VirtualBox

source: vbox/trunk/src/recompiler_new/VBoxRecompiler.c@ 13428

Last change on this file since 13428 was 13383, checked in by vboxsync, 16 years ago

cleaned up some mess

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 157.4 KB
Line 
1/* $Id: VBoxRecompiler.c 13383 2008-10-19 20:55:30Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "osdep.h"
29#include "exec-all.h"
30
31#include <VBox/rem.h>
32#include <VBox/vmapi.h>
33#include <VBox/tm.h>
34#include <VBox/ssm.h>
35#include <VBox/em.h>
36#include <VBox/trpm.h>
37#include <VBox/iom.h>
38#include <VBox/mm.h>
39#include <VBox/pgm.h>
40#include <VBox/pdm.h>
41#include <VBox/dbgf.h>
42#include <VBox/dbg.h>
43#include <VBox/hwaccm.h>
44#include <VBox/patm.h>
45#include <VBox/csam.h>
46#include "REMInternal.h"
47#include <VBox/vm.h>
48#include <VBox/param.h>
49#include <VBox/err.h>
50
51#include <VBox/log.h>
52#include <iprt/semaphore.h>
53#include <iprt/asm.h>
54#include <iprt/assert.h>
55#include <iprt/thread.h>
56#include <iprt/string.h>
57
58/* Don't wanna include everything. */
59extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
60extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
61extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
62extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
63extern void tlb_flush(CPUState *env, int flush_global);
64extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
65extern void sync_ldtr(CPUX86State *env1, int selector);
66extern int sync_tr(CPUX86State *env1, int selector);
67
68#ifdef VBOX_STRICT
69unsigned long get_phys_page_offset(target_ulong addr);
70#endif
71
72
73/*******************************************************************************
74* Defined Constants And Macros *
75*******************************************************************************/
76
77/** Copy 80-bit fpu register at pSrc to pDst.
78 * This is probably faster than *calling* memcpy.
79 */
80#define REM_COPY_FPU_REG(pDst, pSrc) \
81 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
82
83
84/*******************************************************************************
85* Internal Functions *
86*******************************************************************************/
87static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
88static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
89static void remR3StateUpdate(PVM pVM);
90
91static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
92static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
93static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
94static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
95static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
96static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
97
98static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
99static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
100static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
101static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
102static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
103static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
104
105
106/*******************************************************************************
107* Global Variables *
108*******************************************************************************/
109
110/** @todo Move stats to REM::s some rainy day we have nothing do to. */
111#ifdef VBOX_WITH_STATISTICS
112static STAMPROFILEADV gStatExecuteSingleInstr;
113static STAMPROFILEADV gStatCompilationQEmu;
114static STAMPROFILEADV gStatRunCodeQEmu;
115static STAMPROFILEADV gStatTotalTimeQEmu;
116static STAMPROFILEADV gStatTimers;
117static STAMPROFILEADV gStatTBLookup;
118static STAMPROFILEADV gStatIRQ;
119static STAMPROFILEADV gStatRawCheck;
120static STAMPROFILEADV gStatMemRead;
121static STAMPROFILEADV gStatMemWrite;
122static STAMPROFILE gStatGCPhys2HCVirt;
123static STAMPROFILE gStatHCVirt2GCPhys;
124static STAMCOUNTER gStatCpuGetTSC;
125static STAMCOUNTER gStatRefuseTFInhibit;
126static STAMCOUNTER gStatRefuseVM86;
127static STAMCOUNTER gStatRefusePaging;
128static STAMCOUNTER gStatRefusePAE;
129static STAMCOUNTER gStatRefuseIOPLNot0;
130static STAMCOUNTER gStatRefuseIF0;
131static STAMCOUNTER gStatRefuseCode16;
132static STAMCOUNTER gStatRefuseWP0;
133static STAMCOUNTER gStatRefuseRing1or2;
134static STAMCOUNTER gStatRefuseCanExecute;
135static STAMCOUNTER gStatREMGDTChange;
136static STAMCOUNTER gStatREMIDTChange;
137static STAMCOUNTER gStatREMLDTRChange;
138static STAMCOUNTER gStatREMTRChange;
139static STAMCOUNTER gStatSelOutOfSync[6];
140static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
141static STAMCOUNTER gStatFlushTBs;
142#endif
143
144/*
145 * Global stuff.
146 */
147
148/** MMIO read callbacks. */
149CPUReadMemoryFunc *g_apfnMMIORead[3] =
150{
151 remR3MMIOReadU8,
152 remR3MMIOReadU16,
153 remR3MMIOReadU32
154};
155
156/** MMIO write callbacks. */
157CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
158{
159 remR3MMIOWriteU8,
160 remR3MMIOWriteU16,
161 remR3MMIOWriteU32
162};
163
164/** Handler read callbacks. */
165CPUReadMemoryFunc *g_apfnHandlerRead[3] =
166{
167 remR3HandlerReadU8,
168 remR3HandlerReadU16,
169 remR3HandlerReadU32
170};
171
172/** Handler write callbacks. */
173CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
174{
175 remR3HandlerWriteU8,
176 remR3HandlerWriteU16,
177 remR3HandlerWriteU32
178};
179
180
181#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
182/*
183 * Debugger commands.
184 */
185static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
186
187/** '.remstep' arguments. */
188static const DBGCVARDESC g_aArgRemStep[] =
189{
190 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
191 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
192};
193
194/** Command descriptors. */
195static const DBGCCMD g_aCmds[] =
196{
197 {
198 .pszCmd ="remstep",
199 .cArgsMin = 0,
200 .cArgsMax = 1,
201 .paArgDescs = &g_aArgRemStep[0],
202 .cArgDescs = ELEMENTS(g_aArgRemStep),
203 .pResultDesc = NULL,
204 .fFlags = 0,
205 .pfnHandler = remR3CmdDisasEnableStepping,
206 .pszSyntax = "[on/off]",
207 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
208 "If no arguments show the current state."
209 }
210};
211#endif
212
213
214/* Instantiate the structure signatures. */
215#define REM_STRUCT_OP 0
216#include "Sun/structs.h"
217
218
219
220/*******************************************************************************
221* Internal Functions *
222*******************************************************************************/
223static void remAbort(int rc, const char *pszTip);
224extern int testmath(void);
225
226/* Put them here to avoid unused variable warning. */
227AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
228#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
229//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
230/* Why did this have to be identical?? */
231AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
232#else
233AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
234#endif
235
236
237/**
238 * Initializes the REM.
239 *
240 * @returns VBox status code.
241 * @param pVM The VM to operate on.
242 */
243REMR3DECL(int) REMR3Init(PVM pVM)
244{
245 uint32_t u32Dummy;
246 unsigned i;
247 int rc;
248
249 /*
250 * Assert sanity.
251 */
252 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
253 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
254 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
255#if defined(DEBUG) && !defined(RT_OS_SOLARIS) /// @todo fix the solaris math stuff.
256 Assert(!testmath());
257#endif
258 ASSERT_STRUCT_TABLE(Misc);
259 ASSERT_STRUCT_TABLE(TLB);
260 ASSERT_STRUCT_TABLE(SegmentCache);
261 ASSERT_STRUCT_TABLE(XMMReg);
262 ASSERT_STRUCT_TABLE(MMXReg);
263 ASSERT_STRUCT_TABLE(float_status);
264 ASSERT_STRUCT_TABLE(float32u);
265 ASSERT_STRUCT_TABLE(float64u);
266 ASSERT_STRUCT_TABLE(floatx80u);
267 ASSERT_STRUCT_TABLE(CPUState);
268
269 /*
270 * Init some internal data members.
271 */
272 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
273 pVM->rem.s.Env.pVM = pVM;
274#ifdef CPU_RAW_MODE_INIT
275 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
276#endif
277
278 /* ctx. */
279 rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
280 if (VBOX_FAILURE(rc))
281 {
282 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
283 return rc;
284 }
285 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
286
287 /* ignore all notifications */
288 pVM->rem.s.fIgnoreAll = true;
289
290 /*
291 * Init the recompiler.
292 */
293 if (!cpu_x86_init(&pVM->rem.s.Env, "vbox"))
294 {
295 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
296 return VERR_GENERAL_FAILURE;
297 }
298 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
299 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
300
301 /* allocate code buffer for single instruction emulation. */
302 pVM->rem.s.Env.cbCodeBuffer = 4096;
303 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
304 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
305
306 /* finally, set the cpu_single_env global. */
307 cpu_single_env = &pVM->rem.s.Env;
308
309 /* Nothing is pending by default */
310 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
311
312 /*
313 * Register ram types.
314 */
315 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
316 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
317 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
318 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
319 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
320
321 /* stop ignoring. */
322 pVM->rem.s.fIgnoreAll = false;
323
324 /*
325 * Register the saved state data unit.
326 */
327 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
328 NULL, remR3Save, NULL,
329 NULL, remR3Load, NULL);
330 if (VBOX_FAILURE(rc))
331 return rc;
332
333#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
334 /*
335 * Debugger commands.
336 */
337 static bool fRegisteredCmds = false;
338 if (!fRegisteredCmds)
339 {
340 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
341 if (VBOX_SUCCESS(rc))
342 fRegisteredCmds = true;
343 }
344#endif
345
346#ifdef VBOX_WITH_STATISTICS
347 /*
348 * Statistics.
349 */
350 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
351 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
352 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
353 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
354 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
355 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
356 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
357 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
358 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
359 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
360 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
361 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
362
363 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
364
365 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
366 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
367 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
368 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
369 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
370 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
371 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
372 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
373 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
374 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
375 STAM_REG(pVM, &gStatFlushTBs, STAMTYPE_COUNTER, "/REM/FlushTB", STAMUNIT_OCCURENCES, "Number of TB flushes");
376
377 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
378 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
379 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
380 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
381
382 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
383 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
384 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
385 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
386 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
387 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
388
389 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
390 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
391 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
392 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
393 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
394 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
395
396
397#endif
398
399#ifdef DEBUG_ALL_LOGGING
400 loglevel = ~0;
401#endif
402
403 return rc;
404}
405
406
407/**
408 * Terminates the REM.
409 *
410 * Termination means cleaning up and freeing all resources,
411 * the VM it self is at this point powered off or suspended.
412 *
413 * @returns VBox status code.
414 * @param pVM The VM to operate on.
415 */
416REMR3DECL(int) REMR3Term(PVM pVM)
417{
418 return VINF_SUCCESS;
419}
420
421
422/**
423 * The VM is being reset.
424 *
425 * For the REM component this means to call the cpu_reset() and
426 * reinitialize some state variables.
427 *
428 * @param pVM VM handle.
429 */
430REMR3DECL(void) REMR3Reset(PVM pVM)
431{
432 /*
433 * Reset the REM cpu.
434 */
435 pVM->rem.s.fIgnoreAll = true;
436 cpu_reset(&pVM->rem.s.Env);
437 pVM->rem.s.cInvalidatedPages = 0;
438 pVM->rem.s.fIgnoreAll = false;
439
440 /* Clear raw ring 0 init state */
441 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
442}
443
444
445/**
446 * Execute state save operation.
447 *
448 * @returns VBox status code.
449 * @param pVM VM Handle.
450 * @param pSSM SSM operation handle.
451 */
452static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
453{
454 /*
455 * Save the required CPU Env bits.
456 * (Not much because we're never in REM when doing the save.)
457 */
458 PREM pRem = &pVM->rem.s;
459 LogFlow(("remR3Save:\n"));
460 Assert(!pRem->fInREM);
461 SSMR3PutU32(pSSM, pRem->Env.hflags);
462 SSMR3PutU32(pSSM, ~0); /* separator */
463
464 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
465 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
466 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
467
468 return SSMR3PutU32(pSSM, ~0); /* terminator */
469}
470
471
472/**
473 * Execute state load operation.
474 *
475 * @returns VBox status code.
476 * @param pVM VM Handle.
477 * @param pSSM SSM operation handle.
478 * @param u32Version Data layout version.
479 */
480static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
481{
482 uint32_t u32Dummy;
483 uint32_t fRawRing0 = false;
484 uint32_t u32Sep;
485 int rc;
486 PREM pRem;
487 LogFlow(("remR3Load:\n"));
488
489 /*
490 * Validate version.
491 */
492 if ( u32Version != REM_SAVED_STATE_VERSION
493 && u32Version != REM_SAVED_STATE_VERSION_VER1_6)
494 {
495 AssertMsgFailed(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
496 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
497 }
498
499 /*
500 * Do a reset to be on the safe side...
501 */
502 REMR3Reset(pVM);
503
504 /*
505 * Ignore all ignorable notifications.
506 * (Not doing this will cause serious trouble.)
507 */
508 pVM->rem.s.fIgnoreAll = true;
509
510 /*
511 * Load the required CPU Env bits.
512 * (Not much because we're never in REM when doing the save.)
513 */
514 pRem = &pVM->rem.s;
515 Assert(!pRem->fInREM);
516 SSMR3GetU32(pSSM, &pRem->Env.hflags);
517 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
518 {
519 /* Redundant REM CPU state has to be loaded, but can be ignored. */
520 CPUX86State_Ver16 temp;
521 SSMR3GetMem(pSSM, &temp, RT_OFFSETOF(CPUX86State_Ver16, jmp_env));
522 }
523
524 rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
525 if (VBOX_FAILURE(rc))
526 return rc;
527 if (u32Sep != ~0U)
528 {
529 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
530 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
531 }
532
533 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
534 SSMR3GetUInt(pSSM, &fRawRing0);
535 if (fRawRing0)
536 pRem->Env.state |= CPU_RAW_RING0;
537
538 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
539 {
540 unsigned i;
541
542 /*
543 * Load the REM stuff.
544 */
545 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
546 if (VBOX_FAILURE(rc))
547 return rc;
548 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
549 {
550 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
551 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
552 }
553 for (i = 0; i < pRem->cInvalidatedPages; i++)
554 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
555 }
556
557 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
558 if (VBOX_FAILURE(rc))
559 return rc;
560
561 /* check the terminator. */
562 rc = SSMR3GetU32(pSSM, &u32Sep);
563 if (VBOX_FAILURE(rc))
564 return rc;
565 if (u32Sep != ~0U)
566 {
567 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
568 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
569 }
570
571 /*
572 * Get the CPUID features.
573 */
574 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
575 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
576
577 /*
578 * Sync the Load Flush the TLB
579 */
580 tlb_flush(&pRem->Env, 1);
581
582 /*
583 * Stop ignoring ignornable notifications.
584 */
585 pVM->rem.s.fIgnoreAll = false;
586
587 /*
588 * Sync the whole CPU state when executing code in the recompiler.
589 */
590 CPUMSetChangedFlags(pVM, CPUM_CHANGED_ALL);
591 return VINF_SUCCESS;
592}
593
594
595
596#undef LOG_GROUP
597#define LOG_GROUP LOG_GROUP_REM_RUN
598
599/**
600 * Single steps an instruction in recompiled mode.
601 *
602 * Before calling this function the REM state needs to be in sync with
603 * the VM. Call REMR3State() to perform the sync. It's only necessary
604 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
605 * and after calling REMR3StateBack().
606 *
607 * @returns VBox status code.
608 *
609 * @param pVM VM Handle.
610 */
611REMR3DECL(int) REMR3Step(PVM pVM)
612{
613 int rc, interrupt_request;
614 RTGCPTR GCPtrPC;
615 bool fBp;
616
617 /*
618 * Lock the REM - we don't wanna have anyone interrupting us
619 * while stepping - and enabled single stepping. We also ignore
620 * pending interrupts and suchlike.
621 */
622 interrupt_request = pVM->rem.s.Env.interrupt_request;
623 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
624 pVM->rem.s.Env.interrupt_request = 0;
625 cpu_single_step(&pVM->rem.s.Env, 1);
626
627 /*
628 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
629 */
630 GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
631 fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
632
633 /*
634 * Execute and handle the return code.
635 * We execute without enabling the cpu tick, so on success we'll
636 * just flip it on and off to make sure it moves
637 */
638 rc = cpu_exec(&pVM->rem.s.Env);
639 if (rc == EXCP_DEBUG)
640 {
641 TMCpuTickResume(pVM);
642 TMCpuTickPause(pVM);
643 TMVirtualResume(pVM);
644 TMVirtualPause(pVM);
645 rc = VINF_EM_DBG_STEPPED;
646 }
647 else
648 {
649 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
650 switch (rc)
651 {
652 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
653 case EXCP_HLT:
654 case EXCP_HALTED: rc = VINF_EM_HALT; break;
655 case EXCP_RC:
656 rc = pVM->rem.s.rc;
657 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
658 break;
659 default:
660 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
661 rc = VERR_INTERNAL_ERROR;
662 break;
663 }
664 }
665
666 /*
667 * Restore the stuff we changed to prevent interruption.
668 * Unlock the REM.
669 */
670 if (fBp)
671 {
672 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
673 Assert(rc2 == 0); NOREF(rc2);
674 }
675 cpu_single_step(&pVM->rem.s.Env, 0);
676 pVM->rem.s.Env.interrupt_request = interrupt_request;
677
678 return rc;
679}
680
681
682/**
683 * Set a breakpoint using the REM facilities.
684 *
685 * @returns VBox status code.
686 * @param pVM The VM handle.
687 * @param Address The breakpoint address.
688 * @thread The emulation thread.
689 */
690REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
691{
692 VM_ASSERT_EMT(pVM);
693 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
694 {
695 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
696 return VINF_SUCCESS;
697 }
698 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
699 return VERR_REM_NO_MORE_BP_SLOTS;
700}
701
702
703/**
704 * Clears a breakpoint set by REMR3BreakpointSet().
705 *
706 * @returns VBox status code.
707 * @param pVM The VM handle.
708 * @param Address The breakpoint address.
709 * @thread The emulation thread.
710 */
711REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
712{
713 VM_ASSERT_EMT(pVM);
714 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
715 {
716 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
717 return VINF_SUCCESS;
718 }
719 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
720 return VERR_REM_BP_NOT_FOUND;
721}
722
723
724/**
725 * Emulate an instruction.
726 *
727 * This function executes one instruction without letting anyone
728 * interrupt it. This is intended for being called while being in
729 * raw mode and thus will take care of all the state syncing between
730 * REM and the rest.
731 *
732 * @returns VBox status code.
733 * @param pVM VM handle.
734 */
735REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
736{
737 int rc, rc2;
738 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
739
740 /* Make sure this flag is set; we might never execute remR3CanExecuteRaw in the AMD-V case.
741 * CPU_RAW_HWACC makes sure we never execute interrupt handlers in the recompiler.
742 */
743 if (HWACCMIsEnabled(pVM))
744 pVM->rem.s.Env.state |= CPU_RAW_HWACC;
745
746 /*
747 * Sync the state and enable single instruction / single stepping.
748 */
749 rc = REMR3State(pVM, false /* no need to flush the TBs; we always compile. */);
750 if (VBOX_SUCCESS(rc))
751 {
752 int interrupt_request = pVM->rem.s.Env.interrupt_request;
753 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
754 Assert(!pVM->rem.s.Env.singlestep_enabled);
755#if 1
756
757 /*
758 * Now we set the execute single instruction flag and enter the cpu_exec loop.
759 */
760 TMNotifyStartOfExecution(pVM);
761 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
762 rc = cpu_exec(&pVM->rem.s.Env);
763 TMNotifyEndOfExecution(pVM);
764 switch (rc)
765 {
766 /*
767 * Executed without anything out of the way happening.
768 */
769 case EXCP_SINGLE_INSTR:
770 rc = VINF_EM_RESCHEDULE;
771 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
772 break;
773
774 /*
775 * If we take a trap or start servicing a pending interrupt, we might end up here.
776 * (Timer thread or some other thread wishing EMT's attention.)
777 */
778 case EXCP_INTERRUPT:
779 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
780 rc = VINF_EM_RESCHEDULE;
781 break;
782
783 /*
784 * Single step, we assume!
785 * If there was a breakpoint there we're fucked now.
786 */
787 case EXCP_DEBUG:
788 {
789 /* breakpoint or single step? */
790 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
791 int iBP;
792 rc = VINF_EM_DBG_STEPPED;
793 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
794 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
795 {
796 rc = VINF_EM_DBG_BREAKPOINT;
797 break;
798 }
799 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
800 break;
801 }
802
803 /*
804 * hlt instruction.
805 */
806 case EXCP_HLT:
807 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
808 rc = VINF_EM_HALT;
809 break;
810
811 /*
812 * The VM has halted.
813 */
814 case EXCP_HALTED:
815 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
816 rc = VINF_EM_HALT;
817 break;
818
819 /*
820 * Switch to RAW-mode.
821 */
822 case EXCP_EXECUTE_RAW:
823 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
824 rc = VINF_EM_RESCHEDULE_RAW;
825 break;
826
827 /*
828 * Switch to hardware accelerated RAW-mode.
829 */
830 case EXCP_EXECUTE_HWACC:
831 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
832 rc = VINF_EM_RESCHEDULE_HWACC;
833 break;
834
835 /*
836 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
837 */
838 case EXCP_RC:
839 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
840 rc = pVM->rem.s.rc;
841 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
842 break;
843
844 /*
845 * Figure out the rest when they arrive....
846 */
847 default:
848 AssertMsgFailed(("rc=%d\n", rc));
849 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
850 rc = VINF_EM_RESCHEDULE;
851 break;
852 }
853
854 /*
855 * Switch back the state.
856 */
857#else
858 pVM->rem.s.Env.interrupt_request = 0;
859 cpu_single_step(&pVM->rem.s.Env, 1);
860
861 /*
862 * Execute and handle the return code.
863 * We execute without enabling the cpu tick, so on success we'll
864 * just flip it on and off to make sure it moves.
865 *
866 * (We do not use emulate_single_instr() because that doesn't enter the
867 * right way in will cause serious trouble if a longjmp was attempted.)
868 */
869# ifdef DEBUG_bird
870 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
871# endif
872 TMNotifyStartOfExecution(pVM);
873 int cTimesMax = 16384;
874 uint32_t eip = pVM->rem.s.Env.eip;
875 do
876 {
877 rc = cpu_exec(&pVM->rem.s.Env);
878
879 } while ( eip == pVM->rem.s.Env.eip
880 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
881 && --cTimesMax > 0);
882 TMNotifyEndOfExecution(pVM);
883 switch (rc)
884 {
885 /*
886 * Single step, we assume!
887 * If there was a breakpoint there we're fucked now.
888 */
889 case EXCP_DEBUG:
890 {
891 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
892 rc = VINF_EM_RESCHEDULE;
893 break;
894 }
895
896 /*
897 * We cannot be interrupted!
898 */
899 case EXCP_INTERRUPT:
900 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
901 rc = VERR_INTERNAL_ERROR;
902 break;
903
904 /*
905 * hlt instruction.
906 */
907 case EXCP_HLT:
908 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
909 rc = VINF_EM_HALT;
910 break;
911
912 /*
913 * The VM has halted.
914 */
915 case EXCP_HALTED:
916 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
917 rc = VINF_EM_HALT;
918 break;
919
920 /*
921 * Switch to RAW-mode.
922 */
923 case EXCP_EXECUTE_RAW:
924 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
925 rc = VINF_EM_RESCHEDULE_RAW;
926 break;
927
928 /*
929 * Switch to hardware accelerated RAW-mode.
930 */
931 case EXCP_EXECUTE_HWACC:
932 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
933 rc = VINF_EM_RESCHEDULE_HWACC;
934 break;
935
936 /*
937 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
938 */
939 case EXCP_RC:
940 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
941 rc = pVM->rem.s.rc;
942 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
943 break;
944
945 /*
946 * Figure out the rest when they arrive....
947 */
948 default:
949 AssertMsgFailed(("rc=%d\n", rc));
950 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
951 rc = VINF_SUCCESS;
952 break;
953 }
954
955 /*
956 * Switch back the state.
957 */
958 cpu_single_step(&pVM->rem.s.Env, 0);
959#endif
960 pVM->rem.s.Env.interrupt_request = interrupt_request;
961 rc2 = REMR3StateBack(pVM);
962 AssertRC(rc2);
963 }
964
965 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%VGv)\n",
966 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
967 return rc;
968}
969
970
971/**
972 * Runs code in recompiled mode.
973 *
974 * Before calling this function the REM state needs to be in sync with
975 * the VM. Call REMR3State() to perform the sync. It's only necessary
976 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
977 * and after calling REMR3StateBack().
978 *
979 * @returns VBox status code.
980 *
981 * @param pVM VM Handle.
982 */
983REMR3DECL(int) REMR3Run(PVM pVM)
984{
985 int rc;
986 Log2(("REMR3Run: (cs:eip=%04x:%VGv)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
987 Assert(pVM->rem.s.fInREM);
988
989 TMNotifyStartOfExecution(pVM);
990 rc = cpu_exec(&pVM->rem.s.Env);
991 TMNotifyEndOfExecution(pVM);
992 switch (rc)
993 {
994 /*
995 * This happens when the execution was interrupted
996 * by an external event, like pending timers.
997 */
998 case EXCP_INTERRUPT:
999 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
1000 rc = VINF_SUCCESS;
1001 break;
1002
1003 /*
1004 * hlt instruction.
1005 */
1006 case EXCP_HLT:
1007 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
1008 rc = VINF_EM_HALT;
1009 break;
1010
1011 /*
1012 * The VM has halted.
1013 */
1014 case EXCP_HALTED:
1015 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1016 rc = VINF_EM_HALT;
1017 break;
1018
1019 /*
1020 * Breakpoint/single step.
1021 */
1022 case EXCP_DEBUG:
1023 {
1024#if 0//def DEBUG_bird
1025 static int iBP = 0;
1026 printf("howdy, breakpoint! iBP=%d\n", iBP);
1027 switch (iBP)
1028 {
1029 case 0:
1030 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1031 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1032 //pVM->rem.s.Env.interrupt_request = 0;
1033 //pVM->rem.s.Env.exception_index = -1;
1034 //g_fInterruptDisabled = 1;
1035 rc = VINF_SUCCESS;
1036 asm("int3");
1037 break;
1038 default:
1039 asm("int3");
1040 break;
1041 }
1042 iBP++;
1043#else
1044 /* breakpoint or single step? */
1045 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1046 int iBP;
1047 rc = VINF_EM_DBG_STEPPED;
1048 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1049 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1050 {
1051 rc = VINF_EM_DBG_BREAKPOINT;
1052 break;
1053 }
1054 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1055#endif
1056 break;
1057 }
1058
1059 /*
1060 * Switch to RAW-mode.
1061 */
1062 case EXCP_EXECUTE_RAW:
1063 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1064 rc = VINF_EM_RESCHEDULE_RAW;
1065 break;
1066
1067 /*
1068 * Switch to hardware accelerated RAW-mode.
1069 */
1070 case EXCP_EXECUTE_HWACC:
1071 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1072 rc = VINF_EM_RESCHEDULE_HWACC;
1073 break;
1074
1075 /*
1076 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1077 */
1078 case EXCP_RC:
1079 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1080 rc = pVM->rem.s.rc;
1081 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1082 break;
1083
1084 /*
1085 * Figure out the rest when they arrive....
1086 */
1087 default:
1088 AssertMsgFailed(("rc=%d\n", rc));
1089 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1090 rc = VINF_SUCCESS;
1091 break;
1092 }
1093
1094 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%VGv)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1095 return rc;
1096}
1097
1098
1099/**
1100 * Check if the cpu state is suitable for Raw execution.
1101 *
1102 * @returns boolean
1103 * @param env The CPU env struct.
1104 * @param eip The EIP to check this for (might differ from env->eip).
1105 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1106 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1107 *
1108 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1109 */
1110bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1111{
1112 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1113 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1114 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1115 uint32_t u32CR0;
1116
1117 /* Update counter. */
1118 env->pVM->rem.s.cCanExecuteRaw++;
1119
1120 if (HWACCMIsEnabled(env->pVM))
1121 {
1122 CPUMCTX Ctx;
1123
1124 env->state |= CPU_RAW_HWACC;
1125
1126 /*
1127 * Create partial context for HWACCMR3CanExecuteGuest
1128 */
1129 Ctx.cr0 = env->cr[0];
1130 Ctx.cr3 = env->cr[3];
1131 Ctx.cr4 = env->cr[4];
1132
1133 Ctx.tr = env->tr.selector;
1134 Ctx.trHid.u64Base = env->tr.base;
1135 Ctx.trHid.u32Limit = env->tr.limit;
1136 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1137
1138 Ctx.idtr.cbIdt = env->idt.limit;
1139 Ctx.idtr.pIdt = env->idt.base;
1140
1141 Ctx.eflags.u32 = env->eflags;
1142
1143 Ctx.cs = env->segs[R_CS].selector;
1144 Ctx.csHid.u64Base = env->segs[R_CS].base;
1145 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1146 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1147
1148 Ctx.ds = env->segs[R_DS].selector;
1149 Ctx.dsHid.u64Base = env->segs[R_DS].base;
1150 Ctx.dsHid.u32Limit = env->segs[R_DS].limit;
1151 Ctx.dsHid.Attr.u = (env->segs[R_DS].flags >> 8) & 0xF0FF;
1152
1153 Ctx.es = env->segs[R_ES].selector;
1154 Ctx.esHid.u64Base = env->segs[R_ES].base;
1155 Ctx.esHid.u32Limit = env->segs[R_ES].limit;
1156 Ctx.esHid.Attr.u = (env->segs[R_ES].flags >> 8) & 0xF0FF;
1157
1158 Ctx.fs = env->segs[R_FS].selector;
1159 Ctx.fsHid.u64Base = env->segs[R_FS].base;
1160 Ctx.fsHid.u32Limit = env->segs[R_FS].limit;
1161 Ctx.fsHid.Attr.u = (env->segs[R_FS].flags >> 8) & 0xF0FF;
1162
1163 Ctx.gs = env->segs[R_GS].selector;
1164 Ctx.gsHid.u64Base = env->segs[R_GS].base;
1165 Ctx.gsHid.u32Limit = env->segs[R_GS].limit;
1166 Ctx.gsHid.Attr.u = (env->segs[R_GS].flags >> 8) & 0xF0FF;
1167
1168 Ctx.ss = env->segs[R_SS].selector;
1169 Ctx.ssHid.u64Base = env->segs[R_SS].base;
1170 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1171 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1172
1173 Ctx.msrEFER = env->efer;
1174
1175 /* Hardware accelerated raw-mode:
1176 *
1177 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1178 */
1179 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1180 {
1181 *piException = EXCP_EXECUTE_HWACC;
1182 return true;
1183 }
1184 return false;
1185 }
1186
1187 /*
1188 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1189 * or 32 bits protected mode ring 0 code
1190 *
1191 * The tests are ordered by the likelyhood of being true during normal execution.
1192 */
1193 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1194 {
1195 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1196 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1197 return false;
1198 }
1199
1200#ifndef VBOX_RAW_V86
1201 if (fFlags & VM_MASK) {
1202 STAM_COUNTER_INC(&gStatRefuseVM86);
1203 Log2(("raw mode refused: VM_MASK\n"));
1204 return false;
1205 }
1206#endif
1207
1208 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1209 {
1210#ifndef DEBUG_bird
1211 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1212#endif
1213 return false;
1214 }
1215
1216 if (env->singlestep_enabled)
1217 {
1218 //Log2(("raw mode refused: Single step\n"));
1219 return false;
1220 }
1221
1222 if (env->nb_breakpoints > 0)
1223 {
1224 //Log2(("raw mode refused: Breakpoints\n"));
1225 return false;
1226 }
1227
1228 u32CR0 = env->cr[0];
1229 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1230 {
1231 STAM_COUNTER_INC(&gStatRefusePaging);
1232 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1233 return false;
1234 }
1235
1236 if (env->cr[4] & CR4_PAE_MASK)
1237 {
1238 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1239 {
1240 STAM_COUNTER_INC(&gStatRefusePAE);
1241 return false;
1242 }
1243 }
1244
1245 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1246 {
1247 if (!EMIsRawRing3Enabled(env->pVM))
1248 return false;
1249
1250 if (!(env->eflags & IF_MASK))
1251 {
1252 STAM_COUNTER_INC(&gStatRefuseIF0);
1253 Log2(("raw mode refused: IF (RawR3)\n"));
1254 return false;
1255 }
1256
1257 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1258 {
1259 STAM_COUNTER_INC(&gStatRefuseWP0);
1260 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1261 return false;
1262 }
1263 }
1264 else
1265 {
1266 if (!EMIsRawRing0Enabled(env->pVM))
1267 return false;
1268
1269 // Let's start with pure 32 bits ring 0 code first
1270 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1271 {
1272 STAM_COUNTER_INC(&gStatRefuseCode16);
1273 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1274 return false;
1275 }
1276
1277 // Only R0
1278 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1279 {
1280 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1281 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1282 return false;
1283 }
1284
1285 if (!(u32CR0 & CR0_WP_MASK))
1286 {
1287 STAM_COUNTER_INC(&gStatRefuseWP0);
1288 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1289 return false;
1290 }
1291
1292 if (PATMIsPatchGCAddr(env->pVM, eip))
1293 {
1294 Log2(("raw r0 mode forced: patch code\n"));
1295 *piException = EXCP_EXECUTE_RAW;
1296 return true;
1297 }
1298
1299#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1300 if (!(env->eflags & IF_MASK))
1301 {
1302 STAM_COUNTER_INC(&gStatRefuseIF0);
1303 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1304 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1305 return false;
1306 }
1307#endif
1308
1309 env->state |= CPU_RAW_RING0;
1310 }
1311
1312 /*
1313 * Don't reschedule the first time we're called, because there might be
1314 * special reasons why we're here that is not covered by the above checks.
1315 */
1316 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1317 {
1318 Log2(("raw mode refused: first scheduling\n"));
1319 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1320 return false;
1321 }
1322
1323 Assert(PGMPhysIsA20Enabled(env->pVM));
1324 *piException = EXCP_EXECUTE_RAW;
1325 return true;
1326}
1327
1328
1329/**
1330 * Fetches a code byte.
1331 *
1332 * @returns Success indicator (bool) for ease of use.
1333 * @param env The CPU environment structure.
1334 * @param GCPtrInstr Where to fetch code.
1335 * @param pu8Byte Where to store the byte on success
1336 */
1337bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1338{
1339 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1340 if (VBOX_SUCCESS(rc))
1341 return true;
1342 return false;
1343}
1344
1345
1346/**
1347 * Flush (or invalidate if you like) page table/dir entry.
1348 *
1349 * (invlpg instruction; tlb_flush_page)
1350 *
1351 * @param env Pointer to cpu environment.
1352 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1353 */
1354void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1355{
1356 PVM pVM = env->pVM;
1357 PCPUMCTX pCtx;
1358 int rc;
1359
1360 /*
1361 * When we're replaying invlpg instructions or restoring a saved
1362 * state we disable this path.
1363 */
1364 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1365 return;
1366 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1367 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1368
1369 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1370
1371 /*
1372 * Update the control registers before calling PGMFlushPage.
1373 */
1374 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1375 pCtx->cr0 = env->cr[0];
1376 pCtx->cr3 = env->cr[3];
1377 pCtx->cr4 = env->cr[4];
1378
1379 /*
1380 * Let PGM do the rest.
1381 */
1382 rc = PGMInvalidatePage(pVM, GCPtr);
1383 if (VBOX_FAILURE(rc))
1384 {
1385 AssertMsgFailed(("remR3FlushPage %VGv failed with %d!!\n", GCPtr, rc));
1386 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1387 }
1388 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1389}
1390
1391
1392/**
1393 * Called from tlb_protect_code in order to write monitor a code page.
1394 *
1395 * @param env Pointer to the CPU environment.
1396 * @param GCPtr Code page to monitor
1397 */
1398void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1399{
1400#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1401 Assert(env->pVM->rem.s.fInREM);
1402 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1403 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1404 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1405 && !(env->eflags & VM_MASK) /* no V86 mode */
1406 && !HWACCMIsEnabled(env->pVM))
1407 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1408#endif
1409}
1410
1411/**
1412 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1413 *
1414 * @param env Pointer to the CPU environment.
1415 * @param GCPtr Code page to monitor
1416 */
1417void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
1418{
1419 Assert(env->pVM->rem.s.fInREM);
1420#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1421 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1422 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1423 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1424 && !(env->eflags & VM_MASK) /* no V86 mode */
1425 && !HWACCMIsEnabled(env->pVM))
1426 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1427#endif
1428}
1429
1430
1431/**
1432 * Called when the CPU is initialized, any of the CRx registers are changed or
1433 * when the A20 line is modified.
1434 *
1435 * @param env Pointer to the CPU environment.
1436 * @param fGlobal Set if the flush is global.
1437 */
1438void remR3FlushTLB(CPUState *env, bool fGlobal)
1439{
1440 PVM pVM = env->pVM;
1441 PCPUMCTX pCtx;
1442
1443 /*
1444 * When we're replaying invlpg instructions or restoring a saved
1445 * state we disable this path.
1446 */
1447 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1448 return;
1449 Assert(pVM->rem.s.fInREM);
1450
1451 /*
1452 * The caller doesn't check cr4, so we have to do that for ourselves.
1453 */
1454 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1455 fGlobal = true;
1456 Log(("remR3FlushTLB: CR0=%RGr CR3=%RGr CR4=%RGr %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1457
1458 /*
1459 * Update the control registers before calling PGMR3FlushTLB.
1460 */
1461 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1462 pCtx->cr0 = env->cr[0];
1463 pCtx->cr3 = env->cr[3];
1464 pCtx->cr4 = env->cr[4];
1465
1466 /*
1467 * Let PGM do the rest.
1468 */
1469 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1470}
1471
1472
1473/**
1474 * Called when any of the cr0, cr4 or efer registers is updated.
1475 *
1476 * @param env Pointer to the CPU environment.
1477 */
1478void remR3ChangeCpuMode(CPUState *env)
1479{
1480 int rc;
1481 PVM pVM = env->pVM;
1482 PCPUMCTX pCtx;
1483
1484 /*
1485 * When we're replaying loads or restoring a saved
1486 * state this path is disabled.
1487 */
1488 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1489 return;
1490 Assert(pVM->rem.s.fInREM);
1491
1492 /*
1493 * Update the control registers before calling PGMChangeMode()
1494 * as it may need to map whatever cr3 is pointing to.
1495 */
1496 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1497 pCtx->cr0 = env->cr[0];
1498 pCtx->cr3 = env->cr[3];
1499 pCtx->cr4 = env->cr[4];
1500
1501#ifdef TARGET_X86_64
1502 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1503 if (rc != VINF_SUCCESS)
1504 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1505#else
1506 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1507 if (rc != VINF_SUCCESS)
1508 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1509#endif
1510}
1511
1512
1513/**
1514 * Called from compiled code to run dma.
1515 *
1516 * @param env Pointer to the CPU environment.
1517 */
1518void remR3DmaRun(CPUState *env)
1519{
1520 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1521 PDMR3DmaRun(env->pVM);
1522 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1523}
1524
1525
1526/**
1527 * Called from compiled code to schedule pending timers in VMM
1528 *
1529 * @param env Pointer to the CPU environment.
1530 */
1531void remR3TimersRun(CPUState *env)
1532{
1533 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1534 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1535 TMR3TimerQueuesDo(env->pVM);
1536 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1537 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1538}
1539
1540
1541/**
1542 * Record trap occurance
1543 *
1544 * @returns VBox status code
1545 * @param env Pointer to the CPU environment.
1546 * @param uTrap Trap nr
1547 * @param uErrorCode Error code
1548 * @param pvNextEIP Next EIP
1549 */
1550int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1551{
1552 PVM pVM = env->pVM;
1553#ifdef VBOX_WITH_STATISTICS
1554 static STAMCOUNTER s_aStatTrap[255];
1555 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1556#endif
1557
1558#ifdef VBOX_WITH_STATISTICS
1559 if (uTrap < 255)
1560 {
1561 if (!s_aRegisters[uTrap])
1562 {
1563 s_aRegisters[uTrap] = true;
1564 char szStatName[64];
1565 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1566 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1567 }
1568 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1569 }
1570#endif
1571 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%VGv\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1572 if( uTrap < 0x20
1573 && (env->cr[0] & X86_CR0_PE)
1574 && !(env->eflags & X86_EFL_VM))
1575 {
1576#ifdef DEBUG
1577 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1578#endif
1579 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1580 {
1581 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%VGv\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1582 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1583 return VERR_REM_TOO_MANY_TRAPS;
1584 }
1585 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1586 pVM->rem.s.cPendingExceptions = 1;
1587 pVM->rem.s.uPendingException = uTrap;
1588 pVM->rem.s.uPendingExcptEIP = env->eip;
1589 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1590 }
1591 else
1592 {
1593 pVM->rem.s.cPendingExceptions = 0;
1594 pVM->rem.s.uPendingException = uTrap;
1595 pVM->rem.s.uPendingExcptEIP = env->eip;
1596 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1597 }
1598 return VINF_SUCCESS;
1599}
1600
1601
1602/*
1603 * Clear current active trap
1604 *
1605 * @param pVM VM Handle.
1606 */
1607void remR3TrapClear(PVM pVM)
1608{
1609 pVM->rem.s.cPendingExceptions = 0;
1610 pVM->rem.s.uPendingException = 0;
1611 pVM->rem.s.uPendingExcptEIP = 0;
1612 pVM->rem.s.uPendingExcptCR2 = 0;
1613}
1614
1615
1616/*
1617 * Record previous call instruction addresses
1618 *
1619 * @param env Pointer to the CPU environment.
1620 */
1621void remR3RecordCall(CPUState *env)
1622{
1623 CSAMR3RecordCallAddress(env->pVM, env->eip);
1624}
1625
1626
1627/**
1628 * Syncs the internal REM state with the VM.
1629 *
1630 * This must be called before REMR3Run() is invoked whenever when the REM
1631 * state is not up to date. Calling it several times in a row is not
1632 * permitted.
1633 *
1634 * @returns VBox status code.
1635 *
1636 * @param pVM VM Handle.
1637 * @param fFlushTBs Flush all translation blocks before executing code
1638 *
1639 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1640 * no do this since the majority of the callers don't want any unnecessary of events
1641 * pending that would immediatly interrupt execution.
1642 */
1643REMR3DECL(int) REMR3State(PVM pVM, bool fFlushTBs)
1644{
1645 register const CPUMCTX *pCtx;
1646 register unsigned fFlags;
1647 bool fHiddenSelRegsValid;
1648 unsigned i;
1649 TRPMEVENT enmType;
1650 uint8_t u8TrapNo;
1651 int rc;
1652
1653 Log2(("REMR3State:\n"));
1654 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1655
1656 pCtx = pVM->rem.s.pCtx;
1657 fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1658
1659 Assert(!pVM->rem.s.fInREM);
1660 pVM->rem.s.fInStateSync = true;
1661
1662 if (fFlushTBs)
1663 {
1664 STAM_COUNTER_INC(&gStatFlushTBs);
1665 tb_flush(&pVM->rem.s.Env);
1666 }
1667
1668 /*
1669 * Copy the registers which require no special handling.
1670 */
1671#ifdef TARGET_X86_64
1672 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
1673 Assert(R_EAX == 0);
1674 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
1675 Assert(R_ECX == 1);
1676 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
1677 Assert(R_EDX == 2);
1678 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
1679 Assert(R_EBX == 3);
1680 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
1681 Assert(R_ESP == 4);
1682 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
1683 Assert(R_EBP == 5);
1684 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
1685 Assert(R_ESI == 6);
1686 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
1687 Assert(R_EDI == 7);
1688 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
1689 pVM->rem.s.Env.regs[8] = pCtx->r8;
1690 pVM->rem.s.Env.regs[9] = pCtx->r9;
1691 pVM->rem.s.Env.regs[10] = pCtx->r10;
1692 pVM->rem.s.Env.regs[11] = pCtx->r11;
1693 pVM->rem.s.Env.regs[12] = pCtx->r12;
1694 pVM->rem.s.Env.regs[13] = pCtx->r13;
1695 pVM->rem.s.Env.regs[14] = pCtx->r14;
1696 pVM->rem.s.Env.regs[15] = pCtx->r15;
1697
1698 pVM->rem.s.Env.eip = pCtx->rip;
1699
1700 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
1701#else
1702 Assert(R_EAX == 0);
1703 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1704 Assert(R_ECX == 1);
1705 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1706 Assert(R_EDX == 2);
1707 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1708 Assert(R_EBX == 3);
1709 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1710 Assert(R_ESP == 4);
1711 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1712 Assert(R_EBP == 5);
1713 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1714 Assert(R_ESI == 6);
1715 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1716 Assert(R_EDI == 7);
1717 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1718 pVM->rem.s.Env.eip = pCtx->eip;
1719
1720 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1721#endif
1722
1723 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1724
1725 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1726 for (i=0;i<8;i++)
1727 pVM->rem.s.Env.dr[i] = pCtx->dr[i];
1728
1729 /*
1730 * Clear the halted hidden flag (the interrupt waking up the CPU can
1731 * have been dispatched in raw mode).
1732 */
1733 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1734
1735 /*
1736 * Replay invlpg?
1737 */
1738 if (pVM->rem.s.cInvalidatedPages)
1739 {
1740 RTUINT i;
1741
1742 pVM->rem.s.fIgnoreInvlPg = true;
1743 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1744 {
1745 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1746 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1747 }
1748 pVM->rem.s.fIgnoreInvlPg = false;
1749 pVM->rem.s.cInvalidatedPages = 0;
1750 }
1751
1752 /* Replay notification changes? */
1753 if (pVM->rem.s.cHandlerNotifications)
1754 REMR3ReplayHandlerNotifications(pVM);
1755
1756 /* Update MSRs; before CRx registers! */
1757 pVM->rem.s.Env.efer = pCtx->msrEFER;
1758 pVM->rem.s.Env.star = pCtx->msrSTAR;
1759 pVM->rem.s.Env.pat = pCtx->msrPAT;
1760#ifdef TARGET_X86_64
1761 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1762 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1763 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1764 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1765
1766 /* Update the internal long mode activate flag according to the new EFER value. */
1767 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1768 pVM->rem.s.Env.hflags |= HF_LMA_MASK;
1769 else
1770 pVM->rem.s.Env.hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
1771#endif
1772
1773
1774 /*
1775 * Registers which are rarely changed and require special handling / order when changed.
1776 */
1777 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1778 LogFlow(("CPUMGetAndClearChangedFlagsREM %x\n", fFlags));
1779 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1780 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1781 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
1782 {
1783 if (fFlags & CPUM_CHANGED_FPU_REM)
1784 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1785
1786 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1787 {
1788 pVM->rem.s.fIgnoreCR3Load = true;
1789 tlb_flush(&pVM->rem.s.Env, true);
1790 pVM->rem.s.fIgnoreCR3Load = false;
1791 }
1792
1793 /* CR4 before CR0! */
1794 if (fFlags & CPUM_CHANGED_CR4)
1795 {
1796 pVM->rem.s.fIgnoreCR3Load = true;
1797 pVM->rem.s.fIgnoreCpuMode = true;
1798 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1799 pVM->rem.s.fIgnoreCpuMode = false;
1800 pVM->rem.s.fIgnoreCR3Load = false;
1801 }
1802
1803 if (fFlags & CPUM_CHANGED_CR0)
1804 {
1805 pVM->rem.s.fIgnoreCR3Load = true;
1806 pVM->rem.s.fIgnoreCpuMode = true;
1807 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1808 pVM->rem.s.fIgnoreCpuMode = false;
1809 pVM->rem.s.fIgnoreCR3Load = false;
1810 }
1811
1812 if (fFlags & CPUM_CHANGED_CR3)
1813 {
1814 pVM->rem.s.fIgnoreCR3Load = true;
1815 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1816 pVM->rem.s.fIgnoreCR3Load = false;
1817 }
1818
1819 if (fFlags & CPUM_CHANGED_GDTR)
1820 {
1821 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1822 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1823 }
1824
1825 if (fFlags & CPUM_CHANGED_IDTR)
1826 {
1827 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1828 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1829 }
1830
1831 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1832 {
1833 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1834 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1835 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1836 }
1837
1838 if (fFlags & CPUM_CHANGED_LDTR)
1839 {
1840 if (fHiddenSelRegsValid)
1841 {
1842 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1843 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u64Base;
1844 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1845 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1846 }
1847 else
1848 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1849 }
1850
1851 if (fFlags & CPUM_CHANGED_TR)
1852 {
1853 if (fHiddenSelRegsValid)
1854 {
1855 pVM->rem.s.Env.tr.selector = pCtx->tr;
1856 pVM->rem.s.Env.tr.base = pCtx->trHid.u64Base;
1857 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1858 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1859 }
1860 else
1861 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1862
1863 /** @note do_interrupt will fault if the busy flag is still set.... */
1864 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1865 }
1866
1867 if (fFlags & CPUM_CHANGED_CPUID)
1868 {
1869 uint32_t u32Dummy;
1870
1871 /*
1872 * Get the CPUID features.
1873 */
1874 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
1875 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
1876 }
1877 }
1878
1879 /*
1880 * Update selector registers.
1881 * This must be done *after* we've synced gdt, ldt and crX registers
1882 * since we're reading the GDT/LDT om sync_seg. This will happen with
1883 * saved state which takes a quick dip into rawmode for instance.
1884 */
1885 /*
1886 * Stack; Note first check this one as the CPL might have changed. The
1887 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1888 */
1889
1890 if (fHiddenSelRegsValid)
1891 {
1892 /* The hidden selector registers are valid in the CPU context. */
1893 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1894
1895 /* Set current CPL */
1896 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1897
1898 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1899 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1900 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1901 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1902 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1903 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1904 }
1905 else
1906 {
1907 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1908 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1909 {
1910 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1911
1912 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1913 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1914#ifdef VBOX_WITH_STATISTICS
1915 if (pVM->rem.s.Env.segs[R_SS].newselector)
1916 {
1917 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1918 }
1919#endif
1920 }
1921 else
1922 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1923
1924 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1925 {
1926 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1927 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1928#ifdef VBOX_WITH_STATISTICS
1929 if (pVM->rem.s.Env.segs[R_ES].newselector)
1930 {
1931 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1932 }
1933#endif
1934 }
1935 else
1936 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1937
1938 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1939 {
1940 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1941 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1942#ifdef VBOX_WITH_STATISTICS
1943 if (pVM->rem.s.Env.segs[R_CS].newselector)
1944 {
1945 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1946 }
1947#endif
1948 }
1949 else
1950 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1951
1952 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1953 {
1954 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1955 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1956#ifdef VBOX_WITH_STATISTICS
1957 if (pVM->rem.s.Env.segs[R_DS].newselector)
1958 {
1959 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1960 }
1961#endif
1962 }
1963 else
1964 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1965
1966 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1967 * be the same but not the base/limit. */
1968 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1969 {
1970 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1971 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1972#ifdef VBOX_WITH_STATISTICS
1973 if (pVM->rem.s.Env.segs[R_FS].newselector)
1974 {
1975 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1976 }
1977#endif
1978 }
1979 else
1980 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1981
1982 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1983 {
1984 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1985 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1986#ifdef VBOX_WITH_STATISTICS
1987 if (pVM->rem.s.Env.segs[R_GS].newselector)
1988 {
1989 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1990 }
1991#endif
1992 }
1993 else
1994 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1995 }
1996
1997 /*
1998 * Check for traps.
1999 */
2000 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
2001 rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
2002 if (VBOX_SUCCESS(rc))
2003 {
2004#ifdef DEBUG
2005 if (u8TrapNo == 0x80)
2006 {
2007 remR3DumpLnxSyscall(pVM);
2008 remR3DumpOBsdSyscall(pVM);
2009 }
2010#endif
2011
2012 pVM->rem.s.Env.exception_index = u8TrapNo;
2013 if (enmType != TRPM_SOFTWARE_INT)
2014 {
2015 pVM->rem.s.Env.exception_is_int = 0;
2016 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
2017 }
2018 else
2019 {
2020 /*
2021 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
2022 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
2023 * for int03 and into.
2024 */
2025 pVM->rem.s.Env.exception_is_int = 1;
2026 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 2;
2027 /* int 3 may be generated by one-byte 0xcc */
2028 if (u8TrapNo == 3)
2029 {
2030 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xcc)
2031 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2032 }
2033 /* int 4 may be generated by one-byte 0xce */
2034 else if (u8TrapNo == 4)
2035 {
2036 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xce)
2037 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2038 }
2039 }
2040
2041 /* get error code and cr2 if needed. */
2042 switch (u8TrapNo)
2043 {
2044 case 0x0e:
2045 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
2046 /* fallthru */
2047 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2048 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
2049 break;
2050
2051 case 0x11: case 0x08:
2052 default:
2053 pVM->rem.s.Env.error_code = 0;
2054 break;
2055 }
2056
2057 /*
2058 * We can now reset the active trap since the recompiler is gonna have a go at it.
2059 */
2060 rc = TRPMResetTrap(pVM);
2061 AssertRC(rc);
2062 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
2063 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
2064 }
2065
2066 /*
2067 * Clear old interrupt request flags; Check for pending hardware interrupts.
2068 * (See @remark for why we don't check for other FFs.)
2069 */
2070 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2071 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2072 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
2073 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2074
2075 /*
2076 * We're now in REM mode.
2077 */
2078 pVM->rem.s.fInREM = true;
2079 pVM->rem.s.fInStateSync = false;
2080 pVM->rem.s.cCanExecuteRaw = 0;
2081 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2082 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2083 return VINF_SUCCESS;
2084}
2085
2086
2087/**
2088 * Syncs back changes in the REM state to the the VM state.
2089 *
2090 * This must be called after invoking REMR3Run().
2091 * Calling it several times in a row is not permitted.
2092 *
2093 * @returns VBox status code.
2094 *
2095 * @param pVM VM Handle.
2096 */
2097REMR3DECL(int) REMR3StateBack(PVM pVM)
2098{
2099 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2100 unsigned i;
2101
2102 Log2(("REMR3StateBack:\n"));
2103 Assert(pVM->rem.s.fInREM);
2104 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2105 /*
2106 * Copy back the registers.
2107 * This is done in the order they are declared in the CPUMCTX structure.
2108 */
2109
2110 /** @todo FOP */
2111 /** @todo FPUIP */
2112 /** @todo CS */
2113 /** @todo FPUDP */
2114 /** @todo DS */
2115 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2116 pCtx->fpu.MXCSR = 0;
2117 pCtx->fpu.MXCSR_MASK = 0;
2118
2119 /** @todo check if FPU/XMM was actually used in the recompiler */
2120 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2121//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2122
2123#ifdef TARGET_X86_64
2124 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2125 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2126 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2127 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2128 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2129 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2130 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2131 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2132 pCtx->r8 = pVM->rem.s.Env.regs[8];
2133 pCtx->r9 = pVM->rem.s.Env.regs[9];
2134 pCtx->r10 = pVM->rem.s.Env.regs[10];
2135 pCtx->r11 = pVM->rem.s.Env.regs[11];
2136 pCtx->r12 = pVM->rem.s.Env.regs[12];
2137 pCtx->r13 = pVM->rem.s.Env.regs[13];
2138 pCtx->r14 = pVM->rem.s.Env.regs[14];
2139 pCtx->r15 = pVM->rem.s.Env.regs[15];
2140
2141 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2142
2143#else
2144 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2145 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2146 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2147 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2148 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2149 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2150 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2151
2152 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2153#endif
2154
2155 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2156
2157#ifdef VBOX_WITH_STATISTICS
2158 if (pVM->rem.s.Env.segs[R_SS].newselector)
2159 {
2160 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2161 }
2162 if (pVM->rem.s.Env.segs[R_GS].newselector)
2163 {
2164 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2165 }
2166 if (pVM->rem.s.Env.segs[R_FS].newselector)
2167 {
2168 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2169 }
2170 if (pVM->rem.s.Env.segs[R_ES].newselector)
2171 {
2172 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2173 }
2174 if (pVM->rem.s.Env.segs[R_DS].newselector)
2175 {
2176 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2177 }
2178 if (pVM->rem.s.Env.segs[R_CS].newselector)
2179 {
2180 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2181 }
2182#endif
2183 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2184 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2185 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2186 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2187 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2188
2189#ifdef TARGET_X86_64
2190 pCtx->rip = pVM->rem.s.Env.eip;
2191 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2192#else
2193 pCtx->eip = pVM->rem.s.Env.eip;
2194 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2195#endif
2196
2197 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2198 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2199 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2200 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2201
2202 for (i=0;i<8;i++)
2203 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2204
2205 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2206 if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
2207 {
2208 pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
2209 STAM_COUNTER_INC(&gStatREMGDTChange);
2210 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2211 }
2212
2213 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2214 if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
2215 {
2216 pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
2217 STAM_COUNTER_INC(&gStatREMIDTChange);
2218 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2219 }
2220
2221 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2222 {
2223 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2224 STAM_COUNTER_INC(&gStatREMLDTRChange);
2225 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2226 }
2227 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2228 {
2229 pCtx->tr = pVM->rem.s.Env.tr.selector;
2230 STAM_COUNTER_INC(&gStatREMTRChange);
2231 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2232 }
2233
2234 /** @todo These values could still be out of sync! */
2235 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2236 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2237 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2238 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2239
2240 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2241 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2242 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2243
2244 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2245 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2246 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2247
2248 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2249 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2250 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2251
2252 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2253 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2254 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2255
2256 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2257 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2258 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2259
2260 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2261 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2262 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2263
2264 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2265 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2266 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2267
2268 /* Sysenter MSR */
2269 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2270 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2271 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2272
2273 /* System MSRs. */
2274 pCtx->msrEFER = pVM->rem.s.Env.efer;
2275 pCtx->msrSTAR = pVM->rem.s.Env.star;
2276 pCtx->msrPAT = pVM->rem.s.Env.pat;
2277#ifdef TARGET_X86_64
2278 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2279 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2280 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2281 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2282#endif
2283
2284 remR3TrapClear(pVM);
2285
2286 /*
2287 * Check for traps.
2288 */
2289 if ( pVM->rem.s.Env.exception_index >= 0
2290 && pVM->rem.s.Env.exception_index < 256)
2291 {
2292 int rc;
2293
2294 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2295 rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2296 AssertRC(rc);
2297 switch (pVM->rem.s.Env.exception_index)
2298 {
2299 case 0x0e:
2300 TRPMSetFaultAddress(pVM, pCtx->cr2);
2301 /* fallthru */
2302 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2303 case 0x11: case 0x08: /* 0 */
2304 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2305 break;
2306 }
2307
2308 }
2309
2310 /*
2311 * We're not longer in REM mode.
2312 */
2313 pVM->rem.s.fInREM = false;
2314 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2315 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2316 return VINF_SUCCESS;
2317}
2318
2319
2320/**
2321 * This is called by the disassembler when it wants to update the cpu state
2322 * before for instance doing a register dump.
2323 */
2324static void remR3StateUpdate(PVM pVM)
2325{
2326 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2327 unsigned i;
2328
2329 Assert(pVM->rem.s.fInREM);
2330
2331 /*
2332 * Copy back the registers.
2333 * This is done in the order they are declared in the CPUMCTX structure.
2334 */
2335
2336 /** @todo FOP */
2337 /** @todo FPUIP */
2338 /** @todo CS */
2339 /** @todo FPUDP */
2340 /** @todo DS */
2341 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2342 pCtx->fpu.MXCSR = 0;
2343 pCtx->fpu.MXCSR_MASK = 0;
2344
2345 /** @todo check if FPU/XMM was actually used in the recompiler */
2346 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2347//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2348
2349#ifdef TARGET_X86_64
2350 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2351 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2352 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2353 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2354 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2355 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2356 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2357 pCtx->r8 = pVM->rem.s.Env.regs[8];
2358 pCtx->r9 = pVM->rem.s.Env.regs[9];
2359 pCtx->r10 = pVM->rem.s.Env.regs[10];
2360 pCtx->r11 = pVM->rem.s.Env.regs[11];
2361 pCtx->r12 = pVM->rem.s.Env.regs[12];
2362 pCtx->r13 = pVM->rem.s.Env.regs[13];
2363 pCtx->r14 = pVM->rem.s.Env.regs[14];
2364 pCtx->r15 = pVM->rem.s.Env.regs[15];
2365
2366 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2367#else
2368 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2369 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2370 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2371 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2372 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2373 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2374 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2375
2376 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2377#endif
2378
2379 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2380
2381 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2382 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2383 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2384 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2385 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2386
2387#ifdef TARGET_X86_64
2388 pCtx->rip = pVM->rem.s.Env.eip;
2389 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2390#else
2391 pCtx->eip = pVM->rem.s.Env.eip;
2392 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2393#endif
2394
2395 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2396 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2397 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2398 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2399
2400 for (i=0;i<8;i++)
2401 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2402
2403 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2404 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2405 {
2406 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2407 STAM_COUNTER_INC(&gStatREMGDTChange);
2408 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2409 }
2410
2411 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2412 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2413 {
2414 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2415 STAM_COUNTER_INC(&gStatREMIDTChange);
2416 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2417 }
2418
2419 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2420 {
2421 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2422 STAM_COUNTER_INC(&gStatREMLDTRChange);
2423 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2424 }
2425 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2426 {
2427 pCtx->tr = pVM->rem.s.Env.tr.selector;
2428 STAM_COUNTER_INC(&gStatREMTRChange);
2429 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2430 }
2431
2432 /** @todo These values could still be out of sync! */
2433 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2434 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2435 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2436 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2437
2438 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2439 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2440 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2441
2442 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2443 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2444 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2445
2446 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2447 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2448 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2449
2450 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2451 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2452 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2453
2454 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2455 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2456 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2457
2458 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2459 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2460 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2461
2462 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2463 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2464 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2465
2466 /* Sysenter MSR */
2467 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2468 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2469 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2470
2471 /* System MSRs. */
2472 pCtx->msrEFER = pVM->rem.s.Env.efer;
2473 pCtx->msrSTAR = pVM->rem.s.Env.star;
2474 pCtx->msrPAT = pVM->rem.s.Env.pat;
2475#ifdef TARGET_X86_64
2476 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2477 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2478 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2479 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2480#endif
2481
2482}
2483
2484
2485/**
2486 * Update the VMM state information if we're currently in REM.
2487 *
2488 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2489 * we're currently executing in REM and the VMM state is invalid. This method will of
2490 * course check that we're executing in REM before syncing any data over to the VMM.
2491 *
2492 * @param pVM The VM handle.
2493 */
2494REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2495{
2496 if (pVM->rem.s.fInREM)
2497 remR3StateUpdate(pVM);
2498}
2499
2500
2501#undef LOG_GROUP
2502#define LOG_GROUP LOG_GROUP_REM
2503
2504
2505/**
2506 * Notify the recompiler about Address Gate 20 state change.
2507 *
2508 * This notification is required since A20 gate changes are
2509 * initialized from a device driver and the VM might just as
2510 * well be in REM mode as in RAW mode.
2511 *
2512 * @param pVM VM handle.
2513 * @param fEnable True if the gate should be enabled.
2514 * False if the gate should be disabled.
2515 */
2516REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2517{
2518 bool fSaved;
2519
2520 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2521 VM_ASSERT_EMT(pVM);
2522
2523 fSaved = pVM->rem.s.fIgnoreAll; /* just in case. */
2524 pVM->rem.s.fIgnoreAll = fSaved || !pVM->rem.s.fInREM;
2525
2526 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2527
2528 pVM->rem.s.fIgnoreAll = fSaved;
2529}
2530
2531
2532/**
2533 * Replays the invalidated recorded pages.
2534 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2535 *
2536 * @param pVM VM handle.
2537 */
2538REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2539{
2540 RTUINT i;
2541
2542 VM_ASSERT_EMT(pVM);
2543
2544 /*
2545 * Sync the required registers.
2546 */
2547 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2548 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2549 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2550 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2551
2552 /*
2553 * Replay the flushes.
2554 */
2555 pVM->rem.s.fIgnoreInvlPg = true;
2556 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2557 {
2558 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2559 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2560 }
2561 pVM->rem.s.fIgnoreInvlPg = false;
2562 pVM->rem.s.cInvalidatedPages = 0;
2563}
2564
2565
2566/**
2567 * Replays the handler notification changes
2568 * Called in response to VM_FF_REM_HANDLER_NOTIFY from the RAW execution loop.
2569 *
2570 * @param pVM VM handle.
2571 */
2572REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2573{
2574 /*
2575 * Replay the flushes.
2576 */
2577 RTUINT i;
2578 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2579
2580 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2581 VM_ASSERT_EMT(pVM);
2582
2583 pVM->rem.s.cHandlerNotifications = 0;
2584 for (i = 0; i < c; i++)
2585 {
2586 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2587 switch (pRec->enmKind)
2588 {
2589 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2590 REMR3NotifyHandlerPhysicalRegister(pVM,
2591 pRec->u.PhysicalRegister.enmType,
2592 pRec->u.PhysicalRegister.GCPhys,
2593 pRec->u.PhysicalRegister.cb,
2594 pRec->u.PhysicalRegister.fHasHCHandler);
2595 break;
2596
2597 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2598 REMR3NotifyHandlerPhysicalDeregister(pVM,
2599 pRec->u.PhysicalDeregister.enmType,
2600 pRec->u.PhysicalDeregister.GCPhys,
2601 pRec->u.PhysicalDeregister.cb,
2602 pRec->u.PhysicalDeregister.fHasHCHandler,
2603 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2604 break;
2605
2606 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2607 REMR3NotifyHandlerPhysicalModify(pVM,
2608 pRec->u.PhysicalModify.enmType,
2609 pRec->u.PhysicalModify.GCPhysOld,
2610 pRec->u.PhysicalModify.GCPhysNew,
2611 pRec->u.PhysicalModify.cb,
2612 pRec->u.PhysicalModify.fHasHCHandler,
2613 pRec->u.PhysicalModify.fRestoreAsRAM);
2614 break;
2615
2616 default:
2617 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2618 break;
2619 }
2620 }
2621 VM_FF_CLEAR(pVM, VM_FF_REM_HANDLER_NOTIFY);
2622}
2623
2624
2625/**
2626 * Notify REM about changed code page.
2627 *
2628 * @returns VBox status code.
2629 * @param pVM VM handle.
2630 * @param pvCodePage Code page address
2631 */
2632REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2633{
2634#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
2635 int rc;
2636 RTGCPHYS PhysGC;
2637 uint64_t flags;
2638
2639 VM_ASSERT_EMT(pVM);
2640
2641 /*
2642 * Get the physical page address.
2643 */
2644 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2645 if (rc == VINF_SUCCESS)
2646 {
2647 /*
2648 * Sync the required registers and flush the whole page.
2649 * (Easier to do the whole page than notifying it about each physical
2650 * byte that was changed.
2651 */
2652 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2653 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2654 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2655 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2656
2657 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2658 }
2659#endif
2660 return VINF_SUCCESS;
2661}
2662
2663
2664/**
2665 * Notification about a successful MMR3PhysRegister() call.
2666 *
2667 * @param pVM VM handle.
2668 * @param GCPhys The physical address the RAM.
2669 * @param cb Size of the memory.
2670 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2671 */
2672REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, unsigned fFlags)
2673{
2674 Log(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d fFlags=%d\n", GCPhys, cb, fFlags));
2675 VM_ASSERT_EMT(pVM);
2676
2677 /*
2678 * Validate input - we trust the caller.
2679 */
2680 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2681 Assert(cb);
2682 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2683
2684 /*
2685 * Base ram?
2686 */
2687 if (!GCPhys)
2688 {
2689 phys_ram_size = cb;
2690 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2691#ifndef VBOX_STRICT
2692 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2693 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2694#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2695 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2696 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2697 uint32_t cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2698 int rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2699 AssertRC(rc);
2700 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2701#endif
2702 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2703 }
2704
2705 /*
2706 * Register the ram.
2707 */
2708 Assert(!pVM->rem.s.fIgnoreAll);
2709 pVM->rem.s.fIgnoreAll = true;
2710
2711#ifdef VBOX_WITH_NEW_PHYS_CODE
2712 if (fFlags & MM_RAM_FLAGS_RESERVED)
2713 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2714 else
2715 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2716#else
2717 if (!GCPhys)
2718 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2719 else
2720 {
2721 if (fFlags & MM_RAM_FLAGS_RESERVED)
2722 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2723 else
2724 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2725 }
2726#endif
2727 Assert(pVM->rem.s.fIgnoreAll);
2728 pVM->rem.s.fIgnoreAll = false;
2729}
2730
2731#ifndef VBOX_WITH_NEW_PHYS_CODE
2732
2733/**
2734 * Notification about a successful PGMR3PhysRegisterChunk() call.
2735 *
2736 * @param pVM VM handle.
2737 * @param GCPhys The physical address the RAM.
2738 * @param cb Size of the memory.
2739 * @param pvRam The HC address of the RAM.
2740 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2741 */
2742REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2743{
2744 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2745 VM_ASSERT_EMT(pVM);
2746
2747 /*
2748 * Validate input - we trust the caller.
2749 */
2750 Assert(pvRam);
2751 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2752 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2753 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2754 Assert(fFlags == 0 /* normal RAM */);
2755 Assert(!pVM->rem.s.fIgnoreAll);
2756 pVM->rem.s.fIgnoreAll = true;
2757
2758 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2759
2760 Assert(pVM->rem.s.fIgnoreAll);
2761 pVM->rem.s.fIgnoreAll = false;
2762}
2763
2764
2765/**
2766 * Grows dynamically allocated guest RAM.
2767 * Will raise a fatal error if the operation fails.
2768 *
2769 * @param physaddr The physical address.
2770 */
2771void remR3GrowDynRange(unsigned long physaddr)
2772{
2773 int rc;
2774 PVM pVM = cpu_single_env->pVM;
2775 const RTGCPHYS GCPhys = physaddr;
2776
2777 LogFlow(("remR3GrowDynRange %VGp\n", physaddr));
2778 rc = PGM3PhysGrowRange(pVM, &GCPhys);
2779 if (VBOX_SUCCESS(rc))
2780 return;
2781
2782 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2783 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2784 AssertFatalFailed();
2785}
2786
2787#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2788
2789/**
2790 * Notification about a successful MMR3PhysRomRegister() call.
2791 *
2792 * @param pVM VM handle.
2793 * @param GCPhys The physical address of the ROM.
2794 * @param cb The size of the ROM.
2795 * @param pvCopy Pointer to the ROM copy.
2796 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2797 * This function will be called when ever the protection of the
2798 * shadow ROM changes (at reset and end of POST).
2799 */
2800REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2801{
2802 Log(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p fShadow=%RTbool\n", GCPhys, cb, pvCopy, fShadow));
2803 VM_ASSERT_EMT(pVM);
2804
2805 /*
2806 * Validate input - we trust the caller.
2807 */
2808 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2809 Assert(cb);
2810 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2811 Assert(pvCopy);
2812 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2813
2814 /*
2815 * Register the rom.
2816 */
2817 Assert(!pVM->rem.s.fIgnoreAll);
2818 pVM->rem.s.fIgnoreAll = true;
2819
2820 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2821
2822 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2823
2824 Assert(pVM->rem.s.fIgnoreAll);
2825 pVM->rem.s.fIgnoreAll = false;
2826}
2827
2828
2829/**
2830 * Notification about a successful memory deregistration or reservation.
2831 *
2832 * @param pVM VM Handle.
2833 * @param GCPhys Start physical address.
2834 * @param cb The size of the range.
2835 * @todo Rename to REMR3NotifyPhysRamDeregister (for MMIO2) as we won't
2836 * reserve any memory soon.
2837 */
2838REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2839{
2840 Log(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2841 VM_ASSERT_EMT(pVM);
2842
2843 /*
2844 * Validate input - we trust the caller.
2845 */
2846 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2847 Assert(cb);
2848 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2849
2850 /*
2851 * Unassigning the memory.
2852 */
2853 Assert(!pVM->rem.s.fIgnoreAll);
2854 pVM->rem.s.fIgnoreAll = true;
2855
2856 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2857
2858 Assert(pVM->rem.s.fIgnoreAll);
2859 pVM->rem.s.fIgnoreAll = false;
2860}
2861
2862
2863/**
2864 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2865 *
2866 * @param pVM VM Handle.
2867 * @param enmType Handler type.
2868 * @param GCPhys Handler range address.
2869 * @param cb Size of the handler range.
2870 * @param fHasHCHandler Set if the handler has a HC callback function.
2871 *
2872 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2873 * Handler memory type to memory which has no HC handler.
2874 */
2875REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2876{
2877 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%VGp fHasHCHandler=%d\n",
2878 enmType, GCPhys, cb, fHasHCHandler));
2879 VM_ASSERT_EMT(pVM);
2880 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2881 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2882
2883 if (pVM->rem.s.cHandlerNotifications)
2884 REMR3ReplayHandlerNotifications(pVM);
2885
2886 Assert(!pVM->rem.s.fIgnoreAll);
2887 pVM->rem.s.fIgnoreAll = true;
2888
2889 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2890 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2891 else if (fHasHCHandler)
2892 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2893
2894 Assert(pVM->rem.s.fIgnoreAll);
2895 pVM->rem.s.fIgnoreAll = false;
2896}
2897
2898
2899/**
2900 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2901 *
2902 * @param pVM VM Handle.
2903 * @param enmType Handler type.
2904 * @param GCPhys Handler range address.
2905 * @param cb Size of the handler range.
2906 * @param fHasHCHandler Set if the handler has a HC callback function.
2907 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2908 */
2909REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2910{
2911 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%VGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2912 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2913 VM_ASSERT_EMT(pVM);
2914
2915 if (pVM->rem.s.cHandlerNotifications)
2916 REMR3ReplayHandlerNotifications(pVM);
2917
2918 Assert(!pVM->rem.s.fIgnoreAll);
2919 pVM->rem.s.fIgnoreAll = true;
2920
2921/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
2922 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2923 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2924 else if (fHasHCHandler)
2925 {
2926 if (!fRestoreAsRAM)
2927 {
2928 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2929 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2930 }
2931 else
2932 {
2933 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2934 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2935 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2936 }
2937 }
2938
2939 Assert(pVM->rem.s.fIgnoreAll);
2940 pVM->rem.s.fIgnoreAll = false;
2941}
2942
2943
2944/**
2945 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2946 *
2947 * @param pVM VM Handle.
2948 * @param enmType Handler type.
2949 * @param GCPhysOld Old handler range address.
2950 * @param GCPhysNew New handler range address.
2951 * @param cb Size of the handler range.
2952 * @param fHasHCHandler Set if the handler has a HC callback function.
2953 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2954 */
2955REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2956{
2957 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%VGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
2958 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
2959 VM_ASSERT_EMT(pVM);
2960 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2961
2962 if (pVM->rem.s.cHandlerNotifications)
2963 REMR3ReplayHandlerNotifications(pVM);
2964
2965 if (fHasHCHandler)
2966 {
2967 Assert(!pVM->rem.s.fIgnoreAll);
2968 pVM->rem.s.fIgnoreAll = true;
2969
2970 /*
2971 * Reset the old page.
2972 */
2973 if (!fRestoreAsRAM)
2974 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2975 else
2976 {
2977 /* This is not perfect, but it'll do for PD monitoring... */
2978 Assert(cb == PAGE_SIZE);
2979 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2980 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2981 }
2982
2983 /*
2984 * Update the new page.
2985 */
2986 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2987 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2988 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2989
2990 Assert(pVM->rem.s.fIgnoreAll);
2991 pVM->rem.s.fIgnoreAll = false;
2992 }
2993}
2994
2995
2996/**
2997 * Checks if we're handling access to this page or not.
2998 *
2999 * @returns true if we're trapping access.
3000 * @returns false if we aren't.
3001 * @param pVM The VM handle.
3002 * @param GCPhys The physical address.
3003 *
3004 * @remark This function will only work correctly in VBOX_STRICT builds!
3005 */
3006REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
3007{
3008#ifdef VBOX_STRICT
3009 if (pVM->rem.s.cHandlerNotifications)
3010 REMR3ReplayHandlerNotifications(pVM);
3011
3012 unsigned long off = get_phys_page_offset(GCPhys);
3013 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
3014 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
3015 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
3016#else
3017 return false;
3018#endif
3019}
3020
3021
3022/**
3023 * Deals with a rare case in get_phys_addr_code where the code
3024 * is being monitored.
3025 *
3026 * It could also be an MMIO page, in which case we will raise a fatal error.
3027 *
3028 * @returns The physical address corresponding to addr.
3029 * @param env The cpu environment.
3030 * @param addr The virtual address.
3031 * @param pTLBEntry The TLB entry.
3032 */
3033target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
3034{
3035 PVM pVM = env->pVM;
3036 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
3037 {
3038 target_ulong ret = pTLBEntry->addend + addr;
3039 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv addr_code=%VGv addend=%VGp ret=%VGp\n",
3040 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
3041 return ret;
3042 }
3043 LogRel(("\nTrying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
3044 "*** handlers\n",
3045 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
3046 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
3047 LogRel(("*** mmio\n"));
3048 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
3049 LogRel(("*** phys\n"));
3050 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
3051 cpu_abort(env, "Trying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
3052 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
3053 AssertFatalFailed();
3054}
3055
3056
3057/** Validate the physical address passed to the read functions.
3058 * Useful for finding non-guest-ram reads/writes. */
3059#if 0 //1 /* disable if it becomes bothersome... */
3060# define VBOX_CHECK_ADDR(GCPhys) AssertMsg(PGMPhysIsGCPhysValid(cpu_single_env->pVM, (GCPhys)), ("%VGp\n", (GCPhys)))
3061#else
3062# define VBOX_CHECK_ADDR(GCPhys) do { } while (0)
3063#endif
3064
3065/**
3066 * Read guest RAM and ROM.
3067 *
3068 * @param SrcGCPhys The source address (guest physical).
3069 * @param pvDst The destination address.
3070 * @param cb Number of bytes
3071 */
3072void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3073{
3074 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3075 VBOX_CHECK_ADDR(SrcGCPhys);
3076 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3077 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3078}
3079
3080
3081/**
3082 * Read guest RAM and ROM, unsigned 8-bit.
3083 *
3084 * @param SrcGCPhys The source address (guest physical).
3085 */
3086uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3087{
3088 uint8_t val;
3089 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3090 VBOX_CHECK_ADDR(SrcGCPhys);
3091 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3092 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3093 return val;
3094}
3095
3096
3097/**
3098 * Read guest RAM and ROM, signed 8-bit.
3099 *
3100 * @param SrcGCPhys The source address (guest physical).
3101 */
3102int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3103{
3104 int8_t val;
3105 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3106 VBOX_CHECK_ADDR(SrcGCPhys);
3107 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3108 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3109 return val;
3110}
3111
3112
3113/**
3114 * Read guest RAM and ROM, unsigned 16-bit.
3115 *
3116 * @param SrcGCPhys The source address (guest physical).
3117 */
3118uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3119{
3120 uint16_t val;
3121 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3122 VBOX_CHECK_ADDR(SrcGCPhys);
3123 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3124 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3125 return val;
3126}
3127
3128
3129/**
3130 * Read guest RAM and ROM, signed 16-bit.
3131 *
3132 * @param SrcGCPhys The source address (guest physical).
3133 */
3134int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3135{
3136 uint16_t val;
3137 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3138 VBOX_CHECK_ADDR(SrcGCPhys);
3139 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3140 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3141 return val;
3142}
3143
3144
3145/**
3146 * Read guest RAM and ROM, unsigned 32-bit.
3147 *
3148 * @param SrcGCPhys The source address (guest physical).
3149 */
3150uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3151{
3152 uint32_t val;
3153 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3154 VBOX_CHECK_ADDR(SrcGCPhys);
3155 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3156 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3157 return val;
3158}
3159
3160
3161/**
3162 * Read guest RAM and ROM, signed 32-bit.
3163 *
3164 * @param SrcGCPhys The source address (guest physical).
3165 */
3166int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3167{
3168 int32_t val;
3169 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3170 VBOX_CHECK_ADDR(SrcGCPhys);
3171 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3172 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3173 return val;
3174}
3175
3176
3177/**
3178 * Read guest RAM and ROM, unsigned 64-bit.
3179 *
3180 * @param SrcGCPhys The source address (guest physical).
3181 */
3182uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3183{
3184 uint64_t val;
3185 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3186 VBOX_CHECK_ADDR(SrcGCPhys);
3187 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3188 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3189 return val;
3190}
3191
3192
3193/**
3194 * Write guest RAM.
3195 *
3196 * @param DstGCPhys The destination address (guest physical).
3197 * @param pvSrc The source address.
3198 * @param cb Number of bytes to write
3199 */
3200void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3201{
3202 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3203 VBOX_CHECK_ADDR(DstGCPhys);
3204 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3205 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3206}
3207
3208
3209/**
3210 * Write guest RAM, unsigned 8-bit.
3211 *
3212 * @param DstGCPhys The destination address (guest physical).
3213 * @param val Value
3214 */
3215void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3216{
3217 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3218 VBOX_CHECK_ADDR(DstGCPhys);
3219 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3220 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3221}
3222
3223
3224/**
3225 * Write guest RAM, unsigned 8-bit.
3226 *
3227 * @param DstGCPhys The destination address (guest physical).
3228 * @param val Value
3229 */
3230void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3231{
3232 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3233 VBOX_CHECK_ADDR(DstGCPhys);
3234 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3235 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3236}
3237
3238
3239/**
3240 * Write guest RAM, unsigned 32-bit.
3241 *
3242 * @param DstGCPhys The destination address (guest physical).
3243 * @param val Value
3244 */
3245void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3246{
3247 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3248 VBOX_CHECK_ADDR(DstGCPhys);
3249 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3250 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3251}
3252
3253
3254/**
3255 * Write guest RAM, unsigned 64-bit.
3256 *
3257 * @param DstGCPhys The destination address (guest physical).
3258 * @param val Value
3259 */
3260void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3261{
3262 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3263 VBOX_CHECK_ADDR(DstGCPhys);
3264 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3265 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3266}
3267
3268#undef LOG_GROUP
3269#define LOG_GROUP LOG_GROUP_REM_MMIO
3270
3271/** Read MMIO memory. */
3272static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3273{
3274 uint32_t u32 = 0;
3275 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3276 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3277 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3278 return u32;
3279}
3280
3281/** Read MMIO memory. */
3282static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3283{
3284 uint32_t u32 = 0;
3285 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3286 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3287 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3288 return u32;
3289}
3290
3291/** Read MMIO memory. */
3292static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3293{
3294 uint32_t u32 = 0;
3295 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3296 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3297 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3298 return u32;
3299}
3300
3301/** Write to MMIO memory. */
3302static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3303{
3304 int rc;
3305 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3306 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3307 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3308}
3309
3310/** Write to MMIO memory. */
3311static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3312{
3313 int rc;
3314 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3315 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3316 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3317}
3318
3319/** Write to MMIO memory. */
3320static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3321{
3322 int rc;
3323 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3324 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3325 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3326}
3327
3328
3329#undef LOG_GROUP
3330#define LOG_GROUP LOG_GROUP_REM_HANDLER
3331
3332/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3333
3334static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3335{
3336 uint8_t u8;
3337 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3338 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3339 return u8;
3340}
3341
3342static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3343{
3344 uint16_t u16;
3345 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3346 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3347 return u16;
3348}
3349
3350static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3351{
3352 uint32_t u32;
3353 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3354 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3355 return u32;
3356}
3357
3358static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3359{
3360 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3361 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3362}
3363
3364static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3365{
3366 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3367 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3368}
3369
3370static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3371{
3372 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3373 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3374}
3375
3376/* -+- disassembly -+- */
3377
3378#undef LOG_GROUP
3379#define LOG_GROUP LOG_GROUP_REM_DISAS
3380
3381
3382/**
3383 * Enables or disables singled stepped disassembly.
3384 *
3385 * @returns VBox status code.
3386 * @param pVM VM handle.
3387 * @param fEnable To enable set this flag, to disable clear it.
3388 */
3389static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3390{
3391 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3392 VM_ASSERT_EMT(pVM);
3393
3394 if (fEnable)
3395 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3396 else
3397 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3398 return VINF_SUCCESS;
3399}
3400
3401
3402/**
3403 * Enables or disables singled stepped disassembly.
3404 *
3405 * @returns VBox status code.
3406 * @param pVM VM handle.
3407 * @param fEnable To enable set this flag, to disable clear it.
3408 */
3409REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3410{
3411 PVMREQ pReq;
3412 int rc;
3413
3414 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3415 if (VM_IS_EMT(pVM))
3416 return remR3DisasEnableStepping(pVM, fEnable);
3417
3418 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3419 AssertRC(rc);
3420 if (VBOX_SUCCESS(rc))
3421 rc = pReq->iStatus;
3422 VMR3ReqFree(pReq);
3423 return rc;
3424}
3425
3426
3427#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3428/**
3429 * External Debugger Command: .remstep [on|off|1|0]
3430 */
3431static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3432{
3433 bool fEnable;
3434 int rc;
3435
3436 /* print status */
3437 if (cArgs == 0)
3438 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3439 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3440
3441 /* convert the argument and change the mode. */
3442 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3443 if (VBOX_FAILURE(rc))
3444 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3445 rc = REMR3DisasEnableStepping(pVM, fEnable);
3446 if (VBOX_FAILURE(rc))
3447 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3448 return rc;
3449}
3450#endif
3451
3452
3453/**
3454 * Disassembles n instructions and prints them to the log.
3455 *
3456 * @returns Success indicator.
3457 * @param env Pointer to the recompiler CPU structure.
3458 * @param f32BitCode Indicates that whether or not the code should
3459 * be disassembled as 16 or 32 bit. If -1 the CS
3460 * selector will be inspected.
3461 * @param nrInstructions Nr of instructions to disassemble
3462 * @param pszPrefix
3463 * @remark not currently used for anything but ad-hoc debugging.
3464 */
3465bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3466{
3467 int i, rc;
3468 RTGCPTR GCPtrPC;
3469 uint8_t *pvPC;
3470 RTINTPTR off;
3471 DISCPUSTATE Cpu;
3472
3473 /*
3474 * Determin 16/32 bit mode.
3475 */
3476 if (f32BitCode == -1)
3477 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3478
3479 /*
3480 * Convert cs:eip to host context address.
3481 * We don't care to much about cross page correctness presently.
3482 */
3483 GCPtrPC = env->segs[R_CS].base + env->eip;
3484 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3485 {
3486 Assert(PGMGetGuestMode(env->pVM) < PGMMODE_AMD64);
3487
3488 /* convert eip to physical address. */
3489 rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3490 GCPtrPC,
3491 env->cr[3],
3492 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3493 (void**)&pvPC);
3494 if (VBOX_FAILURE(rc))
3495 {
3496 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3497 return false;
3498 pvPC = (uint8_t *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3499 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3500 }
3501 }
3502 else
3503 {
3504 /* physical address */
3505 rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16,
3506 (void**)&pvPC);
3507 if (VBOX_FAILURE(rc))
3508 return false;
3509 }
3510
3511 /*
3512 * Disassemble.
3513 */
3514 off = env->eip - (RTGCUINTPTR)pvPC;
3515 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3516 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3517 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3518 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3519 //Cpu.dwUserData[2] = GCPtrPC;
3520
3521 for (i=0;i<nrInstructions;i++)
3522 {
3523 char szOutput[256];
3524 uint32_t cbOp;
3525 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3526 return false;
3527 if (pszPrefix)
3528 Log(("%s: %s", pszPrefix, szOutput));
3529 else
3530 Log(("%s", szOutput));
3531
3532 pvPC += cbOp;
3533 }
3534 return true;
3535}
3536
3537
3538/** @todo need to test the new code, using the old code in the mean while. */
3539#define USE_OLD_DUMP_AND_DISASSEMBLY
3540
3541/**
3542 * Disassembles one instruction and prints it to the log.
3543 *
3544 * @returns Success indicator.
3545 * @param env Pointer to the recompiler CPU structure.
3546 * @param f32BitCode Indicates that whether or not the code should
3547 * be disassembled as 16 or 32 bit. If -1 the CS
3548 * selector will be inspected.
3549 * @param pszPrefix
3550 */
3551bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3552{
3553#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3554 PVM pVM = env->pVM;
3555 RTGCPTR GCPtrPC;
3556 uint8_t *pvPC;
3557 char szOutput[256];
3558 uint32_t cbOp;
3559 RTINTPTR off;
3560 DISCPUSTATE Cpu;
3561
3562
3563 /* Doesn't work in long mode. */
3564 if (env->hflags & HF_LMA_MASK)
3565 return false;
3566
3567 /*
3568 * Determin 16/32 bit mode.
3569 */
3570 if (f32BitCode == -1)
3571 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3572
3573 /*
3574 * Log registers
3575 */
3576 if (LogIs2Enabled())
3577 {
3578 remR3StateUpdate(pVM);
3579 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3580 }
3581
3582 /*
3583 * Convert cs:eip to host context address.
3584 * We don't care to much about cross page correctness presently.
3585 */
3586 GCPtrPC = env->segs[R_CS].base + env->eip;
3587 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3588 {
3589 /* convert eip to physical address. */
3590 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
3591 GCPtrPC,
3592 env->cr[3],
3593 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3594 (void**)&pvPC);
3595 if (VBOX_FAILURE(rc))
3596 {
3597 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3598 return false;
3599 pvPC = (uint8_t *)PATMR3QueryPatchMemHC(pVM, NULL)
3600 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3601 }
3602 }
3603 else
3604 {
3605
3606 /* physical address */
3607 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, (void**)&pvPC);
3608 if (VBOX_FAILURE(rc))
3609 return false;
3610 }
3611
3612 /*
3613 * Disassemble.
3614 */
3615 off = env->eip - (RTGCUINTPTR)pvPC;
3616 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3617 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3618 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3619 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3620 //Cpu.dwUserData[2] = GCPtrPC;
3621 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3622 return false;
3623
3624 if (!f32BitCode)
3625 {
3626 if (pszPrefix)
3627 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3628 else
3629 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3630 }
3631 else
3632 {
3633 if (pszPrefix)
3634 Log(("%s: %s", pszPrefix, szOutput));
3635 else
3636 Log(("%s", szOutput));
3637 }
3638 return true;
3639
3640#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3641 PVM pVM = env->pVM;
3642 const bool fLog = LogIsEnabled();
3643 const bool fLog2 = LogIs2Enabled();
3644 int rc = VINF_SUCCESS;
3645
3646 /*
3647 * Don't bother if there ain't any log output to do.
3648 */
3649 if (!fLog && !fLog2)
3650 return true;
3651
3652 /*
3653 * Update the state so DBGF reads the correct register values.
3654 */
3655 remR3StateUpdate(pVM);
3656
3657 /*
3658 * Log registers if requested.
3659 */
3660 if (!fLog2)
3661 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3662
3663 /*
3664 * Disassemble to log.
3665 */
3666 if (fLog)
3667 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3668
3669 return VBOX_SUCCESS(rc);
3670#endif
3671}
3672
3673
3674/**
3675 * Disassemble recompiled code.
3676 *
3677 * @param phFileIgnored Ignored, logfile usually.
3678 * @param pvCode Pointer to the code block.
3679 * @param cb Size of the code block.
3680 */
3681void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3682{
3683 if (LogIs2Enabled())
3684 {
3685 unsigned off = 0;
3686 char szOutput[256];
3687 DISCPUSTATE Cpu;
3688
3689 memset(&Cpu, 0, sizeof(Cpu));
3690#ifdef RT_ARCH_X86
3691 Cpu.mode = CPUMODE_32BIT;
3692#else
3693 Cpu.mode = CPUMODE_64BIT;
3694#endif
3695
3696 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3697 while (off < cb)
3698 {
3699 uint32_t cbInstr;
3700 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3701 RTLogPrintf("%s", szOutput);
3702 else
3703 {
3704 RTLogPrintf("disas error\n");
3705 cbInstr = 1;
3706#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3707 break;
3708#endif
3709 }
3710 off += cbInstr;
3711 }
3712 }
3713 NOREF(phFileIgnored);
3714}
3715
3716
3717/**
3718 * Disassemble guest code.
3719 *
3720 * @param phFileIgnored Ignored, logfile usually.
3721 * @param uCode The guest address of the code to disassemble. (flat?)
3722 * @param cb Number of bytes to disassemble.
3723 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3724 */
3725void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3726{
3727 if (LogIs2Enabled())
3728 {
3729 PVM pVM = cpu_single_env->pVM;
3730 RTSEL cs;
3731 RTGCUINTPTR eip;
3732
3733 /*
3734 * Update the state so DBGF reads the correct register values (flags).
3735 */
3736 remR3StateUpdate(pVM);
3737
3738 /*
3739 * Do the disassembling.
3740 */
3741 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
3742 cs = cpu_single_env->segs[R_CS].selector;
3743 eip = uCode - cpu_single_env->segs[R_CS].base;
3744 for (;;)
3745 {
3746 char szBuf[256];
3747 uint32_t cbInstr;
3748 int rc = DBGFR3DisasInstrEx(pVM,
3749 cs,
3750 eip,
3751 0,
3752 szBuf, sizeof(szBuf),
3753 &cbInstr);
3754 if (VBOX_SUCCESS(rc))
3755 RTLogPrintf("%VGp %s\n", uCode, szBuf);
3756 else
3757 {
3758 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
3759 cbInstr = 1;
3760 }
3761
3762 /* next */
3763 if (cb <= cbInstr)
3764 break;
3765 cb -= cbInstr;
3766 uCode += cbInstr;
3767 eip += cbInstr;
3768 }
3769 }
3770 NOREF(phFileIgnored);
3771}
3772
3773
3774/**
3775 * Looks up a guest symbol.
3776 *
3777 * @returns Pointer to symbol name. This is a static buffer.
3778 * @param orig_addr The address in question.
3779 */
3780const char *lookup_symbol(target_ulong orig_addr)
3781{
3782 RTGCINTPTR off = 0;
3783 DBGFSYMBOL Sym;
3784 PVM pVM = cpu_single_env->pVM;
3785 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3786 if (VBOX_SUCCESS(rc))
3787 {
3788 static char szSym[sizeof(Sym.szName) + 48];
3789 if (!off)
3790 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3791 else if (off > 0)
3792 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3793 else
3794 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3795 return szSym;
3796 }
3797 return "<N/A>";
3798}
3799
3800
3801#undef LOG_GROUP
3802#define LOG_GROUP LOG_GROUP_REM
3803
3804
3805/* -+- FF notifications -+- */
3806
3807
3808/**
3809 * Notification about a pending interrupt.
3810 *
3811 * @param pVM VM Handle.
3812 * @param u8Interrupt Interrupt
3813 * @thread The emulation thread.
3814 */
3815REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3816{
3817 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3818 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3819}
3820
3821/**
3822 * Notification about a pending interrupt.
3823 *
3824 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3825 * @param pVM VM Handle.
3826 * @thread The emulation thread.
3827 */
3828REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3829{
3830 return pVM->rem.s.u32PendingInterrupt;
3831}
3832
3833/**
3834 * Notification about the interrupt FF being set.
3835 *
3836 * @param pVM VM Handle.
3837 * @thread The emulation thread.
3838 */
3839REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3840{
3841 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3842 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3843 if (pVM->rem.s.fInREM)
3844 {
3845 if (VM_IS_EMT(pVM))
3846 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3847 else
3848 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3849 CPU_INTERRUPT_EXTERNAL_HARD);
3850 }
3851}
3852
3853
3854/**
3855 * Notification about the interrupt FF being set.
3856 *
3857 * @param pVM VM Handle.
3858 * @thread Any.
3859 */
3860REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3861{
3862 LogFlow(("REMR3NotifyInterruptClear:\n"));
3863 if (pVM->rem.s.fInREM)
3864 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3865}
3866
3867
3868/**
3869 * Notification about pending timer(s).
3870 *
3871 * @param pVM VM Handle.
3872 * @thread Any.
3873 */
3874REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3875{
3876#ifndef DEBUG_bird
3877 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3878#endif
3879 if (pVM->rem.s.fInREM)
3880 {
3881 if (VM_IS_EMT(pVM))
3882 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3883 else
3884 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3885 CPU_INTERRUPT_EXTERNAL_TIMER);
3886 }
3887}
3888
3889
3890/**
3891 * Notification about pending DMA transfers.
3892 *
3893 * @param pVM VM Handle.
3894 * @thread Any.
3895 */
3896REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3897{
3898 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3899 if (pVM->rem.s.fInREM)
3900 {
3901 if (VM_IS_EMT(pVM))
3902 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3903 else
3904 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3905 CPU_INTERRUPT_EXTERNAL_DMA);
3906 }
3907}
3908
3909
3910/**
3911 * Notification about pending timer(s).
3912 *
3913 * @param pVM VM Handle.
3914 * @thread Any.
3915 */
3916REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3917{
3918 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3919 if (pVM->rem.s.fInREM)
3920 {
3921 if (VM_IS_EMT(pVM))
3922 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3923 else
3924 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3925 CPU_INTERRUPT_EXTERNAL_EXIT);
3926 }
3927}
3928
3929
3930/**
3931 * Notification about pending FF set by an external thread.
3932 *
3933 * @param pVM VM handle.
3934 * @thread Any.
3935 */
3936REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3937{
3938 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3939 if (pVM->rem.s.fInREM)
3940 {
3941 if (VM_IS_EMT(pVM))
3942 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3943 else
3944 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3945 CPU_INTERRUPT_EXTERNAL_EXIT);
3946 }
3947}
3948
3949
3950#ifdef VBOX_WITH_STATISTICS
3951void remR3ProfileStart(int statcode)
3952{
3953 STAMPROFILEADV *pStat;
3954 switch(statcode)
3955 {
3956 case STATS_EMULATE_SINGLE_INSTR:
3957 pStat = &gStatExecuteSingleInstr;
3958 break;
3959 case STATS_QEMU_COMPILATION:
3960 pStat = &gStatCompilationQEmu;
3961 break;
3962 case STATS_QEMU_RUN_EMULATED_CODE:
3963 pStat = &gStatRunCodeQEmu;
3964 break;
3965 case STATS_QEMU_TOTAL:
3966 pStat = &gStatTotalTimeQEmu;
3967 break;
3968 case STATS_QEMU_RUN_TIMERS:
3969 pStat = &gStatTimers;
3970 break;
3971 case STATS_TLB_LOOKUP:
3972 pStat= &gStatTBLookup;
3973 break;
3974 case STATS_IRQ_HANDLING:
3975 pStat= &gStatIRQ;
3976 break;
3977 case STATS_RAW_CHECK:
3978 pStat = &gStatRawCheck;
3979 break;
3980
3981 default:
3982 AssertMsgFailed(("unknown stat %d\n", statcode));
3983 return;
3984 }
3985 STAM_PROFILE_ADV_START(pStat, a);
3986}
3987
3988
3989void remR3ProfileStop(int statcode)
3990{
3991 STAMPROFILEADV *pStat;
3992 switch(statcode)
3993 {
3994 case STATS_EMULATE_SINGLE_INSTR:
3995 pStat = &gStatExecuteSingleInstr;
3996 break;
3997 case STATS_QEMU_COMPILATION:
3998 pStat = &gStatCompilationQEmu;
3999 break;
4000 case STATS_QEMU_RUN_EMULATED_CODE:
4001 pStat = &gStatRunCodeQEmu;
4002 break;
4003 case STATS_QEMU_TOTAL:
4004 pStat = &gStatTotalTimeQEmu;
4005 break;
4006 case STATS_QEMU_RUN_TIMERS:
4007 pStat = &gStatTimers;
4008 break;
4009 case STATS_TLB_LOOKUP:
4010 pStat= &gStatTBLookup;
4011 break;
4012 case STATS_IRQ_HANDLING:
4013 pStat= &gStatIRQ;
4014 break;
4015 case STATS_RAW_CHECK:
4016 pStat = &gStatRawCheck;
4017 break;
4018 default:
4019 AssertMsgFailed(("unknown stat %d\n", statcode));
4020 return;
4021 }
4022 STAM_PROFILE_ADV_STOP(pStat, a);
4023}
4024#endif
4025
4026/**
4027 * Raise an RC, force rem exit.
4028 *
4029 * @param pVM VM handle.
4030 * @param rc The rc.
4031 */
4032void remR3RaiseRC(PVM pVM, int rc)
4033{
4034 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
4035 Assert(pVM->rem.s.fInREM);
4036 VM_ASSERT_EMT(pVM);
4037 pVM->rem.s.rc = rc;
4038 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
4039}
4040
4041
4042/* -+- timers -+- */
4043
4044uint64_t cpu_get_tsc(CPUX86State *env)
4045{
4046 STAM_COUNTER_INC(&gStatCpuGetTSC);
4047 return TMCpuTickGet(env->pVM);
4048}
4049
4050
4051/* -+- interrupts -+- */
4052
4053void cpu_set_ferr(CPUX86State *env)
4054{
4055 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
4056 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4057}
4058
4059int cpu_get_pic_interrupt(CPUState *env)
4060{
4061 uint8_t u8Interrupt;
4062 int rc;
4063
4064 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4065 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4066 * with the (a)pic.
4067 */
4068 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4069 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4070 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4071 * remove this kludge. */
4072 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4073 {
4074 rc = VINF_SUCCESS;
4075 Assert(env->pVM->rem.s.u32PendingInterrupt <= 255);
4076 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4077 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4078 }
4079 else
4080 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4081
4082 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
4083 if (VBOX_SUCCESS(rc))
4084 {
4085 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4086 env->interrupt_request |= CPU_INTERRUPT_HARD;
4087 return u8Interrupt;
4088 }
4089 return -1;
4090}
4091
4092
4093/* -+- local apic -+- */
4094
4095void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4096{
4097 int rc = PDMApicSetBase(env->pVM, val);
4098 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
4099}
4100
4101uint64_t cpu_get_apic_base(CPUX86State *env)
4102{
4103 uint64_t u64;
4104 int rc = PDMApicGetBase(env->pVM, &u64);
4105 if (VBOX_SUCCESS(rc))
4106 {
4107 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4108 return u64;
4109 }
4110 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
4111 return 0;
4112}
4113
4114void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4115{
4116 int rc = PDMApicSetTPR(env->pVM, val);
4117 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
4118}
4119
4120uint8_t cpu_get_apic_tpr(CPUX86State *env)
4121{
4122 uint8_t u8;
4123 int rc = PDMApicGetTPR(env->pVM, &u8, NULL);
4124 if (VBOX_SUCCESS(rc))
4125 {
4126 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4127 return u8;
4128 }
4129 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
4130 return 0;
4131}
4132
4133
4134uint64_t cpu_apic_rdmsr(CPUX86State *env, uint32_t reg)
4135{
4136 uint64_t value;
4137 int rc = PDMApicReadMSR(env->pVM, 0/* cpu */, reg, &value);
4138 if (VBOX_SUCCESS(rc))
4139 {
4140 LogFlow(("cpu_apic_rdms returns %#x\n", value));
4141 return value;
4142 }
4143 /** @todo: exception ? */
4144 LogFlow(("cpu_apic_rdms returns 0 (rc=%Vrc)\n", rc));
4145 return value;
4146}
4147
4148void cpu_apic_wrmsr(CPUX86State *env, uint32_t reg, uint64_t value)
4149{
4150 int rc = PDMApicWriteMSR(env->pVM, 0 /* cpu */, reg, value);
4151 /** @todo: exception if error ? */
4152 LogFlow(("cpu_apic_wrmsr: rc=%Vrc\n", rc)); NOREF(rc);
4153}
4154/* -+- I/O Ports -+- */
4155
4156#undef LOG_GROUP
4157#define LOG_GROUP LOG_GROUP_REM_IOPORT
4158
4159void cpu_outb(CPUState *env, int addr, int val)
4160{
4161 int rc;
4162
4163 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4164 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4165
4166 rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4167 if (RT_LIKELY(rc == VINF_SUCCESS))
4168 return;
4169 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4170 {
4171 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4172 remR3RaiseRC(env->pVM, rc);
4173 return;
4174 }
4175 remAbort(rc, __FUNCTION__);
4176}
4177
4178void cpu_outw(CPUState *env, int addr, int val)
4179{
4180 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4181 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4182 if (RT_LIKELY(rc == VINF_SUCCESS))
4183 return;
4184 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4185 {
4186 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4187 remR3RaiseRC(env->pVM, rc);
4188 return;
4189 }
4190 remAbort(rc, __FUNCTION__);
4191}
4192
4193void cpu_outl(CPUState *env, int addr, int val)
4194{
4195 int rc;
4196 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4197 rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4198 if (RT_LIKELY(rc == VINF_SUCCESS))
4199 return;
4200 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4201 {
4202 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4203 remR3RaiseRC(env->pVM, rc);
4204 return;
4205 }
4206 remAbort(rc, __FUNCTION__);
4207}
4208
4209int cpu_inb(CPUState *env, int addr)
4210{
4211 uint32_t u32 = 0;
4212 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4213 if (RT_LIKELY(rc == VINF_SUCCESS))
4214 {
4215 if (/*addr != 0x61 && */addr != 0x71)
4216 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4217 return (int)u32;
4218 }
4219 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4220 {
4221 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4222 remR3RaiseRC(env->pVM, rc);
4223 return (int)u32;
4224 }
4225 remAbort(rc, __FUNCTION__);
4226 return 0xff;
4227}
4228
4229int cpu_inw(CPUState *env, int addr)
4230{
4231 uint32_t u32 = 0;
4232 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4233 if (RT_LIKELY(rc == VINF_SUCCESS))
4234 {
4235 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4236 return (int)u32;
4237 }
4238 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4239 {
4240 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4241 remR3RaiseRC(env->pVM, rc);
4242 return (int)u32;
4243 }
4244 remAbort(rc, __FUNCTION__);
4245 return 0xffff;
4246}
4247
4248int cpu_inl(CPUState *env, int addr)
4249{
4250 uint32_t u32 = 0;
4251 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4252 if (RT_LIKELY(rc == VINF_SUCCESS))
4253 {
4254//if (addr==0x01f0 && u32 == 0x6b6d)
4255// loglevel = ~0;
4256 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4257 return (int)u32;
4258 }
4259 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4260 {
4261 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4262 remR3RaiseRC(env->pVM, rc);
4263 return (int)u32;
4264 }
4265 remAbort(rc, __FUNCTION__);
4266 return 0xffffffff;
4267}
4268
4269#undef LOG_GROUP
4270#define LOG_GROUP LOG_GROUP_REM
4271
4272
4273/* -+- helpers and misc other interfaces -+- */
4274
4275/**
4276 * Perform the CPUID instruction.
4277 *
4278 * ASMCpuId cannot be invoked from some source files where this is used because of global
4279 * register allocations.
4280 *
4281 * @param env Pointer to the recompiler CPU structure.
4282 * @param uOperator CPUID operation (eax).
4283 * @param pvEAX Where to store eax.
4284 * @param pvEBX Where to store ebx.
4285 * @param pvECX Where to store ecx.
4286 * @param pvEDX Where to store edx.
4287 */
4288void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4289{
4290 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4291}
4292
4293
4294#if 0 /* not used */
4295/**
4296 * Interface for qemu hardware to report back fatal errors.
4297 */
4298void hw_error(const char *pszFormat, ...)
4299{
4300 /*
4301 * Bitch about it.
4302 */
4303 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4304 * this in my Odin32 tree at home! */
4305 va_list args;
4306 va_start(args, pszFormat);
4307 RTLogPrintf("fatal error in virtual hardware:");
4308 RTLogPrintfV(pszFormat, args);
4309 va_end(args);
4310 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4311
4312 /*
4313 * If we're in REM context we'll sync back the state before 'jumping' to
4314 * the EMs failure handling.
4315 */
4316 PVM pVM = cpu_single_env->pVM;
4317 if (pVM->rem.s.fInREM)
4318 REMR3StateBack(pVM);
4319 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4320 AssertMsgFailed(("EMR3FatalError returned!\n"));
4321}
4322#endif
4323
4324/**
4325 * Interface for the qemu cpu to report unhandled situation
4326 * raising a fatal VM error.
4327 */
4328void cpu_abort(CPUState *env, const char *pszFormat, ...)
4329{
4330 va_list args;
4331 PVM pVM;
4332
4333 /*
4334 * Bitch about it.
4335 */
4336#ifndef _MSC_VER
4337 /** @todo: MSVC is right - it's not valid C */
4338 RTLogFlags(NULL, "nodisabled nobuffered");
4339#endif
4340 va_start(args, pszFormat);
4341 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4342 va_end(args);
4343 va_start(args, pszFormat);
4344 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4345 va_end(args);
4346
4347 /*
4348 * If we're in REM context we'll sync back the state before 'jumping' to
4349 * the EMs failure handling.
4350 */
4351 pVM = cpu_single_env->pVM;
4352 if (pVM->rem.s.fInREM)
4353 REMR3StateBack(pVM);
4354 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4355 AssertMsgFailed(("EMR3FatalError returned!\n"));
4356}
4357
4358
4359/**
4360 * Aborts the VM.
4361 *
4362 * @param rc VBox error code.
4363 * @param pszTip Hint about why/when this happend.
4364 */
4365static void remAbort(int rc, const char *pszTip)
4366{
4367 PVM pVM;
4368
4369 /*
4370 * Bitch about it.
4371 */
4372 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4373 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4374
4375 /*
4376 * Jump back to where we entered the recompiler.
4377 */
4378 pVM = cpu_single_env->pVM;
4379 if (pVM->rem.s.fInREM)
4380 REMR3StateBack(pVM);
4381 EMR3FatalError(pVM, rc);
4382 AssertMsgFailed(("EMR3FatalError returned!\n"));
4383}
4384
4385
4386/**
4387 * Dumps a linux system call.
4388 * @param pVM VM handle.
4389 */
4390void remR3DumpLnxSyscall(PVM pVM)
4391{
4392 static const char *apsz[] =
4393 {
4394 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4395 "sys_exit",
4396 "sys_fork",
4397 "sys_read",
4398 "sys_write",
4399 "sys_open", /* 5 */
4400 "sys_close",
4401 "sys_waitpid",
4402 "sys_creat",
4403 "sys_link",
4404 "sys_unlink", /* 10 */
4405 "sys_execve",
4406 "sys_chdir",
4407 "sys_time",
4408 "sys_mknod",
4409 "sys_chmod", /* 15 */
4410 "sys_lchown16",
4411 "sys_ni_syscall", /* old break syscall holder */
4412 "sys_stat",
4413 "sys_lseek",
4414 "sys_getpid", /* 20 */
4415 "sys_mount",
4416 "sys_oldumount",
4417 "sys_setuid16",
4418 "sys_getuid16",
4419 "sys_stime", /* 25 */
4420 "sys_ptrace",
4421 "sys_alarm",
4422 "sys_fstat",
4423 "sys_pause",
4424 "sys_utime", /* 30 */
4425 "sys_ni_syscall", /* old stty syscall holder */
4426 "sys_ni_syscall", /* old gtty syscall holder */
4427 "sys_access",
4428 "sys_nice",
4429 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4430 "sys_sync",
4431 "sys_kill",
4432 "sys_rename",
4433 "sys_mkdir",
4434 "sys_rmdir", /* 40 */
4435 "sys_dup",
4436 "sys_pipe",
4437 "sys_times",
4438 "sys_ni_syscall", /* old prof syscall holder */
4439 "sys_brk", /* 45 */
4440 "sys_setgid16",
4441 "sys_getgid16",
4442 "sys_signal",
4443 "sys_geteuid16",
4444 "sys_getegid16", /* 50 */
4445 "sys_acct",
4446 "sys_umount", /* recycled never used phys() */
4447 "sys_ni_syscall", /* old lock syscall holder */
4448 "sys_ioctl",
4449 "sys_fcntl", /* 55 */
4450 "sys_ni_syscall", /* old mpx syscall holder */
4451 "sys_setpgid",
4452 "sys_ni_syscall", /* old ulimit syscall holder */
4453 "sys_olduname",
4454 "sys_umask", /* 60 */
4455 "sys_chroot",
4456 "sys_ustat",
4457 "sys_dup2",
4458 "sys_getppid",
4459 "sys_getpgrp", /* 65 */
4460 "sys_setsid",
4461 "sys_sigaction",
4462 "sys_sgetmask",
4463 "sys_ssetmask",
4464 "sys_setreuid16", /* 70 */
4465 "sys_setregid16",
4466 "sys_sigsuspend",
4467 "sys_sigpending",
4468 "sys_sethostname",
4469 "sys_setrlimit", /* 75 */
4470 "sys_old_getrlimit",
4471 "sys_getrusage",
4472 "sys_gettimeofday",
4473 "sys_settimeofday",
4474 "sys_getgroups16", /* 80 */
4475 "sys_setgroups16",
4476 "old_select",
4477 "sys_symlink",
4478 "sys_lstat",
4479 "sys_readlink", /* 85 */
4480 "sys_uselib",
4481 "sys_swapon",
4482 "sys_reboot",
4483 "old_readdir",
4484 "old_mmap", /* 90 */
4485 "sys_munmap",
4486 "sys_truncate",
4487 "sys_ftruncate",
4488 "sys_fchmod",
4489 "sys_fchown16", /* 95 */
4490 "sys_getpriority",
4491 "sys_setpriority",
4492 "sys_ni_syscall", /* old profil syscall holder */
4493 "sys_statfs",
4494 "sys_fstatfs", /* 100 */
4495 "sys_ioperm",
4496 "sys_socketcall",
4497 "sys_syslog",
4498 "sys_setitimer",
4499 "sys_getitimer", /* 105 */
4500 "sys_newstat",
4501 "sys_newlstat",
4502 "sys_newfstat",
4503 "sys_uname",
4504 "sys_iopl", /* 110 */
4505 "sys_vhangup",
4506 "sys_ni_syscall", /* old "idle" system call */
4507 "sys_vm86old",
4508 "sys_wait4",
4509 "sys_swapoff", /* 115 */
4510 "sys_sysinfo",
4511 "sys_ipc",
4512 "sys_fsync",
4513 "sys_sigreturn",
4514 "sys_clone", /* 120 */
4515 "sys_setdomainname",
4516 "sys_newuname",
4517 "sys_modify_ldt",
4518 "sys_adjtimex",
4519 "sys_mprotect", /* 125 */
4520 "sys_sigprocmask",
4521 "sys_ni_syscall", /* old "create_module" */
4522 "sys_init_module",
4523 "sys_delete_module",
4524 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4525 "sys_quotactl",
4526 "sys_getpgid",
4527 "sys_fchdir",
4528 "sys_bdflush",
4529 "sys_sysfs", /* 135 */
4530 "sys_personality",
4531 "sys_ni_syscall", /* reserved for afs_syscall */
4532 "sys_setfsuid16",
4533 "sys_setfsgid16",
4534 "sys_llseek", /* 140 */
4535 "sys_getdents",
4536 "sys_select",
4537 "sys_flock",
4538 "sys_msync",
4539 "sys_readv", /* 145 */
4540 "sys_writev",
4541 "sys_getsid",
4542 "sys_fdatasync",
4543 "sys_sysctl",
4544 "sys_mlock", /* 150 */
4545 "sys_munlock",
4546 "sys_mlockall",
4547 "sys_munlockall",
4548 "sys_sched_setparam",
4549 "sys_sched_getparam", /* 155 */
4550 "sys_sched_setscheduler",
4551 "sys_sched_getscheduler",
4552 "sys_sched_yield",
4553 "sys_sched_get_priority_max",
4554 "sys_sched_get_priority_min", /* 160 */
4555 "sys_sched_rr_get_interval",
4556 "sys_nanosleep",
4557 "sys_mremap",
4558 "sys_setresuid16",
4559 "sys_getresuid16", /* 165 */
4560 "sys_vm86",
4561 "sys_ni_syscall", /* Old sys_query_module */
4562 "sys_poll",
4563 "sys_nfsservctl",
4564 "sys_setresgid16", /* 170 */
4565 "sys_getresgid16",
4566 "sys_prctl",
4567 "sys_rt_sigreturn",
4568 "sys_rt_sigaction",
4569 "sys_rt_sigprocmask", /* 175 */
4570 "sys_rt_sigpending",
4571 "sys_rt_sigtimedwait",
4572 "sys_rt_sigqueueinfo",
4573 "sys_rt_sigsuspend",
4574 "sys_pread64", /* 180 */
4575 "sys_pwrite64",
4576 "sys_chown16",
4577 "sys_getcwd",
4578 "sys_capget",
4579 "sys_capset", /* 185 */
4580 "sys_sigaltstack",
4581 "sys_sendfile",
4582 "sys_ni_syscall", /* reserved for streams1 */
4583 "sys_ni_syscall", /* reserved for streams2 */
4584 "sys_vfork", /* 190 */
4585 "sys_getrlimit",
4586 "sys_mmap2",
4587 "sys_truncate64",
4588 "sys_ftruncate64",
4589 "sys_stat64", /* 195 */
4590 "sys_lstat64",
4591 "sys_fstat64",
4592 "sys_lchown",
4593 "sys_getuid",
4594 "sys_getgid", /* 200 */
4595 "sys_geteuid",
4596 "sys_getegid",
4597 "sys_setreuid",
4598 "sys_setregid",
4599 "sys_getgroups", /* 205 */
4600 "sys_setgroups",
4601 "sys_fchown",
4602 "sys_setresuid",
4603 "sys_getresuid",
4604 "sys_setresgid", /* 210 */
4605 "sys_getresgid",
4606 "sys_chown",
4607 "sys_setuid",
4608 "sys_setgid",
4609 "sys_setfsuid", /* 215 */
4610 "sys_setfsgid",
4611 "sys_pivot_root",
4612 "sys_mincore",
4613 "sys_madvise",
4614 "sys_getdents64", /* 220 */
4615 "sys_fcntl64",
4616 "sys_ni_syscall", /* reserved for TUX */
4617 "sys_ni_syscall",
4618 "sys_gettid",
4619 "sys_readahead", /* 225 */
4620 "sys_setxattr",
4621 "sys_lsetxattr",
4622 "sys_fsetxattr",
4623 "sys_getxattr",
4624 "sys_lgetxattr", /* 230 */
4625 "sys_fgetxattr",
4626 "sys_listxattr",
4627 "sys_llistxattr",
4628 "sys_flistxattr",
4629 "sys_removexattr", /* 235 */
4630 "sys_lremovexattr",
4631 "sys_fremovexattr",
4632 "sys_tkill",
4633 "sys_sendfile64",
4634 "sys_futex", /* 240 */
4635 "sys_sched_setaffinity",
4636 "sys_sched_getaffinity",
4637 "sys_set_thread_area",
4638 "sys_get_thread_area",
4639 "sys_io_setup", /* 245 */
4640 "sys_io_destroy",
4641 "sys_io_getevents",
4642 "sys_io_submit",
4643 "sys_io_cancel",
4644 "sys_fadvise64", /* 250 */
4645 "sys_ni_syscall",
4646 "sys_exit_group",
4647 "sys_lookup_dcookie",
4648 "sys_epoll_create",
4649 "sys_epoll_ctl", /* 255 */
4650 "sys_epoll_wait",
4651 "sys_remap_file_pages",
4652 "sys_set_tid_address",
4653 "sys_timer_create",
4654 "sys_timer_settime", /* 260 */
4655 "sys_timer_gettime",
4656 "sys_timer_getoverrun",
4657 "sys_timer_delete",
4658 "sys_clock_settime",
4659 "sys_clock_gettime", /* 265 */
4660 "sys_clock_getres",
4661 "sys_clock_nanosleep",
4662 "sys_statfs64",
4663 "sys_fstatfs64",
4664 "sys_tgkill", /* 270 */
4665 "sys_utimes",
4666 "sys_fadvise64_64",
4667 "sys_ni_syscall" /* sys_vserver */
4668 };
4669
4670 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4671 switch (uEAX)
4672 {
4673 default:
4674 if (uEAX < ELEMENTS(apsz))
4675 Log(("REM: linux syscall %3d: %s (eip=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4676 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4677 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4678 else
4679 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4680 break;
4681
4682 }
4683}
4684
4685
4686/**
4687 * Dumps an OpenBSD system call.
4688 * @param pVM VM handle.
4689 */
4690void remR3DumpOBsdSyscall(PVM pVM)
4691{
4692 static const char *apsz[] =
4693 {
4694 "SYS_syscall", //0
4695 "SYS_exit", //1
4696 "SYS_fork", //2
4697 "SYS_read", //3
4698 "SYS_write", //4
4699 "SYS_open", //5
4700 "SYS_close", //6
4701 "SYS_wait4", //7
4702 "SYS_8",
4703 "SYS_link", //9
4704 "SYS_unlink", //10
4705 "SYS_11",
4706 "SYS_chdir", //12
4707 "SYS_fchdir", //13
4708 "SYS_mknod", //14
4709 "SYS_chmod", //15
4710 "SYS_chown", //16
4711 "SYS_break", //17
4712 "SYS_18",
4713 "SYS_19",
4714 "SYS_getpid", //20
4715 "SYS_mount", //21
4716 "SYS_unmount", //22
4717 "SYS_setuid", //23
4718 "SYS_getuid", //24
4719 "SYS_geteuid", //25
4720 "SYS_ptrace", //26
4721 "SYS_recvmsg", //27
4722 "SYS_sendmsg", //28
4723 "SYS_recvfrom", //29
4724 "SYS_accept", //30
4725 "SYS_getpeername", //31
4726 "SYS_getsockname", //32
4727 "SYS_access", //33
4728 "SYS_chflags", //34
4729 "SYS_fchflags", //35
4730 "SYS_sync", //36
4731 "SYS_kill", //37
4732 "SYS_38",
4733 "SYS_getppid", //39
4734 "SYS_40",
4735 "SYS_dup", //41
4736 "SYS_opipe", //42
4737 "SYS_getegid", //43
4738 "SYS_profil", //44
4739 "SYS_ktrace", //45
4740 "SYS_sigaction", //46
4741 "SYS_getgid", //47
4742 "SYS_sigprocmask", //48
4743 "SYS_getlogin", //49
4744 "SYS_setlogin", //50
4745 "SYS_acct", //51
4746 "SYS_sigpending", //52
4747 "SYS_osigaltstack", //53
4748 "SYS_ioctl", //54
4749 "SYS_reboot", //55
4750 "SYS_revoke", //56
4751 "SYS_symlink", //57
4752 "SYS_readlink", //58
4753 "SYS_execve", //59
4754 "SYS_umask", //60
4755 "SYS_chroot", //61
4756 "SYS_62",
4757 "SYS_63",
4758 "SYS_64",
4759 "SYS_65",
4760 "SYS_vfork", //66
4761 "SYS_67",
4762 "SYS_68",
4763 "SYS_sbrk", //69
4764 "SYS_sstk", //70
4765 "SYS_61",
4766 "SYS_vadvise", //72
4767 "SYS_munmap", //73
4768 "SYS_mprotect", //74
4769 "SYS_madvise", //75
4770 "SYS_76",
4771 "SYS_77",
4772 "SYS_mincore", //78
4773 "SYS_getgroups", //79
4774 "SYS_setgroups", //80
4775 "SYS_getpgrp", //81
4776 "SYS_setpgid", //82
4777 "SYS_setitimer", //83
4778 "SYS_84",
4779 "SYS_85",
4780 "SYS_getitimer", //86
4781 "SYS_87",
4782 "SYS_88",
4783 "SYS_89",
4784 "SYS_dup2", //90
4785 "SYS_91",
4786 "SYS_fcntl", //92
4787 "SYS_select", //93
4788 "SYS_94",
4789 "SYS_fsync", //95
4790 "SYS_setpriority", //96
4791 "SYS_socket", //97
4792 "SYS_connect", //98
4793 "SYS_99",
4794 "SYS_getpriority", //100
4795 "SYS_101",
4796 "SYS_102",
4797 "SYS_sigreturn", //103
4798 "SYS_bind", //104
4799 "SYS_setsockopt", //105
4800 "SYS_listen", //106
4801 "SYS_107",
4802 "SYS_108",
4803 "SYS_109",
4804 "SYS_110",
4805 "SYS_sigsuspend", //111
4806 "SYS_112",
4807 "SYS_113",
4808 "SYS_114",
4809 "SYS_115",
4810 "SYS_gettimeofday", //116
4811 "SYS_getrusage", //117
4812 "SYS_getsockopt", //118
4813 "SYS_119",
4814 "SYS_readv", //120
4815 "SYS_writev", //121
4816 "SYS_settimeofday", //122
4817 "SYS_fchown", //123
4818 "SYS_fchmod", //124
4819 "SYS_125",
4820 "SYS_setreuid", //126
4821 "SYS_setregid", //127
4822 "SYS_rename", //128
4823 "SYS_129",
4824 "SYS_130",
4825 "SYS_flock", //131
4826 "SYS_mkfifo", //132
4827 "SYS_sendto", //133
4828 "SYS_shutdown", //134
4829 "SYS_socketpair", //135
4830 "SYS_mkdir", //136
4831 "SYS_rmdir", //137
4832 "SYS_utimes", //138
4833 "SYS_139",
4834 "SYS_adjtime", //140
4835 "SYS_141",
4836 "SYS_142",
4837 "SYS_143",
4838 "SYS_144",
4839 "SYS_145",
4840 "SYS_146",
4841 "SYS_setsid", //147
4842 "SYS_quotactl", //148
4843 "SYS_149",
4844 "SYS_150",
4845 "SYS_151",
4846 "SYS_152",
4847 "SYS_153",
4848 "SYS_154",
4849 "SYS_nfssvc", //155
4850 "SYS_156",
4851 "SYS_157",
4852 "SYS_158",
4853 "SYS_159",
4854 "SYS_160",
4855 "SYS_getfh", //161
4856 "SYS_162",
4857 "SYS_163",
4858 "SYS_164",
4859 "SYS_sysarch", //165
4860 "SYS_166",
4861 "SYS_167",
4862 "SYS_168",
4863 "SYS_169",
4864 "SYS_170",
4865 "SYS_171",
4866 "SYS_172",
4867 "SYS_pread", //173
4868 "SYS_pwrite", //174
4869 "SYS_175",
4870 "SYS_176",
4871 "SYS_177",
4872 "SYS_178",
4873 "SYS_179",
4874 "SYS_180",
4875 "SYS_setgid", //181
4876 "SYS_setegid", //182
4877 "SYS_seteuid", //183
4878 "SYS_lfs_bmapv", //184
4879 "SYS_lfs_markv", //185
4880 "SYS_lfs_segclean", //186
4881 "SYS_lfs_segwait", //187
4882 "SYS_188",
4883 "SYS_189",
4884 "SYS_190",
4885 "SYS_pathconf", //191
4886 "SYS_fpathconf", //192
4887 "SYS_swapctl", //193
4888 "SYS_getrlimit", //194
4889 "SYS_setrlimit", //195
4890 "SYS_getdirentries", //196
4891 "SYS_mmap", //197
4892 "SYS___syscall", //198
4893 "SYS_lseek", //199
4894 "SYS_truncate", //200
4895 "SYS_ftruncate", //201
4896 "SYS___sysctl", //202
4897 "SYS_mlock", //203
4898 "SYS_munlock", //204
4899 "SYS_205",
4900 "SYS_futimes", //206
4901 "SYS_getpgid", //207
4902 "SYS_xfspioctl", //208
4903 "SYS_209",
4904 "SYS_210",
4905 "SYS_211",
4906 "SYS_212",
4907 "SYS_213",
4908 "SYS_214",
4909 "SYS_215",
4910 "SYS_216",
4911 "SYS_217",
4912 "SYS_218",
4913 "SYS_219",
4914 "SYS_220",
4915 "SYS_semget", //221
4916 "SYS_222",
4917 "SYS_223",
4918 "SYS_224",
4919 "SYS_msgget", //225
4920 "SYS_msgsnd", //226
4921 "SYS_msgrcv", //227
4922 "SYS_shmat", //228
4923 "SYS_229",
4924 "SYS_shmdt", //230
4925 "SYS_231",
4926 "SYS_clock_gettime", //232
4927 "SYS_clock_settime", //233
4928 "SYS_clock_getres", //234
4929 "SYS_235",
4930 "SYS_236",
4931 "SYS_237",
4932 "SYS_238",
4933 "SYS_239",
4934 "SYS_nanosleep", //240
4935 "SYS_241",
4936 "SYS_242",
4937 "SYS_243",
4938 "SYS_244",
4939 "SYS_245",
4940 "SYS_246",
4941 "SYS_247",
4942 "SYS_248",
4943 "SYS_249",
4944 "SYS_minherit", //250
4945 "SYS_rfork", //251
4946 "SYS_poll", //252
4947 "SYS_issetugid", //253
4948 "SYS_lchown", //254
4949 "SYS_getsid", //255
4950 "SYS_msync", //256
4951 "SYS_257",
4952 "SYS_258",
4953 "SYS_259",
4954 "SYS_getfsstat", //260
4955 "SYS_statfs", //261
4956 "SYS_fstatfs", //262
4957 "SYS_pipe", //263
4958 "SYS_fhopen", //264
4959 "SYS_265",
4960 "SYS_fhstatfs", //266
4961 "SYS_preadv", //267
4962 "SYS_pwritev", //268
4963 "SYS_kqueue", //269
4964 "SYS_kevent", //270
4965 "SYS_mlockall", //271
4966 "SYS_munlockall", //272
4967 "SYS_getpeereid", //273
4968 "SYS_274",
4969 "SYS_275",
4970 "SYS_276",
4971 "SYS_277",
4972 "SYS_278",
4973 "SYS_279",
4974 "SYS_280",
4975 "SYS_getresuid", //281
4976 "SYS_setresuid", //282
4977 "SYS_getresgid", //283
4978 "SYS_setresgid", //284
4979 "SYS_285",
4980 "SYS_mquery", //286
4981 "SYS_closefrom", //287
4982 "SYS_sigaltstack", //288
4983 "SYS_shmget", //289
4984 "SYS_semop", //290
4985 "SYS_stat", //291
4986 "SYS_fstat", //292
4987 "SYS_lstat", //293
4988 "SYS_fhstat", //294
4989 "SYS___semctl", //295
4990 "SYS_shmctl", //296
4991 "SYS_msgctl", //297
4992 "SYS_MAXSYSCALL", //298
4993 //299
4994 //300
4995 };
4996 uint32_t uEAX;
4997 if (!LogIsEnabled())
4998 return;
4999 uEAX = CPUMGetGuestEAX(pVM);
5000 switch (uEAX)
5001 {
5002 default:
5003 if (uEAX < ELEMENTS(apsz))
5004 {
5005 uint32_t au32Args[8] = {0};
5006 PGMPhysSimpleReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
5007 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
5008 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
5009 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
5010 }
5011 else
5012 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
5013 break;
5014 }
5015}
5016
5017
5018#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
5019/**
5020 * The Dll main entry point (stub).
5021 */
5022bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
5023{
5024 return true;
5025}
5026
5027void *memcpy(void *dst, const void *src, size_t size)
5028{
5029 uint8_t*pbDst = dst, *pbSrc = src;
5030 while (size-- > 0)
5031 *pbDst++ = *pbSrc++;
5032 return dst;
5033}
5034
5035#endif
5036
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette