 Ctx.msrEFER = env->efer;
1173
1174 /* Hardware accelerated raw-mode:
1175 *
1176 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1177 */
1178 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1179 {
1180 *piException = EXCP_EXECUTE_HWACC;
1181 return true;
1182 }
1183 return false;
1184 }
1185
1186 /*
1187 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1188 * or 32 bits protected mode ring 0 code
1189 *
1190 * The tests are ordered by the likelyhood of being true during normal execution.
1191 */
1192 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1193 {
1194 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1195 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1196 return false;
1197 }
1198
1199#ifndef VBOX_RAW_V86
1200 if (fFlags & VM_MASK) {
1201 STAM_COUNTER_INC(&gStatRefuseVM86);
1202 Log2(("raw mode refused: VM_MASK\n"));
1203 return false;
1204 }
1205#endif
1206
1207 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1208 {
1209#ifndef DEBUG_bird
1210 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1211#endif
1212 return false;
1213 }
1214
1215 if (env->singlestep_enabled)
1216 {
1217 //Log2(("raw mode refused: Single step\n"));
1218 return false;
1219 }
1220
1221 if (env->nb_breakpoints > 0)
1222 {
1223 //Log2(("raw mode refused: Breakpoints\n"));
1224 return false;
1225 }
1226
1227 u32CR0 = env->cr[0];
1228 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1229 {
1230 STAM_COUNTER_INC(&gStatRefusePaging);
1231 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1232 return false;
1233 }
1234
1235 if (env->cr[4] & CR4_PAE_MASK)
1236 {
1237 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1238 {
1239 STAM_COUNTER_INC(&gStatRefusePAE);
1240 return false;
1241 }
1242 }
1243
1244 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1245 {
1246 if (!EMIsRawRing3Enabled(env->pVM))
1247 return false;
1248
1249 if (!(env->eflags & IF_MASK))
1250 {
1251 STAM_COUNTER_INC(&gStatRefuseIF0);
1252 Log2(("raw mode refused: IF (RawR3)\n"));
1253 return false;
1254 }
1255
1256 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1257 {
1258 STAM_COUNTER_INC(&gStatRefuseWP0);
1259 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1260 return false;
1261 }
1262 }
1263 else
1264 {
1265 if (!EMIsRawRing0Enabled(env->pVM))
1266 return false;
1267
1268 // Let's start with pure 32 bits ring 0 code first
1269 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1270 {
1271 STAM_COUNTER_INC(&gStatRefuseCode16);
1272 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1273 return false;
1274 }
1275
1276 // Only R0
1277 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1278 {
1279 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1280 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1281 return false;
1282 }
1283
1284 if (!(u32CR0 & CR0_WP_MASK))
1285 {
1286 STAM_COUNTER_INC(&gStatRefuseWP0);
1287 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1288 return false;
1289 }
1290
1291 if (PATMIsPatchGCAddr(env->pVM, eip))
1292 {
1293 Log2(("raw r0 mode forced: patch code\n"));
1294 *piException = EXCP_EXECUTE_RAW;
1295 return true;
1296 }
1297
1298#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1299 if (!(env->eflags & IF_MASK))
1300 {
1301 STAM_COUNTER_INC(&gStatRefuseIF0);
1302 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1303 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1304 return false;
1305 }
1306#endif
1307
1308 env->state |= CPU_RAW_RING0;
1309 }
1310
1311 /*
1312 * Don't reschedule the first time we're called, because there might be
1313 * special reasons why we're here that is not covered by the above checks.
1314 */
1315 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1316 {
1317 Log2(("raw mode refused: first scheduling\n"));
1318 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1319 return false;
1320 }
1321
1322 Assert(PGMPhysIsA20Enabled(env->pVM));
1323 *piException = EXCP_EXECUTE_RAW;
1324 return true;
1325}
1326
1327
1328/**
1329 * Fetches a code byte.
1330 *
1331 * @returns Success indicator (bool) for ease of use.
1332 * @param env The CPU environment structure.
1333 * @param GCPtrInstr Where to fetch code.
1334 * @param pu8Byte Where to store the byte on success
1335 */
1336bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1337{
1338 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1339 if (RT_SUCCESS(rc))
1340 return true;
1341 return false;
1342}
1343
1344
1345/**
1346 * Flush (or invalidate if you like) page table/dir entry.
1347 *
1348 * (invlpg instruction; tlb_flush_page)
1349 *
1350 * @param env Pointer to cpu environment.
1351 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1352 */
1353void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1354{
1355 PVM pVM = env->pVM;
1356 PCPUMCTX pCtx;
1357 int rc;
1358
1359 /*
1360 * When we're replaying invlpg instructions or restoring a saved
1361 * state we disable this path.
1362 */
1363 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1364 return;
1365 Log(("remR3FlushPage: GCPtr=%RGv\n", GCPtr));
1366 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1367
1368 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1369
1370 /*
1371 * Update the control registers before calling PGMFlushPage.
1372 */
1373 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1374 pCtx->cr0 = env->cr[0];
1375 pCtx->cr3 = env->cr[3];
1376 pCtx->cr4 = env->cr[4];
1377
1378 /*
1379 * Let PGM do the rest.
1380 */
1381 rc = PGMInvalidatePage(pVM, GCPtr);
1382 if (RT_FAILURE(rc))
1383 {
1384 AssertMsgFailed(("remR3FlushPage %RGv failed with %d!!\n", GCPtr, rc));
1385 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1386 }
1387 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1388}
1389
1390
1391#ifndef REM_PHYS_ADDR_IN_TLB
1392void* remR3GCPhys2HCVirt(CPUState *env1, target_ulong physAddr)
1393{
1394 void* rv = NULL;
1395 int rc;
1396
1397 rc = PGMPhysGCPhys2HCPtr(env1->pVM, (RTGCPHYS)physAddr, 1, &rv);
1398 Assert (RT_SUCCESS(rc));
1399
1400 return rv;
1401}
1402
1403target_ulong remR3HCVirt2GCPhys(CPUState *env1, void *addr)
1404{
1405 RTGCPHYS rv = 0;
1406 int rc;
1407
1408 rc = PGMR3DbgR3Ptr2GCPhys(env1->pVM, (RTR3PTR)addr, &rv);
1409 Assert (RT_SUCCESS(rc));
1410
1411 return (target_ulong)rv;
1412}
1413#endif
1414
1415/**
1416 * Called from tlb_protect_code in order to write monitor a code page.
1417 *
1418 * @param env Pointer to the CPU environment.
1419 * @param GCPtr Code page to monitor
1420 */
1421void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1422{
1423#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1424 Assert(env->pVM->rem.s.fInREM);
1425 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1426 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1427 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1428 && !(env->eflags & VM_MASK) /* no V86 mode */
1429 && !HWACCMIsEnabled(env->pVM))
1430 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1431#endif
1432}
1433
1434/**
1435 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1436 *
1437 * @param env Pointer to the CPU environment.
1438 * @param GCPtr Code page to monitor
1439 */
1440void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
1441{
1442 Assert(env->pVM->rem.s.fInREM);
1443#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1444 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1445 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1446 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1447 && !(env->eflags & VM_MASK) /* no V86 mode */
1448 && !HWACCMIsEnabled(env->pVM))
1449 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1450#endif
1451}
1452
1453#ifndef REM_PHYS_ADDR_IN_TLB
1454bool remR3IsMonitored(CPUState *env, RTGCPTR GCPtr)
1455{
1456 return PGMHandlerIsAddressMonitored(env->pVM, GCPtr);
1457}
1458#endif
1459
1460/**
1461 * Called when the CPU is initialized, any of the CRx registers are changed or
1462 * when the A20 line is modified.
1463 *
1464 * @param env Pointer to the CPU environment.
1465 * @param fGlobal Set if the flush is global.
1466 */
1467void remR3FlushTLB(CPUState *env, bool fGlobal)
1468{
1469 PVM pVM = env->pVM;
1470 PCPUMCTX pCtx;
1471
1472 /*
1473 * When we're replaying invlpg instructions or restoring a saved
1474 * state we disable this path.
1475 */
1476 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1477 return;
1478 Assert(pVM->rem.s.fInREM);
1479
1480 /*
1481 * The caller doesn't check cr4, so we have to do that for ourselves.
1482 */
1483 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1484 fGlobal = true;
1485 Log(("remR3FlushTLB: CR0=%RGr CR3=%RGr CR4=%RGr %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1486
1487 /*
1488 * Update the control registers before calling PGMR3FlushTLB.
1489 */
1490 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1491 pCtx->cr0 = env->cr[0];
1492 pCtx->cr3 = env->cr[3];
1493 pCtx->cr4 = env->cr[4];
1494
1495 /*
1496 * Let PGM do the rest.
1497 */
1498 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1499}
1500
1501
1502/**
1503 * Called when any of the cr0, cr4 or efer registers is updated.
1504 *
1505 * @param env Pointer to the CPU environment.
1506 */
1507void remR3ChangeCpuMode(CPUState *env)
1508{
1509 int rc;
1510 PVM pVM = env->pVM;
1511 PCPUMCTX pCtx;
1512
1513 /*
1514 * When we're replaying loads or restoring a saved
1515 * state this path is disabled.
1516 */
1517 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1518 return;
1519 Assert(pVM->rem.s.fInREM);
1520
1521 /*
1522 * Update the control registers before calling PGMChangeMode()
1523 * as it may need to map whatever cr3 is pointing to.
1524 */
1525 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1526 pCtx->cr0 = env->cr[0];
1527 pCtx->cr3 = env->cr[3];
1528 pCtx->cr4 = env->cr[4];
1529
1530#ifdef TARGET_X86_64
1531 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1532 if (rc != VINF_SUCCESS)
1533 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc\n", env->cr[0], env->cr[4], env->efer, rc);
1534#else
1535 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1536 if (rc != VINF_SUCCESS)
1537 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc\n", env->cr[0], env->cr[4], 0LL, rc);
1538#endif
1539}
1540
1541
1542/**
1543 * Called from compiled code to run dma.
1544 *
1545 * @param env Pointer to the CPU environment.
1546 */
1547void remR3DmaRun(CPUState *env)
1548{
1549 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1550 PDMR3DmaRun(env->pVM);
1551 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1552}
1553
1554
1555/**
1556 * Called from compiled code to schedule pending timers in VMM
1557 *
1558 * @param env Pointer to the CPU environment.
1559 */
1560void remR3TimersRun(CPUState *env)
1561{
1562 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1563 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1564 TMR3TimerQueuesDo(env->pVM);
1565 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1566 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1567}
1568
1569
1570/**
1571 * Record trap occurance
1572 *
1573 * @returns VBox status code
1574 * @param env Pointer to the CPU environment.
1575 * @param uTrap Trap nr
1576 * @param uErrorCode Error code
1577 * @param pvNextEIP Next EIP
1578 */
1579int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1580{
1581 PVM pVM = env->pVM;
1582#ifdef VBOX_WITH_STATISTICS
1583 static STAMCOUNTER s_aStatTrap[255];
1584 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1585#endif
1586
1587#ifdef VBOX_WITH_STATISTICS
1588 if (uTrap < 255)
1589 {
1590 if (!s_aRegisters[uTrap])
1591 {
1592 char szStatName[64];
1593 s_aRegisters[uTrap] = true;
1594 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1595 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1596 }
1597 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1598 }
1599#endif
1600 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, (RTGCPTR)pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
1601 if( uTrap < 0x20
1602 && (env->cr[0] & X86_CR0_PE)
1603 && !(env->eflags & X86_EFL_VM))
1604 {
1605#ifdef DEBUG
1606 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1607#endif
1608 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1609 {
1610 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, (RTGCPTR)pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
1611 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1612 return VERR_REM_TOO_MANY_TRAPS;
1613 }
1614 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1615 pVM->rem.s.cPendingExceptions = 1;
1616 pVM->rem.s.uPendingException = uTrap;
1617 pVM->rem.s.uPendingExcptEIP = env->eip;
1618 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1619 }
1620 else
1621 {
1622 pVM->rem.s.cPendingExceptions = 0;
1623 pVM->rem.s.uPendingException = uTrap;
1624 pVM->rem.s.uPendingExcptEIP = env->eip;
1625 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1626 }
1627 return VINF_SUCCESS;
1628}
1629
1630
1631/*
1632 * Clear current active trap
1633 *
1634 * @param pVM VM Handle.
1635 */
1636void remR3TrapClear(PVM pVM)
1637{
1638 pVM->rem.s.cPendingExceptions = 0;
1639 pVM->rem.s.uPendingException = 0;
1640 pVM->rem.s.uPendingExcptEIP = 0;
1641 pVM->rem.s.uPendingExcptCR2 = 0;
1642}
1643
1644
1645/*
1646 * Record previous call instruction addresses
1647 *
1648 * @param env Pointer to the CPU environment.
1649 */
1650void remR3RecordCall(CPUState *env)
1651{
1652 CSAMR3RecordCallAddress(env->pVM, env->eip);
1653}
1654
1655
1656/**
1657 * Syncs the internal REM state with the VM.
1658 *
1659 * This must be called before REMR3Run() is invoked whenever when the REM
1660 * state is not up to date. Calling it several times in a row is not
1661 * permitted.
1662 *
1663 * @returns VBox status code.
1664 *
1665 * @param pVM VM Handle.
1666 * @param fFlushTBs Flush all translation blocks before executing code
1667 *
1668 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1669 * no do this since the majority of the callers don't want any unnecessary of events
1670 * pending that would immediatly interrupt execution.
1671 */
1672REMR3DECL(int) REMR3State(PVM pVM)
1673{
1674 register const CPUMCTX *pCtx;
1675 register unsigned fFlags;
1676 bool fHiddenSelRegsValid;
1677 unsigned i;
1678 TRPMEVENT enmType;
1679 uint8_t u8TrapNo;
1680 int rc;
1681
1682 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1683 Log2(("REMR3State:\n"));
1684
1685 pCtx = pVM->rem.s.pCtx;
1686 fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1687
1688 Assert(!pVM->rem.s.fInREM);
1689 pVM->rem.s.fInStateSync = true;
1690
1691 /*
1692 * If we have to flush TBs, do that immediately.
1693 */
1694 if (pVM->rem.s.fFlushTBs)
1695 {
1696 STAM_COUNTER_INC(&gStatFlushTBs);
1697 tb_flush(&pVM->rem.s.Env);
1698 pVM->rem.s.fFlushTBs = false;
1699 }
1700
1701 /*
1702 * Copy the registers which require no special handling.
1703 */
1704#ifdef TARGET_X86_64
1705 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
1706 Assert(R_EAX == 0);
1707 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
1708 Assert(R_ECX == 1);
1709 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
1710 Assert(R_EDX == 2);
1711 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
1712 Assert(R_EBX == 3);
1713 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
1714 Assert(R_ESP == 4);
1715 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
1716 Assert(R_EBP == 5);
1717 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
1718 Assert(R_ESI == 6);
1719 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
1720 Assert(R_EDI == 7);
1721 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
1722 pVM->rem.s.Env.regs[8] = pCtx->r8;
1723 pVM->rem.s.Env.regs[9] = pCtx->r9;
1724 pVM->rem.s.Env.regs[10] = pCtx->r10;
1725 pVM->rem.s.Env.regs[11] = pCtx->r11;
1726 pVM->rem.s.Env.regs[12] = pCtx->r12;
1727 pVM->rem.s.Env.regs[13] = pCtx->r13;
1728 pVM->rem.s.Env.regs[14] = pCtx->r14;
1729 pVM->rem.s.Env.regs[15] = pCtx->r15;
1730
1731 pVM->rem.s.Env.eip = pCtx->rip;
1732
1733 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
1734#else
1735 Assert(R_EAX == 0);
1736 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1737 Assert(R_ECX == 1);
1738 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1739 Assert(R_EDX == 2);
1740 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1741 Assert(R_EBX == 3);
1742 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1743 Assert(R_ESP == 4);
1744 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1745 Assert(R_EBP == 5);
1746 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1747 Assert(R_ESI == 6);
1748 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1749 Assert(R_EDI == 7);
1750 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1751 pVM->rem.s.Env.eip = pCtx->eip;
1752
1753 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1754#endif
1755
1756 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1757
1758 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1759 for (i=0;i<8;i++)
1760 pVM->rem.s.Env.dr[i] = pCtx->dr[i];
1761
1762 /*
1763 * Clear the halted hidden flag (the interrupt waking up the CPU can
1764 * have been dispatched in raw mode).
1765 */
1766 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1767
1768 /*
1769 * Replay invlpg?
1770 */
1771 if (pVM->rem.s.cInvalidatedPages)
1772 {
1773 RTUINT i;
1774
1775 pVM->rem.s.fIgnoreInvlPg = true;
1776 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1777 {
1778 Log2(("REMR3State: invlpg %RGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1779 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1780 }
1781 pVM->rem.s.fIgnoreInvlPg = false;
1782 pVM->rem.s.cInvalidatedPages = 0;
1783 }
1784
1785 /* Replay notification changes? */
1786 if (pVM->rem.s.cHandlerNotifications)
1787 REMR3ReplayHandlerNotifications(pVM);
1788
1789 /* Update MSRs; before CRx registers! */
1790 pVM->rem.s.Env.efer = pCtx->msrEFER;
1791 pVM->rem.s.Env.star = pCtx->msrSTAR;
1792 pVM->rem.s.Env.pat = pCtx->msrPAT;
1793#ifdef TARGET_X86_64
1794 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1795 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1796 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1797 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1798
1799 /* Update the internal long mode activate flag according to the new EFER value. */
1800 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1801 pVM->rem.s.Env.hflags |= HF_LMA_MASK;
1802 else
1803 pVM->rem.s.Env.hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
1804#endif
1805
1806
1807 /*
1808 * Registers which are rarely changed and require special handling / order when changed.
1809 */
1810 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1811 LogFlow(("CPUMGetAndClearChangedFlagsREM %x\n", fFlags));
1812 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1813 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1814 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
1815 {
1816 if (fFlags & CPUM_CHANGED_FPU_REM)
1817 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1818
1819 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1820 {
1821 pVM->rem.s.fIgnoreCR3Load = true;
1822 tlb_flush(&pVM->rem.s.Env, true);
1823 pVM->rem.s.fIgnoreCR3Load = false;
1824 }
1825
1826 /* CR4 before CR0! */
1827 if (fFlags & CPUM_CHANGED_CR4)
1828 {
1829 pVM->rem.s.fIgnoreCR3Load = true;
1830 pVM->rem.s.fIgnoreCpuMode = true;
1831 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1832 pVM->rem.s.fIgnoreCpuMode = false;
1833 pVM->rem.s.fIgnoreCR3Load = false;
1834 }
1835
1836 if (fFlags & CPUM_CHANGED_CR0)
1837 {
1838 pVM->rem.s.fIgnoreCR3Load = true;
1839 pVM->rem.s.fIgnoreCpuMode = true;
1840 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1841 pVM->rem.s.fIgnoreCpuMode = false;
1842 pVM->rem.s.fIgnoreCR3Load = false;
1843 }
1844
1845 if (fFlags & CPUM_CHANGED_CR3)
1846 {
1847 pVM->rem.s.fIgnoreCR3Load = true;
1848 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1849 pVM->rem.s.fIgnoreCR3Load = false;
1850 }
1851
1852 if (fFlags & CPUM_CHANGED_GDTR)
1853 {
1854 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1855 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1856 }
1857
1858 if (fFlags & CPUM_CHANGED_IDTR)
1859 {
1860 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1861 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1862 }
1863
1864 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1865 {
1866 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1867 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1868 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1869 }
1870
1871 if (fFlags & CPUM_CHANGED_LDTR)
1872 {
1873 if (fHiddenSelRegsValid)
1874 {
1875 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1876 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u64Base;
1877 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1878 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1879 }
1880 else
1881 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1882 }
1883
1884 if (fFlags & CPUM_CHANGED_TR)
1885 {
1886 if (fHiddenSelRegsValid)
1887 {
1888 pVM->rem.s.Env.tr.selector = pCtx->tr;
1889 pVM->rem.s.Env.tr.base = pCtx->trHid.u64Base;
1890 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1891 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1892 }
1893 else
1894 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1895
1896 /** @note do_interrupt will fault if the busy flag is still set.... */
1897 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1898 }
1899
1900 if (fFlags & CPUM_CHANGED_CPUID)
1901 {
1902 uint32_t u32Dummy;
1903
1904 /*
1905 * Get the CPUID features.
1906 */
1907 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
1908 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
1909 }
1910 }
1911
1912 /*
1913 * Update selector registers.
1914 * This must be done *after* we've synced gdt, ldt and crX registers
1915 * since we're reading the GDT/LDT om sync_seg. This will happen with
1916 * saved state which takes a quick dip into rawmode for instance.
1917 */
1918 /*
1919 * Stack; Note first check this one as the CPL might have changed. The
1920 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1921 */
1922
1923 if (fHiddenSelRegsValid)
1924 {
1925 /* The hidden selector registers are valid in the CPU context. */
1926 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1927
1928 /* Set current CPL */
1929 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1930
1931 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1932 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1933 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1934 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1935 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1936 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1937 }
1938 else
1939 {
1940 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1941 if (pVM->rem.s.Env.segs[R_SS].selector != pCtx->ss)
1942 {
1943 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1944
1945 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1946 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1947#ifdef VBOX_WITH_STATISTICS
1948 if (pVM->rem.s.Env.segs[R_SS].newselector)
1949 {
1950 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1951 }
1952#endif
1953 }
1954 else
1955 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1956
1957 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1958 {
1959 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1960 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1961#ifdef VBOX_WITH_STATISTICS
1962 if (pVM->rem.s.Env.segs[R_ES].newselector)
1963 {
1964 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1965 }
1966#endif
1967 }
1968 else
1969 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1970
1971 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1972 {
1973 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1974 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1975#ifdef VBOX_WITH_STATISTICS
1976 if (pVM->rem.s.Env.segs[R_CS].newselector)
1977 {
1978 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1979 }
1980#endif
1981 }
1982 else
1983 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1984
1985 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1986 {
1987 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1988 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1989#ifdef VBOX_WITH_STATISTICS
1990 if (pVM->rem.s.Env.segs[R_DS].newselector)
1991 {
1992 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1993 }
1994#endif
1995 }
1996 else
1997 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1998
1999 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
2000 * be the same but not the base/limit. */
2001 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
2002 {
2003 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
2004 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
2005#ifdef VBOX_WITH_STATISTICS
2006 if (pVM->rem.s.Env.segs[R_FS].newselector)
2007 {
2008 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
2009 }
2010#endif
2011 }
2012 else
2013 pVM->rem.s.Env.segs[R_FS].newselector = 0;
2014
2015 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
2016 {
2017 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
2018 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
2019#ifdef VBOX_WITH_STATISTICS
2020 if (pVM->rem.s.Env.segs[R_GS].newselector)
2021 {
2022 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
2023 }
2024#endif
2025 }
2026 else
2027 pVM->rem.s.Env.segs[R_GS].newselector = 0;
2028 }
2029
2030 /*
2031 * Check for traps.
2032 */
2033 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
2034 rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
2035 if (RT_SUCCESS(rc))
2036 {
2037#ifdef DEBUG
2038 if (u8TrapNo == 0x80)
2039 {
2040 remR3DumpLnxSyscall(pVM);
2041 remR3DumpOBsdSyscall(pVM);
2042 }
2043#endif
2044
2045 pVM->rem.s.Env.exception_index = u8TrapNo;
2046 if (enmType != TRPM_SOFTWARE_INT)
2047 {
2048 pVM->rem.s.Env.exception_is_int = 0;
2049 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
2050 }
2051 else
2052 {
2053 /*
2054 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
2055 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
2056 * for int03 and into.
2057 */
2058 pVM->rem.s.Env.exception_is_int = 1;
2059 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 2;
2060 /* int 3 may be generated by one-byte 0xcc */
2061 if (u8TrapNo == 3)
2062 {
2063 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xcc)
2064 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2065 }
2066 /* int 4 may be generated by one-byte 0xce */
2067 else if (u8TrapNo == 4)
2068 {
2069 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xce)
2070 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2071 }
2072 }
2073
2074 /* get error code and cr2 if needed. */
2075 switch (u8TrapNo)
2076 {
2077 case 0x0e:
2078 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
2079 /* fallthru */
2080 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2081 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
2082 break;
2083
2084 case 0x11: case 0x08:
2085 default:
2086 pVM->rem.s.Env.error_code = 0;
2087 break;
2088 }
2089
2090 /*
2091 * We can now reset the active trap since the recompiler is gonna have a go at it.
2092 */
2093 rc = TRPMResetTrap(pVM);
2094 AssertRC(rc);
2095 Log2(("REMR3State: trap=%02x errcd=%RGv cr2=%RGv nexteip=%RGv%s\n", pVM->rem.s.Env.exception_index, (RTGCPTR)pVM->rem.s.Env.error_code,
2096 (RTGCPTR)pVM->rem.s.Env.cr[2], (RTGCPTR)pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
2097 }
2098
2099 /*
2100 * Clear old interrupt request flags; Check for pending hardware interrupts.
2101 * (See @remark for why we don't check for other FFs.)
2102 */
2103 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2104 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2105 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
2106 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2107
2108 /*
2109 * We're now in REM mode.
2110 */
2111 pVM->rem.s.fInREM = true;
2112 pVM->rem.s.fInStateSync = false;
2113 pVM->rem.s.cCanExecuteRaw = 0;
2114 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2115 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2116 return VINF_SUCCESS;
2117}
2118
2119
2120/**
2121 * Syncs back changes in the REM state to the the VM state.
2122 *
2123 * This must be called after invoking REMR3Run().
2124 * Calling it several times in a row is not permitted.
2125 *
2126 * @returns VBox status code.
2127 *
2128 * @param pVM VM Handle.
2129 */
2130REMR3DECL(int) REMR3StateBack(PVM pVM)
2131{
2132 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2133 unsigned i;
2134
2135 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2136 Log2(("REMR3StateBack:\n"));
2137 Assert(pVM->rem.s.fInREM);
2138
2139 /*
2140 * Copy back the registers.
2141 * This is done in the order they are declared in the CPUMCTX structure.
2142 */
2143
2144 /** @todo FOP */
2145 /** @todo FPUIP */
2146 /** @todo CS */
2147 /** @todo FPUDP */
2148 /** @todo DS */
2149 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2150 pCtx->fpu.MXCSR = 0;
2151 pCtx->fpu.MXCSR_MASK = 0;
2152
2153 /** @todo check if FPU/XMM was actually used in the recompiler */
2154 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2155//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2156
2157#ifdef TARGET_X86_64
2158 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2159 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2160 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2161 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2162 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2163 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2164 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2165 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2166 pCtx->r8 = pVM->rem.s.Env.regs[8];
2167 pCtx->r9 = pVM->rem.s.Env.regs[9];
2168 pCtx->r10 = pVM->rem.s.Env.regs[10];
2169 pCtx->r11 = pVM->rem.s.Env.regs[11];
2170 pCtx->r12 = pVM->rem.s.Env.regs[12];
2171 pCtx->r13 = pVM->rem.s.Env.regs[13];
2172 pCtx->r14 = pVM->rem.s.Env.regs[14];
2173 pCtx->r15 = pVM->rem.s.Env.regs[15];
2174
2175 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2176
2177#else
2178 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2179 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2180 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2181 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2182 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2183 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2184 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2185
2186 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2187#endif
2188
2189 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2190
2191#ifdef VBOX_WITH_STATISTICS
2192 if (pVM->rem.s.Env.segs[R_SS].newselector)
2193 {
2194 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2195 }
2196 if (pVM->rem.s.Env.segs[R_GS].newselector)
2197 {
2198 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2199 }
2200 if (pVM->rem.s.Env.segs[R_FS].newselector)
2201 {
2202 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2203 }
2204 if (pVM->rem.s.Env.segs[R_ES].newselector)
2205 {
2206 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2207 }
2208 if (pVM->rem.s.Env.segs[R_DS].newselector)
2209 {
2210 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2211 }
2212 if (pVM->rem.s.Env.segs[R_CS].newselector)
2213 {
2214 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2215 }
2216#endif
2217 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2218 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2219 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2220 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2221 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2222
2223#ifdef TARGET_X86_64
2224 pCtx->rip = pVM->rem.s.Env.eip;
2225 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2226#else
2227 pCtx->eip = pVM->rem.s.Env.eip;
2228 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2229#endif
2230
2231 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2232 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2233 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2234 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2235
2236 for (i=0;i<8;i++)
2237 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2238
2239 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2240 if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
2241 {
2242 pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
2243 STAM_COUNTER_INC(&gStatREMGDTChange);
2244 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2245 }
2246
2247 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2248 if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
2249 {
2250 pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
2251 STAM_COUNTER_INC(&gStatREMIDTChange);
2252 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2253 }
2254
2255 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2256 {
2257 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2258 STAM_COUNTER_INC(&gStatREMLDTRChange);
2259 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2260 }
2261 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2262 {
2263 pCtx->tr = pVM->rem.s.Env.tr.selector;
2264 STAM_COUNTER_INC(&gStatREMTRChange);
2265 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2266 }
2267
2268 /** @todo These values could still be out of sync! */
2269 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2270 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2271 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2272 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2273
2274 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2275 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2276 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2277
2278 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2279 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2280 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2281
2282 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2283 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2284 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2285
2286 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2287 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2288 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2289
2290 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2291 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2292 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2293
2294 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2295 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2296 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2297
2298 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2299 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2300 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2301
2302 /* Sysenter MSR */
2303 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2304 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2305 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2306
2307 /* System MSRs. */
2308 pCtx->msrEFER = pVM->rem.s.Env.efer;
2309 pCtx->msrSTAR = pVM->rem.s.Env.star;
2310 pCtx->msrPAT = pVM->rem.s.Env.pat;
2311#ifdef TARGET_X86_64
2312 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2313 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2314 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2315 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2316#endif
2317
2318 remR3TrapClear(pVM);
2319
2320 /*
2321 * Check for traps.
2322 */
2323 if ( pVM->rem.s.Env.exception_index >= 0
2324 && pVM->rem.s.Env.exception_index < 256)
2325 {
2326 int rc;
2327
2328 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2329 rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2330 AssertRC(rc);
2331 switch (pVM->rem.s.Env.exception_index)
2332 {
2333 case 0x0e:
2334 TRPMSetFaultAddress(pVM, pCtx->cr2);
2335 /* fallthru */
2336 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2337 case 0x11: case 0x08: /* 0 */
2338 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2339 break;
2340 }
2341
2342 }
2343
2344 /*
2345 * We're not longer in REM mode.
2346 */
2347 pVM->rem.s.fInREM = false;
2348 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2349 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2350 return VINF_SUCCESS;
2351}
2352
2353
2354/**
2355 * This is called by the disassembler when it wants to update the cpu state
2356 * before for instance doing a register dump.
2357 */
2358static void remR3StateUpdate(PVM pVM)
2359{
2360 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2361 unsigned i;
2362
2363 Assert(pVM->rem.s.fInREM);
2364
2365 /*
2366 * Copy back the registers.
2367 * This is done in the order they are declared in the CPUMCTX structure.
2368 */
2369
2370 /** @todo FOP */
2371 /** @todo FPUIP */
2372 /** @todo CS */
2373 /** @todo FPUDP */
2374 /** @todo DS */
2375 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2376 pCtx->fpu.MXCSR = 0;
2377 pCtx->fpu.MXCSR_MASK = 0;
2378
2379 /** @todo check if FPU/XMM was actually used in the recompiler */
2380 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2381//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2382
2383#ifdef TARGET_X86_64
2384 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2385 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2386 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2387 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2388 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2389 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2390 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2391 pCtx->r8 = pVM->rem.s.Env.regs[8];
2392 pCtx->r9 = pVM->rem.s.Env.regs[9];
2393 pCtx->r10 = pVM->rem.s.Env.regs[10];
2394 pCtx->r11 = pVM->rem.s.Env.regs[11];
2395 pCtx->r12 = pVM->rem.s.Env.regs[12];
2396 pCtx->r13 = pVM->rem.s.Env.regs[13];
2397 pCtx->r14 = pVM->rem.s.Env.regs[14];
2398 pCtx->r15 = pVM->rem.s.Env.regs[15];
2399
2400 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2401#else
2402 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2403 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2404 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2405 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2406 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2407 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2408 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2409
2410 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2411#endif
2412
2413 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2414
2415 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2416 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2417 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2418 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2419 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2420
2421#ifdef TARGET_X86_64
2422 pCtx->rip = pVM->rem.s.Env.eip;
2423 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2424#else
2425 pCtx->eip = pVM->rem.s.Env.eip;
2426 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2427#endif
2428
2429 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2430 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2431 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2432 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2433
2434 for (i=0;i<8;i++)
2435 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2436
2437 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2438 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2439 {
2440 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2441 STAM_COUNTER_INC(&gStatREMGDTChange);
2442 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2443 }
2444
2445 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2446 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2447 {
2448 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2449 STAM_COUNTER_INC(&gStatREMIDTChange);
2450 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2451 }
2452
2453 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2454 {
2455 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2456 STAM_COUNTER_INC(&gStatREMLDTRChange);
2457 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2458 }
2459 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2460 {
2461 pCtx->tr = pVM->rem.s.Env.tr.selector;
2462 STAM_COUNTER_INC(&gStatREMTRChange);
2463 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2464 }
2465
2466 /** @todo These values could still be out of sync! */
2467 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2468 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2469 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2470 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2471
2472 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2473 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2474 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2475
2476 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2477 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2478 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2479
2480 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2481 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2482 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2483
2484 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2485 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2486 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2487
2488 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2489 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2490 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2491
2492 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2493 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2494 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2495
2496 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2497 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2498 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2499
2500 /* Sysenter MSR */
2501 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2502 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2503 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2504
2505 /* System MSRs. */
2506 pCtx->msrEFER = pVM->rem.s.Env.efer;
2507 pCtx->msrSTAR = pVM->rem.s.Env.star;
2508 pCtx->msrPAT = pVM->rem.s.Env.pat;
2509#ifdef TARGET_X86_64
2510 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2511 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2512 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2513 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2514#endif
2515
2516}
2517
2518
2519/**
2520 * Update the VMM state information if we're currently in REM.
2521 *
2522 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2523 * we're currently executing in REM and the VMM state is invalid. This method will of
2524 * course check that we're executing in REM before syncing any data over to the VMM.
2525 *
2526 * @param pVM The VM handle.
2527 */
2528REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2529{
2530 if (pVM->rem.s.fInREM)
2531 remR3StateUpdate(pVM);
2532}
2533
2534
2535#undef LOG_GROUP
2536#define LOG_GROUP LOG_GROUP_REM
2537
2538
2539/**
2540 * Notify the recompiler about Address Gate 20 state change.
2541 *
2542 * This notification is required since A20 gate changes are
2543 * initialized from a device driver and the VM might just as
2544 * well be in REM mode as in RAW mode.
2545 *
2546 * @param pVM VM handle.
2547 * @param fEnable True if the gate should be enabled.
2548 * False if the gate should be disabled.
2549 */
2550REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2551{
2552 bool fSaved;
2553
2554 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2555 VM_ASSERT_EMT(pVM);
2556
2557 fSaved = pVM->rem.s.fIgnoreAll; /* just in case. */
2558 pVM->rem.s.fIgnoreAll = fSaved || !pVM->rem.s.fInREM;
2559
2560 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2561
2562 pVM->rem.s.fIgnoreAll = fSaved;
2563}
2564
2565
2566/**
2567 * Replays the invalidated recorded pages.
2568 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2569 *
2570 * @param pVM VM handle.
2571 */
2572REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2573{
2574 RTUINT i;
2575
2576 VM_ASSERT_EMT(pVM);
2577
2578 /*
2579 * Sync the required registers.
2580 */
2581 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2582 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2583 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2584 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2585
2586 /*
2587 * Replay the flushes.
2588 */
2589 pVM->rem.s.fIgnoreInvlPg = true;
2590 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2591 {
2592 Log2(("REMR3ReplayInvalidatedPages: invlpg %RGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2593 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2594 }
2595 pVM->rem.s.fIgnoreInvlPg = false;
2596 pVM->rem.s.cInvalidatedPages = 0;
2597}
2598
2599
2600/**
2601 * Replays the handler notification changes
2602 * Called in response to VM_FF_REM_HANDLER_NOTIFY from the RAW execution loop.
2603 *
2604 * @param pVM VM handle.
2605 */
2606REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2607{
2608 /*
2609 * Replay the flushes.
2610 */
2611 RTUINT i;
2612 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2613
2614 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2615 VM_ASSERT_EMT(pVM);
2616
2617 pVM->rem.s.cHandlerNotifications = 0;
2618 for (i = 0; i < c; i++)
2619 {
2620 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2621 switch (pRec->enmKind)
2622 {
2623 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2624 REMR3NotifyHandlerPhysicalRegister(pVM,
2625 pRec->u.PhysicalRegister.enmType,
2626 pRec->u.PhysicalRegister.GCPhys,
2627 pRec->u.PhysicalRegister.cb,
2628 pRec->u.PhysicalRegister.fHasHCHandler);
2629 break;
2630
2631 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2632 REMR3NotifyHandlerPhysicalDeregister(pVM,
2633 pRec->u.PhysicalDeregister.enmType,
2634 pRec->u.PhysicalDeregister.GCPhys,
2635 pRec->u.PhysicalDeregister.cb,
2636 pRec->u.PhysicalDeregister.fHasHCHandler,
2637 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2638 break;
2639
2640 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2641 REMR3NotifyHandlerPhysicalModify(pVM,
2642 pRec->u.PhysicalModify.enmType,
2643 pRec->u.PhysicalModify.GCPhysOld,
2644 pRec->u.PhysicalModify.GCPhysNew,
2645 pRec->u.PhysicalModify.cb,
2646 pRec->u.PhysicalModify.fHasHCHandler,
2647 pRec->u.PhysicalModify.fRestoreAsRAM);
2648 break;
2649
2650 default:
2651 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2652 break;
2653 }
2654 }
2655 VM_FF_CLEAR(pVM, VM_FF_REM_HANDLER_NOTIFY);
2656}
2657
2658
2659/**
2660 * Notify REM about changed code page.
2661 *
2662 * @returns VBox status code.
2663 * @param pVM VM handle.
2664 * @param pvCodePage Code page address
2665 */
2666REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2667{
2668#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
2669 int rc;
2670 RTGCPHYS PhysGC;
2671 uint64_t flags;
2672
2673 VM_ASSERT_EMT(pVM);
2674
2675 /*
2676 * Get the physical page address.
2677 */
2678 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2679 if (rc == VINF_SUCCESS)
2680 {
2681 /*
2682 * Sync the required registers and flush the whole page.
2683 * (Easier to do the whole page than notifying it about each physical
2684 * byte that was changed.
2685 */
2686 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2687 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2688 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2689 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2690
2691 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2692 }
2693#endif
2694 return VINF_SUCCESS;
2695}
2696
2697
2698/**
2699 * Notification about a successful MMR3PhysRegister() call.
2700 *
2701 * @param pVM VM handle.
2702 * @param GCPhys The physical address the RAM.
2703 * @param cb Size of the memory.
2704 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2705 */
2706REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, unsigned fFlags)
2707{
2708 uint32_t cbBitmap;
2709 int rc;
2710 Log(("REMR3NotifyPhysRamRegister: GCPhys=%RGp cb=%d fFlags=%d\n", GCPhys, cb, fFlags));
2711 VM_ASSERT_EMT(pVM);
2712
2713 /*
2714 * Validate input - we trust the caller.
2715 */
2716 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2717 Assert(cb);
2718 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2719
2720 /*
2721 * Base ram?
2722 */
2723 if (!GCPhys)
2724 {
2725 phys_ram_size = cb;
2726 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2727#ifndef VBOX_STRICT
2728 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2729 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2730#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2731 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2732 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2733 cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2734 rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2735 AssertRC(rc);
2736 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2737#endif
2738 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2739 }
2740
2741 /*
2742 * Register the ram.
2743 */
2744 Assert(!pVM->rem.s.fIgnoreAll);
2745 pVM->rem.s.fIgnoreAll = true;
2746
2747#ifdef VBOX_WITH_NEW_PHYS_CODE
2748 if (fFlags & MM_RAM_FLAGS_RESERVED)
2749 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2750 else
2751 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2752#else
2753 if (!GCPhys)
2754 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2755 else
2756 {
2757 if (fFlags & MM_RAM_FLAGS_RESERVED)
2758 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2759 else
2760 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2761 }
2762#endif
2763 Assert(pVM->rem.s.fIgnoreAll);
2764 pVM->rem.s.fIgnoreAll = false;
2765}
2766
2767#ifndef VBOX_WITH_NEW_PHYS_CODE
2768
2769/**
2770 * Notification about a successful PGMR3PhysRegisterChunk() call.
2771 *
2772 * @param pVM VM handle.
2773 * @param GCPhys The physical address the RAM.
2774 * @param cb Size of the memory.
2775 * @param pvRam The HC address of the RAM.
2776 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2777 */
2778REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2779{
2780 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%RGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2781 VM_ASSERT_EMT(pVM);
2782
2783 /*
2784 * Validate input - we trust the caller.
2785 */
2786 Assert(pvRam);
2787 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2788 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2789 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2790 Assert(fFlags == 0 /* normal RAM */);
2791 Assert(!pVM->rem.s.fIgnoreAll);
2792 pVM->rem.s.fIgnoreAll = true;
2793 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2794 Assert(pVM->rem.s.fIgnoreAll);
2795 pVM->rem.s.fIgnoreAll = false;
2796}
2797
2798
2799/**
2800 * Grows dynamically allocated guest RAM.
2801 * Will raise a fatal error if the operation fails.
2802 *
2803 * @param physaddr The physical address.
2804 */
2805void remR3GrowDynRange(unsigned long physaddr) /** @todo Needs fixing for MSC... */
2806{
2807 int rc;
2808 PVM pVM = cpu_single_env->pVM;
2809 const RTGCPHYS GCPhys = physaddr;
2810
2811 LogFlow(("remR3GrowDynRange %RGp\n", (RTGCPTR)physaddr));
2812 rc = PGM3PhysGrowRange(pVM, &GCPhys);
2813 if (RT_SUCCESS(rc))
2814 return;
2815
2816 LogRel(("\nUnable to allocate guest RAM chunk at %RGp\n", (RTGCPTR)physaddr));
2817 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %RGp\n", (RTGCPTR)physaddr);
2818 AssertFatalFailed();
2819}
2820
2821#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2822
2823/**
2824 * Notification about a successful MMR3PhysRomRegister() call.
2825 *
2826 * @param pVM VM handle.
2827 * @param GCPhys The physical address of the ROM.
2828 * @param cb The size of the ROM.
2829 * @param pvCopy Pointer to the ROM copy.
2830 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2831 * This function will be called when ever the protection of the
2832 * shadow ROM changes (at reset and end of POST).
2833 */
2834REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2835{
2836 Log(("REMR3NotifyPhysRomRegister: GCPhys=%RGp cb=%d pvCopy=%p fShadow=%RTbool\n", GCPhys, cb, pvCopy, fShadow));
2837 VM_ASSERT_EMT(pVM);
2838
2839 /*
2840 * Validate input - we trust the caller.
2841 */
2842 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2843 Assert(cb);
2844 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2845 Assert(pvCopy);
2846 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2847
2848 /*
2849 * Register the rom.
2850 */
2851 Assert(!pVM->rem.s.fIgnoreAll);
2852 pVM->rem.s.fIgnoreAll = true;
2853
2854 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2855
2856 Log2(("%.64Rhxd\n", (char *)pvCopy + cb - 64));
2857
2858 Assert(pVM->rem.s.fIgnoreAll);
2859 pVM->rem.s.fIgnoreAll = false;
2860}
2861
2862
2863/**
2864 * Notification about a successful memory deregistration or reservation.
2865 *
2866 * @param pVM VM Handle.
2867 * @param GCPhys Start physical address.
2868 * @param cb The size of the range.
2869 * @todo Rename to REMR3NotifyPhysRamDeregister (for MMIO2) as we won't
2870 * reserve any memory soon.
2871 */
2872REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2873{
2874 Log(("REMR3NotifyPhysReserve: GCPhys=%RGp cb=%d\n", GCPhys, cb));
2875 VM_ASSERT_EMT(pVM);
2876
2877 /*
2878 * Validate input - we trust the caller.
2879 */
2880 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2881 Assert(cb);
2882 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2883
2884 /*
2885 * Unassigning the memory.
2886 */
2887 Assert(!pVM->rem.s.fIgnoreAll);
2888 pVM->rem.s.fIgnoreAll = true;
2889
2890 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2891
2892 Assert(pVM->rem.s.fIgnoreAll);
2893 pVM->rem.s.fIgnoreAll = false;
2894}
2895
2896
2897/**
2898 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2899 *
2900 * @param pVM VM Handle.
2901 * @param enmType Handler type.
2902 * @param GCPhys Handler range address.
2903 * @param cb Size of the handler range.
2904 * @param fHasHCHandler Set if the handler has a HC callback function.
2905 *
2906 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2907 * Handler memory type to memory which has no HC handler.
2908 */
2909REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2910{
2911 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%d\n",
2912 enmType, GCPhys, cb, fHasHCHandler));
2913 VM_ASSERT_EMT(pVM);
2914 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2915 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2916
2917 if (pVM->rem.s.cHandlerNotifications)
2918 REMR3ReplayHandlerNotifications(pVM);
2919
2920 Assert(!pVM->rem.s.fIgnoreAll);
2921 pVM->rem.s.fIgnoreAll = true;
2922
2923 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2924 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2925 else if (fHasHCHandler)
2926 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2927
2928 Assert(pVM->rem.s.fIgnoreAll);
2929 pVM->rem.s.fIgnoreAll = false;
2930}
2931
2932
2933/**
2934 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2935 *
2936 * @param pVM VM Handle.
2937 * @param enmType Handler type.
2938 * @param GCPhys Handler range address.
2939 * @param cb Size of the handler range.
2940 * @param fHasHCHandler Set if the handler has a HC callback function.
2941 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2942 */
2943REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2944{
2945 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2946 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2947 VM_ASSERT_EMT(pVM);
2948
2949 if (pVM->rem.s.cHandlerNotifications)
2950 REMR3ReplayHandlerNotifications(pVM);
2951
2952 Assert(!pVM->rem.s.fIgnoreAll);
2953 pVM->rem.s.fIgnoreAll = true;
2954
2955/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
2956 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2957 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2958 else if (fHasHCHandler)
2959 {
2960 if (!fRestoreAsRAM)
2961 {
2962 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2963 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2964 }
2965 else
2966 {
2967 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2968 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2969 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2970 }
2971 }
2972
2973 Assert(pVM->rem.s.fIgnoreAll);
2974 pVM->rem.s.fIgnoreAll = false;
2975}
2976
2977
2978/**
2979 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2980 *
2981 * @param pVM VM Handle.
2982 * @param enmType Handler type.
2983 * @param GCPhysOld Old handler range address.
2984 * @param GCPhysNew New handler range address.
2985 * @param cb Size of the handler range.
2986 * @param fHasHCHandler Set if the handler has a HC callback function.
2987 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2988 */
2989REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2990{
2991 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%RGp GCPhysNew=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
2992 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
2993 VM_ASSERT_EMT(pVM);
2994 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2995
2996 if (pVM->rem.s.cHandlerNotifications)
2997 REMR3ReplayHandlerNotifications(pVM);
2998
2999 if (fHasHCHandler)
3000 {
3001 Assert(!pVM->rem.s.fIgnoreAll);
3002 pVM->rem.s.fIgnoreAll = true;
3003
3004 /*
3005 * Reset the old page.
3006 */
3007 if (!fRestoreAsRAM)
3008 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
3009 else
3010 {
3011 /* This is not perfect, but it'll do for PD monitoring... */
3012 Assert(cb == PAGE_SIZE);
3013 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
3014 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
3015 }
3016
3017 /*
3018 * Update the new page.
3019 */
3020 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
3021 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
3022 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
3023
3024 Assert(pVM->rem.s.fIgnoreAll);
3025 pVM->rem.s.fIgnoreAll = false;
3026 }
3027}
3028
3029
3030/**
3031 * Checks if we're handling access to this page or not.
3032 *
3033 * @returns true if we're trapping access.
3034 * @returns false if we aren't.
3035 * @param pVM The VM handle.
3036 * @param GCPhys The physical address.
3037 *
3038 * @remark This function will only work correctly in VBOX_STRICT builds!
3039 */
3040REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
3041{
3042#ifdef VBOX_STRICT
3043 unsigned long off;
3044 if (pVM->rem.s.cHandlerNotifications)
3045 REMR3ReplayHandlerNotifications(pVM);
3046
3047 off = get_phys_page_offset(GCPhys);
3048 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
3049 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
3050 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
3051#else
3052 return false;
3053#endif
3054}
3055
3056
3057/**
3058 * Deals with a rare case in get_phys_addr_code where the code
3059 * is being monitored.
3060 *
3061 * It could also be an MMIO page, in which case we will raise a fatal error.
3062 *
3063 * @returns The physical address corresponding to addr.
3064 * @param env The cpu environment.
3065 * @param addr The virtual address.
3066 * @param pTLBEntry The TLB entry.
3067 */
3068target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
3069{
3070 PVM pVM = env->pVM;
3071 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
3072 {
3073 target_ulong ret = pTLBEntry->addend + addr;
3074 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%RGv addr_code=%RGv addend=%RGp ret=%RGp\n",
3075 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
3076 return ret;
3077 }
3078 LogRel(("\nTrying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
3079 "*** handlers\n",
3080 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
3081 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
3082 LogRel(("*** mmio\n"));
3083 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
3084 LogRel(("*** phys\n"));
3085 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
3086 cpu_abort(env, "Trying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
3087 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
3088 AssertFatalFailed();
3089}
3090
3091/**
3092 * Read guest RAM and ROM.
3093 *
3094 * @param SrcGCPhys The source address (guest physical).
3095 * @param pvDst The destination address.
3096 * @param cb Number of bytes
3097 */
3098void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3099{
3100 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3101 VBOX_CHECK_ADDR(SrcGCPhys);
3102 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3103#ifdef VBOX_DEBUG_PHYS
3104 LogRel(("read(%d): %08x\n", cb, (uint32_t)SrcGCPhys));
3105#endif
3106 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3107}
3108
3109
3110/**
3111 * Read guest RAM and ROM, unsigned 8-bit.
3112 *
3113 * @param SrcGCPhys The source address (guest physical).
3114 */
3115uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3116{
3117 uint8_t val;
3118 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3119 VBOX_CHECK_ADDR(SrcGCPhys);
3120 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3121 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3122#ifdef VBOX_DEBUG_PHYS
3123 LogRel(("readu8: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3124#endif
3125 return val;
3126}
3127
3128
3129/**
3130 * Read guest RAM and ROM, signed 8-bit.
3131 *
3132 * @param SrcGCPhys The source address (guest physical).
3133 */
3134int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3135{
3136 int8_t val;
3137 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3138 VBOX_CHECK_ADDR(SrcGCPhys);
3139 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3140 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3141#ifdef VBOX_DEBUG_PHYS
3142 LogRel(("reads8: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3143#endif
3144 return val;
3145}
3146
3147
3148/**
3149 * Read guest RAM and ROM, unsigned 16-bit.
3150 *
3151 * @param SrcGCPhys The source address (guest physical).
3152 */
3153uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3154{
3155 uint16_t val;
3156 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3157 VBOX_CHECK_ADDR(SrcGCPhys);
3158 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3159 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3160#ifdef VBOX_DEBUG_PHYS
3161 LogRel(("readu16: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3162#endif
3163 return val;
3164}
3165
3166
3167/**
3168 * Read guest RAM and ROM, signed 16-bit.
3169 *
3170 * @param SrcGCPhys The source address (guest physical).
3171 */
3172int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3173{
3174 uint16_t val;
3175 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3176 VBOX_CHECK_ADDR(SrcGCPhys);
3177 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3178 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3179#ifdef VBOX_DEBUG_PHYS
3180 LogRel(("reads16: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3181#endif
3182 return val;
3183}
3184
3185
3186/**
3187 * Read guest RAM and ROM, unsigned 32-bit.
3188 *
3189 * @param SrcGCPhys The source address (guest physical).
3190 */
3191uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3192{
3193 uint32_t val;
3194 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3195 VBOX_CHECK_ADDR(SrcGCPhys);
3196 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3197 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3198#ifdef VBOX_DEBUG_PHYS
3199 LogRel(("readu32: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3200#endif
3201 return val;
3202}
3203
3204
3205/**
3206 * Read guest RAM and ROM, signed 32-bit.
3207 *
3208 * @param SrcGCPhys The source address (guest physical).
3209 */
3210int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3211{
3212 int32_t val;
3213 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3214 VBOX_CHECK_ADDR(SrcGCPhys);
3215 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3216 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3217#ifdef VBOX_DEBUG_PHYS
3218 LogRel(("reads32: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3219#endif
3220 return val;
3221}
3222
3223
3224/**
3225 * Read guest RAM and ROM, unsigned 64-bit.
3226 *
3227 * @param SrcGCPhys The source address (guest physical).
3228 */
3229uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3230{
3231 uint64_t val;
3232 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3233 VBOX_CHECK_ADDR(SrcGCPhys);
3234 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3235 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3236#ifdef VBOX_DEBUG_PHYS
3237 LogRel(("readu64: %llx <- %08x\n", val, (uint32_t)SrcGCPhys));
3238#endif
3239 return val;
3240}
3241
3242/**
3243 * Read guest RAM and ROM, signed 64-bit.
3244 *
3245 * @param SrcGCPhys The source address (guest physical).
3246 */
3247int64_t remR3PhysReadS64(RTGCPHYS SrcGCPhys)
3248{
3249 int64_t val;
3250 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3251 VBOX_CHECK_ADDR(SrcGCPhys);
3252 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3253 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3254#ifdef VBOX_DEBUG_PHYS
3255 LogRel(("reads64: %llx <- %08x\n", val, (uint32_t)SrcGCPhys));
3256#endif
3257 return val;
3258}
3259
3260
3261/**
3262 * Write guest RAM.
3263 *
3264 * @param DstGCPhys The destination address (guest physical).
3265 * @param pvSrc The source address.
3266 * @param cb Number of bytes to write
3267 */
3268void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3269{
3270 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3271 VBOX_CHECK_ADDR(DstGCPhys);
3272 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3273 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3274#ifdef VBOX_DEBUG_PHYS
3275 LogRel(("write(%d): %08x\n", cb, (uint32_t)DstGCPhys));
3276#endif
3277}
3278
3279
3280/**
3281 * Write guest RAM, unsigned 8-bit.
3282 *
3283 * @param DstGCPhys The destination address (guest physical).
3284 * @param val Value
3285 */
3286void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3287{
3288 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3289 VBOX_CHECK_ADDR(DstGCPhys);
3290 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3291 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3292#ifdef VBOX_DEBUG_PHYS
3293 LogRel(("writeu8: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3294#endif
3295}
3296
3297
3298/**
3299 * Write guest RAM, unsigned 8-bit.
3300 *
3301 * @param DstGCPhys The destination address (guest physical).
3302 * @param val Value
3303 */
3304void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3305{
3306 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3307 VBOX_CHECK_ADDR(DstGCPhys);
3308 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3309 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3310#ifdef VBOX_DEBUG_PHYS
3311 LogRel(("writeu16: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3312#endif
3313}
3314
3315
3316/**
3317 * Write guest RAM, unsigned 32-bit.
3318 *
3319 * @param DstGCPhys The destination address (guest physical).
3320 * @param val Value
3321 */
3322void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3323{
3324 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3325 VBOX_CHECK_ADDR(DstGCPhys);
3326 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3327 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3328#ifdef VBOX_DEBUG_PHYS
3329 LogRel(("writeu32: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3330#endif
3331}
3332
3333
3334/**
3335 * Write guest RAM, unsigned 64-bit.
3336 *
3337 * @param DstGCPhys The destination address (guest physical).
3338 * @param val Value
3339 */
3340void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3341{
3342 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3343 VBOX_CHECK_ADDR(DstGCPhys);
3344 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3345 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3346#ifdef VBOX_DEBUG_PHYS
3347 LogRel(("writeu64: %llx -> %08x\n", val, (uint32_t)SrcGCPhys));
3348#endif
3349}
3350
3351#undef LOG_GROUP
3352#define LOG_GROUP LOG_GROUP_REM_MMIO
3353
3354/** Read MMIO memory. */
3355static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3356{
3357 uint32_t u32 = 0;
3358 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3359 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3360 Log2(("remR3MMIOReadU8: GCPhys=%RGp -> %02x\n", GCPhys, u32));
3361 return u32;
3362}
3363
3364/** Read MMIO memory. */
3365static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3366{
3367 uint32_t u32 = 0;
3368 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3369 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3370 Log2(("remR3MMIOReadU16: GCPhys=%RGp -> %04x\n", GCPhys, u32));
3371 return u32;
3372}
3373
3374/** Read MMIO memory. */
3375static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3376{
3377 uint32_t u32 = 0;
3378 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3379 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3380 Log2(("remR3MMIOReadU32: GCPhys=%RGp -> %08x\n", GCPhys, u32));
3381 return u32;
3382}
3383
3384/** Write to MMIO memory. */
3385static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3386{
3387 int rc;
3388 Log2(("remR3MMIOWriteU8: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3389 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3390 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3391}
3392
3393/** Write to MMIO memory. */
3394static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3395{
3396 int rc;
3397 Log2(("remR3MMIOWriteU16: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3398 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3399 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3400}
3401
3402/** Write to MMIO memory. */
3403static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3404{
3405 int rc;
3406 Log2(("remR3MMIOWriteU32: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3407 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3408 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3409}
3410
3411
3412#undef LOG_GROUP
3413#define LOG_GROUP LOG_GROUP_REM_HANDLER
3414
3415/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3416
3417static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3418{
3419 uint8_t u8;
3420 Log2(("remR3HandlerReadU8: GCPhys=%RGp\n", GCPhys));
3421 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3422 return u8;
3423}
3424
3425static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3426{
3427 uint16_t u16;
3428 Log2(("remR3HandlerReadU16: GCPhys=%RGp\n", GCPhys));
3429 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3430 return u16;
3431}
3432
3433static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3434{
3435 uint32_t u32;
3436 Log2(("remR3HandlerReadU32: GCPhys=%RGp\n", GCPhys));
3437 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3438 return u32;
3439}
3440
3441static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3442{
3443 Log2(("remR3HandlerWriteU8: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3444 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3445}
3446
3447static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3448{
3449 Log2(("remR3HandlerWriteU16: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3450 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3451}
3452
3453static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3454{
3455 Log2(("remR3HandlerWriteU32: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3456 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3457}
3458
3459/* -+- disassembly -+- */
3460
3461#undef LOG_GROUP
3462#define LOG_GROUP LOG_GROUP_REM_DISAS
3463
3464
3465/**
3466 * Enables or disables singled stepped disassembly.
3467 *
3468 * @returns VBox status code.
3469 * @param pVM VM handle.
3470 * @param fEnable To enable set this flag, to disable clear it.
3471 */
3472static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3473{
3474 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3475 VM_ASSERT_EMT(pVM);
3476
3477 if (fEnable)
3478 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3479 else
3480 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3481 return VINF_SUCCESS;
3482}
3483
3484
3485/**
3486 * Enables or disables singled stepped disassembly.
3487 *
3488 * @returns VBox status code.
3489 * @param pVM VM handle.
3490 * @param fEnable To enable set this flag, to disable clear it.
3491 */
3492REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3493{
3494 PVMREQ pReq;
3495 int rc;
3496
3497 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3498 if (VM_IS_EMT(pVM))
3499 return remR3DisasEnableStepping(pVM, fEnable);
3500
3501 rc = VMR3ReqCall(pVM, VMREQDEST_ANY, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3502 AssertRC(rc);
3503 if (RT_SUCCESS(rc))
3504 rc = pReq->iStatus;
3505 VMR3ReqFree(pReq);
3506 return rc;
3507}
3508
3509
3510#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3511/**
3512 * External Debugger Command: .remstep [on|off|1|0]
3513 */
3514static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3515{
3516 bool fEnable;
3517 int rc;
3518
3519 /* print status */
3520 if (cArgs == 0)
3521 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3522 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3523
3524 /* convert the argument and change the mode. */
3525 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3526 if (RT_FAILURE(rc))
3527 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3528 rc = REMR3DisasEnableStepping(pVM, fEnable);
3529 if (RT_FAILURE(rc))
3530 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3531 return rc;
3532}
3533#endif
3534
3535
3536/**
3537 * Disassembles n instructions and prints them to the log.
3538 *
3539 * @returns Success indicator.
3540 * @param env Pointer to the recompiler CPU structure.
3541 * @param f32BitCode Indicates that whether or not the code should
3542 * be disassembled as 16 or 32 bit. If -1 the CS
3543 * selector will be inspected.
3544 * @param nrInstructions Nr of instructions to disassemble
3545 * @param pszPrefix
3546 * @remark not currently used for anything but ad-hoc debugging.
3547 */
3548bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3549{
3550 int i, rc;
3551 RTGCPTR GCPtrPC;
3552 uint8_t *pvPC;
3553 RTINTPTR off;
3554 DISCPUSTATE Cpu;
3555
3556 /*
3557 * Determin 16/32 bit mode.
3558 */
3559 if (f32BitCode == -1)
3560 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3561
3562 /*
3563 * Convert cs:eip to host context address.
3564 * We don't care to much about cross page correctness presently.
3565 */
3566 GCPtrPC = env->segs[R_CS].base + env->eip;
3567 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3568 {
3569 Assert(PGMGetGuestMode(env->pVM) < PGMMODE_AMD64);
3570
3571 /* convert eip to physical address. */
3572 rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3573 GCPtrPC,
3574 env->cr[3],
3575 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3576 (void**)&pvPC);
3577 if (RT_FAILURE(rc))
3578 {
3579 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3580 return false;
3581 pvPC = (uint8_t *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3582 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3583 }
3584 }
3585 else
3586 {
3587 /* physical address */
3588 rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16,
3589 (void**)&pvPC);
3590 if (RT_FAILURE(rc))
3591 return false;
3592 }
3593
3594 /*
3595 * Disassemble.
3596 */
3597 off = env->eip - (RTGCUINTPTR)pvPC;
3598 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3599 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3600 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3601 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3602 //Cpu.dwUserData[2] = GCPtrPC;
3603
3604 for (i=0;i<nrInstructions;i++)
3605 {
3606 char szOutput[256];
3607 uint32_t cbOp;
3608 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3609 return false;
3610 if (pszPrefix)
3611 Log(("%s: %s", pszPrefix, szOutput));
3612 else
3613 Log(("%s", szOutput));
3614
3615 pvPC += cbOp;
3616 }
3617 return true;
3618}
3619
3620
3621/** @todo need to test the new code, using the old code in the mean while. */
3622#define USE_OLD_DUMP_AND_DISASSEMBLY
3623
3624/**
3625 * Disassembles one instruction and prints it to the log.
3626 *
3627 * @returns Success indicator.
3628 * @param env Pointer to the recompiler CPU structure.
3629 * @param f32BitCode Indicates that whether or not the code should
3630 * be disassembled as 16 or 32 bit. If -1 the CS
3631 * selector will be inspected.
3632 * @param pszPrefix
3633 */
3634bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3635{
3636#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3637 PVM pVM = env->pVM;
3638 RTGCPTR GCPtrPC;
3639 uint8_t *pvPC;
3640 char szOutput[256];
3641 uint32_t cbOp;
3642 RTINTPTR off;
3643 DISCPUSTATE Cpu;
3644
3645
3646 /* Doesn't work in long mode. */
3647 if (env->hflags & HF_LMA_MASK)
3648 return false;
3649
3650 /*
3651 * Determin 16/32 bit mode.
3652 */
3653 if (f32BitCode == -1)
3654 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3655
3656 /*
3657 * Log registers
3658 */
3659 if (LogIs2Enabled())
3660 {
3661 remR3StateUpdate(pVM);
3662 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3663 }
3664
3665 /*
3666 * Convert cs:eip to host context address.
3667 * We don't care to much about cross page correctness presently.
3668 */
3669 GCPtrPC = env->segs[R_CS].base + env->eip;
3670 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3671 {
3672 /* convert eip to physical address. */
3673 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
3674 GCPtrPC,
3675 env->cr[3],
3676 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3677 (void**)&pvPC);
3678 if (RT_FAILURE(rc))
3679 {
3680 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3681 return false;
3682 pvPC = (uint8_t *)PATMR3QueryPatchMemHC(pVM, NULL)
3683 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3684 }
3685 }
3686 else
3687 {
3688
3689 /* physical address */
3690 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, (void**)&pvPC);
3691 if (RT_FAILURE(rc))
3692 return false;
3693 }
3694
3695 /*
3696 * Disassemble.
3697 */
3698 off = env->eip - (RTGCUINTPTR)pvPC;
3699 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3700 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3701 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3702 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3703 //Cpu.dwUserData[2] = GCPtrPC;
3704 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3705 return false;
3706
3707 if (!f32BitCode)
3708 {
3709 if (pszPrefix)
3710 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3711 else
3712 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3713 }
3714 else
3715 {
3716 if (pszPrefix)
3717 Log(("%s: %s", pszPrefix, szOutput));
3718 else
3719 Log(("%s", szOutput));
3720 }
3721 return true;
3722
3723#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3724 PVM pVM = env->pVM;
3725 const bool fLog = LogIsEnabled();
3726 const bool fLog2 = LogIs2Enabled();
3727 int rc = VINF_SUCCESS;
3728
3729 /*
3730 * Don't bother if there ain't any log output to do.
3731 */
3732 if (!fLog && !fLog2)
3733 return true;
3734
3735 /*
3736 * Update the state so DBGF reads the correct register values.
3737 */
3738 remR3StateUpdate(pVM);
3739
3740 /*
3741 * Log registers if requested.
3742 */
3743 if (!fLog2)
3744 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3745
3746 /*
3747 * Disassemble to log.
3748 */
3749 if (fLog)
3750 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3751
3752 return RT_SUCCESS(rc);
3753#endif
3754}
3755
3756
3757/**
3758 * Disassemble recompiled code.
3759 *
3760 * @param phFileIgnored Ignored, logfile usually.
3761 * @param pvCode Pointer to the code block.
3762 * @param cb Size of the code block.
3763 */
3764void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3765{
3766 if (LogIs2Enabled())
3767 {
3768 unsigned off = 0;
3769 char szOutput[256];
3770 DISCPUSTATE Cpu;
3771
3772 memset(&Cpu, 0, sizeof(Cpu));
3773#ifdef RT_ARCH_X86
3774 Cpu.mode = CPUMODE_32BIT;
3775#else
3776 Cpu.mode = CPUMODE_64BIT;
3777#endif
3778
3779 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3780 while (off < cb)
3781 {
3782 uint32_t cbInstr;
3783 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3784 RTLogPrintf("%s", szOutput);
3785 else
3786 {
3787 RTLogPrintf("disas error\n");
3788 cbInstr = 1;
3789#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3790 break;
3791#endif
3792 }
3793 off += cbInstr;
3794 }
3795 }
3796 NOREF(phFileIgnored);
3797}
3798
3799
3800/**
3801 * Disassemble guest code.
3802 *
3803 * @param phFileIgnored Ignored, logfile usually.
3804 * @param uCode The guest address of the code to disassemble. (flat?)
3805 * @param cb Number of bytes to disassemble.
3806 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3807 */
3808void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3809{
3810 if (LogIs2Enabled())
3811 {
3812 PVM pVM = cpu_single_env->pVM;
3813 RTSEL cs;
3814 RTGCUINTPTR eip;
3815
3816 /*
3817 * Update the state so DBGF reads the correct register values (flags).
3818 */
3819 remR3StateUpdate(pVM);
3820
3821 /*
3822 * Do the disassembling.
3823 */
3824 RTLogPrintf("Guest Code: PC=%RGp %RGp bytes fFlags=%d\n", uCode, cb, fFlags);
3825 cs = cpu_single_env->segs[R_CS].selector;
3826 eip = uCode - cpu_single_env->segs[R_CS].base;
3827 for (;;)
3828 {
3829 char szBuf[256];
3830 uint32_t cbInstr;
3831 int rc = DBGFR3DisasInstrEx(pVM,
3832 cs,
3833 eip,
3834 0,
3835 szBuf, sizeof(szBuf),
3836 &cbInstr);
3837 if (RT_SUCCESS(rc))
3838 RTLogPrintf("%RGp %s\n", uCode, szBuf);
3839 else
3840 {
3841 RTLogPrintf("%RGp %04x:%RGp: %s\n", uCode, cs, eip, szBuf);
3842 cbInstr = 1;
3843 }
3844
3845 /* next */
3846 if (cb <= cbInstr)
3847 break;
3848 cb -= cbInstr;
3849 uCode += cbInstr;
3850 eip += cbInstr;
3851 }
3852 }
3853 NOREF(phFileIgnored);
3854}
3855
3856
3857/**
3858 * Looks up a guest symbol.
3859 *
3860 * @returns Pointer to symbol name. This is a static buffer.
3861 * @param orig_addr The address in question.
3862 */
3863const char *lookup_symbol(target_ulong orig_addr)
3864{
3865 RTGCINTPTR off = 0;
3866 DBGFSYMBOL Sym;
3867 PVM pVM = cpu_single_env->pVM;
3868 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3869 if (RT_SUCCESS(rc))
3870 {
3871 static char szSym[sizeof(Sym.szName) + 48];
3872 if (!off)
3873 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3874 else if (off > 0)
3875 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3876 else
3877 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3878 return szSym;
3879 }
3880 return "<N/A>";
3881}
3882
3883
3884#undef LOG_GROUP
3885#define LOG_GROUP LOG_GROUP_REM
3886
3887
3888/* -+- FF notifications -+- */
3889
3890
3891/**
3892 * Notification about a pending interrupt.
3893 *
3894 * @param pVM VM Handle.
3895 * @param u8Interrupt Interrupt
3896 * @thread The emulation thread.
3897 */
3898REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3899{
3900 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3901 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3902}
3903
3904/**
3905 * Notification about a pending interrupt.
3906 *
3907 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3908 * @param pVM VM Handle.
3909 * @thread The emulation thread.
3910 */
3911REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3912{
3913 return pVM->rem.s.u32PendingInterrupt;
3914}
3915
3916/**
3917 * Notification about the interrupt FF being set.
3918 *
3919 * @param pVM VM Handle.
3920 * @thread The emulation thread.
3921 */
3922REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3923{
3924 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3925 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3926 if (pVM->rem.s.fInREM)
3927 {
3928 if (VM_IS_EMT(pVM))
3929 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3930 else
3931 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3932 CPU_INTERRUPT_EXTERNAL_HARD);
3933 }
3934}
3935
3936
3937/**
3938 * Notification about the interrupt FF being set.
3939 *
3940 * @param pVM VM Handle.
3941 * @thread Any.
3942 */
3943REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3944{
3945 LogFlow(("REMR3NotifyInterruptClear:\n"));
3946 if (pVM->rem.s.fInREM)
3947 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3948}
3949
3950
3951/**
3952 * Notification about pending timer(s).
3953 *
3954 * @param pVM VM Handle.
3955 * @thread Any.
3956 */
3957REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3958{
3959#ifndef DEBUG_bird
3960 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3961#endif
3962 if (pVM->rem.s.fInREM)
3963 {
3964 if (VM_IS_EMT(pVM))
3965 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3966 else
3967 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3968 CPU_INTERRUPT_EXTERNAL_TIMER);
3969 }
3970}
3971
3972
3973/**
3974 * Notification about pending DMA transfers.
3975 *
3976 * @param pVM VM Handle.
3977 * @thread Any.
3978 */
3979REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3980{
3981 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3982 if (pVM->rem.s.fInREM)
3983 {
3984 if (VM_IS_EMT(pVM))
3985 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3986 else
3987 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3988 CPU_INTERRUPT_EXTERNAL_DMA);
3989 }
3990}
3991
3992
3993/**
3994 * Notification about pending timer(s).
3995 *
3996 * @param pVM VM Handle.
3997 * @thread Any.
3998 */
3999REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
4000{
4001 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
4002 if (pVM->rem.s.fInREM)
4003 {
4004 if (VM_IS_EMT(pVM))
4005 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
4006 else
4007 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
4008 CPU_INTERRUPT_EXTERNAL_EXIT);
4009 }
4010}
4011
4012
4013/**
4014 * Notification about pending FF set by an external thread.
4015 *
4016 * @param pVM VM handle.
4017 * @thread Any.
4018 */
4019REMR3DECL(void) REMR3NotifyFF(PVM pVM)
4020{
4021 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
4022 if (pVM->rem.s.fInREM)
4023 {
4024 if (VM_IS_EMT(pVM))
4025 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
4026 else
4027 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
4028 CPU_INTERRUPT_EXTERNAL_EXIT);
4029 }
4030}
4031
4032
4033#ifdef VBOX_WITH_STATISTICS
4034void remR3ProfileStart(int statcode)
4035{
4036 STAMPROFILEADV *pStat;
4037 switch(statcode)
4038 {
4039 case STATS_EMULATE_SINGLE_INSTR:
4040 pStat = &gStatExecuteSingleInstr;
4041 break;
4042 case STATS_QEMU_COMPILATION:
4043 pStat = &gStatCompilationQEmu;
4044 break;
4045 case STATS_QEMU_RUN_EMULATED_CODE:
4046 pStat = &gStatRunCodeQEmu;
4047 break;
4048 case STATS_QEMU_TOTAL:
4049 pStat = &gStatTotalTimeQEmu;
4050 break;
4051 case STATS_QEMU_RUN_TIMERS:
4052 pStat = &gStatTimers;
4053 break;
4054 case STATS_TLB_LOOKUP:
4055 pStat= &gStatTBLookup;
4056 break;
4057 case STATS_IRQ_HANDLING:
4058 pStat= &gStatIRQ;
4059 break;
4060 case STATS_RAW_CHECK:
4061 pStat = &gStatRawCheck;
4062 break;
4063
4064 default:
4065 AssertMsgFailed(("unknown stat %d\n", statcode));
4066 return;
4067 }
4068 STAM_PROFILE_ADV_START(pStat, a);
4069}
4070
4071
4072void remR3ProfileStop(int statcode)
4073{
4074 STAMPROFILEADV *pStat;
4075 switch(statcode)
4076 {
4077 case STATS_EMULATE_SINGLE_INSTR:
4078 pStat = &gStatExecuteSingleInstr;
4079 break;
4080 case STATS_QEMU_COMPILATION:
4081 pStat = &gStatCompilationQEmu;
4082 break;
4083 case STATS_QEMU_RUN_EMULATED_CODE:
4084 pStat = &gStatRunCodeQEmu;
4085 break;
4086 case STATS_QEMU_TOTAL:
4087 pStat = &gStatTotalTimeQEmu;
4088 break;
4089 case STATS_QEMU_RUN_TIMERS:
4090 pStat = &gStatTimers;
4091 break;
4092 case STATS_TLB_LOOKUP:
4093 pStat= &gStatTBLookup;
4094 break;
4095 case STATS_IRQ_HANDLING:
4096 pStat= &gStatIRQ;
4097 break;
4098 case STATS_RAW_CHECK:
4099 pStat = &gStatRawCheck;
4100 break;
4101 default:
4102 AssertMsgFailed(("unknown stat %d\n", statcode));
4103 return;
4104 }
4105 STAM_PROFILE_ADV_STOP(pStat, a);
4106}
4107#endif
4108
4109/**
4110 * Raise an RC, force rem exit.
4111 *
4112 * @param pVM VM handle.
4113 * @param rc The rc.
4114 */
4115void remR3RaiseRC(PVM pVM, int rc)
4116{
4117 Log(("remR3RaiseRC: rc=%Rrc\n", rc));
4118 Assert(pVM->rem.s.fInREM);
4119 VM_ASSERT_EMT(pVM);
4120 pVM->rem.s.rc = rc;
4121 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
4122}
4123
4124
4125/* -+- timers -+- */
4126
4127uint64_t cpu_get_tsc(CPUX86State *env)
4128{
4129 STAM_COUNTER_INC(&gStatCpuGetTSC);
4130 return TMCpuTickGet(env->pVM);
4131}
4132
4133
4134/* -+- interrupts -+- */
4135
4136void cpu_set_ferr(CPUX86State *env)
4137{
4138 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
4139 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4140}
4141
4142int cpu_get_pic_interrupt(CPUState *env)
4143{
4144 uint8_t u8Interrupt;
4145 int rc;
4146
4147 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4148 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4149 * with the (a)pic.
4150 */
4151 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4152 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4153 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4154 * remove this kludge. */
4155 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4156 {
4157 rc = VINF_SUCCESS;
4158 Assert(env->pVM->rem.s.u32PendingInterrupt <= 255);
4159 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4160 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4161 }
4162 else
4163 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4164
4165 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Rrc\n", u8Interrupt, rc));
4166 if (RT_SUCCESS(rc))
4167 {
4168 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4169 env->interrupt_request |= CPU_INTERRUPT_HARD;
4170 return u8Interrupt;
4171 }
4172 return -1;
4173}
4174
4175
4176/* -+- local apic -+- */
4177
4178void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4179{
4180 int rc = PDMApicSetBase(env->pVM, val);
4181 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Rrc\n", val, rc)); NOREF(rc);
4182}
4183
4184uint64_t cpu_get_apic_base(CPUX86State *env)
4185{
4186 uint64_t u64;
4187 int rc = PDMApicGetBase(env->pVM, &u64);
4188 if (RT_SUCCESS(rc))
4189 {
4190 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4191 return u64;
4192 }
4193 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Rrc)\n", rc));
4194 return 0;
4195}
4196
4197void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4198{
4199 int rc = PDMApicSetTPR(env->pVM, val);
4200 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Rrc\n", val, rc)); NOREF(rc);
4201}
4202
4203uint8_t cpu_get_apic_tpr(CPUX86State *env)
4204{
4205 uint8_t u8;
4206 int rc = PDMApicGetTPR(env->pVM, &u8, NULL);
4207 if (RT_SUCCESS(rc))
4208 {
4209 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4210 return u8;
4211 }
4212 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Rrc)\n", rc));
4213 return 0;
4214}
4215
4216
4217uint64_t cpu_apic_rdmsr(CPUX86State *env, uint32_t reg)
4218{
4219 uint64_t value;
4220 int rc = PDMApicReadMSR(env->pVM, 0/* cpu */, reg, &value);
4221 if (RT_SUCCESS(rc))
4222 {
4223 LogFlow(("cpu_apic_rdms returns %#x\n", value));
4224 return value;
4225 }
4226 /** @todo: exception ? */
4227 LogFlow(("cpu_apic_rdms returns 0 (rc=%Rrc)\n", rc));
4228 return value;
4229}
4230
4231void cpu_apic_wrmsr(CPUX86State *env, uint32_t reg, uint64_t value)
4232{
4233 int rc = PDMApicWriteMSR(env->pVM, 0 /* cpu */, reg, value);
4234 /** @todo: exception if error ? */
4235 LogFlow(("cpu_apic_wrmsr: rc=%Rrc\n", rc)); NOREF(rc);
4236}
4237
4238uint64_t cpu_rdmsr(CPUX86State *env, uint32_t msr)
4239{
4240 return CPUMGetGuestMsr(env->pVM, msr);
4241}
4242
4243void cpu_wrmsr(CPUX86State *env, uint32_t msr, uint64_t val)
4244{
4245 CPUMSetGuestMsr(env->pVM, msr, val);
4246}
4247/* -+- I/O Ports -+- */
4248
4249#undef LOG_GROUP
4250#define LOG_GROUP LOG_GROUP_REM_IOPORT
4251
4252void cpu_outb(CPUState *env, int addr, int val)
4253{
4254 int rc;
4255
4256 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4257 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4258
4259 rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4260 if (RT_LIKELY(rc == VINF_SUCCESS))
4261 return;
4262 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4263 {
4264 Log(("cpu_outb: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4265 remR3RaiseRC(env->pVM, rc);
4266 return;
4267 }
4268 remAbort(rc, __FUNCTION__);
4269}
4270
4271void cpu_outw(CPUState *env, int addr, int val)
4272{
4273 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4274 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4275 if (RT_LIKELY(rc == VINF_SUCCESS))
4276 return;
4277 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4278 {
4279 Log(("cpu_outw: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4280 remR3RaiseRC(env->pVM, rc);
4281 return;
4282 }
4283 remAbort(rc, __FUNCTION__);
4284}
4285
4286void cpu_outl(CPUState *env, int addr, int val)
4287{
4288 int rc;
4289 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4290 rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4291 if (RT_LIKELY(rc == VINF_SUCCESS))
4292 return;
4293 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4294 {
4295 Log(("cpu_outl: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4296 remR3RaiseRC(env->pVM, rc);
4297 return;
4298 }
4299 remAbort(rc, __FUNCTION__);
4300}
4301
4302int cpu_inb(CPUState *env, int addr)
4303{
4304 uint32_t u32 = 0;
4305 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4306 if (RT_LIKELY(rc == VINF_SUCCESS))
4307 {
4308 if (/*addr != 0x61 && */addr != 0x71)
4309 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4310 return (int)u32;
4311 }
4312 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4313 {
4314 Log(("cpu_inb: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4315 remR3RaiseRC(env->pVM, rc);
4316 return (int)u32;
4317 }
4318 remAbort(rc, __FUNCTION__);
4319 return 0xff;
4320}
4321
4322int cpu_inw(CPUState *env, int addr)
4323{
4324 uint32_t u32 = 0;
4325 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4326 if (RT_LIKELY(rc == VINF_SUCCESS))
4327 {
4328 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4329 return (int)u32;
4330 }
4331 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4332 {
4333 Log(("cpu_inw: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4334 remR3RaiseRC(env->pVM, rc);
4335 return (int)u32;
4336 }
4337 remAbort(rc, __FUNCTION__);
4338 return 0xffff;
4339}
4340
4341int cpu_inl(CPUState *env, int addr)
4342{
4343 uint32_t u32 = 0;
4344 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4345 if (RT_LIKELY(rc == VINF_SUCCESS))
4346 {
4347//if (addr==0x01f0 && u32 == 0x6b6d)
4348// loglevel = ~0;
4349 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4350 return (int)u32;
4351 }
4352 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4353 {
4354 Log(("cpu_inl: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4355 remR3RaiseRC(env->pVM, rc);
4356 return (int)u32;
4357 }
4358 remAbort(rc, __FUNCTION__);
4359 return 0xffffffff;
4360}
4361
4362#undef LOG_GROUP
4363#define LOG_GROUP LOG_GROUP_REM
4364
4365
4366/* -+- helpers and misc other interfaces -+- */
4367
4368/**
4369 * Perform the CPUID instruction.
4370 *
4371 * ASMCpuId cannot be invoked from some source files where this is used because of global
4372 * register allocations.
4373 *
4374 * @param env Pointer to the recompiler CPU structure.
4375 * @param uOperator CPUID operation (eax).
4376 * @param pvEAX Where to store eax.
4377 * @param pvEBX Where to store ebx.
4378 * @param pvECX Where to store ecx.
4379 * @param pvEDX Where to store edx.
4380 */
4381void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4382{
4383 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4384}
4385
4386
4387#if 0 /* not used */
4388/**
4389 * Interface for qemu hardware to report back fatal errors.
4390 */
4391void hw_error(const char *pszFormat, ...)
4392{
4393 /*
4394 * Bitch about it.
4395 */
4396 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4397 * this in my Odin32 tree at home! */
4398 va_list args;
4399 va_start(args, pszFormat);
4400 RTLogPrintf("fatal error in virtual hardware:");
4401 RTLogPrintfV(pszFormat, args);
4402 va_end(args);
4403 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4404
4405 /*
4406 * If we're in REM context we'll sync back the state before 'jumping' to
4407 * the EMs failure handling.
4408 */
4409 PVM pVM = cpu_single_env->pVM;
4410 if (pVM->rem.s.fInREM)
4411 REMR3StateBack(pVM);
4412 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4413 AssertMsgFailed(("EMR3FatalError returned!\n"));
4414}
4415#endif
4416
4417/**
4418 * Interface for the qemu cpu to report unhandled situation
4419 * raising a fatal VM error.
4420 */
4421void cpu_abort(CPUState *env, const char *pszFormat, ...)
4422{
4423 va_list args;
4424 PVM pVM;
4425
4426 /*
4427 * Bitch about it.
4428 */
4429#ifndef _MSC_VER
4430 /** @todo: MSVC is right - it's not valid C */
4431 RTLogFlags(NULL, "nodisabled nobuffered");
4432#endif
4433 va_start(args, pszFormat);
4434 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4435 va_end(args);
4436 va_start(args, pszFormat);
4437 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4438 va_end(args);
4439
4440 /*
4441 * If we're in REM context we'll sync back the state before 'jumping' to
4442 * the EMs failure handling.
4443 */
4444 pVM = cpu_single_env->pVM;
4445 if (pVM->rem.s.fInREM)
4446 REMR3StateBack(pVM);
4447 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4448 AssertMsgFailed(("EMR3FatalError returned!\n"));
4449}
4450
4451
4452/**
4453 * Aborts the VM.
4454 *
4455 * @param rc VBox error code.
4456 * @param pszTip Hint about why/when this happend.
4457 */
4458void remAbort(int rc, const char *pszTip)
4459{
4460 PVM pVM;
4461
4462 /*
4463 * Bitch about it.
4464 */
4465 RTLogPrintf("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip);
4466 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip));
4467
4468 /*
4469 * Jump back to where we entered the recompiler.
4470 */
4471 pVM = cpu_single_env->pVM;
4472 if (pVM->rem.s.fInREM)
4473 REMR3StateBack(pVM);
4474 EMR3FatalError(pVM, rc);
4475 AssertMsgFailed(("EMR3FatalError returned!\n"));
4476}
4477
4478
4479/**
4480 * Dumps a linux system call.
4481 * @param pVM VM handle.
4482 */
4483void remR3DumpLnxSyscall(PVM pVM)
4484{
4485 static const char *apsz[] =
4486 {
4487 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4488 "sys_exit",
4489 "sys_fork",
4490 "sys_read",
4491 "sys_write",
4492 "sys_open", /* 5 */
4493 "sys_close",
4494 "sys_waitpid",
4495 "sys_creat",
4496 "sys_link",
4497 "sys_unlink", /* 10 */
4498 "sys_execve",
4499 "sys_chdir",
4500 "sys_time",
4501 "sys_mknod",
4502 "sys_chmod", /* 15 */
4503 "sys_lchown16",
4504 "sys_ni_syscall", /* old break syscall holder */
4505 "sys_stat",
4506 "sys_lseek",
4507 "sys_getpid", /* 20 */
4508 "sys_mount",
4509 "sys_oldumount",
4510 "sys_setuid16",
4511 "sys_getuid16",
4512 "sys_stime", /* 25 */
4513 "sys_ptrace",
4514 "sys_alarm",
4515 "sys_fstat",
4516 "sys_pause",
4517 "sys_utime", /* 30 */
4518 "sys_ni_syscall", /* old stty syscall holder */
4519 "sys_ni_syscall", /* old gtty syscall holder */
4520 "sys_access",
4521 "sys_nice",
4522 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4523 "sys_sync",
4524 "sys_kill",
4525 "sys_rename",
4526 "sys_mkdir",
4527 "sys_rmdir", /* 40 */
4528 "sys_dup",
4529 "sys_pipe",
4530 "sys_times",
4531 "sys_ni_syscall", /* old prof syscall holder */
4532 "sys_brk", /* 45 */
4533 "sys_setgid16",
4534 "sys_getgid16",
4535 "sys_signal",
4536 "sys_geteuid16",
4537 "sys_getegid16", /* 50 */
4538 "sys_acct",
4539 "sys_umount", /* recycled never used phys() */
4540 "sys_ni_syscall", /* old lock syscall holder */
4541 "sys_ioctl",
4542 "sys_fcntl", /* 55 */
4543 "sys_ni_syscall", /* old mpx syscall holder */
4544 "sys_setpgid",
4545 "sys_ni_syscall", /* old ulimit syscall holder */
4546 "sys_olduname",
4547 "sys_umask", /* 60 */
4548 "sys_chroot",
4549 "sys_ustat",
4550 "sys_dup2",
4551 "sys_getppid",
4552 "sys_getpgrp", /* 65 */
4553 "sys_setsid",
4554 "sys_sigaction",
4555 "sys_sgetmask",
4556 "sys_ssetmask",
4557 "sys_setreuid16", /* 70 */
4558 "sys_setregid16",
4559 "sys_sigsuspend",
4560 "sys_sigpending",
4561 "sys_sethostname",
4562 "sys_setrlimit", /* 75 */
4563 "sys_old_getrlimit",
4564 "sys_getrusage",
4565 "sys_gettimeofday",
4566 "sys_settimeofday",
4567 "sys_getgroups16", /* 80 */
4568 "sys_setgroups16",
4569 "old_select",
4570 "sys_symlink",
4571 "sys_lstat",
4572 "sys_readlink", /* 85 */
4573 "sys_uselib",
4574 "sys_swapon",
4575 "sys_reboot",
4576 "old_readdir",
4577 "old_mmap", /* 90 */
4578 "sys_munmap",
4579 "sys_truncate",
4580 "sys_ftruncate",
4581 "sys_fchmod",
4582 "sys_fchown16", /* 95 */
4583 "sys_getpriority",
4584 "sys_setpriority",
4585 "sys_ni_syscall", /* old profil syscall holder */
4586 "sys_statfs",
4587 "sys_fstatfs", /* 100 */
4588 "sys_ioperm",
4589 "sys_socketcall",
4590 "sys_syslog",
4591 "sys_setitimer",
4592 "sys_getitimer", /* 105 */
4593 "sys_newstat",
4594 "sys_newlstat",
4595 "sys_newfstat",
4596 "sys_uname",
4597 "sys_iopl", /* 110 */
4598 "sys_vhangup",
4599 "sys_ni_syscall", /* old "idle" system call */
4600 "sys_vm86old",
4601 "sys_wait4",
4602 "sys_swapoff", /* 115 */
4603 "sys_sysinfo",
4604 "sys_ipc",
4605 "sys_fsync",
4606 "sys_sigreturn",
4607 "sys_clone", /* 120 */
4608 "sys_setdomainname",
4609 "sys_newuname",
4610 "sys_modify_ldt",
4611 "sys_adjtimex",
4612 "sys_mprotect", /* 125 */
4613 "sys_sigprocmask",
4614 "sys_ni_syscall", /* old "create_module" */
4615 "sys_init_module",
4616 "sys_delete_module",
4617 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4618 "sys_quotactl",
4619 "sys_getpgid",
4620 "sys_fchdir",
4621 "sys_bdflush",
4622 "sys_sysfs", /* 135 */
4623 "sys_personality",
4624 "sys_ni_syscall", /* reserved for afs_syscall */
4625 "sys_setfsuid16",
4626 "sys_setfsgid16",
4627 "sys_llseek", /* 140 */
4628 "sys_getdents",
4629 "sys_select",
4630 "sys_flock",
4631 "sys_msync",
4632 "sys_readv", /* 145 */
4633 "sys_writev",
4634 "sys_getsid",
4635 "sys_fdatasync",
4636 "sys_sysctl",
4637 "sys_mlock", /* 150 */
4638 "sys_munlock",
4639 "sys_mlockall",
4640 "sys_munlockall",
4641 "sys_sched_setparam",
4642 "sys_sched_getparam", /* 155 */
4643 "sys_sched_setscheduler",
4644 "sys_sched_getscheduler",
4645 "sys_sched_yield",
4646 "sys_sched_get_priority_max",
4647 "sys_sched_get_priority_min", /* 160 */
4648 "sys_sched_rr_get_interval",
4649 "sys_nanosleep",
4650 "sys_mremap",
4651 "sys_setresuid16",
4652 "sys_getresuid16", /* 165 */
4653 "sys_vm86",
4654 "sys_ni_syscall", /* Old sys_query_module */
4655 "sys_poll",
4656 "sys_nfsservctl",
4657 "sys_setresgid16", /* 170 */
4658 "sys_getresgid16",
4659 "sys_prctl",
4660 "sys_rt_sigreturn",
4661 "sys_rt_sigaction",
4662 "sys_rt_sigprocmask", /* 175 */
4663 "sys_rt_sigpending",
4664 "sys_rt_sigtimedwait",
4665 "sys_rt_sigqueueinfo",
4666 "sys_rt_sigsuspend",
4667 "sys_pread64", /* 180 */
4668 "sys_pwrite64",
4669 "sys_chown16",
4670 "sys_getcwd",
4671 "sys_capget",
4672 "sys_capset", /* 185 */
4673 "sys_sigaltstack",
4674 "sys_sendfile",
4675 "sys_ni_syscall", /* reserved for streams1 */
4676 "sys_ni_syscall", /* reserved for streams2 */
4677 "sys_vfork", /* 190 */
4678 "sys_getrlimit",
4679 "sys_mmap2",
4680 "sys_truncate64",
4681 "sys_ftruncate64",
4682 "sys_stat64", /* 195 */
4683 "sys_lstat64",
4684 "sys_fstat64",
4685 "sys_lchown",
4686 "sys_getuid",
4687 "sys_getgid", /* 200 */
4688 "sys_geteuid",
4689 "sys_getegid",
4690 "sys_setreuid",
4691 "sys_setregid",
4692 "sys_getgroups", /* 205 */
4693 "sys_setgroups",
4694 "sys_fchown",
4695 "sys_setresuid",
4696 "sys_getresuid",
4697 "sys_setresgid", /* 210 */
4698 "sys_getresgid",
4699 "sys_chown",
4700 "sys_setuid",
4701 "sys_setgid",
4702 "sys_setfsuid", /* 215 */
4703 "sys_setfsgid",
4704 "sys_pivot_root",
4705 "sys_mincore",
4706 "sys_madvise",
4707 "sys_getdents64", /* 220 */
4708 "sys_fcntl64",
4709 "sys_ni_syscall", /* reserved for TUX */
4710 "sys_ni_syscall",
4711 "sys_gettid",
4712 "sys_readahead", /* 225 */
4713 "sys_setxattr",
4714 "sys_lsetxattr",
4715 "sys_fsetxattr",
4716 "sys_getxattr",
4717 "sys_lgetxattr", /* 230 */
4718 "sys_fgetxattr",
4719 "sys_listxattr",
4720 "sys_llistxattr",
4721 "sys_flistxattr",
4722 "sys_removexattr", /* 235 */
4723 "sys_lremovexattr",
4724 "sys_fremovexattr",
4725 "sys_tkill",
4726 "sys_sendfile64",
4727 "sys_futex", /* 240 */
4728 "sys_sched_setaffinity",
4729 "sys_sched_getaffinity",
4730 "sys_set_thread_area",
4731 "sys_get_thread_area",
4732 "sys_io_setup", /* 245 */
4733 "sys_io_destroy",
4734 "sys_io_getevents",
4735 "sys_io_submit",
4736 "sys_io_cancel",
4737 "sys_fadvise64", /* 250 */
4738 "sys_ni_syscall",
4739 "sys_exit_group",
4740 "sys_lookup_dcookie",
4741 "sys_epoll_create",
4742 "sys_epoll_ctl", /* 255 */
4743 "sys_epoll_wait",
4744 "sys_remap_file_pages",
4745 "sys_set_tid_address",
4746 "sys_timer_create",
4747 "sys_timer_settime", /* 260 */
4748 "sys_timer_gettime",
4749 "sys_timer_getoverrun",
4750 "sys_timer_delete",
4751 "sys_clock_settime",
4752 "sys_clock_gettime", /* 265 */
4753 "sys_clock_getres",
4754 "sys_clock_nanosleep",
4755 "sys_statfs64",
4756 "sys_fstatfs64",
4757 "sys_tgkill", /* 270 */
4758 "sys_utimes",
4759 "sys_fadvise64_64",
4760 "sys_ni_syscall" /* sys_vserver */
4761 };
4762
4763 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4764 switch (uEAX)
4765 {
4766 default:
4767 if (uEAX < RT_ELEMENTS(apsz))
4768 Log(("REM: linux syscall %3d: %s (eip=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4769 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4770 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4771 else
4772 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4773 break;
4774
4775 }
4776}
4777
4778
4779/**
4780 * Dumps an OpenBSD system call.
4781 * @param pVM VM handle.
4782 */
4783void remR3DumpOBsdSyscall(PVM pVM)
4784{
4785 static const char *apsz[] =
4786 {
4787 "SYS_syscall", //0
4788 "SYS_exit", //1
4789 "SYS_fork", //2
4790 "SYS_read", //3
4791 "SYS_write", //4
4792 "SYS_open", //5
4793 "SYS_close", //6
4794 "SYS_wait4", //7
4795 "SYS_8",
4796 "SYS_link", //9
4797 "SYS_unlink", //10
4798 "SYS_11",
4799 "SYS_chdir", //12
4800 "SYS_fchdir", //13
4801 "SYS_mknod", //14
4802 "SYS_chmod", //15
4803 "SYS_chown", //16
4804 "SYS_break", //17
4805 "SYS_18",
4806 "SYS_19",
4807 "SYS_getpid", //20
4808 "SYS_mount", //21
4809 "SYS_unmount", //22
4810 "SYS_setuid", //23
4811 "SYS_getuid", //24
4812 "SYS_geteuid", //25
4813 "SYS_ptrace", //26
4814 "SYS_recvmsg", //27
4815 "SYS_sendmsg", //28
4816 "SYS_recvfrom", //29
4817 "SYS_accept", //30
4818 "SYS_getpeername", //31
4819 "SYS_getsockname", //32
4820 "SYS_access", //33
4821 "SYS_chflags", //34
4822 "SYS_fchflags", //35
4823 "SYS_sync", //36
4824 "SYS_kill", //37
4825 "SYS_38",
4826 "SYS_getppid", //39
4827 "SYS_40",
4828 "SYS_dup", //41
4829 "SYS_opipe", //42
4830 "SYS_getegid", //43
4831 "SYS_profil", //44
4832 "SYS_ktrace", //45
4833 "SYS_sigaction", //46
4834 "SYS_getgid", //47
4835 "SYS_sigprocmask", //48
4836 "SYS_getlogin", //49
4837 "SYS_setlogin", //50
4838 "SYS_acct", //51
4839 "SYS_sigpending", //52
4840 "SYS_osigaltstack", //53
4841 "SYS_ioctl", //54
4842 "SYS_reboot", //55
4843 "SYS_revoke", //56
4844 "SYS_symlink", //57
4845 "SYS_readlink", //58
4846 "SYS_execve", //59
4847 "SYS_umask", //60
4848 "SYS_chroot", //61
4849 "SYS_62",
4850 "SYS_63",
4851 "SYS_64",
4852 "SYS_65",
4853 "SYS_vfork", //66
4854 "SYS_67",
4855 "SYS_68",
4856 "SYS_sbrk", //69
4857 "SYS_sstk", //70
4858 "SYS_61",
4859 "SYS_vadvise", //72
4860 "SYS_munmap", //73
4861 "SYS_mprotect", //74
4862 "SYS_madvise", //75
4863 "SYS_76",
4864 "SYS_77",
4865 "SYS_mincore", //78
4866 "SYS_getgroups", //79
4867 "SYS_setgroups", //80
4868 "SYS_getpgrp", //81
4869 "SYS_setpgid", //82
4870 "SYS_setitimer", //83
4871 "SYS_84",
4872 "SYS_85",
4873 "SYS_getitimer", //86
4874 "SYS_87",
4875 "SYS_88",
4876 "SYS_89",
4877 "SYS_dup2", //90
4878 "SYS_91",
4879 "SYS_fcntl", //92
4880 "SYS_select", //93
4881 "SYS_94",
4882 "SYS_fsync", //95
4883 "SYS_setpriority", //96
4884 "SYS_socket", //97
4885 "SYS_connect", //98
4886 "SYS_99",
4887 "SYS_getpriority", //100
4888 "SYS_101",
4889 "SYS_102",
4890 "SYS_sigreturn", //103
4891 "SYS_bind", //104
4892 "SYS_setsockopt", //105
4893 "SYS_listen", //106
4894 "SYS_107",
4895 "SYS_108",
4896 "SYS_109",
4897 "SYS_110",
4898 "SYS_sigsuspend", //111
4899 "SYS_112",
4900 "SYS_113",
4901 "SYS_114",
4902 "SYS_115",
4903 "SYS_gettimeofday", //116
4904 "SYS_getrusage", //117
4905 "SYS_getsockopt", //118
4906 "SYS_119",
4907 "SYS_readv", //120
4908 "SYS_writev", //121
4909 "SYS_settimeofday", //122
4910 "SYS_fchown", //123
4911 "SYS_fchmod", //124
4912 "SYS_125",
4913 "SYS_setreuid", //126
4914 "SYS_setregid", //127
4915 "SYS_rename", //128
4916 "SYS_129",
4917 "SYS_130",
4918 "SYS_flock", //131
4919 "SYS_mkfifo", //132
4920 "SYS_sendto", //133
4921 "SYS_shutdown", //134
4922 "SYS_socketpair", //135
4923 "SYS_mkdir", //136
4924 "SYS_rmdir", //137
4925 "SYS_utimes", //138
4926 "SYS_139",
4927 "SYS_adjtime", //140
4928 "SYS_141",
4929 "SYS_142",
4930 "SYS_143",
4931 "SYS_144",
4932 "SYS_145",
4933 "SYS_146",
4934 "SYS_setsid", //147
4935 "SYS_quotactl", //148
4936 "SYS_149",
4937 "SYS_150",
4938 "SYS_151",
4939 "SYS_152",
4940 "SYS_153",
4941 "SYS_154",
4942 "SYS_nfssvc", //155
4943 "SYS_156",
4944 "SYS_157",
4945 "SYS_158",
4946 "SYS_159",
4947 "SYS_160",
4948 "SYS_getfh", //161
4949 "SYS_162",
4950 "SYS_163",
4951 "SYS_164",
4952 "SYS_sysarch", //165
4953 "SYS_166",
4954 "SYS_167",
4955 "SYS_168",
4956 "SYS_169",
4957 "SYS_170",
4958 "SYS_171",
4959 "SYS_172",
4960 "SYS_pread", //173
4961 "SYS_pwrite", //174
4962 "SYS_175",
4963 "SYS_176",
4964 "SYS_177",
4965 "SYS_178",
4966 "SYS_179",
4967 "SYS_180",
4968 "SYS_setgid", //181
4969 "SYS_setegid", //182
4970 "SYS_seteuid", //183
4971 "SYS_lfs_bmapv", //184
4972 "SYS_lfs_markv", //185
4973 "SYS_lfs_segclean", //186
4974 "SYS_lfs_segwait", //187
4975 "SYS_188",
4976 "SYS_189",
4977 "SYS_190",
4978 "SYS_pathconf", //191
4979 "SYS_fpathconf", //192
4980 "SYS_swapctl", //193
4981 "SYS_getrlimit", //194
4982 "SYS_setrlimit", //195
4983 "SYS_getdirentries", //196
4984 "SYS_mmap", //197
4985 "SYS___syscall", //198
4986 "SYS_lseek", //199
4987 "SYS_truncate", //200
4988 "SYS_ftruncate", //201
4989 "SYS___sysctl", //202
4990 "SYS_mlock", //203
4991 "SYS_munlock", //204
4992 "SYS_205",
4993 "SYS_futimes", //206
4994 "SYS_getpgid", //207
4995 "SYS_xfspioctl", //208
4996 "SYS_209",
4997 "SYS_210",
4998 "SYS_211",
4999 "SYS_212",
5000 "SYS_213",
5001 "SYS_214",
5002 "SYS_215",
5003 "SYS_216",
5004 "SYS_217",
5005 "SYS_218",
5006 "SYS_219",
5007 "SYS_220",
5008 "SYS_semget", //221
5009 "SYS_222",
5010 "SYS_223",
5011 "SYS_224",
5012 "SYS_msgget", //225
5013 "SYS_msgsnd", //226
5014 "SYS_msgrcv", //227
5015 "SYS_shmat", //228
5016 "SYS_229",
5017 "SYS_shmdt", //230
5018 "SYS_231",
5019 "SYS_clock_gettime", //232
5020 "SYS_clock_settime", //233
5021 "SYS_clock_getres", //234
5022 "SYS_235",
5023 "SYS_236",
5024 "SYS_237",
5025 "SYS_238",
5026 "SYS_239",
5027 "SYS_nanosleep", //240
5028 "SYS_241",
5029 "SYS_242",
5030 "SYS_243",
5031 "SYS_244",
5032 "SYS_245",
5033 "SYS_246",
5034 "SYS_247",
5035 "SYS_248",
5036 "SYS_249",
5037 "SYS_minherit", //250
5038 "SYS_rfork", //251
5039 "SYS_poll", //252
5040 "SYS_issetugid", //253
5041 "SYS_lchown", //254
5042 "SYS_getsid", //255
5043 "SYS_msync", //256
5044 "SYS_257",
5045 "SYS_258",
5046 "SYS_259",
5047 "SYS_getfsstat", //260
5048 "SYS_statfs", //261
5049 "SYS_fstatfs", //262
5050 "SYS_pipe", //263
5051 "SYS_fhopen", //264
5052 "SYS_265",
5053 "SYS_fhstatfs", //266
5054 "SYS_preadv", //267
5055 "SYS_pwritev", //268
5056 "SYS_kqueue", //269
5057 "SYS_kevent", //270
5058 "SYS_mlockall", //271
5059 "SYS_munlockall", //272
5060 "SYS_getpeereid", //273
5061 "SYS_274",
5062 "SYS_275",
5063 "SYS_276",
5064 "SYS_277",
5065 "SYS_278",
5066 "SYS_279",
5067 "SYS_280",
5068 "SYS_getresuid", //281
5069 "SYS_setresuid", //282
5070 "SYS_getresgid", //283
5071 "SYS_setresgid", //284
5072 "SYS_285",
5073 "SYS_mquery", //286
5074 "SYS_closefrom", //287
5075 "SYS_sigaltstack", //288
5076 "SYS_shmget", //289
5077 "SYS_semop", //290
5078 "SYS_stat", //291
5079 "SYS_fstat", //292
5080 "SYS_lstat", //293
5081 "SYS_fhstat", //294
5082 "SYS___semctl", //295
5083 "SYS_shmctl", //296
5084 "SYS_msgctl", //297
5085 "SYS_MAXSYSCALL", //298
5086 //299
5087 //300
5088 };
5089 uint32_t uEAX;
5090 if (!LogIsEnabled())
5091 return;
5092 uEAX = CPUMGetGuestEAX(pVM);
5093 switch (uEAX)
5094 {
5095 default:
5096 if (uEAX < RT_ELEMENTS(apsz))
5097 {
5098 uint32_t au32Args[8] = {0};
5099 PGMPhysSimpleReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
5100 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
5101 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
5102 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
5103 }
5104 else
5105 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
5106 break;
5107 }
5108}
5109
5110
5111#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
5112/**
5113 * The Dll main entry point (stub).
5114 */
5115bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
5116{
5117 return true;
5118}
5119
5120void *memcpy(void *dst, const void *src, size_t size)
5121{
5122 uint8_t*pbDst = dst, *pbSrc = src;
5123 while (size-- > 0)
5124 *pbDst++ = *pbSrc++;
5125 return dst;
5126}
5127
5128#endif
5129
5130void cpu_smm_update(CPUState* env)
5131{
5132}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette