VirtualBox

source: vbox/trunk/src/recompiler_new/VBoxRecompiler.c@ 14928

Last change on this file since 14928 was 14755, checked in by vboxsync, 16 years ago

#1865: Converted 4 PGM*2HC* conversion functions to RTR3PTR.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 159.2 KB
Line 
1/* $Id: VBoxRecompiler.c 14755 2008-11-28 02:58:01Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "osdep.h"
29#include "exec-all.h"
30#include "config.h"
31#include "cpu-all.h"
32
33void cpu_exec_init_all(unsigned long tb_size);
34
35#include <VBox/rem.h>
36#include <VBox/vmapi.h>
37#include <VBox/tm.h>
38#include <VBox/ssm.h>
39#include <VBox/em.h>
40#include <VBox/trpm.h>
41#include <VBox/iom.h>
42#include <VBox/mm.h>
43#include <VBox/pgm.h>
44#include <VBox/pdm.h>
45#include <VBox/dbgf.h>
46#include <VBox/dbg.h>
47#include <VBox/hwaccm.h>
48#include <VBox/patm.h>
49#include <VBox/csam.h>
50#include "REMInternal.h"
51#include <VBox/vm.h>
52#include <VBox/param.h>
53#include <VBox/err.h>
54
55#include <VBox/log.h>
56#include <iprt/semaphore.h>
57#include <iprt/asm.h>
58#include <iprt/assert.h>
59#include <iprt/thread.h>
60#include <iprt/string.h>
61
62/* Don't wanna include everything. */
63extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
64extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
65extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
66extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
67extern void tlb_flush(CPUState *env, int flush_global);
68extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
69extern void sync_ldtr(CPUX86State *env1, int selector);
70extern int sync_tr(CPUX86State *env1, int selector);
71
72#ifdef VBOX_STRICT
73unsigned long get_phys_page_offset(target_ulong addr);
74#endif
75
76/*******************************************************************************
77* Defined Constants And Macros *
78*******************************************************************************/
79
80/** Copy 80-bit fpu register at pSrc to pDst.
81 * This is probably faster than *calling* memcpy.
82 */
83#define REM_COPY_FPU_REG(pDst, pSrc) \
84 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
85
86
87/*******************************************************************************
88* Internal Functions *
89*******************************************************************************/
90static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
91static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
92static void remR3StateUpdate(PVM pVM);
93
94static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
95static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
96static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
97static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
98static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
99static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
100
101static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
102static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
103static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
104static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
105static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
106static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
107
108
109/*******************************************************************************
110* Global Variables *
111*******************************************************************************/
112
113/** @todo Move stats to REM::s some rainy day we have nothing do to. */
114#ifdef VBOX_WITH_STATISTICS
115static STAMPROFILEADV gStatExecuteSingleInstr;
116static STAMPROFILEADV gStatCompilationQEmu;
117static STAMPROFILEADV gStatRunCodeQEmu;
118static STAMPROFILEADV gStatTotalTimeQEmu;
119static STAMPROFILEADV gStatTimers;
120static STAMPROFILEADV gStatTBLookup;
121static STAMPROFILEADV gStatIRQ;
122static STAMPROFILEADV gStatRawCheck;
123static STAMPROFILEADV gStatMemRead;
124static STAMPROFILEADV gStatMemWrite;
125static STAMPROFILE gStatGCPhys2HCVirt;
126static STAMPROFILE gStatHCVirt2GCPhys;
127static STAMCOUNTER gStatCpuGetTSC;
128static STAMCOUNTER gStatRefuseTFInhibit;
129static STAMCOUNTER gStatRefuseVM86;
130static STAMCOUNTER gStatRefusePaging;
131static STAMCOUNTER gStatRefusePAE;
132static STAMCOUNTER gStatRefuseIOPLNot0;
133static STAMCOUNTER gStatRefuseIF0;
134static STAMCOUNTER gStatRefuseCode16;
135static STAMCOUNTER gStatRefuseWP0;
136static STAMCOUNTER gStatRefuseRing1or2;
137static STAMCOUNTER gStatRefuseCanExecute;
138static STAMCOUNTER gStatREMGDTChange;
139static STAMCOUNTER gStatREMIDTChange;
140static STAMCOUNTER gStatREMLDTRChange;
141static STAMCOUNTER gStatREMTRChange;
142static STAMCOUNTER gStatSelOutOfSync[6];
143static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
144static STAMCOUNTER gStatFlushTBs;
145#endif
146
147/*
148 * Global stuff.
149 */
150
151/** MMIO read callbacks. */
152CPUReadMemoryFunc *g_apfnMMIORead[3] =
153{
154 remR3MMIOReadU8,
155 remR3MMIOReadU16,
156 remR3MMIOReadU32
157};
158
159/** MMIO write callbacks. */
160CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
161{
162 remR3MMIOWriteU8,
163 remR3MMIOWriteU16,
164 remR3MMIOWriteU32
165};
166
167/** Handler read callbacks. */
168CPUReadMemoryFunc *g_apfnHandlerRead[3] =
169{
170 remR3HandlerReadU8,
171 remR3HandlerReadU16,
172 remR3HandlerReadU32
173};
174
175/** Handler write callbacks. */
176CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
177{
178 remR3HandlerWriteU8,
179 remR3HandlerWriteU16,
180 remR3HandlerWriteU32
181};
182
183
184#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
185/*
186 * Debugger commands.
187 */
188static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
189
190/** '.remstep' arguments. */
191static const DBGCVARDESC g_aArgRemStep[] =
192{
193 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
194 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
195};
196
197/** Command descriptors. */
198static const DBGCCMD g_aCmds[] =
199{
200 {
201 .pszCmd ="remstep",
202 .cArgsMin = 0,
203 .cArgsMax = 1,
204 .paArgDescs = &g_aArgRemStep[0],
205 .cArgDescs = RT_ELEMENTS(g_aArgRemStep),
206 .pResultDesc = NULL,
207 .fFlags = 0,
208 .pfnHandler = remR3CmdDisasEnableStepping,
209 .pszSyntax = "[on/off]",
210 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
211 "If no arguments show the current state."
212 }
213};
214#endif
215
216
217/*******************************************************************************
218* Internal Functions *
219*******************************************************************************/
220void remAbort(int rc, const char *pszTip);
221extern int testmath(void);
222
223/* Put them here to avoid unused variable warning. */
224AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
225#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
226//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
227/* Why did this have to be identical?? */
228AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
229#else
230AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
231#endif
232
233
234/* Prologue code, must be in lower 4G to simplify jumps to/from generated code */
235uint8_t* code_gen_prologue;
236
237/**
238 * Initializes the REM.
239 *
240 * @returns VBox status code.
241 * @param pVM The VM to operate on.
242 */
243REMR3DECL(int) REMR3Init(PVM pVM)
244{
245 uint32_t u32Dummy;
246 unsigned i;
247 int rc;
248
249 /*
250 * Assert sanity.
251 */
252 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
253 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
254 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
255#if defined(DEBUG) && !defined(RT_OS_SOLARIS) /// @todo fix the solaris math stuff.
256 Assert(!testmath());
257#endif
258 /*
259 * Init some internal data members.
260 */
261 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
262 pVM->rem.s.Env.pVM = pVM;
263#ifdef CPU_RAW_MODE_INIT
264 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
265#endif
266
267 /* ctx. */
268 pVM->rem.s.pCtx = CPUMQueryGuestCtxPtr(pVM);
269 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
270
271 /* ignore all notifications */
272 pVM->rem.s.fIgnoreAll = true;
273
274 code_gen_prologue = RTMemExecAlloc(_1K);
275
276 cpu_exec_init_all(0);
277
278 /*
279 * Init the recompiler.
280 */
281 if (!cpu_x86_init(&pVM->rem.s.Env, "vbox"))
282 {
283 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
284 return VERR_GENERAL_FAILURE;
285 }
286 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
287 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
288
289 /* allocate code buffer for single instruction emulation. */
290 pVM->rem.s.Env.cbCodeBuffer = 4096;
291 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
292 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
293
294 /* finally, set the cpu_single_env global. */
295 cpu_single_env = &pVM->rem.s.Env;
296
297 /* Nothing is pending by default */
298 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
299
300 /*
301 * Register ram types.
302 */
303 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
304 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
305 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
306 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
307 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
308
309 /* stop ignoring. */
310 pVM->rem.s.fIgnoreAll = false;
311
312 /*
313 * Register the saved state data unit.
314 */
315 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
316 NULL, remR3Save, NULL,
317 NULL, remR3Load, NULL);
318 if (RT_FAILURE(rc))
319 return rc;
320
321#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
322 /*
323 * Debugger commands.
324 */
325 static bool fRegisteredCmds = false;
326 if (!fRegisteredCmds)
327 {
328 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
329 if (RT_SUCCESS(rc))
330 fRegisteredCmds = true;
331 }
332#endif
333
334#ifdef VBOX_WITH_STATISTICS
335 /*
336 * Statistics.
337 */
338 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
339 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
340 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
341 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
342 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
343 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
344 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
345 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
346 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
347 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
348 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
349 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
350
351 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
352
353 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
354 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
355 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
356 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
357 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
358 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
359 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
360 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
361 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
362 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
363 STAM_REG(pVM, &gStatFlushTBs, STAMTYPE_COUNTER, "/REM/FlushTB", STAMUNIT_OCCURENCES, "Number of TB flushes");
364
365 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
366 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
367 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
368 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
369
370 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
371 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
372 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
373 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
374 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
375 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
376
377 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
378 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
379 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
380 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
381 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
382 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
383
384
385#endif
386
387#ifdef DEBUG_ALL_LOGGING
388 loglevel = ~0;
389 logfile = fopen("/tmp/vbox-qemu.log", "w");
390#endif
391
392 return rc;
393}
394
395
396/**
397 * Terminates the REM.
398 *
399 * Termination means cleaning up and freeing all resources,
400 * the VM it self is at this point powered off or suspended.
401 *
402 * @returns VBox status code.
403 * @param pVM The VM to operate on.
404 */
405REMR3DECL(int) REMR3Term(PVM pVM)
406{
407 return VINF_SUCCESS;
408}
409
410
411/**
412 * The VM is being reset.
413 *
414 * For the REM component this means to call the cpu_reset() and
415 * reinitialize some state variables.
416 *
417 * @param pVM VM handle.
418 */
419REMR3DECL(void) REMR3Reset(PVM pVM)
420{
421 /*
422 * Reset the REM cpu.
423 */
424 pVM->rem.s.fIgnoreAll = true;
425 cpu_reset(&pVM->rem.s.Env);
426 pVM->rem.s.cInvalidatedPages = 0;
427 pVM->rem.s.fIgnoreAll = false;
428
429 /* Clear raw ring 0 init state */
430 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
431
432 /* Flush the TBs the next time we execute code here. */
433 pVM->rem.s.fFlushTBs = true;
434}
435
436
437/**
438 * Execute state save operation.
439 *
440 * @returns VBox status code.
441 * @param pVM VM Handle.
442 * @param pSSM SSM operation handle.
443 */
444static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
445{
446 /*
447 * Save the required CPU Env bits.
448 * (Not much because we're never in REM when doing the save.)
449 */
450 PREM pRem = &pVM->rem.s;
451 LogFlow(("remR3Save:\n"));
452 Assert(!pRem->fInREM);
453 SSMR3PutU32(pSSM, pRem->Env.hflags);
454 SSMR3PutU32(pSSM, ~0); /* separator */
455
456 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
457 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
458 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
459
460 return SSMR3PutU32(pSSM, ~0); /* terminator */
461}
462
463
464/**
465 * Execute state load operation.
466 *
467 * @returns VBox status code.
468 * @param pVM VM Handle.
469 * @param pSSM SSM operation handle.
470 * @param u32Version Data layout version.
471 */
472static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
473{
474 uint32_t u32Dummy;
475 uint32_t fRawRing0 = false;
476 uint32_t u32Sep;
477 int rc;
478 PREM pRem;
479 LogFlow(("remR3Load:\n"));
480
481 /*
482 * Validate version.
483 */
484 if ( u32Version != REM_SAVED_STATE_VERSION
485 && u32Version != REM_SAVED_STATE_VERSION_VER1_6)
486 {
487 AssertMsgFailed(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
488 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
489 }
490
491 /*
492 * Do a reset to be on the safe side...
493 */
494 REMR3Reset(pVM);
495
496 /*
497 * Ignore all ignorable notifications.
498 * (Not doing this will cause serious trouble.)
499 */
500 pVM->rem.s.fIgnoreAll = true;
501
502 /*
503 * Load the required CPU Env bits.
504 * (Not much because we're never in REM when doing the save.)
505 */
506 pRem = &pVM->rem.s;
507 Assert(!pRem->fInREM);
508 SSMR3GetU32(pSSM, &pRem->Env.hflags);
509 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
510 {
511 /* Redundant REM CPU state has to be loaded, but can be ignored. */
512 CPUX86State_Ver16 temp;
513 SSMR3GetMem(pSSM, &temp, RT_OFFSETOF(CPUX86State_Ver16, jmp_env));
514 }
515
516 rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
517 if (RT_FAILURE(rc))
518 return rc;
519 if (u32Sep != ~0U)
520 {
521 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
522 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
523 }
524
525 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
526 SSMR3GetUInt(pSSM, &fRawRing0);
527 if (fRawRing0)
528 pRem->Env.state |= CPU_RAW_RING0;
529
530 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
531 {
532 unsigned i;
533
534 /*
535 * Load the REM stuff.
536 */
537 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
538 if (RT_FAILURE(rc))
539 return rc;
540 if (pRem->cInvalidatedPages > RT_ELEMENTS(pRem->aGCPtrInvalidatedPages))
541 {
542 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
543 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
544 }
545 for (i = 0; i < pRem->cInvalidatedPages; i++)
546 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
547 }
548
549 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
550 if (RT_FAILURE(rc))
551 return rc;
552
553 /* check the terminator. */
554 rc = SSMR3GetU32(pSSM, &u32Sep);
555 if (RT_FAILURE(rc))
556 return rc;
557 if (u32Sep != ~0U)
558 {
559 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
560 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
561 }
562
563 /*
564 * Get the CPUID features.
565 */
566 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
567 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
568
569 /*
570 * Sync the Load Flush the TLB
571 */
572 tlb_flush(&pRem->Env, 1);
573
574 /*
575 * Stop ignoring ignornable notifications.
576 */
577 pVM->rem.s.fIgnoreAll = false;
578
579 /*
580 * Sync the whole CPU state when executing code in the recompiler.
581 */
582 CPUMSetChangedFlags(pVM, CPUM_CHANGED_ALL);
583 return VINF_SUCCESS;
584}
585
586
587
588#undef LOG_GROUP
589#define LOG_GROUP LOG_GROUP_REM_RUN
590
591/**
592 * Single steps an instruction in recompiled mode.
593 *
594 * Before calling this function the REM state needs to be in sync with
595 * the VM. Call REMR3State() to perform the sync. It's only necessary
596 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
597 * and after calling REMR3StateBack().
598 *
599 * @returns VBox status code.
600 *
601 * @param pVM VM Handle.
602 */
603REMR3DECL(int) REMR3Step(PVM pVM)
604{
605 int rc, interrupt_request;
606 RTGCPTR GCPtrPC;
607 bool fBp;
608
609 /*
610 * Lock the REM - we don't wanna have anyone interrupting us
611 * while stepping - and enabled single stepping. We also ignore
612 * pending interrupts and suchlike.
613 */
614 interrupt_request = pVM->rem.s.Env.interrupt_request;
615 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
616 pVM->rem.s.Env.interrupt_request = 0;
617 cpu_single_step(&pVM->rem.s.Env, 1);
618
619 /*
620 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
621 */
622 GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
623 fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
624
625 /*
626 * Execute and handle the return code.
627 * We execute without enabling the cpu tick, so on success we'll
628 * just flip it on and off to make sure it moves
629 */
630 rc = cpu_exec(&pVM->rem.s.Env);
631 if (rc == EXCP_DEBUG)
632 {
633 TMCpuTickResume(pVM);
634 TMCpuTickPause(pVM);
635 TMVirtualResume(pVM);
636 TMVirtualPause(pVM);
637 rc = VINF_EM_DBG_STEPPED;
638 }
639 else
640 {
641 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
642 switch (rc)
643 {
644 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
645 case EXCP_HLT:
646 case EXCP_HALTED: rc = VINF_EM_HALT; break;
647 case EXCP_RC:
648 rc = pVM->rem.s.rc;
649 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
650 break;
651 default:
652 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
653 rc = VERR_INTERNAL_ERROR;
654 break;
655 }
656 }
657
658 /*
659 * Restore the stuff we changed to prevent interruption.
660 * Unlock the REM.
661 */
662 if (fBp)
663 {
664 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
665 Assert(rc2 == 0); NOREF(rc2);
666 }
667 cpu_single_step(&pVM->rem.s.Env, 0);
668 pVM->rem.s.Env.interrupt_request = interrupt_request;
669
670 return rc;
671}
672
673
674/**
675 * Set a breakpoint using the REM facilities.
676 *
677 * @returns VBox status code.
678 * @param pVM The VM handle.
679 * @param Address The breakpoint address.
680 * @thread The emulation thread.
681 */
682REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
683{
684 VM_ASSERT_EMT(pVM);
685 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
686 {
687 LogFlow(("REMR3BreakpointSet: Address=%RGv\n", Address));
688 return VINF_SUCCESS;
689 }
690 LogFlow(("REMR3BreakpointSet: Address=%RGv - failed!\n", Address));
691 return VERR_REM_NO_MORE_BP_SLOTS;
692}
693
694
695/**
696 * Clears a breakpoint set by REMR3BreakpointSet().
697 *
698 * @returns VBox status code.
699 * @param pVM The VM handle.
700 * @param Address The breakpoint address.
701 * @thread The emulation thread.
702 */
703REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
704{
705 VM_ASSERT_EMT(pVM);
706 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
707 {
708 LogFlow(("REMR3BreakpointClear: Address=%RGv\n", Address));
709 return VINF_SUCCESS;
710 }
711 LogFlow(("REMR3BreakpointClear: Address=%RGv - not found!\n", Address));
712 return VERR_REM_BP_NOT_FOUND;
713}
714
715
716/**
717 * Emulate an instruction.
718 *
719 * This function executes one instruction without letting anyone
720 * interrupt it. This is intended for being called while being in
721 * raw mode and thus will take care of all the state syncing between
722 * REM and the rest.
723 *
724 * @returns VBox status code.
725 * @param pVM VM handle.
726 */
727REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
728{
729 bool fFlushTBs;
730
731 int rc, rc2;
732 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
733
734 /* Make sure this flag is set; we might never execute remR3CanExecuteRaw in the AMD-V case.
735 * CPU_RAW_HWACC makes sure we never execute interrupt handlers in the recompiler.
736 */
737 if (HWACCMIsEnabled(pVM))
738 pVM->rem.s.Env.state |= CPU_RAW_HWACC;
739
740 /* Skip the TB flush as that's rather expensive and not necessary for single instruction emulation. */
741 fFlushTBs = pVM->rem.s.fFlushTBs;
742 pVM->rem.s.fFlushTBs = false;
743
744 /*
745 * Sync the state and enable single instruction / single stepping.
746 */
747 rc = REMR3State(pVM);
748 pVM->rem.s.fFlushTBs = fFlushTBs;
749 if (RT_SUCCESS(rc))
750 {
751 int interrupt_request = pVM->rem.s.Env.interrupt_request;
752 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
753 Assert(!pVM->rem.s.Env.singlestep_enabled);
754#if 1
755
756 /*
757 * Now we set the execute single instruction flag and enter the cpu_exec loop.
758 */
759 TMNotifyStartOfExecution(pVM);
760 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
761 rc = cpu_exec(&pVM->rem.s.Env);
762 TMNotifyEndOfExecution(pVM);
763 switch (rc)
764 {
765 /*
766 * Executed without anything out of the way happening.
767 */
768 case EXCP_SINGLE_INSTR:
769 rc = VINF_EM_RESCHEDULE;
770 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
771 break;
772
773 /*
774 * If we take a trap or start servicing a pending interrupt, we might end up here.
775 * (Timer thread or some other thread wishing EMT's attention.)
776 */
777 case EXCP_INTERRUPT:
778 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
779 rc = VINF_EM_RESCHEDULE;
780 break;
781
782 /*
783 * Single step, we assume!
784 * If there was a breakpoint there we're fucked now.
785 */
786 case EXCP_DEBUG:
787 {
788 /* breakpoint or single step? */
789 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
790 int iBP;
791 rc = VINF_EM_DBG_STEPPED;
792 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
793 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
794 {
795 rc = VINF_EM_DBG_BREAKPOINT;
796 break;
797 }
798 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Rrc iBP=%d GCPtrPC=%RGv\n", rc, iBP, GCPtrPC));
799 break;
800 }
801
802 /*
803 * hlt instruction.
804 */
805 case EXCP_HLT:
806 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
807 rc = VINF_EM_HALT;
808 break;
809
810 /*
811 * The VM has halted.
812 */
813 case EXCP_HALTED:
814 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
815 rc = VINF_EM_HALT;
816 break;
817
818 /*
819 * Switch to RAW-mode.
820 */
821 case EXCP_EXECUTE_RAW:
822 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
823 rc = VINF_EM_RESCHEDULE_RAW;
824 break;
825
826 /*
827 * Switch to hardware accelerated RAW-mode.
828 */
829 case EXCP_EXECUTE_HWACC:
830 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
831 rc = VINF_EM_RESCHEDULE_HWACC;
832 break;
833
834 /*
835 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
836 */
837 case EXCP_RC:
838 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
839 rc = pVM->rem.s.rc;
840 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
841 break;
842
843 /*
844 * Figure out the rest when they arrive....
845 */
846 default:
847 AssertMsgFailed(("rc=%d\n", rc));
848 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
849 rc = VINF_EM_RESCHEDULE;
850 break;
851 }
852
853 /*
854 * Switch back the state.
855 */
856#else
857 pVM->rem.s.Env.interrupt_request = 0;
858 cpu_single_step(&pVM->rem.s.Env, 1);
859
860 /*
861 * Execute and handle the return code.
862 * We execute without enabling the cpu tick, so on success we'll
863 * just flip it on and off to make sure it moves.
864 *
865 * (We do not use emulate_single_instr() because that doesn't enter the
866 * right way in will cause serious trouble if a longjmp was attempted.)
867 */
868# ifdef DEBUG_bird
869 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
870# endif
871 TMNotifyStartOfExecution(pVM);
872 int cTimesMax = 16384;
873 uint32_t eip = pVM->rem.s.Env.eip;
874 do
875 {
876 rc = cpu_exec(&pVM->rem.s.Env);
877
878 } while ( eip == pVM->rem.s.Env.eip
879 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
880 && --cTimesMax > 0);
881 TMNotifyEndOfExecution(pVM);
882 switch (rc)
883 {
884 /*
885 * Single step, we assume!
886 * If there was a breakpoint there we're fucked now.
887 */
888 case EXCP_DEBUG:
889 {
890 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
891 rc = VINF_EM_RESCHEDULE;
892 break;
893 }
894
895 /*
896 * We cannot be interrupted!
897 */
898 case EXCP_INTERRUPT:
899 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
900 rc = VERR_INTERNAL_ERROR;
901 break;
902
903 /*
904 * hlt instruction.
905 */
906 case EXCP_HLT:
907 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
908 rc = VINF_EM_HALT;
909 break;
910
911 /*
912 * The VM has halted.
913 */
914 case EXCP_HALTED:
915 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
916 rc = VINF_EM_HALT;
917 break;
918
919 /*
920 * Switch to RAW-mode.
921 */
922 case EXCP_EXECUTE_RAW:
923 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
924 rc = VINF_EM_RESCHEDULE_RAW;
925 break;
926
927 /*
928 * Switch to hardware accelerated RAW-mode.
929 */
930 case EXCP_EXECUTE_HWACC:
931 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
932 rc = VINF_EM_RESCHEDULE_HWACC;
933 break;
934
935 /*
936 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
937 */
938 case EXCP_RC:
939 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Rrc\n", pVM->rem.s.rc));
940 rc = pVM->rem.s.rc;
941 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
942 break;
943
944 /*
945 * Figure out the rest when they arrive....
946 */
947 default:
948 AssertMsgFailed(("rc=%d\n", rc));
949 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
950 rc = VINF_SUCCESS;
951 break;
952 }
953
954 /*
955 * Switch back the state.
956 */
957 cpu_single_step(&pVM->rem.s.Env, 0);
958#endif
959 pVM->rem.s.Env.interrupt_request = interrupt_request;
960 rc2 = REMR3StateBack(pVM);
961 AssertRC(rc2);
962 }
963
964 Log2(("REMR3EmulateInstruction: returns %Rrc (cs:eip=%04x:%RGv)\n",
965 rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
966 return rc;
967}
968
969
970/**
971 * Runs code in recompiled mode.
972 *
973 * Before calling this function the REM state needs to be in sync with
974 * the VM. Call REMR3State() to perform the sync. It's only necessary
975 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
976 * and after calling REMR3StateBack().
977 *
978 * @returns VBox status code.
979 *
980 * @param pVM VM Handle.
981 */
982REMR3DECL(int) REMR3Run(PVM pVM)
983{
984 int rc;
985 Log2(("REMR3Run: (cs:eip=%04x:%RGv)\n", pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
986 Assert(pVM->rem.s.fInREM);
987
988 TMNotifyStartOfExecution(pVM);
989 rc = cpu_exec(&pVM->rem.s.Env);
990 TMNotifyEndOfExecution(pVM);
991 switch (rc)
992 {
993 /*
994 * This happens when the execution was interrupted
995 * by an external event, like pending timers.
996 */
997 case EXCP_INTERRUPT:
998 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
999 rc = VINF_SUCCESS;
1000 break;
1001
1002 /*
1003 * hlt instruction.
1004 */
1005 case EXCP_HLT:
1006 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
1007 rc = VINF_EM_HALT;
1008 break;
1009
1010 /*
1011 * The VM has halted.
1012 */
1013 case EXCP_HALTED:
1014 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1015 rc = VINF_EM_HALT;
1016 break;
1017
1018 /*
1019 * Breakpoint/single step.
1020 */
1021 case EXCP_DEBUG:
1022 {
1023#if 0//def DEBUG_bird
1024 static int iBP = 0;
1025 printf("howdy, breakpoint! iBP=%d\n", iBP);
1026 switch (iBP)
1027 {
1028 case 0:
1029 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1030 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1031 //pVM->rem.s.Env.interrupt_request = 0;
1032 //pVM->rem.s.Env.exception_index = -1;
1033 //g_fInterruptDisabled = 1;
1034 rc = VINF_SUCCESS;
1035 asm("int3");
1036 break;
1037 default:
1038 asm("int3");
1039 break;
1040 }
1041 iBP++;
1042#else
1043 /* breakpoint or single step? */
1044 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1045 int iBP;
1046 rc = VINF_EM_DBG_STEPPED;
1047 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1048 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1049 {
1050 rc = VINF_EM_DBG_BREAKPOINT;
1051 break;
1052 }
1053 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Rrc iBP=%d GCPtrPC=%RGv\n", rc, iBP, GCPtrPC));
1054#endif
1055 break;
1056 }
1057
1058 /*
1059 * Switch to RAW-mode.
1060 */
1061 case EXCP_EXECUTE_RAW:
1062 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1063 rc = VINF_EM_RESCHEDULE_RAW;
1064 break;
1065
1066 /*
1067 * Switch to hardware accelerated RAW-mode.
1068 */
1069 case EXCP_EXECUTE_HWACC:
1070 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1071 rc = VINF_EM_RESCHEDULE_HWACC;
1072 break;
1073
1074 /*
1075 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1076 */
1077 case EXCP_RC:
1078 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Rrc\n", pVM->rem.s.rc));
1079 rc = pVM->rem.s.rc;
1080 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1081 break;
1082
1083 /*
1084 * Figure out the rest when they arrive....
1085 */
1086 default:
1087 AssertMsgFailed(("rc=%d\n", rc));
1088 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1089 rc = VINF_SUCCESS;
1090 break;
1091 }
1092
1093 Log2(("REMR3Run: returns %Rrc (cs:eip=%04x:%RGv)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
1094 return rc;
1095}
1096
1097
1098/**
1099 * Check if the cpu state is suitable for Raw execution.
1100 *
1101 * @returns boolean
1102 * @param env The CPU env struct.
1103 * @param eip The EIP to check this for (might differ from env->eip).
1104 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1105 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1106 *
1107 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1108 */
1109bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1110{
1111 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1112 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1113 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1114 uint32_t u32CR0;
1115
1116 /* Update counter. */
1117 env->pVM->rem.s.cCanExecuteRaw++;
1118
1119 if (HWACCMIsEnabled(env->pVM))
1120 {
1121 CPUMCTX Ctx;
1122
1123 env->state |= CPU_RAW_HWACC;
1124
1125 /*
1126 * Create partial context for HWACCMR3CanExecuteGuest
1127 */
1128 Ctx.cr0 = env->cr[0];
1129 Ctx.cr3 = env->cr[3];
1130 Ctx.cr4 = env->cr[4];
1131
1132 Ctx.tr = env->tr.selector;
1133 Ctx.trHid.u64Base = env->tr.base;
1134 Ctx.trHid.u32Limit = env->tr.limit;
1135 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1136
1137 Ctx.idtr.cbIdt = env->idt.limit;
1138 Ctx.idtr.pIdt = env->idt.base;
1139
1140 Ctx.eflags.u32 = env->eflags;
1141
1142 Ctx.cs = env->segs[R_CS].selector;
1143 Ctx.csHid.u64Base = env->segs[R_CS].base;
1144 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1145 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1146
1147 Ctx.ds = env->segs[R_DS].selector;
1148 Ctx.dsHid.u64Base = env->segs[R_DS].base;
1149 Ctx.dsHid.u32Limit = env->segs[R_DS].limit;
1150 Ctx.dsHid.Attr.u = (env->segs[R_DS].flags >> 8) & 0xF0FF;
1151
1152 Ctx.es = env->segs[R_ES].selector;
1153 Ctx.esHid.u64Base = env->segs[R_ES].base;
1154 Ctx.esHid.u32Limit = env->segs[R_ES].limit;
1155 Ctx.esHid.Attr.u = (env->segs[R_ES].flags >> 8) & 0xF0FF;
1156
1157 Ctx.fs = env->segs[R_FS].selector;
1158 Ctx.fsHid.u64Base = env->segs[R_FS].base;
1159 Ctx.fsHid.u32Limit = env->segs[R_FS].limit;
1160 Ctx.fsHid.Attr.u = (env->segs[R_FS].flags >> 8) & 0xF0FF;
1161
1162 Ctx.gs = env->segs[R_GS].selector;
1163 Ctx.gsHid.u64Base = env->segs[R_GS].base;
1164 Ctx.gsHid.u32Limit = env->segs[R_GS].limit;
1165 Ctx.gsHid.Attr.u = (env->segs[R_GS].flags >> 8) & 0xF0FF;
1166
1167 Ctx.ss = env->segs[R_SS].selector;
1168 Ctx.ssHid.u64Base = env->segs[R_SS].base;
1169 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1170 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1171
1172 Ctx.msrEFER = env->efer;
1173
1174 /* Hardware accelerated raw-mode:
1175 *
1176 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1177 */
1178 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1179 {
1180 *piException = EXCP_EXECUTE_HWACC;
1181 return true;
1182 }
1183 return false;
1184 }
1185
1186 /*
1187 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1188 * or 32 bits protected mode ring 0 code
1189 *
1190 * The tests are ordered by the likelyhood of being true during normal execution.
1191 */
1192 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1193 {
1194 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1195 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1196 return false;
1197 }
1198
1199#ifndef VBOX_RAW_V86
1200 if (fFlags & VM_MASK) {
1201 STAM_COUNTER_INC(&gStatRefuseVM86);
1202 Log2(("raw mode refused: VM_MASK\n"));
1203 return false;
1204 }
1205#endif
1206
1207 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1208 {
1209#ifndef DEBUG_bird
1210 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1211#endif
1212 return false;
1213 }
1214
1215 if (env->singlestep_enabled)
1216 {
1217 //Log2(("raw mode refused: Single step\n"));
1218 return false;
1219 }
1220
1221 if (env->nb_breakpoints > 0)
1222 {
1223 //Log2(("raw mode refused: Breakpoints\n"));
1224 return false;
1225 }
1226
1227 u32CR0 = env->cr[0];
1228 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1229 {
1230 STAM_COUNTER_INC(&gStatRefusePaging);
1231 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1232 return false;
1233 }
1234
1235 if (env->cr[4] & CR4_PAE_MASK)
1236 {
1237 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1238 {
1239 STAM_COUNTER_INC(&gStatRefusePAE);
1240 return false;
1241 }
1242 }
1243
1244 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1245 {
1246 if (!EMIsRawRing3Enabled(env->pVM))
1247 return false;
1248
1249 if (!(env->eflags & IF_MASK))
1250 {
1251 STAM_COUNTER_INC(&gStatRefuseIF0);
1252 Log2(("raw mode refused: IF (RawR3)\n"));
1253 return false;
1254 }
1255
1256 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1257 {
1258 STAM_COUNTER_INC(&gStatRefuseWP0);
1259 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1260 return false;
1261 }
1262 }
1263 else
1264 {
1265 if (!EMIsRawRing0Enabled(env->pVM))
1266 return false;
1267
1268 // Let's start with pure 32 bits ring 0 code first
1269 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1270 {
1271 STAM_COUNTER_INC(&gStatRefuseCode16);
1272 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1273 return false;
1274 }
1275
1276 // Only R0
1277 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1278 {
1279 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1280 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1281 return false;
1282 }
1283
1284 if (!(u32CR0 & CR0_WP_MASK))
1285 {
1286 STAM_COUNTER_INC(&gStatRefuseWP0);
1287 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1288 return false;
1289 }
1290
1291 if (PATMIsPatchGCAddr(env->pVM, eip))
1292 {
1293 Log2(("raw r0 mode forced: patch code\n"));
1294 *piException = EXCP_EXECUTE_RAW;
1295 return true;
1296 }
1297
1298#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1299 if (!(env->eflags & IF_MASK))
1300 {
1301 STAM_COUNTER_INC(&gStatRefuseIF0);
1302 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1303 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1304 return false;
1305 }
1306#endif
1307
1308 env->state |= CPU_RAW_RING0;
1309 }
1310
1311 /*
1312 * Don't reschedule the first time we're called, because there might be
1313 * special reasons why we're here that is not covered by the above checks.
1314 */
1315 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1316 {
1317 Log2(("raw mode refused: first scheduling\n"));
1318 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1319 return false;
1320 }
1321
1322 Assert(PGMPhysIsA20Enabled(env->pVM));
1323 *piException = EXCP_EXECUTE_RAW;
1324 return true;
1325}
1326
1327
1328/**
1329 * Fetches a code byte.
1330 *
1331 * @returns Success indicator (bool) for ease of use.
1332 * @param env The CPU environment structure.
1333 * @param GCPtrInstr Where to fetch code.
1334 * @param pu8Byte Where to store the byte on success
1335 */
1336bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1337{
1338 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1339 if (RT_SUCCESS(rc))
1340 return true;
1341 return false;
1342}
1343
1344
1345/**
1346 * Flush (or invalidate if you like) page table/dir entry.
1347 *
1348 * (invlpg instruction; tlb_flush_page)
1349 *
1350 * @param env Pointer to cpu environment.
1351 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1352 */
1353void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1354{
1355 PVM pVM = env->pVM;
1356 PCPUMCTX pCtx;
1357 int rc;
1358
1359 /*
1360 * When we're replaying invlpg instructions or restoring a saved
1361 * state we disable this path.
1362 */
1363 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1364 return;
1365 Log(("remR3FlushPage: GCPtr=%RGv\n", GCPtr));
1366 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1367
1368 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1369
1370 /*
1371 * Update the control registers before calling PGMFlushPage.
1372 */
1373 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1374 pCtx->cr0 = env->cr[0];
1375 pCtx->cr3 = env->cr[3];
1376 pCtx->cr4 = env->cr[4];
1377
1378 /*
1379 * Let PGM do the rest.
1380 */
1381 rc = PGMInvalidatePage(pVM, GCPtr);
1382 if (RT_FAILURE(rc))
1383 {
1384 AssertMsgFailed(("remR3FlushPage %RGv failed with %d!!\n", GCPtr, rc));
1385 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1386 }
1387 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1388}
1389
1390
1391#ifndef REM_PHYS_ADDR_IN_TLB
1392void* remR3GCPhys2HCVirt(CPUState *env1, target_ulong physAddr)
1393{
1394 void* rv = NULL;
1395 int rc;
1396
1397 rc = PGMPhysGCPhys2R3Ptr(env1->pVM, (RTGCPHYS)physAddr, 1, &rv);
1398 Assert (RT_SUCCESS(rc));
1399
1400 return rv;
1401}
1402
1403target_ulong remR3HCVirt2GCPhys(CPUState *env1, void *addr)
1404{
1405 RTGCPHYS rv = 0;
1406 int rc;
1407
1408 rc = PGMR3DbgR3Ptr2GCPhys(env1->pVM, (RTR3PTR)addr, &rv);
1409 Assert (RT_SUCCESS(rc));
1410
1411 return (target_ulong)rv;
1412}
1413#endif
1414
1415/**
1416 * Called from tlb_protect_code in order to write monitor a code page.
1417 *
1418 * @param env Pointer to the CPU environment.
1419 * @param GCPtr Code page to monitor
1420 */
1421void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1422{
1423#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1424 Assert(env->pVM->rem.s.fInREM);
1425 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1426 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1427 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1428 && !(env->eflags & VM_MASK) /* no V86 mode */
1429 && !HWACCMIsEnabled(env->pVM))
1430 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1431#endif
1432}
1433
1434/**
1435 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1436 *
1437 * @param env Pointer to the CPU environment.
1438 * @param GCPtr Code page to monitor
1439 */
1440void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
1441{
1442 Assert(env->pVM->rem.s.fInREM);
1443#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1444 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1445 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1446 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1447 && !(env->eflags & VM_MASK) /* no V86 mode */
1448 && !HWACCMIsEnabled(env->pVM))
1449 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1450#endif
1451}
1452
1453#ifndef REM_PHYS_ADDR_IN_TLB
1454bool remR3IsMonitored(CPUState *env, RTGCPTR GCPtr)
1455{
1456 return PGMHandlerIsAddressMonitored(env->pVM, GCPtr);
1457}
1458#endif
1459
1460/**
1461 * Called when the CPU is initialized, any of the CRx registers are changed or
1462 * when the A20 line is modified.
1463 *
1464 * @param env Pointer to the CPU environment.
1465 * @param fGlobal Set if the flush is global.
1466 */
1467void remR3FlushTLB(CPUState *env, bool fGlobal)
1468{
1469 PVM pVM = env->pVM;
1470 PCPUMCTX pCtx;
1471
1472 /*
1473 * When we're replaying invlpg instructions or restoring a saved
1474 * state we disable this path.
1475 */
1476 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1477 return;
1478 Assert(pVM->rem.s.fInREM);
1479
1480 /*
1481 * The caller doesn't check cr4, so we have to do that for ourselves.
1482 */
1483 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1484 fGlobal = true;
1485 Log(("remR3FlushTLB: CR0=%RGr CR3=%RGr CR4=%RGr %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1486
1487 /*
1488 * Update the control registers before calling PGMR3FlushTLB.
1489 */
1490 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1491 pCtx->cr0 = env->cr[0];
1492 pCtx->cr3 = env->cr[3];
1493 pCtx->cr4 = env->cr[4];
1494
1495 /*
1496 * Let PGM do the rest.
1497 */
1498 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1499}
1500
1501
1502/**
1503 * Called when any of the cr0, cr4 or efer registers is updated.
1504 *
1505 * @param env Pointer to the CPU environment.
1506 */
1507void remR3ChangeCpuMode(CPUState *env)
1508{
1509 int rc;
1510 PVM pVM = env->pVM;
1511 PCPUMCTX pCtx;
1512
1513 /*
1514 * When we're replaying loads or restoring a saved
1515 * state this path is disabled.
1516 */
1517 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1518 return;
1519 Assert(pVM->rem.s.fInREM);
1520
1521 /*
1522 * Update the control registers before calling PGMChangeMode()
1523 * as it may need to map whatever cr3 is pointing to.
1524 */
1525 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1526 pCtx->cr0 = env->cr[0];
1527 pCtx->cr3 = env->cr[3];
1528 pCtx->cr4 = env->cr[4];
1529
1530#ifdef TARGET_X86_64
1531 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1532 if (rc != VINF_SUCCESS)
1533 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc\n", env->cr[0], env->cr[4], env->efer, rc);
1534#else
1535 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1536 if (rc != VINF_SUCCESS)
1537 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc\n", env->cr[0], env->cr[4], 0LL, rc);
1538#endif
1539}
1540
1541
1542/**
1543 * Called from compiled code to run dma.
1544 *
1545 * @param env Pointer to the CPU environment.
1546 */
1547void remR3DmaRun(CPUState *env)
1548{
1549 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1550 PDMR3DmaRun(env->pVM);
1551 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1552}
1553
1554
1555/**
1556 * Called from compiled code to schedule pending timers in VMM
1557 *
1558 * @param env Pointer to the CPU environment.
1559 */
1560void remR3TimersRun(CPUState *env)
1561{
1562 LogFlow(("remR3TimersRun:\n"));
1563 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1564 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1565 TMR3TimerQueuesDo(env->pVM);
1566 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1567 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1568}
1569
1570
1571/**
1572 * Record trap occurance
1573 *
1574 * @returns VBox status code
1575 * @param env Pointer to the CPU environment.
1576 * @param uTrap Trap nr
1577 * @param uErrorCode Error code
1578 * @param pvNextEIP Next EIP
1579 */
1580int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1581{
1582 PVM pVM = env->pVM;
1583#ifdef VBOX_WITH_STATISTICS
1584 static STAMCOUNTER s_aStatTrap[255];
1585 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1586#endif
1587
1588#ifdef VBOX_WITH_STATISTICS
1589 if (uTrap < 255)
1590 {
1591 if (!s_aRegisters[uTrap])
1592 {
1593 char szStatName[64];
1594 s_aRegisters[uTrap] = true;
1595 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1596 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1597 }
1598 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1599 }
1600#endif
1601 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, (RTGCPTR)pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
1602 if( uTrap < 0x20
1603 && (env->cr[0] & X86_CR0_PE)
1604 && !(env->eflags & X86_EFL_VM))
1605 {
1606#ifdef DEBUG
1607 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1608#endif
1609 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1610 {
1611 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, (RTGCPTR)pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
1612 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1613 return VERR_REM_TOO_MANY_TRAPS;
1614 }
1615 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1616 pVM->rem.s.cPendingExceptions = 1;
1617 pVM->rem.s.uPendingException = uTrap;
1618 pVM->rem.s.uPendingExcptEIP = env->eip;
1619 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1620 }
1621 else
1622 {
1623 pVM->rem.s.cPendingExceptions = 0;
1624 pVM->rem.s.uPendingException = uTrap;
1625 pVM->rem.s.uPendingExcptEIP = env->eip;
1626 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1627 }
1628 return VINF_SUCCESS;
1629}
1630
1631
1632/*
1633 * Clear current active trap
1634 *
1635 * @param pVM VM Handle.
1636 */
1637void remR3TrapClear(PVM pVM)
1638{
1639 pVM->rem.s.cPendingExceptions = 0;
1640 pVM->rem.s.uPendingException = 0;
1641 pVM->rem.s.uPendingExcptEIP = 0;
1642 pVM->rem.s.uPendingExcptCR2 = 0;
1643}
1644
1645
1646/*
1647 * Record previous call instruction addresses
1648 *
1649 * @param env Pointer to the CPU environment.
1650 */
1651void remR3RecordCall(CPUState *env)
1652{
1653 CSAMR3RecordCallAddress(env->pVM, env->eip);
1654}
1655
1656
1657/**
1658 * Syncs the internal REM state with the VM.
1659 *
1660 * This must be called before REMR3Run() is invoked whenever when the REM
1661 * state is not up to date. Calling it several times in a row is not
1662 * permitted.
1663 *
1664 * @returns VBox status code.
1665 *
1666 * @param pVM VM Handle.
1667 * @param fFlushTBs Flush all translation blocks before executing code
1668 *
1669 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1670 * no do this since the majority of the callers don't want any unnecessary of events
1671 * pending that would immediatly interrupt execution.
1672 */
1673REMR3DECL(int) REMR3State(PVM pVM)
1674{
1675 register const CPUMCTX *pCtx;
1676 register unsigned fFlags;
1677 bool fHiddenSelRegsValid;
1678 unsigned i;
1679 TRPMEVENT enmType;
1680 uint8_t u8TrapNo;
1681 int rc;
1682
1683 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1684 Log2(("REMR3State:\n"));
1685
1686 pCtx = pVM->rem.s.pCtx;
1687 fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1688
1689 Assert(!pVM->rem.s.fInREM);
1690 pVM->rem.s.fInStateSync = true;
1691
1692 /*
1693 * If we have to flush TBs, do that immediately.
1694 */
1695 if (pVM->rem.s.fFlushTBs)
1696 {
1697 STAM_COUNTER_INC(&gStatFlushTBs);
1698 tb_flush(&pVM->rem.s.Env);
1699 pVM->rem.s.fFlushTBs = false;
1700 }
1701
1702 /*
1703 * Copy the registers which require no special handling.
1704 */
1705#ifdef TARGET_X86_64
1706 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
1707 Assert(R_EAX == 0);
1708 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
1709 Assert(R_ECX == 1);
1710 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
1711 Assert(R_EDX == 2);
1712 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
1713 Assert(R_EBX == 3);
1714 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
1715 Assert(R_ESP == 4);
1716 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
1717 Assert(R_EBP == 5);
1718 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
1719 Assert(R_ESI == 6);
1720 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
1721 Assert(R_EDI == 7);
1722 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
1723 pVM->rem.s.Env.regs[8] = pCtx->r8;
1724 pVM->rem.s.Env.regs[9] = pCtx->r9;
1725 pVM->rem.s.Env.regs[10] = pCtx->r10;
1726 pVM->rem.s.Env.regs[11] = pCtx->r11;
1727 pVM->rem.s.Env.regs[12] = pCtx->r12;
1728 pVM->rem.s.Env.regs[13] = pCtx->r13;
1729 pVM->rem.s.Env.regs[14] = pCtx->r14;
1730 pVM->rem.s.Env.regs[15] = pCtx->r15;
1731
1732 pVM->rem.s.Env.eip = pCtx->rip;
1733
1734 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
1735#else
1736 Assert(R_EAX == 0);
1737 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1738 Assert(R_ECX == 1);
1739 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1740 Assert(R_EDX == 2);
1741 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1742 Assert(R_EBX == 3);
1743 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1744 Assert(R_ESP == 4);
1745 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1746 Assert(R_EBP == 5);
1747 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1748 Assert(R_ESI == 6);
1749 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1750 Assert(R_EDI == 7);
1751 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1752 pVM->rem.s.Env.eip = pCtx->eip;
1753
1754 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1755#endif
1756
1757 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1758
1759 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1760 for (i=0;i<8;i++)
1761 pVM->rem.s.Env.dr[i] = pCtx->dr[i];
1762
1763 /*
1764 * Clear the halted hidden flag (the interrupt waking up the CPU can
1765 * have been dispatched in raw mode).
1766 */
1767 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1768
1769 /*
1770 * Replay invlpg?
1771 */
1772 if (pVM->rem.s.cInvalidatedPages)
1773 {
1774 RTUINT i;
1775
1776 pVM->rem.s.fIgnoreInvlPg = true;
1777 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1778 {
1779 Log2(("REMR3State: invlpg %RGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1780 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1781 }
1782 pVM->rem.s.fIgnoreInvlPg = false;
1783 pVM->rem.s.cInvalidatedPages = 0;
1784 }
1785
1786 /* Replay notification changes? */
1787 if (pVM->rem.s.cHandlerNotifications)
1788 REMR3ReplayHandlerNotifications(pVM);
1789
1790 /* Update MSRs; before CRx registers! */
1791 pVM->rem.s.Env.efer = pCtx->msrEFER;
1792 pVM->rem.s.Env.star = pCtx->msrSTAR;
1793 pVM->rem.s.Env.pat = pCtx->msrPAT;
1794#ifdef TARGET_X86_64
1795 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1796 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1797 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1798 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1799
1800 /* Update the internal long mode activate flag according to the new EFER value. */
1801 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1802 pVM->rem.s.Env.hflags |= HF_LMA_MASK;
1803 else
1804 pVM->rem.s.Env.hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
1805#endif
1806
1807
1808 /*
1809 * Registers which are rarely changed and require special handling / order when changed.
1810 */
1811 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1812 LogFlow(("CPUMGetAndClearChangedFlagsREM %x\n", fFlags));
1813 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1814 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1815 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
1816 {
1817 if (fFlags & CPUM_CHANGED_FPU_REM)
1818 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1819
1820 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1821 {
1822 pVM->rem.s.fIgnoreCR3Load = true;
1823 tlb_flush(&pVM->rem.s.Env, true);
1824 pVM->rem.s.fIgnoreCR3Load = false;
1825 }
1826
1827 /* CR4 before CR0! */
1828 if (fFlags & CPUM_CHANGED_CR4)
1829 {
1830 pVM->rem.s.fIgnoreCR3Load = true;
1831 pVM->rem.s.fIgnoreCpuMode = true;
1832 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1833 pVM->rem.s.fIgnoreCpuMode = false;
1834 pVM->rem.s.fIgnoreCR3Load = false;
1835 }
1836
1837 if (fFlags & CPUM_CHANGED_CR0)
1838 {
1839 pVM->rem.s.fIgnoreCR3Load = true;
1840 pVM->rem.s.fIgnoreCpuMode = true;
1841 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1842 pVM->rem.s.fIgnoreCpuMode = false;
1843 pVM->rem.s.fIgnoreCR3Load = false;
1844 }
1845
1846 if (fFlags & CPUM_CHANGED_CR3)
1847 {
1848 pVM->rem.s.fIgnoreCR3Load = true;
1849 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1850 pVM->rem.s.fIgnoreCR3Load = false;
1851 }
1852
1853 if (fFlags & CPUM_CHANGED_GDTR)
1854 {
1855 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1856 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1857 }
1858
1859 if (fFlags & CPUM_CHANGED_IDTR)
1860 {
1861 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1862 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1863 }
1864
1865 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1866 {
1867 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1868 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1869 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1870 }
1871
1872 if (fFlags & CPUM_CHANGED_LDTR)
1873 {
1874 if (fHiddenSelRegsValid)
1875 {
1876 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1877 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u64Base;
1878 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1879 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1880 }
1881 else
1882 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1883 }
1884
1885 if (fFlags & CPUM_CHANGED_TR)
1886 {
1887 if (fHiddenSelRegsValid)
1888 {
1889 pVM->rem.s.Env.tr.selector = pCtx->tr;
1890 pVM->rem.s.Env.tr.base = pCtx->trHid.u64Base;
1891 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1892 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1893 }
1894 else
1895 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1896
1897 /** @note do_interrupt will fault if the busy flag is still set.... */
1898 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1899 }
1900
1901 if (fFlags & CPUM_CHANGED_CPUID)
1902 {
1903 uint32_t u32Dummy;
1904
1905 /*
1906 * Get the CPUID features.
1907 */
1908 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
1909 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
1910 }
1911 }
1912
1913 /*
1914 * Update selector registers.
1915 * This must be done *after* we've synced gdt, ldt and crX registers
1916 * since we're reading the GDT/LDT om sync_seg. This will happen with
1917 * saved state which takes a quick dip into rawmode for instance.
1918 */
1919 /*
1920 * Stack; Note first check this one as the CPL might have changed. The
1921 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1922 */
1923
1924 if (fHiddenSelRegsValid)
1925 {
1926 /* The hidden selector registers are valid in the CPU context. */
1927 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1928
1929 /* Set current CPL */
1930 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1931
1932 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1933 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1934 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1935 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1936 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1937 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1938 }
1939 else
1940 {
1941 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1942 if (pVM->rem.s.Env.segs[R_SS].selector != pCtx->ss)
1943 {
1944 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1945
1946 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1947 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1948#ifdef VBOX_WITH_STATISTICS
1949 if (pVM->rem.s.Env.segs[R_SS].newselector)
1950 {
1951 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1952 }
1953#endif
1954 }
1955 else
1956 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1957
1958 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1959 {
1960 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1961 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1962#ifdef VBOX_WITH_STATISTICS
1963 if (pVM->rem.s.Env.segs[R_ES].newselector)
1964 {
1965 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1966 }
1967#endif
1968 }
1969 else
1970 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1971
1972 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1973 {
1974 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1975 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1976#ifdef VBOX_WITH_STATISTICS
1977 if (pVM->rem.s.Env.segs[R_CS].newselector)
1978 {
1979 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1980 }
1981#endif
1982 }
1983 else
1984 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1985
1986 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1987 {
1988 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1989 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1990#ifdef VBOX_WITH_STATISTICS
1991 if (pVM->rem.s.Env.segs[R_DS].newselector)
1992 {
1993 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1994 }
1995#endif
1996 }
1997 else
1998 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1999
2000 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
2001 * be the same but not the base/limit. */
2002 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
2003 {
2004 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
2005 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
2006#ifdef VBOX_WITH_STATISTICS
2007 if (pVM->rem.s.Env.segs[R_FS].newselector)
2008 {
2009 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
2010 }
2011#endif
2012 }
2013 else
2014 pVM->rem.s.Env.segs[R_FS].newselector = 0;
2015
2016 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
2017 {
2018 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
2019 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
2020#ifdef VBOX_WITH_STATISTICS
2021 if (pVM->rem.s.Env.segs[R_GS].newselector)
2022 {
2023 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
2024 }
2025#endif
2026 }
2027 else
2028 pVM->rem.s.Env.segs[R_GS].newselector = 0;
2029 }
2030
2031 /*
2032 * Check for traps.
2033 */
2034 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
2035 rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
2036 if (RT_SUCCESS(rc))
2037 {
2038#ifdef DEBUG
2039 if (u8TrapNo == 0x80)
2040 {
2041 remR3DumpLnxSyscall(pVM);
2042 remR3DumpOBsdSyscall(pVM);
2043 }
2044#endif
2045
2046 pVM->rem.s.Env.exception_index = u8TrapNo;
2047 if (enmType != TRPM_SOFTWARE_INT)
2048 {
2049 pVM->rem.s.Env.exception_is_int = 0;
2050 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
2051 }
2052 else
2053 {
2054 /*
2055 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
2056 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
2057 * for int03 and into.
2058 */
2059 pVM->rem.s.Env.exception_is_int = 1;
2060 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 2;
2061 /* int 3 may be generated by one-byte 0xcc */
2062 if (u8TrapNo == 3)
2063 {
2064 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xcc)
2065 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2066 }
2067 /* int 4 may be generated by one-byte 0xce */
2068 else if (u8TrapNo == 4)
2069 {
2070 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xce)
2071 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2072 }
2073 }
2074
2075 /* get error code and cr2 if needed. */
2076 switch (u8TrapNo)
2077 {
2078 case 0x0e:
2079 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
2080 /* fallthru */
2081 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2082 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
2083 break;
2084
2085 case 0x11: case 0x08:
2086 default:
2087 pVM->rem.s.Env.error_code = 0;
2088 break;
2089 }
2090
2091 /*
2092 * We can now reset the active trap since the recompiler is gonna have a go at it.
2093 */
2094 rc = TRPMResetTrap(pVM);
2095 AssertRC(rc);
2096 Log2(("REMR3State: trap=%02x errcd=%RGv cr2=%RGv nexteip=%RGv%s\n", pVM->rem.s.Env.exception_index, (RTGCPTR)pVM->rem.s.Env.error_code,
2097 (RTGCPTR)pVM->rem.s.Env.cr[2], (RTGCPTR)pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
2098 }
2099
2100 /*
2101 * Clear old interrupt request flags; Check for pending hardware interrupts.
2102 * (See @remark for why we don't check for other FFs.)
2103 */
2104 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2105 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2106 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
2107 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2108
2109 /*
2110 * We're now in REM mode.
2111 */
2112 pVM->rem.s.fInREM = true;
2113 pVM->rem.s.fInStateSync = false;
2114 pVM->rem.s.cCanExecuteRaw = 0;
2115 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2116 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2117 return VINF_SUCCESS;
2118}
2119
2120
2121/**
2122 * Syncs back changes in the REM state to the the VM state.
2123 *
2124 * This must be called after invoking REMR3Run().
2125 * Calling it several times in a row is not permitted.
2126 *
2127 * @returns VBox status code.
2128 *
2129 * @param pVM VM Handle.
2130 */
2131REMR3DECL(int) REMR3StateBack(PVM pVM)
2132{
2133 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2134 unsigned i;
2135
2136 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2137 Log2(("REMR3StateBack:\n"));
2138 Assert(pVM->rem.s.fInREM);
2139
2140 /*
2141 * Copy back the registers.
2142 * This is done in the order they are declared in the CPUMCTX structure.
2143 */
2144
2145 /** @todo FOP */
2146 /** @todo FPUIP */
2147 /** @todo CS */
2148 /** @todo FPUDP */
2149 /** @todo DS */
2150 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2151 pCtx->fpu.MXCSR = 0;
2152 pCtx->fpu.MXCSR_MASK = 0;
2153
2154 /** @todo check if FPU/XMM was actually used in the recompiler */
2155 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2156//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2157
2158#ifdef TARGET_X86_64
2159 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2160 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2161 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2162 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2163 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2164 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2165 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2166 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2167 pCtx->r8 = pVM->rem.s.Env.regs[8];
2168 pCtx->r9 = pVM->rem.s.Env.regs[9];
2169 pCtx->r10 = pVM->rem.s.Env.regs[10];
2170 pCtx->r11 = pVM->rem.s.Env.regs[11];
2171 pCtx->r12 = pVM->rem.s.Env.regs[12];
2172 pCtx->r13 = pVM->rem.s.Env.regs[13];
2173 pCtx->r14 = pVM->rem.s.Env.regs[14];
2174 pCtx->r15 = pVM->rem.s.Env.regs[15];
2175
2176 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2177
2178#else
2179 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2180 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2181 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2182 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2183 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2184 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2185 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2186
2187 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2188#endif
2189
2190 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2191
2192#ifdef VBOX_WITH_STATISTICS
2193 if (pVM->rem.s.Env.segs[R_SS].newselector)
2194 {
2195 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2196 }
2197 if (pVM->rem.s.Env.segs[R_GS].newselector)
2198 {
2199 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2200 }
2201 if (pVM->rem.s.Env.segs[R_FS].newselector)
2202 {
2203 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2204 }
2205 if (pVM->rem.s.Env.segs[R_ES].newselector)
2206 {
2207 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2208 }
2209 if (pVM->rem.s.Env.segs[R_DS].newselector)
2210 {
2211 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2212 }
2213 if (pVM->rem.s.Env.segs[R_CS].newselector)
2214 {
2215 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2216 }
2217#endif
2218 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2219 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2220 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2221 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2222 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2223
2224#ifdef TARGET_X86_64
2225 pCtx->rip = pVM->rem.s.Env.eip;
2226 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2227#else
2228 pCtx->eip = pVM->rem.s.Env.eip;
2229 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2230#endif
2231
2232 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2233 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2234 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2235 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2236
2237 for (i=0;i<8;i++)
2238 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2239
2240 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2241 if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
2242 {
2243 pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
2244 STAM_COUNTER_INC(&gStatREMGDTChange);
2245 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2246 }
2247
2248 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2249 if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
2250 {
2251 pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
2252 STAM_COUNTER_INC(&gStatREMIDTChange);
2253 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2254 }
2255
2256 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2257 {
2258 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2259 STAM_COUNTER_INC(&gStatREMLDTRChange);
2260 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2261 }
2262 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2263 {
2264 pCtx->tr = pVM->rem.s.Env.tr.selector;
2265 STAM_COUNTER_INC(&gStatREMTRChange);
2266 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2267 }
2268
2269 /** @todo These values could still be out of sync! */
2270 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2271 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2272 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2273 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2274
2275 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2276 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2277 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2278
2279 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2280 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2281 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2282
2283 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2284 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2285 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2286
2287 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2288 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2289 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2290
2291 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2292 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2293 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2294
2295 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2296 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2297 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2298
2299 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2300 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2301 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2302
2303 /* Sysenter MSR */
2304 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2305 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2306 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2307
2308 /* System MSRs. */
2309 pCtx->msrEFER = pVM->rem.s.Env.efer;
2310 pCtx->msrSTAR = pVM->rem.s.Env.star;
2311 pCtx->msrPAT = pVM->rem.s.Env.pat;
2312#ifdef TARGET_X86_64
2313 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2314 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2315 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2316 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2317#endif
2318
2319 remR3TrapClear(pVM);
2320
2321 /*
2322 * Check for traps.
2323 */
2324 if ( pVM->rem.s.Env.exception_index >= 0
2325 && pVM->rem.s.Env.exception_index < 256)
2326 {
2327 int rc;
2328
2329 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2330 rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2331 AssertRC(rc);
2332 switch (pVM->rem.s.Env.exception_index)
2333 {
2334 case 0x0e:
2335 TRPMSetFaultAddress(pVM, pCtx->cr2);
2336 /* fallthru */
2337 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2338 case 0x11: case 0x08: /* 0 */
2339 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2340 break;
2341 }
2342
2343 }
2344
2345 /*
2346 * We're not longer in REM mode.
2347 */
2348 pVM->rem.s.fInREM = false;
2349 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2350 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2351 return VINF_SUCCESS;
2352}
2353
2354
2355/**
2356 * This is called by the disassembler when it wants to update the cpu state
2357 * before for instance doing a register dump.
2358 */
2359static void remR3StateUpdate(PVM pVM)
2360{
2361 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2362 unsigned i;
2363
2364 Assert(pVM->rem.s.fInREM);
2365
2366 /*
2367 * Copy back the registers.
2368 * This is done in the order they are declared in the CPUMCTX structure.
2369 */
2370
2371 /** @todo FOP */
2372 /** @todo FPUIP */
2373 /** @todo CS */
2374 /** @todo FPUDP */
2375 /** @todo DS */
2376 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2377 pCtx->fpu.MXCSR = 0;
2378 pCtx->fpu.MXCSR_MASK = 0;
2379
2380 /** @todo check if FPU/XMM was actually used in the recompiler */
2381 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2382//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2383
2384#ifdef TARGET_X86_64
2385 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2386 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2387 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2388 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2389 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2390 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2391 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2392 pCtx->r8 = pVM->rem.s.Env.regs[8];
2393 pCtx->r9 = pVM->rem.s.Env.regs[9];
2394 pCtx->r10 = pVM->rem.s.Env.regs[10];
2395 pCtx->r11 = pVM->rem.s.Env.regs[11];
2396 pCtx->r12 = pVM->rem.s.Env.regs[12];
2397 pCtx->r13 = pVM->rem.s.Env.regs[13];
2398 pCtx->r14 = pVM->rem.s.Env.regs[14];
2399 pCtx->r15 = pVM->rem.s.Env.regs[15];
2400
2401 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2402#else
2403 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2404 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2405 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2406 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2407 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2408 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2409 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2410
2411 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2412#endif
2413
2414 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2415
2416 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2417 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2418 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2419 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2420 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2421
2422#ifdef TARGET_X86_64
2423 pCtx->rip = pVM->rem.s.Env.eip;
2424 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2425#else
2426 pCtx->eip = pVM->rem.s.Env.eip;
2427 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2428#endif
2429
2430 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2431 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2432 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2433 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2434
2435 for (i=0;i<8;i++)
2436 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2437
2438 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2439 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2440 {
2441 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2442 STAM_COUNTER_INC(&gStatREMGDTChange);
2443 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2444 }
2445
2446 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2447 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2448 {
2449 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2450 STAM_COUNTER_INC(&gStatREMIDTChange);
2451 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2452 }
2453
2454 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2455 {
2456 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2457 STAM_COUNTER_INC(&gStatREMLDTRChange);
2458 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2459 }
2460 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2461 {
2462 pCtx->tr = pVM->rem.s.Env.tr.selector;
2463 STAM_COUNTER_INC(&gStatREMTRChange);
2464 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2465 }
2466
2467 /** @todo These values could still be out of sync! */
2468 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2469 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2470 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2471 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2472
2473 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2474 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2475 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2476
2477 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2478 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2479 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2480
2481 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2482 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2483 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2484
2485 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2486 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2487 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2488
2489 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2490 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2491 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2492
2493 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2494 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2495 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2496
2497 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2498 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2499 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2500
2501 /* Sysenter MSR */
2502 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2503 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2504 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2505
2506 /* System MSRs. */
2507 pCtx->msrEFER = pVM->rem.s.Env.efer;
2508 pCtx->msrSTAR = pVM->rem.s.Env.star;
2509 pCtx->msrPAT = pVM->rem.s.Env.pat;
2510#ifdef TARGET_X86_64
2511 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2512 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2513 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2514 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2515#endif
2516
2517}
2518
2519
2520/**
2521 * Update the VMM state information if we're currently in REM.
2522 *
2523 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2524 * we're currently executing in REM and the VMM state is invalid. This method will of
2525 * course check that we're executing in REM before syncing any data over to the VMM.
2526 *
2527 * @param pVM The VM handle.
2528 */
2529REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2530{
2531 if (pVM->rem.s.fInREM)
2532 remR3StateUpdate(pVM);
2533}
2534
2535
2536#undef LOG_GROUP
2537#define LOG_GROUP LOG_GROUP_REM
2538
2539
2540/**
2541 * Notify the recompiler about Address Gate 20 state change.
2542 *
2543 * This notification is required since A20 gate changes are
2544 * initialized from a device driver and the VM might just as
2545 * well be in REM mode as in RAW mode.
2546 *
2547 * @param pVM VM handle.
2548 * @param fEnable True if the gate should be enabled.
2549 * False if the gate should be disabled.
2550 */
2551REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2552{
2553 bool fSaved;
2554
2555 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2556 VM_ASSERT_EMT(pVM);
2557
2558 fSaved = pVM->rem.s.fIgnoreAll; /* just in case. */
2559 pVM->rem.s.fIgnoreAll = fSaved || !pVM->rem.s.fInREM;
2560
2561 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2562
2563 pVM->rem.s.fIgnoreAll = fSaved;
2564}
2565
2566
2567/**
2568 * Replays the invalidated recorded pages.
2569 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2570 *
2571 * @param pVM VM handle.
2572 */
2573REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2574{
2575 RTUINT i;
2576
2577 VM_ASSERT_EMT(pVM);
2578
2579 /*
2580 * Sync the required registers.
2581 */
2582 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2583 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2584 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2585 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2586
2587 /*
2588 * Replay the flushes.
2589 */
2590 pVM->rem.s.fIgnoreInvlPg = true;
2591 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2592 {
2593 Log2(("REMR3ReplayInvalidatedPages: invlpg %RGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2594 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2595 }
2596 pVM->rem.s.fIgnoreInvlPg = false;
2597 pVM->rem.s.cInvalidatedPages = 0;
2598}
2599
2600
2601/**
2602 * Replays the handler notification changes
2603 * Called in response to VM_FF_REM_HANDLER_NOTIFY from the RAW execution loop.
2604 *
2605 * @param pVM VM handle.
2606 */
2607REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2608{
2609 /*
2610 * Replay the flushes.
2611 */
2612 RTUINT i;
2613 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2614
2615 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2616 VM_ASSERT_EMT(pVM);
2617
2618 pVM->rem.s.cHandlerNotifications = 0;
2619 for (i = 0; i < c; i++)
2620 {
2621 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2622 switch (pRec->enmKind)
2623 {
2624 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2625 REMR3NotifyHandlerPhysicalRegister(pVM,
2626 pRec->u.PhysicalRegister.enmType,
2627 pRec->u.PhysicalRegister.GCPhys,
2628 pRec->u.PhysicalRegister.cb,
2629 pRec->u.PhysicalRegister.fHasHCHandler);
2630 break;
2631
2632 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2633 REMR3NotifyHandlerPhysicalDeregister(pVM,
2634 pRec->u.PhysicalDeregister.enmType,
2635 pRec->u.PhysicalDeregister.GCPhys,
2636 pRec->u.PhysicalDeregister.cb,
2637 pRec->u.PhysicalDeregister.fHasHCHandler,
2638 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2639 break;
2640
2641 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2642 REMR3NotifyHandlerPhysicalModify(pVM,
2643 pRec->u.PhysicalModify.enmType,
2644 pRec->u.PhysicalModify.GCPhysOld,
2645 pRec->u.PhysicalModify.GCPhysNew,
2646 pRec->u.PhysicalModify.cb,
2647 pRec->u.PhysicalModify.fHasHCHandler,
2648 pRec->u.PhysicalModify.fRestoreAsRAM);
2649 break;
2650
2651 default:
2652 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2653 break;
2654 }
2655 }
2656 VM_FF_CLEAR(pVM, VM_FF_REM_HANDLER_NOTIFY);
2657}
2658
2659
2660/**
2661 * Notify REM about changed code page.
2662 *
2663 * @returns VBox status code.
2664 * @param pVM VM handle.
2665 * @param pvCodePage Code page address
2666 */
2667REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2668{
2669#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
2670 int rc;
2671 RTGCPHYS PhysGC;
2672 uint64_t flags;
2673
2674 VM_ASSERT_EMT(pVM);
2675
2676 /*
2677 * Get the physical page address.
2678 */
2679 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2680 if (rc == VINF_SUCCESS)
2681 {
2682 /*
2683 * Sync the required registers and flush the whole page.
2684 * (Easier to do the whole page than notifying it about each physical
2685 * byte that was changed.
2686 */
2687 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2688 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2689 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2690 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2691
2692 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2693 }
2694#endif
2695 return VINF_SUCCESS;
2696}
2697
2698
2699/**
2700 * Notification about a successful MMR3PhysRegister() call.
2701 *
2702 * @param pVM VM handle.
2703 * @param GCPhys The physical address the RAM.
2704 * @param cb Size of the memory.
2705 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2706 */
2707REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, unsigned fFlags)
2708{
2709 uint32_t cbBitmap;
2710 int rc;
2711 Log(("REMR3NotifyPhysRamRegister: GCPhys=%RGp cb=%d fFlags=%d\n", GCPhys, cb, fFlags));
2712 VM_ASSERT_EMT(pVM);
2713
2714 /*
2715 * Validate input - we trust the caller.
2716 */
2717 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2718 Assert(cb);
2719 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2720
2721 /*
2722 * Base ram?
2723 */
2724 if (!GCPhys)
2725 {
2726 phys_ram_size = cb;
2727 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2728#ifndef VBOX_STRICT
2729 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2730 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2731#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2732 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2733 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2734 cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2735 rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2736 AssertRC(rc);
2737 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2738#endif
2739 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2740 }
2741
2742 /*
2743 * Register the ram.
2744 */
2745 Assert(!pVM->rem.s.fIgnoreAll);
2746 pVM->rem.s.fIgnoreAll = true;
2747
2748#ifdef VBOX_WITH_NEW_PHYS_CODE
2749 if (fFlags & MM_RAM_FLAGS_RESERVED)
2750 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2751 else
2752 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2753#else
2754 if (!GCPhys)
2755 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2756 else
2757 {
2758 if (fFlags & MM_RAM_FLAGS_RESERVED)
2759 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2760 else
2761 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2762 }
2763#endif
2764 Assert(pVM->rem.s.fIgnoreAll);
2765 pVM->rem.s.fIgnoreAll = false;
2766}
2767
2768#ifndef VBOX_WITH_NEW_PHYS_CODE
2769
2770/**
2771 * Notification about a successful PGMR3PhysRegisterChunk() call.
2772 *
2773 * @param pVM VM handle.
2774 * @param GCPhys The physical address the RAM.
2775 * @param cb Size of the memory.
2776 * @param pvRam The HC address of the RAM.
2777 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2778 */
2779REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2780{
2781 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%RGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2782 VM_ASSERT_EMT(pVM);
2783
2784 /*
2785 * Validate input - we trust the caller.
2786 */
2787 Assert(pvRam);
2788 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2789 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2790 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2791 Assert(fFlags == 0 /* normal RAM */);
2792 Assert(!pVM->rem.s.fIgnoreAll);
2793 pVM->rem.s.fIgnoreAll = true;
2794 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2795 Assert(pVM->rem.s.fIgnoreAll);
2796 pVM->rem.s.fIgnoreAll = false;
2797}
2798
2799
2800/**
2801 * Grows dynamically allocated guest RAM.
2802 * Will raise a fatal error if the operation fails.
2803 *
2804 * @param physaddr The physical address.
2805 */
2806void remR3GrowDynRange(unsigned long physaddr) /** @todo Needs fixing for MSC... */
2807{
2808 int rc;
2809 PVM pVM = cpu_single_env->pVM;
2810 const RTGCPHYS GCPhys = physaddr;
2811
2812 LogFlow(("remR3GrowDynRange %RGp\n", (RTGCPTR)physaddr));
2813 rc = PGM3PhysGrowRange(pVM, &GCPhys);
2814 if (RT_SUCCESS(rc))
2815 return;
2816
2817 LogRel(("\nUnable to allocate guest RAM chunk at %RGp\n", (RTGCPTR)physaddr));
2818 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %RGp\n", (RTGCPTR)physaddr);
2819 AssertFatalFailed();
2820}
2821
2822#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2823
2824/**
2825 * Notification about a successful MMR3PhysRomRegister() call.
2826 *
2827 * @param pVM VM handle.
2828 * @param GCPhys The physical address of the ROM.
2829 * @param cb The size of the ROM.
2830 * @param pvCopy Pointer to the ROM copy.
2831 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2832 * This function will be called when ever the protection of the
2833 * shadow ROM changes (at reset and end of POST).
2834 */
2835REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2836{
2837 Log(("REMR3NotifyPhysRomRegister: GCPhys=%RGp cb=%d pvCopy=%p fShadow=%RTbool\n", GCPhys, cb, pvCopy, fShadow));
2838 VM_ASSERT_EMT(pVM);
2839
2840 /*
2841 * Validate input - we trust the caller.
2842 */
2843 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2844 Assert(cb);
2845 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2846 Assert(pvCopy);
2847 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2848
2849 /*
2850 * Register the rom.
2851 */
2852 Assert(!pVM->rem.s.fIgnoreAll);
2853 pVM->rem.s.fIgnoreAll = true;
2854
2855 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2856
2857 Log2(("%.64Rhxd\n", (char *)pvCopy + cb - 64));
2858
2859 Assert(pVM->rem.s.fIgnoreAll);
2860 pVM->rem.s.fIgnoreAll = false;
2861}
2862
2863
2864/**
2865 * Notification about a successful memory deregistration or reservation.
2866 *
2867 * @param pVM VM Handle.
2868 * @param GCPhys Start physical address.
2869 * @param cb The size of the range.
2870 * @todo Rename to REMR3NotifyPhysRamDeregister (for MMIO2) as we won't
2871 * reserve any memory soon.
2872 */
2873REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2874{
2875 Log(("REMR3NotifyPhysReserve: GCPhys=%RGp cb=%d\n", GCPhys, cb));
2876 VM_ASSERT_EMT(pVM);
2877
2878 /*
2879 * Validate input - we trust the caller.
2880 */
2881 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2882 Assert(cb);
2883 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2884
2885 /*
2886 * Unassigning the memory.
2887 */
2888 Assert(!pVM->rem.s.fIgnoreAll);
2889 pVM->rem.s.fIgnoreAll = true;
2890
2891 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2892
2893 Assert(pVM->rem.s.fIgnoreAll);
2894 pVM->rem.s.fIgnoreAll = false;
2895}
2896
2897
2898/**
2899 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2900 *
2901 * @param pVM VM Handle.
2902 * @param enmType Handler type.
2903 * @param GCPhys Handler range address.
2904 * @param cb Size of the handler range.
2905 * @param fHasHCHandler Set if the handler has a HC callback function.
2906 *
2907 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2908 * Handler memory type to memory which has no HC handler.
2909 */
2910REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2911{
2912 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%d\n",
2913 enmType, GCPhys, cb, fHasHCHandler));
2914 VM_ASSERT_EMT(pVM);
2915 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2916 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2917
2918 if (pVM->rem.s.cHandlerNotifications)
2919 REMR3ReplayHandlerNotifications(pVM);
2920
2921 Assert(!pVM->rem.s.fIgnoreAll);
2922 pVM->rem.s.fIgnoreAll = true;
2923
2924 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2925 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2926 else if (fHasHCHandler)
2927 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2928
2929 Assert(pVM->rem.s.fIgnoreAll);
2930 pVM->rem.s.fIgnoreAll = false;
2931}
2932
2933
2934/**
2935 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2936 *
2937 * @param pVM VM Handle.
2938 * @param enmType Handler type.
2939 * @param GCPhys Handler range address.
2940 * @param cb Size of the handler range.
2941 * @param fHasHCHandler Set if the handler has a HC callback function.
2942 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2943 */
2944REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2945{
2946 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2947 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2948 VM_ASSERT_EMT(pVM);
2949
2950 if (pVM->rem.s.cHandlerNotifications)
2951 REMR3ReplayHandlerNotifications(pVM);
2952
2953 Assert(!pVM->rem.s.fIgnoreAll);
2954 pVM->rem.s.fIgnoreAll = true;
2955
2956/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
2957 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2958 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2959 else if (fHasHCHandler)
2960 {
2961 if (!fRestoreAsRAM)
2962 {
2963 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2964 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2965 }
2966 else
2967 {
2968 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2969 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2970 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2971 }
2972 }
2973
2974 Assert(pVM->rem.s.fIgnoreAll);
2975 pVM->rem.s.fIgnoreAll = false;
2976}
2977
2978
2979/**
2980 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2981 *
2982 * @param pVM VM Handle.
2983 * @param enmType Handler type.
2984 * @param GCPhysOld Old handler range address.
2985 * @param GCPhysNew New handler range address.
2986 * @param cb Size of the handler range.
2987 * @param fHasHCHandler Set if the handler has a HC callback function.
2988 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2989 */
2990REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2991{
2992 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%RGp GCPhysNew=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
2993 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
2994 VM_ASSERT_EMT(pVM);
2995 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2996
2997 if (pVM->rem.s.cHandlerNotifications)
2998 REMR3ReplayHandlerNotifications(pVM);
2999
3000 if (fHasHCHandler)
3001 {
3002 Assert(!pVM->rem.s.fIgnoreAll);
3003 pVM->rem.s.fIgnoreAll = true;
3004
3005 /*
3006 * Reset the old page.
3007 */
3008 if (!fRestoreAsRAM)
3009 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
3010 else
3011 {
3012 /* This is not perfect, but it'll do for PD monitoring... */
3013 Assert(cb == PAGE_SIZE);
3014 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
3015 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
3016 }
3017
3018 /*
3019 * Update the new page.
3020 */
3021 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
3022 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
3023 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
3024
3025 Assert(pVM->rem.s.fIgnoreAll);
3026 pVM->rem.s.fIgnoreAll = false;
3027 }
3028}
3029
3030
3031/**
3032 * Checks if we're handling access to this page or not.
3033 *
3034 * @returns true if we're trapping access.
3035 * @returns false if we aren't.
3036 * @param pVM The VM handle.
3037 * @param GCPhys The physical address.
3038 *
3039 * @remark This function will only work correctly in VBOX_STRICT builds!
3040 */
3041REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
3042{
3043#ifdef VBOX_STRICT
3044 unsigned long off;
3045 if (pVM->rem.s.cHandlerNotifications)
3046 REMR3ReplayHandlerNotifications(pVM);
3047
3048 off = get_phys_page_offset(GCPhys);
3049 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
3050 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
3051 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
3052#else
3053 return false;
3054#endif
3055}
3056
3057
3058/**
3059 * Deals with a rare case in get_phys_addr_code where the code
3060 * is being monitored.
3061 *
3062 * It could also be an MMIO page, in which case we will raise a fatal error.
3063 *
3064 * @returns The physical address corresponding to addr.
3065 * @param env The cpu environment.
3066 * @param addr The virtual address.
3067 * @param pTLBEntry The TLB entry.
3068 */
3069target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
3070{
3071 PVM pVM = env->pVM;
3072 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
3073 {
3074 target_ulong ret = pTLBEntry->addend + addr;
3075 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%RGv addr_code=%RGv addend=%RGp ret=%RGp\n",
3076 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
3077 return ret;
3078 }
3079 LogRel(("\nTrying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
3080 "*** handlers\n",
3081 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
3082 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
3083 LogRel(("*** mmio\n"));
3084 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
3085 LogRel(("*** phys\n"));
3086 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
3087 cpu_abort(env, "Trying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
3088 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
3089 AssertFatalFailed();
3090}
3091
3092/**
3093 * Read guest RAM and ROM.
3094 *
3095 * @param SrcGCPhys The source address (guest physical).
3096 * @param pvDst The destination address.
3097 * @param cb Number of bytes
3098 */
3099void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3100{
3101 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3102 VBOX_CHECK_ADDR(SrcGCPhys);
3103 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3104#ifdef VBOX_DEBUG_PHYS
3105 LogRel(("read(%d): %08x\n", cb, (uint32_t)SrcGCPhys));
3106#endif
3107 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3108}
3109
3110
3111/**
3112 * Read guest RAM and ROM, unsigned 8-bit.
3113 *
3114 * @param SrcGCPhys The source address (guest physical).
3115 */
3116uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3117{
3118 uint8_t val;
3119 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3120 VBOX_CHECK_ADDR(SrcGCPhys);
3121 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3122 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3123#ifdef VBOX_DEBUG_PHYS
3124 LogRel(("readu8: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3125#endif
3126 return val;
3127}
3128
3129
3130/**
3131 * Read guest RAM and ROM, signed 8-bit.
3132 *
3133 * @param SrcGCPhys The source address (guest physical).
3134 */
3135int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3136{
3137 int8_t val;
3138 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3139 VBOX_CHECK_ADDR(SrcGCPhys);
3140 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3141 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3142#ifdef VBOX_DEBUG_PHYS
3143 LogRel(("reads8: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3144#endif
3145 return val;
3146}
3147
3148
3149/**
3150 * Read guest RAM and ROM, unsigned 16-bit.
3151 *
3152 * @param SrcGCPhys The source address (guest physical).
3153 */
3154uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3155{
3156 uint16_t val;
3157 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3158 VBOX_CHECK_ADDR(SrcGCPhys);
3159 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3160 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3161#ifdef VBOX_DEBUG_PHYS
3162 LogRel(("readu16: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3163#endif
3164 return val;
3165}
3166
3167
3168/**
3169 * Read guest RAM and ROM, signed 16-bit.
3170 *
3171 * @param SrcGCPhys The source address (guest physical).
3172 */
3173int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3174{
3175 uint16_t val;
3176 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3177 VBOX_CHECK_ADDR(SrcGCPhys);
3178 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3179 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3180#ifdef VBOX_DEBUG_PHYS
3181 LogRel(("reads16: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3182#endif
3183 return val;
3184}
3185
3186
3187/**
3188 * Read guest RAM and ROM, unsigned 32-bit.
3189 *
3190 * @param SrcGCPhys The source address (guest physical).
3191 */
3192uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3193{
3194 uint32_t val;
3195 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3196 VBOX_CHECK_ADDR(SrcGCPhys);
3197 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3198 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3199#ifdef VBOX_DEBUG_PHYS
3200 LogRel(("readu32: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3201#endif
3202 return val;
3203}
3204
3205
3206/**
3207 * Read guest RAM and ROM, signed 32-bit.
3208 *
3209 * @param SrcGCPhys The source address (guest physical).
3210 */
3211int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3212{
3213 int32_t val;
3214 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3215 VBOX_CHECK_ADDR(SrcGCPhys);
3216 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3217 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3218#ifdef VBOX_DEBUG_PHYS
3219 LogRel(("reads32: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3220#endif
3221 return val;
3222}
3223
3224
3225/**
3226 * Read guest RAM and ROM, unsigned 64-bit.
3227 *
3228 * @param SrcGCPhys The source address (guest physical).
3229 */
3230uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3231{
3232 uint64_t val;
3233 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3234 VBOX_CHECK_ADDR(SrcGCPhys);
3235 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3236 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3237#ifdef VBOX_DEBUG_PHYS
3238 LogRel(("readu64: %llx <- %08x\n", val, (uint32_t)SrcGCPhys));
3239#endif
3240 return val;
3241}
3242
3243/**
3244 * Read guest RAM and ROM, signed 64-bit.
3245 *
3246 * @param SrcGCPhys The source address (guest physical).
3247 */
3248int64_t remR3PhysReadS64(RTGCPHYS SrcGCPhys)
3249{
3250 int64_t val;
3251 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3252 VBOX_CHECK_ADDR(SrcGCPhys);
3253 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3254 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3255#ifdef VBOX_DEBUG_PHYS
3256 LogRel(("reads64: %llx <- %08x\n", val, (uint32_t)SrcGCPhys));
3257#endif
3258 return val;
3259}
3260
3261
3262/**
3263 * Write guest RAM.
3264 *
3265 * @param DstGCPhys The destination address (guest physical).
3266 * @param pvSrc The source address.
3267 * @param cb Number of bytes to write
3268 */
3269void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3270{
3271 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3272 VBOX_CHECK_ADDR(DstGCPhys);
3273 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3274 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3275#ifdef VBOX_DEBUG_PHYS
3276 LogRel(("write(%d): %08x\n", cb, (uint32_t)DstGCPhys));
3277#endif
3278}
3279
3280
3281/**
3282 * Write guest RAM, unsigned 8-bit.
3283 *
3284 * @param DstGCPhys The destination address (guest physical).
3285 * @param val Value
3286 */
3287void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3288{
3289 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3290 VBOX_CHECK_ADDR(DstGCPhys);
3291 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3292 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3293#ifdef VBOX_DEBUG_PHYS
3294 LogRel(("writeu8: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3295#endif
3296}
3297
3298
3299/**
3300 * Write guest RAM, unsigned 8-bit.
3301 *
3302 * @param DstGCPhys The destination address (guest physical).
3303 * @param val Value
3304 */
3305void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3306{
3307 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3308 VBOX_CHECK_ADDR(DstGCPhys);
3309 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3310 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3311#ifdef VBOX_DEBUG_PHYS
3312 LogRel(("writeu16: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3313#endif
3314}
3315
3316
3317/**
3318 * Write guest RAM, unsigned 32-bit.
3319 *
3320 * @param DstGCPhys The destination address (guest physical).
3321 * @param val Value
3322 */
3323void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3324{
3325 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3326 VBOX_CHECK_ADDR(DstGCPhys);
3327 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3328 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3329#ifdef VBOX_DEBUG_PHYS
3330 LogRel(("writeu32: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3331#endif
3332}
3333
3334
3335/**
3336 * Write guest RAM, unsigned 64-bit.
3337 *
3338 * @param DstGCPhys The destination address (guest physical).
3339 * @param val Value
3340 */
3341void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3342{
3343 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3344 VBOX_CHECK_ADDR(DstGCPhys);
3345 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3346 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3347#ifdef VBOX_DEBUG_PHYS
3348 LogRel(("writeu64: %llx -> %08x\n", val, (uint32_t)SrcGCPhys));
3349#endif
3350}
3351
3352#undef LOG_GROUP
3353#define LOG_GROUP LOG_GROUP_REM_MMIO
3354
3355/** Read MMIO memory. */
3356static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3357{
3358 uint32_t u32 = 0;
3359 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3360 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3361 Log2(("remR3MMIOReadU8: GCPhys=%RGp -> %02x\n", GCPhys, u32));
3362 return u32;
3363}
3364
3365/** Read MMIO memory. */
3366static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3367{
3368 uint32_t u32 = 0;
3369 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3370 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3371 Log2(("remR3MMIOReadU16: GCPhys=%RGp -> %04x\n", GCPhys, u32));
3372 return u32;
3373}
3374
3375/** Read MMIO memory. */
3376static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3377{
3378 uint32_t u32 = 0;
3379 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3380 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3381 Log2(("remR3MMIOReadU32: GCPhys=%RGp -> %08x\n", GCPhys, u32));
3382 return u32;
3383}
3384
3385/** Write to MMIO memory. */
3386static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3387{
3388 int rc;
3389 Log2(("remR3MMIOWriteU8: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3390 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3391 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3392}
3393
3394/** Write to MMIO memory. */
3395static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3396{
3397 int rc;
3398 Log2(("remR3MMIOWriteU16: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3399 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3400 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3401}
3402
3403/** Write to MMIO memory. */
3404static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3405{
3406 int rc;
3407 Log2(("remR3MMIOWriteU32: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3408 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3409 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3410}
3411
3412
3413#undef LOG_GROUP
3414#define LOG_GROUP LOG_GROUP_REM_HANDLER
3415
3416/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3417
3418static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3419{
3420 uint8_t u8;
3421 Log2(("remR3HandlerReadU8: GCPhys=%RGp\n", GCPhys));
3422 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3423 return u8;
3424}
3425
3426static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3427{
3428 uint16_t u16;
3429 Log2(("remR3HandlerReadU16: GCPhys=%RGp\n", GCPhys));
3430 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3431 return u16;
3432}
3433
3434static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3435{
3436 uint32_t u32;
3437 Log2(("remR3HandlerReadU32: GCPhys=%RGp\n", GCPhys));
3438 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3439 return u32;
3440}
3441
3442static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3443{
3444 Log2(("remR3HandlerWriteU8: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3445 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3446}
3447
3448static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3449{
3450 Log2(("remR3HandlerWriteU16: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3451 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3452}
3453
3454static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3455{
3456 Log2(("remR3HandlerWriteU32: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3457 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3458}
3459
3460/* -+- disassembly -+- */
3461
3462#undef LOG_GROUP
3463#define LOG_GROUP LOG_GROUP_REM_DISAS
3464
3465
3466/**
3467 * Enables or disables singled stepped disassembly.
3468 *
3469 * @returns VBox status code.
3470 * @param pVM VM handle.
3471 * @param fEnable To enable set this flag, to disable clear it.
3472 */
3473static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3474{
3475 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3476 VM_ASSERT_EMT(pVM);
3477
3478 if (fEnable)
3479 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3480 else
3481 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3482 return VINF_SUCCESS;
3483}
3484
3485
3486/**
3487 * Enables or disables singled stepped disassembly.
3488 *
3489 * @returns VBox status code.
3490 * @param pVM VM handle.
3491 * @param fEnable To enable set this flag, to disable clear it.
3492 */
3493REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3494{
3495 PVMREQ pReq;
3496 int rc;
3497
3498 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3499 if (VM_IS_EMT(pVM))
3500 return remR3DisasEnableStepping(pVM, fEnable);
3501
3502 rc = VMR3ReqCall(pVM, VMREQDEST_ANY, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3503 AssertRC(rc);
3504 if (RT_SUCCESS(rc))
3505 rc = pReq->iStatus;
3506 VMR3ReqFree(pReq);
3507 return rc;
3508}
3509
3510
3511#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3512/**
3513 * External Debugger Command: .remstep [on|off|1|0]
3514 */
3515static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3516{
3517 bool fEnable;
3518 int rc;
3519
3520 /* print status */
3521 if (cArgs == 0)
3522 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3523 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3524
3525 /* convert the argument and change the mode. */
3526 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3527 if (RT_FAILURE(rc))
3528 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3529 rc = REMR3DisasEnableStepping(pVM, fEnable);
3530 if (RT_FAILURE(rc))
3531 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3532 return rc;
3533}
3534#endif
3535
3536
3537/**
3538 * Disassembles n instructions and prints them to the log.
3539 *
3540 * @returns Success indicator.
3541 * @param env Pointer to the recompiler CPU structure.
3542 * @param f32BitCode Indicates that whether or not the code should
3543 * be disassembled as 16 or 32 bit. If -1 the CS
3544 * selector will be inspected.
3545 * @param nrInstructions Nr of instructions to disassemble
3546 * @param pszPrefix
3547 * @remark not currently used for anything but ad-hoc debugging.
3548 */
3549bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3550{
3551 int i, rc;
3552 RTGCPTR GCPtrPC;
3553 uint8_t *pvPC;
3554 RTINTPTR off;
3555 DISCPUSTATE Cpu;
3556
3557 /*
3558 * Determin 16/32 bit mode.
3559 */
3560 if (f32BitCode == -1)
3561 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3562
3563 /*
3564 * Convert cs:eip to host context address.
3565 * We don't care to much about cross page correctness presently.
3566 */
3567 GCPtrPC = env->segs[R_CS].base + env->eip;
3568 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3569 {
3570 Assert(PGMGetGuestMode(env->pVM) < PGMMODE_AMD64);
3571
3572 /* convert eip to physical address. */
3573 rc = PGMPhysGCPtr2R3PtrByGstCR3(env->pVM,
3574 GCPtrPC,
3575 env->cr[3],
3576 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3577 (void**)&pvPC);
3578 if (RT_FAILURE(rc))
3579 {
3580 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3581 return false;
3582 pvPC = (uint8_t *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3583 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3584 }
3585 }
3586 else
3587 {
3588 /* physical address */
3589 rc = PGMPhysGCPhys2R3Ptr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16,
3590 (void**)&pvPC);
3591 if (RT_FAILURE(rc))
3592 return false;
3593 }
3594
3595 /*
3596 * Disassemble.
3597 */
3598 off = env->eip - (RTGCUINTPTR)pvPC;
3599 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3600 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3601 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3602 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3603 //Cpu.dwUserData[2] = GCPtrPC;
3604
3605 for (i=0;i<nrInstructions;i++)
3606 {
3607 char szOutput[256];
3608 uint32_t cbOp;
3609 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3610 return false;
3611 if (pszPrefix)
3612 Log(("%s: %s", pszPrefix, szOutput));
3613 else
3614 Log(("%s", szOutput));
3615
3616 pvPC += cbOp;
3617 }
3618 return true;
3619}
3620
3621
3622/** @todo need to test the new code, using the old code in the mean while. */
3623#define USE_OLD_DUMP_AND_DISASSEMBLY
3624
3625/**
3626 * Disassembles one instruction and prints it to the log.
3627 *
3628 * @returns Success indicator.
3629 * @param env Pointer to the recompiler CPU structure.
3630 * @param f32BitCode Indicates that whether or not the code should
3631 * be disassembled as 16 or 32 bit. If -1 the CS
3632 * selector will be inspected.
3633 * @param pszPrefix
3634 */
3635bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3636{
3637#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3638 PVM pVM = env->pVM;
3639 RTGCPTR GCPtrPC;
3640 uint8_t *pvPC;
3641 char szOutput[256];
3642 uint32_t cbOp;
3643 RTINTPTR off;
3644 DISCPUSTATE Cpu;
3645
3646
3647 /* Doesn't work in long mode. */
3648 if (env->hflags & HF_LMA_MASK)
3649 return false;
3650
3651 /*
3652 * Determin 16/32 bit mode.
3653 */
3654 if (f32BitCode == -1)
3655 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3656
3657 /*
3658 * Log registers
3659 */
3660 if (LogIs2Enabled())
3661 {
3662 remR3StateUpdate(pVM);
3663 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3664 }
3665
3666 /*
3667 * Convert cs:eip to host context address.
3668 * We don't care to much about cross page correctness presently.
3669 */
3670 GCPtrPC = env->segs[R_CS].base + env->eip;
3671 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3672 {
3673 /* convert eip to physical address. */
3674 int rc = PGMPhysGCPtr2R3PtrByGstCR3(pVM,
3675 GCPtrPC,
3676 env->cr[3],
3677 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3678 (void**)&pvPC);
3679 if (RT_FAILURE(rc))
3680 {
3681 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3682 return false;
3683 pvPC = (uint8_t *)PATMR3QueryPatchMemHC(pVM, NULL)
3684 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3685 }
3686 }
3687 else
3688 {
3689
3690 /* physical address */
3691 int rc = PGMPhysGCPhys2R3Ptr(pVM, (RTGCPHYS)GCPtrPC, 16, (void**)&pvPC);
3692 if (RT_FAILURE(rc))
3693 return false;
3694 }
3695
3696 /*
3697 * Disassemble.
3698 */
3699 off = env->eip - (RTGCUINTPTR)pvPC;
3700 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3701 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3702 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3703 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3704 //Cpu.dwUserData[2] = GCPtrPC;
3705 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3706 return false;
3707
3708 if (!f32BitCode)
3709 {
3710 if (pszPrefix)
3711 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3712 else
3713 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3714 }
3715 else
3716 {
3717 if (pszPrefix)
3718 Log(("%s: %s", pszPrefix, szOutput));
3719 else
3720 Log(("%s", szOutput));
3721 }
3722 return true;
3723
3724#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3725 PVM pVM = env->pVM;
3726 const bool fLog = LogIsEnabled();
3727 const bool fLog2 = LogIs2Enabled();
3728 int rc = VINF_SUCCESS;
3729
3730 /*
3731 * Don't bother if there ain't any log output to do.
3732 */
3733 if (!fLog && !fLog2)
3734 return true;
3735
3736 /*
3737 * Update the state so DBGF reads the correct register values.
3738 */
3739 remR3StateUpdate(pVM);
3740
3741 /*
3742 * Log registers if requested.
3743 */
3744 if (!fLog2)
3745 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3746
3747 /*
3748 * Disassemble to log.
3749 */
3750 if (fLog)
3751 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3752
3753 return RT_SUCCESS(rc);
3754#endif
3755}
3756
3757
3758/**
3759 * Disassemble recompiled code.
3760 *
3761 * @param phFileIgnored Ignored, logfile usually.
3762 * @param pvCode Pointer to the code block.
3763 * @param cb Size of the code block.
3764 */
3765void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3766{
3767 if (LogIs2Enabled())
3768 {
3769 unsigned off = 0;
3770 char szOutput[256];
3771 DISCPUSTATE Cpu;
3772
3773 memset(&Cpu, 0, sizeof(Cpu));
3774#ifdef RT_ARCH_X86
3775 Cpu.mode = CPUMODE_32BIT;
3776#else
3777 Cpu.mode = CPUMODE_64BIT;
3778#endif
3779
3780 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3781 while (off < cb)
3782 {
3783 uint32_t cbInstr;
3784 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3785 RTLogPrintf("%s", szOutput);
3786 else
3787 {
3788 RTLogPrintf("disas error\n");
3789 cbInstr = 1;
3790#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3791 break;
3792#endif
3793 }
3794 off += cbInstr;
3795 }
3796 }
3797 NOREF(phFileIgnored);
3798}
3799
3800
3801/**
3802 * Disassemble guest code.
3803 *
3804 * @param phFileIgnored Ignored, logfile usually.
3805 * @param uCode The guest address of the code to disassemble. (flat?)
3806 * @param cb Number of bytes to disassemble.
3807 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3808 */
3809void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3810{
3811 if (LogIs2Enabled())
3812 {
3813 PVM pVM = cpu_single_env->pVM;
3814 RTSEL cs;
3815 RTGCUINTPTR eip;
3816
3817 /*
3818 * Update the state so DBGF reads the correct register values (flags).
3819 */
3820 remR3StateUpdate(pVM);
3821
3822 /*
3823 * Do the disassembling.
3824 */
3825 RTLogPrintf("Guest Code: PC=%RGp %RGp bytes fFlags=%d\n", uCode, cb, fFlags);
3826 cs = cpu_single_env->segs[R_CS].selector;
3827 eip = uCode - cpu_single_env->segs[R_CS].base;
3828 for (;;)
3829 {
3830 char szBuf[256];
3831 uint32_t cbInstr;
3832 int rc = DBGFR3DisasInstrEx(pVM,
3833 cs,
3834 eip,
3835 0,
3836 szBuf, sizeof(szBuf),
3837 &cbInstr);
3838 if (RT_SUCCESS(rc))
3839 RTLogPrintf("%RGp %s\n", uCode, szBuf);
3840 else
3841 {
3842 RTLogPrintf("%RGp %04x:%RGp: %s\n", uCode, cs, eip, szBuf);
3843 cbInstr = 1;
3844 }
3845
3846 /* next */
3847 if (cb <= cbInstr)
3848 break;
3849 cb -= cbInstr;
3850 uCode += cbInstr;
3851 eip += cbInstr;
3852 }
3853 }
3854 NOREF(phFileIgnored);
3855}
3856
3857
3858/**
3859 * Looks up a guest symbol.
3860 *
3861 * @returns Pointer to symbol name. This is a static buffer.
3862 * @param orig_addr The address in question.
3863 */
3864const char *lookup_symbol(target_ulong orig_addr)
3865{
3866 RTGCINTPTR off = 0;
3867 DBGFSYMBOL Sym;
3868 PVM pVM = cpu_single_env->pVM;
3869 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3870 if (RT_SUCCESS(rc))
3871 {
3872 static char szSym[sizeof(Sym.szName) + 48];
3873 if (!off)
3874 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3875 else if (off > 0)
3876 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3877 else
3878 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3879 return szSym;
3880 }
3881 return "<N/A>";
3882}
3883
3884
3885#undef LOG_GROUP
3886#define LOG_GROUP LOG_GROUP_REM
3887
3888
3889/* -+- FF notifications -+- */
3890
3891
3892/**
3893 * Notification about a pending interrupt.
3894 *
3895 * @param pVM VM Handle.
3896 * @param u8Interrupt Interrupt
3897 * @thread The emulation thread.
3898 */
3899REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3900{
3901 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3902 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3903}
3904
3905/**
3906 * Notification about a pending interrupt.
3907 *
3908 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3909 * @param pVM VM Handle.
3910 * @thread The emulation thread.
3911 */
3912REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3913{
3914 return pVM->rem.s.u32PendingInterrupt;
3915}
3916
3917/**
3918 * Notification about the interrupt FF being set.
3919 *
3920 * @param pVM VM Handle.
3921 * @thread The emulation thread.
3922 */
3923REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3924{
3925 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3926 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3927 if (pVM->rem.s.fInREM)
3928 {
3929 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3930 CPU_INTERRUPT_EXTERNAL_HARD);
3931 }
3932}
3933
3934
3935/**
3936 * Notification about the interrupt FF being set.
3937 *
3938 * @param pVM VM Handle.
3939 * @thread Any.
3940 */
3941REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3942{
3943 LogFlow(("REMR3NotifyInterruptClear:\n"));
3944 if (pVM->rem.s.fInREM)
3945 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3946}
3947
3948
3949/**
3950 * Notification about pending timer(s).
3951 *
3952 * @param pVM VM Handle.
3953 * @thread Any.
3954 */
3955REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3956{
3957#ifndef DEBUG_bird
3958 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3959#endif
3960 if (pVM->rem.s.fInREM)
3961 {
3962 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3963 CPU_INTERRUPT_EXTERNAL_TIMER);
3964 }
3965}
3966
3967
3968/**
3969 * Notification about pending DMA transfers.
3970 *
3971 * @param pVM VM Handle.
3972 * @thread Any.
3973 */
3974REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3975{
3976 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3977 if (pVM->rem.s.fInREM)
3978 {
3979 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3980 CPU_INTERRUPT_EXTERNAL_DMA);
3981 }
3982}
3983
3984
3985/**
3986 * Notification about pending timer(s).
3987 *
3988 * @param pVM VM Handle.
3989 * @thread Any.
3990 */
3991REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3992{
3993 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3994 if (pVM->rem.s.fInREM)
3995 {
3996 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3997 CPU_INTERRUPT_EXTERNAL_EXIT);
3998 }
3999}
4000
4001
4002/**
4003 * Notification about pending FF set by an external thread.
4004 *
4005 * @param pVM VM handle.
4006 * @thread Any.
4007 */
4008REMR3DECL(void) REMR3NotifyFF(PVM pVM)
4009{
4010 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
4011 if (pVM->rem.s.fInREM)
4012 {
4013 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
4014 CPU_INTERRUPT_EXTERNAL_EXIT);
4015 }
4016}
4017
4018
4019#ifdef VBOX_WITH_STATISTICS
4020void remR3ProfileStart(int statcode)
4021{
4022 STAMPROFILEADV *pStat;
4023 switch(statcode)
4024 {
4025 case STATS_EMULATE_SINGLE_INSTR:
4026 pStat = &gStatExecuteSingleInstr;
4027 break;
4028 case STATS_QEMU_COMPILATION:
4029 pStat = &gStatCompilationQEmu;
4030 break;
4031 case STATS_QEMU_RUN_EMULATED_CODE:
4032 pStat = &gStatRunCodeQEmu;
4033 break;
4034 case STATS_QEMU_TOTAL:
4035 pStat = &gStatTotalTimeQEmu;
4036 break;
4037 case STATS_QEMU_RUN_TIMERS:
4038 pStat = &gStatTimers;
4039 break;
4040 case STATS_TLB_LOOKUP:
4041 pStat= &gStatTBLookup;
4042 break;
4043 case STATS_IRQ_HANDLING:
4044 pStat= &gStatIRQ;
4045 break;
4046 case STATS_RAW_CHECK:
4047 pStat = &gStatRawCheck;
4048 break;
4049
4050 default:
4051 AssertMsgFailed(("unknown stat %d\n", statcode));
4052 return;
4053 }
4054 STAM_PROFILE_ADV_START(pStat, a);
4055}
4056
4057
4058void remR3ProfileStop(int statcode)
4059{
4060 STAMPROFILEADV *pStat;
4061 switch(statcode)
4062 {
4063 case STATS_EMULATE_SINGLE_INSTR:
4064 pStat = &gStatExecuteSingleInstr;
4065 break;
4066 case STATS_QEMU_COMPILATION:
4067 pStat = &gStatCompilationQEmu;
4068 break;
4069 case STATS_QEMU_RUN_EMULATED_CODE:
4070 pStat = &gStatRunCodeQEmu;
4071 break;
4072 case STATS_QEMU_TOTAL:
4073 pStat = &gStatTotalTimeQEmu;
4074 break;
4075 case STATS_QEMU_RUN_TIMERS:
4076 pStat = &gStatTimers;
4077 break;
4078 case STATS_TLB_LOOKUP:
4079 pStat= &gStatTBLookup;
4080 break;
4081 case STATS_IRQ_HANDLING:
4082 pStat= &gStatIRQ;
4083 break;
4084 case STATS_RAW_CHECK:
4085 pStat = &gStatRawCheck;
4086 break;
4087 default:
4088 AssertMsgFailed(("unknown stat %d\n", statcode));
4089 return;
4090 }
4091 STAM_PROFILE_ADV_STOP(pStat, a);
4092}
4093#endif
4094
4095/**
4096 * Raise an RC, force rem exit.
4097 *
4098 * @param pVM VM handle.
4099 * @param rc The rc.
4100 */
4101void remR3RaiseRC(PVM pVM, int rc)
4102{
4103 Log(("remR3RaiseRC: rc=%Rrc\n", rc));
4104 Assert(pVM->rem.s.fInREM);
4105 VM_ASSERT_EMT(pVM);
4106 pVM->rem.s.rc = rc;
4107 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
4108}
4109
4110
4111/* -+- timers -+- */
4112
4113uint64_t cpu_get_tsc(CPUX86State *env)
4114{
4115 STAM_COUNTER_INC(&gStatCpuGetTSC);
4116 return TMCpuTickGet(env->pVM);
4117}
4118
4119
4120/* -+- interrupts -+- */
4121
4122void cpu_set_ferr(CPUX86State *env)
4123{
4124 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
4125 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4126}
4127
4128int cpu_get_pic_interrupt(CPUState *env)
4129{
4130 uint8_t u8Interrupt;
4131 int rc;
4132
4133 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4134 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4135 * with the (a)pic.
4136 */
4137 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4138 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4139 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4140 * remove this kludge. */
4141 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4142 {
4143 rc = VINF_SUCCESS;
4144 Assert(env->pVM->rem.s.u32PendingInterrupt <= 255);
4145 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4146 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4147 }
4148 else
4149 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4150
4151 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Rrc\n", u8Interrupt, rc));
4152 if (RT_SUCCESS(rc))
4153 {
4154 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4155 env->interrupt_request |= CPU_INTERRUPT_HARD;
4156 return u8Interrupt;
4157 }
4158 return -1;
4159}
4160
4161
4162/* -+- local apic -+- */
4163
4164void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4165{
4166 int rc = PDMApicSetBase(env->pVM, val);
4167 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Rrc\n", val, rc)); NOREF(rc);
4168}
4169
4170uint64_t cpu_get_apic_base(CPUX86State *env)
4171{
4172 uint64_t u64;
4173 int rc = PDMApicGetBase(env->pVM, &u64);
4174 if (RT_SUCCESS(rc))
4175 {
4176 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4177 return u64;
4178 }
4179 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Rrc)\n", rc));
4180 return 0;
4181}
4182
4183void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4184{
4185 int rc = PDMApicSetTPR(env->pVM, val);
4186 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Rrc\n", val, rc)); NOREF(rc);
4187}
4188
4189uint8_t cpu_get_apic_tpr(CPUX86State *env)
4190{
4191 uint8_t u8;
4192 int rc = PDMApicGetTPR(env->pVM, &u8, NULL);
4193 if (RT_SUCCESS(rc))
4194 {
4195 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4196 return u8;
4197 }
4198 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Rrc)\n", rc));
4199 return 0;
4200}
4201
4202
4203uint64_t cpu_apic_rdmsr(CPUX86State *env, uint32_t reg)
4204{
4205 uint64_t value;
4206 int rc = PDMApicReadMSR(env->pVM, 0/* cpu */, reg, &value);
4207 if (RT_SUCCESS(rc))
4208 {
4209 LogFlow(("cpu_apic_rdms returns %#x\n", value));
4210 return value;
4211 }
4212 /** @todo: exception ? */
4213 LogFlow(("cpu_apic_rdms returns 0 (rc=%Rrc)\n", rc));
4214 return value;
4215}
4216
4217void cpu_apic_wrmsr(CPUX86State *env, uint32_t reg, uint64_t value)
4218{
4219 int rc = PDMApicWriteMSR(env->pVM, 0 /* cpu */, reg, value);
4220 /** @todo: exception if error ? */
4221 LogFlow(("cpu_apic_wrmsr: rc=%Rrc\n", rc)); NOREF(rc);
4222}
4223
4224uint64_t cpu_rdmsr(CPUX86State *env, uint32_t msr)
4225{
4226 return CPUMGetGuestMsr(env->pVM, msr);
4227}
4228
4229void cpu_wrmsr(CPUX86State *env, uint32_t msr, uint64_t val)
4230{
4231 CPUMSetGuestMsr(env->pVM, msr, val);
4232}
4233/* -+- I/O Ports -+- */
4234
4235#undef LOG_GROUP
4236#define LOG_GROUP LOG_GROUP_REM_IOPORT
4237
4238void cpu_outb(CPUState *env, int addr, int val)
4239{
4240 int rc;
4241
4242 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4243 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4244
4245 rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4246 if (RT_LIKELY(rc == VINF_SUCCESS))
4247 return;
4248 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4249 {
4250 Log(("cpu_outb: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4251 remR3RaiseRC(env->pVM, rc);
4252 return;
4253 }
4254 remAbort(rc, __FUNCTION__);
4255}
4256
4257void cpu_outw(CPUState *env, int addr, int val)
4258{
4259 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4260 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4261 if (RT_LIKELY(rc == VINF_SUCCESS))
4262 return;
4263 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4264 {
4265 Log(("cpu_outw: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4266 remR3RaiseRC(env->pVM, rc);
4267 return;
4268 }
4269 remAbort(rc, __FUNCTION__);
4270}
4271
4272void cpu_outl(CPUState *env, int addr, int val)
4273{
4274 int rc;
4275 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4276 rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4277 if (RT_LIKELY(rc == VINF_SUCCESS))
4278 return;
4279 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4280 {
4281 Log(("cpu_outl: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4282 remR3RaiseRC(env->pVM, rc);
4283 return;
4284 }
4285 remAbort(rc, __FUNCTION__);
4286}
4287
4288int cpu_inb(CPUState *env, int addr)
4289{
4290 uint32_t u32 = 0;
4291 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4292 if (RT_LIKELY(rc == VINF_SUCCESS))
4293 {
4294 if (/*addr != 0x61 && */addr != 0x71)
4295 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4296 return (int)u32;
4297 }
4298 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4299 {
4300 Log(("cpu_inb: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4301 remR3RaiseRC(env->pVM, rc);
4302 return (int)u32;
4303 }
4304 remAbort(rc, __FUNCTION__);
4305 return 0xff;
4306}
4307
4308int cpu_inw(CPUState *env, int addr)
4309{
4310 uint32_t u32 = 0;
4311 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4312 if (RT_LIKELY(rc == VINF_SUCCESS))
4313 {
4314 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4315 return (int)u32;
4316 }
4317 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4318 {
4319 Log(("cpu_inw: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4320 remR3RaiseRC(env->pVM, rc);
4321 return (int)u32;
4322 }
4323 remAbort(rc, __FUNCTION__);
4324 return 0xffff;
4325}
4326
4327int cpu_inl(CPUState *env, int addr)
4328{
4329 uint32_t u32 = 0;
4330 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4331 if (RT_LIKELY(rc == VINF_SUCCESS))
4332 {
4333//if (addr==0x01f0 && u32 == 0x6b6d)
4334// loglevel = ~0;
4335 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4336 return (int)u32;
4337 }
4338 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4339 {
4340 Log(("cpu_inl: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4341 remR3RaiseRC(env->pVM, rc);
4342 return (int)u32;
4343 }
4344 remAbort(rc, __FUNCTION__);
4345 return 0xffffffff;
4346}
4347
4348#undef LOG_GROUP
4349#define LOG_GROUP LOG_GROUP_REM
4350
4351
4352/* -+- helpers and misc other interfaces -+- */
4353
4354/**
4355 * Perform the CPUID instruction.
4356 *
4357 * ASMCpuId cannot be invoked from some source files where this is used because of global
4358 * register allocations.
4359 *
4360 * @param env Pointer to the recompiler CPU structure.
4361 * @param uOperator CPUID operation (eax).
4362 * @param pvEAX Where to store eax.
4363 * @param pvEBX Where to store ebx.
4364 * @param pvECX Where to store ecx.
4365 * @param pvEDX Where to store edx.
4366 */
4367void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4368{
4369 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4370}
4371
4372
4373#if 0 /* not used */
4374/**
4375 * Interface for qemu hardware to report back fatal errors.
4376 */
4377void hw_error(const char *pszFormat, ...)
4378{
4379 /*
4380 * Bitch about it.
4381 */
4382 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4383 * this in my Odin32 tree at home! */
4384 va_list args;
4385 va_start(args, pszFormat);
4386 RTLogPrintf("fatal error in virtual hardware:");
4387 RTLogPrintfV(pszFormat, args);
4388 va_end(args);
4389 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4390
4391 /*
4392 * If we're in REM context we'll sync back the state before 'jumping' to
4393 * the EMs failure handling.
4394 */
4395 PVM pVM = cpu_single_env->pVM;
4396 if (pVM->rem.s.fInREM)
4397 REMR3StateBack(pVM);
4398 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4399 AssertMsgFailed(("EMR3FatalError returned!\n"));
4400}
4401#endif
4402
4403/**
4404 * Interface for the qemu cpu to report unhandled situation
4405 * raising a fatal VM error.
4406 */
4407void cpu_abort(CPUState *env, const char *pszFormat, ...)
4408{
4409 va_list args;
4410 PVM pVM;
4411
4412 /*
4413 * Bitch about it.
4414 */
4415#ifndef _MSC_VER
4416 /** @todo: MSVC is right - it's not valid C */
4417 RTLogFlags(NULL, "nodisabled nobuffered");
4418#endif
4419 va_start(args, pszFormat);
4420 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4421 va_end(args);
4422 va_start(args, pszFormat);
4423 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4424 va_end(args);
4425
4426 /*
4427 * If we're in REM context we'll sync back the state before 'jumping' to
4428 * the EMs failure handling.
4429 */
4430 pVM = cpu_single_env->pVM;
4431 if (pVM->rem.s.fInREM)
4432 REMR3StateBack(pVM);
4433 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4434 AssertMsgFailed(("EMR3FatalError returned!\n"));
4435}
4436
4437
4438/**
4439 * Aborts the VM.
4440 *
4441 * @param rc VBox error code.
4442 * @param pszTip Hint about why/when this happend.
4443 */
4444void remAbort(int rc, const char *pszTip)
4445{
4446 PVM pVM;
4447
4448 /*
4449 * Bitch about it.
4450 */
4451 RTLogPrintf("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip);
4452 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip));
4453
4454 /*
4455 * Jump back to where we entered the recompiler.
4456 */
4457 pVM = cpu_single_env->pVM;
4458 if (pVM->rem.s.fInREM)
4459 REMR3StateBack(pVM);
4460 EMR3FatalError(pVM, rc);
4461 AssertMsgFailed(("EMR3FatalError returned!\n"));
4462}
4463
4464
4465/**
4466 * Dumps a linux system call.
4467 * @param pVM VM handle.
4468 */
4469void remR3DumpLnxSyscall(PVM pVM)
4470{
4471 static const char *apsz[] =
4472 {
4473 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4474 "sys_exit",
4475 "sys_fork",
4476 "sys_read",
4477 "sys_write",
4478 "sys_open", /* 5 */
4479 "sys_close",
4480 "sys_waitpid",
4481 "sys_creat",
4482 "sys_link",
4483 "sys_unlink", /* 10 */
4484 "sys_execve",
4485 "sys_chdir",
4486 "sys_time",
4487 "sys_mknod",
4488 "sys_chmod", /* 15 */
4489 "sys_lchown16",
4490 "sys_ni_syscall", /* old break syscall holder */
4491 "sys_stat",
4492 "sys_lseek",
4493 "sys_getpid", /* 20 */
4494 "sys_mount",
4495 "sys_oldumount",
4496 "sys_setuid16",
4497 "sys_getuid16",
4498 "sys_stime", /* 25 */
4499 "sys_ptrace",
4500 "sys_alarm",
4501 "sys_fstat",
4502 "sys_pause",
4503 "sys_utime", /* 30 */
4504 "sys_ni_syscall", /* old stty syscall holder */
4505 "sys_ni_syscall", /* old gtty syscall holder */
4506 "sys_access",
4507 "sys_nice",
4508 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4509 "sys_sync",
4510 "sys_kill",
4511 "sys_rename",
4512 "sys_mkdir",
4513 "sys_rmdir", /* 40 */
4514 "sys_dup",
4515 "sys_pipe",
4516 "sys_times",
4517 "sys_ni_syscall", /* old prof syscall holder */
4518 "sys_brk", /* 45 */
4519 "sys_setgid16",
4520 "sys_getgid16",
4521 "sys_signal",
4522 "sys_geteuid16",
4523 "sys_getegid16", /* 50 */
4524 "sys_acct",
4525 "sys_umount", /* recycled never used phys() */
4526 "sys_ni_syscall", /* old lock syscall holder */
4527 "sys_ioctl",
4528 "sys_fcntl", /* 55 */
4529 "sys_ni_syscall", /* old mpx syscall holder */
4530 "sys_setpgid",
4531 "sys_ni_syscall", /* old ulimit syscall holder */
4532 "sys_olduname",
4533 "sys_umask", /* 60 */
4534 "sys_chroot",
4535 "sys_ustat",
4536 "sys_dup2",
4537 "sys_getppid",
4538 "sys_getpgrp", /* 65 */
4539 "sys_setsid",
4540 "sys_sigaction",
4541 "sys_sgetmask",
4542 "sys_ssetmask",
4543 "sys_setreuid16", /* 70 */
4544 "sys_setregid16",
4545 "sys_sigsuspend",
4546 "sys_sigpending",
4547 "sys_sethostname",
4548 "sys_setrlimit", /* 75 */
4549 "sys_old_getrlimit",
4550 "sys_getrusage",
4551 "sys_gettimeofday",
4552 "sys_settimeofday",
4553 "sys_getgroups16", /* 80 */
4554 "sys_setgroups16",
4555 "old_select",
4556 "sys_symlink",
4557 "sys_lstat",
4558 "sys_readlink", /* 85 */
4559 "sys_uselib",
4560 "sys_swapon",
4561 "sys_reboot",
4562 "old_readdir",
4563 "old_mmap", /* 90 */
4564 "sys_munmap",
4565 "sys_truncate",
4566 "sys_ftruncate",
4567 "sys_fchmod",
4568 "sys_fchown16", /* 95 */
4569 "sys_getpriority",
4570 "sys_setpriority",
4571 "sys_ni_syscall", /* old profil syscall holder */
4572 "sys_statfs",
4573 "sys_fstatfs", /* 100 */
4574 "sys_ioperm",
4575 "sys_socketcall",
4576 "sys_syslog",
4577 "sys_setitimer",
4578 "sys_getitimer", /* 105 */
4579 "sys_newstat",
4580 "sys_newlstat",
4581 "sys_newfstat",
4582 "sys_uname",
4583 "sys_iopl", /* 110 */
4584 "sys_vhangup",
4585 "sys_ni_syscall", /* old "idle" system call */
4586 "sys_vm86old",
4587 "sys_wait4",
4588 "sys_swapoff", /* 115 */
4589 "sys_sysinfo",
4590 "sys_ipc",
4591 "sys_fsync",
4592 "sys_sigreturn",
4593 "sys_clone", /* 120 */
4594 "sys_setdomainname",
4595 "sys_newuname",
4596 "sys_modify_ldt",
4597 "sys_adjtimex",
4598 "sys_mprotect", /* 125 */
4599 "sys_sigprocmask",
4600 "sys_ni_syscall", /* old "create_module" */
4601 "sys_init_module",
4602 "sys_delete_module",
4603 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4604 "sys_quotactl",
4605 "sys_getpgid",
4606 "sys_fchdir",
4607 "sys_bdflush",
4608 "sys_sysfs", /* 135 */
4609 "sys_personality",
4610 "sys_ni_syscall", /* reserved for afs_syscall */
4611 "sys_setfsuid16",
4612 "sys_setfsgid16",
4613 "sys_llseek", /* 140 */
4614 "sys_getdents",
4615 "sys_select",
4616 "sys_flock",
4617 "sys_msync",
4618 "sys_readv", /* 145 */
4619 "sys_writev",
4620 "sys_getsid",
4621 "sys_fdatasync",
4622 "sys_sysctl",
4623 "sys_mlock", /* 150 */
4624 "sys_munlock",
4625 "sys_mlockall",
4626 "sys_munlockall",
4627 "sys_sched_setparam",
4628 "sys_sched_getparam", /* 155 */
4629 "sys_sched_setscheduler",
4630 "sys_sched_getscheduler",
4631 "sys_sched_yield",
4632 "sys_sched_get_priority_max",
4633 "sys_sched_get_priority_min", /* 160 */
4634 "sys_sched_rr_get_interval",
4635 "sys_nanosleep",
4636 "sys_mremap",
4637 "sys_setresuid16",
4638 "sys_getresuid16", /* 165 */
4639 "sys_vm86",
4640 "sys_ni_syscall", /* Old sys_query_module */
4641 "sys_poll",
4642 "sys_nfsservctl",
4643 "sys_setresgid16", /* 170 */
4644 "sys_getresgid16",
4645 "sys_prctl",
4646 "sys_rt_sigreturn",
4647 "sys_rt_sigaction",
4648 "sys_rt_sigprocmask", /* 175 */
4649 "sys_rt_sigpending",
4650 "sys_rt_sigtimedwait",
4651 "sys_rt_sigqueueinfo",
4652 "sys_rt_sigsuspend",
4653 "sys_pread64", /* 180 */
4654 "sys_pwrite64",
4655 "sys_chown16",
4656 "sys_getcwd",
4657 "sys_capget",
4658 "sys_capset", /* 185 */
4659 "sys_sigaltstack",
4660 "sys_sendfile",
4661 "sys_ni_syscall", /* reserved for streams1 */
4662 "sys_ni_syscall", /* reserved for streams2 */
4663 "sys_vfork", /* 190 */
4664 "sys_getrlimit",
4665 "sys_mmap2",
4666 "sys_truncate64",
4667 "sys_ftruncate64",
4668 "sys_stat64", /* 195 */
4669 "sys_lstat64",
4670 "sys_fstat64",
4671 "sys_lchown",
4672 "sys_getuid",
4673 "sys_getgid", /* 200 */
4674 "sys_geteuid",
4675 "sys_getegid",
4676 "sys_setreuid",
4677 "sys_setregid",
4678 "sys_getgroups", /* 205 */
4679 "sys_setgroups",
4680 "sys_fchown",
4681 "sys_setresuid",
4682 "sys_getresuid",
4683 "sys_setresgid", /* 210 */
4684 "sys_getresgid",
4685 "sys_chown",
4686 "sys_setuid",
4687 "sys_setgid",
4688 "sys_setfsuid", /* 215 */
4689 "sys_setfsgid",
4690 "sys_pivot_root",
4691 "sys_mincore",
4692 "sys_madvise",
4693 "sys_getdents64", /* 220 */
4694 "sys_fcntl64",
4695 "sys_ni_syscall", /* reserved for TUX */
4696 "sys_ni_syscall",
4697 "sys_gettid",
4698 "sys_readahead", /* 225 */
4699 "sys_setxattr",
4700 "sys_lsetxattr",
4701 "sys_fsetxattr",
4702 "sys_getxattr",
4703 "sys_lgetxattr", /* 230 */
4704 "sys_fgetxattr",
4705 "sys_listxattr",
4706 "sys_llistxattr",
4707 "sys_flistxattr",
4708 "sys_removexattr", /* 235 */
4709 "sys_lremovexattr",
4710 "sys_fremovexattr",
4711 "sys_tkill",
4712 "sys_sendfile64",
4713 "sys_futex", /* 240 */
4714 "sys_sched_setaffinity",
4715 "sys_sched_getaffinity",
4716 "sys_set_thread_area",
4717 "sys_get_thread_area",
4718 "sys_io_setup", /* 245 */
4719 "sys_io_destroy",
4720 "sys_io_getevents",
4721 "sys_io_submit",
4722 "sys_io_cancel",
4723 "sys_fadvise64", /* 250 */
4724 "sys_ni_syscall",
4725 "sys_exit_group",
4726 "sys_lookup_dcookie",
4727 "sys_epoll_create",
4728 "sys_epoll_ctl", /* 255 */
4729 "sys_epoll_wait",
4730 "sys_remap_file_pages",
4731 "sys_set_tid_address",
4732 "sys_timer_create",
4733 "sys_timer_settime", /* 260 */
4734 "sys_timer_gettime",
4735 "sys_timer_getoverrun",
4736 "sys_timer_delete",
4737 "sys_clock_settime",
4738 "sys_clock_gettime", /* 265 */
4739 "sys_clock_getres",
4740 "sys_clock_nanosleep",
4741 "sys_statfs64",
4742 "sys_fstatfs64",
4743 "sys_tgkill", /* 270 */
4744 "sys_utimes",
4745 "sys_fadvise64_64",
4746 "sys_ni_syscall" /* sys_vserver */
4747 };
4748
4749 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4750 switch (uEAX)
4751 {
4752 default:
4753 if (uEAX < RT_ELEMENTS(apsz))
4754 Log(("REM: linux syscall %3d: %s (eip=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4755 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4756 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4757 else
4758 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4759 break;
4760
4761 }
4762}
4763
4764
4765/**
4766 * Dumps an OpenBSD system call.
4767 * @param pVM VM handle.
4768 */
4769void remR3DumpOBsdSyscall(PVM pVM)
4770{
4771 static const char *apsz[] =
4772 {
4773 "SYS_syscall", //0
4774 "SYS_exit", //1
4775 "SYS_fork", //2
4776 "SYS_read", //3
4777 "SYS_write", //4
4778 "SYS_open", //5
4779 "SYS_close", //6
4780 "SYS_wait4", //7
4781 "SYS_8",
4782 "SYS_link", //9
4783 "SYS_unlink", //10
4784 "SYS_11",
4785 "SYS_chdir", //12
4786 "SYS_fchdir", //13
4787 "SYS_mknod", //14
4788 "SYS_chmod", //15
4789 "SYS_chown", //16
4790 "SYS_break", //17
4791 "SYS_18",
4792 "SYS_19",
4793 "SYS_getpid", //20
4794 "SYS_mount", //21
4795 "SYS_unmount", //22
4796 "SYS_setuid", //23
4797 "SYS_getuid", //24
4798 "SYS_geteuid", //25
4799 "SYS_ptrace", //26
4800 "SYS_recvmsg", //27
4801 "SYS_sendmsg", //28
4802 "SYS_recvfrom", //29
4803 "SYS_accept", //30
4804 "SYS_getpeername", //31
4805 "SYS_getsockname", //32
4806 "SYS_access", //33
4807 "SYS_chflags", //34
4808 "SYS_fchflags", //35
4809 "SYS_sync", //36
4810 "SYS_kill", //37
4811 "SYS_38",
4812 "SYS_getppid", //39
4813 "SYS_40",
4814 "SYS_dup", //41
4815 "SYS_opipe", //42
4816 "SYS_getegid", //43
4817 "SYS_profil", //44
4818 "SYS_ktrace", //45
4819 "SYS_sigaction", //46
4820 "SYS_getgid", //47
4821 "SYS_sigprocmask", //48
4822 "SYS_getlogin", //49
4823 "SYS_setlogin", //50
4824 "SYS_acct", //51
4825 "SYS_sigpending", //52
4826 "SYS_osigaltstack", //53
4827 "SYS_ioctl", //54
4828 "SYS_reboot", //55
4829 "SYS_revoke", //56
4830 "SYS_symlink", //57
4831 "SYS_readlink", //58
4832 "SYS_execve", //59
4833 "SYS_umask", //60
4834 "SYS_chroot", //61
4835 "SYS_62",
4836 "SYS_63",
4837 "SYS_64",
4838 "SYS_65",
4839 "SYS_vfork", //66
4840 "SYS_67",
4841 "SYS_68",
4842 "SYS_sbrk", //69
4843 "SYS_sstk", //70
4844 "SYS_61",
4845 "SYS_vadvise", //72
4846 "SYS_munmap", //73
4847 "SYS_mprotect", //74
4848 "SYS_madvise", //75
4849 "SYS_76",
4850 "SYS_77",
4851 "SYS_mincore", //78
4852 "SYS_getgroups", //79
4853 "SYS_setgroups", //80
4854 "SYS_getpgrp", //81
4855 "SYS_setpgid", //82
4856 "SYS_setitimer", //83
4857 "SYS_84",
4858 "SYS_85",
4859 "SYS_getitimer", //86
4860 "SYS_87",
4861 "SYS_88",
4862 "SYS_89",
4863 "SYS_dup2", //90
4864 "SYS_91",
4865 "SYS_fcntl", //92
4866 "SYS_select", //93
4867 "SYS_94",
4868 "SYS_fsync", //95
4869 "SYS_setpriority", //96
4870 "SYS_socket", //97
4871 "SYS_connect", //98
4872 "SYS_99",
4873 "SYS_getpriority", //100
4874 "SYS_101",
4875 "SYS_102",
4876 "SYS_sigreturn", //103
4877 "SYS_bind", //104
4878 "SYS_setsockopt", //105
4879 "SYS_listen", //106
4880 "SYS_107",
4881 "SYS_108",
4882 "SYS_109",
4883 "SYS_110",
4884 "SYS_sigsuspend", //111
4885 "SYS_112",
4886 "SYS_113",
4887 "SYS_114",
4888 "SYS_115",
4889 "SYS_gettimeofday", //116
4890 "SYS_getrusage", //117
4891 "SYS_getsockopt", //118
4892 "SYS_119",
4893 "SYS_readv", //120
4894 "SYS_writev", //121
4895 "SYS_settimeofday", //122
4896 "SYS_fchown", //123
4897 "SYS_fchmod", //124
4898 "SYS_125",
4899 "SYS_setreuid", //126
4900 "SYS_setregid", //127
4901 "SYS_rename", //128
4902 "SYS_129",
4903 "SYS_130",
4904 "SYS_flock", //131
4905 "SYS_mkfifo", //132
4906 "SYS_sendto", //133
4907 "SYS_shutdown", //134
4908 "SYS_socketpair", //135
4909 "SYS_mkdir", //136
4910 "SYS_rmdir", //137
4911 "SYS_utimes", //138
4912 "SYS_139",
4913 "SYS_adjtime", //140
4914 "SYS_141",
4915 "SYS_142",
4916 "SYS_143",
4917 "SYS_144",
4918 "SYS_145",
4919 "SYS_146",
4920 "SYS_setsid", //147
4921 "SYS_quotactl", //148
4922 "SYS_149",
4923 "SYS_150",
4924 "SYS_151",
4925 "SYS_152",
4926 "SYS_153",
4927 "SYS_154",
4928 "SYS_nfssvc", //155
4929 "SYS_156",
4930 "SYS_157",
4931 "SYS_158",
4932 "SYS_159",
4933 "SYS_160",
4934 "SYS_getfh", //161
4935 "SYS_162",
4936 "SYS_163",
4937 "SYS_164",
4938 "SYS_sysarch", //165
4939 "SYS_166",
4940 "SYS_167",
4941 "SYS_168",
4942 "SYS_169",
4943 "SYS_170",
4944 "SYS_171",
4945 "SYS_172",
4946 "SYS_pread", //173
4947 "SYS_pwrite", //174
4948 "SYS_175",
4949 "SYS_176",
4950 "SYS_177",
4951 "SYS_178",
4952 "SYS_179",
4953 "SYS_180",
4954 "SYS_setgid", //181
4955 "SYS_setegid", //182
4956 "SYS_seteuid", //183
4957 "SYS_lfs_bmapv", //184
4958 "SYS_lfs_markv", //185
4959 "SYS_lfs_segclean", //186
4960 "SYS_lfs_segwait", //187
4961 "SYS_188",
4962 "SYS_189",
4963 "SYS_190",
4964 "SYS_pathconf", //191
4965 "SYS_fpathconf", //192
4966 "SYS_swapctl", //193
4967 "SYS_getrlimit", //194
4968 "SYS_setrlimit", //195
4969 "SYS_getdirentries", //196
4970 "SYS_mmap", //197
4971 "SYS___syscall", //198
4972 "SYS_lseek", //199
4973 "SYS_truncate", //200
4974 "SYS_ftruncate", //201
4975 "SYS___sysctl", //202
4976 "SYS_mlock", //203
4977 "SYS_munlock", //204
4978 "SYS_205",
4979 "SYS_futimes", //206
4980 "SYS_getpgid", //207
4981 "SYS_xfspioctl", //208
4982 "SYS_209",
4983 "SYS_210",
4984 "SYS_211",
4985 "SYS_212",
4986 "SYS_213",
4987 "SYS_214",
4988 "SYS_215",
4989 "SYS_216",
4990 "SYS_217",
4991 "SYS_218",
4992 "SYS_219",
4993 "SYS_220",
4994 "SYS_semget", //221
4995 "SYS_222",
4996 "SYS_223",
4997 "SYS_224",
4998 "SYS_msgget", //225
4999 "SYS_msgsnd", //226
5000 "SYS_msgrcv", //227
5001 "SYS_shmat", //228
5002 "SYS_229",
5003 "SYS_shmdt", //230
5004 "SYS_231",
5005 "SYS_clock_gettime", //232
5006 "SYS_clock_settime", //233
5007 "SYS_clock_getres", //234
5008 "SYS_235",
5009 "SYS_236",
5010 "SYS_237",
5011 "SYS_238",
5012 "SYS_239",
5013 "SYS_nanosleep", //240
5014 "SYS_241",
5015 "SYS_242",
5016 "SYS_243",
5017 "SYS_244",
5018 "SYS_245",
5019 "SYS_246",
5020 "SYS_247",
5021 "SYS_248",
5022 "SYS_249",
5023 "SYS_minherit", //250
5024 "SYS_rfork", //251
5025 "SYS_poll", //252
5026 "SYS_issetugid", //253
5027 "SYS_lchown", //254
5028 "SYS_getsid", //255
5029 "SYS_msync", //256
5030 "SYS_257",
5031 "SYS_258",
5032 "SYS_259",
5033 "SYS_getfsstat", //260
5034 "SYS_statfs", //261
5035 "SYS_fstatfs", //262
5036 "SYS_pipe", //263
5037 "SYS_fhopen", //264
5038 "SYS_265",
5039 "SYS_fhstatfs", //266
5040 "SYS_preadv", //267
5041 "SYS_pwritev", //268
5042 "SYS_kqueue", //269
5043 "SYS_kevent", //270
5044 "SYS_mlockall", //271
5045 "SYS_munlockall", //272
5046 "SYS_getpeereid", //273
5047 "SYS_274",
5048 "SYS_275",
5049 "SYS_276",
5050 "SYS_277",
5051 "SYS_278",
5052 "SYS_279",
5053 "SYS_280",
5054 "SYS_getresuid", //281
5055 "SYS_setresuid", //282
5056 "SYS_getresgid", //283
5057 "SYS_setresgid", //284
5058 "SYS_285",
5059 "SYS_mquery", //286
5060 "SYS_closefrom", //287
5061 "SYS_sigaltstack", //288
5062 "SYS_shmget", //289
5063 "SYS_semop", //290
5064 "SYS_stat", //291
5065 "SYS_fstat", //292
5066 "SYS_lstat", //293
5067 "SYS_fhstat", //294
5068 "SYS___semctl", //295
5069 "SYS_shmctl", //296
5070 "SYS_msgctl", //297
5071 "SYS_MAXSYSCALL", //298
5072 //299
5073 //300
5074 };
5075 uint32_t uEAX;
5076 if (!LogIsEnabled())
5077 return;
5078 uEAX = CPUMGetGuestEAX(pVM);
5079 switch (uEAX)
5080 {
5081 default:
5082 if (uEAX < RT_ELEMENTS(apsz))
5083 {
5084 uint32_t au32Args[8] = {0};
5085 PGMPhysSimpleReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
5086 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
5087 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
5088 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
5089 }
5090 else
5091 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
5092 break;
5093 }
5094}
5095
5096
5097#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
5098/**
5099 * The Dll main entry point (stub).
5100 */
5101bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
5102{
5103 return true;
5104}
5105
5106void *memcpy(void *dst, const void *src, size_t size)
5107{
5108 uint8_t*pbDst = dst, *pbSrc = src;
5109 while (size-- > 0)
5110 *pbDst++ = *pbSrc++;
5111 return dst;
5112}
5113
5114#endif
5115
5116void cpu_smm_update(CPUState* env)
5117{
5118}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette