VirtualBox

source: vbox/trunk/src/recompiler_new/VBoxRecompiler.c@ 15603

Last change on this file since 15603 was 15300, checked in by vboxsync, 16 years ago

dynamic REM selector

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 156.1 KB
Line 
1/* $Id: VBoxRecompiler.c 15300 2008-12-11 12:02:12Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "osdep.h"
29#include "exec-all.h"
30#include "config.h"
31#include "cpu-all.h"
32
33void cpu_exec_init_all(unsigned long tb_size);
34
35#include <VBox/rem.h>
36#include <VBox/vmapi.h>
37#include <VBox/tm.h>
38#include <VBox/ssm.h>
39#include <VBox/em.h>
40#include <VBox/trpm.h>
41#include <VBox/iom.h>
42#include <VBox/mm.h>
43#include <VBox/pgm.h>
44#include <VBox/pdm.h>
45#include <VBox/dbgf.h>
46#include <VBox/dbg.h>
47#include <VBox/hwaccm.h>
48#include <VBox/patm.h>
49#include <VBox/csam.h>
50#include "REMInternal.h"
51#include <VBox/vm.h>
52#include <VBox/param.h>
53#include <VBox/err.h>
54
55#include <VBox/log.h>
56#include <iprt/semaphore.h>
57#include <iprt/asm.h>
58#include <iprt/assert.h>
59#include <iprt/thread.h>
60#include <iprt/string.h>
61
62/* Don't wanna include everything. */
63extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
64extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
65extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
66extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
67extern void tlb_flush(CPUState *env, int flush_global);
68extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
69extern void sync_ldtr(CPUX86State *env1, int selector);
70extern int sync_tr(CPUX86State *env1, int selector);
71
72#ifdef VBOX_STRICT
73unsigned long get_phys_page_offset(target_ulong addr);
74#endif
75
76/*******************************************************************************
77* Defined Constants And Macros *
78*******************************************************************************/
79
80/** Copy 80-bit fpu register at pSrc to pDst.
81 * This is probably faster than *calling* memcpy.
82 */
83#define REM_COPY_FPU_REG(pDst, pSrc) \
84 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
85
86
87/*******************************************************************************
88* Internal Functions *
89*******************************************************************************/
90static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
91static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
92static void remR3StateUpdate(PVM pVM);
93
94static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
95static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
96static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
97static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
98static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
99static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
100
101static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
102static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
103static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
104static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
105static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
106static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
107
108
109/*******************************************************************************
110* Global Variables *
111*******************************************************************************/
112
113/** @todo Move stats to REM::s some rainy day we have nothing do to. */
114#ifdef VBOX_WITH_STATISTICS
115static STAMPROFILEADV gStatExecuteSingleInstr;
116static STAMPROFILEADV gStatCompilationQEmu;
117static STAMPROFILEADV gStatRunCodeQEmu;
118static STAMPROFILEADV gStatTotalTimeQEmu;
119static STAMPROFILEADV gStatTimers;
120static STAMPROFILEADV gStatTBLookup;
121static STAMPROFILEADV gStatIRQ;
122static STAMPROFILEADV gStatRawCheck;
123static STAMPROFILEADV gStatMemRead;
124static STAMPROFILEADV gStatMemWrite;
125static STAMPROFILE gStatGCPhys2HCVirt;
126static STAMPROFILE gStatHCVirt2GCPhys;
127static STAMCOUNTER gStatCpuGetTSC;
128static STAMCOUNTER gStatRefuseTFInhibit;
129static STAMCOUNTER gStatRefuseVM86;
130static STAMCOUNTER gStatRefusePaging;
131static STAMCOUNTER gStatRefusePAE;
132static STAMCOUNTER gStatRefuseIOPLNot0;
133static STAMCOUNTER gStatRefuseIF0;
134static STAMCOUNTER gStatRefuseCode16;
135static STAMCOUNTER gStatRefuseWP0;
136static STAMCOUNTER gStatRefuseRing1or2;
137static STAMCOUNTER gStatRefuseCanExecute;
138static STAMCOUNTER gStatREMGDTChange;
139static STAMCOUNTER gStatREMIDTChange;
140static STAMCOUNTER gStatREMLDTRChange;
141static STAMCOUNTER gStatREMTRChange;
142static STAMCOUNTER gStatSelOutOfSync[6];
143static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
144static STAMCOUNTER gStatFlushTBs;
145#endif
146
147/*
148 * Global stuff.
149 */
150
151/** MMIO read callbacks. */
152CPUReadMemoryFunc *g_apfnMMIORead[3] =
153{
154 remR3MMIOReadU8,
155 remR3MMIOReadU16,
156 remR3MMIOReadU32
157};
158
159/** MMIO write callbacks. */
160CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
161{
162 remR3MMIOWriteU8,
163 remR3MMIOWriteU16,
164 remR3MMIOWriteU32
165};
166
167/** Handler read callbacks. */
168CPUReadMemoryFunc *g_apfnHandlerRead[3] =
169{
170 remR3HandlerReadU8,
171 remR3HandlerReadU16,
172 remR3HandlerReadU32
173};
174
175/** Handler write callbacks. */
176CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
177{
178 remR3HandlerWriteU8,
179 remR3HandlerWriteU16,
180 remR3HandlerWriteU32
181};
182
183
184#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
185/*
186 * Debugger commands.
187 */
188static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
189
190/** '.remstep' arguments. */
191static const DBGCVARDESC g_aArgRemStep[] =
192{
193 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
194 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
195};
196
197/** Command descriptors. */
198static const DBGCCMD g_aCmds[] =
199{
200 {
201 .pszCmd ="remstep",
202 .cArgsMin = 0,
203 .cArgsMax = 1,
204 .paArgDescs = &g_aArgRemStep[0],
205 .cArgDescs = RT_ELEMENTS(g_aArgRemStep),
206 .pResultDesc = NULL,
207 .fFlags = 0,
208 .pfnHandler = remR3CmdDisasEnableStepping,
209 .pszSyntax = "[on/off]",
210 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
211 "If no arguments show the current state."
212 }
213};
214#endif
215
216
217/*******************************************************************************
218* Internal Functions *
219*******************************************************************************/
220void remAbort(int rc, const char *pszTip);
221extern int testmath(void);
222
223/* Put them here to avoid unused variable warning. */
224AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
225#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
226//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
227/* Why did this have to be identical?? */
228AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
229#else
230AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
231#endif
232
233
234/* Prologue code, must be in lower 4G to simplify jumps to/from generated code */
235uint8_t* code_gen_prologue;
236
237/**
238 * Initializes the REM.
239 *
240 * @returns VBox status code.
241 * @param pVM The VM to operate on.
242 */
243REMR3DECL(int) REMR3Init(PVM pVM)
244{
245 uint32_t u32Dummy;
246 int rc;
247
248#ifdef VBOX_ENABLE_VBOXREM64
249 LogRel(("Using 64-bit aware REM\n"));
250#endif
251
252 /*
253 * Assert sanity.
254 */
255 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
256 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
257 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
258#if defined(DEBUG) && !defined(RT_OS_SOLARIS) /// @todo fix the solaris math stuff.
259 Assert(!testmath());
260#endif
261 /*
262 * Init some internal data members.
263 */
264 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
265 pVM->rem.s.Env.pVM = pVM;
266#ifdef CPU_RAW_MODE_INIT
267 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
268#endif
269
270 /* ctx. */
271 pVM->rem.s.pCtx = CPUMQueryGuestCtxPtr(pVM);
272 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
273
274 /* ignore all notifications */
275 pVM->rem.s.fIgnoreAll = true;
276
277 code_gen_prologue = RTMemExecAlloc(_1K);
278
279 cpu_exec_init_all(0);
280
281 /*
282 * Init the recompiler.
283 */
284 if (!cpu_x86_init(&pVM->rem.s.Env, "vbox"))
285 {
286 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
287 return VERR_GENERAL_FAILURE;
288 }
289 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
290 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
291
292 /* allocate code buffer for single instruction emulation. */
293 pVM->rem.s.Env.cbCodeBuffer = 4096;
294 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
295 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
296
297 /* finally, set the cpu_single_env global. */
298 cpu_single_env = &pVM->rem.s.Env;
299
300 /* Nothing is pending by default */
301 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
302
303 /*
304 * Register ram types.
305 */
306 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
307 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
308 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
309 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
310 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
311
312 /* stop ignoring. */
313 pVM->rem.s.fIgnoreAll = false;
314
315 /*
316 * Register the saved state data unit.
317 */
318 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
319 NULL, remR3Save, NULL,
320 NULL, remR3Load, NULL);
321 if (RT_FAILURE(rc))
322 return rc;
323
324#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
325 /*
326 * Debugger commands.
327 */
328 static bool fRegisteredCmds = false;
329 if (!fRegisteredCmds)
330 {
331 int rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
332 if (RT_SUCCESS(rc))
333 fRegisteredCmds = true;
334 }
335#endif
336
337#ifdef VBOX_WITH_STATISTICS
338 /*
339 * Statistics.
340 */
341 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
342 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
343 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
344 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
345 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
346 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
347 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
348 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
349 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
350 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
351 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
352 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
353
354 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
355
356 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
357 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
358 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
359 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
360 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
361 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
362 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
363 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
364 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
365 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
366 STAM_REG(pVM, &gStatFlushTBs, STAMTYPE_COUNTER, "/REM/FlushTB", STAMUNIT_OCCURENCES, "Number of TB flushes");
367
368 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
369 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
370 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
371 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
372
373 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
374 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
375 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
376 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
377 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
378 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
379
380 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
381 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
382 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
383 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
384 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
385 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
386
387
388#endif
389
390#ifdef DEBUG_ALL_LOGGING
391 loglevel = ~0;
392 logfile = fopen("/tmp/vbox-qemu.log", "w");
393#endif
394
395 return rc;
396}
397
398
399/**
400 * Terminates the REM.
401 *
402 * Termination means cleaning up and freeing all resources,
403 * the VM it self is at this point powered off or suspended.
404 *
405 * @returns VBox status code.
406 * @param pVM The VM to operate on.
407 */
408REMR3DECL(int) REMR3Term(PVM pVM)
409{
410 return VINF_SUCCESS;
411}
412
413
414/**
415 * The VM is being reset.
416 *
417 * For the REM component this means to call the cpu_reset() and
418 * reinitialize some state variables.
419 *
420 * @param pVM VM handle.
421 */
422REMR3DECL(void) REMR3Reset(PVM pVM)
423{
424 /*
425 * Reset the REM cpu.
426 */
427 pVM->rem.s.fIgnoreAll = true;
428 cpu_reset(&pVM->rem.s.Env);
429 pVM->rem.s.cInvalidatedPages = 0;
430 pVM->rem.s.fIgnoreAll = false;
431
432 /* Clear raw ring 0 init state */
433 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
434
435 /* Flush the TBs the next time we execute code here. */
436 pVM->rem.s.fFlushTBs = true;
437}
438
439
440/**
441 * Execute state save operation.
442 *
443 * @returns VBox status code.
444 * @param pVM VM Handle.
445 * @param pSSM SSM operation handle.
446 */
447static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
448{
449 /*
450 * Save the required CPU Env bits.
451 * (Not much because we're never in REM when doing the save.)
452 */
453 PREM pRem = &pVM->rem.s;
454 LogFlow(("remR3Save:\n"));
455 Assert(!pRem->fInREM);
456 SSMR3PutU32(pSSM, pRem->Env.hflags);
457 SSMR3PutU32(pSSM, ~0); /* separator */
458
459 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
460 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
461 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
462
463 return SSMR3PutU32(pSSM, ~0); /* terminator */
464}
465
466
467/**
468 * Execute state load operation.
469 *
470 * @returns VBox status code.
471 * @param pVM VM Handle.
472 * @param pSSM SSM operation handle.
473 * @param u32Version Data layout version.
474 */
475static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
476{
477 uint32_t u32Dummy;
478 uint32_t fRawRing0 = false;
479 uint32_t u32Sep;
480 int rc;
481 PREM pRem;
482 LogFlow(("remR3Load:\n"));
483
484 /*
485 * Validate version.
486 */
487 if ( u32Version != REM_SAVED_STATE_VERSION
488 && u32Version != REM_SAVED_STATE_VERSION_VER1_6)
489 {
490 AssertMsgFailed(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
491 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
492 }
493
494 /*
495 * Do a reset to be on the safe side...
496 */
497 REMR3Reset(pVM);
498
499 /*
500 * Ignore all ignorable notifications.
501 * (Not doing this will cause serious trouble.)
502 */
503 pVM->rem.s.fIgnoreAll = true;
504
505 /*
506 * Load the required CPU Env bits.
507 * (Not much because we're never in REM when doing the save.)
508 */
509 pRem = &pVM->rem.s;
510 Assert(!pRem->fInREM);
511 SSMR3GetU32(pSSM, &pRem->Env.hflags);
512 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
513 {
514 /* Redundant REM CPU state has to be loaded, but can be ignored. */
515 CPUX86State_Ver16 temp;
516 SSMR3GetMem(pSSM, &temp, RT_OFFSETOF(CPUX86State_Ver16, jmp_env));
517 }
518
519 rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
520 if (RT_FAILURE(rc))
521 return rc;
522 if (u32Sep != ~0U)
523 {
524 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
525 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
526 }
527
528 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
529 SSMR3GetUInt(pSSM, &fRawRing0);
530 if (fRawRing0)
531 pRem->Env.state |= CPU_RAW_RING0;
532
533 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
534 {
535 unsigned i;
536
537 /*
538 * Load the REM stuff.
539 */
540 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
541 if (RT_FAILURE(rc))
542 return rc;
543 if (pRem->cInvalidatedPages > RT_ELEMENTS(pRem->aGCPtrInvalidatedPages))
544 {
545 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
546 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
547 }
548 for (i = 0; i < pRem->cInvalidatedPages; i++)
549 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
550 }
551
552 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
553 if (RT_FAILURE(rc))
554 return rc;
555
556 /* check the terminator. */
557 rc = SSMR3GetU32(pSSM, &u32Sep);
558 if (RT_FAILURE(rc))
559 return rc;
560 if (u32Sep != ~0U)
561 {
562 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
563 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
564 }
565
566 /*
567 * Get the CPUID features.
568 */
569 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
570 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
571
572 /*
573 * Sync the Load Flush the TLB
574 */
575 tlb_flush(&pRem->Env, 1);
576
577 /*
578 * Stop ignoring ignornable notifications.
579 */
580 pVM->rem.s.fIgnoreAll = false;
581
582 /*
583 * Sync the whole CPU state when executing code in the recompiler.
584 */
585 CPUMSetChangedFlags(pVM, CPUM_CHANGED_ALL);
586 return VINF_SUCCESS;
587}
588
589
590
591#undef LOG_GROUP
592#define LOG_GROUP LOG_GROUP_REM_RUN
593
594/**
595 * Single steps an instruction in recompiled mode.
596 *
597 * Before calling this function the REM state needs to be in sync with
598 * the VM. Call REMR3State() to perform the sync. It's only necessary
599 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
600 * and after calling REMR3StateBack().
601 *
602 * @returns VBox status code.
603 *
604 * @param pVM VM Handle.
605 */
606REMR3DECL(int) REMR3Step(PVM pVM)
607{
608 int rc, interrupt_request;
609 RTGCPTR GCPtrPC;
610 bool fBp;
611
612 /*
613 * Lock the REM - we don't wanna have anyone interrupting us
614 * while stepping - and enabled single stepping. We also ignore
615 * pending interrupts and suchlike.
616 */
617 interrupt_request = pVM->rem.s.Env.interrupt_request;
618 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
619 pVM->rem.s.Env.interrupt_request = 0;
620 cpu_single_step(&pVM->rem.s.Env, 1);
621
622 /*
623 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
624 */
625 GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
626 fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
627
628 /*
629 * Execute and handle the return code.
630 * We execute without enabling the cpu tick, so on success we'll
631 * just flip it on and off to make sure it moves
632 */
633 rc = cpu_exec(&pVM->rem.s.Env);
634 if (rc == EXCP_DEBUG)
635 {
636 TMCpuTickResume(pVM);
637 TMCpuTickPause(pVM);
638 TMVirtualResume(pVM);
639 TMVirtualPause(pVM);
640 rc = VINF_EM_DBG_STEPPED;
641 }
642 else
643 {
644 switch (rc)
645 {
646 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
647 case EXCP_HLT:
648 case EXCP_HALTED: rc = VINF_EM_HALT; break;
649 case EXCP_RC:
650 rc = pVM->rem.s.rc;
651 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
652 break;
653 default:
654 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
655 rc = VERR_INTERNAL_ERROR;
656 break;
657 }
658 }
659
660 /*
661 * Restore the stuff we changed to prevent interruption.
662 * Unlock the REM.
663 */
664 if (fBp)
665 {
666 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
667 Assert(rc2 == 0); NOREF(rc2);
668 }
669 cpu_single_step(&pVM->rem.s.Env, 0);
670 pVM->rem.s.Env.interrupt_request = interrupt_request;
671
672 return rc;
673}
674
675
676/**
677 * Set a breakpoint using the REM facilities.
678 *
679 * @returns VBox status code.
680 * @param pVM The VM handle.
681 * @param Address The breakpoint address.
682 * @thread The emulation thread.
683 */
684REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
685{
686 VM_ASSERT_EMT(pVM);
687 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
688 {
689 LogFlow(("REMR3BreakpointSet: Address=%RGv\n", Address));
690 return VINF_SUCCESS;
691 }
692 LogFlow(("REMR3BreakpointSet: Address=%RGv - failed!\n", Address));
693 return VERR_REM_NO_MORE_BP_SLOTS;
694}
695
696
697/**
698 * Clears a breakpoint set by REMR3BreakpointSet().
699 *
700 * @returns VBox status code.
701 * @param pVM The VM handle.
702 * @param Address The breakpoint address.
703 * @thread The emulation thread.
704 */
705REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
706{
707 VM_ASSERT_EMT(pVM);
708 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
709 {
710 LogFlow(("REMR3BreakpointClear: Address=%RGv\n", Address));
711 return VINF_SUCCESS;
712 }
713 LogFlow(("REMR3BreakpointClear: Address=%RGv - not found!\n", Address));
714 return VERR_REM_BP_NOT_FOUND;
715}
716
717
718/**
719 * Emulate an instruction.
720 *
721 * This function executes one instruction without letting anyone
722 * interrupt it. This is intended for being called while being in
723 * raw mode and thus will take care of all the state syncing between
724 * REM and the rest.
725 *
726 * @returns VBox status code.
727 * @param pVM VM handle.
728 */
729REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
730{
731 bool fFlushTBs;
732
733 int rc, rc2;
734 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
735
736 /* Make sure this flag is set; we might never execute remR3CanExecuteRaw in the AMD-V case.
737 * CPU_RAW_HWACC makes sure we never execute interrupt handlers in the recompiler.
738 */
739 if (HWACCMIsEnabled(pVM))
740 pVM->rem.s.Env.state |= CPU_RAW_HWACC;
741
742 /* Skip the TB flush as that's rather expensive and not necessary for single instruction emulation. */
743 fFlushTBs = pVM->rem.s.fFlushTBs;
744 pVM->rem.s.fFlushTBs = false;
745
746 /*
747 * Sync the state and enable single instruction / single stepping.
748 */
749 rc = REMR3State(pVM);
750 pVM->rem.s.fFlushTBs = fFlushTBs;
751 if (RT_SUCCESS(rc))
752 {
753 int interrupt_request = pVM->rem.s.Env.interrupt_request;
754 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
755 Assert(!pVM->rem.s.Env.singlestep_enabled);
756 /*
757 * Now we set the execute single instruction flag and enter the cpu_exec loop.
758 */
759 TMNotifyStartOfExecution(pVM);
760 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
761 rc = cpu_exec(&pVM->rem.s.Env);
762 TMNotifyEndOfExecution(pVM);
763 switch (rc)
764 {
765 /*
766 * Executed without anything out of the way happening.
767 */
768 case EXCP_SINGLE_INSTR:
769 rc = VINF_EM_RESCHEDULE;
770 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
771 break;
772
773 /*
774 * If we take a trap or start servicing a pending interrupt, we might end up here.
775 * (Timer thread or some other thread wishing EMT's attention.)
776 */
777 case EXCP_INTERRUPT:
778 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
779 rc = VINF_EM_RESCHEDULE;
780 break;
781
782 /*
783 * Single step, we assume!
784 * If there was a breakpoint there we're fucked now.
785 */
786 case EXCP_DEBUG:
787 {
788 /* breakpoint or single step? */
789 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
790 int iBP;
791 rc = VINF_EM_DBG_STEPPED;
792 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
793 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
794 {
795 rc = VINF_EM_DBG_BREAKPOINT;
796 break;
797 }
798 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Rrc iBP=%d GCPtrPC=%RGv\n", rc, iBP, GCPtrPC));
799 break;
800 }
801
802 /*
803 * hlt instruction.
804 */
805 case EXCP_HLT:
806 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
807 rc = VINF_EM_HALT;
808 break;
809
810 /*
811 * The VM has halted.
812 */
813 case EXCP_HALTED:
814 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
815 rc = VINF_EM_HALT;
816 break;
817
818 /*
819 * Switch to RAW-mode.
820 */
821 case EXCP_EXECUTE_RAW:
822 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
823 rc = VINF_EM_RESCHEDULE_RAW;
824 break;
825
826 /*
827 * Switch to hardware accelerated RAW-mode.
828 */
829 case EXCP_EXECUTE_HWACC:
830 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
831 rc = VINF_EM_RESCHEDULE_HWACC;
832 break;
833
834 /*
835 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
836 */
837 case EXCP_RC:
838 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
839 rc = pVM->rem.s.rc;
840 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
841 break;
842
843 /*
844 * Figure out the rest when they arrive....
845 */
846 default:
847 AssertMsgFailed(("rc=%d\n", rc));
848 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
849 rc = VINF_EM_RESCHEDULE;
850 break;
851 }
852
853 /*
854 * Switch back the state.
855 */
856 pVM->rem.s.Env.interrupt_request = interrupt_request;
857 rc2 = REMR3StateBack(pVM);
858 AssertRC(rc2);
859 }
860
861 Log2(("REMR3EmulateInstruction: returns %Rrc (cs:eip=%04x:%RGv)\n",
862 rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
863 return rc;
864}
865
866
867/**
868 * Runs code in recompiled mode.
869 *
870 * Before calling this function the REM state needs to be in sync with
871 * the VM. Call REMR3State() to perform the sync. It's only necessary
872 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
873 * and after calling REMR3StateBack().
874 *
875 * @returns VBox status code.
876 *
877 * @param pVM VM Handle.
878 */
879REMR3DECL(int) REMR3Run(PVM pVM)
880{
881 int rc;
882 Log2(("REMR3Run: (cs:eip=%04x:%RGv)\n", pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
883 Assert(pVM->rem.s.fInREM);
884
885 TMNotifyStartOfExecution(pVM);
886 rc = cpu_exec(&pVM->rem.s.Env);
887 TMNotifyEndOfExecution(pVM);
888 switch (rc)
889 {
890 /*
891 * This happens when the execution was interrupted
892 * by an external event, like pending timers.
893 */
894 case EXCP_INTERRUPT:
895 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
896 rc = VINF_SUCCESS;
897 break;
898
899 /*
900 * hlt instruction.
901 */
902 case EXCP_HLT:
903 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
904 rc = VINF_EM_HALT;
905 break;
906
907 /*
908 * The VM has halted.
909 */
910 case EXCP_HALTED:
911 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
912 rc = VINF_EM_HALT;
913 break;
914
915 /*
916 * Breakpoint/single step.
917 */
918 case EXCP_DEBUG:
919 {
920#if 0//def DEBUG_bird
921 static int iBP = 0;
922 printf("howdy, breakpoint! iBP=%d\n", iBP);
923 switch (iBP)
924 {
925 case 0:
926 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
927 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
928 //pVM->rem.s.Env.interrupt_request = 0;
929 //pVM->rem.s.Env.exception_index = -1;
930 //g_fInterruptDisabled = 1;
931 rc = VINF_SUCCESS;
932 asm("int3");
933 break;
934 default:
935 asm("int3");
936 break;
937 }
938 iBP++;
939#else
940 /* breakpoint or single step? */
941 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
942 int iBP;
943 rc = VINF_EM_DBG_STEPPED;
944 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
945 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
946 {
947 rc = VINF_EM_DBG_BREAKPOINT;
948 break;
949 }
950 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Rrc iBP=%d GCPtrPC=%RGv\n", rc, iBP, GCPtrPC));
951#endif
952 break;
953 }
954
955 /*
956 * Switch to RAW-mode.
957 */
958 case EXCP_EXECUTE_RAW:
959 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
960 rc = VINF_EM_RESCHEDULE_RAW;
961 break;
962
963 /*
964 * Switch to hardware accelerated RAW-mode.
965 */
966 case EXCP_EXECUTE_HWACC:
967 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
968 rc = VINF_EM_RESCHEDULE_HWACC;
969 break;
970
971 /*
972 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
973 */
974 case EXCP_RC:
975 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Rrc\n", pVM->rem.s.rc));
976 rc = pVM->rem.s.rc;
977 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
978 break;
979
980 /*
981 * Figure out the rest when they arrive....
982 */
983 default:
984 AssertMsgFailed(("rc=%d\n", rc));
985 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
986 rc = VINF_SUCCESS;
987 break;
988 }
989
990 Log2(("REMR3Run: returns %Rrc (cs:eip=%04x:%RGv)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, (RTGCPTR)pVM->rem.s.Env.eip));
991 return rc;
992}
993
994
995/**
996 * Check if the cpu state is suitable for Raw execution.
997 *
998 * @returns boolean
999 * @param env The CPU env struct.
1000 * @param eip The EIP to check this for (might differ from env->eip).
1001 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1002 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1003 *
1004 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1005 */
1006bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1007{
1008 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1009 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1010 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1011 uint32_t u32CR0;
1012
1013 /* Update counter. */
1014 env->pVM->rem.s.cCanExecuteRaw++;
1015
1016 if (HWACCMIsEnabled(env->pVM))
1017 {
1018 CPUMCTX Ctx;
1019
1020 env->state |= CPU_RAW_HWACC;
1021
1022 /*
1023 * Create partial context for HWACCMR3CanExecuteGuest
1024 */
1025 Ctx.cr0 = env->cr[0];
1026 Ctx.cr3 = env->cr[3];
1027 Ctx.cr4 = env->cr[4];
1028
1029 Ctx.tr = env->tr.selector;
1030 Ctx.trHid.u64Base = env->tr.base;
1031 Ctx.trHid.u32Limit = env->tr.limit;
1032 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1033
1034 Ctx.idtr.cbIdt = env->idt.limit;
1035 Ctx.idtr.pIdt = env->idt.base;
1036
1037 Ctx.eflags.u32 = env->eflags;
1038
1039 Ctx.cs = env->segs[R_CS].selector;
1040 Ctx.csHid.u64Base = env->segs[R_CS].base;
1041 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1042 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1043
1044 Ctx.ds = env->segs[R_DS].selector;
1045 Ctx.dsHid.u64Base = env->segs[R_DS].base;
1046 Ctx.dsHid.u32Limit = env->segs[R_DS].limit;
1047 Ctx.dsHid.Attr.u = (env->segs[R_DS].flags >> 8) & 0xF0FF;
1048
1049 Ctx.es = env->segs[R_ES].selector;
1050 Ctx.esHid.u64Base = env->segs[R_ES].base;
1051 Ctx.esHid.u32Limit = env->segs[R_ES].limit;
1052 Ctx.esHid.Attr.u = (env->segs[R_ES].flags >> 8) & 0xF0FF;
1053
1054 Ctx.fs = env->segs[R_FS].selector;
1055 Ctx.fsHid.u64Base = env->segs[R_FS].base;
1056 Ctx.fsHid.u32Limit = env->segs[R_FS].limit;
1057 Ctx.fsHid.Attr.u = (env->segs[R_FS].flags >> 8) & 0xF0FF;
1058
1059 Ctx.gs = env->segs[R_GS].selector;
1060 Ctx.gsHid.u64Base = env->segs[R_GS].base;
1061 Ctx.gsHid.u32Limit = env->segs[R_GS].limit;
1062 Ctx.gsHid.Attr.u = (env->segs[R_GS].flags >> 8) & 0xF0FF;
1063
1064 Ctx.ss = env->segs[R_SS].selector;
1065 Ctx.ssHid.u64Base = env->segs[R_SS].base;
1066 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1067 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1068
1069 Ctx.msrEFER = env->efer;
1070
1071 /* Hardware accelerated raw-mode:
1072 *
1073 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1074 */
1075 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1076 {
1077 *piException = EXCP_EXECUTE_HWACC;
1078 return true;
1079 }
1080 return false;
1081 }
1082
1083 /*
1084 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1085 * or 32 bits protected mode ring 0 code
1086 *
1087 * The tests are ordered by the likelyhood of being true during normal execution.
1088 */
1089 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1090 {
1091 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1092 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1093 return false;
1094 }
1095
1096#ifndef VBOX_RAW_V86
1097 if (fFlags & VM_MASK) {
1098 STAM_COUNTER_INC(&gStatRefuseVM86);
1099 Log2(("raw mode refused: VM_MASK\n"));
1100 return false;
1101 }
1102#endif
1103
1104 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1105 {
1106#ifndef DEBUG_bird
1107 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1108#endif
1109 return false;
1110 }
1111
1112 if (env->singlestep_enabled)
1113 {
1114 //Log2(("raw mode refused: Single step\n"));
1115 return false;
1116 }
1117
1118 if (env->nb_breakpoints > 0)
1119 {
1120 //Log2(("raw mode refused: Breakpoints\n"));
1121 return false;
1122 }
1123
1124 u32CR0 = env->cr[0];
1125 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1126 {
1127 STAM_COUNTER_INC(&gStatRefusePaging);
1128 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1129 return false;
1130 }
1131
1132 if (env->cr[4] & CR4_PAE_MASK)
1133 {
1134 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1135 {
1136 STAM_COUNTER_INC(&gStatRefusePAE);
1137 return false;
1138 }
1139 }
1140
1141 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1142 {
1143 if (!EMIsRawRing3Enabled(env->pVM))
1144 return false;
1145
1146 if (!(env->eflags & IF_MASK))
1147 {
1148 STAM_COUNTER_INC(&gStatRefuseIF0);
1149 Log2(("raw mode refused: IF (RawR3)\n"));
1150 return false;
1151 }
1152
1153 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1154 {
1155 STAM_COUNTER_INC(&gStatRefuseWP0);
1156 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1157 return false;
1158 }
1159 }
1160 else
1161 {
1162 if (!EMIsRawRing0Enabled(env->pVM))
1163 return false;
1164
1165 // Let's start with pure 32 bits ring 0 code first
1166 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1167 {
1168 STAM_COUNTER_INC(&gStatRefuseCode16);
1169 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1170 return false;
1171 }
1172
1173 // Only R0
1174 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1175 {
1176 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1177 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1178 return false;
1179 }
1180
1181 if (!(u32CR0 & CR0_WP_MASK))
1182 {
1183 STAM_COUNTER_INC(&gStatRefuseWP0);
1184 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1185 return false;
1186 }
1187
1188 if (PATMIsPatchGCAddr(env->pVM, eip))
1189 {
1190 Log2(("raw r0 mode forced: patch code\n"));
1191 *piException = EXCP_EXECUTE_RAW;
1192 return true;
1193 }
1194
1195#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1196 if (!(env->eflags & IF_MASK))
1197 {
1198 STAM_COUNTER_INC(&gStatRefuseIF0);
1199 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1200 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1201 return false;
1202 }
1203#endif
1204
1205 env->state |= CPU_RAW_RING0;
1206 }
1207
1208 /*
1209 * Don't reschedule the first time we're called, because there might be
1210 * special reasons why we're here that is not covered by the above checks.
1211 */
1212 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1213 {
1214 Log2(("raw mode refused: first scheduling\n"));
1215 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1216 return false;
1217 }
1218
1219 Assert(PGMPhysIsA20Enabled(env->pVM));
1220 *piException = EXCP_EXECUTE_RAW;
1221 return true;
1222}
1223
1224
1225/**
1226 * Fetches a code byte.
1227 *
1228 * @returns Success indicator (bool) for ease of use.
1229 * @param env The CPU environment structure.
1230 * @param GCPtrInstr Where to fetch code.
1231 * @param pu8Byte Where to store the byte on success
1232 */
1233bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1234{
1235 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1236 if (RT_SUCCESS(rc))
1237 return true;
1238 return false;
1239}
1240
1241
1242/**
1243 * Flush (or invalidate if you like) page table/dir entry.
1244 *
1245 * (invlpg instruction; tlb_flush_page)
1246 *
1247 * @param env Pointer to cpu environment.
1248 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1249 */
1250void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1251{
1252 PVM pVM = env->pVM;
1253 PCPUMCTX pCtx;
1254 int rc;
1255
1256 /*
1257 * When we're replaying invlpg instructions or restoring a saved
1258 * state we disable this path.
1259 */
1260 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1261 return;
1262 Log(("remR3FlushPage: GCPtr=%RGv\n", GCPtr));
1263 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1264
1265 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1266
1267 /*
1268 * Update the control registers before calling PGMFlushPage.
1269 */
1270 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1271 pCtx->cr0 = env->cr[0];
1272 pCtx->cr3 = env->cr[3];
1273 pCtx->cr4 = env->cr[4];
1274
1275 /*
1276 * Let PGM do the rest.
1277 */
1278 rc = PGMInvalidatePage(pVM, GCPtr);
1279 if (RT_FAILURE(rc))
1280 {
1281 AssertMsgFailed(("remR3FlushPage %RGv failed with %d!!\n", GCPtr, rc));
1282 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1283 }
1284 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1285}
1286
1287
1288#ifndef REM_PHYS_ADDR_IN_TLB
1289void *remR3TlbGCPhys2Ptr(CPUState *env1, target_ulong physAddr, int fWritable)
1290{
1291 void *pv;
1292 int rc = PGMR3PhysTlbGCPhys2Ptr(env1->pVM, physAddr, true /*fWritable*/, &pv);
1293 Assert( rc == VINF_SUCCESS
1294 || rc == VINF_PGM_PHYS_TLB_CATCH_WRITE
1295 || rc == VERR_PGM_PHYS_TLB_CATCH_ALL
1296 || rc == VERR_PGM_PHYS_TLB_UNASSIGNED);
1297 if (RT_FAILURE(rc))
1298 return (void *)1;
1299 if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE)
1300 return (void *)((uintptr_t)pv | 2);
1301 return pv;
1302}
1303
1304target_ulong remR3HCVirt2GCPhys(CPUState *env1, void *addr)
1305{
1306 RTGCPHYS rv = 0;
1307 int rc;
1308
1309 rc = PGMR3DbgR3Ptr2GCPhys(env1->pVM, (RTR3PTR)addr, &rv);
1310 Assert (RT_SUCCESS(rc));
1311
1312 return (target_ulong)rv;
1313}
1314#endif
1315
1316/**
1317 * Called from tlb_protect_code in order to write monitor a code page.
1318 *
1319 * @param env Pointer to the CPU environment.
1320 * @param GCPtr Code page to monitor
1321 */
1322void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1323{
1324#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1325 Assert(env->pVM->rem.s.fInREM);
1326 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1327 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1328 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1329 && !(env->eflags & VM_MASK) /* no V86 mode */
1330 && !HWACCMIsEnabled(env->pVM))
1331 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1332#endif
1333}
1334
1335/**
1336 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1337 *
1338 * @param env Pointer to the CPU environment.
1339 * @param GCPtr Code page to monitor
1340 */
1341void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
1342{
1343 Assert(env->pVM->rem.s.fInREM);
1344#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1345 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1346 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1347 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1348 && !(env->eflags & VM_MASK) /* no V86 mode */
1349 && !HWACCMIsEnabled(env->pVM))
1350 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1351#endif
1352}
1353
1354/**
1355 * Called when the CPU is initialized, any of the CRx registers are changed or
1356 * when the A20 line is modified.
1357 *
1358 * @param env Pointer to the CPU environment.
1359 * @param fGlobal Set if the flush is global.
1360 */
1361void remR3FlushTLB(CPUState *env, bool fGlobal)
1362{
1363 PVM pVM = env->pVM;
1364 PCPUMCTX pCtx;
1365
1366 /*
1367 * When we're replaying invlpg instructions or restoring a saved
1368 * state we disable this path.
1369 */
1370 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1371 return;
1372 Assert(pVM->rem.s.fInREM);
1373
1374 /*
1375 * The caller doesn't check cr4, so we have to do that for ourselves.
1376 */
1377 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1378 fGlobal = true;
1379 Log(("remR3FlushTLB: CR0=%RGr CR3=%RGr CR4=%RGr %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1380
1381 /*
1382 * Update the control registers before calling PGMR3FlushTLB.
1383 */
1384 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1385 pCtx->cr0 = env->cr[0];
1386 pCtx->cr3 = env->cr[3];
1387 pCtx->cr4 = env->cr[4];
1388
1389 /*
1390 * Let PGM do the rest.
1391 */
1392 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1393}
1394
1395
1396/**
1397 * Called when any of the cr0, cr4 or efer registers is updated.
1398 *
1399 * @param env Pointer to the CPU environment.
1400 */
1401void remR3ChangeCpuMode(CPUState *env)
1402{
1403 int rc;
1404 PVM pVM = env->pVM;
1405 PCPUMCTX pCtx;
1406
1407 /*
1408 * When we're replaying loads or restoring a saved
1409 * state this path is disabled.
1410 */
1411 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1412 return;
1413 Assert(pVM->rem.s.fInREM);
1414
1415 /*
1416 * Update the control registers before calling PGMChangeMode()
1417 * as it may need to map whatever cr3 is pointing to.
1418 */
1419 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1420 pCtx->cr0 = env->cr[0];
1421 pCtx->cr3 = env->cr[3];
1422 pCtx->cr4 = env->cr[4];
1423
1424#ifdef TARGET_X86_64
1425 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1426 if (rc != VINF_SUCCESS)
1427 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc\n", env->cr[0], env->cr[4], env->efer, rc);
1428#else
1429 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1430 if (rc != VINF_SUCCESS)
1431 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Rrc\n", env->cr[0], env->cr[4], 0LL, rc);
1432#endif
1433}
1434
1435
1436/**
1437 * Called from compiled code to run dma.
1438 *
1439 * @param env Pointer to the CPU environment.
1440 */
1441void remR3DmaRun(CPUState *env)
1442{
1443 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1444 PDMR3DmaRun(env->pVM);
1445 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1446}
1447
1448
1449/**
1450 * Called from compiled code to schedule pending timers in VMM
1451 *
1452 * @param env Pointer to the CPU environment.
1453 */
1454void remR3TimersRun(CPUState *env)
1455{
1456 LogFlow(("remR3TimersRun:\n"));
1457 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1458 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1459 TMR3TimerQueuesDo(env->pVM);
1460 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1461 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1462}
1463
1464
1465/**
1466 * Record trap occurance
1467 *
1468 * @returns VBox status code
1469 * @param env Pointer to the CPU environment.
1470 * @param uTrap Trap nr
1471 * @param uErrorCode Error code
1472 * @param pvNextEIP Next EIP
1473 */
1474int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, RTGCPTR pvNextEIP)
1475{
1476 PVM pVM = env->pVM;
1477#ifdef VBOX_WITH_STATISTICS
1478 static STAMCOUNTER s_aStatTrap[255];
1479 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1480#endif
1481
1482#ifdef VBOX_WITH_STATISTICS
1483 if (uTrap < 255)
1484 {
1485 if (!s_aRegisters[uTrap])
1486 {
1487 char szStatName[64];
1488 s_aRegisters[uTrap] = true;
1489 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1490 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1491 }
1492 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1493 }
1494#endif
1495 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
1496 if( uTrap < 0x20
1497 && (env->cr[0] & X86_CR0_PE)
1498 && !(env->eflags & X86_EFL_VM))
1499 {
1500#ifdef DEBUG
1501 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1502#endif
1503 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1504 {
1505 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%RGv eip=%RGv cr2=%RGv\n", uTrap, uErrorCode, pvNextEIP, (RTGCPTR)env->eip, (RTGCPTR)env->cr[2]));
1506 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1507 return VERR_REM_TOO_MANY_TRAPS;
1508 }
1509 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1510 pVM->rem.s.cPendingExceptions = 1;
1511 pVM->rem.s.uPendingException = uTrap;
1512 pVM->rem.s.uPendingExcptEIP = env->eip;
1513 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1514 }
1515 else
1516 {
1517 pVM->rem.s.cPendingExceptions = 0;
1518 pVM->rem.s.uPendingException = uTrap;
1519 pVM->rem.s.uPendingExcptEIP = env->eip;
1520 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1521 }
1522 return VINF_SUCCESS;
1523}
1524
1525
1526/*
1527 * Clear current active trap
1528 *
1529 * @param pVM VM Handle.
1530 */
1531void remR3TrapClear(PVM pVM)
1532{
1533 pVM->rem.s.cPendingExceptions = 0;
1534 pVM->rem.s.uPendingException = 0;
1535 pVM->rem.s.uPendingExcptEIP = 0;
1536 pVM->rem.s.uPendingExcptCR2 = 0;
1537}
1538
1539
1540/*
1541 * Record previous call instruction addresses
1542 *
1543 * @param env Pointer to the CPU environment.
1544 */
1545void remR3RecordCall(CPUState *env)
1546{
1547 CSAMR3RecordCallAddress(env->pVM, env->eip);
1548}
1549
1550
1551/**
1552 * Syncs the internal REM state with the VM.
1553 *
1554 * This must be called before REMR3Run() is invoked whenever when the REM
1555 * state is not up to date. Calling it several times in a row is not
1556 * permitted.
1557 *
1558 * @returns VBox status code.
1559 *
1560 * @param pVM VM Handle.
1561 * @param fFlushTBs Flush all translation blocks before executing code
1562 *
1563 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1564 * no do this since the majority of the callers don't want any unnecessary of events
1565 * pending that would immediatly interrupt execution.
1566 */
1567REMR3DECL(int) REMR3State(PVM pVM)
1568{
1569 register const CPUMCTX *pCtx;
1570 register unsigned fFlags;
1571 bool fHiddenSelRegsValid;
1572 unsigned i;
1573 TRPMEVENT enmType;
1574 uint8_t u8TrapNo;
1575 int rc;
1576
1577 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1578 Log2(("REMR3State:\n"));
1579
1580 pCtx = pVM->rem.s.pCtx;
1581 fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1582
1583 Assert(!pVM->rem.s.fInREM);
1584 pVM->rem.s.fInStateSync = true;
1585
1586 /*
1587 * If we have to flush TBs, do that immediately.
1588 */
1589 if (pVM->rem.s.fFlushTBs)
1590 {
1591 STAM_COUNTER_INC(&gStatFlushTBs);
1592 tb_flush(&pVM->rem.s.Env);
1593 pVM->rem.s.fFlushTBs = false;
1594 }
1595
1596 /*
1597 * Copy the registers which require no special handling.
1598 */
1599#ifdef TARGET_X86_64
1600 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
1601 Assert(R_EAX == 0);
1602 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
1603 Assert(R_ECX == 1);
1604 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
1605 Assert(R_EDX == 2);
1606 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
1607 Assert(R_EBX == 3);
1608 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
1609 Assert(R_ESP == 4);
1610 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
1611 Assert(R_EBP == 5);
1612 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
1613 Assert(R_ESI == 6);
1614 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
1615 Assert(R_EDI == 7);
1616 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
1617 pVM->rem.s.Env.regs[8] = pCtx->r8;
1618 pVM->rem.s.Env.regs[9] = pCtx->r9;
1619 pVM->rem.s.Env.regs[10] = pCtx->r10;
1620 pVM->rem.s.Env.regs[11] = pCtx->r11;
1621 pVM->rem.s.Env.regs[12] = pCtx->r12;
1622 pVM->rem.s.Env.regs[13] = pCtx->r13;
1623 pVM->rem.s.Env.regs[14] = pCtx->r14;
1624 pVM->rem.s.Env.regs[15] = pCtx->r15;
1625
1626 pVM->rem.s.Env.eip = pCtx->rip;
1627
1628 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
1629#else
1630 Assert(R_EAX == 0);
1631 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1632 Assert(R_ECX == 1);
1633 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1634 Assert(R_EDX == 2);
1635 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1636 Assert(R_EBX == 3);
1637 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1638 Assert(R_ESP == 4);
1639 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1640 Assert(R_EBP == 5);
1641 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1642 Assert(R_ESI == 6);
1643 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1644 Assert(R_EDI == 7);
1645 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1646 pVM->rem.s.Env.eip = pCtx->eip;
1647
1648 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1649#endif
1650
1651 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1652
1653 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1654 for (i=0;i<8;i++)
1655 pVM->rem.s.Env.dr[i] = pCtx->dr[i];
1656
1657 /*
1658 * Clear the halted hidden flag (the interrupt waking up the CPU can
1659 * have been dispatched in raw mode).
1660 */
1661 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1662
1663 /*
1664 * Replay invlpg?
1665 */
1666 if (pVM->rem.s.cInvalidatedPages)
1667 {
1668 RTUINT i;
1669
1670 pVM->rem.s.fIgnoreInvlPg = true;
1671 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1672 {
1673 Log2(("REMR3State: invlpg %RGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1674 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1675 }
1676 pVM->rem.s.fIgnoreInvlPg = false;
1677 pVM->rem.s.cInvalidatedPages = 0;
1678 }
1679
1680 /* Replay notification changes? */
1681 if (pVM->rem.s.cHandlerNotifications)
1682 REMR3ReplayHandlerNotifications(pVM);
1683
1684 /* Update MSRs; before CRx registers! */
1685 pVM->rem.s.Env.efer = pCtx->msrEFER;
1686 pVM->rem.s.Env.star = pCtx->msrSTAR;
1687 pVM->rem.s.Env.pat = pCtx->msrPAT;
1688#ifdef TARGET_X86_64
1689 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1690 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1691 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1692 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1693
1694 /* Update the internal long mode activate flag according to the new EFER value. */
1695 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1696 pVM->rem.s.Env.hflags |= HF_LMA_MASK;
1697 else
1698 pVM->rem.s.Env.hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
1699#endif
1700
1701
1702 /*
1703 * Registers which are rarely changed and require special handling / order when changed.
1704 */
1705 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1706 LogFlow(("CPUMGetAndClearChangedFlagsREM %x\n", fFlags));
1707 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1708 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1709 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
1710 {
1711 if (fFlags & CPUM_CHANGED_FPU_REM)
1712 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1713
1714 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1715 {
1716 pVM->rem.s.fIgnoreCR3Load = true;
1717 tlb_flush(&pVM->rem.s.Env, true);
1718 pVM->rem.s.fIgnoreCR3Load = false;
1719 }
1720
1721 /* CR4 before CR0! */
1722 if (fFlags & CPUM_CHANGED_CR4)
1723 {
1724 pVM->rem.s.fIgnoreCR3Load = true;
1725 pVM->rem.s.fIgnoreCpuMode = true;
1726 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1727 pVM->rem.s.fIgnoreCpuMode = false;
1728 pVM->rem.s.fIgnoreCR3Load = false;
1729 }
1730
1731 if (fFlags & CPUM_CHANGED_CR0)
1732 {
1733 pVM->rem.s.fIgnoreCR3Load = true;
1734 pVM->rem.s.fIgnoreCpuMode = true;
1735 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1736 pVM->rem.s.fIgnoreCpuMode = false;
1737 pVM->rem.s.fIgnoreCR3Load = false;
1738 }
1739
1740 if (fFlags & CPUM_CHANGED_CR3)
1741 {
1742 pVM->rem.s.fIgnoreCR3Load = true;
1743 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1744 pVM->rem.s.fIgnoreCR3Load = false;
1745 }
1746
1747 if (fFlags & CPUM_CHANGED_GDTR)
1748 {
1749 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1750 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1751 }
1752
1753 if (fFlags & CPUM_CHANGED_IDTR)
1754 {
1755 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1756 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1757 }
1758
1759 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1760 {
1761 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1762 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1763 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1764 }
1765
1766 if (fFlags & CPUM_CHANGED_LDTR)
1767 {
1768 if (fHiddenSelRegsValid)
1769 {
1770 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1771 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u64Base;
1772 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1773 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1774 }
1775 else
1776 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1777 }
1778
1779 if (fFlags & CPUM_CHANGED_TR)
1780 {
1781 if (fHiddenSelRegsValid)
1782 {
1783 pVM->rem.s.Env.tr.selector = pCtx->tr;
1784 pVM->rem.s.Env.tr.base = pCtx->trHid.u64Base;
1785 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1786 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1787 }
1788 else
1789 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1790
1791 /** @note do_interrupt will fault if the busy flag is still set.... */
1792 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1793 }
1794
1795 if (fFlags & CPUM_CHANGED_CPUID)
1796 {
1797 uint32_t u32Dummy;
1798
1799 /*
1800 * Get the CPUID features.
1801 */
1802 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
1803 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
1804 }
1805 }
1806
1807 /*
1808 * Update selector registers.
1809 * This must be done *after* we've synced gdt, ldt and crX registers
1810 * since we're reading the GDT/LDT om sync_seg. This will happen with
1811 * saved state which takes a quick dip into rawmode for instance.
1812 */
1813 /*
1814 * Stack; Note first check this one as the CPL might have changed. The
1815 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1816 */
1817
1818 if (fHiddenSelRegsValid)
1819 {
1820 /* The hidden selector registers are valid in the CPU context. */
1821 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1822
1823 /* Set current CPL */
1824 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1825
1826 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1827 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1828 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1829 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1830 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1831 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1832 }
1833 else
1834 {
1835 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1836 if (pVM->rem.s.Env.segs[R_SS].selector != pCtx->ss)
1837 {
1838 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1839
1840 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1841 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1842#ifdef VBOX_WITH_STATISTICS
1843 if (pVM->rem.s.Env.segs[R_SS].newselector)
1844 {
1845 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1846 }
1847#endif
1848 }
1849 else
1850 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1851
1852 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1853 {
1854 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1855 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1856#ifdef VBOX_WITH_STATISTICS
1857 if (pVM->rem.s.Env.segs[R_ES].newselector)
1858 {
1859 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1860 }
1861#endif
1862 }
1863 else
1864 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1865
1866 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1867 {
1868 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1869 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1870#ifdef VBOX_WITH_STATISTICS
1871 if (pVM->rem.s.Env.segs[R_CS].newselector)
1872 {
1873 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1874 }
1875#endif
1876 }
1877 else
1878 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1879
1880 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1881 {
1882 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1883 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1884#ifdef VBOX_WITH_STATISTICS
1885 if (pVM->rem.s.Env.segs[R_DS].newselector)
1886 {
1887 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1888 }
1889#endif
1890 }
1891 else
1892 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1893
1894 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1895 * be the same but not the base/limit. */
1896 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1897 {
1898 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1899 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1900#ifdef VBOX_WITH_STATISTICS
1901 if (pVM->rem.s.Env.segs[R_FS].newselector)
1902 {
1903 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1904 }
1905#endif
1906 }
1907 else
1908 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1909
1910 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1911 {
1912 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1913 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1914#ifdef VBOX_WITH_STATISTICS
1915 if (pVM->rem.s.Env.segs[R_GS].newselector)
1916 {
1917 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1918 }
1919#endif
1920 }
1921 else
1922 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1923 }
1924
1925 /*
1926 * Check for traps.
1927 */
1928 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1929 rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
1930 if (RT_SUCCESS(rc))
1931 {
1932#ifdef DEBUG
1933 if (u8TrapNo == 0x80)
1934 {
1935 remR3DumpLnxSyscall(pVM);
1936 remR3DumpOBsdSyscall(pVM);
1937 }
1938#endif
1939
1940 pVM->rem.s.Env.exception_index = u8TrapNo;
1941 if (enmType != TRPM_SOFTWARE_INT)
1942 {
1943 pVM->rem.s.Env.exception_is_int = 0;
1944 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
1945 }
1946 else
1947 {
1948 /*
1949 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
1950 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
1951 * for int03 and into.
1952 */
1953 pVM->rem.s.Env.exception_is_int = 1;
1954 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 2;
1955 /* int 3 may be generated by one-byte 0xcc */
1956 if (u8TrapNo == 3)
1957 {
1958 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xcc)
1959 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
1960 }
1961 /* int 4 may be generated by one-byte 0xce */
1962 else if (u8TrapNo == 4)
1963 {
1964 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xce)
1965 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
1966 }
1967 }
1968
1969 /* get error code and cr2 if needed. */
1970 switch (u8TrapNo)
1971 {
1972 case 0x0e:
1973 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
1974 /* fallthru */
1975 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
1976 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
1977 break;
1978
1979 case 0x11: case 0x08:
1980 default:
1981 pVM->rem.s.Env.error_code = 0;
1982 break;
1983 }
1984
1985 /*
1986 * We can now reset the active trap since the recompiler is gonna have a go at it.
1987 */
1988 rc = TRPMResetTrap(pVM);
1989 AssertRC(rc);
1990 Log2(("REMR3State: trap=%02x errcd=%RGv cr2=%RGv nexteip=%RGv%s\n", pVM->rem.s.Env.exception_index, (RTGCPTR)pVM->rem.s.Env.error_code,
1991 (RTGCPTR)pVM->rem.s.Env.cr[2], (RTGCPTR)pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
1992 }
1993
1994 /*
1995 * Clear old interrupt request flags; Check for pending hardware interrupts.
1996 * (See @remark for why we don't check for other FFs.)
1997 */
1998 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
1999 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2000 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
2001 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2002
2003 /*
2004 * We're now in REM mode.
2005 */
2006 pVM->rem.s.fInREM = true;
2007 pVM->rem.s.fInStateSync = false;
2008 pVM->rem.s.cCanExecuteRaw = 0;
2009 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2010 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2011 return VINF_SUCCESS;
2012}
2013
2014
2015/**
2016 * Syncs back changes in the REM state to the the VM state.
2017 *
2018 * This must be called after invoking REMR3Run().
2019 * Calling it several times in a row is not permitted.
2020 *
2021 * @returns VBox status code.
2022 *
2023 * @param pVM VM Handle.
2024 */
2025REMR3DECL(int) REMR3StateBack(PVM pVM)
2026{
2027 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2028 unsigned i;
2029
2030 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2031 Log2(("REMR3StateBack:\n"));
2032 Assert(pVM->rem.s.fInREM);
2033
2034 /*
2035 * Copy back the registers.
2036 * This is done in the order they are declared in the CPUMCTX structure.
2037 */
2038
2039 /** @todo FOP */
2040 /** @todo FPUIP */
2041 /** @todo CS */
2042 /** @todo FPUDP */
2043 /** @todo DS */
2044 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2045 pCtx->fpu.MXCSR = 0;
2046 pCtx->fpu.MXCSR_MASK = 0;
2047
2048 /** @todo check if FPU/XMM was actually used in the recompiler */
2049 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2050//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2051
2052#ifdef TARGET_X86_64
2053 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2054 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2055 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2056 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2057 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2058 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2059 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2060 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2061 pCtx->r8 = pVM->rem.s.Env.regs[8];
2062 pCtx->r9 = pVM->rem.s.Env.regs[9];
2063 pCtx->r10 = pVM->rem.s.Env.regs[10];
2064 pCtx->r11 = pVM->rem.s.Env.regs[11];
2065 pCtx->r12 = pVM->rem.s.Env.regs[12];
2066 pCtx->r13 = pVM->rem.s.Env.regs[13];
2067 pCtx->r14 = pVM->rem.s.Env.regs[14];
2068 pCtx->r15 = pVM->rem.s.Env.regs[15];
2069
2070 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2071
2072#else
2073 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2074 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2075 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2076 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2077 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2078 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2079 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2080
2081 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2082#endif
2083
2084 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2085
2086#ifdef VBOX_WITH_STATISTICS
2087 if (pVM->rem.s.Env.segs[R_SS].newselector)
2088 {
2089 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2090 }
2091 if (pVM->rem.s.Env.segs[R_GS].newselector)
2092 {
2093 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2094 }
2095 if (pVM->rem.s.Env.segs[R_FS].newselector)
2096 {
2097 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2098 }
2099 if (pVM->rem.s.Env.segs[R_ES].newselector)
2100 {
2101 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2102 }
2103 if (pVM->rem.s.Env.segs[R_DS].newselector)
2104 {
2105 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2106 }
2107 if (pVM->rem.s.Env.segs[R_CS].newselector)
2108 {
2109 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2110 }
2111#endif
2112 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2113 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2114 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2115 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2116 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2117
2118#ifdef TARGET_X86_64
2119 pCtx->rip = pVM->rem.s.Env.eip;
2120 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2121#else
2122 pCtx->eip = pVM->rem.s.Env.eip;
2123 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2124#endif
2125
2126 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2127 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2128 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2129 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2130
2131 for (i=0;i<8;i++)
2132 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2133
2134 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2135 if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
2136 {
2137 pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
2138 STAM_COUNTER_INC(&gStatREMGDTChange);
2139 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2140 }
2141
2142 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2143 if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
2144 {
2145 pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
2146 STAM_COUNTER_INC(&gStatREMIDTChange);
2147 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2148 }
2149
2150 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2151 {
2152 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2153 STAM_COUNTER_INC(&gStatREMLDTRChange);
2154 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2155 }
2156 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2157 {
2158 pCtx->tr = pVM->rem.s.Env.tr.selector;
2159 STAM_COUNTER_INC(&gStatREMTRChange);
2160 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2161 }
2162
2163 /** @todo These values could still be out of sync! */
2164 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2165 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2166 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2167 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2168
2169 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2170 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2171 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2172
2173 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2174 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2175 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2176
2177 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2178 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2179 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2180
2181 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2182 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2183 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2184
2185 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2186 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2187 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2188
2189 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2190 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2191 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2192
2193 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2194 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2195 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2196
2197 /* Sysenter MSR */
2198 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2199 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2200 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2201
2202 /* System MSRs. */
2203 pCtx->msrEFER = pVM->rem.s.Env.efer;
2204 pCtx->msrSTAR = pVM->rem.s.Env.star;
2205 pCtx->msrPAT = pVM->rem.s.Env.pat;
2206#ifdef TARGET_X86_64
2207 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2208 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2209 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2210 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2211#endif
2212
2213 remR3TrapClear(pVM);
2214
2215 /*
2216 * Check for traps.
2217 */
2218 if ( pVM->rem.s.Env.exception_index >= 0
2219 && pVM->rem.s.Env.exception_index < 256)
2220 {
2221 int rc;
2222
2223 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2224 rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2225 AssertRC(rc);
2226 switch (pVM->rem.s.Env.exception_index)
2227 {
2228 case 0x0e:
2229 TRPMSetFaultAddress(pVM, pCtx->cr2);
2230 /* fallthru */
2231 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2232 case 0x11: case 0x08: /* 0 */
2233 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2234 break;
2235 }
2236
2237 }
2238
2239 /*
2240 * We're not longer in REM mode.
2241 */
2242 pVM->rem.s.fInREM = false;
2243 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2244 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2245 return VINF_SUCCESS;
2246}
2247
2248
2249/**
2250 * This is called by the disassembler when it wants to update the cpu state
2251 * before for instance doing a register dump.
2252 */
2253static void remR3StateUpdate(PVM pVM)
2254{
2255 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2256 unsigned i;
2257
2258 Assert(pVM->rem.s.fInREM);
2259
2260 /*
2261 * Copy back the registers.
2262 * This is done in the order they are declared in the CPUMCTX structure.
2263 */
2264
2265 /** @todo FOP */
2266 /** @todo FPUIP */
2267 /** @todo CS */
2268 /** @todo FPUDP */
2269 /** @todo DS */
2270 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2271 pCtx->fpu.MXCSR = 0;
2272 pCtx->fpu.MXCSR_MASK = 0;
2273
2274 /** @todo check if FPU/XMM was actually used in the recompiler */
2275 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2276//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2277
2278#ifdef TARGET_X86_64
2279 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2280 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2281 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2282 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2283 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2284 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2285 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2286 pCtx->r8 = pVM->rem.s.Env.regs[8];
2287 pCtx->r9 = pVM->rem.s.Env.regs[9];
2288 pCtx->r10 = pVM->rem.s.Env.regs[10];
2289 pCtx->r11 = pVM->rem.s.Env.regs[11];
2290 pCtx->r12 = pVM->rem.s.Env.regs[12];
2291 pCtx->r13 = pVM->rem.s.Env.regs[13];
2292 pCtx->r14 = pVM->rem.s.Env.regs[14];
2293 pCtx->r15 = pVM->rem.s.Env.regs[15];
2294
2295 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2296#else
2297 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2298 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2299 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2300 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2301 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2302 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2303 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2304
2305 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2306#endif
2307
2308 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2309
2310 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2311 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2312 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2313 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2314 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2315
2316#ifdef TARGET_X86_64
2317 pCtx->rip = pVM->rem.s.Env.eip;
2318 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2319#else
2320 pCtx->eip = pVM->rem.s.Env.eip;
2321 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2322#endif
2323
2324 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2325 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2326 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2327 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2328
2329 for (i=0;i<8;i++)
2330 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2331
2332 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2333 if (pCtx->gdtr.pGdt != (RTGCPTR)pVM->rem.s.Env.gdt.base)
2334 {
2335 pCtx->gdtr.pGdt = (RTGCPTR)pVM->rem.s.Env.gdt.base;
2336 STAM_COUNTER_INC(&gStatREMGDTChange);
2337 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2338 }
2339
2340 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2341 if (pCtx->idtr.pIdt != (RTGCPTR)pVM->rem.s.Env.idt.base)
2342 {
2343 pCtx->idtr.pIdt = (RTGCPTR)pVM->rem.s.Env.idt.base;
2344 STAM_COUNTER_INC(&gStatREMIDTChange);
2345 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2346 }
2347
2348 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2349 {
2350 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2351 STAM_COUNTER_INC(&gStatREMLDTRChange);
2352 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2353 }
2354 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2355 {
2356 pCtx->tr = pVM->rem.s.Env.tr.selector;
2357 STAM_COUNTER_INC(&gStatREMTRChange);
2358 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2359 }
2360
2361 /** @todo These values could still be out of sync! */
2362 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2363 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2364 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2365 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2366
2367 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2368 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2369 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2370
2371 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2372 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2373 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2374
2375 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2376 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2377 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2378
2379 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2380 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2381 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2382
2383 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2384 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2385 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2386
2387 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2388 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2389 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2390
2391 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2392 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2393 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2394
2395 /* Sysenter MSR */
2396 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2397 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2398 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2399
2400 /* System MSRs. */
2401 pCtx->msrEFER = pVM->rem.s.Env.efer;
2402 pCtx->msrSTAR = pVM->rem.s.Env.star;
2403 pCtx->msrPAT = pVM->rem.s.Env.pat;
2404#ifdef TARGET_X86_64
2405 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2406 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2407 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2408 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2409#endif
2410
2411}
2412
2413
2414/**
2415 * Update the VMM state information if we're currently in REM.
2416 *
2417 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2418 * we're currently executing in REM and the VMM state is invalid. This method will of
2419 * course check that we're executing in REM before syncing any data over to the VMM.
2420 *
2421 * @param pVM The VM handle.
2422 */
2423REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2424{
2425 if (pVM->rem.s.fInREM)
2426 remR3StateUpdate(pVM);
2427}
2428
2429
2430#undef LOG_GROUP
2431#define LOG_GROUP LOG_GROUP_REM
2432
2433
2434/**
2435 * Notify the recompiler about Address Gate 20 state change.
2436 *
2437 * This notification is required since A20 gate changes are
2438 * initialized from a device driver and the VM might just as
2439 * well be in REM mode as in RAW mode.
2440 *
2441 * @param pVM VM handle.
2442 * @param fEnable True if the gate should be enabled.
2443 * False if the gate should be disabled.
2444 */
2445REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2446{
2447 bool fSaved;
2448
2449 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2450 VM_ASSERT_EMT(pVM);
2451
2452 fSaved = pVM->rem.s.fIgnoreAll; /* just in case. */
2453 pVM->rem.s.fIgnoreAll = fSaved || !pVM->rem.s.fInREM;
2454
2455 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2456
2457 pVM->rem.s.fIgnoreAll = fSaved;
2458}
2459
2460
2461/**
2462 * Replays the invalidated recorded pages.
2463 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2464 *
2465 * @param pVM VM handle.
2466 */
2467REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2468{
2469 RTUINT i;
2470
2471 VM_ASSERT_EMT(pVM);
2472
2473 /*
2474 * Sync the required registers.
2475 */
2476 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2477 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2478 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2479 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2480
2481 /*
2482 * Replay the flushes.
2483 */
2484 pVM->rem.s.fIgnoreInvlPg = true;
2485 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2486 {
2487 Log2(("REMR3ReplayInvalidatedPages: invlpg %RGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2488 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2489 }
2490 pVM->rem.s.fIgnoreInvlPg = false;
2491 pVM->rem.s.cInvalidatedPages = 0;
2492}
2493
2494
2495/**
2496 * Replays the handler notification changes
2497 * Called in response to VM_FF_REM_HANDLER_NOTIFY from the RAW execution loop.
2498 *
2499 * @param pVM VM handle.
2500 */
2501REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2502{
2503 /*
2504 * Replay the flushes.
2505 */
2506 RTUINT i;
2507 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2508
2509 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2510 VM_ASSERT_EMT(pVM);
2511
2512 pVM->rem.s.cHandlerNotifications = 0;
2513 for (i = 0; i < c; i++)
2514 {
2515 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2516 switch (pRec->enmKind)
2517 {
2518 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2519 REMR3NotifyHandlerPhysicalRegister(pVM,
2520 pRec->u.PhysicalRegister.enmType,
2521 pRec->u.PhysicalRegister.GCPhys,
2522 pRec->u.PhysicalRegister.cb,
2523 pRec->u.PhysicalRegister.fHasHCHandler);
2524 break;
2525
2526 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2527 REMR3NotifyHandlerPhysicalDeregister(pVM,
2528 pRec->u.PhysicalDeregister.enmType,
2529 pRec->u.PhysicalDeregister.GCPhys,
2530 pRec->u.PhysicalDeregister.cb,
2531 pRec->u.PhysicalDeregister.fHasHCHandler,
2532 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2533 break;
2534
2535 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2536 REMR3NotifyHandlerPhysicalModify(pVM,
2537 pRec->u.PhysicalModify.enmType,
2538 pRec->u.PhysicalModify.GCPhysOld,
2539 pRec->u.PhysicalModify.GCPhysNew,
2540 pRec->u.PhysicalModify.cb,
2541 pRec->u.PhysicalModify.fHasHCHandler,
2542 pRec->u.PhysicalModify.fRestoreAsRAM);
2543 break;
2544
2545 default:
2546 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2547 break;
2548 }
2549 }
2550 VM_FF_CLEAR(pVM, VM_FF_REM_HANDLER_NOTIFY);
2551}
2552
2553
2554/**
2555 * Notify REM about changed code page.
2556 *
2557 * @returns VBox status code.
2558 * @param pVM VM handle.
2559 * @param pvCodePage Code page address
2560 */
2561REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2562{
2563#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
2564 int rc;
2565 RTGCPHYS PhysGC;
2566 uint64_t flags;
2567
2568 VM_ASSERT_EMT(pVM);
2569
2570 /*
2571 * Get the physical page address.
2572 */
2573 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2574 if (rc == VINF_SUCCESS)
2575 {
2576 /*
2577 * Sync the required registers and flush the whole page.
2578 * (Easier to do the whole page than notifying it about each physical
2579 * byte that was changed.
2580 */
2581 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2582 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2583 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2584 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2585
2586 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2587 }
2588#endif
2589 return VINF_SUCCESS;
2590}
2591
2592
2593/**
2594 * Notification about a successful MMR3PhysRegister() call.
2595 *
2596 * @param pVM VM handle.
2597 * @param GCPhys The physical address the RAM.
2598 * @param cb Size of the memory.
2599 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2600 */
2601REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, unsigned fFlags)
2602{
2603 uint32_t cbBitmap;
2604 int rc;
2605 Log(("REMR3NotifyPhysRamRegister: GCPhys=%RGp cb=%d fFlags=%d\n", GCPhys, cb, fFlags));
2606 VM_ASSERT_EMT(pVM);
2607
2608 /*
2609 * Validate input - we trust the caller.
2610 */
2611 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2612 Assert(cb);
2613 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2614
2615 /*
2616 * Base ram?
2617 */
2618 if (!GCPhys)
2619 {
2620 phys_ram_size = cb;
2621 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2622#ifndef VBOX_STRICT
2623 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2624 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2625#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2626 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2627 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2628 cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2629 rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2630 AssertRC(rc);
2631 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2632#endif
2633 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2634 }
2635
2636 /*
2637 * Register the ram.
2638 */
2639 Assert(!pVM->rem.s.fIgnoreAll);
2640 pVM->rem.s.fIgnoreAll = true;
2641
2642#ifdef VBOX_WITH_NEW_PHYS_CODE
2643 if (fFlags & MM_RAM_FLAGS_RESERVED)
2644 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2645 else
2646 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2647#else
2648 if (!GCPhys)
2649 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2650 else
2651 {
2652 if (fFlags & MM_RAM_FLAGS_RESERVED)
2653 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2654 else
2655 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2656 }
2657#endif
2658 Assert(pVM->rem.s.fIgnoreAll);
2659 pVM->rem.s.fIgnoreAll = false;
2660}
2661
2662#ifndef VBOX_WITH_NEW_PHYS_CODE
2663
2664/**
2665 * Notification about a successful PGMR3PhysRegisterChunk() call.
2666 *
2667 * @param pVM VM handle.
2668 * @param GCPhys The physical address the RAM.
2669 * @param cb Size of the memory.
2670 * @param pvRam The HC address of the RAM.
2671 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2672 */
2673REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2674{
2675 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%RGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2676 VM_ASSERT_EMT(pVM);
2677
2678 /*
2679 * Validate input - we trust the caller.
2680 */
2681 Assert(pvRam);
2682 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2683 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2684 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2685 Assert(fFlags == 0 /* normal RAM */);
2686 Assert(!pVM->rem.s.fIgnoreAll);
2687 pVM->rem.s.fIgnoreAll = true;
2688 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2689 Assert(pVM->rem.s.fIgnoreAll);
2690 pVM->rem.s.fIgnoreAll = false;
2691}
2692
2693
2694/**
2695 * Grows dynamically allocated guest RAM.
2696 * Will raise a fatal error if the operation fails.
2697 *
2698 * @param physaddr The physical address.
2699 */
2700void remR3GrowDynRange(unsigned long physaddr) /** @todo Needs fixing for MSC... */
2701{
2702 int rc;
2703 PVM pVM = cpu_single_env->pVM;
2704 const RTGCPHYS GCPhys = physaddr;
2705
2706 LogFlow(("remR3GrowDynRange %RGp\n", (RTGCPTR)physaddr));
2707 rc = PGM3PhysGrowRange(pVM, &GCPhys);
2708 if (RT_SUCCESS(rc))
2709 return;
2710
2711 LogRel(("\nUnable to allocate guest RAM chunk at %RGp\n", (RTGCPTR)physaddr));
2712 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %RGp\n", (RTGCPTR)physaddr);
2713 AssertFatalFailed();
2714}
2715
2716#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2717
2718/**
2719 * Notification about a successful MMR3PhysRomRegister() call.
2720 *
2721 * @param pVM VM handle.
2722 * @param GCPhys The physical address of the ROM.
2723 * @param cb The size of the ROM.
2724 * @param pvCopy Pointer to the ROM copy.
2725 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2726 * This function will be called when ever the protection of the
2727 * shadow ROM changes (at reset and end of POST).
2728 */
2729REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2730{
2731 Log(("REMR3NotifyPhysRomRegister: GCPhys=%RGp cb=%d pvCopy=%p fShadow=%RTbool\n", GCPhys, cb, pvCopy, fShadow));
2732 VM_ASSERT_EMT(pVM);
2733
2734 /*
2735 * Validate input - we trust the caller.
2736 */
2737 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2738 Assert(cb);
2739 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2740 Assert(pvCopy);
2741 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2742
2743 /*
2744 * Register the rom.
2745 */
2746 Assert(!pVM->rem.s.fIgnoreAll);
2747 pVM->rem.s.fIgnoreAll = true;
2748
2749 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2750
2751 Log2(("%.64Rhxd\n", (char *)pvCopy + cb - 64));
2752
2753 Assert(pVM->rem.s.fIgnoreAll);
2754 pVM->rem.s.fIgnoreAll = false;
2755}
2756
2757
2758/**
2759 * Notification about a successful memory deregistration or reservation.
2760 *
2761 * @param pVM VM Handle.
2762 * @param GCPhys Start physical address.
2763 * @param cb The size of the range.
2764 * @todo Rename to REMR3NotifyPhysRamDeregister (for MMIO2) as we won't
2765 * reserve any memory soon.
2766 */
2767REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2768{
2769 Log(("REMR3NotifyPhysReserve: GCPhys=%RGp cb=%d\n", GCPhys, cb));
2770 VM_ASSERT_EMT(pVM);
2771
2772 /*
2773 * Validate input - we trust the caller.
2774 */
2775 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2776 Assert(cb);
2777 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2778
2779 /*
2780 * Unassigning the memory.
2781 */
2782 Assert(!pVM->rem.s.fIgnoreAll);
2783 pVM->rem.s.fIgnoreAll = true;
2784
2785 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2786
2787 Assert(pVM->rem.s.fIgnoreAll);
2788 pVM->rem.s.fIgnoreAll = false;
2789}
2790
2791
2792/**
2793 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2794 *
2795 * @param pVM VM Handle.
2796 * @param enmType Handler type.
2797 * @param GCPhys Handler range address.
2798 * @param cb Size of the handler range.
2799 * @param fHasHCHandler Set if the handler has a HC callback function.
2800 *
2801 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2802 * Handler memory type to memory which has no HC handler.
2803 */
2804REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2805{
2806 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%d\n",
2807 enmType, GCPhys, cb, fHasHCHandler));
2808 VM_ASSERT_EMT(pVM);
2809 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2810 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2811
2812 if (pVM->rem.s.cHandlerNotifications)
2813 REMR3ReplayHandlerNotifications(pVM);
2814
2815 Assert(!pVM->rem.s.fIgnoreAll);
2816 pVM->rem.s.fIgnoreAll = true;
2817
2818 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2819 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2820 else if (fHasHCHandler)
2821 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2822
2823 Assert(pVM->rem.s.fIgnoreAll);
2824 pVM->rem.s.fIgnoreAll = false;
2825}
2826
2827
2828/**
2829 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2830 *
2831 * @param pVM VM Handle.
2832 * @param enmType Handler type.
2833 * @param GCPhys Handler range address.
2834 * @param cb Size of the handler range.
2835 * @param fHasHCHandler Set if the handler has a HC callback function.
2836 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2837 */
2838REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2839{
2840 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2841 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2842 VM_ASSERT_EMT(pVM);
2843
2844 if (pVM->rem.s.cHandlerNotifications)
2845 REMR3ReplayHandlerNotifications(pVM);
2846
2847 Assert(!pVM->rem.s.fIgnoreAll);
2848 pVM->rem.s.fIgnoreAll = true;
2849
2850/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
2851 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2852 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2853 else if (fHasHCHandler)
2854 {
2855 if (!fRestoreAsRAM)
2856 {
2857 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2858 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2859 }
2860 else
2861 {
2862 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2863 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2864 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2865 }
2866 }
2867
2868 Assert(pVM->rem.s.fIgnoreAll);
2869 pVM->rem.s.fIgnoreAll = false;
2870}
2871
2872
2873/**
2874 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2875 *
2876 * @param pVM VM Handle.
2877 * @param enmType Handler type.
2878 * @param GCPhysOld Old handler range address.
2879 * @param GCPhysNew New handler range address.
2880 * @param cb Size of the handler range.
2881 * @param fHasHCHandler Set if the handler has a HC callback function.
2882 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2883 */
2884REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2885{
2886 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%RGp GCPhysNew=%RGp cb=%RGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
2887 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
2888 VM_ASSERT_EMT(pVM);
2889 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2890
2891 if (pVM->rem.s.cHandlerNotifications)
2892 REMR3ReplayHandlerNotifications(pVM);
2893
2894 if (fHasHCHandler)
2895 {
2896 Assert(!pVM->rem.s.fIgnoreAll);
2897 pVM->rem.s.fIgnoreAll = true;
2898
2899 /*
2900 * Reset the old page.
2901 */
2902 if (!fRestoreAsRAM)
2903 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2904 else
2905 {
2906 /* This is not perfect, but it'll do for PD monitoring... */
2907 Assert(cb == PAGE_SIZE);
2908 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2909 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2910 }
2911
2912 /*
2913 * Update the new page.
2914 */
2915 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2916 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2917 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2918
2919 Assert(pVM->rem.s.fIgnoreAll);
2920 pVM->rem.s.fIgnoreAll = false;
2921 }
2922}
2923
2924
2925/**
2926 * Checks if we're handling access to this page or not.
2927 *
2928 * @returns true if we're trapping access.
2929 * @returns false if we aren't.
2930 * @param pVM The VM handle.
2931 * @param GCPhys The physical address.
2932 *
2933 * @remark This function will only work correctly in VBOX_STRICT builds!
2934 */
2935REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
2936{
2937#ifdef VBOX_STRICT
2938 unsigned long off;
2939 if (pVM->rem.s.cHandlerNotifications)
2940 REMR3ReplayHandlerNotifications(pVM);
2941
2942 off = get_phys_page_offset(GCPhys);
2943 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
2944 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
2945 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
2946#else
2947 return false;
2948#endif
2949}
2950
2951
2952/**
2953 * Deals with a rare case in get_phys_addr_code where the code
2954 * is being monitored.
2955 *
2956 * It could also be an MMIO page, in which case we will raise a fatal error.
2957 *
2958 * @returns The physical address corresponding to addr.
2959 * @param env The cpu environment.
2960 * @param addr The virtual address.
2961 * @param pTLBEntry The TLB entry.
2962 */
2963target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
2964{
2965 PVM pVM = env->pVM;
2966 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
2967 {
2968 target_ulong ret = pTLBEntry->addend + addr;
2969 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%RGv addr_code=%RGv addend=%RGp ret=%RGp\n",
2970 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
2971 return ret;
2972 }
2973 LogRel(("\nTrying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
2974 "*** handlers\n",
2975 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
2976 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
2977 LogRel(("*** mmio\n"));
2978 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
2979 LogRel(("*** phys\n"));
2980 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
2981 cpu_abort(env, "Trying to execute code with memory type addr_code=%RGv addend=%RGp at %RGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
2982 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
2983 AssertFatalFailed();
2984}
2985
2986/**
2987 * Read guest RAM and ROM.
2988 *
2989 * @param SrcGCPhys The source address (guest physical).
2990 * @param pvDst The destination address.
2991 * @param cb Number of bytes
2992 */
2993void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
2994{
2995 STAM_PROFILE_ADV_START(&gStatMemRead, a);
2996 VBOX_CHECK_ADDR(SrcGCPhys);
2997 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
2998#ifdef VBOX_DEBUG_PHYS
2999 LogRel(("read(%d): %08x\n", cb, (uint32_t)SrcGCPhys));
3000#endif
3001 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3002}
3003
3004
3005/**
3006 * Read guest RAM and ROM, unsigned 8-bit.
3007 *
3008 * @param SrcGCPhys The source address (guest physical).
3009 */
3010RTCCUINTREG remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3011{
3012 uint8_t val;
3013 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3014 VBOX_CHECK_ADDR(SrcGCPhys);
3015 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3016 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3017#ifdef VBOX_DEBUG_PHYS
3018 LogRel(("readu8: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3019#endif
3020 return val;
3021}
3022
3023
3024/**
3025 * Read guest RAM and ROM, signed 8-bit.
3026 *
3027 * @param SrcGCPhys The source address (guest physical).
3028 */
3029RTCCINTREG remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3030{
3031 int8_t val;
3032 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3033 VBOX_CHECK_ADDR(SrcGCPhys);
3034 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3035 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3036#ifdef VBOX_DEBUG_PHYS
3037 LogRel(("reads8: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3038#endif
3039 return val;
3040}
3041
3042
3043/**
3044 * Read guest RAM and ROM, unsigned 16-bit.
3045 *
3046 * @param SrcGCPhys The source address (guest physical).
3047 */
3048RTCCUINTREG remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3049{
3050 uint16_t val;
3051 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3052 VBOX_CHECK_ADDR(SrcGCPhys);
3053 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3054 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3055#ifdef VBOX_DEBUG_PHYS
3056 LogRel(("readu16: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3057#endif
3058 return val;
3059}
3060
3061
3062/**
3063 * Read guest RAM and ROM, signed 16-bit.
3064 *
3065 * @param SrcGCPhys The source address (guest physical).
3066 */
3067RTCCINTREG remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3068{
3069 int16_t val;
3070 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3071 VBOX_CHECK_ADDR(SrcGCPhys);
3072 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3073 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3074#ifdef VBOX_DEBUG_PHYS
3075 LogRel(("reads16: %x <- %08x\n", (uint16_t)val, (uint32_t)SrcGCPhys));
3076#endif
3077 return val;
3078}
3079
3080
3081/**
3082 * Read guest RAM and ROM, unsigned 32-bit.
3083 *
3084 * @param SrcGCPhys The source address (guest physical).
3085 */
3086RTCCUINTREG remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3087{
3088 uint32_t val;
3089 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3090 VBOX_CHECK_ADDR(SrcGCPhys);
3091 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3092 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3093#ifdef VBOX_DEBUG_PHYS
3094 LogRel(("readu32: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3095#endif
3096 return val;
3097}
3098
3099
3100/**
3101 * Read guest RAM and ROM, signed 32-bit.
3102 *
3103 * @param SrcGCPhys The source address (guest physical).
3104 */
3105RTCCINTREG remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3106{
3107 int32_t val;
3108 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3109 VBOX_CHECK_ADDR(SrcGCPhys);
3110 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3111 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3112#ifdef VBOX_DEBUG_PHYS
3113 LogRel(("reads32: %x <- %08x\n", val, (uint32_t)SrcGCPhys));
3114#endif
3115 return val;
3116}
3117
3118
3119/**
3120 * Read guest RAM and ROM, unsigned 64-bit.
3121 *
3122 * @param SrcGCPhys The source address (guest physical).
3123 */
3124uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3125{
3126 uint64_t val;
3127 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3128 VBOX_CHECK_ADDR(SrcGCPhys);
3129 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3130 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3131#ifdef VBOX_DEBUG_PHYS
3132 LogRel(("readu64: %llx <- %08x\n", val, (uint32_t)SrcGCPhys));
3133#endif
3134 return val;
3135}
3136
3137/**
3138 * Read guest RAM and ROM, signed 64-bit.
3139 *
3140 * @param SrcGCPhys The source address (guest physical).
3141 */
3142int64_t remR3PhysReadS64(RTGCPHYS SrcGCPhys)
3143{
3144 int64_t val;
3145 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3146 VBOX_CHECK_ADDR(SrcGCPhys);
3147 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3148 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3149#ifdef VBOX_DEBUG_PHYS
3150 LogRel(("reads64: %llx <- %08x\n", val, (uint32_t)SrcGCPhys));
3151#endif
3152 return val;
3153}
3154
3155
3156/**
3157 * Write guest RAM.
3158 *
3159 * @param DstGCPhys The destination address (guest physical).
3160 * @param pvSrc The source address.
3161 * @param cb Number of bytes to write
3162 */
3163void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3164{
3165 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3166 VBOX_CHECK_ADDR(DstGCPhys);
3167 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3168 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3169#ifdef VBOX_DEBUG_PHYS
3170 LogRel(("write(%d): %08x\n", cb, (uint32_t)DstGCPhys));
3171#endif
3172}
3173
3174
3175/**
3176 * Write guest RAM, unsigned 8-bit.
3177 *
3178 * @param DstGCPhys The destination address (guest physical).
3179 * @param val Value
3180 */
3181void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3182{
3183 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3184 VBOX_CHECK_ADDR(DstGCPhys);
3185 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3186 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3187#ifdef VBOX_DEBUG_PHYS
3188 LogRel(("writeu8: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3189#endif
3190}
3191
3192
3193/**
3194 * Write guest RAM, unsigned 8-bit.
3195 *
3196 * @param DstGCPhys The destination address (guest physical).
3197 * @param val Value
3198 */
3199void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3200{
3201 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3202 VBOX_CHECK_ADDR(DstGCPhys);
3203 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3204 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3205#ifdef VBOX_DEBUG_PHYS
3206 LogRel(("writeu16: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3207#endif
3208}
3209
3210
3211/**
3212 * Write guest RAM, unsigned 32-bit.
3213 *
3214 * @param DstGCPhys The destination address (guest physical).
3215 * @param val Value
3216 */
3217void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3218{
3219 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3220 VBOX_CHECK_ADDR(DstGCPhys);
3221 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3222 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3223#ifdef VBOX_DEBUG_PHYS
3224 LogRel(("writeu32: %x -> %08x\n", val, (uint32_t)DstGCPhys));
3225#endif
3226}
3227
3228
3229/**
3230 * Write guest RAM, unsigned 64-bit.
3231 *
3232 * @param DstGCPhys The destination address (guest physical).
3233 * @param val Value
3234 */
3235void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3236{
3237 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3238 VBOX_CHECK_ADDR(DstGCPhys);
3239 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3240 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3241#ifdef VBOX_DEBUG_PHYS
3242 LogRel(("writeu64: %llx -> %08x\n", val, (uint32_t)SrcGCPhys));
3243#endif
3244}
3245
3246#undef LOG_GROUP
3247#define LOG_GROUP LOG_GROUP_REM_MMIO
3248
3249/** Read MMIO memory. */
3250static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3251{
3252 uint32_t u32 = 0;
3253 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3254 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3255 Log2(("remR3MMIOReadU8: GCPhys=%RGp -> %02x\n", GCPhys, u32));
3256 return u32;
3257}
3258
3259/** Read MMIO memory. */
3260static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3261{
3262 uint32_t u32 = 0;
3263 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3264 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3265 Log2(("remR3MMIOReadU16: GCPhys=%RGp -> %04x\n", GCPhys, u32));
3266 return u32;
3267}
3268
3269/** Read MMIO memory. */
3270static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3271{
3272 uint32_t u32 = 0;
3273 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3274 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3275 Log2(("remR3MMIOReadU32: GCPhys=%RGp -> %08x\n", GCPhys, u32));
3276 return u32;
3277}
3278
3279/** Write to MMIO memory. */
3280static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3281{
3282 int rc;
3283 Log2(("remR3MMIOWriteU8: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3284 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3285 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3286}
3287
3288/** Write to MMIO memory. */
3289static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3290{
3291 int rc;
3292 Log2(("remR3MMIOWriteU16: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3293 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3294 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3295}
3296
3297/** Write to MMIO memory. */
3298static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3299{
3300 int rc;
3301 Log2(("remR3MMIOWriteU32: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3302 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3303 AssertMsg(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc)); NOREF(rc);
3304}
3305
3306
3307#undef LOG_GROUP
3308#define LOG_GROUP LOG_GROUP_REM_HANDLER
3309
3310/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3311
3312static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3313{
3314 uint8_t u8;
3315 Log2(("remR3HandlerReadU8: GCPhys=%RGp\n", GCPhys));
3316 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3317 return u8;
3318}
3319
3320static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3321{
3322 uint16_t u16;
3323 Log2(("remR3HandlerReadU16: GCPhys=%RGp\n", GCPhys));
3324 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3325 return u16;
3326}
3327
3328static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3329{
3330 uint32_t u32;
3331 Log2(("remR3HandlerReadU32: GCPhys=%RGp\n", GCPhys));
3332 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3333 return u32;
3334}
3335
3336static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3337{
3338 Log2(("remR3HandlerWriteU8: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3339 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3340}
3341
3342static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3343{
3344 Log2(("remR3HandlerWriteU16: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3345 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3346}
3347
3348static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3349{
3350 Log2(("remR3HandlerWriteU32: GCPhys=%RGp u32=%#x\n", GCPhys, u32));
3351 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3352}
3353
3354/* -+- disassembly -+- */
3355
3356#undef LOG_GROUP
3357#define LOG_GROUP LOG_GROUP_REM_DISAS
3358
3359
3360/**
3361 * Enables or disables singled stepped disassembly.
3362 *
3363 * @returns VBox status code.
3364 * @param pVM VM handle.
3365 * @param fEnable To enable set this flag, to disable clear it.
3366 */
3367static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3368{
3369 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3370 VM_ASSERT_EMT(pVM);
3371
3372 if (fEnable)
3373 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3374 else
3375 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3376 return VINF_SUCCESS;
3377}
3378
3379
3380/**
3381 * Enables or disables singled stepped disassembly.
3382 *
3383 * @returns VBox status code.
3384 * @param pVM VM handle.
3385 * @param fEnable To enable set this flag, to disable clear it.
3386 */
3387REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3388{
3389 PVMREQ pReq;
3390 int rc;
3391
3392 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3393 if (VM_IS_EMT(pVM))
3394 return remR3DisasEnableStepping(pVM, fEnable);
3395
3396 rc = VMR3ReqCall(pVM, VMREQDEST_ANY, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3397 AssertRC(rc);
3398 if (RT_SUCCESS(rc))
3399 rc = pReq->iStatus;
3400 VMR3ReqFree(pReq);
3401 return rc;
3402}
3403
3404
3405#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3406/**
3407 * External Debugger Command: .remstep [on|off|1|0]
3408 */
3409static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3410{
3411 bool fEnable;
3412 int rc;
3413
3414 /* print status */
3415 if (cArgs == 0)
3416 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3417 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3418
3419 /* convert the argument and change the mode. */
3420 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3421 if (RT_FAILURE(rc))
3422 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3423 rc = REMR3DisasEnableStepping(pVM, fEnable);
3424 if (RT_FAILURE(rc))
3425 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3426 return rc;
3427}
3428#endif
3429
3430
3431/**
3432 * Disassembles n instructions and prints them to the log.
3433 *
3434 * @returns Success indicator.
3435 * @param env Pointer to the recompiler CPU structure.
3436 * @param f32BitCode Indicates that whether or not the code should
3437 * be disassembled as 16 or 32 bit. If -1 the CS
3438 * selector will be inspected.
3439 * @param nrInstructions Nr of instructions to disassemble
3440 * @param pszPrefix
3441 * @remark not currently used for anything but ad-hoc debugging.
3442 */
3443bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3444{
3445 int i, rc;
3446 RTGCPTR GCPtrPC;
3447 uint8_t *pvPC;
3448 RTINTPTR off;
3449 DISCPUSTATE Cpu;
3450
3451 /*
3452 * Determin 16/32 bit mode.
3453 */
3454 if (f32BitCode == -1)
3455 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3456
3457 /*
3458 * Convert cs:eip to host context address.
3459 * We don't care to much about cross page correctness presently.
3460 */
3461 GCPtrPC = env->segs[R_CS].base + env->eip;
3462 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3463 {
3464 Assert(PGMGetGuestMode(env->pVM) < PGMMODE_AMD64);
3465
3466 /* convert eip to physical address. */
3467 rc = PGMPhysGCPtr2R3PtrByGstCR3(env->pVM,
3468 GCPtrPC,
3469 env->cr[3],
3470 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3471 (void**)&pvPC);
3472 if (RT_FAILURE(rc))
3473 {
3474 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3475 return false;
3476 pvPC = (uint8_t *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3477 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3478 }
3479 }
3480 else
3481 {
3482 /* physical address */
3483 rc = PGMPhysGCPhys2R3Ptr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16,
3484 (void**)&pvPC);
3485 if (RT_FAILURE(rc))
3486 return false;
3487 }
3488
3489 /*
3490 * Disassemble.
3491 */
3492 off = env->eip - (RTGCUINTPTR)(uintptr_t)pvPC;
3493 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3494 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3495 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3496 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3497 //Cpu.dwUserData[2] = GCPtrPC;
3498
3499 for (i=0;i<nrInstructions;i++)
3500 {
3501 char szOutput[256];
3502 uint32_t cbOp;
3503 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3504 return false;
3505 if (pszPrefix)
3506 Log(("%s: %s", pszPrefix, szOutput));
3507 else
3508 Log(("%s", szOutput));
3509
3510 pvPC += cbOp;
3511 }
3512 return true;
3513}
3514
3515
3516/** @todo need to test the new code, using the old code in the mean while. */
3517#define USE_OLD_DUMP_AND_DISASSEMBLY
3518
3519/**
3520 * Disassembles one instruction and prints it to the log.
3521 *
3522 * @returns Success indicator.
3523 * @param env Pointer to the recompiler CPU structure.
3524 * @param f32BitCode Indicates that whether or not the code should
3525 * be disassembled as 16 or 32 bit. If -1 the CS
3526 * selector will be inspected.
3527 * @param pszPrefix
3528 */
3529bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3530{
3531#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3532 PVM pVM = env->pVM;
3533 RTGCPTR GCPtrPC;
3534 uint8_t *pvPC;
3535 char szOutput[256];
3536 uint32_t cbOp;
3537 RTINTPTR off;
3538 DISCPUSTATE Cpu;
3539
3540
3541 /* Doesn't work in long mode. */
3542 if (env->hflags & HF_LMA_MASK)
3543 return false;
3544
3545 /*
3546 * Determin 16/32 bit mode.
3547 */
3548 if (f32BitCode == -1)
3549 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3550
3551 /*
3552 * Log registers
3553 */
3554 if (LogIs2Enabled())
3555 {
3556 remR3StateUpdate(pVM);
3557 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3558 }
3559
3560 /*
3561 * Convert cs:eip to host context address.
3562 * We don't care to much about cross page correctness presently.
3563 */
3564 GCPtrPC = env->segs[R_CS].base + env->eip;
3565 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3566 {
3567 /* convert eip to physical address. */
3568 int rc = PGMPhysGCPtr2R3PtrByGstCR3(pVM,
3569 GCPtrPC,
3570 env->cr[3],
3571 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3572 (void**)&pvPC);
3573 if (RT_FAILURE(rc))
3574 {
3575 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3576 return false;
3577 pvPC = (uint8_t *)PATMR3QueryPatchMemHC(pVM, NULL)
3578 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3579 }
3580 }
3581 else
3582 {
3583
3584 /* physical address */
3585 int rc = PGMPhysGCPhys2R3Ptr(pVM, (RTGCPHYS)GCPtrPC, 16, (void**)&pvPC);
3586 if (RT_FAILURE(rc))
3587 return false;
3588 }
3589
3590 /*
3591 * Disassemble.
3592 */
3593 off = env->eip - (RTGCUINTPTR)(uintptr_t)pvPC;
3594 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3595 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3596 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3597 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3598 //Cpu.dwUserData[2] = GCPtrPC;
3599 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3600 return false;
3601
3602 if (!f32BitCode)
3603 {
3604 if (pszPrefix)
3605 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3606 else
3607 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3608 }
3609 else
3610 {
3611 if (pszPrefix)
3612 Log(("%s: %s", pszPrefix, szOutput));
3613 else
3614 Log(("%s", szOutput));
3615 }
3616 return true;
3617
3618#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3619 PVM pVM = env->pVM;
3620 const bool fLog = LogIsEnabled();
3621 const bool fLog2 = LogIs2Enabled();
3622 int rc = VINF_SUCCESS;
3623
3624 /*
3625 * Don't bother if there ain't any log output to do.
3626 */
3627 if (!fLog && !fLog2)
3628 return true;
3629
3630 /*
3631 * Update the state so DBGF reads the correct register values.
3632 */
3633 remR3StateUpdate(pVM);
3634
3635 /*
3636 * Log registers if requested.
3637 */
3638 if (!fLog2)
3639 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3640
3641 /*
3642 * Disassemble to log.
3643 */
3644 if (fLog)
3645 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3646
3647 return RT_SUCCESS(rc);
3648#endif
3649}
3650
3651
3652/**
3653 * Disassemble recompiled code.
3654 *
3655 * @param phFileIgnored Ignored, logfile usually.
3656 * @param pvCode Pointer to the code block.
3657 * @param cb Size of the code block.
3658 */
3659void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3660{
3661 if (LogIs2Enabled())
3662 {
3663 unsigned off = 0;
3664 char szOutput[256];
3665 DISCPUSTATE Cpu;
3666
3667 memset(&Cpu, 0, sizeof(Cpu));
3668#ifdef RT_ARCH_X86
3669 Cpu.mode = CPUMODE_32BIT;
3670#else
3671 Cpu.mode = CPUMODE_64BIT;
3672#endif
3673
3674 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3675 while (off < cb)
3676 {
3677 uint32_t cbInstr;
3678 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3679 RTLogPrintf("%s", szOutput);
3680 else
3681 {
3682 RTLogPrintf("disas error\n");
3683 cbInstr = 1;
3684#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3685 break;
3686#endif
3687 }
3688 off += cbInstr;
3689 }
3690 }
3691 NOREF(phFileIgnored);
3692}
3693
3694
3695/**
3696 * Disassemble guest code.
3697 *
3698 * @param phFileIgnored Ignored, logfile usually.
3699 * @param uCode The guest address of the code to disassemble. (flat?)
3700 * @param cb Number of bytes to disassemble.
3701 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3702 */
3703void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3704{
3705 if (LogIs2Enabled())
3706 {
3707 PVM pVM = cpu_single_env->pVM;
3708 RTSEL cs;
3709 RTGCUINTPTR eip;
3710
3711 /*
3712 * Update the state so DBGF reads the correct register values (flags).
3713 */
3714 remR3StateUpdate(pVM);
3715
3716 /*
3717 * Do the disassembling.
3718 */
3719 RTLogPrintf("Guest Code: PC=%RGp %RGp bytes fFlags=%d\n", uCode, cb, fFlags);
3720 cs = cpu_single_env->segs[R_CS].selector;
3721 eip = uCode - cpu_single_env->segs[R_CS].base;
3722 for (;;)
3723 {
3724 char szBuf[256];
3725 uint32_t cbInstr;
3726 int rc = DBGFR3DisasInstrEx(pVM,
3727 cs,
3728 eip,
3729 0,
3730 szBuf, sizeof(szBuf),
3731 &cbInstr);
3732 if (RT_SUCCESS(rc))
3733 RTLogPrintf("%RGp %s\n", uCode, szBuf);
3734 else
3735 {
3736 RTLogPrintf("%RGp %04x:%RGp: %s\n", uCode, cs, eip, szBuf);
3737 cbInstr = 1;
3738 }
3739
3740 /* next */
3741 if (cb <= cbInstr)
3742 break;
3743 cb -= cbInstr;
3744 uCode += cbInstr;
3745 eip += cbInstr;
3746 }
3747 }
3748 NOREF(phFileIgnored);
3749}
3750
3751
3752/**
3753 * Looks up a guest symbol.
3754 *
3755 * @returns Pointer to symbol name. This is a static buffer.
3756 * @param orig_addr The address in question.
3757 */
3758const char *lookup_symbol(target_ulong orig_addr)
3759{
3760 RTGCINTPTR off = 0;
3761 DBGFSYMBOL Sym;
3762 PVM pVM = cpu_single_env->pVM;
3763 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3764 if (RT_SUCCESS(rc))
3765 {
3766 static char szSym[sizeof(Sym.szName) + 48];
3767 if (!off)
3768 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3769 else if (off > 0)
3770 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3771 else
3772 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3773 return szSym;
3774 }
3775 return "<N/A>";
3776}
3777
3778
3779#undef LOG_GROUP
3780#define LOG_GROUP LOG_GROUP_REM
3781
3782
3783/* -+- FF notifications -+- */
3784
3785
3786/**
3787 * Notification about a pending interrupt.
3788 *
3789 * @param pVM VM Handle.
3790 * @param u8Interrupt Interrupt
3791 * @thread The emulation thread.
3792 */
3793REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3794{
3795 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3796 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3797}
3798
3799/**
3800 * Notification about a pending interrupt.
3801 *
3802 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3803 * @param pVM VM Handle.
3804 * @thread The emulation thread.
3805 */
3806REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3807{
3808 return pVM->rem.s.u32PendingInterrupt;
3809}
3810
3811/**
3812 * Notification about the interrupt FF being set.
3813 *
3814 * @param pVM VM Handle.
3815 * @thread The emulation thread.
3816 */
3817REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3818{
3819 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3820 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3821 if (pVM->rem.s.fInREM)
3822 {
3823 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3824 CPU_INTERRUPT_EXTERNAL_HARD);
3825 }
3826}
3827
3828
3829/**
3830 * Notification about the interrupt FF being set.
3831 *
3832 * @param pVM VM Handle.
3833 * @thread Any.
3834 */
3835REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3836{
3837 LogFlow(("REMR3NotifyInterruptClear:\n"));
3838 if (pVM->rem.s.fInREM)
3839 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3840}
3841
3842
3843/**
3844 * Notification about pending timer(s).
3845 *
3846 * @param pVM VM Handle.
3847 * @thread Any.
3848 */
3849REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3850{
3851#ifndef DEBUG_bird
3852 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3853#endif
3854 if (pVM->rem.s.fInREM)
3855 {
3856 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3857 CPU_INTERRUPT_EXTERNAL_TIMER);
3858 }
3859}
3860
3861
3862/**
3863 * Notification about pending DMA transfers.
3864 *
3865 * @param pVM VM Handle.
3866 * @thread Any.
3867 */
3868REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3869{
3870 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3871 if (pVM->rem.s.fInREM)
3872 {
3873 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3874 CPU_INTERRUPT_EXTERNAL_DMA);
3875 }
3876}
3877
3878
3879/**
3880 * Notification about pending timer(s).
3881 *
3882 * @param pVM VM Handle.
3883 * @thread Any.
3884 */
3885REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3886{
3887 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3888 if (pVM->rem.s.fInREM)
3889 {
3890 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3891 CPU_INTERRUPT_EXTERNAL_EXIT);
3892 }
3893}
3894
3895
3896/**
3897 * Notification about pending FF set by an external thread.
3898 *
3899 * @param pVM VM handle.
3900 * @thread Any.
3901 */
3902REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3903{
3904 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3905 if (pVM->rem.s.fInREM)
3906 {
3907 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3908 CPU_INTERRUPT_EXTERNAL_EXIT);
3909 }
3910}
3911
3912
3913#ifdef VBOX_WITH_STATISTICS
3914void remR3ProfileStart(int statcode)
3915{
3916 STAMPROFILEADV *pStat;
3917 switch(statcode)
3918 {
3919 case STATS_EMULATE_SINGLE_INSTR:
3920 pStat = &gStatExecuteSingleInstr;
3921 break;
3922 case STATS_QEMU_COMPILATION:
3923 pStat = &gStatCompilationQEmu;
3924 break;
3925 case STATS_QEMU_RUN_EMULATED_CODE:
3926 pStat = &gStatRunCodeQEmu;
3927 break;
3928 case STATS_QEMU_TOTAL:
3929 pStat = &gStatTotalTimeQEmu;
3930 break;
3931 case STATS_QEMU_RUN_TIMERS:
3932 pStat = &gStatTimers;
3933 break;
3934 case STATS_TLB_LOOKUP:
3935 pStat= &gStatTBLookup;
3936 break;
3937 case STATS_IRQ_HANDLING:
3938 pStat= &gStatIRQ;
3939 break;
3940 case STATS_RAW_CHECK:
3941 pStat = &gStatRawCheck;
3942 break;
3943
3944 default:
3945 AssertMsgFailed(("unknown stat %d\n", statcode));
3946 return;
3947 }
3948 STAM_PROFILE_ADV_START(pStat, a);
3949}
3950
3951
3952void remR3ProfileStop(int statcode)
3953{
3954 STAMPROFILEADV *pStat;
3955 switch(statcode)
3956 {
3957 case STATS_EMULATE_SINGLE_INSTR:
3958 pStat = &gStatExecuteSingleInstr;
3959 break;
3960 case STATS_QEMU_COMPILATION:
3961 pStat = &gStatCompilationQEmu;
3962 break;
3963 case STATS_QEMU_RUN_EMULATED_CODE:
3964 pStat = &gStatRunCodeQEmu;
3965 break;
3966 case STATS_QEMU_TOTAL:
3967 pStat = &gStatTotalTimeQEmu;
3968 break;
3969 case STATS_QEMU_RUN_TIMERS:
3970 pStat = &gStatTimers;
3971 break;
3972 case STATS_TLB_LOOKUP:
3973 pStat= &gStatTBLookup;
3974 break;
3975 case STATS_IRQ_HANDLING:
3976 pStat= &gStatIRQ;
3977 break;
3978 case STATS_RAW_CHECK:
3979 pStat = &gStatRawCheck;
3980 break;
3981 default:
3982 AssertMsgFailed(("unknown stat %d\n", statcode));
3983 return;
3984 }
3985 STAM_PROFILE_ADV_STOP(pStat, a);
3986}
3987#endif
3988
3989/**
3990 * Raise an RC, force rem exit.
3991 *
3992 * @param pVM VM handle.
3993 * @param rc The rc.
3994 */
3995void remR3RaiseRC(PVM pVM, int rc)
3996{
3997 Log(("remR3RaiseRC: rc=%Rrc\n", rc));
3998 Assert(pVM->rem.s.fInREM);
3999 VM_ASSERT_EMT(pVM);
4000 pVM->rem.s.rc = rc;
4001 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
4002}
4003
4004
4005/* -+- timers -+- */
4006
4007uint64_t cpu_get_tsc(CPUX86State *env)
4008{
4009 STAM_COUNTER_INC(&gStatCpuGetTSC);
4010 return TMCpuTickGet(env->pVM);
4011}
4012
4013
4014/* -+- interrupts -+- */
4015
4016void cpu_set_ferr(CPUX86State *env)
4017{
4018 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
4019 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4020}
4021
4022int cpu_get_pic_interrupt(CPUState *env)
4023{
4024 uint8_t u8Interrupt;
4025 int rc;
4026
4027 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4028 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4029 * with the (a)pic.
4030 */
4031 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4032 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4033 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4034 * remove this kludge. */
4035 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4036 {
4037 rc = VINF_SUCCESS;
4038 Assert(env->pVM->rem.s.u32PendingInterrupt <= 255);
4039 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4040 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4041 }
4042 else
4043 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4044
4045 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Rrc\n", u8Interrupt, rc));
4046 if (RT_SUCCESS(rc))
4047 {
4048 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4049 env->interrupt_request |= CPU_INTERRUPT_HARD;
4050 return u8Interrupt;
4051 }
4052 return -1;
4053}
4054
4055
4056/* -+- local apic -+- */
4057
4058void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4059{
4060 int rc = PDMApicSetBase(env->pVM, val);
4061 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Rrc\n", val, rc)); NOREF(rc);
4062}
4063
4064uint64_t cpu_get_apic_base(CPUX86State *env)
4065{
4066 uint64_t u64;
4067 int rc = PDMApicGetBase(env->pVM, &u64);
4068 if (RT_SUCCESS(rc))
4069 {
4070 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4071 return u64;
4072 }
4073 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Rrc)\n", rc));
4074 return 0;
4075}
4076
4077void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4078{
4079 int rc = PDMApicSetTPR(env->pVM, val);
4080 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Rrc\n", val, rc)); NOREF(rc);
4081}
4082
4083uint8_t cpu_get_apic_tpr(CPUX86State *env)
4084{
4085 uint8_t u8;
4086 int rc = PDMApicGetTPR(env->pVM, &u8, NULL);
4087 if (RT_SUCCESS(rc))
4088 {
4089 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4090 return u8;
4091 }
4092 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Rrc)\n", rc));
4093 return 0;
4094}
4095
4096
4097uint64_t cpu_apic_rdmsr(CPUX86State *env, uint32_t reg)
4098{
4099 uint64_t value;
4100 int rc = PDMApicReadMSR(env->pVM, 0/* cpu */, reg, &value);
4101 if (RT_SUCCESS(rc))
4102 {
4103 LogFlow(("cpu_apic_rdms returns %#x\n", value));
4104 return value;
4105 }
4106 /** @todo: exception ? */
4107 LogFlow(("cpu_apic_rdms returns 0 (rc=%Rrc)\n", rc));
4108 return value;
4109}
4110
4111void cpu_apic_wrmsr(CPUX86State *env, uint32_t reg, uint64_t value)
4112{
4113 int rc = PDMApicWriteMSR(env->pVM, 0 /* cpu */, reg, value);
4114 /** @todo: exception if error ? */
4115 LogFlow(("cpu_apic_wrmsr: rc=%Rrc\n", rc)); NOREF(rc);
4116}
4117
4118uint64_t cpu_rdmsr(CPUX86State *env, uint32_t msr)
4119{
4120 return CPUMGetGuestMsr(env->pVM, msr);
4121}
4122
4123void cpu_wrmsr(CPUX86State *env, uint32_t msr, uint64_t val)
4124{
4125 CPUMSetGuestMsr(env->pVM, msr, val);
4126}
4127/* -+- I/O Ports -+- */
4128
4129#undef LOG_GROUP
4130#define LOG_GROUP LOG_GROUP_REM_IOPORT
4131
4132void cpu_outb(CPUState *env, int addr, int val)
4133{
4134 int rc;
4135
4136 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4137 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4138
4139 rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4140 if (RT_LIKELY(rc == VINF_SUCCESS))
4141 return;
4142 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4143 {
4144 Log(("cpu_outb: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4145 remR3RaiseRC(env->pVM, rc);
4146 return;
4147 }
4148 remAbort(rc, __FUNCTION__);
4149}
4150
4151void cpu_outw(CPUState *env, int addr, int val)
4152{
4153 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4154 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4155 if (RT_LIKELY(rc == VINF_SUCCESS))
4156 return;
4157 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4158 {
4159 Log(("cpu_outw: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4160 remR3RaiseRC(env->pVM, rc);
4161 return;
4162 }
4163 remAbort(rc, __FUNCTION__);
4164}
4165
4166void cpu_outl(CPUState *env, int addr, int val)
4167{
4168 int rc;
4169 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4170 rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4171 if (RT_LIKELY(rc == VINF_SUCCESS))
4172 return;
4173 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4174 {
4175 Log(("cpu_outl: addr=%#06x val=%#x -> %Rrc\n", addr, val, rc));
4176 remR3RaiseRC(env->pVM, rc);
4177 return;
4178 }
4179 remAbort(rc, __FUNCTION__);
4180}
4181
4182int cpu_inb(CPUState *env, int addr)
4183{
4184 uint32_t u32 = 0;
4185 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4186 if (RT_LIKELY(rc == VINF_SUCCESS))
4187 {
4188 if (/*addr != 0x61 && */addr != 0x71)
4189 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4190 return (int)u32;
4191 }
4192 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4193 {
4194 Log(("cpu_inb: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4195 remR3RaiseRC(env->pVM, rc);
4196 return (int)u32;
4197 }
4198 remAbort(rc, __FUNCTION__);
4199 return 0xff;
4200}
4201
4202int cpu_inw(CPUState *env, int addr)
4203{
4204 uint32_t u32 = 0;
4205 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4206 if (RT_LIKELY(rc == VINF_SUCCESS))
4207 {
4208 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4209 return (int)u32;
4210 }
4211 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4212 {
4213 Log(("cpu_inw: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4214 remR3RaiseRC(env->pVM, rc);
4215 return (int)u32;
4216 }
4217 remAbort(rc, __FUNCTION__);
4218 return 0xffff;
4219}
4220
4221int cpu_inl(CPUState *env, int addr)
4222{
4223 uint32_t u32 = 0;
4224 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4225 if (RT_LIKELY(rc == VINF_SUCCESS))
4226 {
4227//if (addr==0x01f0 && u32 == 0x6b6d)
4228// loglevel = ~0;
4229 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4230 return (int)u32;
4231 }
4232 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4233 {
4234 Log(("cpu_inl: addr=%#06x -> %#x rc=%Rrc\n", addr, u32, rc));
4235 remR3RaiseRC(env->pVM, rc);
4236 return (int)u32;
4237 }
4238 remAbort(rc, __FUNCTION__);
4239 return 0xffffffff;
4240}
4241
4242#undef LOG_GROUP
4243#define LOG_GROUP LOG_GROUP_REM
4244
4245
4246/* -+- helpers and misc other interfaces -+- */
4247
4248/**
4249 * Perform the CPUID instruction.
4250 *
4251 * ASMCpuId cannot be invoked from some source files where this is used because of global
4252 * register allocations.
4253 *
4254 * @param env Pointer to the recompiler CPU structure.
4255 * @param uOperator CPUID operation (eax).
4256 * @param pvEAX Where to store eax.
4257 * @param pvEBX Where to store ebx.
4258 * @param pvECX Where to store ecx.
4259 * @param pvEDX Where to store edx.
4260 */
4261void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4262{
4263 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4264}
4265
4266
4267#if 0 /* not used */
4268/**
4269 * Interface for qemu hardware to report back fatal errors.
4270 */
4271void hw_error(const char *pszFormat, ...)
4272{
4273 /*
4274 * Bitch about it.
4275 */
4276 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4277 * this in my Odin32 tree at home! */
4278 va_list args;
4279 va_start(args, pszFormat);
4280 RTLogPrintf("fatal error in virtual hardware:");
4281 RTLogPrintfV(pszFormat, args);
4282 va_end(args);
4283 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4284
4285 /*
4286 * If we're in REM context we'll sync back the state before 'jumping' to
4287 * the EMs failure handling.
4288 */
4289 PVM pVM = cpu_single_env->pVM;
4290 if (pVM->rem.s.fInREM)
4291 REMR3StateBack(pVM);
4292 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4293 AssertMsgFailed(("EMR3FatalError returned!\n"));
4294}
4295#endif
4296
4297/**
4298 * Interface for the qemu cpu to report unhandled situation
4299 * raising a fatal VM error.
4300 */
4301void cpu_abort(CPUState *env, const char *pszFormat, ...)
4302{
4303 va_list args;
4304 PVM pVM;
4305
4306 /*
4307 * Bitch about it.
4308 */
4309#ifndef _MSC_VER
4310 /** @todo: MSVC is right - it's not valid C */
4311 RTLogFlags(NULL, "nodisabled nobuffered");
4312#endif
4313 va_start(args, pszFormat);
4314 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4315 va_end(args);
4316 va_start(args, pszFormat);
4317 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4318 va_end(args);
4319
4320 /*
4321 * If we're in REM context we'll sync back the state before 'jumping' to
4322 * the EMs failure handling.
4323 */
4324 pVM = cpu_single_env->pVM;
4325 if (pVM->rem.s.fInREM)
4326 REMR3StateBack(pVM);
4327 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4328 AssertMsgFailed(("EMR3FatalError returned!\n"));
4329}
4330
4331
4332/**
4333 * Aborts the VM.
4334 *
4335 * @param rc VBox error code.
4336 * @param pszTip Hint about why/when this happend.
4337 */
4338void remAbort(int rc, const char *pszTip)
4339{
4340 PVM pVM;
4341
4342 /*
4343 * Bitch about it.
4344 */
4345 RTLogPrintf("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip);
4346 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Rrc %s\n", rc, pszTip));
4347
4348 /*
4349 * Jump back to where we entered the recompiler.
4350 */
4351 pVM = cpu_single_env->pVM;
4352 if (pVM->rem.s.fInREM)
4353 REMR3StateBack(pVM);
4354 EMR3FatalError(pVM, rc);
4355 AssertMsgFailed(("EMR3FatalError returned!\n"));
4356}
4357
4358
4359/**
4360 * Dumps a linux system call.
4361 * @param pVM VM handle.
4362 */
4363void remR3DumpLnxSyscall(PVM pVM)
4364{
4365 static const char *apsz[] =
4366 {
4367 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4368 "sys_exit",
4369 "sys_fork",
4370 "sys_read",
4371 "sys_write",
4372 "sys_open", /* 5 */
4373 "sys_close",
4374 "sys_waitpid",
4375 "sys_creat",
4376 "sys_link",
4377 "sys_unlink", /* 10 */
4378 "sys_execve",
4379 "sys_chdir",
4380 "sys_time",
4381 "sys_mknod",
4382 "sys_chmod", /* 15 */
4383 "sys_lchown16",
4384 "sys_ni_syscall", /* old break syscall holder */
4385 "sys_stat",
4386 "sys_lseek",
4387 "sys_getpid", /* 20 */
4388 "sys_mount",
4389 "sys_oldumount",
4390 "sys_setuid16",
4391 "sys_getuid16",
4392 "sys_stime", /* 25 */
4393 "sys_ptrace",
4394 "sys_alarm",
4395 "sys_fstat",
4396 "sys_pause",
4397 "sys_utime", /* 30 */
4398 "sys_ni_syscall", /* old stty syscall holder */
4399 "sys_ni_syscall", /* old gtty syscall holder */
4400 "sys_access",
4401 "sys_nice",
4402 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4403 "sys_sync",
4404 "sys_kill",
4405 "sys_rename",
4406 "sys_mkdir",
4407 "sys_rmdir", /* 40 */
4408 "sys_dup",
4409 "sys_pipe",
4410 "sys_times",
4411 "sys_ni_syscall", /* old prof syscall holder */
4412 "sys_brk", /* 45 */
4413 "sys_setgid16",
4414 "sys_getgid16",
4415 "sys_signal",
4416 "sys_geteuid16",
4417 "sys_getegid16", /* 50 */
4418 "sys_acct",
4419 "sys_umount", /* recycled never used phys() */
4420 "sys_ni_syscall", /* old lock syscall holder */
4421 "sys_ioctl",
4422 "sys_fcntl", /* 55 */
4423 "sys_ni_syscall", /* old mpx syscall holder */
4424 "sys_setpgid",
4425 "sys_ni_syscall", /* old ulimit syscall holder */
4426 "sys_olduname",
4427 "sys_umask", /* 60 */
4428 "sys_chroot",
4429 "sys_ustat",
4430 "sys_dup2",
4431 "sys_getppid",
4432 "sys_getpgrp", /* 65 */
4433 "sys_setsid",
4434 "sys_sigaction",
4435 "sys_sgetmask",
4436 "sys_ssetmask",
4437 "sys_setreuid16", /* 70 */
4438 "sys_setregid16",
4439 "sys_sigsuspend",
4440 "sys_sigpending",
4441 "sys_sethostname",
4442 "sys_setrlimit", /* 75 */
4443 "sys_old_getrlimit",
4444 "sys_getrusage",
4445 "sys_gettimeofday",
4446 "sys_settimeofday",
4447 "sys_getgroups16", /* 80 */
4448 "sys_setgroups16",
4449 "old_select",
4450 "sys_symlink",
4451 "sys_lstat",
4452 "sys_readlink", /* 85 */
4453 "sys_uselib",
4454 "sys_swapon",
4455 "sys_reboot",
4456 "old_readdir",
4457 "old_mmap", /* 90 */
4458 "sys_munmap",
4459 "sys_truncate",
4460 "sys_ftruncate",
4461 "sys_fchmod",
4462 "sys_fchown16", /* 95 */
4463 "sys_getpriority",
4464 "sys_setpriority",
4465 "sys_ni_syscall", /* old profil syscall holder */
4466 "sys_statfs",
4467 "sys_fstatfs", /* 100 */
4468 "sys_ioperm",
4469 "sys_socketcall",
4470 "sys_syslog",
4471 "sys_setitimer",
4472 "sys_getitimer", /* 105 */
4473 "sys_newstat",
4474 "sys_newlstat",
4475 "sys_newfstat",
4476 "sys_uname",
4477 "sys_iopl", /* 110 */
4478 "sys_vhangup",
4479 "sys_ni_syscall", /* old "idle" system call */
4480 "sys_vm86old",
4481 "sys_wait4",
4482 "sys_swapoff", /* 115 */
4483 "sys_sysinfo",
4484 "sys_ipc",
4485 "sys_fsync",
4486 "sys_sigreturn",
4487 "sys_clone", /* 120 */
4488 "sys_setdomainname",
4489 "sys_newuname",
4490 "sys_modify_ldt",
4491 "sys_adjtimex",
4492 "sys_mprotect", /* 125 */
4493 "sys_sigprocmask",
4494 "sys_ni_syscall", /* old "create_module" */
4495 "sys_init_module",
4496 "sys_delete_module",
4497 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4498 "sys_quotactl",
4499 "sys_getpgid",
4500 "sys_fchdir",
4501 "sys_bdflush",
4502 "sys_sysfs", /* 135 */
4503 "sys_personality",
4504 "sys_ni_syscall", /* reserved for afs_syscall */
4505 "sys_setfsuid16",
4506 "sys_setfsgid16",
4507 "sys_llseek", /* 140 */
4508 "sys_getdents",
4509 "sys_select",
4510 "sys_flock",
4511 "sys_msync",
4512 "sys_readv", /* 145 */
4513 "sys_writev",
4514 "sys_getsid",
4515 "sys_fdatasync",
4516 "sys_sysctl",
4517 "sys_mlock", /* 150 */
4518 "sys_munlock",
4519 "sys_mlockall",
4520 "sys_munlockall",
4521 "sys_sched_setparam",
4522 "sys_sched_getparam", /* 155 */
4523 "sys_sched_setscheduler",
4524 "sys_sched_getscheduler",
4525 "sys_sched_yield",
4526 "sys_sched_get_priority_max",
4527 "sys_sched_get_priority_min", /* 160 */
4528 "sys_sched_rr_get_interval",
4529 "sys_nanosleep",
4530 "sys_mremap",
4531 "sys_setresuid16",
4532 "sys_getresuid16", /* 165 */
4533 "sys_vm86",
4534 "sys_ni_syscall", /* Old sys_query_module */
4535 "sys_poll",
4536 "sys_nfsservctl",
4537 "sys_setresgid16", /* 170 */
4538 "sys_getresgid16",
4539 "sys_prctl",
4540 "sys_rt_sigreturn",
4541 "sys_rt_sigaction",
4542 "sys_rt_sigprocmask", /* 175 */
4543 "sys_rt_sigpending",
4544 "sys_rt_sigtimedwait",
4545 "sys_rt_sigqueueinfo",
4546 "sys_rt_sigsuspend",
4547 "sys_pread64", /* 180 */
4548 "sys_pwrite64",
4549 "sys_chown16",
4550 "sys_getcwd",
4551 "sys_capget",
4552 "sys_capset", /* 185 */
4553 "sys_sigaltstack",
4554 "sys_sendfile",
4555 "sys_ni_syscall", /* reserved for streams1 */
4556 "sys_ni_syscall", /* reserved for streams2 */
4557 "sys_vfork", /* 190 */
4558 "sys_getrlimit",
4559 "sys_mmap2",
4560 "sys_truncate64",
4561 "sys_ftruncate64",
4562 "sys_stat64", /* 195 */
4563 "sys_lstat64",
4564 "sys_fstat64",
4565 "sys_lchown",
4566 "sys_getuid",
4567 "sys_getgid", /* 200 */
4568 "sys_geteuid",
4569 "sys_getegid",
4570 "sys_setreuid",
4571 "sys_setregid",
4572 "sys_getgroups", /* 205 */
4573 "sys_setgroups",
4574 "sys_fchown",
4575 "sys_setresuid",
4576 "sys_getresuid",
4577 "sys_setresgid", /* 210 */
4578 "sys_getresgid",
4579 "sys_chown",
4580 "sys_setuid",
4581 "sys_setgid",
4582 "sys_setfsuid", /* 215 */
4583 "sys_setfsgid",
4584 "sys_pivot_root",
4585 "sys_mincore",
4586 "sys_madvise",
4587 "sys_getdents64", /* 220 */
4588 "sys_fcntl64",
4589 "sys_ni_syscall", /* reserved for TUX */
4590 "sys_ni_syscall",
4591 "sys_gettid",
4592 "sys_readahead", /* 225 */
4593 "sys_setxattr",
4594 "sys_lsetxattr",
4595 "sys_fsetxattr",
4596 "sys_getxattr",
4597 "sys_lgetxattr", /* 230 */
4598 "sys_fgetxattr",
4599 "sys_listxattr",
4600 "sys_llistxattr",
4601 "sys_flistxattr",
4602 "sys_removexattr", /* 235 */
4603 "sys_lremovexattr",
4604 "sys_fremovexattr",
4605 "sys_tkill",
4606 "sys_sendfile64",
4607 "sys_futex", /* 240 */
4608 "sys_sched_setaffinity",
4609 "sys_sched_getaffinity",
4610 "sys_set_thread_area",
4611 "sys_get_thread_area",
4612 "sys_io_setup", /* 245 */
4613 "sys_io_destroy",
4614 "sys_io_getevents",
4615 "sys_io_submit",
4616 "sys_io_cancel",
4617 "sys_fadvise64", /* 250 */
4618 "sys_ni_syscall",
4619 "sys_exit_group",
4620 "sys_lookup_dcookie",
4621 "sys_epoll_create",
4622 "sys_epoll_ctl", /* 255 */
4623 "sys_epoll_wait",
4624 "sys_remap_file_pages",
4625 "sys_set_tid_address",
4626 "sys_timer_create",
4627 "sys_timer_settime", /* 260 */
4628 "sys_timer_gettime",
4629 "sys_timer_getoverrun",
4630 "sys_timer_delete",
4631 "sys_clock_settime",
4632 "sys_clock_gettime", /* 265 */
4633 "sys_clock_getres",
4634 "sys_clock_nanosleep",
4635 "sys_statfs64",
4636 "sys_fstatfs64",
4637 "sys_tgkill", /* 270 */
4638 "sys_utimes",
4639 "sys_fadvise64_64",
4640 "sys_ni_syscall" /* sys_vserver */
4641 };
4642
4643 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4644 switch (uEAX)
4645 {
4646 default:
4647 if (uEAX < RT_ELEMENTS(apsz))
4648 Log(("REM: linux syscall %3d: %s (eip=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4649 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4650 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4651 else
4652 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4653 break;
4654
4655 }
4656}
4657
4658
4659/**
4660 * Dumps an OpenBSD system call.
4661 * @param pVM VM handle.
4662 */
4663void remR3DumpOBsdSyscall(PVM pVM)
4664{
4665 static const char *apsz[] =
4666 {
4667 "SYS_syscall", //0
4668 "SYS_exit", //1
4669 "SYS_fork", //2
4670 "SYS_read", //3
4671 "SYS_write", //4
4672 "SYS_open", //5
4673 "SYS_close", //6
4674 "SYS_wait4", //7
4675 "SYS_8",
4676 "SYS_link", //9
4677 "SYS_unlink", //10
4678 "SYS_11",
4679 "SYS_chdir", //12
4680 "SYS_fchdir", //13
4681 "SYS_mknod", //14
4682 "SYS_chmod", //15
4683 "SYS_chown", //16
4684 "SYS_break", //17
4685 "SYS_18",
4686 "SYS_19",
4687 "SYS_getpid", //20
4688 "SYS_mount", //21
4689 "SYS_unmount", //22
4690 "SYS_setuid", //23
4691 "SYS_getuid", //24
4692 "SYS_geteuid", //25
4693 "SYS_ptrace", //26
4694 "SYS_recvmsg", //27
4695 "SYS_sendmsg", //28
4696 "SYS_recvfrom", //29
4697 "SYS_accept", //30
4698 "SYS_getpeername", //31
4699 "SYS_getsockname", //32
4700 "SYS_access", //33
4701 "SYS_chflags", //34
4702 "SYS_fchflags", //35
4703 "SYS_sync", //36
4704 "SYS_kill", //37
4705 "SYS_38",
4706 "SYS_getppid", //39
4707 "SYS_40",
4708 "SYS_dup", //41
4709 "SYS_opipe", //42
4710 "SYS_getegid", //43
4711 "SYS_profil", //44
4712 "SYS_ktrace", //45
4713 "SYS_sigaction", //46
4714 "SYS_getgid", //47
4715 "SYS_sigprocmask", //48
4716 "SYS_getlogin", //49
4717 "SYS_setlogin", //50
4718 "SYS_acct", //51
4719 "SYS_sigpending", //52
4720 "SYS_osigaltstack", //53
4721 "SYS_ioctl", //54
4722 "SYS_reboot", //55
4723 "SYS_revoke", //56
4724 "SYS_symlink", //57
4725 "SYS_readlink", //58
4726 "SYS_execve", //59
4727 "SYS_umask", //60
4728 "SYS_chroot", //61
4729 "SYS_62",
4730 "SYS_63",
4731 "SYS_64",
4732 "SYS_65",
4733 "SYS_vfork", //66
4734 "SYS_67",
4735 "SYS_68",
4736 "SYS_sbrk", //69
4737 "SYS_sstk", //70
4738 "SYS_61",
4739 "SYS_vadvise", //72
4740 "SYS_munmap", //73
4741 "SYS_mprotect", //74
4742 "SYS_madvise", //75
4743 "SYS_76",
4744 "SYS_77",
4745 "SYS_mincore", //78
4746 "SYS_getgroups", //79
4747 "SYS_setgroups", //80
4748 "SYS_getpgrp", //81
4749 "SYS_setpgid", //82
4750 "SYS_setitimer", //83
4751 "SYS_84",
4752 "SYS_85",
4753 "SYS_getitimer", //86
4754 "SYS_87",
4755 "SYS_88",
4756 "SYS_89",
4757 "SYS_dup2", //90
4758 "SYS_91",
4759 "SYS_fcntl", //92
4760 "SYS_select", //93
4761 "SYS_94",
4762 "SYS_fsync", //95
4763 "SYS_setpriority", //96
4764 "SYS_socket", //97
4765 "SYS_connect", //98
4766 "SYS_99",
4767 "SYS_getpriority", //100
4768 "SYS_101",
4769 "SYS_102",
4770 "SYS_sigreturn", //103
4771 "SYS_bind", //104
4772 "SYS_setsockopt", //105
4773 "SYS_listen", //106
4774 "SYS_107",
4775 "SYS_108",
4776 "SYS_109",
4777 "SYS_110",
4778 "SYS_sigsuspend", //111
4779 "SYS_112",
4780 "SYS_113",
4781 "SYS_114",
4782 "SYS_115",
4783 "SYS_gettimeofday", //116
4784 "SYS_getrusage", //117
4785 "SYS_getsockopt", //118
4786 "SYS_119",
4787 "SYS_readv", //120
4788 "SYS_writev", //121
4789 "SYS_settimeofday", //122
4790 "SYS_fchown", //123
4791 "SYS_fchmod", //124
4792 "SYS_125",
4793 "SYS_setreuid", //126
4794 "SYS_setregid", //127
4795 "SYS_rename", //128
4796 "SYS_129",
4797 "SYS_130",
4798 "SYS_flock", //131
4799 "SYS_mkfifo", //132
4800 "SYS_sendto", //133
4801 "SYS_shutdown", //134
4802 "SYS_socketpair", //135
4803 "SYS_mkdir", //136
4804 "SYS_rmdir", //137
4805 "SYS_utimes", //138
4806 "SYS_139",
4807 "SYS_adjtime", //140
4808 "SYS_141",
4809 "SYS_142",
4810 "SYS_143",
4811 "SYS_144",
4812 "SYS_145",
4813 "SYS_146",
4814 "SYS_setsid", //147
4815 "SYS_quotactl", //148
4816 "SYS_149",
4817 "SYS_150",
4818 "SYS_151",
4819 "SYS_152",
4820 "SYS_153",
4821 "SYS_154",
4822 "SYS_nfssvc", //155
4823 "SYS_156",
4824 "SYS_157",
4825 "SYS_158",
4826 "SYS_159",
4827 "SYS_160",
4828 "SYS_getfh", //161
4829 "SYS_162",
4830 "SYS_163",
4831 "SYS_164",
4832 "SYS_sysarch", //165
4833 "SYS_166",
4834 "SYS_167",
4835 "SYS_168",
4836 "SYS_169",
4837 "SYS_170",
4838 "SYS_171",
4839 "SYS_172",
4840 "SYS_pread", //173
4841 "SYS_pwrite", //174
4842 "SYS_175",
4843 "SYS_176",
4844 "SYS_177",
4845 "SYS_178",
4846 "SYS_179",
4847 "SYS_180",
4848 "SYS_setgid", //181
4849 "SYS_setegid", //182
4850 "SYS_seteuid", //183
4851 "SYS_lfs_bmapv", //184
4852 "SYS_lfs_markv", //185
4853 "SYS_lfs_segclean", //186
4854 "SYS_lfs_segwait", //187
4855 "SYS_188",
4856 "SYS_189",
4857 "SYS_190",
4858 "SYS_pathconf", //191
4859 "SYS_fpathconf", //192
4860 "SYS_swapctl", //193
4861 "SYS_getrlimit", //194
4862 "SYS_setrlimit", //195
4863 "SYS_getdirentries", //196
4864 "SYS_mmap", //197
4865 "SYS___syscall", //198
4866 "SYS_lseek", //199
4867 "SYS_truncate", //200
4868 "SYS_ftruncate", //201
4869 "SYS___sysctl", //202
4870 "SYS_mlock", //203
4871 "SYS_munlock", //204
4872 "SYS_205",
4873 "SYS_futimes", //206
4874 "SYS_getpgid", //207
4875 "SYS_xfspioctl", //208
4876 "SYS_209",
4877 "SYS_210",
4878 "SYS_211",
4879 "SYS_212",
4880 "SYS_213",
4881 "SYS_214",
4882 "SYS_215",
4883 "SYS_216",
4884 "SYS_217",
4885 "SYS_218",
4886 "SYS_219",
4887 "SYS_220",
4888 "SYS_semget", //221
4889 "SYS_222",
4890 "SYS_223",
4891 "SYS_224",
4892 "SYS_msgget", //225
4893 "SYS_msgsnd", //226
4894 "SYS_msgrcv", //227
4895 "SYS_shmat", //228
4896 "SYS_229",
4897 "SYS_shmdt", //230
4898 "SYS_231",
4899 "SYS_clock_gettime", //232
4900 "SYS_clock_settime", //233
4901 "SYS_clock_getres", //234
4902 "SYS_235",
4903 "SYS_236",
4904 "SYS_237",
4905 "SYS_238",
4906 "SYS_239",
4907 "SYS_nanosleep", //240
4908 "SYS_241",
4909 "SYS_242",
4910 "SYS_243",
4911 "SYS_244",
4912 "SYS_245",
4913 "SYS_246",
4914 "SYS_247",
4915 "SYS_248",
4916 "SYS_249",
4917 "SYS_minherit", //250
4918 "SYS_rfork", //251
4919 "SYS_poll", //252
4920 "SYS_issetugid", //253
4921 "SYS_lchown", //254
4922 "SYS_getsid", //255
4923 "SYS_msync", //256
4924 "SYS_257",
4925 "SYS_258",
4926 "SYS_259",
4927 "SYS_getfsstat", //260
4928 "SYS_statfs", //261
4929 "SYS_fstatfs", //262
4930 "SYS_pipe", //263
4931 "SYS_fhopen", //264
4932 "SYS_265",
4933 "SYS_fhstatfs", //266
4934 "SYS_preadv", //267
4935 "SYS_pwritev", //268
4936 "SYS_kqueue", //269
4937 "SYS_kevent", //270
4938 "SYS_mlockall", //271
4939 "SYS_munlockall", //272
4940 "SYS_getpeereid", //273
4941 "SYS_274",
4942 "SYS_275",
4943 "SYS_276",
4944 "SYS_277",
4945 "SYS_278",
4946 "SYS_279",
4947 "SYS_280",
4948 "SYS_getresuid", //281
4949 "SYS_setresuid", //282
4950 "SYS_getresgid", //283
4951 "SYS_setresgid", //284
4952 "SYS_285",
4953 "SYS_mquery", //286
4954 "SYS_closefrom", //287
4955 "SYS_sigaltstack", //288
4956 "SYS_shmget", //289
4957 "SYS_semop", //290
4958 "SYS_stat", //291
4959 "SYS_fstat", //292
4960 "SYS_lstat", //293
4961 "SYS_fhstat", //294
4962 "SYS___semctl", //295
4963 "SYS_shmctl", //296
4964 "SYS_msgctl", //297
4965 "SYS_MAXSYSCALL", //298
4966 //299
4967 //300
4968 };
4969 uint32_t uEAX;
4970 if (!LogIsEnabled())
4971 return;
4972 uEAX = CPUMGetGuestEAX(pVM);
4973 switch (uEAX)
4974 {
4975 default:
4976 if (uEAX < RT_ELEMENTS(apsz))
4977 {
4978 uint32_t au32Args[8] = {0};
4979 PGMPhysSimpleReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
4980 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
4981 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
4982 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
4983 }
4984 else
4985 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
4986 break;
4987 }
4988}
4989
4990
4991#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
4992/**
4993 * The Dll main entry point (stub).
4994 */
4995bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
4996{
4997 return true;
4998}
4999
5000void *memcpy(void *dst, const void *src, size_t size)
5001{
5002 uint8_t*pbDst = dst, *pbSrc = src;
5003 while (size-- > 0)
5004 *pbDst++ = *pbSrc++;
5005 return dst;
5006}
5007
5008#endif
5009
5010void cpu_smm_update(CPUState* env)
5011{
5012}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette